Science.gov

Sample records for acid proton exchange

  1. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  2. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  3. Functional analysis of amino acids of the Na+/H+ exchanger that are important for proton translocation.

    PubMed

    Wiebe, Christine A; Rieder, Carmen; Young, Paul G; Dibrov, Pavel; Fliegel, Larry

    2003-12-01

    The Na+/H+ exchanger is an integral membrane protein found in the plasma membrane of eukaryotic and prokaryotic cells. In eukaryotes it functions to exchange one proton for a sodium ion. In mammals it removes intracellular protons while in plants and fungal cells the plasma membrane form removes intracellular sodium in exchange for extracellular protons. In this study we used the Na+/H+ exchanger of Schizosaccharomyces pombe (Sod2) as a model system to study amino acids critical for activity of the protein. Twelve mutant forms of the Na+/H+ exchanger were examined for their ability to translocate protons as assessed by a Cytosensor microphysiometer. Mutation of the amino acid Histidine 367 resulted in defective proton translocation. The acidic residues Asp145, Asp178, Asp266 and Asp267 were important in the proton translocation activity of the Na+/H+ exchanger. Mutation of amino acids His98, His233 and Asp241 did not significantly impair proton translocation by the Na+/H+ exchanger. These results confirm that polar amino acids are important in proton flux activity of Na+/H+ exchangers.

  4. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik; Robertson, Gilles; Guiver, Michael

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  5. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    SciTech Connect

    Dae Sik, Kim; Yu Seung, Kim; Gilles, Robertson; Guiver, Michael D

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  6. High-index proton-exchanged MgO:LiNbO3 optical waveguides using adipic acid

    NASA Astrophysics Data System (ADS)

    Pun, E. Y. B.; Loi, K. K.; Mak, C. F.; Chung, P. S.

    1993-03-01

    We report the fabrication and characterization of proton-exchanged optical waveguides in z-cut MgO:LiNbO3 using adipic acid as a new proton source. These waveguides exhibit propagation losses of less than 1 dB/cm, a linear-step index profile, and a surface index increase of 0.149 measured at 0.633 μm wavelength. This is the largest surface index change reported for proton-exchanged MgO:LiNbO3 waveguides. The diffusion parameters were characterized optically, and the diffusion constant D0 and the activation energy Q were found to be 5.40×1010 μm2/h and 103.27 kJ/mol, respectively. The diffusion rate is slower than that of the popular phosphoric acid.

  7. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  8. Acid/base equilibria in clusters and their role in proton exchange membranes: Computational insight

    SciTech Connect

    Glezakou, Vanda A; Dupuis, Michel; Mundy, Christopher J

    2007-10-24

    We describe molecular orbital theory and ab initio molecular dynamics studies of acid/base equilibria of clusters AH:(H2O)n↔A-:H+(H2O)n in low hydration regime (n = 1-4), where AH is a model of perfluorinated sulfonic acids, RSO3H (R = CF3CF2), encountered in polymeric electrolyte membranes of fuel cells. Free energy calculations on the neutral and ion pair structures for n = 3 indicate that the two configurations are close in energy and are accessible in the fluctuation dynamics of proton transport. For n = 1,2 the only relevant configuration is the neutral form. This was verified through ab initio metadynamics simulations. These findings suggest that bases are directly involved in the proton transport at low hydration levels. In addition, the gas phase proton affinity of the model sulfonic acid RSO3H was found to be comparable to the proton affinity of water. Thus, protonated acids can also play a role in proton transport under low hydration conditions and under high concentration of protons. This work was supported by the Division of Chemical Science, Office of Basic Energy Sciences, US Department of Energy (DOE under Contract DE-AC05-76RL)1830. Computations were performed on computers of the Molecular Interactions and Transformations (MI&T) group and MSCF facility of EMSL, sponsored by US DOE and OBER located at PNNL. This work was benefited from resource of the National Energy Research Scientific Computing Centre, supported by the Office of Science of the US DOE, under Contract No. DE-AC03-76SF00098.

  9. Efficient C-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneous Brønsted acid.

    PubMed

    Motokura, Ken; Nakagiri, Nobuaki; Mori, Kohsuke; Mizugaki, Tomoo; Ebitani, Kohki; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2006-09-28

    Nucleophilic addition of sulfonamides and carboxamides to simple alkenes proceeded smoothly using a proton-exchanged montmorillonite catalyst. The spent catalyst was recovered easily from the reaction mixture and was reusable at least five times without any loss of activity. The unique acidity of the proton-exchanged montmorillonite (H-mont) catalyst was found to be applicable to additional reactions: substitution of hydroxyl groups of alcohols with amides and anilines.

  10. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  11. The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Matar, Saif; Higier, Andrew; Liu, Hongtan

    A series of experiments are conducted in order to investigate the performance of a proton exchange membrane (PEM) fuel cell using a commercially available polybenzimidazole (PBI)-based high temperature membrane. During the study a drastic degradation in performance is observed over time and a significant amount of solid material built-up is found in the flow field plate and the membrane-electrode assembly (MEA). The built-up material is examined by the use of a Scanning Electron Microscope (SEM). Further elemental analysis using Energy Dispersive X-ray Spectroscopy (EDS) finds that the built-up material contains large amount of phosphorus, thus relating it with the excess phosphoric acid found in the MEA. Additional experimental studies show that the built-up material is caused by the excess acid solution in the MEA, and when the excess phosphoric acid is removed from the MEA the fuel cell performance improves significantly and becomes very stable.

  12. Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiaobai; Ma, Hongwei; Shen, Yanchao; Hu, Wei; Jiang, Zhenhua; Liu, Baijun; Guiver, Michael D.

    2016-12-01

    Phosphoric acid-doped polybenzimidazole (PA-m-PBI) membranes are widely investigated for high temperature proton exchange membrane fuel cells because of their low cost and high performance. For this system, a major challenge is in achieving a good compromise between the phosphoric acid doping level and the membrane dimensional-mechanical stability. Different from the established PA-m-PBI system, the present work investigates two types of PA-PBI membranes incorporating flexible ether linkages and asymmetric bulky pendants (phenyl and methylphenyl), which exhibit much better dimensional-mechanical stability after immersing in PA solution, even at high temperature for an extended period. This superior stability allowed higher acid doping levels (20.6 and 24.6) to be achieved, thus increasing proton conductivity (165 and 217 mS cm-1 at 200 °C under anhydrous conditions) as well as significantly improving fuel cell performance. The peak power densities in hydrogen/air fuel cell were 279 and 320 mW cm-2 at 160 °C, without humidification. Molecular simulation, density and fractional free volume, and wide-angle X-ray diffraction were used to investigate their structure-property relationships.

  13. Proton channels and exchangers in cancer.

    PubMed

    Spugnini, Enrico Pierluigi; Sonveaux, Pierre; Stock, Christian; Perez-Sayans, Mario; De Milito, Angelo; Avnet, Sofia; Garcìa, Abel Garcìa; Harguindey, Salvador; Fais, Stefano

    2015-10-01

    Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  14. Sulfonic acid-functionalized hybrid organic-inorganic proton exchange membranes synthesized by sol-gel using 3-mercaptopropyl trimethoxysilane (MPTMS)

    NASA Astrophysics Data System (ADS)

    Mosa, J.; Durán, A.; Aparicio, M.

    2015-11-01

    Organic/inorganic hybrid membranes based on (3-glycidoxypropyl) trimethoxysilane (GPTMS) and 3-mercaptopropyl trimethoxysilane (MPTMS) have been prepared by sol-gel method and organic polymerisation, as candidate materials for proton exchange membranes in direct alcohol fuel cell (DMFC) applications. The -SH groups of MPTMS are oxidized to sulfonic acid groups, which are attributed to enhance the proton conductivity of hybrid membranes. FTIR, XPS and contact angle were used to characterize and confirm the hybrid structure and oxidation reaction progress. Membranes characterization also includes ion exchange capacity, water uptake, methanol permeability and proton conductivity to confirm their applicability in fuel cells. All the membranes were homogeneous and thermally and chemically resistant. In particular, the hybrid membranes demonstrated proton conductivities as high as 0.16 S cm-1 at high temperature, while exhibiting a low methanol permeability as compared to Nafion®. These results are associated with proton conducting paths through the silica pseudo-PEO network in which sulfonic acid groups work as proton donor.

  15. Modification and improvement of proton-exchange membrane fuel cells via treatment using peracetic acid

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Qi, Zhigang; Kaufman, Arthur

    Electrodes and catalyst-coated membranes (CCMs) were treated using peracetic acid. After such a treatment, the properties and performance of these electrodes and CCMs were changed in several aspects. First, their catalytic activity was increased compared to the untreated counterparts. Second, their ability to hold water within the catalyst layers was increased so that the cathode did not need to be humidified. Third, if the cathode was humidified together with the anode, some of the electrodes were more readily to be flooded than the untreated counterparts.

  16. Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes

    NASA Astrophysics Data System (ADS)

    Bose, Anima B.; Gopu, Susmitha; Li, Wei

    2014-10-01

    Doping phosphotungstic acid immobilized by silicon dioxide (PWA/SiO2) in a Nafion membrane is an effective way to achieve a good proton conductivity of the membrane in proton exchange membrane fuel cells (PEMFCs) at elevated temperatures and lower humidity. To further advance the theory, immobilized PWA/SiO2 was incorporated in the Nafion ionomer as the binder and proton conductor in the electrode matrices for additional performance enhancement. Two sets of membrane electrode assemblies (MEAs) were prepared and tested by incorporating PWA/SiO2 both in the membrane and electrodes (MEA-1) and only in the membrane (MEA-2). Analyses of the ohmic resistance, open circuit voltage, Tafel slope, charge transfer time constant of the two MEAs indicate that the superior performance of MEA-1 at elevated temperatures and low relative humidities was primarily ascribed to a better hydration of electrodes. The protonic transports across the interfaces between the electrodes and membrane were also improved, which has less impact on the performance enhancement. These results also show that the immobilized PWA/SiO2 in the electrodes did not exhibit poisoning effects on the electrocatalysts. The lack of poisoning effects is attributed to the stabilization of PWA in ionic channels with Nafion ionomer which does not interact with the electrocatalysts.

  17. Proton Exchange Membranes for Fuel Cells

    SciTech Connect

    Devanathan, Ramaswami

    2010-11-01

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation

  18. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  19. Protein-like proton exchange in a synthetic host cavity.

    PubMed

    Hart-Cooper, William M; Sgarlata, Carmelo; Perrin, Charles L; Toste, F Dean; Bergman, Robert G; Raymond, Kenneth N

    2015-12-15

    The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.

  20. Protein-like proton exchange in a synthetic host cavity

    PubMed Central

    Hart-Cooper, William M.; Sgarlata, Carmelo; Perrin, Charles L.; Toste, F. Dean; Bergman, Robert G.; Raymond, Kenneth N.

    2015-01-01

    The mechanism of proton exchange in a metal–ligand enzyme active site mimic (compound 1) is described through amide hydrogen–deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes. PMID:26621709

  1. Mechanism of Proton Transport in Proton Exchange Membranes: Insights from Computer Simulation

    SciTech Connect

    Gregory A. Voth

    2010-11-30

    The solvation and transport of hydrated protons in proton exchange membranes (PEMs) such as NafionTM will be described using a novel multi-state reactive molecular dynamics (MD) approach, combined with large scale MD simulation to help probe various PEM morphological models. The multi-state MD methodology allows for the treatment of explicit (Grotthuss) proton shuttling and charge defect delocalization which, in turn, can strongly influence the properties of the hydrated protons in various aqueous and complex environments. A significant extension of the methodology to treat highly acidic (low pH) environments such as the hydrophilic domains of a PEM will be presented. Recent results for proton solvation and transport in NafionTM will be described which reveal the significant role of Grotthuss shuttling and charge defect delocalization on the excess proton solvation structures and transport properties. The role of PEM hydration level and morphology on these properties will also be described.

  2. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T. A.

    1976-01-01

    Explorer 45 (S3-A) measurements were made during the recovery phase of the moderate magnetic storm of February 24, 1972, in which a symmetric ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, which is a consequence of the dissipation of the asymmetric ring current, the equatorially mirroring protons in the energy range 5-30 keV decayed throughout the L value range of 3.5-5.0 at the charge exchange decay rate calculated by Liemohn (1961). After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange is more than sufficient as a particle loss mechanism for the storm time proton ring current decay.

  3. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  4. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  5. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  6. Proton exchange membranes based on PVDF/SEBS blends

    NASA Astrophysics Data System (ADS)

    Mokrini, A.; Huneault, M. A.

    Proton-conductive polymer membranes are used as an electrolyte in the so-called proton exchange membrane fuel cells. Current commercially available membranes are perfluorosulfonic acid polymers, a class of high-cost ionomers. This paper examines the potential of polymer blends, namely those of styrene-(ethylene-butylene)-styrene block copolymer (SEBS) and polyvinylidene fluoride (PVDF), in the proton exchange membrane application. SEBS/PVDF blends were prepared by twin-screw extrusion and the membranes were formed by calendering. SEBS is a phase-segregated material where the polystyrene blocks can be selectively functionalized offering high ionic conductivity, while PVDF insures good dimensional stability and chemical resistance to the films. Proton conductivity of the films was obtained by solid-state grafting of sulfonic acid moieties. The obtained membranes were characterized in terms of conductivity, ionic exchange capacity and water uptake. In addition, the membranes were characterized in terms of morphology, microstructure and thermo-mechanical properties to establish the blends morphology-property relationships. Modification of interfacial properties between SEBS and PVDF was found to be a key to optimize the blends performance. Addition of a methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer (MMA-BA-MMA) was found to compatibilize the blend by reducing the segregation scale and improving the blend homogeneity. Mechanical resistance of the membranes was also improved through the addition of this compatibilizer. As little as 2 wt.% compatibilizer was sufficient for complete interfacial coverage and lead to improved mechanical properties. Compatibilized blend membranes also showed higher conductivities, 1.9 × 10 -2 to 5.5 × 10 -3 S cm -1, and improved water management.

  7. Surface-coupled proton exchange of a membrane-bound proton acceptor.

    PubMed

    Sandén, Tor; Salomonsson, Lina; Brzezinski, Peter; Widengren, Jerker

    2010-03-02

    Proton-transfer reactions across and at the surface of biological membranes are central for maintaining the transmembrane proton electrochemical gradients involved in cellular energy conversion. In this study, fluorescence correlation spectroscopy was used to measure the local protonation and deprotonation rates of single pH-sensitive fluorophores conjugated to liposome membranes, and the dependence of these rates on lipid composition and ion concentration. Measurements of proton exchange rates over a wide proton concentration range, using two different pH-sensitive fluorophores with different pK(a)s, revealed two distinct proton exchange regimes. At high pH (> 8), proton association increases rapidly with increasing proton concentrations, presumably because the whole membrane acts as a proton-collecting antenna for the fluorophore. In contrast, at low pH (< 7), the increase in the proton association rate is slower and comparable to that of direct protonation of the fluorophore from the bulk solution. In the latter case, the proton exchange rates of the two fluorophores are indistinguishable, indicating that their protonation rates are determined by the local membrane environment. Measurements on membranes of different surface charge and at different ion concentrations made it possible to determine surface potentials, as well as the distance between the surface and the fluorophore. The results from this study define the conditions under which biological membranes can act as proton-collecting antennae and provide fundamental information on the relation between the membrane surface charge density and the local proton exchange kinetics.

  8. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  9. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  10. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  11. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOEpatents

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  12. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  13. Dynamic Protonation Equilibrium of Solvated Acetic Acid

    SciTech Connect

    Gu, Wei; Frigato, Tomaso; Straatsma, TP; Helms, Volkhard H.

    2007-04-13

    For the first time, the dynamic protonation equilibrium between an amino acid side chain analogue and bulk water as well as the diffusion properties of the excess proton were successfully reproduced through unbiased computer simulations. During a 50 ns Q-HOP MD simulation, two different regimes of proton transfer were observed. Extended phases of frequent proton swapping between acetic acid and nearby water were separated by phases where the proton freely diffuses in the simulation box until it is captured again by acetic acid. The pKa of acetic acid was calculated around 3.0 based on the relative population of protonated and deprotonated states and the diffusion coefficient of excess proton was computed from the average mean squared displacement in the simulation. Both calculated values agree well with the experimental measurements.

  14. Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    NASA Astrophysics Data System (ADS)

    Simo, I. Ruiz; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e ,e') scattering from 12C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate- to high-momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze the effect of the exchange contribution and show that the direct-exchange interference strongly affects the determination of the n p /p p ratio.

  15. Proton conduction in exchange membranes across multiple length scales.

    PubMed

    Jorn, Ryan; Savage, John; Voth, Gregory A

    2012-11-20

    Concerns over global climate change associated with fossil-fuel consumption continue to drive the development of electrochemical alternatives for energy technology. Proton exchange fuel cells are a particularly promising technology for stationary power generation, mobile electronics, and hybrid engines in automobiles. For these devices to work efficiently, direct electrical contacts between the anode and cathode must be avoided; hence, the separator material must be electronically insulating but highly proton conductive. As a result, researchers have examined a variety of polymer electrolyte materials for use as membranes in these systems. In the optimization of the membrane, researchers are seeking high proton conductivity, low electronic conduction, and mechanical stability with the inclusion of water in the polymer matrix. A considerable number of potential polymer backbone and side chain combinations have been synthesized to meet these requirements, and computational studies can assist in the challenge of designing the next generation of technologically relevant membranes. Such studies can also be integrated in a feedback loop with experiment to improve fuel cell performance. However, to accurately simulate the currently favored class of membranes, perfluorosulfonic acid containing moieties, several difficulties must be addressed including a proper treatment of the proton-hopping mechanism through the membrane and the formation of nanophase-separated water networks. We discuss our recent efforts to address these difficulties using methods that push the limits of computer simulation and expand on previous theoretical developments. We describe recent advances in the multistate empirical valence bond (MS-EVB) method that can probe proton diffusion at the nanometer-length scale and accurately model the so-called Grotthuss shuttling mechanism for proton diffusion in water. Using both classical molecular dynamics and coarse-grained descriptions that replace atomistic

  16. Channel orientation anisotropy in perfluorosulfonic acid/SiO 2 composite proton exchange membranes: Water self-diffusion study using NMR

    NASA Astrophysics Data System (ADS)

    Filipoi, Carmen; Demco, Dan E.; Zhu, Xiaomin; Vinokur, Rostislav; Conradi, Oliver; Fechete, Radu; Möller, Martin

    2011-09-01

    A diffusion-exchange model with the assumption of two water pools was applied to describe the water transport in perfluorinated sulfonic acid (PFSA)/SiO 2 nanocomposites. The water diffusivity in-plane and through-plane in solution cast films was measured by NMR revealing higher in-plane mobility. Both diffusion coefficients reached maxima at ˜3%-wt. concentration in SiO 2. The anisotropy of the PFSA channels orientation reflected in the diffusivity anisotropy decreased with the increase in the nanofiller content. Water exchange rates reached a maximum at low concentration of silica. Gaussian displacement distribution for water diffusion was detected in PFSA membrane at 40 °C independent of the direction of gradient for small concentration in silica.

  17. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    Understanding the dynamics of water sorbed into polymer films is critical to reveal structure-property relationships in membranes for energy and water treatment applications, where membranes must interact with water to facilitate or inhibit the transport of ions. The chemical structure of the polymer has drastic effects on the transport properties of the membrane due to the morphological structure of the polymer and how water is interacting with the functional groups on the polymer backbone. Therefore studying the dynamics of water adsorbed into a membrane will give insight into how water-polymer interactions influence transport properties of the film. With a better understanding of how to design materials to have specific properties, we can accelerate development of smarter materials for both energy and water treatment applications to increase efficiency and create high-flux materials and processes. The goal of this dissertation is to investigate the water-polymer interactions in proton exchange and uncharged membranes and make correlations to their charge densities and transport properties. A linear Fourier Transform Infrared (FTIR) spectroscopic method for measuring the hydrogen bonding distribution of water sorbed in proton exchange membranes is described in this thesis. The information on the distribution of the microenvironments of water in an ionic polymer is critical to understanding the effects of different acidic groups on the proton conductivity of proton exchange membranes at low relative humidity. The OD stretch of dilute HOD in H2O is a single, well-defined vibrational band. When HOD in dilute H2O is sorbed into a proton exchange membrane, the OD stretch peak shifts based on the microenvironment that water encounters within the nanophase separated structure of the material. This peak shift is a signature of different hydrogen bonding populations within the membrane, which can be deconvoluted rigorously for dilute HOD in H 2O compared to only

  18. Tritium exchange on transfer RNA: slowly exchanging protons sensitive to a change in the dihydrouridine stem.

    PubMed

    Ramstein, J; Buckingham, R H

    1981-03-01

    Measurements of tritium exchange on tRNA were made for periods from 0.5 min to 8 hr after separation from labeled solvent. The exchange curve was analysed in terms of three kinetic classes of exchanging protons with half-lives of 5 hr (12 protons), 0.54 hr (37 protons) and about 3.5 min (58 protons) at 0 degrees C in 0.14 M K+/10 mM Mg2+. The behaviour under varying ionic conditions of protons in the slowest exchange class and of some protons in the intermediate class suggests that they are dependent on the tertiary structure of the molecule. Moreover, in the same range of exchange times characteristic of these latter protons, about 9 more protons were observed in the case of a mutant form of tRNA Trp, the UGA-suppressor species, than in the wild-type tRNATrp. These two species differ only in base 24 in the dihydrouridine stem. This dynamic difference between the wild-type and suppressor species may be related to a functionally important difference in coupling between the conformation of the molecule and interactions at the anticodon.

  19. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Haile, Sossina M. (Inventor); Chisholm, Calum (Inventor); Boysen, Dane A. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2006-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting.

  20. Detection of Proton Chemical Exchange between Metabolites and Water in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Guivel-Scharen, V.; Sinnwell, T.; Wolff, S. D.; Balaban, R. S.

    1998-07-01

    Metabolites in proton chemical exchange with water were detected via the water proton signal using saturation transfer techniques in model systems and biological tissues. The metabolites were selectively saturated and the resulting decrease in the much larger water proton pool was used to monitor the metabolite. This indirect detection scheme can result in a several orders of magnitude increase in sensitivity for metabolites over direct detection methods. A control irradiation scheme was devised to compensate for macromolecular/water magnetization transfer. Using this approach, significant chemical exchange regions at ∼1 and 2.5 ppm were detected in kidney medulla. Using a difference imaging technique between a control irradiation above (-1.74 ppm) and below (+1.74 ppm) the water resonance, a chemical exchange image of the kidney was calculated. These data revealed a linear gradient of chemical exchange increasing from the cortex to the medulla. Studies on medullary acid extracts and urine revealed that the exchange observed in the kidney was predominantly with low molecular weight metabolites. Urea (1 ppm) was identified as contributing to the kidney/urine chemical exchange; however, other unidentified metabolites may also contribute to this effect. These studies demonstrate that tissue metabolites can be detected and imaged via the water protons using the signal amplification properties of saturation transfer in the presence of water/macromolecule magnetization transfer.

  1. Determination of the equilibrium micelle-inserting position of the fusion peptide of gp41 of human immunodeficiency virus type 1 at amino acid resolution by exchange broadening of amide proton resonances.

    PubMed

    Chang, D K; Cheng, S F

    1998-11-01

    The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH-] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary.

  2. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, H.L.; Sopher, D.W.

    1983-05-09

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100/sup 0/C and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  3. Separation of certain carboxylic acids utilizing cation exchange membranes

    DOEpatents

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  4. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.

    PubMed

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L

    2015-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.

  5. Proton conducting membrane using a solid acid

    NASA Technical Reports Server (NTRS)

    Chisholm, Calum (Inventor); Narayanan, Sekharipuram R. (Inventor); Boysen, Dane (Inventor); Haile, Sossina M. (Inventor)

    2002-01-01

    A solid acid material is used as a proton conducting membrane in an electrochemical device. The solid acid material can be one of a plurality of different kinds of materials. A binder can be added, and that binder can be either a nonconducting or a conducting binder. Nonconducting binders can be, for example, a polymer or a glass. A conducting binder enables the device to be both proton conducting and electron conducting. The solid acid material has the general form M.sub.a H.sub.b (XO.sub.t).sub.c.

  6. Ozonated graphene oxide film as a proton-exchange membrane.

    PubMed

    Gao, Wei; Wu, Gang; Janicke, Michael T; Cullen, David A; Mukundan, Rangachary; Baldwin, Jon K; Brosha, Eric L; Galande, Charudatta; Ajayan, Pulickel M; More, Karren L; Dattelbaum, Andrew M; Zelenay, Piotr

    2014-04-01

    Graphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes. The increase in protonic conductivity of the ozonated GO originates from enhanced proton hopping, which is due to the higher content of oxygenated functional groups in the basal planes and edges of ozonated GO as well as the morphology changes in GO that are caused by ozonation. The results of this study demonstrate that the modification of dispersed GO presents a powerful opportunity for optimizing a nanoscale material for proton-exchange membranes.

  7. Preparations of an inorganic-framework proton exchange nanochannel membrane

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  8. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  9. Toward a predictive understanding of water and charge transport in proton exchange membranes.

    PubMed

    Selvan, Myvizhi Esai; Calvo-Muñoz, Elisa; Keffer, David J

    2011-03-31

    An analytical model for water and charge transport in highly acidic and highly confined systems such as proton exchange membranes of fuel cells is developed and compared to available experimental data. The model is based on observations from both experiment and multiscale simulation. The model accounts for three factors in the system including acidity, confinement, and connectivity. This model has its basis in the molecular-level mechanisms of water transport but has been coarse-grained to the extent that it can be expressed in an analytical form. The model uses the concentration of H(3)O(+) ion to characterize acidity, interfacial surface area per water molecule to characterize confinement, and percolation theory to describe connectivity. Several important results are presented. First, an integrated multiscale simulation approach including both molecular dynamics simulation and confined random walk theory is capable of quantitatively reproducing experimentally measured self-diffusivities of water in the perfluorinated sulfonic acid proton exchange membrane material, Nafion. The simulations, across a range of hydration conditions from minimally hydrated to fully saturated, have an average error for the self-diffusivity of water of 16% relative to experiment. Second, accounting for three factors-acidity, confinement, and connectivity-is necessary and sufficient to understand the self-diffusivity of water in proton exchange membranes. Third, an analytical model based on percolation theory is capable of quantitatively reproducing experimentally measured self-diffusivities of both water and charge in Nafion across a full range of hydration.

  10. Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

    SciTech Connect

    Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; Yang, Yuan; Seifert, Soenke; Knauss, Daniel M.; Herring, Andrew M; Maupin, C. Mark

    2015-10-09

    We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å–1, which increases in amplitude when initially hydrated to 25% relative humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the

  11. Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

    DOE PAGES

    Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; ...

    2015-10-09

    We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å–1, which increases in amplitude when initially hydrated to 25% relative humidity,more » but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the

  12. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    PubMed

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  13. Sensitivity and Source of Amine Proton EXchange (APEX) and Amide Proton Transfer (APT) MRI in Cerebral Ischemia

    PubMed Central

    Zong, Xiaopeng; Wang, Ping; Kim, Seong-Gi; Jin, Tao

    2013-01-01

    Purpose Amide proton transfer (APT) and amine-water proton exchange (APEX) can be viable to map pH-decreasing ischemic regions. However, their exact contributions are unclear. Methods We measured APEX- and APT-weighted magnetization transfer ratio asymmetry (denoted as APEXw and APTw), ADC, T2 and T1 images, and localized proton spectra in rats with permanent middle cerebral artery occlusion at 9.4 T. Phantoms and theoretical studies were also performed. Results Within one hour post-occlusion, APEXw and APTw maps showed hyperintensity (3.1% of M0) and hypointensity (−1.8%), respectively, in regions with decreased ADC. Ischemia increased lactate and gamma aminobutyric acid (GABA) concentrations, but decreased glutamate and taurine concentrations. Over time, the APEXw contrast decreased with glutamate, taurine and creatine, while the APTw contrast and lactate level were similar. Phantom and theoretical studies suggest that the source of APEXw signal is mainly from proteins at normal pH, while at decreased pH, GABA and glutamate contributions increase, inducing the positive APEXw contrast in ischemic regions. The APTw contrast is sensitive to lactate concentration and pH, but contaminated from contributions of the faster amine-water proton exchange processes. Conclusion Positive APEXw contrast is more sensitive to ischemia than negative APTw contrast. They may provide complementary tissue metabolic information. PMID:23401310

  14. Proton/calcium ion exchange behavior of calcite.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Paquette, Jeanne

    2009-10-21

    The characterization of the proton sorptive properties of calcite in aqueous solutions at 25 +/- 1 degrees C over a relatively wide range of chemical conditions (7.16 proton uptake, coupled with a significant release of Ca(2+) ions is consistently observed, greatly exceeding the theoretical number of reactive surface sites. These observations are interpreted as a fast proton/calcium exchange equilibrium between the solution and "exchangeable cation sites" (e.g., lattice positions) at and/or beneath the calcite surface (species identified by "(exc)"), , that leads to a transient, "apparent" incongruent dissolution regime and the formation of a stable calcium-deficient, proton-enriched layer within the calcite lattice under circum-neutral and alkaline regimes at standard conditions. The 2H(+)/Ca(2+) ion exchange is quantitatively described by the Langmuir-power exchange function under the Vanselow convention: where n = 1 and log(10)K(ex) = 13.0 +/- 0.3. This calcite behavior, never reported before, masks surface equilibria and directly impacts the aqueous speciation of carbonate-rock systems with poor CO(2)(g) ventilation (e.g., aquifers, pore and deep sea waters, industrial reactors) via the buffering of pH and calcite dissolution. In contrast, at fixed pCO(2) conditions, aqueous speciation remains unaffected upon CO(2)(g) sequestration resulting from ion exchange-induced calcite precipitation: ([triple bond]CaCO3)2(exc) + CO2(g) + H2O <==> [triple bond]Ca(HCO3)2(exc) + CaCO3(s). Accordingly, reliable predictions of aqueous speciation in natural or engineered calcite-containing systems at variable pCO(2) conditions must consider this exchange reaction and the associated K(ex). The postulated proton/calcium exchange may have far

  15. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Keping; McDermid, Scott; Li, Jing; Kremliakova, Natalia; Kozak, Paul; Song, Chaojie; Tang, Yanghua; Zhang, Jianlu; Zhang, Jiujun

    Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol-gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm -1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm -2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm -2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.

  16. Novel proton exchange membranes based on cardo poly(arylene ether sulfone/nitrile)s with perfluoroalkyl sulfonic acid moieties for passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Jifu; He, Qingyi; Gao, Nian; Yuan, Ting; Zhang, Suobo; Yang, Hui

    2014-09-01

    A new series of cardo poly(arylene ether sulfone/nitrile)s FSPES-x with perfluoroalkyl sulfonic acid groups have been successfully prepared by the perfluorosulfonic acid lactone ring-opening reaction without using any metal or base catalysts. These materials have been characterized by IR, NMR and TGA. The results indicate that this simple and metal-free method of preparation is highly efficient for controlling both the degree of perfluorosulfonation and the position of the sulfonate group and no side reactions such as crosslinking is observed. The FSPES-x membranes (IEC = 1.17-1.64 m equiv g-1) show the desired characteristics such as good film-forming ability, excellent thermal and mechanical properties, low methanol permeability, high conductivity (up to 0.083 S cm-1 at room temperature), as well as appropriate cell performance compared to Nafion®117. With these properties, such fluorinated sulfonic acid side-chain-type polymers are promising PEM materials for application in fuel cells.

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    PubMed

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  20. Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs).

    PubMed

    Wu, Liang; Zhang, Zhenghui; Ran, Jin; Zhou, Dan; Li, Chuanrun; Xu, Tongwen

    2013-04-14

    Proton-exchange membranes (PEM) display unique ion-selective transport that has enabled a breakthrough in high-performance proton-exchange membrane fuel cells (PEMFCs). Elemental understanding of the morphology and proton transport mechanisms of the commercially available Nafion® has promoted a majority of researchers to tune proton conductive channels (PCCs). Specifically, knowledge of the morphology-property relationship gained from statistical and segmented copolymer PEMs has highlighted the importance of the alignment of PCCs. Furthermore, increasing efforts in fabricating and aligning artificial PCCs in field-aligned copolymer PEMs, nanofiber composite PEMs and mesoporous PEMs have set new paradigms for improvement of membrane performances. This perspective profiles the recent development of the channels, from the self-assembled to the artificial, with a particular emphasis on their formation and alignment. It concludes with an outlook on benefits of highly aligned PCCs for fuel cell operation, and gives further direction to develop new PEMs from a practical point of view.

  1. Polymer Composites for High-Temperature Proton-Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuling; Liu, Yuxiu; Zhu, Lei

    Recent advances in composite proton-exchange membranes for fuel cell applications at elevated temperature and low relative humidity are briefly reviewed in this chapter. Although a majority of research has focused on new sulfonated hydrocarbon and fluorocarbon polymers and their blends to directly enhance high temperature performance, we emphasize on polymer/inorganic composite membranes with the aim of improving the mechanical strength, thermal stability, and proton conductivity, which depend on water retention at elevated temperature and low relative humidity conditions. The polymer systems include perfluoronated polymers such as Nafion, sulfonated poly(arylene ether)s, polybenzimidazoles (PBI)s, and many others. The inorganic proton conductors are silica, heteropolyacids (HPA)s, layered zirconium phosphates, and liquid phosphoric acid. Direct use of sol-gel silica requires pressurization of fuel cells to maintain 100% relative humidity for high proton conductivity above 100°C. Direct incorporation of HPAs such as phosphotungstic acid (PTA) into polyelectrolyte membranes is capable of improving both proton conductivity and fuel cell performance above 100°C; however, they tend to leach out of the membrane whenever fuel cell flooding happens. To prevent HPA leaching, amine-functionalized mesoporous silica is used to immobilize PTA in Nafion membranes, whose proton conductivity and fuel cell performance are discussed. Compared with Nafion, sulfonated poly(arylene ether)s such as sulfonated poly(arylene ether sulfone)s are cost-effective materials with excellent thermal and electrochemical stability. Their composites with HPAs show increased proton conductivity at elevated temperatures when fully hydrated. Organic/inorganic hybrid membranes from acid-doped PBIs and other polymers are also discussed.

  2. HYDROGEN ISOTOPE RECOVERY USING PROTON EXCHANGE MEMBRANE ELECTROLYSIS OF WATER

    SciTech Connect

    Fox, E; Scott Greenway, S; Amy Ekechukwu, A

    2007-08-27

    A critical component of tritium glovebox operations is the recovery of high value tritium from the water vapor in the glove box atmosphere. One proposed method to improve existing tritium recovery systems is to replace the disposable hot magnesium beds used to separate the hydrogen and oxygen in water with continuous use Proton Exchange Membrane Electrolyzers (PEMEs). This study examines radiation exposure to the membrane of a PEME and examines the sizing difference that would be needed if the electrolyzer were operated with a cathode water vapor feed instead of an anode liquid water feed.

  3. Electronic circuit model for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan; Yuvarajan, S.

    The proton exchange membrane (PEM) fuel cell is being investigated as an alternate power source for various applications like transportation and emergency power supplies. The paper presents a novel circuit model for a PEM fuel cell that can be used to design and analyze fuel cell power systems. The PSPICE-based model uses bipolar junction transistors (BJTs) and LC elements available in the PSPICE library with some modification. The model includes the phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The static and dynamic characteristics obtained through simulation are compared with experimental results obtained on a commercial fuel cell module.

  4. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  5. Fabrication and characterization of Titanium Indiffused Proton Exchanged (TIPE) waveguides in lithium niobate

    NASA Astrophysics Data System (ADS)

    De Micheli, M.; Botineau, J.; Sibillot, P.; Ostrowsky, D. B.; Papuchon, M.

    1982-06-01

    We report the fabrication and characterization of optical waveguides realized in LiNbO 3 by a combined titanium indiffusion proton exchange (TIPE) process. These guides provide several unique advantages which include permitting tailorong of guide birefringence, realizing proton exchanged Y-cut plates of good optical quality, and the realization of imbedded TM guides due to a lowering of no caused by proton exchange.

  6. Intracellular Proton-Transfer Mutants in a CLC Cl-/H+ Exchanger

    SciTech Connect

    Lim, H.; Miller, C

    2009-01-01

    CLC-ec1, a bacterial homologue of the CLC family's transporter subclass, catalyzes transmembrane exchange of Cl- and H+. Mutational analysis based on the known structure reveals several key residues required for coupling H+ to the stoichiometric countermovement of Cl-. E148 (Gluex) transfers protons between extracellular water and the protein interior, and E203 (Gluin) is thought to function analogously on the intracellular face of the protein. Mutation of either residue eliminates H+ transport while preserving Cl- transport. We tested the role of Gluin by examining structural and functional properties of mutants at this position. Certain dissociable side chains (E, D, H, K, R, but not C and Y) retain H+/Cl- exchanger activity to varying degrees, while other mutations (V, I, or C) abolish H+ coupling and severely inhibit Cl- flux. Transporters substituted with other nonprotonatable side chains (Q, S, and A) show highly impaired H+ transport with substantial Cl- transport. Influence on H+ transport of side chain length and acidity was assessed using a single-cysteine mutant to introduce non-natural side chains. Crystal structures of both coupled (E203H) and uncoupled (E203V) mutants are similar to wild type. The results support the idea that Gluin is the internal proton-transfer residue that delivers protons from intracellular solution to the protein interior, where they couple to Cl- movements to bring about Cl-/H+ exchange.

  7. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    PubMed

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H2-O2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  8. Proton form factors and two-photon exchange in elastic electron-proton scattering

    SciTech Connect

    Nikolenko, D. M.; Arrington, J.; Barkov, L. M.; Vries, H. de; Gauzshtein, V. V.; Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh.; Stibunov, V. N.; Toporkov, D. K.; Holt, R. J.; and others

    2015-05-15

    Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

  9. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    PubMed

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. (1)H- and (31)P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  10. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  11. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-09-30

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40/sup 0/C for a tightly bound /sup 15/N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.

  12. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  13. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  14. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  15. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  16. Towards developing a backing layer for proton exchange membrane electrolyzers

    NASA Astrophysics Data System (ADS)

    Lettenmeier, P.; Kolb, S.; Burggraf, F.; Gago, A. S.; Friedrich, K. A.

    2016-04-01

    Current energy policies require the urgent replacement of fossil energy carriers by carbon neutral ones, such as hydrogen. The backing or micro-porous layer plays an important role in the performance of hydrogen proton exchange membrane (PEM) fuel cells, reducing contact resistance and improving reactant/product management. Such carbon-based coating cannot be used in PEM electrolysis since it oxidizes to CO2 at high voltages. A functional titanium macro-porous layer (MPL) on the current collectors of a PEM electrolyzer is developed by thermal spraying. It improves the contact with the catalyst layers by ca. 20 mΩ cm2, increasing significantly the efficiency of the device when operating at high current densities.

  17. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  18. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  19. Study and development of sulfated zirconia based proton exchange fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Kemp, Brittany Wilson

    With the increasing consumption of energy, fuel cells are among the most promising alternatives to fossil fuels, provided some technical challenges are overcome. Proton exchange membrane fuel cells (PEMFCs) have been investigated and improvements have been made, but the problem with NafionRTM, the main membrane for PEMFCs, has not been solved. NafionRTM restricts the membranes from operating at higher temperatures, thus preventing them from working in small electronics. The problem is to develop a novel fuel cell membrane that performs comparably to NafionRTM in PEMFCs. The membranes were fabricated by applying sulfated zirconia, via template wetting, to porous alumina membranes. The fabricated membranes showed a proton conductivity of 0.016 S/cm in comparison to the proton conductivity of Nafion RTM (0.05 S/cm). Both formic acid and methanol had a lower crossover flux through the sulfated zirconia membranes (formic acid- 2.89x10 -7 mols/cm2s and methanol-1.78x10-9 mols/cm2s) than through NafionRTM (formic acid-2.03x10 -8 mols/cm2s methanol-2.42x10-6 mols/cm 2s), indicating that a sulfated zirconia PEMFC may serve as a replacement for NafionRTM.

  20. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  1. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes useful as the proton transport medium and separator. Some of the performance characteristics which are typical for such membranes are outlined. The results of tests utilizing a new experimental membrane useful in proton-exchange membrane fuel cells are presented. The high voltage at low current densities can lead to higher system efficiencies while, at the same time, not sacrificing other critical properties pertinent to membrane fuel cell operation. A series of tests to determine response times indicated that on-off cycles are on the order of 80 milliseconds to reach 90 percent of full power. The IR free voltage at 100 amps/sq ft was determined and the results indicating a membrane/electrode package resistance to be .15 ohm-sq cm at 100 amps/sq ft.

  2. Evaluation of the humidification requirements of new proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Grot, Stephen; Hedstrom, J. C.; Vanderborgh, N. E.

    Measurements of PEM fuel cell device performance were made with different gas inlet temperatures and relative humidity using a newly-designed test fixture. Significant improvement in device performance was observed when the fuel inlet temperature was increased above the operating temperature of the cell. These measurements were then correlated to a model to describe energy and mass transport processes. Proton exchange membrane (PEM), fuel cells--the focus of this study--use an ion conducting polymer, especially polyperfluorosulfonic acid materials. These polymer materials, when imbibed with water, exhibit solution-like properties, but because the anions are chemically bound to the polymeric structure, the electrolyte is contained. Importantly, product water removal is simplified, as electrolyte dilution is not a concern. However, the proton transport rate is a function of the polymer geometry, which is set, in part, by the polymer water content. Consequently, dynamics of water flow are essential to understand the design of efficient conversion devices.

  3. Proton pump inhibition--the ultimate control of acid secretion

    SciTech Connect

    Zdon, M.J.; Ballantyne, G.H.; Schafer, D.E.; Tyshkov, M.; Cambria, R.P.; Modlin, I.M.

    1986-04-01

    The cellular mechanisms of acid secretion by the parietal cell (PC) include stimulation of membrane receptors, increases in cytosolic cyclic AMP levels, and activation of protein kinase systems. These events culminate in stimulation of a membrane-based proton pump. This consists of a non-electrogenic H+-K+-ATPase which transports H+ ions into the secretory canaliculus of the PC in exchange for the cation K+. It has been proposed that blockade of this proton pump would result in inhibition of acid secretion by all classes of acid secretagogues. Thus, the effects of membrane receptor agonists as well as any agents which augment cellular cAMP levels should be inhibited. Substituted benzimidazoles are weak bases which prevent acid secretion by blocking the H+-K+-ATPase system. In order to test the above hypothesis, we investigated the effects of the substituted benzimidazole H168/68 and cimetidine (C) on histamine (H) and 8B-stimulated acid secretion. The rabbit isolated gastric gland (IGG) model was used and acid secretion assessed by the accumulation of /sup 14/C-labeled weak base aminopyrine (AP) within the IGG in response to secretagogue stimulation. H168/68 and C both inhibited H (5 X 10(-5) M)-stimulated (/sup 14/C)AP accumulation in a concentration-dependent manner (P less than 0.05). H168/68 inhibited both H- and 8B-stimulated (/sup 14/C)AP accumulation (P less than 0.05), while C inhibited only H-stimulated (/sup 14/C)AP accumulation (P less than 0.05). H168/68 suppressed (/sup 14/C)AP below even unstimulated levels of (/sup 14/C)AP accumulation. These results support the hypothesis that H168/68 inhibits the PC distal to cAMP stimulation.

  4. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  5. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-07-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.

  6. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  7. Proton defect solvation and dynamics in aqueous acid and base.

    PubMed

    Kale, Seyit; Herzfeld, Judith

    2012-10-29

    Easy come, easy go: LEWIS, a new model of reactive and polarizable water that enables the simulation of a statistically reliable number of proton hopping events in aqueous acid and base at concentrations of practical interest, is used to evaluate proton transfer intermediates in aqueous acid and base (picture, left and right, respectively).

  8. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  9. Improved durability of proton exchange membrane fuel cells by introducing Sn (IV) oxide into electrodes using an ion exchange method

    NASA Astrophysics Data System (ADS)

    Poulsen, M. G.; Larsen, M. J.; Andersen, S. M.

    2017-03-01

    Electrodes of Proton Exchange Membrane Fuel Cells (PEMFCs), consisting of catalyst-coated gas diffusion layers, were subjected to an optimized ion exchange procedure, in which tin (IV) oxide (SnO2) nanoparticles were introduced into them. Both methanol and sulfuric acid were tested as ion exchange solvents. SnO2 has previously been shown to exhibit radical scavenging abilities towards radicals inside the electrocatalyst layers. Its presence inside the electrodes was confirmed using X-ray photoelectron spectroscopy and X-ray fluorescence. After exposure to an accelerated stress test in a three-electrode setup, the electrodes containing SnO2 were found to have retained approximately 73.0% of their original Pt, while only 53.2% was retained in electrodes treated identically, but without Sn. Similarly, the SnO2-treated electrodes also experienced a smaller loss in electrochemical surface area in comparison to before the accelerated stress test. A membrane electrode assembly (MEA) constructed with a SnO2-containing anode was evaluated over 500 h. The results showed remarkably reduced OCV decay rate and end of test hydrogen crossover compared to the control MEA, indicating that SnO2 aids in impeding membrane thinning and pinhole formation. The results point toward a positive effect of SnO2 on fuel cell durability, by reducing the degradation of the membrane as well as of the ionomer in the electrocatalyst layer.

  10. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    SciTech Connect

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  11. Annealed proton exchanged optical waveguides in lithium niobate: differences between the X- and Z-cuts

    NASA Astrophysics Data System (ADS)

    Nekvindová, Pavla; Špirková, Jarmila; Červená, Jarmila; Budnar, Milos; Razpet, Alenka; Zorko, Benjamin; Pelicon, Primož

    2002-04-01

    This article summarizes results and assessments of our systematic fabrication and characterization of proton exchanged (PE) and annealed proton exchanged (APE) waveguides study in lithium niobate. This study focused on different behavior of crystallographically diverse X(1 1 2¯ 0) and Z(0 0 0 1) substrate cuts during waveguides fabrication, and differences in characteristics of the resulting waveguides. Non-toxic adipic acid was used as a proton source, and the waveguides properties were defined by a mode spectroscopy (waveguides characteristics) and neutron depth profiling (NDP, lithium concentration and distribution), infrared vibration spectra and elastic recoil detection analysis (ERDA, concentration and depth distribution of hydrogen). It was discovered that the X-cuts structure is more permeable for moving particles (lithium and hydrogen ions), which leads to a higher effectiveness of the PE process within the X-cut. The explanation of this phenomenon is based on the fitting X-cuts orientation towards cleavage planes of lithium niobate crystal. Higher content of interstitial hydrogen in the X-cuts then prevents lithium from free movement during the post-exchange annealing in direction to the surface of samples, and so causes a typical step-like shape of the depth concentration profiles of lithium within the X-cuts. A free transport of lithium within the Z-cuts is being reflected in a gradient shape of the lithium depth concentration profiles and extraordinary refractive index, as well the last but not least, in a trouble-free good reproducibility of the waveguides fabrication within the Z-cuts.

  12. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    PubMed

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  13. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  14. Fault tolerance control for proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  15. DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    SciTech Connect

    Shamsuddin Ilias

    2000-01-19

    Proton-exchange membrane fuel cell (PEMFC) is one of the strongest contenders as a power source for space & electric vehicle applications. Platinum catalyst is used for both fuel and air electrodes in PEMFCs. CO contamination of H{sub 2} greatly affects electrocatalysts used at the anode of polymer electrolyte fuel cells and decrease the cell performance. Pt-Ru catalyst had been recognized to alleviate this problem by showing better tolerance to CO poisoning than only Pt catalyst. This irreversible poisoning of the anode can be happened even in concentrations as little as a few ppm, and therefore, require expensive scrubbing to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable impurity tolerant catalyst is needed. This project will develop novel electrocatalysts for the PEMFCs and demonstrate the feasibility of a H{sub 2}/O{sub 2} fuel cell base on these materials. This project, if successful, will reduce the costs due to reduce Pt catalyst loading or use non-precious metals. It will increase the PEM fuel cell performance by increasing catalyst tolerance to methanol oxidation intermediate products (CO) and fuel impurities (H{sub 2}S), which will generate substantial interest for commercialization of the PEM fuel cell technology.

  16. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    SciTech Connect

    Shamsuddin Ilias

    2002-06-11

    The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  17. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    SciTech Connect

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  18. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  19. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  20. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  1. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids.

    PubMed

    Song, Li-Cheng; Zhu, An-Guo; Guo, Yuan-Qiang

    2016-03-28

    As [FeFe]-hydrogenase models, the first thiodithiolate (TDT) ligand-containing μ-hydride complexes [(μ-TDT)Fe2(CO)4(PMe3)2(μ-H)](+)Y(-) (2-7, Y = Cl, ClO4, PF6, BF4, CF3CO2, CF3SO3) have been prepared by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (1) with the corresponding HY acids. While the protonation reactions are monitored by in situ(1)H and (31)P{(1)H} NMR spectroscopy to show the isomer type and stability of 2-7, the structures of the isolated 2-7 are characterized by elemental analysis, spectroscopy and for some of them by X-ray crystallography. Although the H/D exchange of μ-hydride complex 7 (Y = CF3SO3) with D2 or D2O has been proved not to occur under the studied conditions, the H/D exchange of 7 with DCl gives the μ-deuterium complex [(μ-TDT)Fe2(CO)4(PMe3)2(μ-D)](+)[CF3SO3](-) (8) in a nearly quantitative yield. To our knowledge, 8 is the first crystallographically characterized μ-deuterium-containing butterfly [2Fe2S] complex produced by H/D exchange reaction.

  2. Development of Proton Exchange Technology in the ISSP—Optical Waveguides in Electro-Optical Crystals

    NASA Astrophysics Data System (ADS)

    Kuneva, Mariana

    2010-01-01

    The contribution of the team working in the field of integrated optics in the Institute of Solid State Physics to the development of proton exchange technology is discussed. Some modifications of its parameters (new proton sources) and steps (two-step exchange separated by annealing, for example) are pointed out in respect of their effect on the waveguide properties of proton-exchanged layers. The spectroscopic methods used for phase content characterization of waveguides obtained are also described. These include infrared absorption and reflection spectrometry, X-ray photoelectron spectroscopy, mode spectroscopy and micro & waveguide Raman spectroscopy.

  3. Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes.

    PubMed

    Kumar, Milan; Venkatnathan, Arun

    2013-11-21

    Ionic-liquid-doped perfluorosulfonic acid membranes (PFSA) are promising electrolytes for intermediate/high-temperature fuel cell applications. In the present study, we examine proton-transport pathways in a triethylammonium-triflate (TEATF) ionic liquid (IL)-doped Nafion membrane using quantum chemistry calculations. The IL-doped membrane matrix contains triflic acid (TFA), triflate anions (TFA(-)), triethylamine (TEA), and triethylammonium cations (TEAH(+)). Results show that proton abstraction from the sulfonic acid end groups in the membrane by TFA(-) facilitates TEAH(+) interaction with the side-chains. In the IL-doped PFSA membrane matrix, proton transfer from TFA to TEA and TFA to TFA(-) occurs. However, proton transfer from a tertiary amine cation (TEAH(+)) to a tertiary amine (TEA) does not occur without an interaction with an anion (TFA(-)). An anion interaction with the amine increases its basicity, and as a consequence, it takes a proton from a cation either instantly (if the cation is freely moving) or with a small activation energy barrier of 2.62 kcal/mol (if the cation is interacting with another anion). The quantum chemistry calculations predict that anions are responsible for proton-exchange between cations and neutral molecules of a tertiary amine. Results from this study can assist the experimental choice of IL to provide enhanced proton conduction in PFSA membrane environments.

  4. Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungstophosphoric acids.

    PubMed

    Srilatha, K; Sree, Rekha; Prabhavathi Devi, B L A; Sai Prasad, P S; Prasad, R B N; Lingaiah, N

    2012-07-01

    Biodiesel synthesis from rice bran fatty acids (RBFA) was carried out using cesium exchanged 12-tungstophosphoric acid (TPA) catalysts. The physico-chemical properties of the catalysts were derived from X-ray diffraction (XRD), Fourier transform infrared (FTIR), temperature programmed desorption (TPD) of NH(3) and scanning electron microscopy (SEM). The characterization techniques revealed that the Keggin structure of TPA remained intact as Cs replaced protons. The partial exchange of Cs for protons resulted in an increase in acidity and the catalysts with one Cs(+) (Cs(1)H(2)PW(12)O(40)) showed highest acidity. Under optimized conditions about 92% conversion of RBFA was obtained. The catalyst was reused for five times and retained of its original activity. Pseudo-first order model was applied to correlate the experimental kinetic data. Modified tungstophosphoric acids are efficient solid acid catalysts for the synthesis of biodiesel from the oils containing high FFA.

  5. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    SciTech Connect

    Shamsuddin Ilias

    2001-07-06

    Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for space and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. The carbon monoxide (CO) contamination of H{sub 2} greatly affects electrocatalysts used at the anode of PEMFCs and decrease the cell performance. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H{sub 2}-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO-tolerant catalyst is needed. In this work, we have synthesized several novel electrocatalysts (Pt/C, Pt/Ru/C Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell. The concentration of CO in the H{sub 2} fuel varied from 10 ppm to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effect of temperature, catalyst compositions, and electrode film preparation methods on the performance of PEM fuel cell has also been studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalysts (10 wt % Pt/Ru/C, 20 wt % Pt/Mo/C) were more CO-tolerant than 20 wt % Pt catalyst alone. It was also observed that spraying method is better for the preparation of electrode film than the brushing technique. Some of these results are summarized in this report.

  6. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOEpatents

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  7. Two-Photon-Exchange and {gamma}Z-Exchange Corrections to Parity-Violating Elastic Electron-Proton Scattering

    SciTech Connect

    Zhou Haiqing; Kao Chungwen; Yang Shinnan

    2007-12-31

    Leading electroweak corrections play an important role in precision measurements of the strange form factors. We calculate the two-photon-exchange (TPE) and {gamma}Z-exchange corrections to the parity-violating asymmetry of the elastic electron-proton scattering in a simple hadronic model including the finite size of the proton. We find both can reach a few percent and are comparable in size with the current experimental measurements of strange-quark effects in the proton neutral weak current. The effect of {gamma}Z exchange is in general larger than that of TPE, especially at low momentum transfer Q{sup 2}{<=}1 GeV{sup 2}. Their combined effects on the values of G{sub E}{sup s}+G{sub M}{sup s} extracted in recent experiments can be as large as -40% in certain kinematics.

  8. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999

    SciTech Connect

    Srinivasan, Supramaniam; Lee, Seung-Jae; Costamagna, Paola; Yang, Christopher; Adjemian, Kevork; Bocarsly, Andrew; Ogden, Joan M.; Benziger, Jay

    2000-05-01

    In this project we investigated the experimental performance of three new classes of membranes, composites of perfluorosulfonic acid polymers with heteropolyacides, hydrated oxides and fast proton conducting glasses, which are promising candidates as electrolytes for proton exchange membrane fuel cells (PEMFCs), capable of operation at temperatures above 120°C. The motivations for PEMFC's operation at this temperature are to: 1) minimize the CO poisoning problem (adsorption of CO onto the platinum catalyst is greatly reduced at these temperatures), 2) find better solutions for the water and thermal management problems in proton exchange membrane fuel cells, 3) find potentially lower cost materials for proton exchange membranes. We prepared and characterized a variety of novel membrane materials. The most promising of these have been evaluated for performance in a single, small area (5cm2) fuel cell run on hydrogen and oxygen. Our results establish the technical feasibility of PEMFC operation above 120°C.

  9. Morphological and transport characteristics of swollen chitosan-based proton exchange membranes studied by molecular modeling.

    PubMed

    Bahlakeh, Ghasem; Mahdi Hasani-Sadrabadi, Mohammad; Jacob, Karl I

    2017-01-01

    Chitosan biopolymer has been extensively applied in direct methanol fuel cells (DMFCs) as a potential replacement to conventional Nafion membrane for its considerably reduced methanol crossover. Here, we computationally explored the influences of methanol concentration, temperature, and pH parameters upon the nanostructure and dynamics, particularly the methanol crossover, in chitosan proton-exchange membrane (PEM) through molecular dynamics simulations. Theoretical results demonstrated the increased swelling and radius of gyration of chitosan chains at higher concentrations. Structural examinations further revealed that an increase in methanol loading weakened the water interactions with chitosan functionalities (amineNH2 , hydroxylOH, and methoxyCH2 OH) whereas improved the methanol affinities toward chitosan, reflecting higher methanol sorption capability of chitosan at enhanced concentrations. Additionally, it was found that interactions between solvents and chitosan strengthened under acidic pH conditions on account of amine protonation. The water diffusivity inside the swollen chitosan diminished by increasing CH3 OH uptake, and in contrast diffusivity of methanol was noted to enhance. Furthermore, it was observed that an enhancement in temperature or a decrease in pH intensified solvent mobility. These insights imply that supplying methanol-concentrated and/or acidic feed solutions into DMFCs based on chitosan PEMs could lower membrane performance due to the significant methanol transport dynamics.

  10. Controlling the conductivity and stability of azoles: Proton and hydroxide exchange functionalities

    NASA Astrophysics Data System (ADS)

    Chaloux, Brian Leonard

    For low temperature hydrogen fuel cells to achieve widespread adoption in transport applications, it is necessary to both decrease their cost and improve the range of environmental conditions under which they effectively operate. These problems can be addressed, respectively, by either switching the catalyst from platinum to a less expensive metal, or by reducing the polymer exchange membrane's reliance upon water for proton conduction. This work focuses on understanding the chemistry and physics that limit cation stability in alkaline environments and that enable high proton conductivity in anhydrous polymer exchange membranes. Polystyrenic 1H-azoles (including 1H-tetrazole, 1H-1,2,3-triazole, and 1H-imidazoline) were synthesized to investigate whether pKa and pKb of an amophoteric, proton-conductive group have a systematic effect on anhydrous proton conductivity. It was discovered that the 1H-tetrazole (PS-Tet) exhibited distinct phase separation not seen in its carboxylic acid analog (PSHA) or reported for other 1 H-azole--containing homopolymers in literature. The resulting microstructured polymer, hypothesized to be the result of regions of high and low clustering of azoles, analogous to the multiplet-cluster model of ionomer microstructure, resulted in proton conductivity coupled with simultaneous rubbery behavior of the polymer well above its glass transition (Tg). Phase separation was similarly observed in PS-Tri and PS-ImH2 (the triazole- and imidazoline-containing polymers); soft phases with similar Tgs and hard phases with varying Tgs lend support to this hypothesis of aggregation-driven phase separation. Electrode polarization exhibited in the impedance spectra of PS-Tet and PS-HA was modeled to determine the extent of proton dissociation in undoped 1H-tetrazoles and carboxylic acids. Dry polymers (0% relative humidity) retained ~1% by weight residual water, which was observed to act as the proton acceptor in both cases. Despite doping by residual water

  11. Direct shape control of photoreduced nanostructures on proton exchanged ferroelectric templates

    NASA Astrophysics Data System (ADS)

    Balobaid, Laila; Craig Carville, N.; Manzo, Michele; Gallo, Katia; Rodriguez, Brian J.

    2013-01-01

    Photoreduction on a periodically proton exchanged ferroelectric crystal leads to the formation of periodic metallic nanostructures on the surface. By varying the depth of the proton exchange (PE) from 0.59 to 3.10 μm in congruent lithium niobate crystals, the width of the lateral diffusion region formed by protons diffusing under the mask layer can be controlled. The resulting deposition occurs in the PE region with the shallowest PE depth and preferentially in the lateral diffusion region for greater PE depths. PE depth-control provides a route for the fabrication of complex metallic nanostructures with controlled dimensions on chemically patterned ferroelectric templates.

  12. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    PubMed

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  13. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  14. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.

    PubMed

    Steininger, H; Schuster, M; Kreuer, K D; Kaltbeitzel, A; Bingöl, B; Meyer, W H; Schauff, S; Brunklaus, G; Maier, J; Spiess, H W

    2007-04-21

    The melting behaviour and transport properties of straight chain alkanes mono- and difunctionalized with phosphonic acid groups have been investigated as a function of their length. The increase of melting temperature and decrease of proton conductivity with increasing chain length is suggested to be the consequence of an increasing ordering of the alkane segments which constrains the free aggregation of the phosphonic acid groups. However, the proton mobility is reduced to a greater extent than the proton diffusion coefficient indicating an increasing cooperativity of proton transport with increasing length of the alkane segment. The results clearly indicate that the "spacer concept", which had been proven successful in the optimization of the proton conductivity of heterocycle based systems, fails in the case of phosphonic acid functionalized polymers. Instead, a very high concentration of phosphonic acid functional groups forming "bulky" hydrogen bonded aggregates is suggested to be essential for obtaining very high proton conductivity. Aggregation is also suggested to reduce condensation reactions generally observed in phosphonic acid containing systems. On the basis of this understanding, the proton conductivities of poly(vinyl phosphonic acid) and poly(meta-phenylene phosphonic acid) are discussed. Though both polymers exhibit a substantial concentration of phosphonic acid groups, aggregation seems to be constrained to such an extent that intrinsic proton conductivity is limited to values below sigma = 10(-3) S cm(-1) at T = 150 degrees C. The results suggest that different immobilization concepts have to be developed in order to minimize the conductivity reduction compared to the very high intrinsic proton conductivity of neat phosphonic acid under quasi dry conditions. In the presence of high water activities, however, (as usually present in PEM fuel cells) the very high ion exchange capacities (IEC) possible for phosphonic acid functionalized ionomers (IEC

  15. Contribution of σ meson exchange to elastic lepton-proton scattering

    NASA Astrophysics Data System (ADS)

    Koshchii, Oleksandr; Afanasev, Andrei

    2016-12-01

    Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.

  16. Protonation of diethylaminoethyl methacrylate by acids in various solvents

    SciTech Connect

    Zhuravleva, I.L.; Bune, E.V.; Bogachev, Yu.S.; Sheinker, A.P.; Teleshov, E.N.

    1988-04-10

    It was established by /sup 1/H and /sup 13/C NMR that diethylaminoethyl methacrylate exists in the unprotonated form in solvents which are not acids. In the presence of an equimolar amount of hydrochloric or trifluoroacetic acids the amino ester is fully protonated, irrespective of the solvent. The diethylaminoethyl methacrylate-acetic acid system exists in the form of a molecular complex with a hydrogen bond and in the protonated form; the proportions of the protonated form were estimated in various solvents. The change in the reactivity of diethylaminoethyl methacrylate and its salts in polymerization was explained by a change in the electronic state of CH/sub 2/ = group of the monomer as a result of its protonation and of the formation of a hydrogen bond between the C = O group of the monomer and the solvent.

  17. A flash-photolysis electron spin resonance study of radicals formed from carboxylic acids; exchange effects in spin-polarized radicals

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. A.; Ritchie, A. J. D.

    The time-integration spectroscopy (TIS) technique has been applied to the study of transient radicals created by flash photolysis of solutions of benzene-1,2,4,5-tetracarboxylic acid (pyromellitic acid), benzene-1,2,-dicarboxylic acid (phthalic acid) and benzene-1,4-dicarboxylic acid (terephthalic acid). In these systems electron transfer, proton transfer and rotational isomerism all affect the spin-polarized spectra observed. The exchange processes are analysed theoretically, in the case of proton exchange for the first time in the polarized situation, and it is shown that the two different exchange processes can be simply differentiated in the time-dependent TIS spectra.

  18. Different evolutionary histories of two cation/proton exchanger gene families in plants

    PubMed Central

    2013-01-01

    Background Gene duplication events have been proposed to be involved in the adaptation of plants to stress conditions; precisely how is unclear. To address this question, we studied the evolution of two families of antiporters. Cation/proton exchangers are important for normal cell function and in plants, Na+,K+/H+ antiporters have also been implicated in salt tolerance. Two well-known plant cation/proton antiporters are NHX1 and SOS1, which perform Na+ and K+ compartmentalization into the vacuole and Na+ efflux from the cell, respectively. However, our knowledge about the evolution of NHX and SOS1 stress responsive gene families is still limited. Results In this study we performed a comprehensive molecular evolutionary analysis of the NHX and SOS1 families. Using available sequences from a total of 33 plant species, we estimated gene family phylogenies and gene duplication histories, as well as examined heterogeneous selection pressure on amino acid sites. Our results show that, while the NHX family expanded and specialized, the SOS1 family remained a low copy gene family that appears to have undergone neofunctionalization during its evolutionary history. Additionally, we found that both families are under purifying selection although SOS1 is less constrained. Conclusions We propose that the different evolution histories are related with the proteins’ function and localization, and that the NHX and SOS1 families are examples of two different evolutionary paths through which duplication events may result in adaptive evolution of stress tolerance. PMID:23822194

  19. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2016-11-01

    Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.

  20. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    NASA Astrophysics Data System (ADS)

    Heres, M.; Wang, Y.; Griffin, P. J.; Gainaru, C.; Sokolov, A. P.

    2016-10-01

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  1. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    DOE PAGES

    Heres, M.; Wang, Y.; Griffin, P. J.; ...

    2016-10-07

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. In our detailed experimental studies we discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. Our results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  2. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  3. Proton exchange membrane fuel cell conductivity and system analysis

    NASA Astrophysics Data System (ADS)

    Han, Qian

    A fuel cell converts chemical energy to electrical energy. It is a device that uses the electrochemical reaction of hydrogen and an oxidant, to produce electrical energy silently, without combustion. The role of the electrolyte in a PEM fuel cell is played by a proton exchange membrane. NafionRTM and its derivatives are the most widely used and studied polymers. Percolation theory holds a key to understanding the behavior of these polymers. In this dissertation, the percolation phenomenon was first simulated for the thermal conductivity of a representative polymer material. The simulation program was based on the finite element method, using Ansys software, which not only simplifies the method of calculation, but also increases the accuracy of the result. Ansys programs were developed to study the effects of matrix thickness, filler particle volume percentage, and various conductivities of the base material and filler particles. Comparison with existing experimental results and other models showed that the results from the finite element method were more accurate than the other models, especially the three-dimensional model. A similar Ansys program was utilized to predict the percolation threshold for the polymer electric conductivity, and its relationship with extra water content over the studied temperature range. The result showed that the percolation threshold varied with temperature and is in the range of 22% to 26% at room temperature, and matches the experimental data within 10% error margin. A natural gas fuel cell (NGFC) is a direct-energy conversion system which uses natural gas as the hydrogen carrier. A parametric model was developed to predict the overall system performance of a natural-gas-fueled PEM fuel cell system sized for a residential or small commercial building. The model accounts for interactions between various operating parameters: fuel consumption, air and water requirements, power produced, and heat and waste water discharge. For example

  4. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  5. Enhanced proton conductivity of sulfonated poly(p-phenylene-co-aryl ether ketone) proton exchange membranes with controlled microblock structure

    NASA Astrophysics Data System (ADS)

    He, Qingyi; Xu, Tong; Qian, Huidong; Zheng, Jifu; Shi, Ce; Li, Yunqi; Zhang, Suobo

    2015-03-01

    A new series of sulfonated poly(p-phenylene-co-aryl ether ketone)s (s, m, l-SPP-co-PAEKs) microblock polymers containing different hydrophobic units with precisely defined lengths have been prepared via the nickel (0) catalyzed coupling copolymerization and characterized to act as proton exchange membranes. By controlling the length and chemical structure of the hydrophobic units in the copolymers, these novel microblock polymers can exhibit well-developed nanophase morphologies and large length-scale of the ionic channels, resulting in the improvement of the proton conductivity in both the wet and dry state. Moreover, the membrane l-SPP-co-PAEK 1.80 with the largest hydrophobic micro-block length shows high proton conductivity, excellent dimensional stability, low glass-transition temperature (Tg), good oxidative stability and superior cell performance.

  6. Single-spin asymmetries from two-photon exchange in elastic electron proton scattering

    SciTech Connect

    A.V. Afanasev; N.P. Merenkov

    2005-02-01

    The parity-conserving single-spin beam asymmetry of elastic electron-proton scattering is induced by an absorptive part of the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of the total photoproduction cross section on the proton.

  7. A measurement of two-photon exchange in unpolarized elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2016-03-01

    Jefferson Lab experiment E05-017 was designed to study 2-photon exchange contributions to elastic electron-proton scattering over a wide kinematic range. By detecting the scattered proton instead of the electron these measurements will be very sensitive to the ɛ dependence of the cross section and consequently the ratio GE/GM. The goals of the experiment, the experimental technique and the kinematic range will be presented. The analysis sequence and results of the early steps will be outlined.

  8. Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate.

    PubMed

    Langrock, Carsten; Roussev, Rostislav V; Nava, Giovanni; Minzioni, Paolo; Argiolas, Nicola; Sada, Cinzia; Fejer, Martin M

    2016-08-20

    Photorefractive-damage- (PRD) resistant zirconium-oxide-doped lithium niobate is investigated as a substrate for the realization of annealed proton-exchanged (APE) waveguides. Its advantages are a favorable distribution coefficient, PRD resistance comparable to magnesium-oxide-doped lithium niobate, and a proton-diffusion behavior resembling congruent lithium niobate. A 1D model for APE waveguides was developed based on a previous model for congruently melting lithium niobate. Evidence for a nonlinear index dependence on concentration was found.

  9. Kinetic isotope effects for fast deuterium and proton exchange rates.

    PubMed

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  10. Preparation of Proton Exchange Membranes and Lithium Batteries from Melamine-containing Ormosils

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Kinder, James D.; Meador, Mary Ann; Waldecker, James; Bennett, William R.

    2004-01-01

    Our laboratory has recently reported a series of rodcoil polymers for lithium batteries that display dimensionally stable films with good ionic conductivity. The rod segments consist of rigid linear and branched polyimides and the coil segments are polyethylene oxides (PEO). It has been proposed that good mechanical and transport properties are due to phase separation between the rod and coil segments. It was also observed that increased branching and molecular weight lead to increased conductivity. The following study was undertaken to assess the effects of phase separation in polyalkylene oxides connected by melamine linkages. Melamine was chosen as the linking unit because it provides a branching site, cation binding sites to help ionic transport between polymer chains, and the opportunity for self assembly through hydrogen bonding. Polymers were made by the reaction of cyanuric chloride with a series of amine-terminated alkylene oxides. A linear polymer was first made, followed by reaction of the third site on cyanuric chloride with varying ratios of monofunctional Jeffamine and (3-aminopropyl)triethoxysilane. The lithium trifluoromethane sulfonamide-doped polymers are then crosslinked through a sol-gel process to form free-standing films. Initial results have shown mechanically strong films with lithium conductivities on the order of 2 x 10(exp -5) S/cm at ambient temperature. In a separate study, organically modified silanes (Ormosils) that contain sulfonic acid derivatized melamines have been incorporated into proton exchange membranes. The membranes are made by reaction of the primary amine groups of various ratios of melamine derivative and difunctional Jeffamine (MW = 2000) with the epoxide group of (3-Glycidyloxypropyl)trimethoxysilane. The films were then cross-linked through a sol-gel process. Resulting sulfuric acid doped films are strong, flexible, and have proton conductivities on the order of 2 x l0(exp -2) S/cm (120 C, 25% relative humidity). Our

  11. Two-photon exchange correction in elastic unpolarized electron-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, O.; Vanderhaeghen, M.

    2016-01-01

    We evaluate the two-photon exchange (TPE) correction to the unpolarized elastic electron-proton scattering at small momentum transfer Q2 . We account for the inelastic intermediate states approximating the double virtual Compton scattering by the unpolarized forward virtual Compton scattering. The unpolarized proton structure functions are used as input for the numerical evaluation of the inelastic contribution. Our calculation reproduces the leading terms in the Q2 expansion of the TPE correction and goes beyond this approximation by keeping the full Q2 dependence of the proton structure functions. In the range of small momentum transfer, our result is in good agreement with the empirical TPE fit to existing data.

  12. Global analysis of proton elastic form factor data with two-photon exchange corrections

    SciTech Connect

    J. Arrington; W. Melnitchouk; J. A. Tjon

    2007-09-01

    We use the world's data on elastic electron-proton scattering and calculations of two-photon exchange effects to extract corrected values of the proton's electric and magnetic form factors over the full Q^2 range of the existing data. Our analysis combines the corrected Rosenbluth cross section and polarization transfer data, and is the first extraction of G_Ep and G_Mp including explicit two-photon exchange corrections and their associated uncertainties. In addition, we examine the angular dependence of the corrected cross sections, and discuss the possible nonlinearities of the cross section as a function of epsilon.

  13. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.

    PubMed

    Hou, Hongying; Di Vona, Maria Luisa; Knauth, Philippe

    2011-11-18

    As a key component of proton-exchange-membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) must continuously withstand very harsh environments during long-term fuel cell operations. With the coming commercialization of PEMFCs, investigations into the durability and degradation of PEMs are becoming more and more urgent and interesting. Herein, various recent attempts and achievements to improve the durability of sulfonated aromatic polymers (SAPs) are reviewed and some further developments are predicted. Extensive investigations into inexpensive SAPs as alternative electrolyte membranes include modification of available polymer materials; design, synthesis, and optimization of new macromolecules; durability testing; and exploring the degradation mechanisms.

  14. Boosting Proton Conductivity in Highly Robust 3D Inorganic Cationic Extended Frameworks through Ion Exchange with Dihydrogen Phosphate Anions.

    PubMed

    Xiao, Chengliang; Wang, Yaxing; Chen, Lanhua; Yin, Xuemiao; Shu, Jie; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-12-01

    The limited long-term hydrolytic stability of rapidly emerging 3D-extended framework materials (MOFs, COFs, MOPs, etc.) is still one of major barriers for their practical applications as new solid-state electrolytes in fuel cells. To obtain hydrolytically stable materials, two H2 PO4 (-) -exchanged 3D inorganic cationic extended frameworks (CEFs) were successfully prepared by a facile anion-exchange method. Both anion-exchanged CEFs (YbO(OH)P and NDTBP) show significantly enhanced proton conductivity when compared with the original materials (YbO(OH)Cl and NDTB) with an increase of up to four orders-of-magnitude, reaching 2.36×10(-3) and 1.96×10(-2)  S cm(-1) at 98 % RH and 85 °C for YbO(OH)P and NDTBP, respectively. These values are comparable to the most efficient proton-conducting MOFs. In addition, these two anion-exchanged materials are stable in boiling water, which originates from the strong electrostatic interaction between the H2 PO4 (-) anion and the cationic host framework, showing a clear advance over all the acid-impregnated materials (H2 SO4 @MIL-101, H3 PO4 @MIL-101, and H3 PO4 @Tp-Azo) as practical solid-state fuel-cell electrolytes. This work offers a new general and efficient approach to functionalize 3D-extended frameworks through an anion-exchange process and achieves water-stability with ultra-high proton conductivity above 10(-2)  S cm(-1) .

  15. Lamellar crystals as proton conductors to enhance the performance of proton exchange membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhao, Yuning; Jiang, Zhongyi; Xiao, Lulu; Xu, Tao; Wu, Hong

    2011-08-01

    Zirconium glyphosate (ZrG) is a solid proton conductor with layered crystal structure. The inorganic veneer sheets of ZrG are covalently intercalated by glyphosate molecules with carboxylic acid end groups (-COOH). The existence of abundant -COOH groups both inside and on the surface of ZrG provides additional proton-conducting channels facilitating the proton conduction through and around the inorganic crystals. ZrG is incorporated into the sulfonated polyether ether ketone (SPEEK) matrices to prepare proton-conducting hybrid membranes. The conductivity of the hybrid membranes is higher than the pristine SPEEK membrane, and increases with increasing ZrG content. Furthermore, the enhancement of the proton conductivity is more obvious at elevated temperatures. At 25 °C, the proton conductivity of the hybrid membrane with 16 wt% ZrG is 1.4 times higher than that of the pristine membrane. When the temperature increases to 55 °C, the conductivity of the hybrid membrane with 8 wt% ZrG is more than twice that of the pristine SPEEK membrane. The prolonged and tortuous pathways originated from the incorporation of inorganic crystals lead to reduced methanol permeability. The selectivity of the hybrid membrane is increased by as much as 72% compared to the pristine SPEEK membrane.

  16. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs).

    PubMed

    He, Chenfeng; Mighri, Frej; Guiver, Michael D; Kaliaguine, Serge

    2016-03-15

    The effect of annealing on the surface hydrophilicity of various representative classes of hydrocarbon-based proton exchange membranes (PEMs) is investigated. In all cases, a more hydrophilic membrane surface develops after annealing at elevated temperatures. The annealing time also had some influence, but in different ways depending on the class of PEM. Longer annealing times resulted in more hydrophilic membrane surfaces for copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), while the opposite behavior occurred in sulfonated poly(aryl ether ether ketone) (Ph-SPEEK), sulfonated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK) and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B). Increased surface hydrophilicity upon annealing results from ionic cluster decomposition, according to the "Eisenberg-Hird-Moore model" (EHM). The increased surface hydrophilicity is supported by contact angle (CA) measurements, and the cluster decomposition is auxiliarily supported by probing the level of atomic sulfur (sulfonic acid) within different surface depths using angle-dependent XPS as well as ATR-FTIR. Membrane acidification leads to more hydrophilic surfaces by elimination of the hydrogen bonding that occurs between strongly-bound residual solvent (dimethylacetamide, DMAc) and PEM sulfonic acid groups. The study of physicochemical tuning of surface hydrophilicity/hydrophobicity of PEMs by annealing and acidification provides insights for improving membrane electrode assembly (MEA) fabrication in fuel cell (FC).

  17. Two-Photon Exchange in Elastic Electron-Proton Scattering: A QCD Factorization Approach

    SciTech Connect

    Kivel, Nikolai; Vanderhaeghen, Marc

    2009-08-28

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer Q{sup 2}. It is shown that the leading two-photon exchange amplitude behaves as 1/Q{sup 4}, and can be expressed in a model independent way in terms of the leading twist nucleon distribution amplitudes. Using several models for the nucleon distribution amplitudes, we provide estimates for existing data and for ongoing experiments.

  18. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  19. Two-photon exchange corrections in elastic lepton-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr; Vanderhaeghen, Marc

    2016-03-01

    In recent years, elastic electron-proton scattering experiments, with and without polarized protons, gave strikingly different results for the electric over magnetic proton form factor ratio. A mysterious discrepancy (``the proton radius puzzle'') has been observed in the measurement of the proton charge radius in muon spectroscopy experiments versus electron spectroscopy and electron scattering. Two-photon exchange (TPE) contributions are the largest source of the hadronic uncertainty in these experiments. We compare the existing models of the elastic contribution to TPE correction in lepton-proton scattering. A subtracted dispersion relation formalism for the TPE in electron-proton scattering has been developed and tested. Its relative effect on cross section is in the 1 - 2 % range for a low value of the momentum transfer. An alternative dispersive evaluation of the TPE correction to the hydrogen hyperfine splitting was found and applied. For the inelastic TPE contribution, the low momentum transfer expansion was studied. In addition with the elastic TPE it describes the experimental TPE fit to electron data quite well. For a forthcoming muon-proton scattering experiment (MUSE) the resulting TPE was found to be in the 0 . 5 - 1 % range, which is the planned accuracy goal.

  20. Solution dynamics of the trp repressor: a study of amide proton exchange by T1 relaxation.

    PubMed

    Gryk, M R; Finucane, M D; Zheng, Z; Jardetzky, O

    1995-03-10

    The amide proton exchange rates of Escherichia coli trp repressor have been measured through their effects on the longitudinal relaxation rates of the amide protons. Three types of exchange regimes have been observed: (1) slow exchange (on a minute/hour time-scale), measurable by isotope exchange, but not by relaxation techniques in the core of the molecule; (2) relatively rapid exchange, with the rates on a T1 relaxation time-scale (seconds) in the DNA-binding region and (3) very fast exchange at the N and C termini. The results have been analyzed in terms of the two-site exchange model originally proposed by Linderstrøm-Lang, and of a three-site extension of the model. The values of the intrinsic exchange rates calculated using the two-state model agree with the values expected from the studies of Englander and co-workers for the very fast case of the chain terminals, but disagree with the literature values by two orders of magnitude in the intermediate case found in the DNA-binding region. The implication of these findings is that the "open" state of the two-state model in the DNA-binding region is not completely open and has an intrinsic exchange rate different from that of a random coil peptide. Alternatively, if the literature values of the intrinsic exchange rates are assumed to apply to the open states in all parts of the repressor molecule, two "closed" helical states have to be postulated, in slow exchange with each other, with only one of them in rapid exchange with the open state and hence with the solvent. Kinetically, the two models are indistinguishable.

  1. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    PubMed

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction.

  2. Fast proton exchange in histidine: measurement of rate constants through indirect detection by NMR spectroscopy.

    PubMed

    Sehgal, Akansha Ashvani; Duma, Luminita; Bodenhausen, Geoffrey; Pelupessy, Philippe

    2014-05-19

    Owing to its imidazole side chain, histidine participates in various processes such as enzyme catalysis, pH regulation, metal binding, and phosphorylation. The determination of exchange rates of labile protons for such a system is important for understanding its functions. However, these rates are too fast to be measured directly in an aqueous solution by using NMR spectroscopy. We have obtained the exchange rates of the NH3(+) amino protons and the labile NH(ε2) and NH(δ1) protons of the imidazole ring by indirect detection through nitrogen-15 as a function of temperature (272 KExchange rates up to 8.5×10(4) s(-1) could be determined (i.e., lifetimes as short as 12 μs). The three chemical shifts δH(i) of the invisible exchanging protons H(i) and the three one-bond scalar coupling constants (1)J(N,H(i)) could also be determined accurately.

  3. Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins

    PubMed Central

    Saint-Martin, Pascal; Lespinat, Paul A.; Fauque, Guy; Berlier, Yves; LeGall, Jean; Moura, Isabel; Teixeira, Miguel; Xavier, Antonio V.; Moura, Jose J. G.

    1988-01-01

    The nickel tetrahedral sulfur-coordinated core formed upon metal replacement of the native iron in Desulfovibrio sp. rubredoxins is shown to mimic the reactivity pattern of nickel-containing hydrogenases with respect to hydrogen production, deuterium-proton exchange, and inhibition by carbon monoxide. PMID:16594005

  4. PEM (Proton exchange membrane) fuel cell stack heat and mass measurement

    SciTech Connect

    Vanderborgh, N.E.; Kimble, M.C.; Huff, J.R.; Hedstrom, J.C.

    1992-01-01

    PEM stacks are under evaluation as candidates for future space power technology. Results of long-term operation on a set of contemporary stacks fitted with different proton exchange membrane materials are given. Data on water balances show effects of membrane materials on stack performance. 15 refs.

  5. Numerical Model Of Parametric Oscillator In Proton Exchanged Ti:LiNbO3 Waveguides

    NASA Astrophysics Data System (ADS)

    Bava, G. P.; Montrosset, I.

    1986-11-01

    Integrated Optic Parametric oscillators in TIPE resonating structures are analyzed as regards the pump threshold power minimization. The amount of proton exchange has been chosen to satisfy phase-matching condition and the Ti:LiNbO3 waveguide parameters used for optimization. A comparison between TIPE and Ti structures will be discussed.

  6. Measuring the 2{gamma} Exchange Effect in Electron-Proton Scattering at CLAS

    SciTech Connect

    Bennett, Robert Paul

    2011-10-24

    Recent results from experiments at Jefferson Laboratory, Newport News VA, which measure the ratio of the electric to magnetic form factors of the proton, G{sub E}/G{sub M}, have forced us to reexamine the single photon exchange approximation in lepton-proton elastic scattering. Discrepancies between the ratio obtained via the time-tested Rosenbluth separation method and new polarization transfer measurements, which differ by as much as a factor of three, may be resolved by considering the effect of two photon exchange (TPE). Theoretical corrections for the TPE effect are difficult due to the large number of excited nucleon states that can contribute to the process. The TPE effect can, however, be determined directly by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = {sigma}(e{sup +})/{sigma}(e{sup -}), since the TPE effect changes sign with the charge of the incident particle. The CLAS TPE experiment at Jefferson Laboratory, will determine the effect of two-photon exchange in elastic lepton-proton scattering by precisely measuring the ratio of positron-proton to electron-proton elastic cross sections over a large kinematic range (0.1<{epsilon}<0.96, 0.02{<=}Q{sup 2}{<=}2.0). We will accomplish this by directing the 5.5 GeV primary electron beam, provided by the Continuous Electron Beam Accelerator Facility (CEBAF), onto a set of radiators and converters to produce simultaneous and identical beams of electron and positrons. Acceptance and efficiency concerns are minimized by only considering the ratios of the elastic cross sections and switching polarity of magnets in the beam line and the spectrometer. Guided by the results of a short 2006 test run and extensive GEANT based modeling, new shielding and beam line components were designed to maximize luminosity. The unique experimental design and challenges of the TPE experiment and the projected luminosities will be presented.

  7. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  8. Two-photon exchange correction to muon-proton elastic scattering at low momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr; Vanderhaeghen, Marc

    2016-03-01

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that, for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data.

  9. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    PubMed Central

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  10. Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, J. F.; Kamavaram, V.; Kannan, A. M.

    Multi-walled carbon nanotubes (MWCNTs) were used as catalyst support for depositing platinum nanoparticles by a wet chemistry route. MWCNTs were initially surface modified by citric acid to introduce functional groups which act as anchors for metallic clusters. A two-phase (water-toluene) method was used to transfer PtCl 6 2- from aqueous to organic phase and the subsequent sodium formate solution reduction step yielded Pt nanoparticles on MWCNTs. High-resolution TEM images showed that the platinum particles in the size range of 1-3 nm are homogeneously distributed on the surface of MWCNTs. The Pt/MWCNTs nanocatalyst was evaluated in the proton exchange membrane (PEM) single cell using H 2/O 2 at 80 °C with Nafion-212 electrolyte. The single PEM fuel cell exhibited a peak power density of about 1100 mW cm -2 with a total catalyst loading of 0.6 mg Pt cm -2 (anode: 0.2 mg Pt cm -2 and cathode: 0.4 mg Pt cm -2). The durability of Pt/MWCNTs nanocatalyst was evaluated for 100 h at 80 °C at ambient pressure and the performance (current density at 0.4 V) remained stable throughout. The electrochemically active surface area (64 m 2 g -1) as estimated by cyclic voltammetry (CV) was also similar before and after the durability test.

  11. Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Bing; Yan, Zeyu; Higgins, Drew C.; Yang, Daijun; Chen, Zhongwei; Ma, Jianxin

    2014-09-01

    Carbon-supported platinum nanowires (PtNW/C) are successfully synthesized by a simple and inexpensive template-free methodology and demonstrated as novel, suitable cathode electrode materials for proton exchange membrane fuel cell (PEMFC) applications. The synthesis conditions, such as the amount of reducing agent and reaction time, were investigated to investigate the effect on the nanostructures and activities of the PtNW/C catalysts. High-resolution transmission electron microscopy (TEM) results show that the formic acid facilitated reduction is capable of producing uniformly distributed 1-dimensional PtNW with an average cross-sectional diameter of 4.0 ± 0.2 nm and length of 20-40 nm. Investigation of the electrocatalytic activity by half-cell electrochemical testing reveals that PtNW/C catalyst demonstrates significant oxygen reduction reaction (ORR) activity, superior to that of commercially available Pt/C. Using a loading of 0.4 mgPt cm-2 PtNW/C as the cathode catalyst, a maximum power density of 748.8 mW cm-2 in a 50 cm2 single cell of commercial Pt/C. In addition, accelerated degradation testing (ADT) showed that the PtNW/C catalyst exhibits better durability than commercial Pt/C, rendering PtNW/C as a promising replacement to conventional Pt/C as cathode electrocatalysts for PEMFCs applications.

  12. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Nagano, Keita; Yamamoto, Yuji; Tsumura, Tomoki; Toyoda, Masahiro

    2014-03-01

    An anticorrosive surface treatment of a carbonaceous bipolar plate used in proton exchange membrane fuel cells (PEMFCs) was demonstrated by addition of a tin oxide surface coating by liquid phase deposition (LPD), and its effectiveness toward corrosion prevention was determined. The tin oxide coating was deposited by immersion in tin fluoride and boric acid solutions, without any observable decrease in the bipolar plate electrical conductivity. Anticorrosion properties of a flat carbonaceous bipolar plate were investigated in an aqueous HClO4 electrolyte solution (10 μmol dm-3) at 80 °C. CO2 release due to corrosion was significant for the bare specimen above 1.3 V, whereas no CO2 release was noted for the tin-oxide-coated specimen, even approaching 1.5 V. Moreover, minimal changes in contact angle against a water droplet before and after treatment indicated suppressed corrosion of the surface-coated specimen. Anticorrosion properties were also confirmed for a model bipolar plate having four gas flow channels. The tin oxide layer remained on the channel surfaces (inner walls, corners and intersections) after durability tests. Based on these results, tin-oxide-based surface coatings fabricated by LPD show promise as an anticorrosion technique for carbonaceous bipolar plates for PEMFCs.

  13. Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Li, Li

    2014-12-01

    To improve its performance, extend its lifetime, and overcome the problem of the slow dynamic during the start-up and the operation process of a proton exchange membrane fuel cell (PEMFC), this paper presents current short circuit and smart energy management approaches for a main PEMFC with auxiliary PEMFC, battery and supercapacitor as hybrid power source in parallel with an intelligent uninterrupted power supply (UPS) system. The hybrid UPS system consists of two low-cost 63-cell 300 W PEMFC stacks, 3-cell lead-acid battery, and 20-cell series-connected supercapacitors. Based on the designed intelligent hybrid UPS system, experimental tests and theoretical studies are conducted. Firstly, the modeling of PEMFC is obtained and evaluated. Then the performance improvement mechanism of the current short circuit is proposed and analyzed based on the Faradaic process and non-Faradaic process of electrochemical theory. Finally, the performances of the main PEMFC with the auxiliary PEMFC/battery/supercapacitor hybrid power source and intelligent energy management are experimentally measured and analyzed. The proposed current short circuit method can significantly extend the lifetime, improve the performance of PEMFC and decrease the size of the main FC for stationary, backup power sources and vehicular applications.

  14. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Neelakandan, S.; Kanagaraj, P.; Sabarathinam, R. M.; Nagendran, A.

    2015-12-01

    Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10-7 cm2 s-1, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 104 S cm-3 s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  15. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.

    PubMed

    Adlhart, O J; Rohonyi, P; Modroukas, D; Driller, J

    1997-01-01

    Small, lightweight power sources for total artificial hearts (TAH), left ventricular assist devices (LVAD), and other medical products are under development. The new power source will provide 2 to 3 times the capacity of conventional batteries. The implications of this new power source are profound. For example, for the Heartmate LVAD, 5 to 8 hours of operation are obtained with 3 lb of lead acid batteries (Personal Communication Mr. Craig Sherman, Thermo Cardiosystems, Inc TCI 11/29/96). With the same weight, as much as 14 hours of operation appear achievable with the proton exchange membrane (PEM) fuel cell power source. Energy densities near 135 watt-hour/L are achievable. These values significantly exceed those of most conventional and advanced primary and secondary batteries. The improvement is mission dependent and even applies for the short deployment cited above. The comparison to batteries becomes even more favorable if the mission length is increased. The higher capacity requires only replacement of lightweight hydride cartridges and logistically available water. Therefore, when one spare 50 L hydride cartridge weighing 115 g is added to the reactant supply the energy density of the total system increases to 230 watt-hour/kg. This new power source is comprised of a hydrogen fueled, air-breathing PEM fuel cell and a miniature hydrogen generator (US Patent No 5,514,353). The fuel cell is of novel construction and differs from conventional bipolar PEM fuel cells by the arrangement of cells on a single sheet of ion-exchange membrane. The construction avoids the weight and volume penalty of conventional bipolar stacks. The hydrogen consumed by the fuel cell is generated load-responsively in the miniature hydrogen generator, by reacting calcium hydride with water, forming in the process hydrogen and lime. The generator is cartridge rechargeable and available in capacities providing up to several hundred watt-hours of electric power.

  16. Analysis of proton exchange kinetics with time-dependent exchange rate.

    PubMed

    Rutkowska-Wlodarczyk, Izabela; Kierdaszuk, Borys; Wlodarczyk, Jakub

    2010-04-01

    Mass spectrometry is used to probe the kinetics of hydrogen-deuterium exchange in lysozyme in pH 5, 6 and 7.4. An analysis based on a Verhulst growth model is proposed and effectively applied to the kinetics of the hydrogen exchange. The data are described by a power-like function which is based on a time-dependence of the exchange rate. Experimental data ranging over many time scales is considered and accurate fits of a power-like function are obtained. Results of fittings show correlation between faster hydrogen-deuterium exchange and increase of pH. Furthermore a model is presented that discriminates between easily exchangeable hydrogens (located in close proximity to the protein surface) and those protected from the exchange (located in the protein interior). A possible interpretation of the model and its biological significance are discussed.

  17. The inconsistency between proton charge exchange and the observed ring current decay

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Evans, D. S.

    1976-01-01

    The equatorial pitch-angle distributions of ring-current ions observed during a storm recovery phase at L values between 3 and 4 are compared with the pitch-angle distributions predicted by proton charge exchange with neutral hydrogen. Large disagreements are found, and three alternative explanations are explored. (1) A strong proton source acts to mask the effects of charge exchange. It is believed that the required strong continual source with a unique pitch-angle and energy dependence is unrealistic at these low L values. (2) Presently accepted neutral hydrogen density models have densities well over an order of magnitude too large for a storm recovery phase. No evidence is known to support the required large errors in the densities. (3) The ring current at particle energies not exceeding 50 keV was dominated by some ion species other than protons during the storm recovery phase. Such ions must have much longer lifetimes for charge exchange with hydrogen than do protons. This alternative is strongly favored, with He(+) being an attractive candidate.

  18. Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange studies.

    PubMed

    Jin, Tao; Kim, Seong-Gi

    2014-11-01

    The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, the sensitivity is not optimal and, more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the properties of CEST signals are compared with those of a CE-sensitive spin-lock (CESL) technique irradiating at the labile proton frequency. First, using a higher power and shorter irradiation in CE-MRI, we obtain: (i) an increased selectivity to faster CE rates via a higher sensitivity to faster CEs and a lower sensitivity to slower CEs and magnetization transfer processes; and (ii) a decreased in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Second, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with an asymmetric population approximation, which can be used for quantitative CE-MRI and validated by simulations of Bloch-McConnell equations and phantom experiments. Finally, the in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 = 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of intermediate exchange protons.

  19. USING KAPPA FUNCTIONS TO CHARACTERIZE OUTER HELIOSPHERE PROTON DISTRIBUTIONS IN THE PRESENCE OF CHARGE-EXCHANGE

    SciTech Connect

    Zirnstein, E. J.; McComas, D. J. E-mail: dmccomas@swri.edu

    2015-12-10

    Kappa functions have long been used in the analysis and modeling of suprathermal particles in various space plasmas. In situ observations of the supersonic solar wind show its distribution contains a cold ion core and power-law tail, which is well-represented by a kappa function. In situ plasma observations by Voyager, as well as observations of energetic neutral atom (ENA) spectra by the Interstellar Boundary Explorer (IBEX), showed that the compressed and heated inner heliosheath (IHS) plasma beyond the termination shock can also be represented by a kappa function. IBEX exposes the IHS plasma properties through the detection of ENAs generated by charge-exchange in the IHS. However, charge-exchange modifies the plasma as it flows through the IHS, and makes it difficult to ascertain the parent proton distribution. In this paper we investigate the evolution of proton distributions, initially represented by a kappa function, that experience losses due to charge-exchange in the IHS. In the absence of other processes, it is no longer representable by a single kappa function due to the energy-dependent, charge-exchange process. While one can still fit a kappa function to the evolving proton distribution over limited energy ranges, this yields fitting parameters (pseudo-density, pseudo-temperature, pseudo-kappa index) that depend on the energy range of the fit. We discuss the effects of fitting a kappa function to the IHS proton distribution over limited energy ranges, its dependence on the initial proton distribution properties at the termination shock, and implications for understanding the observations.

  20. Multi-angle ratiometric approach to measure chemical exchange in amide proton transfer imaging.

    PubMed

    Zu, Zhongliang; Janve, Vaibhav A; Li, Ke; Does, Mark D; Gore, John C; Gochberg, Daniel F

    2012-09-01

    Amide proton transfer imaging, a specific form of chemical exchange saturation transfer imaging, has previously been applied to studies of acute ischemic acidosis, stroke, and cancer. However, interpreting the resulting contrast is complicated by its dependence on the exchange rate between amides and water, the amide concentration, amide and water relaxation, and macromolecular magnetization transfer. Hence, conventional chemical exchange saturation transfer contrast is not specific to changes such as reductions in pH due to tissue acidosis. In this article, a multi-angle ratiometric approach based on several pulsed-chemical exchange saturation transfer scans at different irradiation flip angles is proposed to specifically reflect exchange rates only. This separation of exchange effects in pulsed-chemical exchange saturation transfer experiments is based on isolating rotation vs. saturation contributions, and such methods form a new subclass of chemical exchange rotation transfer (CERT) experiments. Simulations and measurements of creatine/agar phantoms indicate that a newly proposed imaging metric isolates the effects of exchange rate changes, independent of other sample parameters.

  1. Two-photon exchange corrections in elastic lepton-proton scattering

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr; Vanderhaeghen, Marc

    2016-09-01

    In recent years, two experimental approaches, with and without polarized protons, gave strikingly different results for the ratio of the electric to magnetic proton form factors. Even more recently, a mysterious discrepancy (``the proton radius puzzle'') has been observed in the extraction of the proton charge radius from the muonic hydrogen versus regular hydrogen and electron-proton scattering. Two-photon exchange (TPE) contributions are the largest source of the hadronic uncertainty in these experiments. To determine TPE corrections to the S level in muonic hydrogen, the forward virtual Compton scattering is calculated within dispersion relation (DR) formalism. Comparing a box graph model with the DRs at fixed low momentum transfer, we develop and test the subtracted DR formalism for TPE in electron-proton scattering. Its relative effect on the cross section is in the 1 - 2 % range. We include the inelastic states both in the approximation of the near-forward unpolarized virtual Compton scattering as well as using the empirical information on the πN states contribution. We compare the resulting TPE with MAMI, VEPP-3 and CLAS data, and make predictions for the OLYMPUS and the forthcoming MUSE experiments.

  2. Investigation of the structural stability of the human acidic fibroblast growth factor by hydrogen-deuterium exchange.

    PubMed

    Chi, Ya-Hui; Kumar, Thallampuranam Krishnaswamy S; Kathir, Karuppanan Muthusamy; Lin, Dong-Hai; Zhu, Guang; Chiu, Ing-Ming; Yu, Chin

    2002-12-24

    The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding.

  3. Chiral transformation in protonated and deprotonated adipic acids through multistep internal proton transfer.

    PubMed

    Min, Seung Kyu; Park, Mina; Singh, N Jiten; Lee, Han Myoung; Lee, Eun Cheol; Kim, Kwang S; Lagutschenkov, Anita; Niedner-Schatteburg, Gereon

    2010-09-10

    Protonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O...H...OH(2))(+) Zundel-like symmetric hydrogen bonding, whereas that of DAA has H(3)O(+) Eigen-like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel-like ions for PAA and Eigen-like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH...O short hydrogen-bond stretching peaks are predicted in the range of 1000-1700 cm(-1) in the Car-Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen-bond peaks. The O-H-O stretching peaks in the range of 1800-2700 cm(-1) become insignificant above around 150 K and are almost washed out at about 300 K.

  4. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications.

    PubMed

    Zhang, Chan; Zhuang, Xupin; Li, Xiaojie; Wang, Wei; Cheng, Bowen; Kang, Weimin; Cai, Zhanjun; Li, Mengqin

    2016-04-20

    To balance the relationship among proton conductivity and mechanic strength of sulfonated poly(ether sulfone) (SPES) membrane, chitin nanowhisker-supported nanocomposite membranes were prepared by incorporating whiskers into SPES. The as-prepared chitin whiskers were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of α-chitin from crab shells. The structure and properties of the composite membranes were examined as proton exchange membrane (PEM). Results showed that chitin nanowhiskers were dispersed incompactly in the SPES matrix. Thermal stability, mechanical properties, water uptake and proton conductivity of the nanocomposite films were improved from those of the pure SPES film with increasing whisker content, which ascribed to strong interactions between whiskers and between SPES molecules and chitin whiskers via hydrogen bonding. These indicated that composition of filler and matrix got good properties and whisker-supported membranes are promising materials for PEM.

  5. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    PubMed

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes.

  6. Two-photon exchange contribution to elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2015-04-01

    Two experimental techniques, Rosenbluth separation and recoil polarization transfer, used to extract proton's electromagnetic form factors ratio GE/GM yield markedly different results. Modern theoretical calculations suggest that two-photon exchange might be responsible for the observed discrepancy and that it is epsilon dependent. Jefferson Lab Experiment E05-017 was designed to measure the two-photon exchange contribution over a wide range of ɛ and Q2. In contrast with the conventional Rosenbluth method, E05-017 detected the elastically scattered proton rather than the electron. This approach returns a much more precise extraction of the form factor ratios. After a brief description of the experimental goals and techniques, the current status of the analysis will be presented.

  7. Photoreduction of metal nanostructures on periodically proton exchanged MgO-doped lithium niobate crystals

    SciTech Connect

    Balobaid, Laila; Craig Carville, N.; Collins, Liam; Rodriguez, Brian J.; Manzo, Michele; Gallo, Katia

    2013-10-28

    Local reactivity on periodically proton exchanged lithium niobate (PPE:LN) surfaces is a promising route for the fabrication of regularly spaced nanostructures. Here, using MgO-doped PPE:LN templates, we investigate the influence of the doping on the nanostructure formation as a function of the proton exchange (PE) depth. The deposition is found to occur preferentially along the boundary between MgO-doped LN and the PE region when the PE depth is at least 1.73 μm, however, for shallower depths, deposition occurs across the entire PE region. The results are found to be consistent with an increased photoconductivity of the MgO-doped LN.

  8. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    PubMed

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  9. Epithelial pH and ion transport regulation by proton pumps and exchangers.

    PubMed

    Harvey, B J; Ehrenfeld, J

    1988-01-01

    This study reports on the interaction between transepithelial Na+ transport and H+ secretory and intracellular pH (pHi) regulating mechanisms in the model 'tight' epithelium of frog skin. We have used 22Na isotope fluxes and fixed end-point titration to measure undirectional Na+ fluxes, net Na absorption (J(net)Na) and proton secretion (J(net)H), and electrophysiological techniques (double-barrelled ion-sensitive microelectrodes and cell membrane current--voltage relations) to determine intracellular activities of Na+, Cl- and H+ and the conductance of apical membranes to Na+ (gNa) and of basolateral membranes to K+ (gK). In dilute mucosal solutions or in the absence of a permeant anion (Cl-) or counter-current (open-circuit conditions) to accompany Na+ uptake, the J(net)Na is electrically coupled to J(net)H via an electrogenic apical H+-ATPase (located in mitochondria-rich cells). Both fluxes proceed via mitochondria-rich cells and are inhibited by blockers of carbonic anhydrase and H+-ATPase and stimulated by aldosterone and acid load. In high NaCl-containing mucosal solutions or in short-circuit conditions, the J(net)Na becomes uncoupled from J(net)H and proceeds mainly via the principal cells in the epithelium, in which pHi is regulated by basolateral Na+/H+ and Cl-/HCO3- exchangers. Under these conditions, J(net)Na, gNa and gK vary directly and in parallel with pHi, when pHi is changed by permeable weak acids or bases. There is also co-variance between gNa and pHi accompanying spontaneous variations in J(net)Na and when Na+ transport is stimulated by aldosterone or inhibited with ouabain. We conclude that the level of intracellular H+, modulated by H+ pump and Na+/H+ and Cl-/HCO3- exchangers provides an intrinsic regulation of epithelial Na+ transport.

  10. A planar lens in LiNbO3 produced by the double proton exchange method

    NASA Astrophysics Data System (ADS)

    Volkov, V. A.; Gan'shin, V. A.; Kvasha, M. Iu.; Korkishko, Iu. N.; Fedotov, S. M.

    1989-08-01

    Experiments are reported in which a waveguide lens in lithium niobate was produced by the method of double proton-lithium exchange. In this process, the formation of a Ti:LiNbO3 light waveguide is replaced by the formation of an H:LiNbO3 waveguide of identical parameters. The performance characteristics of the waveguide lenses fabricated by the method proposed here are as good as those of TIPE lenses.

  11. Heterogeneous allylsilylation of aromatic and aliphatic alkenes catalyzed by proton-exchanged montmorillonite.

    PubMed

    Motokura, Ken; Matsunaga, Shigekazu; Miyaji, Akimitsu; Sakamoto, Yasuharu; Baba, Toshihide

    2010-04-02

    Allylsilylation of an alkene is the only known procedure to install both silyl and allyl groups onto a carbon-carbon double bond directly. Proton-exchanged montmorillonite showed excellent catalytic performances for the allylsilylation of alkenes. For example, the reaction of p-chlorostyrene with allyltrimethylsilane proceeded smoothly to afford the corresponding allylsilylated product in 95% yield. We also attempted to isolate the reaction intermediate on the montmorillonite surface to investigate the reaction mechanism.

  12. Crystal structure of the external aldimine of Citrobacter freundii methionine γ-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α- and β-protons of competitive inhibitors.

    PubMed

    Revtovich, Svetlana V; Faleev, Nicolai G; Morozova, Elena A; Anufrieva, Natalya V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-06-01

    The three-dimensional structure of the external aldimine of Citrobacter freundii methionine γ-lyase with competitive inhibitor glycine has been determined at 2.45 Å resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of Cα-protons of the external aldimine. The structure shows that 1, 3-prototropic shift of Cα-proton to C4'-atom of the cofactor may proceed with participation of active site Lys210 residue whose location is favorable for performing this transformation by a concerted mechanism. The observed stereoselectivity of isotopic exchange of enantiotopic Cα-protons of glycine may be explained on the basis of external aldimine structure. The exchange of Cα-pro-(R)-proton of the external aldimine might proceed in the course of the concerted transfer of the proton from Cα-atom of glycine to C4'-atom of the cofactor. The exchange of Cα-pro-(S)-proton may be performed with participation of Tyr113 residue which should be present in its basic form. The isotopic exchange of β-protons, which is observed for amino acids bearing longer side groups, may be effected by two catalytic groups: Lys210 in its basic form, and Tyr113 acting as a general acid.

  13. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    PubMed

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  14. Measuring the 2-gamma Exchange Effect in Electron-Proton Scattering at CLAS

    SciTech Connect

    Bennett, Robert

    2011-10-01

    Recent results from experiments at Jefferson Laboratory, Newport News VA, which measure the ratio of the electric to magnetic form factors of the proton, G{sub E}/G{sub M}, have forced us to reexamine the single photon exchange approximation in lepton-proton elastic scattering. Discrepancies between the ratio obtained via the time-tested Rosenbluth separation method and new polarization transfer measurements, which differ by as much as a factor of three, may be resolved by considering the effect of two photon exchange (TPE). Theoretical corrections for the TPE effect are difficult due to the large number of excited nucleon states that can contribute to the process. The TPE effect can, however, be determined directly by measuring the ratio of the positron-proton to electron-proton elastic scattering cross sections, R = {sigma}(e{sup +})/{sigma}(e{sup -}), since the TPE effect changes sign with the charge of the incident particle. The CLAS TPE experiment at Jefferson Laboratory, will determine the effect of two-photon exchange in elastic lepton-proton scattering by precisely measuring the ratio of positron-proton to electron-proton elastic cross sections over a large kinematic range (0.1 < {var_epsilon} < 0.96, 0.02 {le} Q{sup 2} {le} 2.0). We will accomplish this by directing the 5.5 GeV primary electron beam, provided by the Continuous Electron Beam Accelerator Facility (CEBAF), onto a set of radiators and converters to produce simultaneous and identical beams of electron and positrons. Acceptance and efficiency concerns are minimized by only considering the ratios of the elastic cross sections and switching polarity of magnets in the beam line and the spectrometer. Guided by the results of a short 2006 test run and extensive GEANT based modeling, new shielding and beam line components were designed to maximize luminosity. The unique experimental design and challenges of the TPE experiment and the projected luminosities will be presented.

  15. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy.

    PubMed

    Akbey, Umit; Lange, Sascha; Trent Franks, W; Linser, Rasmus; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan; Reif, Bernd; Oschkinat, Hartmut

    2010-01-01

    We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based (1)H-(15)N correlation experiments yield a nearly constant SNR for samples prepared with < or =30% H(2)O. Samples in which more H(2)O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in (1)H T (1) in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H(2)O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H(2)O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible (1)H,(1)H interactions increases. At low levels of deuteration (> or =60% H(2)O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken alpha-spectrin SH3 domain.

  16. Alternative hybrid electrolytes based on a series of bis(trialkoxysilyl)alkanes and 3-(trihydroxysilyl)-1-propane sulfonic acid applied in gas diffusion electrodes of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, C. W.; Chung, L. C.; Veerapur, R. S.; Yang, F. C.

    This study demonstrates a method for improving the electrolyte distribution in catalyst layers and enhancing the utilization of catalyst existing in primary pores. Bis(trialkoxysilyl)alkanes (BTAS-alkanes) and 3-(trihydroxysilyl)-1-propane sulfonic acid (THS)Pro-SO 3H) precursors have been used to prepare a series of hybrid electrolytes with various organic segment lengths of BTAS-alkanes and ratios of organic moiety and sulfonic acid groups. Investigations of BTAS-alkanes series includes bis(triethoxysilyl)octane (BTES-Oct), bis(trimethoxysilyl)hexane (BTMS-Hex), and bis(triethoxysilyl)ethane (BTES-Eth). Small angle X-ray spectroscopy (SAXS) identifies morphological phase separation in BTES-Oct and BTMS-Hex hybrid electrolytes. The results of mercury porosimetry and BET porosimetry show that the hybrid electrolytes have better capability than Nafion ionomer to penetrate into primary pores of the catalyst layers. Electrochemical measurements including electrode polarization, electrochemical active surface (EAS) and electrochemical impedance spectroscopy (EIS) are discussed. The BTES-Oct or BTMS-Hex hybrid electrolytes with higher ratio of organic moiety and sulfonic acid group have achieved better electrode performance. Oxygen benefit current (OBC) results indicate that higher ratios of BTES-Oct/(THS)Pro-SO 3H provides higher hydrophobicity with better gas transport properties. However, the hybrid electrodes exhibit lower cathode performance than Nafion ®-based electrodes due to excessive electrolyte incorporated in the catalyst layer.

  17. Highly conductive epoxy/graphite polymer composite bipolar plates in proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Ling

    In this work, highly conductive carbon-filled epoxy composites were developed for manufacturing bipolar plates in proton exchange membrane (PEM) fuel cells. These composites were prepared by solution intercalation mixing, followed by compression molding and curing. The in-plane and through-plane electrical conductivity, thermal and mechanical properties, gas barrier properties, and hygrothermal characteristics were determined as a function of carbon-filler type and content. For this purpose, expanded graphite and carbon black were used as a synergistic combination. Mixtures of aromatic and aliphatic epoxy resin were used as the polymer matrix to capitalize on the ductility of the aliphatic epoxy and chemical stability of the aromatic epoxy. The composites showed high glass transition temperatures (Tg ˜ 180°C), high thermal degradation temperatures (T2˜ 415°C), and in-plane conductivity of 200-500 S/cm with carbon fillers as low as 50 wt%. These composites also showed strong mechanical properties, such as flexural modulus, flexural strength, and impact strength, which either met or exceeded the targets. In addition, these composites showed excellent thermal conductivity greater than 50 W/m/K, small values of linear coefficient of thermal expansion, and dramatically reduced oxygen permeation rate. The values of mechanical and thermal properties and electrical conductivity of the composites did not change upon exposure to boiling water, aqueous sulfuric acid solution and hydrogen peroxide solution, indicating that the composites provided long-term reliability and durability under PEM fuel cell operating conditions. Experimental data show that the composites developed in this study are suitable for application as bipolar plates in PEM fuel cells.

  18. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  19. Computational modeling of intermediate temperature proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Cheddie, Denver Faron

    A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion RTM membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused. This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent. The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (˜1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping

  20. Fabrication and characterization of titanium indiffused proton exchanged optical waveguides in Z-cut LiNbO 3

    NASA Astrophysics Data System (ADS)

    Dawar, A. L.; Al-Shukri, S. M.; De La Rue, R. M.; Nutt, A. C. G.; Stewart, G.

    1987-01-01

    We report a systematic study on the fabrication and characterization of planar optical waveguides in Z-cut LiNbO 3 made by a process which combines the titanium indiffusion and proton exchange techniques. Mode effective index measurements have been made on a large number of such TIPE guides as well as guides using proton-exchange alone with various exchange temperatures and times. The data have been analyzed to calculate the values of the diffusion coefficient and activation energy for the proton exchange process. The presence of a titanium layer reduces the diffusion coefficient by about 20%. m-line scans indicate that there is a considerable amount of scattering in TIPE guides. The quality, however, improves and becomes comparable with that of PE guides as the exchange time increases.

  1. Ion-exchange chromatographic analysis of peroxynitric acid.

    PubMed

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm.

  2. Poly(organophosphazenes) with azolylmethylphenoxy and pyridinoxy side groups to be used as proton exchange membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    Ekanayake, Sujeewani K.

    2011-12-01

    Proton Exchange Membrane Fuel Cells (PEMFCs) are of great importance to many stationary and portable applications. The development of a more efficient, high-temperature tolerant membrane with a high protonic conductivity has become critical to the better performance of PEMFCs. Consequently, the focus of current research is more focused on synthesizing membranes which can function at a non-humidified high temperature environment. Because N-heterocycles such as azoles substituted on a polyphosphazene backbone have been found to be one of the best polymers in this regard, the focus of this dissertation is primarily on developing PEMs (proton exchange membranes) based on azole and pyridine substituted phosphazenes. In Chapter 1, an overview on PEMFCs as well as PEMs that have been synthesized to date is presented. The first part of the introduction is devoted to sulfonated fluorocarbon-based membrane, NafionRTM. Then the focus slowly shifts towards PEMs based on hydrocarbon polymers. The rest of Chapter 1 mainly revolves around polyphosphazene based PEMs. Chapter 2 describes the synthesis of trimeric, small-molecule, model compounds for high polymers. A series of hexakis(azolylmethylphenoxy)cyclotriphosphazenes where the azolyl groups are pyrazol, 1,2,4-triazol and 5-methyltetrazol and all three isomers of hexakis(pyridinoxy)cyclotriphosphazenes have been synthesized and characterized. The focus of Chapter 3 is on the synthesis of poly(dichlorophosphazene) by modifying a literature procedure reported by Wang (Macromolecules 2005, 38, 643--645) via one-pot in situ polycondensation. Chapter 3 also presents a preliminary study on ring opening polymerization. The focus of Chapter 4 is completely on the synthesis and characterization of azole and pyridine substituted polyphosphazenes. Chapter 5 includes film casting studies from both triazolphenol trimer and polymer to obtain corresponding composites and blends by mixing with commercially available poly(PMDA-ODA) amic acid

  3. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata

    2016-06-01

    Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.

  4. Amide proton exchange rates of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochrome c.

    PubMed Central

    Marmorino, J. L.; Auld, D. S.; Betz, S. F.; Doyle, D. F.; Young, G. B.; Pielak, G. J.

    1993-01-01

    Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme. PMID:8268806

  5. NMR and IR spectroscopic study of proton exchange between o-nitrophenol and methanol in CCl/sub 4/

    SciTech Connect

    Bureiko, S.F.; Golubev, N.S.; Lange, I.Y.

    1982-08-01

    The kinetics of proton exchange in solution between o-nitrophenol and methanol have been studied by dynamic NMR and IR spectroscopy, and a method has been developed for the simultaneous determination of the rate constants for H-H, H-D, and D-H exchange from /sup 1/H NMR spectra.

  6. Water exchange in plant tissue studied by proton NMR in the presence of paramagnetic centers.

    PubMed

    Bacić, G; Ratković, S

    1984-04-01

    The proton NMR relaxation of water in maize roots in the presence of paramagnetic centers, Mn2+, Mn- EDTA2 -, and dextran-magnetite was measured. It was shown that the NMR method of Conlon and Outhred (1972, Biochem. Biophys. Acta. 288:354-361) can be applied to a heterogenous multicellular system, and the water exchange time between cortical cells and the extracellular space can be calculated. The water exchange is presumably controlled by the intracellular unstirred layers. The Mn- EDTA2 - complex is a suitable paramagnetic compound for complex tissue, while the application of dextran-magnetite is probably restricted to studies of water exchange in cell suspensions. The water free space of the root and viscosity of the cells cytoplasm was estimated with the use of Mn- EDTA2 -. The convenience of proton NMR for studying the multiphase uptake of paramagnetic ions by plant root as well as their transport to leaves is demonstrated. A simple and rapid NMR technique (spin-echo recovery) for continuous measurement of the uptake process is presented.

  7. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  8. Neopentane and solid acids: direct hydron exchange before cracking.

    PubMed

    Walspurger, Stéphane; Sun, Yinyong; Souna Sido, Abdelkarim Sani; Sommer, Jean

    2006-09-21

    The hydrogen/deuterium exchange reaction of 2,2-dimethylpropane (neopentane) over D(2)O-exchanged zeolites (MOR, FAU, BEA, MFI) using a batch recirculation reactor was studied by means of gas chromatography coupled with mass spectrometer. In the temperature range 473-573 K, H/D exchange proceeds without side reaction such as cracking at short contact times. Indeed the C-H bond has appeared favorably involved in the activation of neopentane compared to the less accessible C-C bond. The transition state allowing hydron exchange is most likely a carbonium species (pentacoordinated carbon) as in the case of the H/D exchange between methane and solid acid. The activation energies of the H/D exchange between neopentane and zeolites are the same for all zeolites indicating a common carbonium ion type transition state. On the basis of previous results in the case of the exchange between methane and liquid superacids, the deuterium exchange rates in neopentane were tentatively related to the acidity of the solids. However the order of activity MOR > MFI > BEA > FAU seems to be related to the size of the pores, which may suggest the involvement of a confinement effect in the zeolites cavities. Moreover we found that H/D exchange takes also place between neopentane and deuterated sulfated zirconia (SZ) emphasizing its strong acidity.

  9. Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes

    SciTech Connect

    Kopitzke, R.W.; Linkous, C.A.; Anderson, H.R.; Nelson, G.L.

    2000-05-01

    Water uptake and proton conductivity as a function of temperature were determined for three aromatic-based, sulfonic acid-bearing polymers, plus the perfluoroalkyl sulfonic acid Nafion{reg_sign} 117. Water uptake of submerged, equilibrated samples ranged from less than five water molecules per acid group for a high equivalent weight, sulfonated polyethersulfone to almost fifty waters per acid for a low equivalent weight, sulfonated polyetheretherketone. The most conductive aromatic-based polymer, sulfonated polyphenylquinoxaline (S-PPQ), had a room temperature conductivity of 9.8 x 10{sup {minus}3} S/cm, about an order of magnitude less than that of a perfluoroalkyl sulfonic acid under identical conditions. The slope of the S-PPQ Arrhenius conductivity plot was sufficiently steep that at 180 C, the proton conductivity, 1.3 x 10{sup {minus}1} S/cm, was only a factor of two lower than that of Nafion under similar conditions. The lower conductivity of the aromatic-based sulfonic acid polymers can be attributed to chain rigidity, lack of ion channels, and lower acidity.

  10. Quantitative chemical exchange saturation transfer (qCEST) MRI - RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate

    PubMed Central

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for development of quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that the omega plot is capable of quantifying paramagnetic CEST (PARACEST) MRI. However, the use of omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct RF saturation (spillover) effects owing to their relatively small chemical shift. Recently, it has been found that for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the RF spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot are in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increases linearly with creatine concentration (P< 0.01), with little difference in their exchange rate (P=0.32). In summary, our study extended the conventional omega plot for quantitative analysis of DIACEST MRI. PMID:24706610

  11. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p < 0.01), with little difference in their exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI.

  12. Biodegradation and proton exchange using natural rubber in microbial fuel cells.

    PubMed

    Winfield, Jonathan; Ieropoulos, Ioannis; Rossiter, Jonathan; Greenman, John; Patton, David

    2013-11-01

    Microbial fuel cells (MFCs) generate electricity from waste but to date the technology's development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which conducts protons between the anode and cathode electrodes. The current study compares natural rubber as an alternative material to two commercially available IEMs. Initially, the material proved impermeable to protons, but gradually a working voltage was generated that improved with time. After 6 months, MFCs with natural rubber membrane outperformed those with anion exchange membrane (AEM) but cation exchange membrane (CEM) produced 109 % higher power and 16 % higher current. After 11 months, polarisation experiments showed a decline in performance for both commercially available membranes while natural rubber continued to improve and generated 12 % higher power and 54 % higher current than CEM MFC. Scanning electron microscope images revealed distinct structural changes and the formation of micropores in natural latex samples that had been employed as IEM for 9 months. It is proposed that the channels and micropores formed as a result of biodegradation were providing pathways for proton transfer, reflected by the steady increase in power generation over time. These improvements may also be aided by the establishment of biofilms that, in contrast, caused declining performance in the CEM. The research demonstrates for the first time that the biodegradation of a ubiquitous waste material operating as IEM can benefit MFC performance while also improving the reactor's lifetime compared to commercially available membranes.

  13. Photoregenerative I-/I3- couple as a liquid cathode for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-10-01

    A photoassisted oxygen reduction reaction (ORR) through I-/I3- redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I-/I3--based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I- was regenerated to I3- by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.

  14. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology.

  15. Synthesis of the diazonium (perfluoroalkyl) benzenesulfonimide monomer from Nafion monomer for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mei, Hua; D'Andrea, Dan; Nguyen, Tuyet-Trinh; Nworie, Chima

    2014-02-01

    One diazonium (perfluoroalkyl) benzenesulfonimide monomer, perfluoro-3, 6-dioxa-4-methyl-7-octene benzenesulfonyl imide, has been synthesized from Nafion monomer for the first time. With trifluorovinyl ether and diazonium precursors, the partially-fluorinated diazonium PFSI monomer can be polymerized and will provide chemically bonding with carbon electrode in proton exchange membrane fuel cells. A systematic study of the synthesis and characterization of this diazonium PFSI monomer has been conducted by varying reaction conditions. The optimized synthesis method has been established in the lab.

  16. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  17. Mathematical Modeling of Cation Contamination in a Proton-exchange Membrane

    SciTech Connect

    Weber, Adam; Delacourt, Charles

    2008-09-11

    Transport phenomena in an ion-exchange membrane containing both H+ and K+ are described using multicomponent diffusion equations (Stefan-Maxwell). A model is developed for transport through a Nafion 112 membrane in a hydrogen-pump setup. The model results are analyzed to quantify the impact of cation contamination on cell potential. It is shown that limiting current densities can result due to a decrease in proton concentration caused by the build-up of contaminant ions. An average cation concentration of 30 to 40 percent is required for appreciable effects to be noticed under typical steady-state operating conditions.

  18. High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Geormezi, M.; Chochos, C. L.; Gourdoupi, N.; Neophytides, S. G.; Kallitsis, J. K.

    Novel aromatic polyether type copolymers bearing side chain polar pyridine rings as well as combination of main and side chain pyridine units have been evaluated as potential polymer electrolytes for proton exchange membrane fuel cells (PEMFCs). The advanced chemical and physicochemical properties of these new polymers with their high oxidative stability, mechanical integrity and high glass transition temperatures (T g's up to 270 °C) and decomposition temperatures (T d's up to 480 °C) make them promising candidates for high and medium temperature proton exchange membranes in fuel cells. These copolymers exhibit adequate proton conductivities up to 0.08 S cm -1 even at moderate phosphoric acid doping levels. An optimized terpolymer chemical structure has been developed, which has been effectively tested as high temperature phosphoric acid imbibed polymer electrolyte. MEA prepared out of the novel terpolymer chemical structure is approaching state of the art fuel cell operating performance (135 mW cm -2 with electrical efficiency 45%) at high temperatures (150-180 °C) despite the low phosphoric acid content (<200 wt%) and the low platinum loading (ca. 0.7 mg cm -2). Durability tests were performed affording stable performance for more than 1000 h.

  19. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  20. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Martín, A. J.; Daza, L.

    The electrospray deposition method has been used for preparation of catalyst layers for proton exchange membrane fuel cells (PEMFC) on Nafion membrane. Deposition of Pt/C + ionomer suspensions on Nafion 212 gives rise to layers with a globular morphology, in contrast with the dendritic growth observed for the same layers when deposited on the gas diffusion layer, GDL (microporous carbon black layer on carbon cloth) or on metallic Al foils. Such a change is discussed in the light of the influence of the Nafion substrate on the electrospray deposition process. Nafion, which is a proton conductor and electronic insulator, gives rise to the discharge of particles through proton release and transport towards the counter electrode, compared with the direct electron transfer that takes place when depositing on an electronic conductor. There is also a change in the electric field distribution in the needle to counter-electrode gap due to the presence of Nafion, which may alter conditions for the electrospray effect. If discharging of particles is slow enough, for instances with a low membrane protonic conductivity, the Nafion substrate may be charged positively yielding a change in the electric field profile and, with it, in the properties of the film. Single cell characterization is carried out with Nafion 212 membranes catalyzed by electrospray on the cathode side. It is shown that the internal resistance of the cell decreases with on-membrane deposited cathodic catalyst layers, with respect to the same layers deposited on GDL, giving rise to a considerable improvement in cell performance. The lower internal resistance is due to higher proton conductivity at the catalyst layer-membrane interface resulting from on-membrane deposition. On the other hand, electroactive area and catalyst utilization appear little modified by on-membrane deposition, compared with on-GDL deposition.

  1. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  2. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  3. Physico-chemical study of the degradation of membrane-electrode assemblies in a proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Ferreira-Aparicio, P.; Gallardo-López, B.; Chaparro, A. M.; Daza, L.

    A proton exchange membrane fuel cell stack integrated by 8-elements has been evaluated in an accelerated stress test. The application of techniques such as TEM analyses of ultramicrotome-sliced sections of some samples and XRD, XPS and TGA of spent electrodes reveal the effects of several degradation processes contributing to reduce the cells performance. The reduction of the Pt surface area at the cathode is favored by the oxidation of carbon black agglomerates in the catalytic layer, the agglomeration of Pt particles and by the partial dissolution of Pt, which migrates towards the anode and precipitates within the membrane. In the light of the TEM, EDAX and XPS results, two combined effects are probably responsible of the increase of the internal resistance of the stack cells: (i) a lower proton conductivity of the membranes due to the high affinity of the sulfonic acid groups for ions originated from Pt crystallites and other peripherical elements such as the silicone elastomeric gaskets and (ii) the increment of electrically isolated islands in the cathode gas diffusion electrodes resulting from carbon corrosion and the degradation of the perfluorinated polymers. Water accumulation and inhomogeneous gas distribution throughout the stack cells originate different degradation rates in them.

  4. ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance.

    PubMed

    Guzman, Raul E; Grieschat, Matthias; Fahlke, Christoph; Alekov, Alexi K

    2013-06-19

    The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.

  5. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    SciTech Connect

    Oei, D.; Adams, J.A.; Kinnelly, A.A.

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  6. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  7. Semi-interpenetrating polymer network proton exchange membranes with narrow and well-connected hydrophilic channels

    NASA Astrophysics Data System (ADS)

    Fang, Chunliu; Toh, Xin Ni; Yao, Qiaofeng; Julius, David; Hong, Liang; Lee, Jim Yang

    2013-03-01

    Four series of semi-interpenetrating polymer network (SIPN) membranes are fabricated by thermally cross-linking aminated BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide)) with different epoxide cross-linkers in the presence of sulfonated PPO (SPPO). The cross-link structure and hydrophobicity are found to impact the membrane morphology strongly - smaller and more hydrophobic cross-links form narrow and well-connected hydrophilic channels whereas bulky and less hydrophobic cross-links form wide but less-connected hydrophilic channels. The membranes of the former can support facile proton transport and suppress methanol crossover to result in higher proton conductivity and lower methanol permeability than the membranes of the latter. The membranes are also fabricated into membrane electrode assemblies (MEAs) and tested in single-stack direct methanol fuel cells (DMFCs). It is found that some of these SIPN membranes can surpass Nafion® 117 in maximum power density, demonstrating their potential as a proton exchange membrane (PEM) for the DMFCs.

  8. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  9. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    SciTech Connect

    Smith, W.F.; Molter, T.M.

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  10. Ionosphere-exosphere coupling through charge exchange and momentum transfer in hydrogen-proton collisions

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Breig, E. L.

    1991-01-01

    The implications of a traditional assumption of exospheric physics, that collisions of hydrogen atoms and protons preferentially result in charge exchange with negligible momentum transfer are examined. Initially adopted as a necessary convenience to accommodate limited computer resources in exosphere model calculations, this approximation results in a direct transformation of the proton velocity distribution into a hot component of neutral hydrogen. With expanding computational facilities, the need for the approximation has passed. As the first step toward its replacement with a realistic, quantum mechanical model of the H - H(+) collision process, differential and cumulative cross sections were calculated for quantum elastic scattering of indistinguishable nuclei for a fine grid of encounter energies and scattering angles. These data are used to study the nature of ionosphere-exosphere coupling through H - H(+) collisions, and to demonstrate that the distribution of velocities of scattered H produced in the traditional exospheric charge exchange approximation, as well as that arising from an alternative, fluid dynamic approach, leads to unacceptable abundances of coronal atoms in long-term, highly elliptic trajectories.

  11. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.

  12. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    PubMed Central

    Pomin, Vitor H.

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  13. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  14. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    PubMed

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  15. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  16. Partonic calculation of the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer

    SciTech Connect

    Y. C. Chen; A. Afanasev; S. J. Brodsky; C. E. Carlson; Marc Vanderhaeghen

    2004-03-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.

  17. Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants.

    PubMed

    Luo, Haibin; Cao, Mingyan; Newell, Kelcy; Afdahl, Christopher; Wang, Jihong; Wang, William K; Li, Yuling

    2015-12-11

    We have systemically investigated unusual elution behaviors of an IgG4 (mAb A) in cation exchange chromatography (CEX). This mAb A exhibited two elution peaks under certain conditions when being purified by several strong CEX columns. When either of the two peaks was isolated and re-injected on the same column, the similar pattern was observed again during elution. The protein distribution between the two peaks could be altered by NaCl concentration in the feed, or NaCl concentration in wash buffer, or elution pH, suggesting two pH-associated strong-and-weak binding configurations. The protein distributions under different pH values showed good correlation with protonated/un-protonated fractions of a histidine residue. These results suggest that the double-peak elution profile associates with histidine-protonation-based charge variants. By conducting pepsin digestion, amino-acid specific chemical modifications, peptide mapping, and measuring the effects of elution residence time, a histidine in the variable fragment (Fab) was identified to be the root cause. Besides double-peak pattern, mAb A can also exhibit peak-shouldering or single elution peak on different CEX resins, reflecting different resins' resolving capability on protonated/un-protonated forms. This work characterizes a novel cause for unusual elution behaviors in CEX and also provides alternative avenues of purification development for mAbs with similar behaviors.

  18. A self-sustained, complete and miniaturized methanol fuel processor for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen

    2015-08-01

    A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.

  19. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  20. Growth mechanism of photoreduced silver nanostructures on periodically proton exchanged lithium niobate: Time and concentration dependence

    NASA Astrophysics Data System (ADS)

    Craig Carville, N.; Manzo, Michele; Denning, Denise; Gallo, Katia; Rodriguez, Brian J.

    2013-05-01

    Photodeposition of metallic nanostructures onto ferroelectric surfaces, which have been chemically patterned using a proton exchange process, has recently been demonstrated. By varying the molar concentration of the AgNO3 solution and the illumination time, one can determine the initial nucleation sites, control the rate of nucleation and the height of silver nanostructures formed, and study the mechanisms by which these processes occurs. The nanoparticles are found to deposit preferentially in the boundary between ferroelectric and proton exchanged regions, in an area proton exchanged via lateral diffusion under the masking layer used for chemical patterning, consistent with our previous results. Using a short illumination time (3 min), we are able to determine that the initial nucleation of the silver nanostructure, having a width of 0.17 ± 0.02 μm and a height of 1.61 ± 0.98 nm, occurs near the edge of the reactive ion etched area within this lateral diffusion region. Over longer illumination times (15 min), we find that the silver deposition has spread to a width of 1.29 ± 0.06 μm, extending across the entire lateral diffusion region. We report that at a high molar concentration of AgNO3 (10-2 M), the amount of silver deposition for 5 min UV illumination is greater (2.88 ± 0.58 nm) compared to that at low (10-4 M) concentrations (0.78 ± 0.35 nm), however, this is not the case for longer time periods. With increasing illumination time (15 min), experiments at 10-4 M had greater overall deposition, 6.90 ± 1.52 nm, compared to 4.50 ± 0.76 nm at 10-2 M. For longer exposure times (30 min) at 10-2 M, the nanostructure height is 4.72 ± 0.59 nm, suggesting a saturation in the nanostructure height. The results are discussed in terms of the electric double layer that forms at the crystal surface. There is an order of magnitude difference between the Debye lengths for 10-2 and 10-4 M solutions, i.e., 3.04 vs. 30.40 nm, which suggests the Debye length plays a

  1. Isotopically exchangeable Al in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Fink, D; Rose, J; Waite, T David; Collins, Richard N

    2016-01-15

    Periodic discharges of high concentrations of aluminium (Al) causing fish kills and other adverse effects occur worldwide in waterways affected by coastal lowland acid sulfate soils (CLASS). The exchangeability - a metal's ability to readily transfer between the soil solid- and solution-phases - of Al in these soils is therefore of particular importance as it has implications for metal transport, plant availability and toxicity to living organisms. In the present study, the concentrations of isotopically exchangeable Al (E values) were measured in 27 CLASS and compared with common salt extractions (i.e. KCl and CuCl2) used to estimate exchangeable soil pools of Al. E values of Al were high in the soils, ranging from 357 to 3040 mg·kg(-1). Exchangeable concentrations estimated using 1 M KCl were consistently lower than measured E values, although a reasonable correlation was obtained between the two values (E=1.68×AlKCl, r(2)=0.66, n=25). The addition of a 0.2 M CuCl2 extraction step improved the 1:1 agreement between extractable and isotopically exchangeable Al concentrations, but lead to significant mobilisation of non-isotopically exchangeable Al in surficial 'organic-rich' CLASS having E values<1000 mg·kg(-1). It was concluded that currently used (i.e. 1 M KCl) methodology severely underestimates exchangeable Al and total actual acidity values in CLASS and should be corrected by a factor similar to the one determined here.

  2. Characterization of polyethyleneterephthalate (PET) based proton exchange membranes prepared by UV-radiation-induced graft copolymerization of styrene

    NASA Astrophysics Data System (ADS)

    Ahmed, Mostak; Khan, Mohammad B.; Khan, Mubarak A.; Alam, S. Shamsul; Halim, Md. Abdul; Khan, M. Anwar H.

    Polymer electrolyte membranes (PEMs) were successfully prepared by simultaneous ultraviolet (UV) radiation-induced graft copolymerization of styrene (35 vol.% concentration) onto poly(ethyleneterephthalate) (PET) film, followed by sulfonation on the styrene monomer units in the grafting chain using 0.05 M chlorosulfonic acid (ClSO 3H). The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as Fourier Transform Infrared (FTIR) spectroscopy. The maximum ion-exchange capacity (IEC) of the PEM was measured to be 0.04385 mmol g -1 at its highest level of grafting and sulfonation. They exhibited high thermal and mechanical properties as well as oxidative stability. They are highly stable in H 2SO 4 solutions and can be used in the acidic fuel cells. The membranes showed low water uptake as well as low proton conductivity than Nafion. In this study, the preparation of PEMs from commodity-type polymers is found to be very inexpensive and is a suitable candidate for applications in fuel cells.

  3. Search for effect of longitudinally polarized protons on optically active amino acids

    NASA Technical Reports Server (NTRS)

    Lemmon, R. M.; Conzett, H. E.; Bonner, W. A.

    1981-01-01

    The influence of irradiation by longitudinally polarized protons on the differential decomposition of amino acid is investigated in a test of the Vester Ulbricht hypothesis that L-amino acids were produced in preference to the D isomers on the primitive earth due to the effects of parity violation in beta decay. Samples of DL-leucine were irradiated with protons of both positive and negative longitudinal polarization, then analyzed by gas chromatography. Despite advantages of higher polarization, lower velocity and higher ionization density of protons with respect to electrons, proton irradation is found to lead to no detectable asymmetries in DL-leucine degradation, even at 50% gross degradation.

  4. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  5. Development of a proton-exchange membrane electrochemical reclaimed water post-treatment system

    NASA Technical Reports Server (NTRS)

    Kaba, Lamine; Verostko, Charles E.; Hitchens, G. D.; Murphy, Oliver J.

    1991-01-01

    A single-cell electrochemical reactor that utilizes a proton exchange membrane (PEM) as a solid electrolyte is being investigated for posttreatment of reclaimed waste waters with low or negligible electrolyte content. Posttreatment is a final 'polishing' of reclaimed waste waters prior to reuse, and involves removing organic impurities at levels as high as 100 ppm to below 500 ppb total organic carbon (TOC) content to provide disinfection. The system does not utilize or produce either expendable hardware components or chemicals and has no moving parts. Test data and kinetic analysis are presented. The feasibility and application for water reclamation processes in controlled ecological environments (e.g., lunar/Mars habitats) are also presented. Test results show that the electrochemical single cell reactor provides effective posttreatment.

  6. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    SciTech Connect

    Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  7. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    SciTech Connect

    Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  8. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  9. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  10. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  11. Uncovering the Stabilization Mechanism in Bimetallic Ruthenium-Iridium Anodes for Proton Exchange Membrane Electrolyzers.

    PubMed

    Saveleva, Viktoriia A; Wang, Li; Luo, Wen; Zafeiratos, Spyridon; Ulhaq-Bouillet, Corinne; Gago, Aldo S; Friedrich, K Andreas; Savinova, Elena R

    2016-08-18

    Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation.

  12. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  13. Detecting and localizing failure points in proton exchange membrane fuel cells using IR thermography

    NASA Astrophysics Data System (ADS)

    Bender, Guido; Felt, Wyatt; Ulsh, Michael

    2014-05-01

    An understanding of the potentially serious long-term performance degradation effects that coating and/or other fabrication irregularities might have in mass produced proton exchange membrane fuel cells (PEMFC) is essential to determine manufacturing tolerances of fuel cell components. An experimental setup and methodology is described that employs accelerated stress tests (ASTs) and IR thermography to accurately determine the location and severity of developing failure points in PEMFCs. The method entails a novel hardware that allows the spatial observation of a hydrogen crossover experiment within a fuel cell hardware. The application of the method is demonstrated by comparing the effects of an AST on pristine as well as defect-containing MEAs. The presented method is shown to be valuable for determining the areas within a fuel cell that are most stressed by aging processes.

  14. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  15. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  16. A review of water flooding issues in the proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Hui; Tang, Yanghua; Wang, Zhenwei; Shi, Zheng; Wu, Shaohong; Song, Datong; Zhang, Jianlu; Fatih, Khalid; Zhang, Jiujun; Wang, Haijiang; Liu, Zhongsheng; Abouatallah, Rami; Mazza, Antonio

    We have reviewed more than 100 references that are related to water management in proton exchange membrane (PEM) fuel cells, with a particular focus on the issue of water flooding, its diagnosis and mitigation. It was found that extensive work has been carried out on the issues of flooding during the last two decades, including prediction through numerical modeling, detection by experimental measurements, and mitigation through the design of cell components and manipulating the operating conditions. Two classes of strategies to mitigate flooding have been developed. The first is based on system design and engineering, which is often accompanied by significant parasitic power loss. The second class is based on membrane electrode assembly (MEA) design and engineering, and involves modifying the material and structural properties of the gas diffusion layer (GDL), cathode catalyst layer (CCL) and membrane to function in the presence of liquid water. In this review, several insightful directions are also suggested for future investigation.

  17. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.

    PubMed

    Malati, P; Mehrotra, P; Minoofar, P; Mackie, D M; Sumner, J J; Ganguli, R

    2015-10-01

    A membrane-integrated proton exchange membrane fuel cell that enables in situ fermentation of sugar to ethanol, diffusion-driven separation of ethanol, and its catalytic oxidation in a single continuous process is reported. The fuel cell consists of a fermentation chamber coupled to a direct ethanol fuel cell. The anode and fermentation chambers are separated by a reverse osmosis (RO) membrane. Ethanol generated from fermented biomass in the fermentation chamber diffuses through the RO membrane into a glucose solution contained in the DEFC anode chamber. The glucose solution is osmotically neutral to the biomass solution in the fermentation chamber preventing the anode chamber from drying out. The fuel cell sustains >1.3 mW cm(-2) at 47°C with high discharge capacity. No separate purification or dilution is necessary, resulting in an efficient and portable system for direct conversion of fermenting biomass to electricity.

  18. A review on the performance and modelling of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Boucetta, A.; Ghodbane, H.; Ayad, M. Y.; Bahri, M.

    2016-07-01

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  19. Characterisation of porous carbon electrode materials used in proton exchange membrane fuel cells via gas adsorption

    NASA Astrophysics Data System (ADS)

    Watt-Smith, M. J.; Rigby, S. P.; Ralph, T. R.; Walsh, F. C.

    Porous carbon materials are typically used in both the substrate (typically carbon paper) and the electrocatalyst supports (often platinised carbon) within proton exchange membrane fuel cells. Gravimetric nitrogen adsorption has been studied at a carbon paper substrate, two different Pt-loaded carbon paper electrodes and three particulate carbon blacks. N 2 BET surface areas and surface fractal dimensions were determined using the fractal BET and Frenkel-Halsey-Hill models for all but one of the materials studied. The fractal dimensions of the carbon blacks obtained from gas adsorption were compared with those obtained independently by small angle X-ray scattering and showed good agreement. Density functional theory was used to characterise one of the carbon blacks, as the standard BET model was not applicable.

  20. Development of shut-down process for a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Juhn; Lim, Sang Jin; Lee, Jeung Woo; Min, In-Gyu; Lee, Sang-Yeop; Cho, EunAe; Oh, In-Hwan; Lee, Jong Hyun; Oh, Seung-Chan; Lim, Tae-Won; Lim, Tae-Hoon

    Several different shut-down procedures were carried out to reduce the degradation of membrane electrode assembly (MEA) in a proton exchange membrane fuel cell (PEMFC). The effects of close/open state of outlets of a single cell and application of a dummy load during the shut-down on the degradation of the MEA were investigated. Also, we elucidated the relationship between the thickness of the electrolyte membrane and the degradation of the MEA for different shut-down procedures. When a thin electrolyte membrane was used, the closer of outlets mitigated the degradation during on/off operation. For the thicker electrolyte membrane, the dummy load which eliminates residual hydrogen and oxygen in the electrodes should be applied to lower the degradation.

  1. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Le Canut, Jean-Marc; Latham, Ruth; Mérida, Walter; Harrington, David A.

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed.

  2. High temperature direct methanal-fuel proton exchange membrane fuel cells. Final report

    SciTech Connect

    Lvov, S. N.; Allcock, H. R.; Zhou, X. Y.; Hofmann, M. A.; Chalkova, E.; Fedkin, M. V.; Weston, J. A.; Ambler, C. M.

    2001-10-01

    The lack of proton conductive polymeric membranes stable at high temperatures is one of the main issues impeding the development of DMFCs. The currently employed Nafion membranes are not suitable at temperatures abouve 100 degrees C due to a substantial methanol crossover and poor thermal stability. Therefore, the development of a polymeric membrane stable at high temperatures for DMFCs was the main task of the project. Our approach is based on an interdisciplinary effort that brings together a research group with expertise in the design and synthesis of polyphosphazenes polymer membranes (Allcock Research Laboratory) and a team that has experience in the fields of high temperature electrochemistry and electrochemical energy conversion systems (Lvov Research Laboratory). We have synthesized a new class of ion-exchange membranes for DMFCs.

  3. Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications

    NASA Astrophysics Data System (ADS)

    Song, Shuqin; Douvartzides, Savvas; Tsiakaras, Panagiotis

    An integrated ethanol fuelled proton exchange membrane fuel cell (PEMFC) power system was investigated following a second law exergy analysis. The system was assumed to have the typical design for automobile applications and was comprised of a vaporizer/mixer, a steam reformer, a CO-shift reactor, a CO-remover (PROX) reactor, a PEMFC and a burner. The exergy analysis was applied for different PEMFC power and voltage outputs assuming the ethanol steam reforming at about 600 K and the CO-shift reaction at about 400 K. A detailed parametric analysis of the plant is presented and operation guidelines are suggested for effective performance. In every case, the exergy analysis method is proved to allow an accurate allocation of the deficiencies of the subsystems of the plant and serves as a unique tool for essential technical improvements.

  4. Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise

    NASA Astrophysics Data System (ADS)

    Maizia, R.; Dib, A.; Thomas, A.; Martemianov, S.

    2017-02-01

    Electrochemical noise analysis (ENA) has been performed for the diagnosis of proton-exchange membrane fuel cell (PEMFC) under various operating conditions. Its interest is related with the possibility of a non-invasive on-line diagnosis of a commercial fuel cell. A methodology of spectral analysis has been developed and an evaluation of the stationarity of the signal has been proposed. It has been revealed that the spectral signature of fuel cell, is a linear slope with a fractional power dependence 1/fα where α = 2 for different relative humidities and current densities. Experimental results reveal that the electrochemical noise is sensitive to the water management, especially under dry conditions. At RHH2 = 20% and RHair = 20%, spectral analysis shows a three linear slopes signature on the spectrum at low frequency range (f < 100 Hz). This results indicates that power spectral density, calculated thanks to FFT, can be used for the detection of an incorrect fuel cell water balance.

  5. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    SciTech Connect

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined with acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.

  6. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter

    NASA Astrophysics Data System (ADS)

    Ritchie, Jason D.; Perdue, E. Michael

    2003-01-01

    The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain "best fit" parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH) 2 and Ca(OAc) 2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.

  7. Two-Photon Exchange Effects in Elastic Electron-Proton Scattering

    SciTech Connect

    Johnson, Myriam James

    2013-08-01

    Two methods, Rosenbluth separation and polarization transfer, can be used to extract the proton form factor ratio μp GEp/GMp, but they do not yield the same results. It is thought that the disagreement is due to two photon exchange corrections to the differential cross sections. High precision proton Rosenbluth extractions were carried out at 102 kinematics points spanning 16 values of momentum transfer Q2, from 0.40 to 5.76 GeV2. Reduced cross sections were found to 1.1% or better for Q2 less than 3 GeV2 increasing to 4% at 5.76 GeV2 The form factor ratios were determined to 1:5-3% for Q2 < 1.5 GeV2, increasing to 9% by 3 GeV2 and rapidly above. Our data agrees with prior Rosenbluth, improving upon it the 1.0 - 2.0 GeV2 range to conclusively show a separation from polarization transfer where it had not been certain before. In addition, reduced cross sections at each Q2 were tested for nonlinearity in the angular variable. Such a departure from linearity would be a signature of two photon exchange effects, and prior data had not been sufficiently precise to show nonzero curvature. Our data begins to hint at negative curvature but does not yet show a significant departure from zero.

  8. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.

  9. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Pham, M.; Leonida, A.; McElroy, J.; Nalette, T.

    1989-12-01

    Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.

  10. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOEpatents

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  11. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  12. Performance improvement of proton exchange membrane fuel cell by using annular shaped geometry

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.

    2011-03-01

    A complete three-dimensional and single phase CFD model for a different geometry of proton exchange membrane (PEM) fuel cell is used to investigate the effect of using different connections between bipolar plate and gas diffusion layer on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the three-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that by increasing the number of connection between GDL and bipolar plate the performance of the fuel cell enhances.

  13. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase.

    PubMed

    Raitsimring, Arnold M; Astashkin, Andrei V; Feng, Changjian; Enemark, John H; Nelson, Kimberly Johnson; Rajagopalan, K V

    2003-01-01

    Electron spin echo envelope modulation (ESEEM) spectroscopy has been used to determine the hyperfine ( hfi) and quadrupole ( nqi) interactions of the exchangeable deuteron (proton) at the Mo(V) site of DMSO reductase. The data obtained have been translated into structure-related parameters. It was found that isotropic hfi constant of the proton is not unique, but is distributed within a range of 26-36 MHz. From this hfi distribution, a 30 degrees -wide distribution of the OH bond orientations due to a rotation around the Mo-O bond was estimated. The angle between the axes of the nqi and anisotropic hfi tensors was found to be anomalously small in comparison with that expected from the Mo-O-D bond geometry. This peculiarity was attributed to the effect of spin density on the hydroxyl oxygen atom. The orientation of the Mo-OH fragment with respect to the g-frame was determined from the experimental orientations of the nqi and hfi tensor axes and a theoretical evaluation of the anisotropic hfi axis direction.

  14. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  15. An extended stochastic reconstruction method for catalyst layers in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kang, Jinfen; Moriyama, Koji; Kim, Seung Hyun

    2016-09-01

    This paper presents an extended, stochastic reconstruction method for catalyst layers (CLs) of Proton Exchange Membrane Fuel Cells (PEMFCs). The focus is placed on the reconstruction of customized, low platinum (Pt) loading CLs where the microstructure of CLs can substantially influence the performance. The sphere-based simulated annealing (SSA) method is extended to generate the CL microstructures with specified and controllable structural properties for agglomerates, ionomer, and Pt catalysts. In the present method, the agglomerate structures are controlled by employing a trial two-point correlation function used in the simulated annealing process. An off-set method is proposed to generate more realistic ionomer structures. The variations of ionomer structures at different humidity conditions are considered to mimic the swelling effects. A method to control Pt loading, distribution, and utilization is presented. The extension of the method to consider heterogeneity in structural properties, which can be found in manufactured CL samples, is presented. Various reconstructed CLs are generated to demonstrate the capability of the proposed method. Proton transport properties of the reconstructed CLs are calculated and validated with experimental data.

  16. Recovery of very dilute acetic acid using ion exchange

    SciTech Connect

    Cloete, F.L.D.; Marais, A.P.

    1995-07-01

    Acetic and related acids occur in many industrial wastewaters, often mixed with several other classes of organic compounds. Acetic acid can be recovered from 1% solutions using weakly basic ion exchange resins. The acid is adsorbed by the free-base form of the resin, which can then be eluted using a slurry of lime to give a solution of calcium acetate. This solution could either be evaporated to crystallize calcium acetate or reacted with sulfuric acid to form acetic acid and gypsum. Laboratory tests of the proposed process gave product solutions of 15--20% acetic acid using pure 1% acetic acid as feed. Some measurements using a typical industrial effluent gave similar recoveries and showed that there was no initial fouling of the resins.

  17. A Comparative Ab Initio Study of the Primary Hydration and Proton Dissociation of Various Imide and Sulfonic Acid Ionomers

    SciTech Connect

    Clark II, Jeffrey K.; Paddison, Stephen J.; Eikerling, Michael; Dupuis, Michel; Zawodzinski, Jr., Thomas A.

    2012-03-29

    We compare the role of neighboring group substitutions on proton dissociation of hydrated acidic moieties suitable for proton exchange membranes through electronic structure calculations. Three pairs of ionomers containing similar electron withdrawing groups within the pair were chosen for the study: two fully fluorinated sulfonyl imides (CF3SO2NHSO2CF3 and CF3CF2SO2NHSO2CF3), two partially fluorinated sulfonyl imides (CH3SO2NHSO2CF3 and C6H5SO2NHSO2CF2CF3), and two aromatic sulfonic acid based material s (CH3C6H4SO3H and CH3 OC6 - H3OCH3C6H4SO3H). Fully optimized counterpoise (CP) corrected geometries were obtained for each ionomer fragment with the inclusion of water molecules at the B3LYP/6-311G** level of density functional theory. Spontaneous proton dissociation was observed upon addition of three water molecules in each system, and the transition to a solvent-separated ion pair occurred when four water molecules were introduced. No considerable quantitative or qualitative differences in proton dissociation, hydrogen bond networks formed, or water binding energies were found between systems containing similar electron withdrawing groups. Each of the sulfonyl imide ionomers exhibited qualitatively similar results regarding proton dissociation and separation. The fully fluorinated sulfonyl imides, however, showed a greater propensity to exist in dissociated and ion-pair separated states at low degrees of hydration than the partially fluorinated sulfonyl imides. This effect is due to the additional electron withdrawing groups providing charge stabilization as the dissociated proton migrates away from the imide anion.

  18. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    SciTech Connect

    Rhea, J.R.; Young, T.C. )

    1987-01-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  19. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    NASA Astrophysics Data System (ADS)

    Rhea, James R.; Young, Thomas C.

    1987-10-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  20. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack

    NASA Astrophysics Data System (ADS)

    Sun, Shucheng; Shao, Zhigang; Yu, Hongmei; Li, Guangfu; Yi, Baolian

    2014-12-01

    A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800 h. The average degradation rate of 35.5 μV h-1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5 M H2SO4. This indicates the performance degradation of the stack running 7800 h is mainly caused by a recoverable contamination.

  1. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    SciTech Connect

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S.; Ratnayake, A.; Robinson, J.

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest γ-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one β-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for γ-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that γ- and β-radiation exposures have different effects.

  2. Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer

    NASA Astrophysics Data System (ADS)

    Howard, B. J.; Steer, E.; Page, F.; Tayler, M.; Ouyang, B.; Leung, H. O.; Marshall, M. D.; Muenter, J. S.

    2012-06-01

    The rotational spectrum of the doubly hydrogen-bonded {hetero} dimer formed between formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrent tunnelling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetic acid. We present a full assignment of the spectrum for {J} = 1 to {J} = 7 for these four torsion/tunnelling states. Spectra have been observed for the main isotopic species, with deuterium substitution at the C of the formic acid and all 13C species in natural abundance, The observed transitions are fitted to within a few kilohertz using a molecule-fixed effective rotational Hamiltonian for the separate {A} and {E} vibrational species of the G12 permutation-inversion group which is applicable to this complex. To reduce the effects of internal angular momentum, a non-principal axis system is used throughout. Interpretation of the internal motion uses an internal-vibration and overall rotation scheme, and full sets of rotational and centrifugal distortion constants are determined. The proton tunnelling rates and the internal angular momentum of the methyl group in the {E} states is interpreted in terms of a dynamical model which involves coupled proton transfer and internal rotation. The resulting potential energy surface not only describes these internal motions, but can also explain the observed shifts in rotational constants between {A} and {E} species, and the deviations of the tunnelling frequencies from the expected 2:1 ratio. It also permits the determination of spectral constants free from the contamination effects of the internal dynamics. M.C.D. Tayler, B. Ouyang and B.J. Howard, J. Chem. Phys., {134}, 054316 (2011).

  3. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely

  4. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  5. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  6. Synergism Between Halide Binding and Proton Transport in a CLC-type Exchanger

    SciTech Connect

    Accardi,A.; Lobet, S.; Williams, C.; Miller, C.; Dutzler, R.

    2006-01-01

    The Cl{sup -}/H{sup +} exchange-transporter CLC-ec1 mediates stoichiometric transmembrane exchange of two Cl{sup -} ions for one proton. A conserved tyrosine residue, Y445, coordinates one of the bound Cl{sup -} ions visible in the structure of this protein and is located near the intersection of the Cl{sup -} and H{sup +} pathways. Mutants of this tyrosine were scrutinized for effects on the coupled transport of Cl{sup -} and H{sup +} determined electrophysiologically and on protein structure determined crystallographically. Despite the strong conservation of Y445 in the CLC family, substitution of F or W at this position preserves wild-type transport behavior. Substitution by A, E, or H, however, produces uncoupled proteins with robust Cl{sup -} transport but greatly impaired movement of H{sup +}+. The obligatory 2 Cl{sup -}/1 H{sup +} stoichiometry is thus lost in these mutants. The structures of all the mutants are essentially identical to wild-type, but apparent anion occupancy in the Cl{sup -} binding region correlates with functional H{sup +} coupling. In particular, as determined by anomalous diffraction in crystals grown in Br{sup -}, an electrophysiologically competent Cl{sup -} analogue, the well-coupled transporters show strong Br{sup -} electron density at the 'inner' and 'central' Cl{sup -} binding sites. However, in the uncoupled mutants, Br{sup -} density is absent at the central site, while still present at the inner site. An additional mutant, Y445L, is intermediate in both functional and structural features. This mutant clearly exchanges H{sup +} for Cl{sup -}, but at a reduced H{sup +}-to-Cl{sup -} ratio; likewise, both the central and inner sites are occupied by Br{sup -}, but the central site shows lower Br{sup -} density than in wild-type (or in Y445F,W). The correlation between proton coupling and central-site occupancy argues that halide binding to the central transport site somehow facilitates movement of H{sup +}, a synergism that is not

  7. Conformation of protonated glutamic acid at room and cryogenic temperatures.

    PubMed

    Bouchet, Aude; Klyne, Johanna; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2017-01-27

    Recognition properties of biologically relevant molecules depend on their conformation. Herein, the conformation of protonated glutamic acid (H(+)Glu) isolated in quadruple ion traps is characterized by vibrational spectroscopy at room and cryogenic temperatures and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. The infrared multiple photon dissociation (IRMPD) spectrum recorded in the fingerprint range at room temperature using an IR free electron laser is attributed to the two most stable and nearly isoenergetic conformations (1-cc and 2-cc) with roughly equal population (ΔG298 = 0.0 kJ mol(-1)). Both have bridging C[double bond, length as m-dash]O(HNH)(+)O[double bond, length as m-dash]C ionic H-bonds of rather different strengths but cannot be distinguished by their similar IRMPD spectra. In contrast, the higher-resolution single-photon IRPD spectrum of H2-tagged H(+)Glu recorded in the conformation-sensitive X-H stretch range in a trap held at 10 K distinguishes both conformers. At low temperature, 1-cc is roughly twice more abundant than 2-cc, in line with its slightly lower calculated energy (ΔE0 = 0.5 kJ mol(-1)). This example illustrates the importance of cryogenic cooling, single-photon absorption conditions, and the consideration of the X-H stretch range for the identification of biomolecular conformations involving hydrogen bonds.

  8. Amine vs. carboxylic acid protonation in ortho-, meta-, and para-aminobenzoic acid: An IRMPD spectroscopy study

    NASA Astrophysics Data System (ADS)

    Cismesia, Adam P.; Nicholls, Georgina R.; Polfer, Nicolas C.

    2017-02-01

    Infrared multiple photon dissociation (IRMPD) spectroscopy and computational chemistry are applied to the ortho-, meta-, and para- positional isomers of aminobenzoic acid to investigate whether the amine or the carboxylic acid are the favored sites of proton attachment in the gas phase. The NH and OH stretching modes yield distinct patterns that establish the carboxylic acid as the site of protonation in para-aminobenzoic acid, as opposed to the amine group in ortho- and meta-aminobenzoic acid, in agreement with computed thermochemistries. The trends for para- and meta-substitutions can be rationalized simplistically by inductive effects and resonant stabilization, and will be discussed in light of computed charge distributions based from electrostatic potentials. In ortho-aminobenzoic acid, the close proximity of the amine and acid groups allow a simultaneous interaction of the proton with both groups, thus stabilizing and delocalizing the charge more effectively, and compensating for some of the resonance stabilization effects.

  9. A Ta/W mixed addenda heteropolyacid with excellent acid catalytic activity and proton-conducting property

    NASA Astrophysics Data System (ADS)

    Li, Shujun; Peng, Qingpo; Chen, Xuenian; Wang, Ruoya; Zhai, Jianxin; Hu, Weihua; Ma, Fengji; Zhang, Jie; Liu, Shuxia

    2016-11-01

    A new HPAs H20[P8W60Ta12(H2O)4(OH)8O236]·125H2O (H-1) which comprises a Ta/W mixed addenda heteropolyanion, 20 protons, and 125 crystalline water molecules has been prepared through ion-exchange method. The structure and properties of H-1 have been explored in detail. AC impedance measurements indicate that H-1 is a good solid state proton conducting material at room temperature with a conductivity value of 7.2×10-3 S cm-1 (25 °C, 30% RH). Cyclic voltammograms of H-1 indicate the electrocatalytic activity towards the reduction of nitrite. Hammett acidity constant H0 of H-1 in CH3CN is -2.91, which is the strongest among the present known HPAs. Relatively, H-1 exhibits excellent catalytic activities toward acetal reaction.

  10. Enantiopure oxazolidinones as chiral acids in the asymmetric protonation of N-Boc pyrrole derived enolates.

    PubMed

    Carbery, David R; Donohoe, Timothy J

    2004-03-21

    The first use of geminally disubstituted oxazolidinones as chiral protonating agents is described: these new acids are able to directly protonate an enolate generated by the ammonia free partial reduction of an electron deficient pyrrole and give up to 68% ee in the pyrroline product.

  11. Thermal and electrochemical durability of carbonaceous composites used as a bipolar plate of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Nagano, Keita; Tsumura, Tomoki; Toyoda, Masahiro

    Thermal and electrochemical durability of carbonaceous composite plates, which are made from graphite powders and a resin for use as bipolar plates of PEMFC (proton exchange membrane fuel cell), were investigated. The thermal durability was investigated by TG (thermal gravimetry) coupled with DTA (differential thermal analysis) technique under air up to 600 °C. A weight loss was significant over 300 °C, but the hydrophobicity was decreased after heated at 80 °C for 192 h. The electrochemical durability was investigated in 10 μmol dm -3 of hydrochloric acid solution under nitrogen or oxygen atmosphere by means of potential holding test from 0.8 to 1.5 V against RHE (reversible hydrogen electrode) at 80 °C. During the potential holding tests, CO 2 production due to the corrosion was quantified by a GC (gas-chromatography) and the production was detectable above 1.3 V irrespective with atmosphere; on the other hand, it was clarified from the contact angle measurements that the hydrophobicity was changed below 1.3 V. The results of this study showed that the carbonaceous composite plates were electrochemically degraded under PEMFC condition and were seriously degraded in URFC (unitized regenerative fuel cell) condition.

  12. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  13. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.

    PubMed

    Li, Jin; Li, Xiaojin; Zhao, Yun; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2012-05-01

    Herein, poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (PBI) is synthesized from 3,3'-diaminobenzidine and 4,4'-oxybisbenzoic acid, and the membrane is prepared by solvent casting. The main characteristics of PBI are studied. In the preparation of the PBI/H(3) PO(4) composite membrane, the absorbing temperature of H(3) PO(4) is 120 °C, which leads to a membrane with a high content of H(3) PO(4) . Membrane electrode assemblies (MEAs) are fabricated from PBI/H(3) PO(4) membranes with the catalyst layer made of Pt/C, PBI, and polyvinylidene fluoride (230:12:7 w/w). The fabricated MEA is tested at 150 °C with dry hydrogen and oxygen gas at 0.2 MPa for both anode and cathode feeds. No degradation of voltage is seen during stability testing of the PBI/H(3) PO(4) membrane at a constant current for 100 h. The maximum power density is 1.17 W cm(-2) , and the maximum current density is 6.0 A cm(-2) with a Pt loading of 0.5 mg cm(-2) . The high performance of these membrane materials demonstrates that PBI can be regarded as an alternative membrane material for high-temperature proton-exchange-membrane fuel cells.

  14. Plasmid-Encoded asp Operon Confers a Proton Motive Metabolic Cycle Catalyzed by an Aspartate-Alanine Exchange Reaction

    PubMed Central

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I.; Maloney, Peter C.

    2002-01-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of l-aspartate with nearly stoichiometric release of l-alanine and CO2. This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an l-aspartate-β-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter → aspD → aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known l-aspartate-β-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of l-aspartate-β-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high. PMID:12003930

  15. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction.

    PubMed

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I; Maloney, Peter C

    2002-06-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.

  16. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    PubMed

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  17. Investigation of high temperature operation of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Adjemian, Kevork Tro

    Proton exchange membrane fuel cells (PEMFCs) have garnered much attention in the media over the past years as they can provide a clean, environmentally friendly alternative to internal combustion engines. PEMFCs also have the flexibility to operate on many different types of fuels, thereby diminishing our reliance on foreign oil. PEMFCs, however, suffer from many drawbacks which need to be overcome before mass production becomes viable. One drawback is the expense of the fuel cell system, costing several times more than existing technologies. Another problem is that if the fuel cell is running on reformed fuels, trace amounts of carbon monoxide (10 ppm) in the hydrogen gas stream will completely poison the anode electrocatalyst, killing the PEMFC. Also, as a lot of waste heat is generated, a very elaborate cooling system needs to be used, making the overall system more expensive and complex. A possible solution to both the carbon monoxide poisoning and thermal management of a PEMFC is to elevate its operating temperature above 100°C. Unfortunately, current state-of-the-art electrolytes used in PEMFCs, i.e. Nafion 115, rely on water for the conduction of protons and by elevating the temperature, water loss occurs due to evaporation resulting in inadequate PEMFC performance. This thesis delves into the modification of Nafion and similar electrolytes to permit PEMFC operation above 100°C. This was accomplished by impregnating the pores of the Nafion with hydrophilic inorganic materials-silicon oxide via sol-gel processing and various inorganic particles. By performing these modifications to the various electrolytes, several composite membranes performed exceptionally well at an operating temperature of 130°C and demonstrated carbon monoxide tolerance of up to 500 ppm. In addition, a theory on how these materials help improve the water management characteristics of Nafion was developed, laying the foundation for the development of a completely novel membrane to

  18. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  19. Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview.

    PubMed

    Pandey, Ravi P; Shukla, Geetanjali; Manohar, Murli; Shahi, Vinod K

    2017-02-01

    In the context of many applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), and biomedical applications, chemically modified graphene was broadly studied during the last decade, due to its excellent electrical, mechanical, and thermal properties. The presence of reactive oxygen functional groups in the grapheme oxide (GO) responsible for chemical functionalization makes it a good candidate for diversified applications. The main objectives for developing a GO based nanohybrid proton exchange membrane (PEM) include: improved self-humidification (water retention ability), reduced fuel crossover (electro-osmotic drag), improved stabilities (mechanical, thermal, and chemical), enhanced proton conductivity, and processability for the preparation of membrane-electrode assembly. Research carried on this topic may be divided into protocols for covalent grafting of functional groups on GO matrix, preparation of free-standing PEM or choice of suitable polymer matrix, covalent or hydrogen bonding between GO and polymer matrix etc. Herein, we present a brief literature survey on GO based nano-hybrid PEM for fuel cell applications. Different protocols were adopted to produce functionalized GO based materials and prepare their free-standing film or disperse these materials in various polymer matrices with suitable interactions. This review article critically discussed the suitability of these PEMs for fuel cell applications in terms of the dependency of the intrinsic properties of nanohybrid PEMs. Potential applications of these nanohybrid PEMs, and current challenges are also provided along with future guidelines for developing GO based nanohybrid PEMs as promising materials for fuel cell applications.

  20. Proton exchange membranes for application in fuel cells: grafted silica/SPEEK nanocomposite elaboration and characterization.

    PubMed

    Reinholdt, Marc X; Kaliaguine, Serge

    2010-07-06

    Hydrogen technologies and especially fuel cells are key components in the battle to find alternate sources of energy to the highly polluting and economically constraining fossil fuels in an aim to preserve the environment. The present paper shows the synthesis of surface functionalized silica nanoparticles, which are used to prepare grafted silica/SPEEK nanocomposite membranes. The nanoparticles are grafted either with hexadecylsilyl or aminopropyldimethylsilyl moieties or both. The synthesized particles are analyzed using XRD, NMR, TEM, and DLS to collect information on the nature of the particles and the functional groups, on the particle sizes, and on the hydrophilic/hydrophobic character. The composite membranes prepared using the synthesized particles and two SPEEK polymers with sulfonation degrees of 69.4% and 85.0% are characterized for their proton conductivity and water uptake properties. The corresponding curves are very similar for the composites prepared with both polymers and the nanoparticles bearing the two functional groups. The composites prepared with the nanoparticles bearing solely the aminopropyldimethylsilyl moiety exhibit lower conductivity and water uptake, possibly due to higher interaction of the polymer sulfonic acid sites with the amine groups. The composites prepared with the nanoparticles bearing solely the hexadecylsilyl moiety were not further investigated because of very high particles segregation. A study of the proton conductivity as a function of temperature was performed on selected membranes and showed that nanocomposites made with nanoparticles bearing both functional moieties have a higher conductivity at higher temperatures.

  1. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  2. Comparative assessment of the methods for exchangeable acidity measuring

    NASA Astrophysics Data System (ADS)

    Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Zaboeva, G. A.; Bobrova, Yu. I.; Kyz"yurova, E. V.; Grishchenko, N. V.

    2016-05-01

    A comparative assessment of the results of measuring the exchangeable acidity and its components by different methods was performed for the main mineral genetic horizons of texturally-differentiated gleyed and nongleyed soddy-podzolic and gley-podzolic soils of the Komi Republic. It was shown that the contents of all the components of exchangeable soil acidity determined by the Russian method (with potassium chloride solution as extractant, c(KCl) = 1 mol/dm3) were significantly higher than those obtained by the international method (with barium chloride solution as extractant, c(BaCl2) = 0.1 mol/dm3). The error of the estimate of the concentration of H+ ions extracted with barium chloride solution equaled 100%, and this allowed only qualitative description of this component of the soil acidity. In the case of the extraction with potassium chloride, the error of measurements was 50%. It was also shown that the use of potentiometric titration suggested by the Russian method overestimates the results of soil acidity measurement caused by the exchangeable metal ions (Al(III), Fe(III), and Mn(II)) in comparison with the atomic emission method.

  3. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Li, Xiaojie; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Shi, Lei; Li, Hongjun

    2017-02-01

    Proton currents are an integral part of the most important energy-converting structures in biology. We prepared a new type of bioinspired Nafion (Bio-Nafion) membrane composited of biofunctional SiO2 (Bio-SiO2) nanofiber and Nafion matrix. SiO2 nanofibers were prepared by electrospinning silica sol prepared from tetraethyl orthosilicate. Meanwhile, Bio-SiO2 nanofibers were synthesized by immobilizing amino acids (cysteine, serine, lysine, and glycine) on SiO2 nanofibers, which acted as efficient proton-conducting pathways that involved numerous H+ transport sites. In our study, the SiO2 nanofibers biofunctionalized with cysteine were further oxidized, and the composite membranes were designated as Nafion-Cys, Nafion-Lys, Nafion-Ser, and Nafion-Gly, respectively. We then investigated the different polar groups (sbnd SO3H, sbnd OH, and sbnd NH2) of the amino acids that contributed to membrane properties of thermal stability, water uptake (WU), dimensional stability, proton conductivity, and methanol permeability. Nafion-Cys exhibited the highest proton conductivity of 0.2424 S/cm (80 °C). Nafion-Gly showed the lowest proton conductivity and WU because glycine contains the least number of hydrophilic groups among the amino acids. Overall, the introduction of Bio-SiO2 nanofiber to composite membranes significantly improved proton conductivity, dimensional stability, and methanol permeability.

  4. Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments

    SciTech Connect

    Samms, S.R.; Wasmus, S.; Savinell, R.F.

    1996-04-01

    Recently, polybenzimidazole membrane doped with phosphoric acid (PBI) was found to have promising properties for use as a polymer electrolyte in a high temperature (ca. 150 to 200 C) proton exchange membrane direct methanol fuel cell. However, operation at 200 C in strongly reducing and oxidizing environments introduces concerns of the thermal stability of the polymer electrolyte. To simulate the conditions in a high temperature fuel cell, PBI samples were loaded with fuel cell grade platinum black, doped with ca. 480 mole percent phosphoric acid (i.e., 4.8 H{sub 3}PO{sub 4} molecules per PBI repeat unit) and heated under atmospheres of either nitrogen, 5% hydrogen, or air in a thermal gravimetric analyzer. The products of decomposition were taken directly into a mass spectrometer for identification. In all cases weight loss below 400 C was found to be due to loss of water. Judging from the results of these tests, the thermal stability of PBI is more than adequate for use as a polymer electrolyte in a high temperature fuel cell.

  5. Enhancing proton conduction via doping of supramolecular liquid crystals (4-alkoxybenzoic acids) with imidazole

    NASA Astrophysics Data System (ADS)

    Liang, Ting; Wu, Yong; Tan, Shuai; Yang, Xiaohui; Wei, Bingzhuo

    2015-09-01

    Enhancing proton conduction via doping was first achieved in hydrogen-bonded liquid crystals consisting of benzoic acids. Supramolecular liquid crystals formed by pure 4-alkoxybenzoic acids (nAOBA, n = 8, 10, 12) exhibited the maximum proton conductivity of 5.0 × 10-8 S cm-1. Doping of nAOBA with 25 mol% imidazole (Im0.25) had little impact on mesomorphism but increased proton conductivities by at least 3 orders of magnitude. The liquid crystals formed by nAOBA-Im0.25 exhibited the maximum proton conductivity of 1.9 × 10-4 S cm-1. It was proposed that structure diffusion of imidazole bridged interdimer proton transfer to form continuous conducting pathways in mesomorphic nAOBA-Im0.25.

  6. Molecular-Level Modeling of the Structure and Proton Transport within the Membrane Electrode Assembly of Hydrogen Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Selvan, Myvizhi Esai; Keffer, David J.

    The creation of proton exchange membrane fuel cells (PEMFCs) in the early 1960's attracted great interest with the prospect of serving as a highly efficient and eco-friendly power source. This nascent technology found a broad range of applications spanning from spacecrafts to automobiles and electronic devices. The PEMFC in its simplest form consists of an anode, where the hydrogen fuel is catalytically electro-oxidized (dissociated into protons and electrons), a cathode, where oxygen is catalytically electro-reduced (combined with protons to form water) and a polymer electrolyte membrane, which serves as the structural framework of the cell and transports protons from anode to cathode, while the electrons are forced through the external circuit generating electricity. Today, fuel cell remains one of the most promising means of generating energy from alternative fuels, with tremendous potential to reduce oil dependence and carbon emissions. However, current PEMFCs have a relatively narrow operational range and a high cost of production, thus requiring significant experimental and theoretical research to develop a thorough understanding of this technology (at both the molecular and macroscopic scale), which will ultimately render the fuel cell as an economically viable option.

  7. Functional coupling of chloride-proton exchanger ClC-5 to gastric H+,K+-ATPase.

    PubMed

    Takahashi, Yuji; Fujii, Takuto; Fujita, Kyosuke; Shimizu, Takahiro; Higuchi, Taiga; Tabuchi, Yoshiaki; Sakamoto, Hisato; Naito, Ichiro; Manabe, Koji; Uchida, Shinichi; Sasaki, Sei; Ikari, Akira; Tsukada, Kazuhiro; Sakai, Hideki

    2014-01-15

    It has been reported that chloride-proton exchanger ClC-5 and vacuolar-type H(+)-ATPase are essential for endosomal acidification in the renal proximal cells. Here, we found that ClC-5 is expressed in the gastric parietal cells which secrete actively hydrochloric acid at the luminal region of the gland, and that it is partially localized in the intracellular tubulovesicles in which gastric H(+),K(+)-ATPase is abundantly expressed. ClC-5 was co-immunoprecipitated with H(+),K(+)-ATPase in the lysate of tubulovesicles. The ATP-dependent uptake of (36)Cl(-) into the vesicles was abolished by 2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH28080), an inhibitor of H(+),K(+)-ATPase, suggesting functional expression of ClC-5. In the tetracycline-regulated expression system of ClC-5 in the HEK293 cells stably expressing gastric H(+),K(+)-ATPase, ClC-5 was co-immunoprecipitated with H(+),K(+)-ATPase, but not with endogenous Na(+),K(+)-ATPase. The SCH28080-sensitive (36)Cl(-) transporting activity was observed in the ClC-5-expressing cells, but not in the ClC-5-non-expressing cells. The mutant (E211A-ClC-5), which has no H(+) transport activity, did not show the SCH28080-sensitive (36)Cl(-) transport. On the other hand, both ClC-5 and its mutant (E211A) significantly increased the activity of H(+),K(+)-ATPase. Our results suggest that ClC-5 and H(+),K(+)-ATPase are functionally associated and that they may contribute to gastric acid secretion.

  8. [Amino acid exchange in paeci lomycosis-complicated echinococcosis].

    PubMed

    Streliaeva, A V; Akhmedov, Iu M; Gasparian, É R; Lazareva, N B; Samylina, I A; Chebyshev, N V; Polzikov, V V; Prokina, E S; Kurilov, D V; Zuev, S S; Shcheglova, T A; Gabchenko, A K; Sadykov, V M

    2011-01-01

    The authors have detected atypical paecilomycosis-associated myocarditis with impaired amino acid exchange and pain syndrome for the first time. At first, pain occurs in the chest and radiates into the axilla, to the left arm to the finger tips, by paralyzing the arm. In some patients, pain manifests itself in both arms with radiation to the belly, by accompanying by fainting. The skin is wet, cold; the pulse is frequent and of poor volume and difficult-to-count. Heart pain spreads into the armpit and down the arm, by making the fingers numb. Attempts to use current analgesics (movalis, sirdalud, nimesil, morphine) in combination with fungicides (diflucan, mycosist, orungal) have failed to yield positive results. The homeopathic drug Latrodectus mactans, prepared from caracurt venom, in combination with the authors' designed diet and other homeopathic agents have relieved pain syndrome and normalized amino acid exchange, which offered possibilities for successful surgical treatment for echinococcosis with later recovery.

  9. The effect of pH on the exchangeability with deuterium of protons coupled to molybdenum(V) in the active and the desulpho forms of xanthine oxidase.

    PubMed Central

    Malthouse, J P; Bray, R C

    1983-01-01

    The effect of pH variation on the exchangeability with deuterium of protons strongly coupled to Mo(V) in the active and desulpho forms of xanthine oxidase was studied by e.p.r. and rapid freezing, in extension of the work of Gutteridge, Tanner & Bray [Biochem. J. (1978) 175, 887-897]. Above neutrality, exchange rates increased with increasing pH. Detailed studies were made on the desulpho enzyme under a variety of conditions, and exchange rate constants at 22 degrees C ranged from 0.16s -1 at pH 6.6 to 1.6s -1 at pH 11.3. The mechanism of proton exchange in the enzyme is discussed. The interpretation by the above workers that the strongly coupled proton of the active enzyme is on sulphur and that of the desulpho enzyme is on oxygen remains valid (and is in agreement with other work), as do their proposals for the structures of the protonated and deprotonated species. However, pK values cannot be calculated from the exchange data. It is likely that the relatively low rates of exchange observed are due to the difference of structure between the protonated and the deprotonated forms. In the case of the desulpho enzyme, an exchange mechanism, which involves the proton exchanging both as such and along with oxygen in the form of a hydroxyl ion, is discussed. PMID:6312970

  10. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Mannarino, Matthew Marchand

    . Post-spin thermal annealing was used to modify the fiber morphology, inter-fiber welding, and crystallinity within the fibers. Morphological changes, in-plane tensile response, friction coefficient, and wear rate were characterized as functions of the annealing temperature. The Young's moduli, yield stresses and toughnesses of the PA 6(3)T nonwoven mats improved by two- to ten-fold when annealed slightly above the glass transition temperature, but at the expense of mat porosity. The mechanical and tribological properties of the thermally annealed P A 6,6 fiber mats exhibited significant improvements through the Brill transition temperature, comparable to the improvements observed for amorphous P A 6(3)T electrospun mats annealed near the glass transition temperature. The wear rates for both polymer systems correlate with the yield properties of the mat, in accordance with a modified Ratner-Lancaster model. The variation in mechanical and tribological properties of the mats with increasing annealing temperature is consistent with the formation of fiber-to-fiber junctions and a mechanism of abrasive wear that involves the breakage of these junctions between fibers. A mechanically robust proton exchange membrane with high ionic conductivity and selectivity is an important component in many electrochemical energy devices such as fuel cells, batteries, and photovoltaics. The ability to control and improve independently the mechanical response, ionic conductivity, and selectivity properties of a membrane is highly desirable in the development of next generation electrochemical devices. In this thesis, the use of layer-by-layer (LbL) assembly of polyelectrolytes is used to generate three different polymer film morphologies on highly porous electrospun fiber mats: webbed, conformal coating, and pore-bridging films. Specifically, depending on whether a vacuum is applied to the backside of the mat or not, the spray-LbL assembly either fills the voids of the mat with the proton

  11. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  12. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  13. Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers

    NASA Astrophysics Data System (ADS)

    Lettenmeier, P.; Wang, R.; Abouatallah, R.; Saruhan, B.; Freitag, O.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Gago, A. S.; Friedrich, K. A.

    2017-03-01

    Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.

  14. Chromium nitride films on stainless steel as bipolar plate for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Fu, Yu; Xu, Jun; Lin, Guoqiang; Hou, Ming

    A series of chromium nitride films are prepared on stainless steel substrates by pulsed bias arc ion plating (PBAIP) at different N 2 flow rate as bipolar plates for proton exchange membrane fuel cell (PEMFC). The film chemical composition and phase structure are characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD). The characterization results indicate that the nitrogen content of deposited films varies from 0.28 to 0.50, and the phase structure changes from mixtures of Cr + Cr 2N, pure Cr 2N through Cr 2N + CrN, to pure CrN. The interfacial contact resistance between samples and carbon paper is measured by Wang's method, and a minimum value of 5.8 mΩ cm 2 is obtained under 1.2 MPa compaction force. The anticorrosion property is examined by potentiodynamic test in the simulated corrosive circumstance of the PEMFC under 25 °C, and the lowest corrosive current density of 5.9 × 10 -7 A cm -2 is obtained at 0.6 V (vs. SCE). Stainless steel substrates coated by the film with lowest contact resistance are chosen as the bipolar plates to assemble cells. An average voltage value of 0.62 V is achieved at 500 mA cm -2, which is close to that of the cell with Ag-plated bipolar plates.

  15. A new stochastic algorithm for proton exchange membrane fuel cell stack design optimization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Uttara

    2012-10-01

    This paper develops a new stochastic heuristic for proton exchange membrane fuel cell stack design optimization. The problem involves finding the optimal size and configuration of stand-alone, fuel-cell-based power supply systems: the stack is to be configured so that it delivers the maximum power output at the load's operating voltage. The problem apparently looks straightforward but is analytically intractable and computationally hard. No exact solution can be found, nor is it easy to find the exact number of local optima; we, therefore, are forced to settle with approximate or near-optimal solutions. This real-world problem, first reported in Journal of Power Sources 131, poses both engineering challenges and computational challenges and is representative of many of today's open problems in fuel cell design involving a mix of discrete and continuous parameters. The new algorithm is compared against genetic algorithm, simulated annealing, and (1+1)-EA. Statistical tests of significance show that the results produced by our method are better than the best-known solutions for this problem published in the literature. A finite Markov chain analysis of the new algorithm establishes an upper bound on the expected time to find the optimum solution.

  16. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Arvay, A.; Yli-Rantala, E.; Liu, C.-H.; Peng, X.-H.; Koski, P.; Cindrella, L.; Kauranen, P.; Wilde, P. M.; Kannan, A. M.

    2012-09-01

    The gas diffusion layer (GDL) in a proton exchange membrane fuel cell (PEMFC) is one of the functional components that provide a support structure for gas and water transport. The GDL plays a crucial role when the oxidant is air, especially when the fuel cell operates in the higher current density region. There has been an exponential growth in research and development because the PEMFC has the potential to become the future energy source for automotive applications. In order to serve in this capacity, the GDL requires due innovative analysis and characterization toward performance and durability. It is possible to achieve the optimum fuel cell performance only by understanding the characteristics of GDLs such as structure, pore size, porosity, gas permeability, wettability, thermal and electrical conductivities, surface morphology and water management. This review attempts to bring together the characterization techniques for the essential properties of the GDLs as handy tools for R&D institutions. Topics are categorized based on the ex-situ and in-situ characterization techniques of GDLs along with related modeling and simulation. Recently reported techniques used for accelerated durability evaluation of the GDLs are also consolidated within the ex-situ and in-situ methods.

  17. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mousa, Ghassan; Golnaraghi, Farid; DeVaal, Jake; Young, Alan

    2014-01-01

    When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.

  18. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  19. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell

    DOE PAGES

    Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan; ...

    2015-08-05

    The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer duringmore » the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.« less

  20. Stable support based on highly graphitic carbon xerogel for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Zhang, Huamin; Ma, Yuanwei; Xu, Ting; Zhong, Hexiang; Wang, Meiri

    Highly graphitic carbon xerogel (GCX) is prepared by the modified sol-gel polymerization process using cobalt nitrate as the catalyst, followed by high temperature treatment at 1800 °C. The as-prepared GCX is explored as a stable support for Pt in proton exchange membrane fuel cells. The results of N 2 sorption measurement and X-ray diffraction analysis (XRD) reveal that GCX has a better mesoporous structure and a preferably higher degree of graphitization, compared with the commercial XC-72 carbon black. The transmission electron microscopy (TEM) image indicates that Pt nanoparticles are well dispersed on GCX and exhibit relatively narrow size distribution. Accelerated aging test (AAT) based on potential cycling is used to investigate the durability of the as-prepared Pt/GCX in comparison with the commercial Pt/C. Electrochemical analysis demonstrates that the catalyst with GCX as a support exhibits an alleviated degradation rate of electrochemical active surface area (39% for Pt/GCX and 53% for Pt/C). The results of single cell durability tests indicate that the voltage loss of Pt/GCX at 100 mA cm -2 is about 50% lower than that of Pt/C. GCX is expected to be a corrosion resistant electrocatalyst support.

  1. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  2. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  3. Method to improve catalyst layer model for modelling proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2015-09-01

    Correctly describing oxygen reduction within the cathode catalyst layer (CL) in modelling proton exchange membrane fuel cell is an important issue remaining unresolved. In this paper we show how to derive an agglomerate model for calculating oxygen reactions by describing dissolved oxygen in the agglomerates using two independent random processes. The first one is the probability that an oxygen molecule, which dissolves in the ionomer film on the agglomerate surface, moves into and then remains in the agglomerates; the second one is the probability of the molecule being consumed in reactions. The first probability depends on CL structure and can be directly calculated; the second one is derived by assuming that the oxygen reduction is first-order kinetic. It is found that the distribution functions of the first process can be fitted to a generalised gamma distribution function, which enables us to derive an analytical agglomerate model. We also expend the model to include oxygen dissolution in the ionomer film, and apply it to simulate cathode electrodes. The results reveal that the resistance to oxygen diffusion in ionomer film and agglomerate in modern CL is minor, and that the main potential loss is due to oxygen dissolution in the ionomer film.

  4. Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells

    NASA Astrophysics Data System (ADS)

    Toops, Todd J.; Brady, Michael P.; Zhang, Feng-Yuan; Meyer, Harry M.; Ayers, Katherine; Roemer, Andrew; Dalton, Luke

    2014-12-01

    Proton exchanges membrane (PEM) regenerative fuel cell electrolysis of water is of great recent interest as a hydrogen generation technology. Anode side titanium current collectors and separator plates used in these applications typically employ coatings of platinum group metals to achieve durability and performance requirements in the high voltage, oxidizing environment. The present work assessed the potential for lower cost surface modified titanium by both thermal (gas) nitridation and plasma nitridation approaches. The nitrided Ti was found to result in far less hydrogen uptake in coupon testing than did Pt-plated Ti. Short-term (48 h) single-cell performance at 25 °C was approximately 13% better (lower voltage) at 1.2 A cm-2 for thermal and plasma nitrided plates vs. untreated Ti. However, at 50 °C and 1.5 A cm-2, the thermally nitrided plate exhibited only on the order of 3% better behavior (lower voltage) compared to the untreated Ti and plasma nitrided Ti. Durability testing for 500 h resulted in only a minor degradation in cell performance, on the order of 1-2% voltage increase, with the best behavior exhibited by the thermally nitrided Ti plate. Despite their relatively stable cell performance, extensive local oxidation of the thermally nitrided and plasma nitrided flow field regions was observed.

  5. Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Sun, Juncai; Li, Pengbin; Jing, Bo; Li, Song; Wen, Zhongsheng; Ji, Shijun

    2012-06-01

    AISI 304 stainless steel (SS) has been niobized by a plasma surface diffusion alloying method. A 3 μm niobized layer with dominant niobium elements has been formed on the 304 SS surface and the performances of the niobized 304 SS has been examined and evaluated as bipolar plate for proton exchange membrane fuel cell (PEMFC). Results show that the average contact angle with water for the niobized 304 SS is about 90.4°, demonstrating better hydrophobicity as compared with the untreated 304 SS (68.1°). The corrosion resistance of the 304 SS is considerably improved by the niobized layer with the corrosion current densities decreased at 0.2 and 0.4 μA cm-2 in simulated PEMFC anode purged with hydrogen and the cathode purged with air condition (0.05 M H2SO4 + 2 ppm F- solution at 70 °C), respectively. The interfacial contact resistance (ICR) for the as-prepared niobized 304 SS is 10.53 mΩ cm2 at the compaction of 140 N cm-2. Furthermore, after 4 h potentiostatic tests, the niobizied specimens exhibit much lower ICR than that for the untreated ones. Thus, the niobized layer can act as a conductively protective layer of the 304 SS bipolar plate for PEMFC.

  6. Multivariable robust control of a proton exchange membrane fuel cell system

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Cheng; Chen, Hsuan-Tsung; Yang, Yee-Pien; Yen, Jia-Yush

    This paper applies multivariable robust control strategies to a proton exchange membrane fuel cell (PEMFC) system. From the system point of view, a PEMFC can be modeled as a two-input-two-output system, where the inputs are air and hydrogen flow rates and the outputs are cell voltage and current. By fixing the output resistance, we aimed to control the cell voltage output by regulating the air and hydrogen flow rates. Due to the nonlinear characteristics of this system, multivariable robust controllers were designed to provide robust performance and to reduce the hydrogen consumption of this system. The study was carried out in three parts. Firstly, the PEMFC system was modeled as multivariable transfer function matrices using identification techniques, with the un-modeled dynamics treated as system uncertainties and disturbances. Secondly, robust control algorithms were utilized to design multivariable H ∞ controllers to deal with system uncertainty and performance requirements. Finally, the designed robust controllers were implemented to control the air and hydrogen flow rates. From the experimental results, multivariable robust control is shown to provide steady output responses and significantly reduce hydrogen consumption.

  7. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    NASA Astrophysics Data System (ADS)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) < 900, probably due to different EW distributions. Measurements on dry membranes confirm that Hyflon Ion has a higher glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  8. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    PubMed

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  9. A water and heat management model for proton-exchange-membrane fuel cells

    SciTech Connect

    Nguyen, T.V.; White, R.E. . Dept. of Chemical Engineering)

    1993-08-01

    Proper water and heat management are essential for obtaining high-power-density performance at high energy efficiency for proton-exchange-membrane fuel cells. A water and heat management model was developed and used to investigate the effectiveness of various humidification designs. The model accounts for water transport across the membrane by electro-osmosis and diffusion, heat transfer from the solid phase to the gas phase and latent heat associated with water evaporation and condensation in the flow channels. Results from the model showed that at high current (> 1A/cm[sup 2]) ohmic loss in the membrane accounts for a large fraction of the voltage loss in the cell and back diffusion of water from the cathode side of the membrane is insufficient to keep the membrane hydrated (i.e., conductive). Consequently, to minimize this ohmic loss the anode stream must be humidified, and when air is used instead of pure oxygen the cathode stream must also be humidified.

  10. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell

    SciTech Connect

    Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan; Toops, Todd J.; Brady, Michael P.; Green, Johney B.

    2015-08-05

    The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer during the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.

  11. Phase change in the cathode side of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khajeh-Hosseini-Dalasm, N.; Fushinobu, Kazuyoshi; Okazaki, Ken

    A three-dimensional steady state two-phase non-isothermal model which highly couples the water and thermal management has been developed to numerically investigate the spatial distribution of the interfacial mass transfer phase-change rate in the cathode side of a proton exchange membrane fuel cell (PEMFC). A non-equilibrium evaporation-condensation phase change rate was incorporated in the model which allowed supersaturation and undersaturation take place. The most significant effects of phase-change rate on liquid saturation and temperature distributions are highlighted. A parametric study was also carried out to investigate the effects of operating conditions; namely as the channel inlet humidity, cell operating temperature, and inlet mass flow rate on the phase-change rate. It was also found that liquid phase assumption for produced water in the cathode catalyst layer (CL) changed the local distribution of phase-change rate. The maximum evaporation rate zone (above the channel near the CL) coincided with the maximum temperature zone and resulted in lowering the liquid saturation level. Furthermore, reduction of the channel inlet humidity and an increase of the operation temperature and inlet mass flow rate increased the evaporation rate and allowed for dehydration process of the gas diffusion layer (GDL) to take place faster.

  12. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    NASA Astrophysics Data System (ADS)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  13. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  14. Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers

    PubMed Central

    Lettenmeier, P.; Wang, R.; Abouatallah, R.; Saruhan, B.; Freitag, O.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Gago, A. S.; Friedrich, K. A.

    2017-01-01

    Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables. PMID:28294119

  15. High energy density proton exchange membrane fuel cell with dry reactant gases

    SciTech Connect

    Srinivasan, S.; Gamburzev, S.; Velev, O.A.

    1996-12-31

    Proton exchange membrane fuel cells (PEMFC) require careful control of humidity levels in the cell stack to achieve a high and stable level of performance. External humidification of the reactant gases, as in the state-of-the-art PEMFCs, increases the complexity, the weight, and the volume of the fuel cell power plant. A method for the operation of PEMFCs without external humidification (i.e., self-humidified PEMFCs) was first developed and tested by Dhar at BCS Technology. A project is underway in our Center to develop a PEMFC cell stack, which can work without external humidification and attain a performance level of a current density of 0.7 A/cm{sup 2} at a cell potential of 0.7 V, with hydrogen/air as reactants at 1 atm pressure. In this paper, the results of our efforts to design and develop a PEMFC stack requiring no external humidification will be presented. This paper focuses on determining the effects of type of electrodes, the methods of their preparation, as well as that of the membrane and electrode assembly (MEA), platinum loading and types of electrocatalyst on the performance of the PEMFC will be illustrated.

  16. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells

    PubMed Central

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen

    2015-01-01

    The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963

  17. Improvement of proton exchange membrane fuel cell overall efficiency by integrating heat-to-electricity conversion

    NASA Astrophysics Data System (ADS)

    Xie, Chungang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    Proton exchange membrane fuel cells (PEMFCs) have shown to be well suited for distributed power generation due to their excellent performance. However, a PEMFC produces a considerable amount of heat in the process of electrochemical reaction. It is desirable to use thermal energy for electricity generation in addition to heating applications. Based on the operating characteristics of a PEMFC, an advanced thermal energy conversion system using "ocean thermal energy conversion" (OTEC) technology is applied to exploit the thermal energy of the PEMFC for electricity generation. Through this combination of technology, this unique PEMFC power plant not only achieves the combined heat and power efficiency, but also adequately utilizes heat to generate more valuable electricity. Exergy analysis illustrates the improvement of overall efficiency and energy flow distribution in the power plant. Analytical results show that the overall efficiency of the PEMFC is increased by 0.4-2.3% due to the thermal energy conversion (TEC) system. It is also evident that the PEMFC should operate within the optimal load range by balancing the design parameters of the PEMFC and of the TEC system.

  18. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shi, Weiyu; Yi, Baolian; Hou, Ming; Jing, Fenning; Yu, Hongmei; Ming, Pingwen

    The effect of hydrogen sulfide on proton exchange membrane fuel cell (PEMFC) anodes was studied by cyclic voltammetry (CV), potential steps and electrochemical impedance spectroscopy (EIS). The severity of the effect of H 2S varies depending on the H 2S concentration, current density and the cell temperature. The anode humidification does not impact the poisoning rate much when the anode is exposed to H 2S. The adsorption of H 2S on the anode is dissociative and this dissociation can produce adsorbed sulfur. The dissociation potential of H 2S was studied by potential steps, and the values of the dissociation potential are about 0.4 V at 90 °C, 0.5 V at 60 °C and 0.6 V at 30 °C, respectively. The adsorbed sulfur can be oxidized at a higher potential. During CV scans, two oxidation peaks for the adsorbed sulfur at 1.07 and 1.2 V were observed at 90 °C, however a single oxidation peak could be observed at 1.2 V at 60 °C and at 1.27 V at 30 °C. Application of EIS to a H 2S|H 2 half-cell shows that the charge transfer resistance increases when the anode is exposed to H 2S because of H 2S adsorption.

  19. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  20. Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers.

    PubMed

    Lettenmeier, P; Wang, R; Abouatallah, R; Saruhan, B; Freitag, O; Gazdzicki, P; Morawietz, T; Hiesgen, R; Gago, A S; Friedrich, K A

    2017-03-15

    Cost reduction and high efficiency are the mayor challenges for sustainable H2 production via proton exchange membrane (PEM) electrolysis. Titanium-based components such as bipolar plates (BPP) have the largest contribution to the capital cost. This work proposes the use of stainless steel BPPs coated with Nb and Ti by magnetron sputtering physical vapor deposition (PVD) and vacuum plasma spraying (VPS), respectively. The physical properties of the coatings are thoroughly characterized by scanning electron, atomic force microscopies (SEM, AFM); and X-ray diffraction, photoelectron spectroscopies (XRD, XPS). The Ti coating (50 μm) protects the stainless steel substrate against corrosion, while a 50-fold thinner layer of Nb decreases the contact resistance by almost one order of magnitude. The Nb/Ti-coated stainless steel bipolar BPPs endure the harsh environment of the anode for more than 1000 h of operation under nominal conditions, showing a potential use in PEM electrolyzers for large-scale H2 production from renewables.

  1. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  2. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application

    NASA Astrophysics Data System (ADS)

    Nandjou, F.; Poirot-Crouvezier, J.-P.; Chandesris, M.; Blachot, J.-F.; Bonnaud, C.; Bultel, Y.

    2016-09-01

    In Proton Exchange Membrane Fuel Cells, local temperature is a driving force for many degradation mechanisms such as hygrothermal deformation and creep of the membrane, platinum dissolution and bipolar plates corrosion. In order to investigate and quantify those effects in automotive application, durability testing is conducted in this work. During the ageing tests, the local performance and temperature are investigated using in situ measurements of a printed circuit board. At the end of life, post-mortem analyses of the aged components are conducted. The experimental results are compared with the simulated temperature and humidity in the cell obtained from a pseudo-3D multiphysics model in order to correlate the observed degradations to the local conditions inside the stack. The primary cause of failure in automotive cycling is pinhole/crack formation in the membrane, induced by high variations of its water content over time. It is also observed that water condensation largely increases the probability of the bipolar plates corrosion while evaporation phenomena induce local deposits in the cell.

  3. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    PubMed

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  4. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  5. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Salahuddin, Mohammad; Hwang, Gisuk; Asmatulu, Ramazan

    2016-04-01

    Proton exchange membrane (PEM) fuel cells are considered to be the promising alternatives of natural resources for generating electricity and power. An optimal water management in the gas diffusion layers (GDL) is critical to high fuel cell performance. Its basic functions include transportation of the reactant gas from flow channels to catalyst effectively, draining out the liquid water from catalyst layer to flow channels, and conducting electrons with low humidity. In this study, polyacrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to the stabilization at 280 °C for 1 hour in the atmospheric pressure and carbonization at 850 °C for 1 hour. The surface hydrophobicity values of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs depicted much better results compared to the conventionally used ones. The water condensation tests on the surfaces (superhydrophobic and hydrophilic) of the GDL showed a crucial step towards improved water managements in the fuel cell. This study may open up new possibilities for developing high- performing GDL materials for future PEM fuel cell applications.

  6. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  7. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    PubMed

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  8. Multiple model predictive control for a hybrid proton exchange membrane fuel cell system

    NASA Astrophysics Data System (ADS)

    Chen, Qihong; Gao, Lijun; Dougal, Roger A.; Quan, Shuhai

    This paper presents a hierarchical predictive control strategy to optimize both power utilization and oxygen control simultaneously for a hybrid proton exchange membrane fuel cell/ultracapacitor system. The control employs fuzzy clustering-based modeling, constrained model predictive control, and adaptive switching among multiple models. The strategy has three major advantages. First, by employing multiple piecewise linear models of the nonlinear system, we are able to use linear models in the model predictive control, which significantly simplifies implementation and can handle multiple constraints. Second, the control algorithm is able to perform global optimization for both the power allocation and oxygen control. As a result, we can achieve the optimization from the entire system viewpoint, and a good tradeoff between transient performance of the fuel cell and the ultracapacitor can be obtained. Third, models of the hybrid system are identified using real-world data from the hybrid fuel cell system, and models are updated online. Therefore, the modeling mismatch is minimized and high control accuracy is achieved. Study results demonstrate that the control strategy is able to appropriately split power between fuel cell and ultracapacitor, avoid oxygen starvation, and so enhance the transient performance and extend the operating life of the hybrid system.

  9. Binary and ternary nano-catalysts as cathode materials in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Trimm, Bryan Dunning

    The need for alternative energy, in order to reduce dependence on petroleum based fuels, has increased in recent years. Public demand is at an all-time high for low emitting or none polluting energy sources, driving the research for cleaner technology. Lithium batteries and fuel cells have the ability to produce this alternative energy with much cleaner standards, while allowing for portability and high energy densities. This work focuses on the performance of nanocatalysts in Proton Exchange Membrane Fuel Cell or PEMFC. A key technical challenge is the sluggish rate for oxygen reduction reaction at the cathode of PEMFC, which requires highly-active and stable catalysts. Our investigation is directed at increasing stability and durability as well as reducing high loading of noble metals in these catalyst materials. Binary and ternary structured nanomaterials, e.g., Pt51V1Co48/C and Pd xCu1-x/C, have been synthesized and tested in a PEMFC, in order to gain a better understanding of their durability and efficiency. In addition to electrochemical characterization, synchrotron x-ray techniques at the Advance Photon Source in Argonne National Lab have also been used for the structural characterization.

  10. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Dazi; Li, Chong; Gao, Zhiqiang; Jin, Qibing

    2015-06-01

    Operating a Proton Exchange Membrane fuel cell (PEMFC) system to maintain the stack temperature stable is one of the key issues in PEMFC's normal electrochemical reaction process. Its temperature characteristic is easily affected by inlet gas humidity, external disturbances, and electrical load changes and so on. Because of the complexity and nonlinearity of the reaction process, it is hard to build a model totally consistent with the real characteristic of the process. If model uncertainty, external disturbances, parameters changes can be regarded as "total disturbance", which is then estimated and compensated, the accurate model is no longer required and the control design can be greatly simplified to meet the practical needs. Based on this idea, an active disturbance rejection control (ADRC) with a switching law is proposed for the problem of precise temperature regulation in PEMFC. Results of the work show that the proposed control system allows the PEMFC to operate successfully at the temperature of 343 K point in the presence of two different disturbances.

  11. Hydrogen bonding in proton-transfer complexes of cytosine with trimesic and pyromellitic acids

    NASA Astrophysics Data System (ADS)

    Thomas, Reji; Kulkarni, G. U.

    2008-02-01

    Protons-transfer complexes (1:1) of cytosine with trimesic and pyromellitic acids have been crystallized and single crystal structures have been solved by X-ray crystallography. Both cocrystals exhibit layered structures, each layer containing a plethora of N-H⋯O and O-H⋯O hydrogen bonds between the proton-transfer duplets. The cytosine-trimesic acid complex exhibits a bilayered structure (2.87 Å) in contrast to the commonly observed layered structure seen in the cytosine-pyromellitic acid complex (3.98 Å). Another layered system, an adduct of pyromellitic acid and 1,4-dihydroxy benzene, has also been studied.

  12. Optimal use of proton pump inhibitors for treating acid peptic diseases in primary care.

    PubMed

    Tack, J; Louis, E; Persy, V; Urbain, D

    2013-12-01

    Heartburn, reflux and epigastric pain are frequently encountered symptoms in primary care medicine. Acid peptic diseases such as peptic ulcer and gastrointestinal reflux disease have a high prevalence, can have important impact on patient quality of life and represent a considerable health care cost. Proton pump inhibitors (PPIs) are the most potent pharmacological inhibitors of gastric acid secretion currently available and are the mainstay medical therapy for acid peptic diseases. This review summarizes current evidence on treatment of acid-peptic diseases with proton pump inhibitors and provides primary care clinicians with best practice guidelines for optimal use of these drugs.

  13. Simultaneous determination of labile proton concentration and exchange rate utilizing optimal RF power: radio frequency power (RFP) dependence of chemical exchange saturation transfer (CEST) MRI

    PubMed Central

    Sun, Phillip Zhe

    2009-01-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. However, CEST MRI contrast mechanism is complex, depending not only on the CEST agent concentration, exchange and relaxation properties, but also varying with experimental conditions such as magnetic field strength and RF power. Hence, it remains somewhat difficult to quantify apparent CEST MRI contrast for properties such as pH, temperature and protein content. In particular, CEST MRI is susceptible to RF spillover effects in that RF irradiation may directly saturate the bulk water MR signal, leading to an optimal RF power at which the CEST contrast is maximal. Whereas RF spillover is generally considered an adverse effect, it is noted here that the optimal RF power strongly varies with exchange rate, although with negligible dependence on labile proton concentration. An empirical solution suggested that optimal RF power may serve as a sensitive parameter for simultaneously determining the labile proton content and exchange rate, hence, allowing improved characterization of the CEST system. The empirical solution was confirmed by numerical simulation, and experimental validation is needed to further evaluate the proposed technique. PMID:19926319

  14. Simultaneous determination of labile proton concentration and exchange rate utilizing optimal RF power: Radio frequency power (RFP) dependence of chemical exchange saturation transfer (CEST) MRI.

    PubMed

    Sun, Phillip Zhe

    2010-02-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. However, CEST MRI contrast mechanism is complex, depending not only on the CEST agent concentration, exchange and relaxation properties, but also varying with experimental conditions such as magnetic field strength and RF power. Hence, it remains somewhat difficult to quantify apparent CEST MRI contrast for properties such as pH, temperature and protein content. In particular, CEST MRI is susceptible to RF spillover effects in that RF irradiation may directly saturate the bulk water MR signal, leading to an optimal RF power at which the CEST contrast is maximal. Whereas RF spillover is generally considered an adverse effect, it is noted here that the optimal RF power strongly varies with exchange rate, although with negligible dependence on labile proton concentration. An empirical solution suggested that optimal RF power may serve as a sensitive parameter for simultaneously determining the labile proton content and exchange rate, hence, allowing improved characterization of the CEST system. The empirical solution was confirmed by numerical simulation, and experimental validation is needed to further evaluate the proposed technique.

  15. Final Project Report for project titled "Fluoroalkylphosphonic-acid-based proton conductors"

    SciTech Connect

    Stephen Creager

    2011-12-08

    The overall objective of this research was to create new proton-conducting polymer electrolytes for use in energy conversion devices including hydrogen fuel cells that could operate at high temperatures (95-130 C) and under low relative humidity (< 50% RH) conditions. The new polymers were based on the fluoroalkylphosphonic and phosphinic acid (FPA) groups (see illustration below) which offer prospects for rapid proton transport by a proton-hopping mechanism similar to that which operates in phosphoric acid, a well-known proton-transporting electrolyte that is used in a class of hydrogen fuel cells that work well under the conditions noted above and are already commercially successful. The two specific project objectives were as follows: (1) synthesize and characterize new proton-conducting electrolytes based on the fluoroalkylphosphonic and phosphinic acid (FPA) functional groups; and (2) create and apply new computer models to study protonic conduction in FPA-based electrolytes. The project was successful in creating the desired polymer electrolytes and also a series of molecular model compounds which were used to study proton transport in FPA electrolytes in general. Computer models were created to study both structure and proton-transport dynamics in the electrolytes, particularly the molecular model compounds. Rapid proton transport by a hopping mechanism was found in many of the model compounds and correlations with transport rates with molecular structure were identified. Several polymeric analogs of FPA model compounds were prepared and studied, however FPA-based polymeric materials having very high protonic conductivities under either wet or dry conditions were not obtained. Several possible reasons for the failure of polymeric materials to exhibit the expected high protonic conductivities were identified, including a failure of the polymers to adopt the phase-separated secondary structure/morphology necessary for high proton conductivity, and an

  16. Challenges in preparing, preserving and detecting para-water in bulk: overcoming proton exchange and other hurdles.

    PubMed

    Mammoli, Daniele; Salvi, Nicola; Milani, Jonas; Buratto, Roberto; Bornet, Aurélien; Sehgal, Akansha Ashvani; Canet, Estel; Pelupessy, Philippe; Carnevale, Diego; Jannin, Sami; Bodenhausen, Geoffrey

    2015-10-28

    Para-water is an analogue of para-hydrogen, where the two proton spins are in a quantum state that is antisymmetric under permutation, also known as singlet state. The populations of the nuclear spin states in para-water are believed to have long lifetimes just like other Long-Lived States (LLSs). This hypothesis can be verified by measuring the relaxation of an excess or a deficiency of para-water, also known as a "Triplet-Singlet Imbalance" (TSI), i.e., a difference between the average population of the three triplet states T (that are symmetric under permutation) and the population of the singlet state S. In analogy with our recent findings on ethanol and fumarate, we propose to adapt the procedure for Dissolution Dynamic Nuclear Polarization (D-DNP) to prepare such a TSI in frozen water at very low temperatures in the vicinity of 1.2 K. After rapid heating and dissolution using an aprotic solvent, the TSI should be largely preserved. To assess this hypothesis, we studied the lifetime of water as a molecular entity when diluted in various solvents. In neat liquid H2O, proton exchange rates have been characterized by spin-echo experiments on oxygen-17 in natural abundance, with and without proton decoupling. One-dimensional exchange spectroscopy (EXSY) has been used to study proton exchange rates in H2O, HDO and D2O mixtures diluted in various aprotic solvents. In the case of 50 mM H2O in dioxane-d8, the proton exchange lifetime is about 20 s. After dissolving, one can observe this TSI by monitoring intensities in oxygen-17 spectra of H2O (if necessary using isotopically enriched samples) where the AX2 system comprising a "spy" oxygen A and two protons X2 gives rise to binomial multiplets only if the TSI vanishes. Alternatively, fast chemical addition to a suitable substrate (such as an activated aldehyde or ketone) can provide AX2 systems where a carbon-13 acts as a spy nucleus. Proton signals that relax to equilibrium with two distinct time constants can be

  17. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, Sundara

    2012-08-01

    Chemical and electrical synergies between graphite oxide and multiwalled carbon nanotube (MWNT) for processing graphene wrapped-MWNT hybrids has been realized by chemical vapor deposition without any chemical functionalization. Potential of the hybrid composites have been demonstrated by employing them as electrocatalyst supports in proton exchange membrane fuel cells. The defects present in the polyelectrolyte, which have been wrapped over highly dispersed MWNT, act as anchoring sites for the homogeneous deposition of platinum nanoparticles. Single-cell proton exchange membrane fuel cells show that the power density of the hybrid composite-based fuel cells is higher compared to the pure catalyst-support-based fuel cells, because of enhanced electrochemical reactivity and good surface area of the nanocomposites.

  18. Dissociative electron-ion recombination of the interstellar species protonated glycolaldehyde, acetic acid, and methyl formate.

    PubMed

    Lawson, Patrick A; Osborne, David S; Adams, Nigel G

    2012-03-22

    Recently, methyl formate, glycolaldehyde, and acetic acid have been detected in the Interstellar Medium, ISM. The rate constants, α(e), for dissociative electron-ion recombination of protonated gycolaldehyde, (HOCH(2)CHO)H(+), and protonated methyl formate, (HCOOCH(3))H(+), have been determined at 300 K in a variable temperature flowing afterglow using a Langmuir probe to obtain the electron density. The recombination rate constants at 300 K are 3.2 × 10(-7) cm(3) s(-1) for protonated methyl formate and 7.5 × 10(-7) cm(3) s(-1) for protonated glycolaldehyde. The recombination rate constant of protonated acetic acid could not be directly measured, but it appears to have a rate constant, α(e), on the 10(-7) cm(3) s(-1) scale. Several high- and low-temperature measurements for protonated methyl formate were made. In addition, an α(e) measurement at 220 K for protonated glycolaldehyde was performed. The astrochemical implications of the rates of recombination, α(e), and protonation routes are discussed.

  19. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-05

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  20. Protonation of Alcohols in Sulfuric Acid Solutions at UT/LS Conditions

    NASA Astrophysics Data System (ADS)

    Michelsen, R. R.; Vernier, K.; Axson, J.; Morley, D.

    2007-12-01

    The protonation of several small alcohols (ethanol, 2-propanol, and 1-butanol) in cold sulfuric acid aqueous solutions was measured using variable temperature 13C nuclear magnetic resonance (NMR) spectroscopy. The acidity of the sulfuric acid + deuterium oxide solutions ranged from 43 to 81 weight percent (wt %) H2SO4. The pKBH+ values, which are a measure of the acidity of each alcohol, range from -2.0 for butanol at room temperature to -2.2 for ethanol at -20°C. The protonation enthalpies of the three alcohols over the temperature range of 22°C to -35°C were found to be small and negative, ranging from -1.8 kJ mol-1 for 2-propanol to -2.3 kJ mol-1 for ethanol. A small, negative protonation enthalpy means that the degree of protonation of the alcohol slightly decreases as temperature decreases. The pKBH+values and protonation enthalpies are used to predict the form of dissolved alcohols in sulfate aerosols. For typical upper troposphere/lower stratosphere (UT/LS) conditions (40-70 wt % H2SO4 and 220 K), all three alcohols increase from approximately 10% protonated in 40 wt % H2SO4 to over 60% protonated in 70 wt % H2SO4. The percent of protonated alcohol depends more strongly on m*, the slope factor of the excess acidity treatment, than on pKBH+ values. This relationship may reflect solvation effects. The treatment of strongly acidic, non-ideal solutions as applied to organic solutes in sulfate aerosol particles will be discussed.

  1. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro.

    PubMed

    Goerke, Steffen; Zaiss, Moritz; Bachert, Peter

    2014-05-01

    Chemical exchange saturation transfer (CEST) enables indirect detection of small metabolites in tissue by MR imaging. To optimize and interpret creatine-CEST imaging we characterized the dependence of the exchange-rate constant k(sw) of creatine guanidinium protons in aqueous creatine solutions as a function of pH and temperature T in vitro. Model solutions in the low pH range (pH = 5-6.4) were measured by means of water-exchange (WEX)-filtered ¹H NMR spectroscopy on a 3 T whole-body MR tomograph. An extension of the Arrhenius equation with effective base-catalyzed Arrhenius parameters yielded a general expression for k(sw) (pH, T). The defining parameters were identified as the effective base-catalyzed rate constant k(b,eff) (298.15 K) = (3.009 ± 0.16) × 10⁹  Hz l/mol and the effective activation energy E(A,b,eff)  = (32.27 ± 7.43) kJ/mol at a buffer concentration of c(buffer)  = (1/15) M. As expected, a strong dependence of k(sw) on temperature was observed. The extrapolation of the exchange-rate constant to in vivo conditions (pH = 7.1, T = 37 °C) led to the value of the exchange-rate constant k(sw)  = 1499 Hz. With the explicit function k(sw) (pH, T) available, absolute-pH CEST imaging could be realized and experimentally verified in vitro. By means of our calibration method it is possible to adjust the guanidinium proton exchange-rate constant k(sw) to any desired value by preparing creatine model solutions with a specific pH and temperature.

  2. The detection of palladium particles in proton exchange membrane fuel-cell water by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Snyder, Stuart C; Wickun, William G; Mode, Jeremy M; Gurney, Brian D; Michels, Fred G

    2011-06-01

    Laser-induced breakdown spectroscopy (LIBS) using conditional data analysis was applied to aqueous suspensions of palladium particles in the reformate water of palladium-based proton exchange membrane fuel cells. A significant amount of palladium was found in the water, indicating degradation of the fuel-cell cathode catalytic layers. The palladium particle-size detection limit was found to be about 400 nm. Calibration procedures to quantify the palladium concentration are discussed.

  3. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO{sub 3}

    SciTech Connect

    Sun, Jian; Xu, Chang-qing

    2015-01-28

    Infrared spectra of OH{sup −} groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO{sub 3} (MgO:LiNbO{sub 3}) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO{sub 3} crystals were recorded and analyzed. Comparing with none-doped APE LiNbO{sub 3} crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO{sub 3} slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO{sub 3} waveguides was proposed.

  4. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes

    NASA Astrophysics Data System (ADS)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo

    2015-01-01

    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  5. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin.

    PubMed

    Lin, J; Westler, W M; Cleland, W W; Markley, J L; Frey, P A

    1998-12-08

    NMR investigations have been carried out of complexes between bovine chymotrypsin Aalpha and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-L-Phe-CF3, N-Acetyl-Gly-L-Phe-CF3, N-Acetyl-L-Val-L-Phe-CF3, and N-Acetyl-L-Leu-L-Phe-CF3. The D/H fractionation factors (phi) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hdelta1) in these four complexes at 5 degreesC were in the range phi = 0.32-0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hepsilon1 (delta2,2-dimethylsilapentane-5-sulfonic acid 8.97-9. 18), the exchange rate of the His 57-Hdelta1 proton with bulk water protons (284-12.4 s-1), and the activation enthalpies for this hydrogen exchange (14.7-19.4 kcal.mol-1). It was found that the previously noted correlations between the inhibition constants (Ki 170-1.2 microM) and the chemical shifts of His 57-Hdelta1 (delta2, 2-dimethylsilapentane-5-sulfonic acid 18.61-18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940-11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hdelta1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a

  6. Kinetic studies of clavulanic acid recovery by ion exchange chromatography.

    PubMed

    Barboza, M; Almeida, R M; Hokka, C O

    2001-01-01

    Clavulanic acid (CA) is a beta-lactamase inhibitor produced by strains of Streptomyces clavuligerus. Nowadays, the combination of CA with amoxycillin is the most successful example of the use of a beta-lactam antibiotic sensitive to beta-lactamases together with an inhibitor of these enzymes. Clavulanic acid is purified from fermentation broth by a series of steps consisting mainly of two-phase separation processes such as liquid-liquid extraction, adsorption or ion-exchange chromatography, among others. Amberlite IRA 400, a strong anion-exchange resin, has a very high adsorption capacity for CA (Mayer et al. 1997). This resin can be pre-treated with NaCl (chloride cycle), to remove selectively only those anions, which are able to displace chloride from the resin or with NaOH (hydroxyl cycle), to remove all species of anions. In order to decide the best operating conditions for CA recovery by ion-exchange resins and then to construct a model of this separation process, batch experiments were conducted using Amberlite IRA 400 in the chloride cycle. These runs were carried out in a 200 ml stirred tank, at two different initial solution pH, 6.2 and 4.0; the temperature was maintained at 10 degrees C and 20 degrees C during adsorption and 30 degrees C during the desorption step. It was possible, on the basis of these batch results, to model the separation process, including the adsorption kinetics, equilibrium data and mass transfer limitations.

  7. Low proton conductance of plant cuticles and its relevance to the acid-growth theory

    SciTech Connect

    Dreyer, S.A.; Seymour, V.; Cleland, R.E.

    1981-09-01

    Evidence obtained on the relation between the pH of the medium and the growth of intact stem sections is compatible with the acid-growth theory only if the proton conductance of the cuticle is an effective barrier to the entry or exit of protons from the tissue. By measuring the rate at which protons cross frozen-thawed epidermal strips of sunflower (Helianthus annus L.) and soybean hypocotyls (Glycine max Morr.) and enzymically isolated cuticles of Berberis aquifolium Persh. and tomato (Lycopersicum esculentum Mill.) fruit, we have now demonstrated the low proton conductance of the cuticular layer. Unless the conductance is enhanced by abrasion of the cuticle or by removal of the cuticular waxes, proton movement into and out of a tissue across the cuticle will be significant only over long time periods.

  8. Fatty Acid Flippase Activity Of UCP2 Is Essential For Its Proton Transport In Mitochondria

    PubMed Central

    Berardi, Marcelo J.; Chou, James J.

    2014-01-01

    SUMMARY Modulation of cellular energy expenditure is fundamental to normal and pathological cell growth and differentiation. Mitochondria stores energy as a proton gradient across their inner membrane. Uncoupling proteins (UCPs) can dissipate the gradient to produce heat or regulate metabolite fluxes. UCP-mediated proton currents require fatty acids (FA) and are blocked by nucleotides, but the molecular basis of these processes is unknown. We find, by nuclear magnetic resonance and functional mutagenesis, that UCP2 can bind FA laterally thru its peripheral site, and this intramembrane molecular recognition is essential for UCP2-catalyzed FA flipping across the membrane, which in turn is essential for proton translocation. The antagonist GDP binds inside the UCP2 cavity and perturbs its conformation, which can displace FA from the peripheral site as a mean of inhibiting proton currents. Our data provide a biophysical perspective of the intricate interplay of UCPs, FA, and nucleotides in determining proton fluxes in mitochondria. PMID:25127353

  9. Low proton conductance of plant cuticles and its relevance to the Acid-growth theory.

    PubMed

    Dreyer, S A; Seymour, V; Cleland, R E

    1981-09-01

    Evidence obtained on the relation between the pH of the medium and the growth of intact stem sections is compatible with the acid-growth theory only if the proton conductance of the cuticle is so low that the cuticle is an effective barrier to the entry or exit of protons from the tissue. By measuring the rate at which protons cross frozen-thawed epidermal strips of sunflower (Helianthus annuus L.) and soybean hypocotyls (Glycine max Morr.) and enzymically isolated cuticles of Berberis aquifolium Persh. and tomato (Lycopersicum esculentum Mill.) fruit, we have now demonstrated the low proton conductance of the cuticular layer. Unless the conductance is enhanced by abrasion of the cuticle or by removal of the cuticular waxes, proton movement into and out of a tissue across the cuticle will be significant only over long time periods.

  10. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.

    PubMed

    Stratford, Malcolm; Nebe-von-Caron, Gerhard; Steels, Hazel; Novodvorska, Michaela; Ueckert, Joerg; Archer, David B

    2013-02-15

    Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.

  11. Vacancy ion-exclusion chromatography of haloacetic acids on a weakly acidic cation-exchange resin.

    PubMed

    Helaleh, Murad I H; Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Taoda, Hiroshi; Ding, Ming-Yu; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2003-05-16

    A new and simple approach is described for the determination of the haloacetic acids (such as mono-, di- and trichloroacetic acids) usually found in drinking water as chlorination by-products after disinfection processes and acetic acid. The new approach, termed vacancy ion-exclusion chromatography, is based on an ion-exclusion mechanism but using the sample solution as the mobile phase, pure water as the injected sample, and a weakly acidic cation-exchange resin column (TSKgel OApak-A) as the stationary phase. The addition of sulfuric acid to the mobile phase results in highly sensitive conductivity detection with sharp and well-shaped peaks, leading to excellent and efficient separations. The elution order was sulfuric acid, dichloroacetic acid, monochloroacetic acid, trichloroacetic acid, and acetic acid. The separation of these acids depends on their pKa values. Acids with lower pKa values were eluted earlier than those with higher pKa, except for trichloroacetic acid due to a hydrophobic-adsorption effect occurring as a side-effect of vacancy ion-exclusion chromatography. The detection limits of these acids in the present study with conductivity detection were 3.4 microM for monochloroacetic acid, 0.86 microM for dichloroacetic acid and 0.15 microM for trichloroacetic acid.

  12. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  13. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  14. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  15. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    NASA Astrophysics Data System (ADS)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  16. Transport phenomena within the porous cathode for a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar

    A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible.

  17. Titanium Indiffusion Proton Exchange (tipe) Waveguide Lenses in Lithium-Niobate and Their Applications.

    NASA Astrophysics Data System (ADS)

    Zang, De-Yu.

    1988-06-01

    We have developed a new type of waveguide lenses in LiNbO_3, the Titanium-Indiffusion Proton-Exchanged (TIPE) lens which has many desirable performance characteristics including near diffraction focal spot size, short focal length, large numerical aperture, large angular field of view, and low insertion loss. Since only a single -mask photolithographic process is required in fabrication of the TIPE waveguide lenses, it is extremely simple and flexible for their design and fabrication. The process also facilitates accurate optical alignment with other components in the waveguide substrate. Specifically, large linear microlens arrays that consist of very very short focal length lenses and a single large-aperture integrating lens can be formed simultaneously using the TIPE technique with very accurate optical alignment. A number of acoustooptic (AO) and electrooptic (EO) Bragg modulators have been fabricated together with the TIPE lenses on channel-planar composite waveguides with applications to information processing and computing. Specifically, matrix-vector multiplication has been successfully carried out using the integrated AO Bragg modulator modules and the EO single-grating array modulator modules. In addition, the EO herringbone-grating array modulator modules were built to carry out matrix -matrix multiplication. Finally, multichannel integrated optic modules that utilize arrays of EO herringbone-grating modulators were constructed to perform programmable correlations of binary sequences. These multichannel integrated optic modules represent the highest degree of integration that has been accomplished in the LiNbO_3 substrate thus far. A series of correlation waveforms between two binary sequences have been obtained. These correlation waveforms are shown to be in excellent agreement with the theoretical calculations.

  18. State-of-the-art in bipolar of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Wang, Jingjing; Yin, Bi-feng; Xu, Zhen-ying; Ding, Sheng

    2010-10-01

    Proton exchange membrane fuel cell (PEMFC) has been the research focus because of the characteristics of compact structure, low-temperature starting, high specific energy density and power, environmental protection, prolonged service time. The bipolar plate in PEMFC has the function of isolating and uniformly distributing reactants, removing reaction products, collecting and inducing current, providing mechanical support for the cells in the stack collects, etc. The bipolar plate, which influences not only the cell stack performance but also the stack cost, is a vital component of PEMFC that is the choke point of industrialization. Compared with the conventional graphite bipolar plate, the metallic bipolar plate has the advantages of excellent electrical and thermal conductivity, high mechanical strength and power density, no leakage and good workability. Furthermore, the metal plate is especially suitable for production in mass. Therefore, metallic bipolar plate is considered to be a promising alternative for PEMFC bipolar. A review of the research work involves the material selection and processing of bipolar plate, flow-field type and the corresponding design, the forming methods of metallic bipolar plates. The materials of bipolar plate for PEMFC are focused on graphite, metal or alloy, and all kinds of composite materials. The disadvantages and advantages of these materials are compared. The flow channels of bipolar include dot-type, web-type, serpentine-type and the interdigital shape. Among them, serpentine-type flow channel plates are mentioned in detail. In this paper, we introduced the forming methods of metallic bipolar plates such as the electrochemical micro-fabrication, electroforming, thermoforming, micro-stamping and micro-milling. Finally, it points out that the prospective research about the PEMFC is minimization and industrialization.

  19. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Manzo, Michele; Kholkin, Andrei L.; Gallo, Katia; Rodriguez, Brian J.

    2016-03-01

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode-PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN-PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  20. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad

    2017-02-01

    A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.

  1. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    NASA Astrophysics Data System (ADS)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  2. Surface acoustic wave properties of proton-exchanged LiNbO3 waveguides with SiO2 film.

    PubMed

    Kao, Kuo-Sheng; Cheng, Chien-Chuan; Chung, Chung-Jen; Chen, Ying-Chung

    2005-03-01

    Surface acoustic wave (SAW) properties of proton-exchanged (PE) z-cut lithium niobate (LiNbO3) waveguides with silicon dioxide (SiO2) film layers were investigated using octanoic acid. The distribution of hydrogen measured by secondary ion mass spectrometry (SIMS) showed a step-like profile, which was assumed to be equal to the waveguide depth (d). The SiO2 film was deposited on z-cut LiNbO3 waveguide by radio frequency (rf) magnetron sputtering. We investigated the important parameters for the design of SAW devices such as phase velocity (Vp), insertion loss (IL) and temperature coefficient of frequency (TCF) by a network analyzer using thin-film aluminum interdigital transducer electrodes on the upper SiO2 film surface. The experimental results showed that the Vp of SAW decreased slightly with the increase of h/lambda, where h was the thickness of SiO2 films and lambda was the wavelength. The IL of SAW increased with increased h/lambda. The TCF of SAW calculated from the frequency change of the output of SAW delay line showed an evident decrease with the increase of h/lambda. The TCF for PE z-cut LiNbO3 was measured to be about -54.72 ppm/degreees C at h/lambda = 0.08. It revealed that the SiO2 films could compensate and improve the temperature stability as compared with the TCF of SAW on PE samples without SiO2 film.

  3. Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3

    PubMed Central

    Krishnan, Devishree; Liu, Lei; Wiebe, Shane A.; Casey, Joseph R.; Cordat, Emmanuelle; Alexander, R. Todd

    2016-01-01

    Two-thirds of sodium filtered by the renal glomerulus is reabsorbed from the proximal tubule via a sodium/proton exchanger isoform 3 (NHE3)-dependent mechanism. Since sodium and bicarbonate reabsorption are coupled, we postulated that the molecules involved in their reabsorption [NHE3 and carbonic anhydrase II (CAII)] might physically and functionally interact. Consistent with this, CAII and NHE3 were closely associated in a renal proximal tubular cell culture model as revealed by a proximity ligation assay. Direct physical interaction was confirmed in solid-phase binding assays with immobilized CAII and C-terminal NHE3 glutathione-S-transferase fusion constructs. To assess the effect of CAII on NHE3 function, we expressed NHE3 in a proximal tubule cell line and measured NHE3 activity as the rate of intracellular pH recovery, following an acid load. NHE3-expressing cells had a significantly greater rate of intracellular pH recovery than controls. Inhibition of endogenous CAII activity with acetazolamide significantly decreased NHE3 activity, indicating that CAII activates NHE3. To ascertain whether CAII binding per se activates NHE3, we expressed NHE3 with wild-type CAII, a catalytically inactive CAII mutant (CAII-V143Y), or a mutant unable to bind other transporters (CAII-HEX). NHE3 activity increased upon wild-type CAII coexpression, but not in the presence of the CAII V143Y or HEX mutant. Together these studies support an association between CAII and NHE3 that alters the transporter’s activity. PMID:26041446

  4. Interim report re: component parts for proton-exchange membrane fuel cells

    SciTech Connect

    George Marchetti

    1999-10-01

    The purpose of the first phase of the grant project is to design, develop and test a simplified fuel cell electrode structure for use in proton-exchange membrane fuel cells (''PEMFC''). By simplifying the structure of the electrode, mass production manufacturing efficiencies can be brought into play which will result in significant cost reductions for this fuel cell component. With a reduction in the cost of this key fuel cell component overall costs for PEMFC's can be brought within the commercialization target range of about US$100 per kilowatt for the fuel cell stack. Fuel cell electrodes are necessarily ''multi-layered'' composites. Multi-layers are required because of the several functions that the electrode must be able to perform in the working PEM fuel cell. The current generation of state-of-the-art porous fuel cell electrodes for PEMFC's is comprised of three primary layers. The first layer is the catalyst layer. Since hydrogen is the fuel used in this project and air is used as the oxidant, the catalyst must be capable of adsorbing hydrogen and oxygen from the air. While work is constantly on-going with respect to new hydrogen or oxygen catalysts, the best available catalyst at present for both of the reactant gases is platinum. To be effective, the catalyst (1) must be exposed to a constant flow of the respective reactant gas; (2) must be in intimate contact with the proton-exchange membrane; and (3) must be a finely divided catalyst and have a large specific surface area, especially on the oxidant side where the electrochemical reaction is slower by several orders of magnitude. The second layer is the substrate layer. The substrate layer provides structural support for the finely divided catalyst. It also functions as an electronic junction for conducting electricity produced by the electrochemical reaction from the catalyst layer to the bipolar plate of the fuel cell. In state-of-the-art PEMFC's, this layer is comprised of carbon particles (onto which

  5. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  6. Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitropentaacetic Acids

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng

    2009-10-20

    The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log {beta}H's) generally decrease as the temperature is increased. Results from this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of log{beta}H at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.

  7. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells.

    PubMed Central

    Doering, A E; Lederer, W J

    1993-01-01

    1. We recorded cardiac sodium-calcium exchange current (INa-Ca) in giant excised membrane patches obtained from cardiac myocytes of the adult guinea-pig. 2. Rapid changes in ion concentrations on the cytoplasmic side of the excised membrane patch were produced using a modified oil-gate bath. 3. Sodium-calcium exchange current was activated by step increases in sodium concentration on the cytoplasmic side of the membrane ([Na+]i), which led to an increase in outward INa-Ca to a new steady-state level. The [Na+]i required to half-maximally activate the sodium-calcium exchange current (K1/2) was 21 mM. 4. Step increases in cytoplasmic calcium concentration ([Ca2+]i) stimulated the [Na+]i-activated INa-Ca up to 1 microM [Ca2+]i, then inhibited the exchange current at very high [Ca2+]i (1 mM). 5. A step decrease in cytoplasmic pH from 7.2 to 6.4 (increase in [H+]i) produced a biphasic but monotonic decrease in INa-Ca. Alkalinization of cytoplasmic pH from 7.2 to 8.0 caused a large, biphasic increase in INa-Ca. 6. When INa-Ca was activated by a step increase in [Na+]i and [H+]i was simultaneously increased, the outward current rose to a peak and then declined to a low steady level. The peak current seen was always less than the maximum current produced by an identical elevation of [Na+]i at constant pHi. This reduction in peak outward current reflected a rapid 'primary' inhibition of the sodium-calcium exchange by protons. The decay of the sodium-calcium exchange current following the peak was slow and corresponded to the time course of the onset of a 'secondary' proton block. 7. Rapid primary inhibition of the sodium-calcium exchanger could also be produced by cytoplasmic acidification in the absence of cytoplasmic sodium. The primary blockade was revealed when a subsequent increase in [Na+]i activated INa-Ca and a smaller peak outward current was observed. Secondary inhibition of the sodium-calcium exchanger was not, however, produced by cytoplasmic acidification in

  8. Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Arnett, Natalie Y.; Harrison, William L.; Badami, Anand S.; Roy, Abhishek; Lane, Ozma; Cromer, Frank; Dong, Limin; McGrath, James E.

    Polymer blending is recognized as a valuable technique used to modify and improve the mechanical, thermal, and surface properties of two different polymers or copolymers. This paper investigated the solution properties and membrane properties of a biphenol-based disulfonated poly (arylene ether sulfone) random copolymer (BPS-35) with hexafluoroisopropylidene bisphenol based sulfonated poly (arylene ether sulfone) copolymers (6FSH) and an unsulfonated biphenol-based poly (arylene ether sulfone)s. The development of blended membranes with desirable surface characteristics, reduced water swelling and similar proton conductivity is presented. Polymer blends were prepared both in the sodium salt and acid forms from dimethylacetamide (DMAc). Water uptake, specific conductivity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and contact angles were used to characterize the blended films. Surface enrichment of the fluorinated component is illustrated by an significant increase in the water-surface contact angle was observed when 10 wt.% 6FBPA-00 (106°) was added to BPS 35 (80°). Water weight gain was reduced by a factor of 2.

  9. Calcineurin homologous proteins regulate the membrane localization and activity of sodium/proton exchangers in C. elegans.

    PubMed

    Allman, Erik; Wang, Qian; Walker, Rachel L; Austen, Molly; Peters, Maureen A; Nehrke, Keith

    2016-02-01

    Calcineurin B homologous proteins (CHP) are N-myristoylated, EF-hand Ca(2+)-binding proteins that bind to and regulate Na(+)/H(+) exchangers, which occurs through a variety of mechanisms whose relative significance is incompletely understood. Like mammals, Caenorhabditis elegans has three CHP paralogs, but unlike mammals, worms can survive CHP loss-of-function. However, mutants for the CHP ortholog PBO-1 are unfit, and PBO-1 has been shown to be required for proton signaling by the basolateral Na(+)/H(+) exchanger NHX-7 and for proton-coupled intestinal nutrient uptake by the apical Na(+)/H(+) exchanger NHX-2. Here, we have used this genetic model organism to interrogate PBO-1's mechanism of action. Using fluorescent tags to monitor Na(+)/H(+) exchanger trafficking and localization, we found that loss of either PBO-1 binding or activity caused NHX-7 to accumulate in late endosomes/lysosomes. In contrast, NHX-2 was stabilized at the apical membrane by a nonfunctional PBO-1 protein and was only internalized following its complete loss. Additionally, two pbo-1 paralogs were identified, and their expression patterns were analyzed. One of these contributed to the function of the excretory cell, which acts like a kidney in worms, establishing an alternative model for testing the role of this protein in membrane transporter trafficking and regulation. These results lead us to conclude that the role of CHP in Na(+)/H(+) exchanger regulation differs between apical and basolateral transporters. This further emphasizes the importance of proper targeting of Na(+)/H(+) exchangers and the critical role of CHP family proteins in this process.

  10. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells.

    PubMed

    Liang, Yongmin; Zhang, Huamin; Tian, Zhiqun; Zhu, Xiaobing; Wang, Xiaoli; Yi, Baolian

    2006-04-20

    A carbon-supported PtRuNi nanocomposite is synthesized via a microwave-irradiated polyol plus annealing synthesis strategy. The catalyst is characterized by transmission electron microscopy, powder X-ray diffraction, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The data are discussed with respect to those for the carbon-supported PtRu nanocomposite prepared following the same way. The characterizations show that the inclusion of Ni in the PtRu system has only a small effect on the particle size, the structure, and the compositional homogeneity. CO-stripping voltammetry and measurements on the single proton exchange membrane fuel cells show that the PtRuNi/C catalyst has an improved activity for CO(ads) electro-oxidation. An accelerated durability test on the catalyst exhibits insignificant loss of activity in acidic media. On the basis of the exploration of the structure-activity relationship, a mechanism for the improved performance of the catalyst is proposed. It is suggested that the improved CO-tolerant performance of the PtRuNi/C nanocomposite should be related to the hydrogen spillover on the catalyst surface, the enhanced oxidation of CO(ads) by nickel hydroxides, and the high proton and electronic conductivity of the hydroxides. The nickel hydroxide passivated surface and/or anchoring of metallic nickel in the platinum lattice may contribute to the durability of the catalyst in acid solution.

  11. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    PubMed

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  12. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  13. Kinetic isotope effects and tunneling in cyclic double and triple proton transfer between acetic acid and methanol in tetrahydrofuran studied by dynamic /sup 1/H and /sup 2/H NMR spectroscopy

    SciTech Connect

    Gerritzen, D.; Limbach, H.H.

    1984-02-22

    Previous studies of proton exchange and hydrogen bonding between acetic acid (A) and methanol (B) in tetrahydrofuran-d/sub 8/ have been extended to the study of the primary kinetic H/D isotope effects of the exchange. For this purpose a new combination of dynamic /sup 1/H and /sup 2/H NMR spectroscopy has been used to perform an ''NMR proton inventory''. The following rate law was obtained at deuterium fractions D=0 and D=1 of the exchangeable protonic sites: NU=k/sup LL/ C/sub A/C/sub B/+k/sub LLL/C/sub A//sup 2/C/sub B/ (L=H,D). This was attributed to a superposition of cyclic double and triple proton exchange involving one and two molecules of acetic acid and one molecule of methanol. Additional experiments were carried out at intermediate deuterium fractions. Thus, the kinetic HH/HD/DD and HHH/HHD/DDD isotope effects of the exchange as a function of the temperature was measured successfully. This has been achieved for the first time for well-defined intermolecular multiple-proton-transfer reactions. The possibility of determining the number of protons transferred in a chemical reaction by performing an NMR proton inventory is discussed. The rule of the geometric mean (RGM) is fulfilled for the kinetic isotope effects of the LLL process, which are almost independent of temperature within the margin of error. By contrast, the RGM is not fullfilled for the LL process, and the kinetic isotope effects depend strongly on the temperature. The energies of activation and frequency factors fit Bell's criteria of tunneling. The kinetic results are in good agreement with predictions of transition-state theory but can be explained by an intermolecular tunneling model. The results are proof that acetic acid and methanol form cyclic hydrogen-bonded 1:1 and 2:1 complexes which have very low concentration in tetrahydrofuran.

  14. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-04

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

  15. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

    PubMed

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2009-12-31

    The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

  16. Cross-linked sulfonated poly(ether ether ketone) by using diamino-organosilicon for proton exchange fuel cells.

    PubMed

    Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge

    2011-03-31

    Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.

  17. Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Linkov, Vladimir; Pasupathi, Sivakumar

    2014-11-01

    In this work, membrane electrode assemblies (MEAs) prepared by catalyst coating membrane (CCM) method are investigated for reduced platinum (Pt) loading and improved Pt utilization of high temperature proton exchange membrane fuel cell (PEMFC) based on phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane. The results show that CCM method exhibits significantly higher cell performance and Pt-specific power density than that of MEAs prepared with conventional gas diffusion electrode (GDE) under a low Pt loading level. In-suit cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the MEAs prepared by the CCM method have a higher electrochemical surface area (ECSA), low cell ohmic resistance and low charge transfer resistance as compared to those prepared with GDEs at the same Pt loading.

  18. Identification of hydroxyl protons, determination of their exchange dynamics, and characterization of hydrogen bonding in a microcrystallin protein.

    PubMed

    Agarwal, Vipin; Linser, Rasmus; Fink, Uwe; Faelber, Katja; Reif, Bernd

    2010-03-10

    Heteronuclear correlation experiments employing perdeuterated proteins enable the observation of all hydroxyl protons in a microcrystalline protein by MAS solid-state NMR. Dipolar-based sequences allow magnetization transfers that are >50 times faster compared to scalar-coupling-based sequences, which significantly facilitates their assignment. Hydroxyl exchange rates were measured using EXSY-type experiments. We find a biexponential decay behavior for those hydroxyl groups that are involved in side chain-side chain C-O-H...O horizontal lineC hydrogen bonds. The quantification of the distances between the hydroxyl proton and the carbon atoms in the hydrogen-bonding donor as well as acceptor group is achieved via a REDOR experiment. In combination with X-ray data and isotropic proton chemical shifts, availability of (1)H,(13)C distance information can aid in the quantitative description of the geometry of these hydrogen bonds. Similarly, correlations between backbone amide proton and carbonyl atoms are observed, which will be useful in the analysis of the registry of beta-strand arrangement in amyloid fibrils.

  19. Enhancement of water retention in UV-exposed fuel-cell proton exchange membranes studied using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Ray, Shaumik; Devi, Nirmala; Dash, Jyotirmayee; Rambabu, Gutru; Bhat, Santoshkumar D.; Pesala, Bala

    2016-02-01

    Proton Exchange Membrane (PEM) fuel cells are increasingly gaining importance as a clean energy source. PEMs need to possess high proton conductivity and should be chemically and mechanically stable in the fuel cell environment. Proton conductivity of PEM in fuel cells is directly proportional to water content in the membrane. Among the various PEMs available, Nafion has high proton conductivity even with low water content compared to SPEEK (Sulfonated Poly(ether ether ketone)) but is also expensive. SPEEK membranes and it's composites have better mechanical properties and have comparatively higher thermal stability. Operating the fuel cell at higher temperatures and at the same time maintaining the water content of the membrane is always a great challenge. In this paper, to increase water retention capacity, Nafion, SPEEK and it's composite (SPEEK PSSA-CNT) membranes are exposed to Ultra-Violet (UV) radiation for varied times. Terahertz Spectroscopy, in both pulsed and CW mode has been used as an efficient tool to quantify the water retention of the membrane. Results using Terahertz spectroscopy show that even though the initial water absorption capacity of Nafion membranes is more, SPEEK membranes and it's composites show considerable improvement in the water retention capacity upon high intensity UV irradiation.

  20. Design and Development of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Kasat, Harshal Anil

    This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACKRTM and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70°C for 70% RH under air atmosphere. For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices. This

  1. Study of catalysts with high stability for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    The innovation and investigation of catalysts in proton exchange membrane fuel cells are included in this thesis. In the first part of this work, stability of the catalyst support of PEMFC catalyst is investigated. Nanoscale platinum particles were loaded on two different kinds of carbon supports, nano graphene sheets and functionalized carbon black/graphene hybrid were developed by the liquid phase reaction. The crystal structure of two kinds of catalysts was characterized by X-ray diffractometer (XRD). The morphology and particle size were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Pt loading was measured by thermal gravimetric analysis (TGA). The Brunauer, Emmett and Teller (BET) method was applied to test the surface area of the catalysts. The electrochemical surface area (ECSA) and mass activity during oxygen reduction reaction (ORR) process for two kinds of catalyst were tested by cyclic voltammetry method under different conditions. The stability of the catalysts were tested by accelerated durability test (ADT). The results show that although the mass activity of Pt/graphene is much lower, the stability of it is much better than that of the commercial catalyst. After adding functionalized carbon black (FCB) as spacer, the stability of the catalyst is preserved and at the meantime, the mass activity becomes higher than 20% Pt/XC72 catalyst. The lower mass activity of both catalysts are due to the limitation of the electrolyte diffusion into the carbon support because of the aggregation nature of graphene nano-sheets. After introducing functional carbon black as spacer, the mass activity and ECSA increased dramatically which proved that FCB can be applied to prevent the restacking of graphene and hence solved the diffusion problem. In the meantime, the durability was still keeping the same as Pt/graphene catalyst. In the second part of the work, the restacking problem was solved by introducing FCB as spacers

  2. Oxidation-resistant catalyst supports for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Chhina, Harmeet

    In automotive applications, when proton exchange membrane fuel cells (PEMFCs) are subjected to frequent startup-shutdown cycles, a significant drop in performance is observed. One reason for this drop in performance is oxidation of the carbon in the catalyst layer when cathode potential excursions as high as 1.5V are observed. In this work, non-carbon based catalyst support materials were studied. The materials investigated include: tungsten carbide (WC), tungsten oxide (WOx), and niobium (Nb) or tungsten (W) doped titania. Platinum was dispersed on commercial samples of WC and WO x. Stability tests were performed by stepping the materials between 0.6 to 1.8V. Higher stability of both WC and WOx was observed compared to carbon based commercial catalyst (HiSpec 4000). The performance of Pt supported on WC or WOx was found to be lower than that of Pt/C due to poor dispersion of Pt on these low surface area commercial powders. High surface area Nb and W doped titania materials synthesized using sol-gel techniques were subjected to several heat treatments and atmospheres, and their resulting physical properties characterized. The materials' phase changes and their impact on electrical conductivity were evaluated. W doped titania was found to be resistive, and for Nb doped titania, the rutile phase was found to be more conductive than the anatase phase. Conventionally, 10-50 wt% Pt is supported on carbon, but as the non-carbon catalyst support materials have different densities, similar mass ratios of catalyst to support will not result in directly comparable performances. It is recommended that the ratio of Pt surface area to the support surface area should be similar when comparing Pt supported on carbon to Pt supported on a non-carbon support. A normalization approach was investigated in this work, and the ORR performance of 40wt.%Pt/C was found to be similar to that of 10wt.%Pt/Nb-TiO2. Fuel cell performance tests showed significantly higher stability of Pt on Nb

  3. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-01-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  4. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of

  5. Non-precious metal catalysis for proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Leonard, Nathaniel Dean

    Non-precious metal catalysts (NPMC) for proton exchange membrane fuel cells (PEMFC) are explored. Research into NPMCs is motivated by the growing need for cleaner, more efficient energy options. NPMCs are one option to make fuel cells more commercially viable. To this end, the present work studies and simulates the morphology and function of metal-nitrogen-carbon (MNC) oxygen reduction catalysts. A porosity study finds that mesoporosity is critical to high performance of autogenic pressure metal-nitrogen-carbon (APMNC) oxygen reduction catalysts. Various carbon materials are used as precursors to synthesis APMNC catalysts. The catalysts and the associated porous carbon materials are characterized morphologically, chemically, and electrochemically. The results indicated that substrates adsorbing the most nitrogen and iron show the highest activity. Furthermore, a relationship is found between mesoporosity and nitrogen content indicating the importance of transport to active site creation. A correlation is found between surface alkalinity and catalytic activity for APMNC catalysts. The basic site strength and quantity were calculated by two different methods, and it was shown that increased Bronsted- Lowry basicity correlates to more active catalysts. The relationship between alkalinity and catalytic activity could be the result of the impact of alkalinity on the electron density of the metal centers or basic sites could encourage active site formation. It is found that the oxygen reduction reaction (ORR) proceeds both via a direct four-electron pathway to water at high potentials and an indirect peroxide pathway at low potentials on an APMNC catalyst. At higher potential, site availability inhibits peroxide generation causing the direct four-electron reduction pathway to dominate. Oxygen reduction begins to shift to the indirect peroxide pathway due to fast kinetics and higher site availability around 0.6 V vs RHE. The net peroxide generation remains relatively low

  6. Conducting polymer-coated corrosion resistant metallic bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Joseph, Shine

    2005-11-01

    Concerns over depleting stocks of natural resources and a growing awareness of the environmental damage caused by widespread burning of fossil fuels, and more energy demands brought the idea of alternative energy systems. Proton Exchange Membrane (PEM) fuel cells are one of the fast growing alternative energy technologies. PEM fuel cells generate electricity from an electrochemical reaction between hydrogen and oxygen and produce electricity, a small amount of heat and water and therefore, they are environmentally friendly. Fuel cells are more efficient than internal combustion engines and operate continuously as long as fuel is supplied from an external tank. Fuel cells in stacks are used for most applications because the current output of a PEM fuel cell is around 0.3--0.5 A/cm2. In fuel cell stacks, bipolar plates combine two cells in series with anode and cathode of adjacent cells. The main functions of bipolar plates are electron and gas transport. Bipolar plates are major components in weight and volume of the PEM fuel cell stack and are a significant contributor to the stack cost. The bipolar plate is therefore a key component if power density is to increase and cost to come down. Bipolar plate material should be corrosion resistant, conductive, gas impermeable, light weight (mobile applications) and economical. Graphite plates are used for bipolar plate applications but they are expensive, are brittle to make in thin plates with gas channels on sides, have high manufacturing cost and are gas permeable if too thin. Metals are preferable for bipolar plate application because of better mechanical properties, higher electrical conductivity, lower gas permeability and low cost. In this work Al 6061 and 304 stainless steel alloys are the materials selected for bipolar plates. These metals form non-conductive surface oxides in a PEM fuel cell environment and cause a high contact resistance. This internal resistance lowers the efficiency of PEM fuel cell system. In

  7. Dissociative Electron-Ion Recombination of the Protonated Interstellar Species Glycolaldehyde, Acetic Acid, and Methyl Formate

    NASA Astrophysics Data System (ADS)

    Lawson, Patrick; Adams, Nigel

    2011-10-01

    Recently, the prebiotic molecule and primitive sugar glycolaldehyde and its structural isomers acetic acid and the abundant methyl formate have been detected in the interstellar medium(ISM). Understanding the processes involving these molecules is vital to understand the ISM, where stars are formed. The rate constants, αe, for dissociative electron-ion recombination of protonated gycolaldehyde, (HOCH2CHO)H^+, and protonated methyl formate, (HCOOCH3)H^+, have been determined at 300K in a variable temperature flowing afterglow using a Langmuir probe to determine the electron density. The αe at 300K are 3.2 x 10-7 cm^3 s-1 for protonated methyl formate and 7.5 x 10-7 cm^3 s-1 for protonated glycolaldehyde. The αe of protonated acetic acid could not be directly measured due to difficulty in producing the ion, but it appears to have a recombination rate constant, αe, on the ˜10-7 cm^3 s-1 scale. Additional temperature dependence information was obtained. The astrochemical implications of the αe measurements and protonation routes are also discussed.

  8. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  9. Functional analysis of amino acid residues essential for activity in the Na+/H+ exchanger of fission yeast.

    PubMed

    Dibrov, P; Young, P G; Fliegel, L

    1998-06-09

    We identified amino acid residues important for activity of sod2, the Na+/H+ antiporter of Schizosaccharomyces pombe. We mutated all eight His residues of sod2 into Arg. Only His367-->Arg affected function and resulted in complete inability of sod2 to allow growth of S. pombe in LiCl-containing medium. Mutant S. pombe (H367R) could not expel sodium in acidic (pH 4.0) medium and were defective in their ability to alkalinize external medium. When His367 was replaced by Asp, sodium export of S. pombe was suppressed at acidic pH while the sodium-dependent proton influx at pH 6.1 was increased compared to wild type. We also mutated three residues conserved in putative membrane regions of various eukaryotic and prokaryotic Na+/H+ exchangers. S. pombe containing Asp241-->Asn and Asp266, 267-->Asn mutations had greatly impaired growth in LiCl-containing medium. In addition, sodium-dependent proton influx at external pH 6. 1 was impaired. Sodium export from S. pombe cells at external pH 4.0 was also almost completely abolished by the D266,267N mutation; however, the D241N mutant protein retained almost normal Na+ export. The results demonstrate that His367, Asp241, and Asp266,267 are important in the function of the eukaryotic Na+/H+ exchanger sod2.

  10. Kinetics of the proton-deuteron exchange at position H8 of adenine and guanine in DNA.

    PubMed Central

    Brandes, R; Ehrenberg, A

    1986-01-01

    Proton-NMR has been used to determine the activation energies and pre-exponential factors for the deuterium exchange of AH8 in poly(dA-dT).poly(dA-dT), and for GH8 in poly(dG-dC).poly(dG-dC). No simple relationship between the kinetic parameters and molecular conformation was found. By addition of 4.5 M NaCl a transition from the B to the Z conformation was induced for poly(dG-dC).poly(dG-dC), and an increased exchange rate was observed. The exchange rate for poly(dA-dT).poly(dA-dT) also increased below 64 degrees C, and a significant decrease in activation energy on addition of 4.5 M NaCl was observed. The exchange rates at T = 55.8 degrees C were also measured for the AH8 and GH8 in random sequence calf thymus DNA. From the difference in exchange rates, a method of preferential labeling of either the AH8 or the GH8 in high molecular weight DNA is evaluated. PMID:3025816

  11. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  12. Intermolecular proton-transfer in acetic acid clusters induced by vacuum-ultraviolet photoionization

    NASA Astrophysics Data System (ADS)

    Ohta, Keisuke; Matsuda, Yoshiyuki; Mikami, Naohiko; Fujii, Asuka

    2009-11-01

    Infrared (IR) spectroscopy based on vacuum-ultraviolet one-photon ionization detection was carried out to investigate geometric structures of neutral and cationic clusters of acetic acid: (CH3COOH)2, CH3COOH-CH3OH, and CH3COOH-H2O. All the neutral clusters have cyclic-type intermolecular structures, in which acetic acid and solvent molecules act as both hydrogen donors and acceptors, and two hydrogen-bonds are formed. On the other hand, (CH3COOH)2+ and (CH3COOH-CH3OH)+ form proton-transferred structures, where the acetic acid moiety donates the proton to the counter molecule. (CH3COOH-H2O)+ has a non-proton-transferred structure, where CH3COOH+ and H2O are hydrogen-bonded. The origin of these structural differences among the cluster cations is discussed with the relative sizes of the proton affinities of the cluster components and the potential energy curves along the proton-transfer coordinate.

  13. UV-visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Knights, Shanna; Stewart, S. Michael; Wilson, Mahlon; Garzon, Fernando

    2015-05-01

    A novel method based on UV-visible spectroscopy is reported for screening the chemical stability of potential antioxidant additives for proton exchange membrane fuel cells, and the chemical stabilities of three CeOx samples of varying crystallite sizes (6, 13, or 25 nm) are examined. The chemical stabilities predicted by this new screening method are compared to in-situ membrane electrode assembly (MEA) accelerated stress testing, with the results confirming that this rapid and inexpensive method can be used to accurately predict performance impacts of antioxidants.

  14. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    SciTech Connect

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  15. Fabrication of a LiNbO3 optical waveguide lens by titanium-indiffused proton-exchanged technique

    NASA Astrophysics Data System (ADS)

    Chung, Suk M.; Kim, Jae-Chang; Yoon, Tae-Hoon

    1992-10-01

    In this paper we report the fabrication of a planar optical waveguide lens on a Y-cut LiNbO3 substrate by Ti-indiffusion and Ti-indiffused proton-exchange (TIPE). LiNbO3 planar waveguides are fabricated and refractive indices of the waveguides are measured. Based on the measured indices, planar waveguide lenses are designed and fabricated. The measured focal point and spot size of the fabricated lens are in good agreement with those of the designed lens.

  16. Optimization of multi-function integrated optics chip fabricated by proton exchange in LiNbO3

    NASA Astrophysics Data System (ADS)

    Kostritskii, S. M.; Korkishko, Yu. N.; Fedorov, V. A.

    2013-11-01

    Multi-function integrated optics chips consisting of a linear polarizer, phase electro-optic modulators and Y-branching power divider were fabricated in x-cut LiNbO3 wafers with the aid of annealed proton exchange technique. Insertion losses, power transfer coefficient, splitting ratio and its spectral dependence were measured for Y-branching power dividers of different branching topologies based on channel waveguides. The parasitic spectral selectivity and photorefractive damage were suppressed by optimization of branching topology, introducing an extra taper with variable parameters.

  17. Hydrogen bonding: a channel for protons to transfer through acid-base pairs.

    PubMed

    Wu, Liang; Huang, Chuanhui; Woo, Jung-Je; Wu, Dan; Yun, Sung-Hyun; Seo, Seok-Jun; Xu, Tongwen; Moon, Seung-Hyeon

    2009-09-10

    Different from H(3)O(+) transport as in the vehicle mechanism, protons find another channel to transfer through the poorly hydrophilic interlayers in a hydrated multiphase membrane. This membrane was prepared from poly(phthalazinone ether sulfone kentone) (SPPESK) and H(+)-form perfluorosulfonic resin (FSP), and poorly hydrophilic electrostatically interacted acid-base pairs constitute the interlayer between two hydrophilic phases (FSP and SPPESK). By hydrogen bonds forming and breaking between acid-base pairs and water molecules, protons transport directly through these poorly hydrophilic zones. The multiphase membrane, due to this unique transfer mechanism, exhibits better electrochemical performances during fuel cell tests than those of pure FSP and Nafion-112 membranes: 0.09-0.12 S cm(-1) of proton conductivity at 25 degrees C and 990 mW cm(-2) of the maximum power density at a current density of 2600 mA cm(-2) and a cell voltage of 0.38 V.

  18. Meson exchange effects in elastic ep scattering at loop level and the electromagnetic form factors of the proton

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Zhou, Hai-Qing

    2014-10-01

    A new form of two-photon exchange (TPE) effect is studied to explain the discrepancy between unpolarized and polarized experimental data in elastic ep scattering. The mechanism is based on a simple idea that apart from the usual TPE effects from box and crossed-box diagrams, the mesons may also be exchanged in elastic ep scattering by two-photon coupling at loop level. The detailed study shows such contributions to reduced unpolarized cross section (σun) and polarized observables (Pt,Pl) at fixed Q2 are only dependent on proton's electromagnetic form factors GE ,M and a new unknown universal parameter g. After combining this contribution with the usual TPE contributions from box and crossed-box diagrams, the ratio μpGE/GM extracted from the recent precise unpolarized and polarized experimental data can be described consistently.

  19. Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Matsuura, Akio; Kakigi, Tomoyuki; Miura, Takaharu; Oshima, Akihiro; Washio, Masakazu

    Proton exchange membranes (PEMs) were prepared by pre-irradiation induced grafting of styrene (S) or styrene/divinylbenzene (S/DVB) into the radiation-crosslinked polytetrafluoroethylene (RX-PTFE) films and then sulfonated. The thicknesses of the obtained PEMs were lower than 20 μm and the ion exchange capacity (IEC) values were around 2 meq g -1. The surfaces of the PEMs and carbon electrodes were coated with Nafion ® dispersion, and then membrane electrode assembles (MEAs) were prepared by hot-pressing them together. A MEA based on a Nafion ® 112 membrane was also prepared under same procedure for comparison. The performances of the MEAs in a single cell were tested under different cell temperatures and humidifications. Electrochemical impedance spectra (EIS) were measured with ac frequencies which ranged from 100 kHz to 1 Hz at a dc density of 0.5 A cm -2. The obtained impedance curves in Nyquist representation were semicircular.

  20. Probing the acidity of carboxylic acids in protic ionic liquids, water, and their binary mixtures: activation energy of proton transfer.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2013-02-28

    Acidity functions were used to express the ability of a solvent/solution to donate/accept a proton to a solute. The present work accounts for the acidity determination of HCOOH, CH3COOH, and CH3CH2COOH in the alkylimidazolium-based protic ionic liquids (PILs), incorporated with carboxylate anion, water, and in a binary mixture of PIL and water using the Hammett acidity function, H0. A reversal in the acidity trend was observed, when organic acids were transferred from water to PIL. It was emphasized that an increased stabilization offered by PIL cation toward the more basic conjugate anion of organic acid was responsible for this anomalous change in acidity order in PILs, which was absent in water. The greater stabilization of a basic organic anion by PIL cation is discussed in terms of the stable hard–soft acid base (HSAB) pairing. A change in the H0 values of these acids was observed with a change in temperature, and a linear correlation between the ln H0 and 1/T was noted. This relationship points toward the activation energy of proton transfer (E(a,H+)), a barrier provided by the medium during the proton transfer from Brønsted acid to indicator. The H0 function in binary mixtures points to the involvement of pseudosolvent, the behavior of which changes with the nature and concentration of acid. The presence of the maxima/minima in the H0 function is discussed in terms of the synergetic behavior of the pseudosolvent composed of the mixtures of aqueous PILs.

  1. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    DTIC Science & Technology

    2002-05-01

    copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2- hydroxyethyl methacrylate ( HEMA ). Fumed silicas were also added in an... HEMA had a room temperature proton conductivity of 0.029 S cm-1, which increased to 0.06 S cm-1 at 80 C.

  2. Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Phillips, Richard S.

    Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt

  3. Studies of transient behavior of proton exchange membrane fuel cells (PEMFC)

    NASA Astrophysics Data System (ADS)

    Kim, Sunhoe

    The Proton Exchange Membrane Fuel Cell (PEMFC) is a technology with growing interest. The PEMFC is the most fascinating among other kinds of fuel cells for its high power density and zero emission pure water products. The use of PEMFCs will expose it to transient conditions. For instance, acceleration or deceleration in vehicle applications and turning on or off dishwashers in stationary applications may cause transient conditions of operation of PEMFCs. This dissertation presents experimental data that may be used to understand PEMFC behavior during these transients and these data may be used to verify the numerical simulations and models of PEMFC designs. The electrical load was changed with fixed inlet flowrates for the anode and cathode, and this caused hydrogen and air, stoichiometries to change. The transient experiments showed conditions and stoichiometric changes that gave the overshoot and undershoot behaviors. Data are presented to show the effects of voltage changes on the current response with four different cases of stoichiometry changes: from excess to normal, from normal to excess, from normal to starved, and from starved to normal. An overshoot behavior was observed when the cell stoichiometry changed from normal to starved condition. With a triple path flow field this overshoot was followed by an undershoot and this second order behavior is a result of, in this case, the air flowing back into the cell at the end of anode side to balance pressure. We named these phenomena as "vacuum effects" when the current density shows "undershoot" after "overshoot" behavior. For other conditions an undershoot behavior was observed when the voltage changed to cause a change from starved to normal conditions. In contrast, only exponential first order behavior was observed for voltage changes between excess and normal conditions. Various cell voltage ranges and change rates are presented to compare the overshoot and undershoot behaviors. Experiments were performed

  4. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  5. Effect of "bridge" on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550

    NASA Astrophysics Data System (ADS)

    Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe

    2017-02-01

    A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.

  6. Synthesis and characterization of partially fluorinated hydrophobic-hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Li, Yanxiang; Roy, Abhishek; Badami, Anand S.; Hill, Melinda; Yang, Juan; Dunn, Stuart; McGrath, James E.

    A new hydrophobic-hydrophilic multiblock copolymer has been successfully synthesized based on the careful coupling of a fluorine terminated poly(arylene ether ketone) (6FK) hydrophobic oligomer and a phenoxide terminated disulfonated poly(arylene ether sulfone) (BPSH) hydrophilic oligomer. 19F and 1H NMR spectra were used to characterize the oligomers' molecular weights and multiblock copolymer's structure. The comparison of the multiblock copolymer 13C NMR spectrum with that of the random copolymer showed that the transetherification side reaction was minimized in this synthesis. The morphologies of membranes were investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock membrane acidified by the high temperature method has sharp phase separation. Membrane properties like protonic conductivity, water uptake, and self-diffusion coefficient of water as a function of temperature and relative humidity (RH) were characterized for the multiblock copolymer and compared with ketone type random copolymers at similar ion exchange capacity value and Nafion ® controls. The multiblock copolymers are promising candidates for proton exchange membranes especially for applications at high temperatures and low relative humidity.

  7. Regulation of the Na+/H+ exchanger under conditions of abolished proton gradient: isosmotic and hyperosmotic stimulation.

    PubMed

    Dascalu, A; Nevo, Z; Korenstein, R

    1991-05-06

    Activation of the Na+/H+ exchanger following isosmotic and hyperosmotic stimuli was investigated in an osteoblast cell line (RCJ 1.20). The pH dependence of the transporter activity was studied under conditions of abolished proton gradient (pHi = pHo) across the membrane. The isotonic response is Na+o dependent, increases towards higher pH-values, displaying a sigmoidal dependence on pHi = o (Hill coefficient approximately 1.8) and is controlled by pHo. The greater than first order dependence on pH suggests that H+o inhibits the exchange beyond the rate expected from competition with the Na+o alone. This may be due to the existence of an external H+ regulatory site with a negative cooperative effect on the intra- or extracellular transport site. The hyperosmotic activation is Na+o independent, parallels the sigmoidal pH dependence of the isosmotic stimulus (Hill coefficient approximately 2.0) and is mediated through an increase of the Vmax without a change in the intracellular proton sensitivity.

  8. Multinuclear solid state nuclear magnetic resonance investigation of water penetration in proton exchange membrane Nafion-117 by mechanical spinning.

    PubMed

    Sabarinathan, Venkatachalam; Wu, Zhen; Cheng, Ren-Hao; Ding, Shangwu

    2013-05-30

    (1)H, (17)O, and (19)F solid state NMR spectroscopies have been used to investigate water penetration in Nafion-117 under mechanical spinning. It is found that both (1)H and (17)O spectra depend on the orientation of the membrane with respect to the magnetic field. The intensities of the side chain (19)F spectra depend slightly on the orientation of membrane with respect to the magnetic field, but the backbone (19)F spectra do not exhibit orientation dependence. By analyzing the orientation dependent (1)H and (17)O spectra and time-resolved (1)H spectra, we show that the water loaded in Nafion-117, under high spinning speed, may penetrate into regions that are normally inaccessible by water. Water penetration is enhanced as the spinning speed is increased or the spinning time is increased. In the meantime, mechanical spinning accelerates water exchange. It is also found that water penetration by mechanical spinning is persistent; i.e., after spinning, water remains in those newly found regions. While water penetration changes the pores and channels in Nafion, (19)F spectra indicate that the chemical environments of the polymer backbone do not show change. These results provide new insights about the structure and dynamics of Nafion-117 and related materials. They are relevant to proton exchange membrane aging and offer enlightening points of view on antiaging and modification of this material for better proton conductivity. It is also interesting to view this phenomenon in the perspective of forced nanofiltration.

  9. Improvement of proton-exchange membrane fuel cell performance using platinum-loaded carbon black entrapped in crosslinked chitosan

    NASA Astrophysics Data System (ADS)

    Phompan, Waranya; Hansupalak, Nanthiya

    To improve the performance of proton-exchange membrane fuel cells which use hydrogen and oxygen as fuels, the application of small proton-conducting polymer to extend the three-phase boundary into the primary pores of catalyst-loaded carbon black agglomerates is of interest. An alternative and simple crosslinking method is proposed in place of the complicated polymer-grafting methods. Platinum-loaded carbon black is entrapped in epichlorohydrin-crosslinked chitosan of low molecular weight. Morphology and pore analyses of carbon black prior and post treatment are assessed, as well as performances of fuel cells fabricated with the treated and the untreated carbon black at 40 °C and 100% humidity. Results indicate the existence of chitosan chains in the primary pores of the carbon black agglomerates, corresponding to a decline in the activation overvoltage and resulting in significantly better cell performance. An increase in chitosan amount, however, does not necessarily enhance the cell performance because effects of ohmic and concentration losses may become more dominant than that of the raised exchange current density of the cell.

  10. Amide proton exchange in the. cap alpha. -amylase polypeptide inhibitor tendamistat studied by two-dimensional /sup 1/H nuclear magnetic resonance

    SciTech Connect

    Wang, O.; Kline, A.D.; Wuethrich, K.

    1987-10-06

    The individual amide proton exchange rates in Tendamistat at pH 3.0 and 50/sup 0/C were measured by using two-dimensional ..cap alpha..H nuclear magnetic resonance. Overall, it was found that the distribution of exchange rates along the sequence is dominated by the interstrand hydrogen bonds of the ..beta..-sheet structures. The slowly exchanging protons in the core of the two ..beta..-sheets were shown to exchange via an EX2 mechanism. Further analysis of the data indicates that different large-scale structure fluctuations are responsible for the exchange from the two ..beta..-sheets, even though the three-dimensional structure of Tendamistat appears to consist of a single structural domain.

  11. Quantum chemical ab initio prediction of proton exchange barriers between CH{sub 4} and different H-zeolites

    SciTech Connect

    Tuma, Christian; Sauer, Joachim

    2015-09-14

    A hybrid MP2:DFT (second-order Møller–Plesset perturbation theory–density functional theory) method that combines MP2 calculations for cluster models with DFT calculations for the full periodic structure is used to localize minima and transition structures for proton jumps at different Brønsted sites in different frameworks (chabazite, faujasite, ferrierite, and ZSM-5) and at different crystallographic positions of a given framework. The MP2 limit for the periodic structures is obtained by extrapolating the results of a series of cluster models of increasing size. A coupled-cluster (CCSD(T)) correction to MP2 energies is calculated for cluster models consisting of three tetrahedra. For the adsorption energies, this difference is small, between 0.1 and 0.9 kJ/mol, but for the intrinsic proton exchange barriers, this difference makes a significant (10.85 ± 0.25 kJ/mol) and almost constant contribution across different systems. The total values of the adsorption energies vary between 22 and 34 kJ/mol, whereas the total proton exchange energy barriers fall in the narrow range of 152–156 kJ/mol. After adding nuclear motion contributions (harmonic approximation, 298 K), intrinsic enthalpy barriers between 134 and 141 kJ/mol and apparent energy barriers between 105 and 118 kJ/mol are predicted for the different sites examined for the different frameworks. These predictions are consistent with experimental results available for faujasite, ferrierite, and ZSM-5.

  12. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Xiao, Gang; Wu, Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute proteins/peptides and microenvironmental properties, and has been increasingly evaluated for molecular imaging and in vivo applications. However, the experimentally measured CEST effect depends on the CEST agent concentration, exchange rate and relaxation time. In addition, there may be non-negligible direct radio-frequency (RF) saturation effects, particularly severe for diamagnetic CEST (DIACEST) agents owing to their relatively small chemical shift difference from that of the bulk water resonance. As such, the commonly used asymmetry analysis only provides CEST-weighted information. Recently, it has been shown with numerical simulation that both labile proton concentration and exchange rate can be determined by evaluating the RF power dependence of DIACEST effect. To validate the simulation results, we prepared and imaged two CEST phantoms: a pH phantom of serially titrated pH at a fixed creatine concentration and a concentration phantom of serially varied creatine concentration titrated to the same pH, and solved the labile proton fraction ratio and exchange rate per-pixel. For the concentration phantom, we showed that the labile proton fraction ratio is proportional to the CEST agent concentration with negligible change in the exchange rate. Additionally, we found the exchange rate of the pH phantom is dominantly base-catalyzed with little difference in the labile proton fraction ratio. In summary, our study demonstrated quantitative DIACEST MRI, which remains promising to augment the conventional CEST-weighted MRI analysis.

  13. Lewis acid assisted methyl/chlorine exchange in silylated hydrazinochlorophosphanes.

    PubMed

    Westenkirchner, Andrea; Villinger, Alexander; Karaghiosoff, Konstantin; Wustrack, Ronald; Michalik, Dirk; Schulz, Axel

    2011-03-21

    Differently substituted hydrazinophosphanes of the type (Me(3)Si)(2)N-N(SiMe(3))-PR(1)R(2) (R(1) = Cl with R(2) = Me, C(6)F(5) and R(1) = Me, R(2) = C(6)H(5)) have been studied in the reaction with Lewis acids such as ECl(3) (E = Al, Ga). For (Me(3)Si)(2)N-N(SiMe(3))-P(Cl)(Me) and (Me(3)Si)(2)N-N(SiMe(3))-P(Me)(C(6)H(5)), only adduct formation was found while a chlorine/methyl exchange reaction was observed for (Me(3)Si)(2)N-N(SiMe(3))-P(Cl)R (R = C(6)H(5) and C(6)F(5)) leading to the formation of (Me(2)ClSi)(Me(3)Si)N-N(SiMe(3))-P(Me)R, which crystallize as ECl(3) adducts. The free hydrazinophosphanes can be obtained by removal of the Lewis acid with the help of a strong base such as 4-(dimethylamino)pyridine (DMAP).

  14. The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane.

    PubMed

    Wojtczak, L; Wieckowski, M R

    1999-10-01

    Nonesterified long-chain fatty acids have long been known as uncouplers of oxidative phosphorylation. They are efficient protonophores in the inner mitochondrial membrane but not so in artificial phospholipid membranes. In the un-ionized form, they undergo a rapid spontaneous transbilayer movement (flip-flop). However, the transbilayer passage of the dissociated (anionic) form is hindered by the negatively charged hydrophilic carboxylic group. In the inner mitochondrial membrane, the transfer of fatty acid anions is mediated by the adenine nucleotide translocase, the dicarboxylate carrier, and the glutamate/aspartate carrier. As a result, the passage of protons and electric charges is a concerted effect of the spontaneous flip-flop of the undissociated (protonated) form in one direction and carrier-facilitated transfer of the ionized (deprotonated) form in the other direction. In addition, fatty acids also promote opening of the mitochondrial permeability transition pore, presumably due to their interaction with one of its constituents, the adenine nucleotide translocase, thus forming an additional route for dissipation of the proton gradient. Structural prerequisites for these proton-conducting mechanisms are (1) a weakly ionized carboxylic group and (2) a hydrocarbon chain of appropriate length without substituents limiting its mobility and hydrophobicity.

  15. Direct measurements of two photon exchange on lepton-proton elastic scattering using simultaneous electron-positron beams in CLAS

    NASA Astrophysics Data System (ADS)

    Adikaram, Dasuni Kalhari

    The electric (GE) and magnetic ( GM) form factors of the proton are fundamental observables which characterize its charge and magnetization distributions. There are two methods to measure the proton form factors: the Rosenbluth separation method and the polarization transfer technique. However, the ratio of the electric and magnetic form factors measured by those methods significantly disagree at momentum transfer Q2 > 1 GeV2. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section which significantly changes the extraction of GE from the Rosenbluth separation measurement. The Jefferson Lab CLAS TPE experiment determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections. The primary electron beam was used to create an intense bremsstrahlung photon beam. Some of the photons were then converted to a mixed e+/ e- beam which then interacted with a liquid hydrogen target. The e+p and e-p events were detected by the CLAS (CEBAF Large Acceptance Spectrometer). The elastic cross section ratios ((sigma( e+p)/(sigma(e -p)) were measured over a wide range of virtual photon polarization epsilon and Q2. The cross section ratios displayed a strong epsilon dependence at Q2 = 1.45 GeV2. There is no significant Q2 dependence observed at epsilon = 0.45. The results are consistent with a recent measurement at the VEPP-3 lepton storage ring in Novosibirsk and with the hadronic calculation by Blunders, Melnitchouk and Tjon. The hadronic calculation resolves the disagreement between the Rosenbluth separation and polarization transfer extractions of GE/GM at Q2 up to 2 -- 3 GeV2. Applying the GLAS TPE correction to the Rosenbluth cross section measurements significantly decreases the extracted value of GE and brings it into good agreement with the polarization transfer measurement at Q2˜1.75 GeV2. Thus, these

  16. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate.

    PubMed

    Wu, Renhua; Xiao, Gang; Zhou, Iris Yuwen; Ran, Chongzhao; Sun, Phillip Zhe

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system.

  17. Strongly-interacting color-singlet exchange in proton- antiproton collisions at 1800 GeV

    NASA Astrophysics Data System (ADS)

    Thomas, Tracy Lea Taylor

    1997-12-01

    Results are presented from an analysis of the particle multiplicity between high transverse energy jets in p-p collisions at /sqrt[s]=1800 GeV. The data were collected using the DO Detector at Fermi National Accelerator Laboratory. We observe an excess of events at low multiplicity which is consistent with strongly- interacting color-singlet exchange. The fraction of events due to color-singlet exchange is measured as a function of the transverse energy and rapidity separation of the jets and is compared to several theoretical models for color-singlet exchange.

  18. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  19. Fragmentation of doubly-protonated peptide ion populations labeled by H/D exchange with CD3OD

    NASA Astrophysics Data System (ADS)

    Herrmann, Kristin A.; Kuppannan, Krishna; Wysocki, Vicki H.

    2006-03-01

    Doubly-protonated bradykinin (RPPGFSPFR) and an angiotensin III analogue (RVYIFPF) were subjected to hydrogen/deuterium (H/D) exchange with CD3OD in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. A bimodal distribution of deuterium incorporation was present for bradykinin after H/D exchange for 90 s at a CD3OD pressure of 4 × 10-7 Torr, indicating the existence of at least two distinct populations. Bradykinin ion populations corresponding to 0-2 and 5-11 deuteriums (i.e., D0, D1, D2, D5, D6, D7, D8, D9, D10, and D11) were each monoisotopically selected and fragmented via sustained off-resonance irradiation (SORI) collision-induced dissociation (CID). The D0-D2 ion populations, which correspond to the slower exchanging population, consistently require lower SORI amplitude to achieve a similar precursor ion survival yield as the faster-reacting (D5-D11) populations. These results demonstrate that conformation/protonation motif has an effect on fragmentation efficiency for bradykinin. Also, the partitioning of the deuterium atoms into fragment ions suggests that the C-terminal arginine residue exchanges more rapidly than the N-terminal arginine. Total deuterium incorporation in the b1/y8 and b2/y7 ion pairs matches very closely the theoretical values for all ion populations studied, indicating that the ions of a complementary pair are likely formed during the same fragmentation event, or that no scrambling occurs upon SORI. Deuterium incorporation into the y1/a8 pseudo-ion pair does not closely match the expected theoretical values. The other peptide, doubly-protonated RVYIFPF, has a trimodal distribution of deuterium incorporation upon H/D exchange with CD3OD at a pressure of 1 × 10-7 Torr for 600 s, indicating at least three distinct ion populations. After 90 s of H/D exchange where at least two distinct populations are detected, the D0-D7 ion populations were monoisotopically selected and fragmented via SORI-CID over a range of SORI

  20. Contribution of two-boson exchange with {delta}(1232) excitation to parity-violating elastic electron-proton scattering

    SciTech Connect

    Nagata, Keitaro; Kao, C. W.; Zhou Haiqing; Yang Shinnan

    2009-06-15

    We study the leading electroweak corrections in the precision measurement of the strange form factors. Specifically, we calculate the two-boson exchange (TBE), two-photon exchange (TPE) plus {gamma}Z exchange ({gamma}ZE), and corrections with {delta}(1232) excitation to the parity-violating asymmetry of the elastic electron-proton scattering. The interplay between nucleon and {delta} contributions is found to depend strongly on the kinematics, as {delta}{sub {delta}} begins as negligible at backward angles but becomes very large and negative and dominant at forward angles, while {delta}{sub N} always stays positive and decreases monotonically with increasing {epsilon}. The total TBE corrections to the extracted values of G{sub E}{sup s}+{beta}G{sub M}{sup s} in recent experiments of HAPPEX and G0 are, depending on kinematics, found to be large and range between 13% and -75%, but are found to be small in the case of A4 experiments.

  1. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics

    NASA Astrophysics Data System (ADS)

    Dale, N. V.; Mann, M. D.; Salehfar, H.

    The performance of a 6 kW proton exchange membrane (PEM) electrolyzer was modeled using a semiempirical equation. Total cell voltage was represented as a sum of the Nernst voltage, activation overpotential and ohmic overpotential. A temperature and pressure dependent Nernst potential, derived from thermodynamic principles, was used to model the 20 cell PEM electrolyzer stack. The importance of including the temperature dependence of various model components is clearly demonstrated. The reversible potential without the pressure effect decreases with increasing temperature in a linear fashion. The exchange current densities at both the electrodes and the membrane conductivity were the coefficients of the semiempirical equation. An experimental system designed around a 6 kW PEM electrolyzer was used to obtain the current-voltage characteristics at different stack temperatures. A nonlinear curve fitting method was employed to determine the equation coefficients from the experimental current-voltage characteristics. The modeling results showed an increase in the anode and cathode exchange current densities with increasing electrolyzer stack temperature. The membrane conductivity was also increased with increasing temperature and was modeled as a function of temperature. The electrolyzer energy efficiencies at different temperatures were evaluated using temperature dependent higher heating value voltages instead of a fixed value of 1.48 V.

  2. Hepatitis B virus direct repeat sequence: imino proton exchange rates and distance and torsion angle restraints from NMR.

    PubMed

    Bishop, K D; Blocker, F J; Egan, W; James, T L

    1994-01-18

    Structural features of a trisdecamer duplex, [d(GGCAGAGGTGAAA).d(TTTCACCTCTGCC)], in solution are being investigated by proton one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy. This DNA sequence is comprised of the 11-base-pair direct repeat sequence found in the hepatitis B viral genome with an additional base pair from the genome included on each end to minimize end effects on the 11-bp sequence of interest. The direct repeat sequence occurs twice in the viral genome; both are essential for initiation of DNA synthesis. The critical nature of this sequence suggests it may be a target to control replication of the virus. Elucidation of the structure of the direct repeat sequence could prove to be beneficial in targeting efforts. Structural determination via restrained molecular dynamics requires experimentally derived distance restraints. The ability to determine solution structures of biomolecules by NMR spectroscopy is limited by the quality and quantity of distance and torsion angle restraints that can be extracted from the NMR data. Techniques used to establish these restraints are constantly evolving and improving. Modifications in procedure are applied to the trisdecamer duplex to yield improvements in the determination of sugar conformations from COSY data and a substantial increase in the number of distance restraints typically garnered from 2D NOE intensity data. This increase in the number of distance restraints normally obtained from 2D NOE intensities was accomplished by utilizing a new version of the iterative complete relaxation matrix program MARDIGRAS with intensities extracted from a 2D NOE data set acquired in 90% H2O. The exchange rate of the imino and amino protons with the solvent water protons can now be included in the relaxation matrix calculations, thereby providing more accurate distances when utilizing the 2D NOE cross-peaks involving at least one exchangeable proton. In this lab, analysis of two-quantum-filtered correlation

  3. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.

    PubMed

    Skone, Jonathan H; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2006-12-27

    The vibronic couplings for the phenoxyl/phenol and the benzyl/toluene self-exchange reactions are calculated with a semiclassical approach, in which all electrons and the transferring hydrogen nucleus are treated quantum mechanically. In this formulation, the vibronic coupling is the Hamiltonian matrix element between the reactant and product mixed electronic-proton vibrational wavefunctions. The magnitude of the vibronic coupling and its dependence on the proton donor-acceptor distance can significantly impact the rates and kinetic isotope effects, as well as the temperature dependences, of proton-coupled electron transfer reactions. Both of these self-exchange reactions are vibronically nonadiabatic with respect to a solvent environment at room temperature, but the proton tunneling is electronically nonadiabatic for the phenoxyl/phenol reaction and electronically adiabatic for the benzyl/toluene reaction. For the phenoxyl/phenol system, the electrons are unable to rearrange fast enough to follow the proton motion on the electronically adiabatic ground state, and the excited electronic state is involved in the reaction. For the benzyl/toluene system, the electrons can respond virtually instantaneously to the proton motion, and the proton moves on the electronically adiabatic ground state. For both systems, the vibronic coupling decreases exponentially with the proton donor-acceptor distance for the range of distances studied. When the transferring hydrogen is replaced with deuterium, the magnitude of the vibronic coupling decreases and the exponential decay with distance becomes faster. Previous studies designated the phenoxyl/phenol reaction as proton-coupled electron transfer and the benzyl/toluene reaction as hydrogen atom transfer. In addition to providing insights into the fundamental physical differences between these two types of reactions, the present analysis provides a new diagnostic for differentiating between the conventionally defined hydrogen atom

  4. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  5. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  6. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  7. Phosphoric acid loaded azo (-N═N-) based covalent organic framework for proton conduction.

    PubMed

    Chandra, Suman; Kundu, Tanay; Kandambeth, Sharath; Babarao, Ravichandar; Marathe, Yogesh; Kunjir, Shrikant M; Banerjee, Rahul

    2014-05-07

    Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4'-azodianiline (Azo) or 4,4'-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (σ = 9.9 × 10(-4) S cm(-1)) and anhydrous state (σ = 6.7 × 10(-5) S cm(-1)). This report constitutes the first emergence of COFs as proton conducting materials.

  8. Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading.

    PubMed

    Li, Zhen; He, Guangwei; Zhang, Bei; Cao, Ying; Wu, Hong; Jiang, Zhongyi; Tiantian, Zhou

    2014-06-25

    In this study, phytic acid (myo-inositol hexaphosphonic acid) was first immobilized by MIL101 via vacuum-assisted impregnation method. The obtained phytic@MIL101 was then utilized as a novel filler to incorporate into Nafion to fabricate hybrid proton exchange membrane for application in PEMFC under different relative humidities (RHs), especially under low RHs. High loading and uniform dispersion of phytic acid in MIL 101(Cr) were achieved as demonstrated by ICP, FT-IR, XPS, and EDS-mapping. The phytic@MIL101 was dispersed homogeneously in the Nafion matrix when the filler content was less than 12%. Hybrid membranes were evaluated by proton conductivity, mechanical property, thermal stability, and so forth. Remarkably, the Nafion/phytic@MIL hybrid membranes showed high proton conductivity at different RHs, especially under low RHs, which was up to 0.0608 S cm(-1) and 7.63 × 10(-4) S cm(-1) at 57.4% RH and 10.5% RH (2.8 and 11.0 times higher than that of pristine membrane), respectively. Moreover, the mechanical property of Nafion/phtic@MIL hybrid membranes was substantially enhanced and the thermal stability of membranes was well preserved.

  9. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOEpatents

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  10. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    NASA Astrophysics Data System (ADS)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  11. Properties and degradation of the gasket component of a proton exchange membrane fuel cell--a review.

    PubMed

    Basuli, Utpal; Jose, Jobin; Lee, Ran Hee; Yoo, Yong Hwan; Jeong, Kwang-Un; Ahn, Jou-Hyeon; Nah, Changwoon

    2012-10-01

    Proton exchange membrane (PEM) fuel cell stack requires gaskets and seals in each cell to keep the reactant gases within their respective regions. Gasket performance is integral to the successful long-term operation of a fuel cell stack. This review focuses on properties, performance and degradation mechanisms of the different polymer gasket materials used in PEM fuel cell under normal operating conditions. The different degradation mechanisms and their corresponding representative mitigation strategies are also presented here. Summary of various properties of elastomers and their advantages and disadvantages in fuel cell'environment are presented. By considering the level of chemical degradation, mechanical properties and cost effectiveness, it can be proposed that EPDM is one of the best choices for gasket material in PEM fuel cell. Finally, the challenges that remain in using rubber component as in PEM fuel cell, as well as the prospects for exploiting them in the future are discussed.

  12. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2011-12-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  13. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  14. Technique of laser calibration for wavelength-modulation spectroscopy with application to proton exchange membrane fuel cell measurements.

    PubMed

    Sur, Ritobrata; Boucher, Thomas J; Renfro, Michael W; Cetegen, Baki M

    2010-01-01

    A diode laser sensor was developed for partial pressure and temperature measurements using a single water vapor transition. The Lorentzian half-width and line intensity of the transition were calibrated for conditions relevant to proton exchange membrane (PEM) fuel cell operation. Comparison of measured and simulated harmonics from wavelength-modulation spectroscopy is shown to yield accuracy of +/-2.5% in water vapor partial pressure and +/-3 degrees C in temperature despite the use of a single transition over a narrow range of temperatures. Collisional half-widths in air or hydrogen are measured so that calibrations can be applied to both anode and cathode channels of a PEM fuel cell. An in situ calibration of the nonlinear impact of modulation on laser wavelength is presented and used to improve the accuracy of the numerical simulation of the signal.

  15. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  16. Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing

    NASA Astrophysics Data System (ADS)

    Zang, D. Y.; Tsai, C. S.

    1986-07-01

    Design, fabrication, measurement, and performance characteristics of the titanium-indiffused proton-exchanged microlenses, microlens arrays, and their combinations in LiNbO3 with emphasis on the most recent results are detailed first. Utilization of such TIPE microlenses for acoustooptic Bragg diffraction in a LiNbO3 channel-planar composite waveguide and realization of an integrated AO Bragg modulator module in a substrate size of 0.2 x 1.0 x 2.0 cm are then described. Some of the potential applications of such an integrated optic module together with the preliminary results of a simple experiment on matrix-vector multiplication are also presented.

  17. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR.

    PubMed

    Ohori, Yuka; Okazaki, Honoka; Watanabe, Satoru; Tochio, Naoya; Arai, Munehito; Kigawa, Takanori; Nishimura, Chiaki

    2014-03-01

    The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.

  18. Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Guo, Xin; Zhang, Gang; Ni, Jing; Zhao, Chengji; Liu, Zhongguo; Zhang, Liyuan; Li, Mingyu; Xu, Shuai; Na, Hui

    2013-11-01

    In this paper, a series of proton exchange membranes prepared by “Click Reaction” are reported. The cross-linked membranes are based on water soluble sulfonated poly (ether ether ketone) containing dipropenyl groups (SDPEEK-nE/nH). Compared with self-crosslinked membranes (SDPEEK-nS), this “Click” cross-linked membranes using 1,2-Ethanedithiol and 1,6-Hexanedithiol as the cross-linker exhibit extremely reduced water uptake and swelling ratio. The lowest proton conductivity at 80 °C of the “Click” cross-linked membranes reaches to 0.168 S cm-1, and the highest methanol permeability of the “Click” cross-linked SDPEEK-8E is only 4.13 × 10-7 cm2 s-1, which is 5 times lower than that of Nafion 117 membrane. All the results imply that the cross-linked membranes with novel thiol cross-linker are promising alternative material for fuel cell application.

  19. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  20. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    NASA Astrophysics Data System (ADS)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-03-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  1. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    NASA Astrophysics Data System (ADS)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-01-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  2. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase.

    PubMed

    Koulikova, Vitalia V; Zakomirdina, Lyudmila N; Gogoleva, Olga I; Tsvetikova, Marina A; Morozova, Elena A; Komissarov, Vsevolod V; Tkachev, Yaroslav V; Timofeev, Vladimir P; Demidkina, Tatyana V; Faleev, Nicolai G

    2011-11-01

    A comparative study of the kinetics and stereospecificity of isotopic exchange of the pro-2R- and pro-2S protons of glycine in (2)H(2)O under the action of tyrosine phenol-lyase (TPL), tryptophan indole-lyase (TIL) and methionine γ-lyase (MGL) was undertaken. The kinetics of exchange was monitored using both (1)H- and (13)C-NMR. In the three compared lyases the stereospecificities of the main reactions with natural substrates dictate orthogonal orientation of the pro-2R proton of glycine with respect to the cofactor pyridoxal 5'-phosphate (PLP) plane. Consequently, according to Dunathan's postulate with all the three enzymes pro-2R proton should exchange faster than does the pro-2S one. In fact the found ratios of 2R:2S reactivities are 1:20 for TPL, 108:1 for TIL, and 1,440:1 for MGL. Thus, TPL displays an unprecedented inversion of stereospecificity. A probable mechanism of the observed phenomenon is suggested, which is based on the X-ray data for the quinonoid intermediate, formed in the reaction of TPL with L-alanine. The mechanism implies different conformational changes in the active site upon binding of glycine and alanine. These changes can lead to relative stabilization of either the neutral amino group, accepting the α-proton, or the respective ammonium group, which is formed after the proton abstraction.

  3. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-03

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  4. Polyphosphazene-Based Proton-Exchange Membranes for Direct Liquid Methanol Fuel Cells

    DTIC Science & Technology

    2005-11-04

    sulfonic acid site), as shown in Figure 9 and (ii) the neutralization of some sulfonic acid groups in SPOP due to complexation with PBI (see Figure 10...polybenzimidazole (for acid -base complexation crosslinking) prior to membrane casting. Some of the films containing poly[bis(3- methylphenoxy)phosphazene...sulfonated poly[bis(phenoxy)phosphazene] (SPOP) and polybenzimidazole ( PBI ) worked particularly well in a DMFC (at 60oC 1.0 M methanol, and ambient

  5. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    PubMed Central

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  6. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  7. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  8. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    PubMed

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  9. How pulse modes affect proton-barriers and anion-exchange membrane mineral fouling during consecutive electrodialysis treatments.

    PubMed

    Cifuentes-Araya, Nicolás; Pourcelly, Gérald; Bazinet, Laurent

    2013-02-15

    Mineral fouling of cation-exchange membrane (CEM) was recently reduced by pulsed electric fields (PEFs) during the electrodialysis (ED) of solutions containing high Mg(2+)/Ca(2+) ratios. However, a fouling layer appeared on the diluate side of anion-exchange membrane (AEM) once the pause lapse surpassed certain duration. Recent studies presented a multilayer mineral growth on CEM, but the case of AEM needs yet to be cleared. The current study reveals the mechanisms involved in AEM fouling growth when applying pulse modes of current in comparison with dc current. The results showed that dc current generated steady proton barriers given by water splitting at AEM interfaces that impeded fouling on both membrane sides. The higher frequency of PEF ratio 1 (Ton/Toff=10s/10s) acted removing completely an initial mineral deposit on the concentrate side of AEM, keeping it clean after two and three consecutive runs. Particularly, an undesirable brucite layer was formed on the AEM-diluate side for longer pause lapses as for a PEF ratio 0.3 (Ton/Toff=10s/33.3s) current regime. This structure caused violent water splitting resulting in amorphous magnesium hydroxide formation and consequently in fouling precipitation on the concentrate side during a third run through current exaltation.

  10. On the estimation of high frequency parameters of Proton Exchange Membrane Fuel Cells via Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mainka, J.; Maranzana, G.; Dillet, J.; Didierjean, S.; Lottin, O.

    2014-05-01

    This paper is a discussion on the estimation of impedance parameters of H2/air fed Proton Exchange Membrane Fuel Cells (PEMFC). The impedance model corresponds to the Randles electrical equivalent circuit accounting for charge separation and transport processes in the cathode catalyst layer, as well as for oxygen diffusion through the backing layer. A sensitivity analysis confirms that the cathode parameters are not correlated and that the consideration of the anode has no significant impact on the estimation of their values. In addition, it is shown that the diffusion parameters have a significant impact in the low frequency domain only, at least with this model. The parameters characterizing charge separation and transport processes at the cathode can thus be estimated with the high frequency impedance data, independently of the oxygen transport model. Consequently, even in the absence of a fully validated oxygen transport impedance, EIS can be used as an alternative method (to classical steady-state methods) for the estimation of the parameters characterizing the cathode reaction: the Tafel slope b, the charge transfer coefficient α and possibly, the exchange current density j0. This reduces significantly the measuring time while enhancing the accuracy by comparison with steady-state methods.

  11. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    NASA Astrophysics Data System (ADS)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  12. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  13. Protonation of excited state pyrene-1-carboxylate by phosphate and organic acids in aqueous solution studied by fluorescence spectroscopy.

    PubMed

    Zelent, Bogumil; Vanderkooi, Jane M; Coleman, Ryan G; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2006-11-15

    Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH approximately 5-8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO(-) by acetic, chloroacetic, lactic, and cacodylic acids is a function of DeltapK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism.

  14. Modeling the dynamic behavior of proton-exchange membrane fuel cell

    SciTech Connect

    Llapade, Peter O; Mukundan, Rangachary; Davey, John R; Borup, Rodney L; Meyers, Jeremy P

    2010-01-01

    A two-phase transient model that incorporates the permanent hysteresis observed in the experimentally measured capillary pressure of GDL has been developed. The model provides explanation for the difference in time constant between membrane hydration and dehydration observed in the HFR experiment conducted at LANL. When there is liquid water at the cathode catalyst layer, time constant of the water content in the membrane is closely tied to that of liquid water saturation in the CCL, as the vapor is already saturated. The water content in the membrane will not reach steady state as long as the liquid water flow in the CCL is not at steady state. Also, Increased resistance to proton transport in the membrane is observed when the cell voltage is stepped down to a very low value.

  15. Pionic charge exchange on the proton from 40 to 250 MeV

    NASA Astrophysics Data System (ADS)

    Breitschopf, J.; Bauer, M.; Clement, H.; Cröni, M.; Denz, H.; Friedman, E.; Gibson, E. F.; Meier, R.; Wagner, G. J.

    2006-08-01

    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for π- lab energies from 39 to 247 MeV with total errors of typically 2% over the Δ-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60-80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Δ-resonance properties appears to be smaller than previously reported.

  16. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    SciTech Connect

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  17. Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide.

    PubMed

    Baumler, David J; Hung, Kai F; Bose, Jeffrey L; Vykhodets, Boris M; Cheng, Chorng M; Jeong, Kwang-Cheol; Kaspar, Charles W

    2006-07-01

    A portion of the cbpA gene from Escherichia coli K-12 encoding a 24 amino acid proton-buffering peptide (Pbp) was cloned via the shuttle vector pJB99 into E. coli JM105 and subsequently into Zymomonas mobilis CP4. Expression of Pbp was confirmed in both JM105 and CP4 by HPLC. Z. mobilis CP4 carrying pJB99-2 (Pbp) exhibited increased acid tolerance (p < 0.05) in acidified TSB (HCl [pH 3.0] or acetic acid [pH 3.5]), glycine-HCl buffer (pH 3.0), and sodium acetate-acetic acid buffer (pH 3.5) in comparison to the parent strain (CP4) and CP4 with pJB99 (control plasmid). Although the expression of Pbp influenced survival at a low pH, the minimum growth pH was unaffected. Growth of Z. mobilis in the presence of ampicillin also significantly increased acid tolerance by an unknown mechanism. Results from this study demonstrate that the production of a peptide with a high proportion of basic amino acids can contribute to protection from low pH and weak organic acids such as acetic acid.

  18. Computing in mammalian cells with nucleic acid strand exchange

    PubMed Central

    Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2015-01-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution. PMID:26689378

  19. Computing in mammalian cells with nucleic acid strand exchange

    NASA Astrophysics Data System (ADS)

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

  20. SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Fu, Zhimin; Liu, Jinying; Liu, Qifeng

    2016-01-01

    A membrane consisting of a blend of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and poly(ether sulfone) (PES) has been fabricated and used as an ion exchange membrane for application in vanadium redox flow batteries (VRBs). The vanadium ion permeability of the SPEEK/PVDF/PES membrane was one order of magnitude lower than that of Nafion 117 membrane. The low-cost composite membrane exhibited better performance than Nafion 117 membrane at the same operating condition. A VRB single cell with SPEEK/PVDF/PES membrane showed significantly lower capacity loss, higher coulombic efficiency (>95%), and higher energy efficiency (>82%) compared with Nafion 117 membrane. In the self-discharge test, the duration of the cell with the SPEEK/PVDF/PES membrane was nearly two times longer than that with Nafion 117 membrane. Considering these good properties and its low cost, SPEEK/PVDF/PES membrane is expected to have excellent commercial prospects as an ion exchange membrane for VRB systems.

  1. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    PubMed

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  2. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    PubMed Central

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-01-01

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559

  3. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  4. Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, T. J.; Zuo, X. W.; Wang, T.; Hu, J.; Chen, Z. D.; Ren, Y. J.

    2016-01-01

    A conductive composite coating consisting of an inner polypyrrole (PPY) layer and an outer polyaniline (PANI) layer is prepared on a copper substrate by an electrochemical synthesis. Potential application of these composite coatings in a proton exchange membrane fuel cell (PEMFC) is evaluated. The corrosion performance of the copper substrate without and with the polymer coatings in the acidic solutions containing H2SO4 (0.2 M), HCl (0.1 M) and HF (3 ppm) is investigated by electrochemical impedance spectroscopy, polarization and open-circuit potential measurements. The results indicate that both the bilayered PPY/PANI and the single PPY coating can increase the corrosion potential of copper substrate by more than 250 mV (SCE), and effectively decrease the corrosion current density by an order of magnitude in comparison with the uncoated copper substrate. Long-term test further confirms that the bilayered PPY/PANI coating with acceptable contact resistance provides better protection for the substrate than the single PPY coating. The bilayered structure with different ion-permselective nature may serve as an effective physical barrier to the inward penetration of corrosive species.

  5. A united physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid

    USGS Publications Warehouse

    Ephraim, J.; Alegret, S.; Mathuthu, A.; Bicking, M.; Malcolm, R.L.; Marinsky, J.A.

    1986-01-01

    Potentiometric studies of the neutralization of several fulvic acid sources with standard base in aqueous and nonaqueous media have been conducted. Analysis of the results with a recently developed unified physicochemical model has shown that the protonation behavior of these fulvic acid sources is a reflection of (1) their polyelectrolyte nature and (2) their heterogeneity. It has been possible to ascribe the polyelectrolyte properties observed to a rather inflexible fulvic acid molecule whose variably charged surface is impermeable to simple electrolyte. ?? 1986 American Chemical Society.

  6. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB

    PubMed Central

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  7. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB.

    PubMed

    Ruhe, Frederike; Olling, Alexandra; Abromeit, Rasmus; Rataj, Dennis; Grieschat, Matthias; Zeug, Andre; Gerhard, Ralf; Alekov, Alexi

    2017-01-01

    Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities

  8. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  9. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  10. The Uranian corona as a charge exchange cascade of plasma sheet protons

    NASA Astrophysics Data System (ADS)

    Herbert, F.

    1993-03-01

    The paper uses models of magnetic convection and interparticle interactions to examine the collisional interactions between atmospheric neutral hydrogen and magnetospheric charged particles observed by Voyager to be convecting through the Uranian magnetosphere. The e(-)-H collisional ionization process, continually reenergized by compressional heating of the electrons as they drift toward Uranus, produces a cascade of new plasma. This process has been suggested elsewhere as the source of the warm (10 eV at L = 5) plasma and is found in the present study to continue in a cascade to even cooler and more abundant plasma. This newly created plasma consists almost entirely of electrons and protons because He and H2 are nearly absent from the uppermost layers of the atmosphere. If this plasma crosses the dayside magnetopause and mixes with magnetopause boundary layers such as the plasma mantle, there to be swept back along the magnetotail, reincorporated into the magnetotail by the same processes postulated for solar wind plasma entry, and reenergized in the magnetotail current sheet, it would constitute an important source for the hot plasma observed by Voyager.

  11. Surface modification of Fe2TiO5 nanoparticles by silane coupling agent: Synthesis and application in proton exchange composite membranes.

    PubMed

    Salarizadeh, Parisa; Javanbakht, Mehran; Pourmahdian, Saeed; Bagheri, Ahmad; Beydaghi, Hossein; Enhessari, Morteza

    2016-06-15

    Modifying surfaces of nanoparticles with silane coupling agent provides a simple method to alter their surface properties and improve their dispersibility in organic solvents and polymer matrix. Fe2TiO5 nanoparticles (IT) were modified with 3-aminopropyltriethoxysilane (APTES) as novel reinforcing filler for proton exchange membranes. The main operating parameters such as reaction time (R.T), APTES/IT and triethylamine (TEA)/IT ratios have been optimized for maximum grafting efficiency. The optimum conditions for R.T, APTES/IT and TEA/IT ratios were 6h, 4 and 0.3 respectively. It was observed that the APTES/IT and TEA/IT ratios were the most significant parameters affecting the grafting percentage. Modified nanoparticles were characterized using FT-IR, TGA, SEM, TEM and XRD techniques. Effects of modified nanoparticles in proton exchange membrane fuel cells (PEMFC) were evaluated. The resulting nanocomposite membranes exhibited higher proton conductivity in comparison with pristine SPPEK and SPPEK/IT membranes. This increase is attributed to connectivity of the water channels which creates more direct pathways for proton transport. Composite membrane with 3% AIT (6.46% grafting amount) showed 0.024 S cm(-1) proton conductivity at 25 °C and 149 mW cm(-2) power density (at 0.5V) at 80 °C which were about 243% and 51%, respectively higher than that of pure SPPEK.

  12. Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-03-01

    The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.

  13. Functional role of polar amino acid residues in Na+/H+ exchangers.

    PubMed Central

    Wiebe, C A; Dibattista, E R; Fliegel, L

    2001-01-01

    Na(+)/H(+) exchangers are a family of ubiquitous membrane proteins. In higher eukaryotes they regulate cytosolic pH by removing an intracellular H(+) in exchange for an extracellular Na(+). In yeast and Escherichia coli, Na(+)/H(+) exchangers function in the opposite direction to remove intracellular Na(+) in exchange for extracellular H(+). Na(+)/H(+) exchangers display an internal pH-sensitivity that varies with the different antiporter types. Only recently have investigations examined the amino acids involved in pH-sensitivity and in cation binding and transport. Histidine residues are good candidates for H(+)-sensing amino acids, since they can ionize within the physiological pH range. Histidine residues have been shown to be important in the function of the E. coli Na(+)/H(+) exchanger NhaA and in the yeast Na(+)/H(+) exchanger sod2. In E. coli, His(225) of NhaA may function to interact with, or regulate, the pH-sensory region of NhaA. In sod2, His(367) is also critical to transport and may be a functional analogue of His(225) of NhaA. Histidine residues are not critical for the function of the mammalian Na(+)/H(+) exchanger, although an unusual histidine-rich sequence of the C-terminal tail has some influence on activity. Other amino acids involved in cation binding and transport by Na(+)/H(+) exchangers are only beginning to be studied. Amino acids with polar side chains such as aspartate and glutamate have been implicated in transport activity of NhaA and sod2, but have not been studied in the mammalian Na(+)/H(+) exchanger. Further studies are needed to elucidate the mechanisms involved in pH-sensitivity and cation binding and transport by Na(+)/H(+) exchangers. PMID:11415429

  14. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2017-01-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  15. Good and bad protons: genetic aspects of acidity stress responses in plants.

    PubMed

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.

  16. Studies related to primitive chemistry. A proton and nitrogen-14 nuclear magnetic resonance amino acid and nucleic acid constituents and a and their possible relation to prebiotic

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.

    1973-01-01

    Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.

  17. Ligand-exchange chromatography of amino acids on copper-, cobalt- and zinc-chelex 100.

    PubMed

    Hemmasi, B; Bayer, E

    1975-06-04

    Procedures for the ligand-exchange chromatography of amino acids on copper-, cobalt-and zinc-Chelex 100 have been examined. Ligand exchange on the copper complex affords a simple and rapid method for the removal of amino acids (except for aspartic and glutamic acids) from dilute solutions. The influence of the pH on the binding of amino acids to the metal complex was also studied. The bound amino acids could be eluted with ammonium hydroxide which also causes a slight metal leakage. Chromatography on cobalt- and zinc-Chelex 100 showed that only the basic amino acids were quantitatively attached to these complexes at pH 8.3-9.5, whereas the others were predominantly EXCLUDED. This procedure can be used for the selective concentration and removal of basic amino acids in the presence of other amino acids.

  18. Temperature dependence of relaxation times in proton components of fatty acids.

    PubMed

    Kuroda, Kagayaki; Iwabuchi, Taku; Obara, Makoto; Honda, Masatoshi; Saito, Kensuke; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T(1), of both the methylene (CH(2)) chain and terminal methyl (CH(3)) was linearly related to temperature (r>0.98, P<0.001) in samples of animal fat. The temperature coefficients for the 2 primary proton components differed significantly; in 5 bovine fat samples, the coefficient at 30 °C was 1.79±0.07 (%/°C) for methylene and 2.98±0.38 (%/°C) for methyl. Numerical simulations based on such a difference demonstrated the possibility of considerable error from inconsistent ratios in fatty acid components when calibrating and estimating temperature. The error reached 3.3 °C per 15 °C in temperature elevation when we used a pure CH(2) signal for calibration and observed the signal with 18% of CH(3) to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T(1) of CH(2) seems promising in terms of reliability and reproducibility in measuring temperature of fat.

  19. Thermal-Conductivity Characterization of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells and Electrolyzers Under Mechanical Loading

    NASA Astrophysics Data System (ADS)

    Hamour, M.; Garnier, J. P.; Grandidier, J. C.; Ouibrahim, A.; Martemianov, S.

    2011-05-01

    Accurate information on the temperature field and associated heat transfer rates is particularly important for proton exchange membrane fuel cells (PEMFC) and PEM electrolyzers. An important parameter in fuel cell and electrolyzer performance analysis is the effective thermal conductivity of the gas diffusion layer (GDL) which is a solid porous medium. Usually, this parameter is introduced in modeling and performance analysis without taking into account the dependence of the GDL thermal conductivity λ (in W · m-1 · K-1) on mechanical compression. Nevertheless, mechanical stresses arising in an operating system can change significantly the thermal conductivity and heat exchange. Metrology allowing the characterization of the GDL thermal conductivity as a function of the applied mechanical compression has been developed in this study using the transient hot-wire technique (THW). This method is the best for obtaining standard reference data in fluids, but it is rarely used for thermal-conductivity measurements in solids. The experiments provided with Quintech carbon cloth indicate a strong dependence (up to 300%) of the thermal conductivity λ on the applied mechanical load. The experiments have been provided in the pressure range 0 < p < 8 MPa which corresponds to stresses arising in fuel cells. All obtained experimental results have been fitted by the equation λ = 0.9log(12 p + 17)(1 - 0.4e-50 p ) with 9% uncertainty. The obtained experimental dependence can be used for correct modeling of coupled thermo/electro-mechanical phenomena in fuel cells and electrolyzers. Special attention has been devoted to justification of the main hypotheses of the THW method and for estimation of the possible influence of the contact resistances. For this purpose, measurements with a different number of carbon cloth layers have been provided. The conducted experiments indicate the independence of the measured thermal conductivity on the number of GDL layers and, thus, justify the

  20. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  1. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  2. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    SciTech Connect

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; Weidner, John W.

    2016-01-01

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. The degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.

  3. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    DOE PAGES

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less

  4. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    SciTech Connect

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; Weidner, John W.

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.

  5. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    NASA Astrophysics Data System (ADS)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W