Science.gov

Sample records for acid pseudomonas aeruginosa

  1. Amino Acid Transport in Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1969-01-01

    Properties of the transport systems for amino acids in Pseudomonas aeruginosa were investigated. Exogenous 14C-labeled amino acids were shown to equilibrate with the internal native amino acid pool prior to incorporation into protein. When added at low external concentrations, the majority of the amino acids examined entered the protein of the cell unaltered. The rates of amino acid transport, established at low concentrations with 18 commonly occurring amino acids, varied as much as 40-fold. The transport process became saturated at high external amino acid concentrations, was temperature-sensitive, and was inhibited by sodium azide and iodoacetamide. Intracellular to extracellular amino acid ratios of 100- to 300-fold were maintained during exponential growth of the population in a glucose minimal medium. When the medium became depleted of glucose, neither extracellular nor intracellular amino acids could be detected. PMID:4974392

  2. Fatty Acids Synthesized from Hexadecane by Pseudomonas aeruginosa

    PubMed Central

    Romero, Ethel M.; Brenner, Rodolfo R.

    1966-01-01

    Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183–188. 1966.—The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction. PMID:4955247

  3. Amino Acid-β-Naphthylamide Hydrolysis by Pseudomonas aeruginosa Arylamidase

    PubMed Central

    Riley, P. S.; Behal, Francis J.

    1971-01-01

    The intracellular and constitutive arylamidase from Pseudomonas aeruginosa was purified 528-fold by salt fractionation, ion-exchange chromatography, gel filtration, and adsorption chromatography. This enzyme hydrolyzed basic and neutral N-terminal amino acid residues from amino-β-naphthylamides, dipeptide-β-naphthylamides, and a variety of polypeptides. Only those substrates having an l-amino acid with an unsubstituted α-amino group as the N-terminal residue were susceptible to enzymatic hydrolysis. The molecular weight was estimated to be 71,000 daltons. The lowest Km values were associated with substrates having neutral or basic amino acid residues with large side chains with no substitution or branching on the β carbon atom. Images PMID:5001871

  4. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  5. Production of Biologically Active Hydroxy Fatty Acids from Vegetable Oils by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids have gained industrial attention because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from ...

  6. Production of Biologically Active Hydroxy Fatty Acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) have gained important attentions because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsatu...

  7. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems. PMID:27465850

  8. Chemotaxis by Pseudomonas aeruginosa.

    PubMed Central

    Moulton, R C; Montie, T C

    1979-01-01

    Chemotaxis by Pseudomonas aeruginosa RM46 has been studied, and conditions required for chemotaxis have been defined, by using the Adler capillary assay technique. Several amino acids, organic acids, and glucose were shown to be attractants of varying effectiveness for this organism. Ethylenediaminetetraacetic acid was absolutely required for chemotaxis, and magnesium was also necessary for a maximum response. Serine taxis was greatest when the chemotaxis medium contained 1.5 X 10(-5) M ethylenediaminetetraacetic acid and 0.005 M magnesium chloride. It was not necessary to include methionine in the chemotaxis medium. The strength of the chemotactic responses to glucose and to citrate was dependent on prior growth of the bacteria on glucose and citrate, respectively. Accumulation in response to serine was inhibited by the addition of succinate, citrate, malate, glucose, pyruvate, or methionine to the chemotaxis medium. Inhibition by succinate was not dependent on the concentration of attractant in the capillary. However, the degree to which glucose and citrate inhibited serine taxis was dependent on the carbon source utilized for growth. Further investigation of this inhibition may provide information about the mechanisms of chemotaxis in P. aeruginosa. PMID:104961

  9. Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    PubMed Central

    Ghosal, Anubrata

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)4-Ahx-βala or the H-(R-Ahx)6-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections. PMID:23030590

  10. Cell surface changes in Pseudomonas aeruginosa PAO4069 in response to treatment with 6-aminopenicillanic acid.

    PubMed Central

    Godfrey, A J; Bryan, L E

    1989-01-01

    Pseudomonas aeruginosa PAO4096 was induced for beta-lactamases with 6-aminopenicillanic acid. Surface changes concomitant with beta-lactamase induction were monitored. The surface hydrophobicity of the culture increased during exposure to 6-aminopenicillanic acid. The increase was associated with a change in the distribution of the O antigen in the lipopolysaccharide of treated cells. The hydrophobicity change was reversible and partially inhibited by depressed protein synthesis. The susceptibility of induced cells to rifampin was increased transiently, suggesting increased permeability of the induced cells. Images PMID:2554796

  11. Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids have gained important attentions because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids f...

  12. Lipase-induced Production of 7, 10-dihydroxy-8(E)-octadecenoic Acid from Triolein by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids have gained attention because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different f...

  13. Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa.

    PubMed

    Dagorn, Audrey; Hillion, Mélanie; Chapalain, Annelise; Lesouhaitier, Olivier; Duclairoir Poc, Cécile; Vieillard, Julien; Chevalier, Sylvie; Taupin, Laure; Le Derf, Franck; Feuilloley, Marc G J

    2013-02-01

    Gamma-aminobutyric acid (GABA) is widespread in the environment and can be used by animal and plants as a communication molecule. Pseudomonas species, in particular fluorescent ones, synthesize GABA and express GABA-binding proteins. In this study, we investigated the effects of GABA on the virulence of Pseudomonas aeruginosa. While exposure to GABA (10 µM) did not modify either the growth kinetics or the motility of the bacterium, its cytotoxicity and virulence were strongly increased. The Caenorhabditis elegans 'fast killing test' model revealed that GABA acts essentially through an increase in diffusible toxin(s). GABA also modulates the biofilm formation activity and adhesion properties of PAO1. GABA has no effect on cell surface polarity, biosurfactant secretion or on the lipopolysaccharide structure. The production of several exo-enzymes, pyoverdin and exotoxin A is not modified by GABA but we observed an increase in cyanogenesis which, by itself, could explain the effect of GABA on P. aeruginosa virulence. This mechanism appears to be regulated by quorum sensing. A proteomic analysis revealed that the effect of GABA on cyanogenesis is correlated with a reduction of oxygen accessibility and an over-expression of oxygen-scavenging proteins. GABA also promotes specific changes in the expression of thermostable and unstable elongation factors Tuf/Ts involved in the interaction of the bacterium with the host proteins. Taken together, these results suggest that GABA is a physiological regulator of P. aeruginosa virulence. PMID:23154974

  14. Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Saravanan, D.

    2013-04-01

    Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

  15. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  16. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  17. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa.

    PubMed

    Behzat, Balci

    2015-01-01

    The aim of this work is to evaluate decolorization of Reactive Black 39 (RB39) and Acid Red 360 (AR360) by Pseudomonas aeruginosa, which was isolated from a non-dye-contaminated activated sludge biomass. In the present study, the effect of various physicochemical parameters, initial dye concentration, temperature, pH, inoculum size and yeast extract concentration as an organic source on decolorization were investigated. P. aeruginosa was able to decolorize 20 mg/L RB39 completely within 144 hours in the presence of 0.5 g/L yeast extract at 25°C. Decolorization efficiencies for AR360 were found to be higher than RB39 under the same conditions. Optimal temperature to decolorize RB39 and AR360 was found to be 30 and 25°C, respectively. The activation energy (Ea) values for decolorization of RB39 and AR360 were found to be 61.89 kJ/mol and 81.18 kJ/mol, respectively. Experience showed that the pH and inoculum size had a considerable effect on decolorization of RB39 and AR360 by P. aeruginosa. PMID:26465295

  18. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS

    PubMed Central

    2013-01-01

    Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

  19. Capsule production by Pseudomonas aeruginosa

    SciTech Connect

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  20. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase.

    PubMed Central

    Fukushima, J; Yamamoto, S; Morihara, K; Atsumi, Y; Takeuchi, H; Kawamoto, S; Okuda, K

    1989-01-01

    The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin. PMID:2493453

  1. Effect of clavulanic acid on the activity of ticarcillin against Pseudomonas aeruginosa.

    PubMed Central

    Tausk, F; Stratton, C W

    1986-01-01

    We studied the ability of clavulanic acid (CA) to induce beta-lactamase in Pseudomonas aeruginosa isolates and what effect this might have on the susceptibilities to beta-lactam agents. We first used a disk approximation method to test 4 laboratory and 16 clinical P. aeruginosa isolates against antipseudomonal beta-lactam agents for truncation by CA and found this to be very common. All antimicrobial compounds except imipenem demonstrated truncation in the vicinity of CA. We also evaluated the extent to which chromosomal beta-lactamase is induced by CA and found this to occur to some degree in most isolates and to be dependent on the concentration of CA. Finally, we performed time kill curves on these isolates to compare bacterial growth in ticarcillin alone with growth in ticarcillin-CA (the CA at 2 or 4 micrograms/ml). We found that CA at this concentration has neither an antagonistic nor a synergistic antibacterial effect in combination with ticarcillin. PMID:3098162

  2. Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial conversions of unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce mono-, di-, and tri-hydroxy fatty acids from...

  3. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by

  4. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease

    PubMed Central

    Walasek, Paula; Honek, John F

    2005-01-01

    Background The alkaline protease from Pseudomonas aeruginosa (AprA) is a member of the metzincin superfamily of metalloendoproteases. A key feature of these proteases is a conserved methionine-containing 1,4-tight β turn at the base of the active site zinc binding region. Results To explore the invariant methionine position in this class of protease, incorporation of a nonnatural fluorinated methionine, L-difluoromethionine (DFM), into this site was accomplished. Although overproduction of the N-terminal catalytic fragment of AprA resulted in protein aggregates which could not be resolved, successful heterologous production of the entire AprA was accomplished in the presence and absence of the nonnatural amino acid. DFM incorporation was found to only slightly alter the enzyme kinetics of AprA. In addition, differential scanning calorimetry indicated no significant alteration in the thermal stability of the modified enzyme. Conclusion Although invariant in all metzincin proteases, the methionine 214 position in AprA can be successfully replaced by the nonnatural amino acid DFM resulting in little effect on protein structure and function. This study indicates that the increased size of the methyl group by the introduction of two fluorines is still sufficiently non-sterically demanding, and bodes well for the application of DFM to biophysical studies of protein structure and function in this class of protease. PMID:16221305

  5. Control of Pseudomonas aeruginosa and Stenotrophomonas maltophilia contamination of microfiltered water dispensers with peracetic acid and hydrogen peroxide.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Zanetti, Franca

    2009-06-30

    The abilities of peracetic acid and hydrogen peroxide to remove or reduce Pseudomonas aeruginosa and Stenotrophomonas maltophilia in output water from microfiltered water dispensers (MWDs) were investigated. Two MWDs were inoculated with strains of P. aeruginosa and S. maltophilia isolated from water. Dispensers A and B were disinfected with 10% (v/v) peracetic acid (PAA) and 3% (v/v) hydrogen peroxide (HP) respectively. Each dispenser was disinfected three times at monthly intervals with contact times of 10, 30 and 40 min. Water dispensed by the MWDs was collected immediately before and after each treatment and then twice weekly for the remaining period. Once a week a sample of the tap water entering the dispensers was tested. P. aeruginosa and S. maltophilia were enumerated in the 90 samples collected during 6 months. In the output water from the dispensers before the first treatment, the number of the bacteria was 3 to 4 log cfu/100 mL. Treatment with PAA greatly reduced the numbers of P. aeruginosa and S. maltophilia in the dispensed water initially. However, by 2 days after treatment, the numbers increased and remained high. In the case of disinfection with HP for 40 min, P. aeruginosa was not detected in most of the samples (73.7%). Numbers of S. maltophilia decreased with increasing time after treatment. PMID:19439386

  6. Low-molecular-weight solutes released during mild acid hydrolysis of the lipopolysaccharide of Pseudomonas aeruginosa. Identification of ethanolamine triphosphate

    PubMed Central

    Drewry, David T.; Gray, George W.; Wilkinson, Stephen G.

    1972-01-01

    A careful examination of the low-molecular-weight solutes released during mild acid hydrolysis of the lipopolysaccharide of Pseudomonas aeruginosa (N.C.T.C. 1999) revealed the presence of ethanolamine triphosphate. During storage, the compound decomposed to give ethanolamine pyrophosphate, identified in a previous study (Drewry et al., 1971); PPi may be a further decomposition product. Evidence for the attachment of ethanolamine triphosphate to a polysaccharide fraction was obtained, but the possibility that some was attached to the lipid A moiety was not excluded. Basic compounds released during the hydrolysis of lipopolysaccharide included amino acids, polyamines and oligopeptides. PMID:4632171

  7. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans.

    PubMed

    Prithiviraj, B; Bais, H P; Weir, T; Suresh, B; Najarro, E H; Dayakar, B V; Schweizer, H P; Vivanco, J M

    2005-09-01

    Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping

  8. Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa

    PubMed Central

    Kopec, Jolanta; Schnell, Robert; Schneider, Gunter

    2011-01-01

    The ubiX gene (PA4019) of Pseudomonas aeruginosa has been annotated as encoding a putative 3-octaprenyl-4-hydroxybenzoate decarboxylase from the ubiquinone-biosynthesis pathway. Based on a transposon mutagenesis screen, this gene was also implicated as being essential for the survival of this organism. The crystal structure of recombinant UbiX determined to 1.5 Å resolution showed that the protein belongs to the superfamily of homo-oligomeric flavine-containing cysteine decarboxylases. The enzyme assembles into a dodecamer with 23 point symmetry. The subunit displays a typical Rossmann fold and contains one FMN molecule bound at the interface between two subunits. PMID:22102023

  9. Production of 7,10-dihydroxy-8(E)-octadecenoic Acid from Triolein via Lipase Induction by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) have gained important attention due to special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Pseudomonas aeruginosa PR3 has been previously reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsatura...

  10. Environmental optimization for production of 7, 10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial conversions of free unsaturated fatty acids often generate novel hydroxy fatty acids (HFA), which are known to have special properties such as higher viscosity and reactivity. Among microbial strains known to produce HFAs, Pseudomonas aeruginosa PR3 has been well studied to produce 7,10-d...

  11. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  12. Extensive Reduction of Cell Viability and Enhanced Matrix Production in Pseudomonas aeruginosa PAO1 Flow Biofilms Treated with a d-Amino Acid Mixture

    PubMed Central

    Sanchez, Zoe; Tani, Akio

    2013-01-01

    Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a d-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells. PMID:23220960

  13. Elucidating the Pseudomonas aeruginosa fatty acid degradation pathway: identification of additional fatty acyl-CoA synthetase homologues.

    PubMed

    Zarzycki-Siek, Jan; Norris, Michael H; Kang, Yun; Sun, Zhenxin; Bluhm, Andrew P; McMillan, Ian A; Hoang, Tung T

    2013-01-01

    The fatty acid (FA) degradation pathway of Pseudomonas aeruginosa, an opportunistic pathogen, was recently shown to be involved in nutrient acquisition during BALB/c mouse lung infection model. The source of FA in the lung is believed to be phosphatidylcholine, the major component of lung surfactant. Previous research indicated that P. aeruginosa has more than two fatty acyl-CoA synthetase genes (fadD; PA3299 and PA3300), which are responsible for activation of FAs using ATP and coenzyme A. Through a bioinformatics approach, 11 candidate genes were identified by their homology to the Escherichia coli FadD in the present study. Four new homologues of fadD (PA1617, PA2893, PA3860, and PA3924) were functionally confirmed by their ability to complement the E. coli fadD mutant on FA-containing media. Growth phenotypes of 17 combinatorial fadD mutants on different FAs, as sole carbon sources, indicated that the four new fadD homologues are involved in FA degradation, bringing the total number of P. aeruginosa fadD genes to six. Of the four new homologues, fadD4 (PA1617) contributed the most to the degradation of different chain length FAs. Growth patterns of various fadD mutants on plant-based perfumery substances, citronellic and geranic acids, as sole carbon and energy sources indicated that fadD4 is also involved in the degradation of these plant-derived compounds. A decrease in fitness of the sextuple fadD mutant, relative to the ΔfadD1D2 mutant, was only observed during BALB/c mouse lung infection at 24 h. PMID:23737986

  14. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.

    PubMed Central

    Menestrina, G; Pederzolli, C; Forti, S; Gambale, F

    1991-01-01

    We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin. Images FIGURE 7 FIGURE 8 FIGURE 12

  15. Pseudomonas aeruginosa biofilms in disease.

    PubMed

    Mulcahy, Lawrence R; Isabella, Vincent M; Lewis, Kim

    2014-07-01

    Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804-1813, 2010; Breathnach et al., J Hosp Infect 82:19-24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255-264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78-81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439-440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections. PMID:24096885

  16. Transferable imipenem resistance in Pseudomonas aeruginosa.

    PubMed Central

    Watanabe, M; Iyobe, S; Inoue, M; Mitsuhashi, S

    1991-01-01

    We isolated an imipenem-resistant strain, GN17203, of Pseudomonas aeruginosa. The strain produced a beta-lactamase that hydrolyzed imipenem. The beta-lactamase was encoded by a 31-MDa plasmid, pMS350, which belongs to incompatibility group P-9. The plasmic conferred resistance to beta-lactams, gentamicin, and sulfonamide and was transferable by conjugation to P. aeruginosa but not to Escherichia coli. The molecular weight of the purified enzyme was estimated to be 28,000, and the isoelectric point was 9.0. The enzyme showed a broad substrate profile, hydrolyzing imipenem, oxyiminocephalosporins, 7-methoxycephalosporins, and penicillins. The enzyme activity was inhibited by EDTA, iodine, p-chloromercuribenzoate, CuSO4, and HgCl2 but not by clavulanic acid or sulbactam. Images PMID:1901695

  17. OXIDATIVE ASSIMILATION OF GLUCOSE BY PSEUDOMONAS AERUGINOSA

    PubMed Central

    Duncan, Margaret G.; Campbell, J. J. R.

    1962-01-01

    Duncan, Margaret G. (The University of British Columbia, Vancouver, British Columbia, Canada) and J. J. R. Campbell. Oxidative assimilation of glucose by Pseudomonas aeruginosa. J. Bacteriol. 84:784–792. 1962—Oxidative assimilation of glucose by washed-cell suspensions of Pseudomonas aeruginosa was studied using C14-labeled substrate. At the time of glucose disappearance, only small amounts of radioactivity were present in the cells, and α-ketoglutaric acid accumulated in the supernatant fluid. Most of the material synthesized by the cells during oxidative assimilation was nitrogenous, the ammonia being supplied by the endogenous respiration. The cold trichloroacetic acid-soluble fraction and the lipid fraction appeared to be important during the early stages of oxidative assimilation, and the largest percentage of the incorporated radioactivity was found in the protein fraction. In the presence of added ammonia, assimilation was greatly increased and no α-ketoglutaric acid was found in the supernatant fluid. Sodium azide partially inhibited incorporation into all major cell fractions, and at higher concentrations depressed the rate of glucose oxidation. During oxidative assimilation, chloramphenicol specifically inhibited the synthesis of protein. Oxidative assimilation of glucose by this organism did not appear to involve the synthesis of a primary product such as is found in the majority of bacteria. PMID:16561965

  18. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  19. Determining Multiple Responses of Pseudomonas aeruginosa PAO1 to an Antimicrobial Agent, Free Nitrous Acid.

    PubMed

    Gao, Shu-Hong; Fan, Lu; Peng, Lai; Guo, Jianhua; Agulló-Barceló, Míriam; Yuan, Zhiguo; Bond, Philip L

    2016-05-17

    Free nitrous acid (FNA) has recently been demonstrated as an antimicrobial agent on a range of micro-organisms, especially in wastewater-treatment systems. However, the antimicrobial mechanism of FNA is largely unknown. Here, we report that the antimicrobial effects of FNA are multitargeted. The response of a model denitrifier, Pseudomnas aeruginosa PAO1 (PAO1), common in wastewater treatment, was investigated in the absence and presence of inhibitory level of FNA (0.1 mg N/L) under anaerobic denitrifying conditions. This was achieved through coupling gene expression analysis, by RNA sequencing, and with a suite of physiological analyses. Various transcripts exhibited significant changes in abundance in the presence of FNA. Respiration was likely inhibited because denitrification activity was severely depleted, and decreased transcript levels of most denitrification genes occurred. As a consequence, the tricarboxylic acid (TCA) cycle was inhibited due to the lowered cellular redox state in the FNA-exposed cultures. Meanwhile, during FNA exposure, PAO1 rerouted its carbon metabolic pathway from the TCA cycle to pyruvate fermentation with acetate as the end product as a possible survival mechanism. Additionally, protein synthesis was significantly decreased, and ribosome preservation was evident. These findings improve our understanding of PAO1 in response to FNA and contribute toward the potential application for use of FNA as an antimicrobial agent. PMID:27116299

  20. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  1. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids

    NASA Astrophysics Data System (ADS)

    Taylor, Erik N.; Kummer, Kim M.; Dyondi, Deepti; Webster, Thomas J.; Banerjee, Rinti

    2013-12-01

    Infections are both frequent and costly in hospitals around the world, leading to longer hospital stays, overuse of antibiotics, and excessive costs to the healthcare system. Moreover, antibiotic resistant organisms, such as Pseudomonas aeruginosa are increasing in frequency, leading to 1.7 million infections per year in USA hospitals, and 99 000 deaths, both due to the evolution of antibiotic resistance and the formation of biofilms on medical devices. In particular, respiratory infections are costly, deadly to 4.5 million persons per year worldwide, and can spread to the lungs through the placement of endotracheal tubing. In this study, towards a reduction in infections, solid lipid nanoparticles were formulated from free fatty acids, or natural lipophilic constituents found in tissues of the body. A strategy was developed to target infections by producing coatings made of non-toxic chemistries lauric acid and oleic acid delivered by core-shell solid lipid nanoparticles that act against bacteria by multiple mechanisms at the nanoscale, including disruption of bacteria leading to DNA release, and reducing the adhesion of dead bacteria to ~1%. This is the first such study to explore an anti-infection surface relying on these multi-tier strategies at the nanoscale.

  2. Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.

    2013-01-01

    Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation by P. aeruginosa. PMID:23318791

  3. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  4. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.

    PubMed

    He, Weiqing; Li, Congran; Lu, Chung-Dar

    2011-05-01

    D-amino acids are essential components for bacterial peptidoglycan, and these natural compounds are also involved in cell wall remodeling and biofilm disassembling. In Pseudomonas aeruginosa, the dadAX operon, encoding the D-amino acid dehydrogenase DadA and the amino acid racemase DadX, is essential for D- and L-Ala catabolism, and its expression requires a transcriptional regulator, DadR. In this study, purified recombinant DadA alone was sufficient to demonstrate the proposed enzymatic activity with very broad substrate specificity; it utilizes all D-amino acids tested as substrates except D-Glu and D-Gln. DadA also showed comparable k(cat) and K(m) values on D-Ala and several D-amino acids. dadRAX knockout mutants were constructed and subjected to analysis of their growth phenotypes on amino acids. The results revealed that utilization of L-Ala, L-Trp, D-Ala, and a specific set of D-amino acids as sole nitrogen sources was abolished in the dadA mutant and/or severely hampered in the dadR mutant while growth yield on D-amino acids was surprisingly improved in the dadX mutant. The dadA promoter was induced by several L-amino acids, most strongly by Ala, and only by D-Ala among all tested D-amino acids. Enhanced growth of the dadX mutant on D-amino acids is consistent with the finding that the dadA promoter was constitutively induced in the dadX mutant, where exogenous D-Ala but not L-Ala reduced the expression. Binding of DadR to the dadA regulatory region was demonstrated by electromobility shift assays, and the presence of L-Ala but not D-Ala increased affinity by 3-fold. The presence of multiple DadR-DNA complexes in the dadA regulatory region was demonstrated in vitro, and the formation of these nucleoprotein complexes exerted a complicated impact on promoter activation in vivo. In summary, the results from this study clearly demonstrate DadA to be the enzyme solely responsible for the proposed D-amino acid dehydrogenase activity of broad substrate

  5. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation. PMID:27392247

  6. Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa.

    PubMed

    Serino, L; Reimmann, C; Visca, P; Beyeler, M; Chiesa, V D; Haas, D

    1997-01-01

    The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron

  7. A Drug-Repositioning Screening Identifies Pentetic Acid as a Potential Therapeutic Agent for Suppressing the Elastase-Mediated Virulence of Pseudomonas aeruginosa

    PubMed Central

    Gi, Mia; Jeong, Junhui; Lee, Keehoon; Lee, Kang-Mu; Toyofuku, Masanori; Yong, Dong Eun

    2014-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 μM DTPA. Supplementation with Zn2+ or Mn2+ ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection. PMID:25246397

  8. Induction of inflammatory mediator release (serotonin and 12-hydroxyeicosatetraenoic acid) from human platelets by Pseudomonas aeruginosa glycolipid.

    PubMed Central

    König, B; Bergmann, U; König, W

    1992-01-01

    Purified glycolipid from Pseudomonas aeruginosa induced the generation of significant amounts of 12-hydroxyeicosatetraenoic acid (12-HETE) and serotonin release from human platelets. The release of serotonin was first observed 2 min after addition of the glycolipid and increased with time. Significant serotonin release was obtained at glycolipid concentrations above 5 micrograms/ml and increased dose-dependently up to 100% at glycolipid concentrations above 40 micrograms/ml. Glycolipid induced 12-HETE in a time- and dose-dependent manner. 12-HETE formation was first measured after 10 min of incubation and increased with time. Optimal 12-HETE formation was obtained at a glycolipid concentration of 50 micrograms/ml; higher concentrations of glycolipid led to a decrease in 12-HETE formation, indicating a cytotoxic effect. Stimulation of platelets with glycolipid (12-HETE formation and serotonin release) was accompanied by calcium influx, translocation of protein kinase C, activation of guanylylimidodiphosphate binding, and increased GTPase activity in platelet membranes within the same concentration range. PMID:1639485

  9. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201.

    PubMed

    Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen

    2016-01-01

    Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production. PMID:27456813

  10. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201

    PubMed Central

    Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen

    2016-01-01

    Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production. PMID:27456813

  11. Mutational analysis of nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of critical amino acid residues involved in exopolysaccharide alginate synthesis.

    PubMed Central

    Sundin, G W; Shankar, S; Chakrabarty, A M

    1996-01-01

    We report the utilization of site-directed and random mutagenesis procedures in the gene encoding nucleoside diphosphate kinase (ndk) from Pseudomonas aeruginosa in order to examine the role of Ndk in the production of alginate by this organism. Cellular levels of the 16-kDa form of the Ndk enzyme are greatly reduced in P. aeruginosa 8830 with a knockout mutation in the algR2 gene (8830R2::Cm); this strain is also defective in the production of the exopolysaccharide alginate. In this study, we isolated four mutations in ndk (Ala-14-->Pro [Ala14Pro], Gly21Val, His117Gln, and Ala125Arg) which resulted in the loss of Ndk biochemical activity; hyperexpression of any of these four mutant genes did not restore alginate production to 8830R2::Cm. We identified six additional amino acid residues (Ser-43, Ala-56, Ser-69, Glu-80, Gly-91, and Asp-135) whose alteration resulted in the inability of Ndk to complement alginate production. After hyperproduction in 8830R2::Cm, it was determined that each of these six mutant Ndks was biochemically active. However, in four cases, the in vivo levels of Ndk were reduced, which consequently affected the growth of 8830R2::Cm in the presence of Tween 20. Two mutant Ndk proteins which could not complement the alginate synthesis defect in 8830R2::Cm were not affected in any characteristic examined in the present study. All of the mutant Ndks characterized which were still biochemically active formed membrane complexes with Pk, resulting in GTP synthesis. Two of the four Ndk activity mutants (His117Gln and Ala125Arg) identified were capable of being truncated to 12 kDa and formed a membrane complex with Pk; however, the complexes formed were inactive for GTP synthesis. The other two Ndk activity mutants could be truncated to 12 kDa but were not detected in membrane fractions. These results further our understanding of the role of Ndk in alginate synthesis and identify amino acid residues in Ndk which have not previously been studied as

  12. Partial purification and characterization of a polymannuronic acid depolymerase produced by a mucoid strain of Pseudomonas aeruginosa isolated from a patient with cystic fibrosis.

    PubMed Central

    Dunne, W M; Buckmire, F L

    1985-01-01

    An exopolysaccharide depolymerase was isolated from a mucoid strain of Pseudomonas aeruginosa of cystic fibrosis origin. Purified preparations of the depolymerase showed maximum activity against the unacetylated polymannuronic acid exopolysaccharide from the same strain and little activity against commercially prepared alginic acid. The evidence suggests that the enzyme is either periplasmic in location or associated with the outer cell membrane and is released extracellularly, in the absence of cell lysis, after a reduction of the culture magnesium (Mg2+) concentration below 3.0 mM. The depolymerase is also released after the addition of sublethal concentrations of EDTA to cultures containing 3.0 mM Mg2+. A survey of additional mucoid P. aeruginosa isolates recovered from patients with cystic fibrosis showed that nearly 60% demonstrated similar depolymerase activity while none of the nonmucoid revertants of the parent strains produced detectable depolymerase activity. Images PMID:3935048

  13. Transposon mutagenesis of Pseudomonas aeruginosa exoprotease genes.

    PubMed Central

    Stapleton, M J; Jagger, K S; Warren, R L

    1984-01-01

    Transposon Tn5 was used to generate protease-deficient insertion mutants of Pseudomonas aeruginosa. The presence of Tn5 in the chromosome of P. aeruginosa was demonstrated by transduction and DNA-DNA hybridization. The altered protease production and kanamycin resistance were cotransduced into a wild-type P. aeruginosa strain. A radiolabeled probe of Tn5 DNA hybridized to specific BamHI fragments isolated from the insertion mutants. Two independently isolated Tn5 insertion mutants had reduced protease production, partially impaired elastase activity, and no immunologically reactive alkaline protease. Images PMID:6317657

  14. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  15. [Macrolides, Pseudomonas aeruginosa and cystic fibrosis].

    PubMed

    Guillot, M; Amiour, M; El Hachem, C; Harchaoui, S; Ribault, V; Paris, C

    2006-10-01

    Long-term low dose azithromycin treatment in cystic fibrosis patients with chronic Pseudomonas aeruginosa infection is safe and reduces the decline in lung function, the number of acute exacerbations and improves nutritional status; underlying efficacy mechanisms are multiple and synergistic. PMID:17370396

  16. Burn sepsis: bacterial interference with Pseudomonas aeruginosa.

    PubMed

    Levenson, S M; Gruber, D K; Gruber, C; Watford, A; Seifter, E

    1981-05-01

    The pathogenicity of several strains of Pseudomonas aeruginosa for burned rats (3 degrees scald burns, 20% body surface) following topical application of the bacteria to the burn within 1 hour after burning was established. Following this, it was demonstrated that purposeful infection of such 3 degrees scald burns of rats by a strain of Ps. aeruginosa of low virulence (JB-77) protects the rats from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa (VA-134) (p less than 0.001). This finding was confirmed in a similar experiment beginning with germfree rats. When the challenge with the highly virulent Ps. aeruginosa strain was 24 hours (rather than 48 hours) after the burning and topical contamination of the burn with the low virulence strain of Ps. aeruginosa, there was little protection (p N.S.). When burned rats were given the low virulence strain of Ps. aeruginosa by gavage right after burning, there was not protection to subsequent (48 hours) challenge by topical application of the highly virulent strain of Ps. aeruginosa to the burn (11/12 vs 12/12 dying). Our finding that purposeful infection of a 3 degrees burn of rats (conventional and also germfree) by a strain of Ps. aeruginosa of low virulence protects from the lethal effect of subsequent (48-hour) topical contamination of the burn by a highly virulent strain of Ps. aeruginosa is due, we believe, to direct bacterial interference between the two strains of pseudomonas. PMID:6785444

  17. Isolation of the braZ gene encoding the carrier for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO.

    PubMed

    Hoshino, T; Kose-Terai, K; Uratani, Y

    1991-03-01

    The braZ gene for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO was isolated and characterized. Determination of the nucleotide sequence showed that the braZ gene comprises 1,311 nucleotides specifying a protein of 437 amino acids. Hydropathy analysis suggested that the product is an integral membrane protein with 12 membrane-spanning segments. The amino acid sequence showed extensive homology to those of the braB and brnQ gene products, branched-chain amino acid carriers of P. aeruginosa and Salmonella typhimurium, respectively. By using the T7 RNA polymerase-promoter system, the braZ gene product was identified as a protein of an apparent Mr of 34,000 on a sodium dodecyl sulfate-polyacrylamide gel. Properties of the transport system encoded by braZ were studied by using P. aeruginosa PAO3537, defective in both the high- and low-affinity branched-chain amino acid transport systems (LIV-I and LIV-II, respectively). The transport system encoded by braZ was found to be another effective branched-chain amino acid transport system in P. aeruginosa PAO and was thus designated as LIV-III. This system is specific for isoleucine and valine, giving the same Km value of 12 microM for these amino acids. The system was found, however, to have a very low affinity for leucine, with a Km value of 150 microM, which contrasts with the substrate specificities of LIV-I and LIV-II. PMID:1900503

  18. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  19. The application of peptide nucleic acid probes for rapid detection and enumeration of eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in recreational beaches of S. Florida.

    PubMed

    Esiobu, Nwadiuto; Mohammed, Renuka; Echeverry, Andrea; Green, Melissa; Bonilla, Tonya; Hartz, Aaron; McCorquodale, Don; Rogerson, Andrew

    2004-05-01

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6-8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus, Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total 'freshwater' eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in

  20. Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Initiated by the FabY Class of β-Ketoacyl Acyl Carrier Protein Synthases

    PubMed Central

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A.

    2012-01-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes. PMID:22753059

  1. Pseudomonas aeruginosa Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of Phenylacetic Acid

    PubMed Central

    Wang, Jianhe; Dong, Yihu; Zhou, Tielin; Liu, Xiaoling; Deng, Yinyue; Wang, Chao; Lee, Jasmine; Zhang, Lian-Hui

    2013-01-01

    Background P. aeruginosa is known to cause acute cytotoxicity against various human and animal cells and tissues. Methodology/Findings Intriguingly, however, in this study we noticed that while a low cell density inoculum of P. aeruginosa caused severe cytotoxicity against human lung tissue cell line A549, increasing the cell density of bacterial inoculum led to decreased cytotoxicity. Addition of the supernatants from high density bacterial culture to low cell density inoculum protected the human cells from bacterial cytotoxic damage, suggesting that P. aeruginosa may produce and accumulate an inhibitory molecule(s) counteracting its pathogenic infection. The inhibitor was purified from the stationary-phase culture supernatants of P. aeruginosa strain PAO1 using bioassay-guided high performance liquid chromatography (HPLC), and characterized to be phenylacetic acid (PAA) by mass spectrometry and nuclear magnetic resonance spectroscopy. Microarray analysis revealed that treatment of P. aeruginosa with PAA down-regulated the transcriptional expression of Type III secretion system (T3SS) genes and related regulatory genes including rsmA and vfr, which were confirmed by transcriptional and translational analysis. Conclusions Identification of bacterial metabolite PAA as a T3SS-specific inhibitor explains this intriguing inverse cell-density-dependent-cytotoxicity phenomenon as T3SS is known to be a key virulence factor associated with cytotoxicity and acute infection. The findings may provide useful clues for design and development of new strategies to combat this formidable bacterial pathogen. PMID:23555919

  2. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria. PMID:25014900

  3. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  4. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  5. Pseudomonas aeruginosa in Healthcare Settings

    MedlinePlus

    ... becoming more difficult to treat because of increasing antibiotic resistance. Selecting the right antibiotic usually requires that a ... to help educate people about Pseudomonas infections, and antibiotic resistance, and to encourage prevention activities and healthy behaviors ...

  6. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  7. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  8. Genome comparison of Pseudomonas aeruginosa large phages.

    PubMed

    Hertveldt, Kirsten; Lavigne, Rob; Pleteneva, Elena; Sernova, Natalia; Kurochkina, Lidia; Korchevskii, Roman; Robben, Johan; Mesyanzhinov, Vadim; Krylov, Victor N; Volckaert, Guido

    2005-12-01

    Pseudomonas aeruginosa phage EL is a dsDNA phage related to the giant phiKZ-like Myoviridae. The EL genome sequence comprises 211,215 bp and has 201 predicted open reading frames (ORFs). The EL genome does not share DNA sequence homology with other viruses and micro-organisms sequenced to date. However, one-third of the predicted EL gene products (gps) shares similarity (Blast alignments of 17-55% amino acid identity) with phiKZ proteins. Comparative EL and phiKZ genomics reveals that these giant phages are an example of substantially diverged genetic mosaics. Based on the position of similar EL and phiKZ predicted gene products, five genome regions can be delineated in EL, four of which are relatively conserved between EL and phiKZ. Region IV, a 17.7 kb genome region with 28 predicted ORFs, is unique to EL. Fourteen EL ORFs have been assigned a putative function based on protein similarity. Assigned proteins are involved in DNA replication and nucleotide metabolism (NAD+-dependent DNA ligase, ribonuclease HI, helicase, thymidylate kinase), host lysis and particle structure. EL-gp146 is the first chaperonin GroEL sequence identified in a viral genome. Besides a putative transposase, EL harbours predicted mobile endonucleases related to H-N-H and LAGLIDADG homing endonucleases associated with group I intron and intein intervening sequences. PMID:16256135

  9. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

    PubMed

    Lee, Xiaoyun; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; Reimmann, Cornelia

    2013-02-01

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control. PMID:23757135

  10. Vaccination against respiratory Pseudomonas aeruginosa infection

    PubMed Central

    Grimwood, Keith; Kyd, Jennelle M; Owen, Suzzanne J; Massa, Helen M; Cripps, Allan W

    2014-01-01

    Respiratory infections caused by Pseudomonas aeruginosa are a major clinical problem globally, particularly for patients with chronic pulmonary disorders, such as those with cystic fibrosis (CF), non-CF bronchiectasis (nCFB) and severe chronic obstructive pulmonary disease (COPD). In addition, critically ill and immunocompromised patients are also at significant risk of P. aeruginosa infection. For almost half a century, research efforts have focused toward development of a vaccine against infections caused by P. aeruginosa, but a licensed vaccine is not yet available. Significant advances in identifying potential vaccine antigens have been made. Immunisations via both the mucosal and systemic routes have been trialled in animal models and their effectiveness in clearing acute infections demonstrated. The challenge for translation of this research to human applications remains, since P. aeruginosa infections in the human respiratory tract can present both as an acute or chronic infection. In addition, immunisation prior to infection may not be possible for many patients with CF, nCFB or COPD. Therefore, development of a therapeutic vaccine provides an alternative approach for treatment of chronic infection. Preliminary animal and human studies suggest that mucosal immunisation may be effective as a therapeutic vaccine against P. aeruginosa respiratory infections. Nevertheless, more research is needed to improve our understanding of the basic biology of P. aeruginosa and the mechanisms needed to upregulate the induction of host immune pathways to prevent infection. Recognition of variability in the host immune responses for a range of patient health conditions at risk from P. aeruginosa infection is also required to support development of a successful vaccine delivery strategy and vaccine. Activation of mucosal immune responses may provide improved efficacy of vaccination for P. aeruginosa during both acute exacerbations and chronic infection. PMID:25483510

  11. Effect of hypochlorous acid solution on the eradication and prevention of Pseudomonas aeruginosa infection, serum biochemical variables, and cecum microbiota in rats.

    PubMed

    Goto, Kazuo; Kuwayama, Eri; Nozu, Ryoko; Ueno, Masami; Hayashimoto, Nobuhito

    2015-01-01

    In this study, hypochlorous acid solution, a weak acid, provided as drinking water to rats, was evaluated for its ability to eradicate and prevent Pseudomonas aeruginosa infection, while monitoring its simultaneous effect on serum biochemical variables and microbiota in the rat cecum. The results suggest that the solution could not eliminate the bacteria in the experimentally infected rats; however, the administration of a 10-parts-per-million (ppm) hypochlorous acid solution as drinking water was effective in inhibiting horizontal spread of P. aeruginosa infection among cage mates. Additionally, exposure to hypochlorous solution did not have any effect on serum biochemical variables of the rat including levels of total cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin, total bilirubin, lipase, amylase, urea nitrogen, total protein, calcium (Ca), phosphorus (P), sodium (Na), chlorine (Cl), except for potassium (K) levels. The most frequently isolated bacteria in the rat cecum included species belonging to Bacteroidales, Lactobacillus, Clostridiales, Erysipelotrichaceae, Akkermansia, Coriobacteriales, and Firmicutes. The ratio of the terminal restriction fragment length polymorphism (T-RFLP) peaks did not differ across rats administered with 5 and 10 ppm weak acid solution as compared to the control group for any of the bacteria, except for Erysipelotrichaceae and Firmicutes, where the ratio of T-RFLP peaks was higher in the 5 ppm group for Erysipelotrichaceae and in the 10 ppm group for Firmicutes than that in the control group (P<0.01). The results suggest that the weak acid hypochlorous solution could not eradicate P. aeruginosa completely from rats. The solution was effective in preventing infection without affecting serum biochemical variables; however, some of bacterial microbiota may have changed due to administration of the solution. PMID:25736708

  12. Effect of hypochlorous acid solution on the eradication and prevention of Pseudomonas aeruginosa infection, serum biochemical variables, and cecum microbiota in rats

    PubMed Central

    GOTO, Kazuo; KUWAYAMA, Eri; NOZU, Ryoko; UENO, Masami; HAYASHIMOTO, Nobuhito

    2015-01-01

    In this study, hypochlorous acid solution, a weak acid, provided as drinking water to rats, was evaluated for its ability to eradicate and prevent Pseudomonas aeruginosa infection, while monitoring its simultaneous effect on serum biochemical variables and microbiota in the rat cecum. The results suggest that the solution could not eliminate the bacteria in the experimentally infected rats; however, the administration of a 10-parts-per-million (ppm) hypochlorous acid solution as drinking water was effective in inhibiting horizontal spread of P. aeruginosa infection among cage mates. Additionally, exposure to hypochlorous solution did not have any effect on serum biochemical variables of the rat including levels of total cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin, total bilirubin, lipase, amylase, urea nitrogen, total protein, calcium (Ca), phosphorus (P), sodium (Na), chlorine (Cl), except for potassium (K) levels. The most frequently isolated bacteria in the rat cecum included species belonging to Bacteroidales, Lactobacillus, Clostridiales, Erysipelotrichaceae, Akkermansia, Coriobacteriales, and Firmicutes. The ratio of the terminal restriction fragment length polymorphism (T-RFLP) peaks did not differ across rats administered with 5 and 10 ppm weak acid solution as compared to the control group for any of the bacteria, except for Erysipelotrichaceae and Firmicutes, where the ratio of T-RFLP peaks was higher in the 5 ppm group for Erysipelotrichaceae and in the 10 ppm group for Firmicutes than that in the control group (P<0.01). The results suggest that the weak acid hypochlorous solution could not eradicate P. aeruginosa completely from rats. The solution was effective in preventing infection without affecting serum biochemical variables; however, some of bacterial microbiota may have changed due to administration of the solution. PMID:25736708

  13. Ellagic Acid Derivatives from Terminalia chebula Retz. Downregulate the Expression of Quorum Sensing Genes to Attenuate Pseudomonas aeruginosa PAO1 Virulence

    PubMed Central

    Sarabhai, Sajal; Sharma, Prince; Capalash, Neena

    2013-01-01

    Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced

  14. Developing an international Pseudomonas aeruginosa reference panel

    PubMed Central

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-01-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents. PMID:24214409

  15. Clonal complex Pseudomonas aeruginosa in horses.

    PubMed

    Kidd, Timothy J; Gibson, Justine S; Moss, Susan; Greer, Ristan M; Cobbold, Rowland N; Wright, John D; Ramsay, Kay A; Grimwood, Keith; Bell, Scott C

    2011-05-01

    Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated. PMID:21183294

  16. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    SciTech Connect

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J.; Brown, Paul R.

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.

  17. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  18. Responses of Pseudomonas aeruginosa to antimicrobials

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  19. Responses of Pseudomonas aeruginosa to antimicrobials.

    PubMed

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2014-01-01

    Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful

  20. Process parameter optimization for hydantoinase-mediated synthesis of optically pure carbamoyl amino acids of industrial value using Pseudomonas aeruginosa resting cells.

    PubMed

    Engineer, Anupama S; Dhakephalkar, Anita P; Gaikaiwari, Raghavendra P; Dhakephalkar, Prashant K

    2013-12-01

    Hydantoinase-mediated enzymatic synthesis of optically pure carbamoyl amino acids was investigated as an environmentally friendly, energy-efficient alternative to the otherwise energy-intensive, polluting chemical synthesis. Hydantoinase-producing bacterial strain was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing and biochemical profiling using the BIOLOG Microbial Identification System. Hydantoinase activity was assessed using hydantoin analogs and 5-monosubstituted hydantoins as substrates in a colorimetric assay. The hydantoinase gene was PCR amplified using gene-specific primers and sequenced on an automated gene analyzer. Hydantoinase gene sequence of P. aeruginosa MCM B-887 revealed maximum homology of only 87 % with proven hydantoinase gene sequences in GenBank. MCM B-887 resting cells converted >99 % of substrate into N-carbamoyl amino acids under optimized condition at 42 °C, pH 8.0, and 100 mM substrate concentration in <120 min. Hydantoin hydrolyzing activity was D-selective and included broad substrate profile of 5-methyl hydantoin, 5-phenyl hydantoin, 5-hydroxyphenyl hydantoin, o-chlorophenyl hydantoin, as well as hydantoin analogs such as allantoin, dihydrouracil, etc. MCM B-887 resting cells may thus be suitable for bio-transformations leading to the synthesis of optically pure, unnatural carbamoyl amino acids of industrial importance. PMID:24065358

  1. d-Amino Acids Enhance the Activity of Antimicrobials against Biofilms of Clinical Wound Isolates of Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Akers, Kevin S.; Romano, Desiree R.; Woodbury, Ronald L.; Hardy, Sharanda K.; Murray, Clinton K.; Wenke, Joseph C.

    2014-01-01

    Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of d-amino acids (d-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of d-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. d-Met, d-Phe, and d-Trp at concentrations of ≥5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (d-Met/d-Phe/d-Trp). When combined with d-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of d-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of d-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity. PMID:24841260

  2. Iron uptake in Pseudomonas aeruginosa mediated by N-(2,3-dihydroxybenzoyl)-L-serine and 2,3-dihydroxybenzoic acid.

    PubMed

    Screen, J; Moya, E; Blagbrough, I S; Smith, A W

    1995-03-15

    Pseudomonas aeruginosa is known to have an inducible uptake system for the enterobacterial siderophore enterobactin. In this work we have examined iron transport mediated by the biosynthetic precursor 2,3-dihydroxybenzoic acid and N-(2,3-dihydroxybenzoyl)-L-serine, a breakdown product of enterobactin. Iron complexed with 2,3-dihydroxybenzoyl-L-serine was transported into P. aeruginosa IA1 via a transport system which is energy-dependent and iron-repressible. The rate of transport was not altered by growing the cells in the presence of either pyoverdin or pyochelin, which have been shown previously to induce transport via that system. Growth of the cells in the presence of enterobactin did cause an increase in the rate of transport, indicating that the complex can be transported by the inducible enterobactin uptake system, but also that a separate system must exist. In contrast, transport of iron complexed with 2,3-dihydroxybenzoic acid was neither iron-repressible nor strongly energy-dependent, from which we conclude that there must be a novel mode of transport not characteristic of iron-siderophore transport systems. PMID:7737477

  3. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  4. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  5. Surface attachment induces Pseudomonas aeruginosa virulence

    PubMed Central

    Siryaporn, Albert; Kuchma, Sherry L.; O’Toole, George A.; Gitai, Zemer

    2014-01-01

    Pseudomonas aeruginosa infects every type of host that has been examined by deploying multiple virulence factors. Previous studies of virulence regulation have largely focused on chemical cues, but P. aeruginosa may also respond to mechanical cues. Using a rapid imaging-based virulence assay, we demonstrate that P. aeruginosa activates virulence in response to attachment to a range of chemically distinct surfaces, suggesting that this bacterial species responds to mechanical properties of its substrates. Surface-activated virulence requires quorum sensing, but activating quorum sensing does not induce virulence without surface attachment. The activation of virulence by surfaces also requires the surface-exposed protein PilY1, which has a domain homologous to a eukaryotic mechanosensor. Specific mutation of the putative PilY1 mechanosensory domain is sufficient to induce virulence in non–surface-attached cells, suggesting that PilY1 mediates surface mechanotransduction. Triggering virulence only when cells are both at high density and attached to a surface—two host-nonspecific cues—explains how P. aeruginosa precisely regulates virulence while maintaining broad host specificity. PMID:25385640

  6. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  7. Pseudomonas aeruginosa endophthalmitis masquerading as chronic uveitis

    PubMed Central

    Nagaraj, Kalpana Badami; Jayadev, Chaitra

    2013-01-01

    A 65-year-old male presented with decreased vision in the left eye of 15-day duration after having undergone an uneventful cataract surgery 10 months back. He had been previously treated with systemic steroids for recurrent uveitis postoperatively on three occasions in the same eye. B-scan ultrasonography showed multiple clumplike echoes suggestive of vitreous inflammation. Aqueous tap revealed Pseudomonas aeruginosa sensitive to ciprofloxacin. The patient was treated with intravitreal ciprofloxacin and vancomycin along with systemic ciprofloxacin with good clinical response. Even a virulent organism such as P.aeruginosa can present as a chronic uveitis, which, if missed, can lead to a delay in accurate diagnosis and appropriate management. PMID:23803484

  8. Pseudomonas aeruginosa infection mimicking erythema annulare centrifugum.

    PubMed

    Czechowicz, R T; Warren, L J; Moore, L; Saxon, B

    2001-02-01

    A 3-year-old girl receiving chemotherapy for acute lymphocytic leukaemia developed a rapidly expanding red annular plaque on her thigh, initially without signs of systemic toxicity or local pain. Subsequently she developed Pseudomonas aeruginosa sepsis and purpura at the leading edge of the plaque. Skin biopsy showed an extensive necrotizing vasculitis with numerous Gram-negative bacilli in the blood vessel walls. In immunocompromised individuals, skin biopsy and culture of cutaneous lesions for bacteria and fungi should be considered even in the absence of signs of systemic toxicity or multiple lesions. PMID:11233725

  9. The Pseudomonas aeruginosa Proteome during Anaerobic Growth‡

    PubMed Central

    Wu, Manhong; Guina, Tina; Brittnacher, Mitchell; Nguyen, Hai; Eng, Jimmy; Miller, Samuel I.

    2005-01-01

    Isotope-coded affinity tag analysis and two-dimensional gel electrophoresis followed by tandem mass spectrometry were used to identify Pseudomonas aeruginosa proteins expressed during anaerobic growth. Out of the 617 proteins identified, 158 were changed in abundance during anaerobic growth compared to during aerobic growth, including proteins whose increased expression was expected based on their role in anaerobic metabolism. These results form the basis for future analyses of alterations in bacterial protein content during growth in various environments, including the cystic fibrosis airway. PMID:16291692

  10. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    SciTech Connect

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  11. Optimal Production of 7,10-dihydroxy-8(E)-hexadecenoic Acid from Palmitoleic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion process. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains te...

  12. Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production.

    PubMed Central

    Ankenbauer, R; Hanne, L F; Cox, C D

    1986-01-01

    Twelve mutants of Pseudomonas aeruginosa PAO defective in pyoverdin production were isolated (after chemical and transposon mutagenesis) that were nonfluorescent and unable to grow on medium containing 400 microM ethylenediaminedi(o-hydroxyphenylacetic acid). Four mutants were unable to produce hydroxamate, six were hydroxamate positive, one was temperature sensitive for pyoverdin production, and another was unable to synthesize pyoverdin on succinate minimal medium but was capable of synthesizing pyoverdin when grown on Casamino Acids medium (Difco Laboratories, Detroit, Mich.). The mutations were mapped on the PAO chromosome. All the mutations affecting pyoverdin production were located at 65 to 70 min, between catA1 and mtu-9002. PMID:3087966

  13. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    PubMed Central

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  14. Lipoxygenase, a key enzyme in bioconversion of linoleic acid into trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene structure leading to the formation of conjugated (Z,E)-hydroperoxydienoic acids, which in turn result in production of hydroxy lipid. These enzymes are widely distributed in plants, animals, and microorganisms...

  15. Thermostable lipoxygenase, a key enzyme in bioconversion of linoleic acid to trihycroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases, enzymes that contain non-heme iron, catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene moiety leading to conjugated (Z,E)-hydroperoxydienoic acids. These enzymes are widely distributed in plants and animals, and a few microorganisms are reported as well. It ...

  16. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity.

    PubMed

    Guérin-Méchin, L; Dubois-Brissonnet, F; Heyd, B; Leveau, J Y

    1999-11-01

    The role of membrane fatty acid composition in the resistance of Pseudomonas aeruginosa ATCC 15442 to the bactericidal activity of Quaternary Ammonium Compounds (QACs) was investigated. The strain was grown in a medium with increasing concentrations of a QAC, benzyldimethyltetradecylammonium chloride (C14) and two non-QACs, sodium dichloroisocyanurate and tri-sodium phosphate. In the presence of C14 only, the strain was able to grow in concentrations higher than the minimal inhibitory concentration. As the strain adapted to C14, resistance to bactericidal activity of the same biocide increased. For the non-QACs, no change was noted when cells were grown in the presence of biocides. The C14-adapted cells showed variations in membrane fatty acid composition. A hierarchical clustering analysis was used to compare all fatty acid compositions of cultures in the presence, or not, of the three biocides used here and another QAC studied previously. The clusters obtained underlined specific variations of membrane fatty acids in response to the presence of QACs. Furthermore, with a simple linear regression analysis, a relationship was shown between the membrane fatty acids and the resistance developed by the strain against the bactericidal activity of C14. PMID:10594715

  17. Pseudomonas aeruginosa biofilm: potential therapeutic targets.

    PubMed

    Sharma, Garima; Rao, Saloni; Bansal, Ankiti; Dang, Shweta; Gupta, Sanjay; Gabrani, Reema

    2014-01-01

    Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell-cell and cell-surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review. PMID:24309094

  18. Development of a Pseudomonas aeruginosa Agmatine Biosensor.

    PubMed

    Gilbertsen, Adam; Williams, Bryan

    2014-12-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice. PMID:25587430

  19. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  20. Long-Chain Fatty Acid Sensor, PsrA, Modulates the Expression of rpoS and the Type III Secretion exsCEBA Operon in Pseudomonas aeruginosa

    SciTech Connect

    Kang, Y.; Lunin, V. V.; Skarina, T.; Savchenko, A.; Schurr, M. J.; Hoang, T. T.

    2009-01-01

    The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5{beta}-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.

  1. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  2. Vesiculation from Pseudomonas aeruginosa under SOS

    PubMed Central

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F.; Yu, JiehJuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E.; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity. PMID:22448133

  3. Human targets of Pseudomonas aeruginosa pyocyanin

    PubMed Central

    Ran, Huimin; Hassett, Daniel J.; Lau, Gee W.

    2003-01-01

    Pseudomonas aeruginosa produces copious amounts of the redoxactive tricyclic compound pyocyanin that kills competing microbes and mammalian cells, especially during cystic fibrosis lung infection. Cross-phylum susceptibility to pyocyanin suggests the existence of evolutionarily conserved physiological targets. We screened a Saccharomyces cerevisiae deletion library to identify presumptive pyocyanin targets with the expectation that similar targets would be conserved in humans. Fifty S. cerevisiae targets were provisionally identified, of which 60% have orthologous human counterparts. These targets encompassed major cellular pathways involved in the cell cycle, electron transport and respiration, epidermal cell growth, protein sorting, vesicle transport, and the vacuolar ATPase. Using cultured human lung epithelial cells, we showed that pyocyanin-mediated reactive oxygen intermediates inactivate human vacuolar ATPase, supporting the validity of the yeast screen. We discuss how the inactivation of VATPase may negatively impact the lung function of cystic fibrosis patients. PMID:14605211

  4. Pectin- Derived Acidic Oligosaccharides Improve the Outcome of Pseudomonas aeruginosa Lung Infection in C57BL/6 Mice

    PubMed Central

    Bernard, Henry; Desseyn, Jean-Luc; Gottrand, Frédéric; Stahl, Bernd; Bartke, Nana; Husson, Marie-Odile

    2015-01-01

    The administration of prebiotics as oligosaccharides (OS), by acting on intestinal microbiota, could modulate the immune and inflammatory response and represent a new strategy to improve the outcome of bacterial infection. The aim of this study was to determine whether pectin-derived acidic oligosaccharides (pAOS) could modulate the outcome of pulmonary P. aeruginosa (PA) infection in C57BL/6 mice, which develop a Th1 response to PA lung infection. Mice were randomized for 5 weeks to consume a control or a 5% pAOS diet and chronically infected by PA. Resistance to a second PA infection was also analyzed by reinfecting the surviving mice 2 weeks after the first infection. Compared with control mice, mice fed pAOS had reduced mortality (P<0.05). This improvement correlated with a better control of the inflammatory response with a lower neutrophil count on day 1 (P<0.05), a sustained neutrophil and macrophage recruitment on days 2 and 3 (P<0.01) a greater and sustained IL-10 release in lung (P<0.05) and a reduction of the Th1 response and M1 activation with a lower IFN-γ/IL-4 (P<0.01) and nos2/arg1 (P<0.05) ratios. These results coincided with a modulation of the intestinal microbiota as shown by an increased butyric acid concentration in feces (P<0.05). Moreover, pAOS decreased the bacterial load (P<0.01) in mice reinfected 2 weeks after the first infection, suggesting that pAOS could reduce pulmonary exacerbations. In conclusion, pAOS improved the outcome of PA infection in C57BL/6 mice by modulating the intestinal microbiota and the inflammatory and immune responses. PMID:26599638

  5. Shear-enhanced adhesion of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2010-03-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms, which are the cause of many problems in medical devices and industrial water systems. However the underlying mechanisms of initial bacterial attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of Pseudomonas aeruginosa strain PA14 on model surfaces under flow, in straight microfluidic channels, and measured the distribution of bacteria residence time as a function of the shear rate. Our main discovery is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates. In order to identify the origin of this phenomenon, we have performed experiments with several mutant strains. Our results show that shear-enhanced adhesion is not regulated by primary surface organelles, and that this process is not specific to a certain type of surface, but rather appears a general feature of the adhesive behavior of P. aeruginosa. These results suggest that shear-induced adhesion could be a very widespread strategy in nature.

  6. The Pseudomonas aeruginosa PA01 Gene Collection

    PubMed Central

    LaBaer, Joshua; Qiu, QingQing; Anumanthan, Anukanth; Mar, Wenhong; Zuo, Dongmei; Murthy, T.V.S.; Taycher, Helen; Halleck, Allison; Hainsworth, Eugenie; Lory, Stephen; Brizuela, Leonardo

    2004-01-01

    Pseudomonas aeruginosa, a common inhabitant of soil and water, is an opportunistic pathogen of growing clinical relevance. Its genome, one of the largest among bacteria [5570 open reading frames (ORFs)] approaches that of simple eukaryotes. We have constructed a comprehensive gene collection for this organism utilizing the annotated genome of P. aeruginosa PA01 and a highly automated and laboratory information management system (LIMS)-supported production line. All the individual ORFs have been successfully PCR-amplified and cloned into a recombination-based cloning system. We have isolated and archived four independent isolates of each individual ORF. Full sequence analysis of the first isolate for one-third of the ORFs in the collection has been completed. We used two sets of genes from this repository for high-throughput expression and purification of recombinant proteins in different systems. The purified proteins have been used to set up biochemical and immunological assays directed towards characterization of histidine kinases and identification of bacterial proteins involved in the immune response of cystic fibrosis patients. This gene repository provides a powerful tool for proteome- and genome-scale research of this organism, and the strategies adopted to generate this repository serve as a model for building clone sets for other bacteria. PMID:15489342

  7. Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes.

    PubMed Central

    Hoshino, T; Kose, K

    1990-01-01

    About 30 mutants of Pseudomonas aeruginosa PAO defective in the high-affinity branched-chain amino acid transport system (LIV-I) were isolated by the selection for resistance to 4-aza-DL-leucine, a toxic leucine analog for LIV-I. All of the mutants were complemented by plasmid pKTH24, harboring the braC gene, which encodes the branched-chain amino acid-binding protein, and the four open reading frames named braD, braE, braF, and braG (T. Hoshino and K. Kose, J. Bacteriol. 172:5531-5539, 1990). We identified five cistrons corresponding to these bra genes by complementation analysis with various derivatives of pKTH24, confirming that the braD, braE, braF, and braG genes are required for the LIV-I transport system. We also found mutations that seem likely to be mutations in a promoter region for the bra genes and those with polarity in the intercistronic region between braC and braD. Analysis with an omega interposon showed that the bra genes are organized as an operon and are cotranscribed in the order braC-braD-braE-braF-braG from a promoter located in the 5'-flanking region of the braC gene. PMID:2120184

  8. Chromosomal Organization and Segregation in Pseudomonas aeruginosa

    PubMed Central

    Vallet-Gely, Isabelle; Boccard, Frédéric

    2013-01-01

    The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed. PMID:23658532

  9. Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system.

    PubMed Central

    Hoshino, T; Kose, K

    1990-01-01

    A DNA fragment of Pseudomonas aeruginosa PAO containing genes specifying the high-affinity branched-chain amino acid transport system (LIV-I) was isolated. The fragment contained the braC gene, encoding the binding protein for branched-chain amino acids, and the 4-kilobase DNA segment adjacent to 3' of braC. The nucleotide sequence of the 4-kilobase DNA fragment was determined and found to contain four open reading frames, designated braD, braE, braF, and braG. The braD and braE genes specify very hydrophobic proteins of 307 and 417 amino acid residues, respectively. The braD gene product showed extensive homology (67% identical) to the livH gene product, a component required for the Escherichia coli high-affinity branched-chain amino acid transport systems. The braF and braG genes encode proteins of 255 and 233 amino acids, respectively, both containing amino acid sequences typical of proteins with ATP-binding sites. By using a T7 RNA polymerase/promoter system together with plasmids having various deletions in the braDEFG region, the braD, braE, braF, and braG gene products were identified as proteins with apparent Mrs of 25,500, 34,000, 30,000, and 27,000, respectively. These proteins were found among cell membrane proteins on a sodium dodecyl sulfate-polyacrylamide gel stained with Coomassie blue. Images PMID:2120183

  10. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa.

    PubMed

    Daniels, Jonathan B; Scoffield, Jessica; Woolnough, Jessica L; Silo-Suh, Laura

    2014-12-01

    Pseudomonas aeruginosa establishes life-long chronic infections in the cystic fibrosis (CF) lung by utilizing various adaptation strategies. Some of these strategies include altering metabolic pathways to utilize readily available nutrients present in the host environment. The airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphatidylcholine, a major component of lung surfactant. Pseudomonas aeruginosa can degrade phosphatidylcholine to glycerol and fatty acids to increase the availability of usable carbon sources in the CF lung. In this study, we show that some CF-adapted P. aeruginosa isolates utilize glycerol more efficiently as a carbon source than nonadapted isolates. Furthermore, a mutation in a gene required for glycerol utilization impacts the production of several virulence factors in both acute and chronic isolates of P. aeruginosa. Taken together, the results suggest that interference with this metabolic pathway may have potential therapeutic benefits. PMID:25409940

  11. Phenazine-1-carboxylic acid production in a chromosomally non-scar triple-deleted mutant Pseudomonas aeruginosa using statistical experimental designs to optimize yield.

    PubMed

    Du, Xilin; Li, Yaqian; Zhou, Wanping; Zhou, Quan; Liu, Haiming; Xu, Yuquan

    2013-09-01

    We constructed a non-scar triple-deleted mutant Pseudomonas aeruginosa to improve phenazine-1-carboxylic acid (PCA) yield and then optimized the culture conditions for PCA production. Using a non-scar deletion strategy, the 5'-untranslated region of the phz1 gene cluster and two genes, phzM and phzS, were knocked out of the P. aeruginosa strain M18 genome. The potential ability for high-yield PCA production in this triple-deleted mutant M18MSU1 was successfully realized by using statistical experimental designs. A 2(5-1) fractional factorial design was used to show that the three culture components of soybean meal, corn steep liquor and ethanol had the most significant effect on PCA production. Using a central composite design, the concentration of the three components was optimized. The maximum PCA production was predicted to be 4,725.1 mg/L. With the optimal medium containing soybean meal 74.25 g/L, corn steep liquor 13.01 g/L and ethanol 21.84 ml/L, a PCA production of 4,771.2 mg/L was obtained in the validation experiments, which was nearly twofold of that before optimization and tenfold of that in the wild-type strain. This non-scar triple-deleted mutant M18MSU1 may be a suitable strain for industrial production of this biologically synthesized fungicide due to its high PCA production, presumed safety, thermal adaptability and cost-effectiveness. PMID:23636695

  12. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  13. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices. PMID:20580207

  14. Molecular Basis of 1,6-Anhydro Bond Cleavage and Phosphoryl Transfer by Pseudomonas aeruginosa 1,6-Anhydro-N-acetylmuramic Acid Kinase*

    PubMed Central

    Bacik, John-Paul; Whitworth, Garrett E.; Stubbs, Keith A.; Yadav, Anuj K.; Martin, Dylan R.; Bailey-Elkin, Ben A.; Vocadlo, David J.; Mark, Brian L.

    2011-01-01

    Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the γ phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide. PMID:21288904

  15. Microbial degradation of quinoline and methylquinolines. [Pseudomonas aeruginosa

    SciTech Connect

    Aislabie, J.; Bej, A.K.; Hurst, H.; Rothenburger, S.; Atlas, R.M. )

    1990-02-01

    Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and Pseudomonas. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.

  16. Nosocomial outbreak of OXA-18-producing Pseudomonas aeruginosa in Tunisia.

    PubMed

    Kalai Blagui, S; Achour, W; Abbassi, M S; Bejaoui, M; Abdeladhim, A; Ben Hassen, A

    2007-08-01

    Following systematic screening for ceftazidime-resistant (CAZ-R) Pseudomonas aeruginosa, 24 isolates producing extended-spectrum beta-lactamase (ESBL) were recovered during a 24-month period at the National Bone Marrow Transplant Centre of Tunisia. These isolates were from seven immunocompromised patients and from environmental swabs. ESBLs inhibited by clavulanic acid were detected by double-disk diffusion tests. Isoelectric focusing revealed that these isolates produced two to four beta-lactamases with pIs of 5.5, 6.1, 6.4, 7.6 or 8.2, and PCR detected the presence of bla(OXA-18), bla(SHV) and bla(TEM) genes in 24, 21 and two isolates, respectively. Pulsed-field gel electrophoresis defined two dominant genotypic groups: group A (16 isolates) and group B (four isolates). Sequencing of PCR products from representative isolates identified the bla(OXA-18) gene and revealed nucleotide sequences belonging to the bla(SHV-1) and bla(TEM-1) genes. Isolates producing OXA-18 belonged to genomic group A and were isolated from four immunocompromised patients in the haematology and graft units, and from two wash-basins in the graft unit. No immunocompromised patient harboured the clonal epidemic strain upon admission. This is the first report of the OXA-18-type ESBL in P. aeruginosa in Tunisia, and the first description of an outbreak caused by an OXA-18-producing strain of P. aeruginosa. PMID:17610599

  17. Pseudomonas aeruginosa immunotype 5 polysaccharide-toxin A conjugate vaccine.

    PubMed Central

    Cryz, S J; Furer, E; Sadoff, J C; Germanier, R

    1986-01-01

    Polysaccharide (PS) derived from Pseudomonas aeruginosa immunotype 5 lipopolysaccharide was covalently coupled to toxin A by reductive amination with adipic acid dihydrazide as a spacer molecule. The resulting PS-toxin A conjugate was composed of 27.5% PS and 72.5% toxin A. The conjugate was composed of heterogeneous high-molecular-weight species, all of which possessed an Mr greater than 670,000. The conjugate was nontoxic for mice and nonpyrogenic at a dose of 50 micrograms/kg of body weight when intravenously administered to rabbits. Immunization of rabbits with the conjugate evoked both an antilipopolysaccharide immunoglobulin G (IgG) and an anti-toxin A IgG response. Anticonjugate IgG was capable of neutralizing the cytotoxic effect of toxin A. Immunization of mice with the conjugate increased the mean lethal dose from 4.5 X 10(1) P. aeruginosa for control mice to 9.6 X 10(5) P. aeruginosa for vaccinated mice. Similarly, immunization raised the mean lethal dose for toxin A from 0.2 to 4.67 micrograms per mouse. PMID:3082756

  18. Purification and properties of two deoxyribonucleases of Pseudomonas aeruginosa.

    PubMed Central

    Miller, R V; Clark, A J

    1976-01-01

    A survey of the major deoxyribonucleases in Pseudomonas aeruginosa strain PAO was undertaken. Two activities predominated in Brij-58 lysates of this organism. These have been purified from contaminating nuclease activities, and some of their properties have been elucidated. The first was a nuclease that degraded heat-denatured deoxyribonucleic acid (DNA) to mono- and dinucleotides. The activity of this enzyme was confined to single-stranded DNA, and 100% of the substrate was hydrolyzed to acid-soluble material. The Mg2+ optimum is low (1 to 3mM), and the molecular weight is 6 X 10(4). The second predominant activity was an adenosine 5'-triphosphate (ATP)-dependent deoxyribonuclease. This enzyme had an absolute dependence on the presence of ATP Mg2+ concentrations of approximately 10 mM. Five moles of ATP was consumed for each mole of phosphodiester bonds cleaved. The acid-soluble products of the reaction consisted of short oligonucleotides from one to six bases in length. Only 50% of the double-stranded DNA was rendered acid soluble in a limit digest. The molecular weight of this enzyme is 3 X 10(5). The observation of these enzymes in P. aeruginosa is consistent with the possibility that recombinational pathways similar to those of Escherichia coli are operating in this organism. PMID:60331

  19. Spontaneous release of lipopolysaccharide by Pseudomonas aeruginosa.

    PubMed Central

    Cadieux, J E; Kuzio, J; Milazzo, F H; Kropinski, A M

    1983-01-01

    Pseudomonas aeruginosa PAO grown in glucose mineral salts medium released lipopolysaccharide which was chemically and immunologically similar to the cellular lipopolysaccharide. In addition, it possessed identical phage E79-inactivating properties. Through neutralization of phage activity and hemolysis inhibition assays, the organism was found to liberate lipopolysaccharide at a constant rate during log-phase growth equivalent to 1.3 to 2.2 ng/10(8) cells over a growth temperature range of 25 to 42 degrees C. At 19 degrees C, a lipopolysaccharide was released which was deficient in phage-inactivating activity but retained its immunological properties. Chemical analysis of lipopolysaccharide extracted from cells grown at 19 degrees C showed a deficiency in the O-side-chain component fucosamine. Gel exclusion chromatography of the polysaccharide fraction derived from lipopolysaccharide isolated from cells grown at 19 degrees C exhibited a decreased content of side-chain polysaccharide as well as a difference in the hexosamine:hexose ratio. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis confirmed these results as well as establishing that an essentially normal distribution of side-chain repeating unit lengths were to be found in the 19 degrees C preparation. These results suggest a decrease in the frequency of capping R-form lipopolysaccharide at 19 degrees C. Images PMID:6409883

  20. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Kim, Wooseong; Tengra, Farah K; Young, Zachary; Shong, Jasmine; Marchand, Nicholas; Chan, Hon Kit; Pangule, Ravindra C; Parra, Macarena; Dordick, Jonathan S; Plawsky, Joel L; Collins, Cynthia H

    2013-01-01

    Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight. PMID:23658630

  1. Membrane-association determinants of the omega-amino acid monooxygenase PvdA, a pyoverdine biosynthetic enzyme from Pseudomonas aeruginosa.

    PubMed

    Imperi, Francesco; Putignani, Lorenza; Tiburzi, Federica; Ambrosi, Cecilia; Cipollone, Rita; Ascenzi, Paolo; Visca, Paolo

    2008-09-01

    The L-ornithine N(delta)-oxygenase PvdA catalyses the N(delta)-hydroxylation of L-ornithine in many Pseudomonas spp., and thus provides an essential enzymic function in the biogenesis of the pyoverdine siderophore. Here, we report a detailed analysis of the membrane topology of the PvdA enzyme from the bacterial pathogen Pseudomonas aeruginosa. Membrane topogenic determinants of PvdA were identified by computational analysis, and verified in Escherichia coli by constructing a series of translational fusions between PvdA and the PhoA (alkaline phosphatase) reporter enzyme. The inferred topological model resembled a eukaryotic reverse signal-anchor (type III) protein, with a single N-terminal domain anchored to the inner membrane, and the bulk of the protein spanning the cytosol. According to this model, the predicted transmembrane region should overlap the putative FAD-binding site. Cell fractionation and proteinase K accessibility experiments in P. aeruginosa confirmed the membrane-bound nature of PvdA, but excluded the transmembrane topology of its N-terminal hydrophobic region. Mutational analysis of PvdA, and complementation assays in a P. aeruginosa DeltapvdA mutant, demonstrated the dual (structural and functional) role of the PvdA N-terminal domain. PMID:18757814

  2. The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyocyanin, phenazine-1-carboxylic acid and more than 70 related compounds collectively known as phenazines are produced by various species of Pseudomonas, including the fluorescent pseudomonad P. aeruginosa, a Gramnegative opportunistic pathogen in humans and animals. P. aeruginosa synthesizes a cha...

  3. Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

    PubMed Central

    Groen, B; Frank, J; Duine, J A

    1984-01-01

    Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificity intermediate between that of methanol dehydrogenases and ethanol dehydrogenases in this group. On the other hand, it also showed dissimilarities: the enzyme was found to be a monomer (Mr 101 000), to need only one molecule of the suicide substrate cyclopropanol to become fully inactivated, and to have a different aromatic amino acid composition. PMID:6439190

  4. Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates

    PubMed Central

    Pai, Hyunjoo; Kim, Jong-Won; Kim, Jungmin; Lee, Ji Hyang; Choe, Kang Won; Gotoh, Naomasa

    2001-01-01

    In order to define the contributions of the mechanisms for carbapenem resistance in clinical strains of Pseudomonas aeruginosa, we investigated the presence of OprD, the expressions of the MexAB-OprM and MexEF-OprN systems, and the production of the β-lactamases for 44 clinical strains. All of the carbapenem-resistant isolates showed the loss of or decreased levels of OprD. Three strains overexpressed the MexAB-OprM efflux system by carrying mutations in mexR. These three strains had the amino acid substitution in MexR protein, Arg (CGG) → Gln (CAG), at the position of amino acid 70. None of the isolates, however, expressed the MexEF-OprN efflux system. For the characterization of β-lactamases, at least 13 isolates were the depressed mutants, and 12 strains produced secondary β-lactamases. Based on the above resistance mechanisms, the MICs of carbapenem for the isolates were analyzed. The MICs of carbapenem were mostly determined by the expression of OprD. The MICs of meropenem were two- to four-fold increased for the isolates which overexpressed MexAB-OprM in the background of OprD loss. However, the elevated MICs of meropenem for some individual isolates could not be explained. These findings suggested that other resistance mechanisms would play a role in meropenem resistance in clinical isolates of P. aeruginosa. PMID:11158744

  5. Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1.

    PubMed

    Dyson, Zoe A; Seviour, Robert J; Tucci, Joseph; Petrovski, Steve

    2016-01-01

    We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA. PMID:27313312

  6. Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1

    PubMed Central

    Dyson, Zoe A.; Seviour, Robert J.; Tucci, Joseph

    2016-01-01

    We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa. The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA. PMID:27313312

  7. Surface action of gentamicin on Pseudomonas aeruginosa.

    PubMed Central

    Kadurugamuwa, J L; Clarke, A J; Beveridge, T J

    1993-01-01

    The mode of action of gentamicin has traditionally been considered to be at the 30S ribosomal level. However, the inhibition of bacterial protein synthesis alone appears to be insufficient to entirely explain the bactericidal effects. Bacteriolysis is also mediated through perturbation of the cell surface by gentamicin (J.L. Kadurugamuwa, J.S. Lam, and T.J. Beveridge, Antimicrob. Agents Chemother. 37:715-721, 1993). In order to separate the surface effect from protein synthesis in Pseudomonas aeruginosa PAO1, we chemically conjugated bovine serum albumin (BSA) to gentamicin, making the antibiotic too large to penetrate through the cell envelope to interact with the ribosomes of the cytoplasm. Furthermore, this BSA-gentamicin conjugate was also used to coat colloidal gold particles as a probe for electron microscopy to study the surface effect during antibiotic exposure. High-performance liquid chromatography confirmed the conjugation of the protein to the antibiotic. The conjugated gentamicin and BSA retained bactericidal activity and inhibited protein synthesis on isolated ribosomes in vitro but not on intact cells in vivo because of its exclusion from the cytoplasm. When reacted against the bacteria, numerous gentamicin-BSA-gold particles were clearly seen on the cell surfaces of whole mounts and thin sections of cells, while the cytoplasm was devoid of such particles. Disruption of the cell envelope was also observed since gentamicin-BSA and gentamicin-BSA-gold destabilized the outer membrane, evolved outer membrane blebs and vesicles, and formed holes in the cell surface. The morphological evidence suggests that the initial binding of the antibiotic disrupts the packing order of lipopolysaccharide of the outer membrane, which ultimately forms holes in the cell envelope and can lead to cell lysis. It is apparent that gentamicin has two potentially lethal effects on gram-negative cells, that resulting from inhibition of protein synthesis and that resulting from

  8. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  9. Pyochelin potentiates the inhibitory activity of gallium on Pseudomonas aeruginosa.

    PubMed

    Frangipani, Emanuela; Bonchi, Carlo; Minandri, Fabrizia; Imperi, Francesco; Visca, Paolo

    2014-09-01

    Gallium (Ga) is an iron mimetic that has successfully been repurposed for antibacterial chemotherapy. To improve the antibacterial potency of Ga on Pseudomonas aeruginosa, the effect of complexation with a variety of siderophores and synthetic chelators was tested. Ga complexed with the pyochelin siderophore (at a 1:2 ratio) was more efficient than Ga(NO3)3 in inhibiting P. aeruginosa growth, and its activity was dependent on increased Ga entrance into the cell through the pyochelin translocon. PMID:24957826

  10. Metallo‐beta‐lactamases among imipenem‐resistant Pseudomonas aeruginosa in a brazilian university hospital

    PubMed Central

    Franco, Maria Renata Gomes; Caiaffa‐Filho, Hélio Hehl; Burattini, Marcelo Nascimento; Rossi, Flávia

    2010-01-01

    INTRODUCTION: Imipenem‐resistant Pseudomonas aeruginosa resulting from metallo‐β‐lactamases has been reported to be an important cause of nosocomial infection and is a critical therapeutic problem worldwide, especially in the case of bacteremia. OBJECTIVES: To determine the frequency of metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa isolates and to compare methods of phenotypic and molecular detection. METHODS: During 2006, 69 imipenem‐resistant Pseudomonas aeruginosa samples were isolated from blood and tested for metallo‐β‐lactamase production using phenotypic methods. Minimal Inhibitory Concentratrions (MIC) (µg/mL) was determined with commercial microdilution panels. Pulsed Field Gel Electrophoresis (PFGE) was performed among metallo‐β‐lactamase producers. RESULTS: Of all the blood isolates, 34.5% were found to be imipenem‐resistant Pseudomonas aeruginosa. Positive phenotypic tests for metallo‐β‐lactamases ranged from 28%‐77%, and Polymerase Chain Reaction (PCR) were positive in 30% (of note, 81% of those samples were blaSPM‐1 and 19% were blaVIM‐2). Ethylenediamine tetracetic acid (EDTA) combinations for the detected enzymes had low kappa values; thus, care should be taken when use it as a phenotypic indicator of MBL. Despite a very resistant antibiogram, four isolates demonstrated the worrisome finding of a colistin MIC in the resistant range. PFGE showed a clonal pattern. CONCLUSION: Metallo‐β‐lactamases among imipenem‐resistant Pseudomonas aeruginosa were detected in 30.4% of imipenem‐resistant Pseudomonas aeruginosa isolates. This number might have been higher if other genes were included. SPM‐1 was the predominant enzyme found. Phenotypic tests with low kappa values could be misleading when testing for metallo‐β‐lactamases. Polymerase Chain Reaction detection remains the gold standard. PMID:21049207

  11. (1)H NMR spectroscopy in the diagnosis of Pseudomonas aeruginosa-induced urinary tract infection.

    PubMed

    Gupta, Ashish; Dwivedi, Mayank; Nagana Gowda, G A; Ayyagari, Archana; Mahdi, A A; Bhandari, M; Khetrapal, C L

    2005-08-01

    The utility of (1)H NMR spectroscopy is suggested and demonstrated for the diagnosis of Pseudomonas aeruginosa in urinary tract infection (UTI). The specific property of P. aeruginosa of metabolizing nicotinic acid to 6-hydroxynicotinic acid (6-OHNA) is exploited. The quantity of 6-OHNA produced correlates well with the viable bacterial count. Other common bacteria causing UTI such as Escherichia coli, Klebsiella pneumonia, Enterobacter aerogenes, Acinetobacter baumanii, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus gp B and Staphylococcus aureus do not metabolize nicotinic acid under similar conditions. The method provides a single-step documentation of P. aeruginosa qualitatively as well as quantitatively. The NMR method is demonstrated on urine samples from 30 patients with UTI caused by P. aeruginosa. PMID:15759292

  12. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  13. Production of Neisseria gonorrhoeae pili (fimbriae) in Pseudomonas aeruginosa.

    PubMed Central

    Hoyne, P A; Haas, R; Meyer, T F; Davies, J K; Elleman, T C

    1992-01-01

    Pseudomonas aeruginosa K/2PfS, when transformed with an expression plasmid harboring the pilin gene (pilE1) of Neisseria gonorrhoeae MS11, was able to express and assemble gonococcal pilin monomers into surface-associated pili, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and immunoelectron microscopy. Concomitant with the expression of gonococcal pili in P. aeruginosa was the virtual loss of production of P. aeruginosa K/2PfS pili normally associated with the host cell. Images PMID:1358873

  14. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    PubMed Central

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR. PMID:25597392

  15. Outbreak of hot-foot syndrome - caused by Pseudomonas aeruginosa.

    PubMed

    Michl, R K; Rusche, T; Grimm, S; Limpert, E; Beck, J F; Dost, A

    2012-07-01

    Infections with Pseudomonas aeruginosa can cause the hot-foot syndrome, presenting with painful plantar erythematous nodules. Particularly, the mechanically stressed areas of the foot are affected after contact with contaminated water from saunas, swimming pools, hot tubs, etc. We report an outbreak of hot-foot syndrome caused by Pseudomonas in 10 patients. The therapeutic regimens applied reached from local antiseptic therapy to systemic antibiotics. PMID:22187332

  16. Introduction of Pseudomonas aeruginosa into a Hospital via Vegetables

    PubMed Central

    Kominos, Spyros D.; Copeland, Charles E.; Grosiak, Barbara; Postic, Bosko

    1972-01-01

    Pseudomonas aeruginosa was isolated from tomatoes, radishes, celery, carrots, endive, cabbage, cucumbers, onions, and lettuce obtained from the kitchen of a general hospital, with tomatoes yielding both highest frequencies of isolation and highest counts. Presence of P. aeruginosa on the hands of kitchen personnel and cutting boards and knives which they used suggests acquisition of the organism through contact with these vegetables. It is estimated that a patient consuming an average portion of tomato salad might ingest as many as 5 × 103 colony-forming units of P. aeruginosa. Pyocine types of P. aeruginosa isolated from clinical specimens were frequently identical to those recovered from vegetables, thus implicating tomatoes and other vegetables as an important source and vehicle by which P. aeruginosa colonizes the intestinal tract of patients. PMID:4628795

  17. Identification of the Pseudomonas aeruginosa 1244 Pilin Glycosylation Site

    PubMed Central

    Comer, Jason E.; Marshall, Mark A.; Blanch, Vincent J.; Deal, Carolyn D.; Castric, Peter

    2002-01-01

    Previous work (P. Castric, F. J. Cassels, and R. W. Carlson, J. Biol. Chem. 276:26479-26485, 2001) has shown the Pseudomonas aeruginosa 1244 pilin glycan to be covalently bound to a serine residue. N-terminal sequencing of pilin fragments produced from endopeptidase treatment and identified by reaction with a glycan-specific monoclonal antibody indicated that the glycan was present between residue 75 and the pilin carboxy terminus. Further sequencing of these peptides revealed that serine residues 75, 81, 84, 105, 106, and 108 were not modified. Conversion of serine 148, but not serine 118, to alanine by site-directed mutagenesis, resulted in loss of the ability to carry out pilin glycosylation when tested in an in vivo system. These results showed the pilin glycan to be attached to residue 148, the carboxy-terminal amino acid. The carboxy-proximal portion of the pilin disulfide loop, which is adjacent to the pilin glycan, was found to be a major linear B-cell epitope, as determined by peptide epitope mapping analysis. Immunization of mice with pure pili produced antibodies that recognized the pilin glycan. These sera also reacted with P. aeruginosa 1244 lipopolysaccharide as measured by Western blotting and enzyme-linked immunosorbent assay. PMID:12010970

  18. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  19. Mucin Promotes Rapid Surface Motility in Pseudomonas aeruginosa

    PubMed Central

    Yeung, Amy T. Y.; Parayno, Alicia; Hancock, Robert E. W.

    2012-01-01

    ABSTRACT An important environmental factor that determines the mode of motility adopted by Pseudomonas aeruginosa is the viscosity of the medium, often provided by adjusting agar concentrations in vitro. However, the viscous gel-like property of the mucus layer that overlays epithelial surfaces is largely due to the glycoprotein mucin. P. aeruginosa is known to swim within 0.3% (wt/vol) agar and swarm on the surface at 0.5% (wt/vol) agar with amino acids as a weak nitrogen source. When physiological concentrations or as little as 0.05% (wt/vol) mucin was added to the swimming agar, in addition to swimming, P. aeruginosa was observed to undergo highly accelerated motility on the surface of the agar. The surface motility colonies in the presence of mucin appeared to be circular, with a bright green center surrounded by a thicker white edge. While intact flagella were required for the surface motility in the presence of mucin, type IV pili and rhamnolipid production were not. Replacement of mucin with other wetting agents indicated that the lubricant properties of mucin might contribute to the surface motility. Based on studies with mutants, the quorum-sensing systems (las and rhl) and the orphan autoinducer receptor QscR played important roles in this form of surface motility. Transcriptional analysis of cells taken from the motility zone revealed the upregulation of genes involved in virulence and resistance. Based on these results, we suggest that mucin may be promoting a new or highly modified form of surface motility, which we propose should be termed “surfing.” PMID:22550036

  20. An investigation of the well-water quality: immunosensor for pathogenic Pseudomonas aeruginosa detection based on antibody-modified poly(pyrrole-3 carboxylic acid) screen-printed carbon electrode.

    PubMed

    Bekir, Karima; Bousimma, Feriel; Barhoumi, Houcine; Fedhila, Kais; Maaref, Abderrazak; Bakhrouf, Amina; Ben Ouada, Hafedh; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Mansour, Hedi

    2015-12-01

    In this report, we describe a new immunosensor designed for the detection and the quantification of Pseudomonas aeruginosa bacteria in water. The developed biosensing system was based on the immobilization of purified polyclonal anti P. aeruginosa antibodies on electropolymerized poly(pyrrole-3-carboxylic acid)/glassy carbon electrode. The building of the immunosensor step by step was evaluated by electrochemical measurements such as cyclic voltammetry (CV) and impedance spectroscopy (EIS). The electrochemical signature of the immunosensor was established by the change of the charge transfer resistance when the bacteria suspended in solution became attached to the immobilized antibodies. As a result, stable and high sensitive impedimetric immunosensor was obtained with a sensitivity of 0.19 kΩ/decade defined in the linear range from 10(1) to 10(7) CFU/mL of cellular concentrations. A low detection limit was obtained for the P. aeruginosa bacteria and a high selectivity when other bacteria were occasioned as well as Escherichia coli. The developed immunosensor was applied in detecting pathogenic P. aeruginosa in well-water. PMID:26178830

  1. Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial modification of naturally occurring materials is one of the efficient ways to add new values to them. Hydroxylation of free unsaturated fatty acids by microorganism is a good example of those modifications. Among microbial strains studied for that purpose, a new bacterial isolate Pseudom...

  2. Elastase Deficiency Phenotype of Pseudomonas aeruginosa Canine Otitis Externa Isolates

    PubMed Central

    Petermann, Shana R.; Doetkott, Curt; Rust, Lynn

    2001-01-01

    Pseudomonas aeruginosa veterinary isolates were assayed for elastase and total matrix protease activity. The elastase activity of canine ear isolates was much less than that of strain PAO1 and that of all other veterinary isolates (P < 0.0001). The results indicate that canine ear isolates have a distinct elastase phenotype. PMID:11329471

  3. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa.

    PubMed

    Green, S K; Schroth, M N; Cho, J J; Kominos, S K; Vitanza-jack, V B

    1974-12-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  4. Agricultural Plants and Soil as a Reservoir for Pseudomonas aeruginosa

    PubMed Central

    Green, Sylvia K.; Schroth, Milton N.; Cho, John J.; Kominos, Spyros D.; Vitanza-Jack, Vilma B.

    1974-01-01

    Pseudomonas aeruginosa was detected in 24% of the soil samples but in only 0.13% of the vegetable samples from various agricultural areas of California. The distribution of pyocin types of soil and vegetable isolates was similar to that of clinical strains, and three of the soil isolates were resistant to carbenicillin. Pseudomonas aeruginosa multiplied in lettuce and bean under conditions of high temperature and high relative humidity (27 C and 80-95% relative humidity) but declined when the temperature and humidity were lowered (16 C, 55-75% relative humidity). The results suggest that soil is a reservior for P. aeruginosa and that the bacterium has the capacity to colonize plants during favorable conditions of temperature and moisture. PMID:4217591

  5. Interspecies Interaction between Pseudomonas aeruginosa and Other Microorganisms

    PubMed Central

    Tashiro, Yosuke; Yawata, Yutaka; Toyofuku, Masanori; Uchiyama, Hiroo; Nomura, Nobuhiko

    2013-01-01

    Microbes interact with each other in multicellular communities and this interaction enables certain microorganisms to survive in various environments. Pseudomonas aeruginosa is a highly adaptable bacterium that ubiquitously inhabits diverse environments including soil, marine habitats, plants and animals. Behind this adaptivity, P. aeruginosa has abilities not only to outcompete others but also to communicate with each other to develop a multispecies community. In this review, we focus on how P. aeruginosa interacts with other microorganisms. P. aeruginosa secretes antimicrobial chemicals to compete and signal molecules to cooperate with other organisms. In other cases, it directly conveys antimicrobial enzymes to other bacteria using the Type VI secretion system (T6SS) or membrane vesicles (MVs). Quorum sensing is a central regulatory system used to exert their ability including antimicrobial effects and cooperation with other microbes. At least three quorum sensing systems are found in P. aeruginosa, Las, Rhl and Pseudomonas quinolone signal (PQS) systems. These quorum-sensing systems control the synthesis of extracellular antimicrobial chemicals as well as interaction with other organisms via T6SS or MVs. In addition, we explain the potential of microbial interaction analysis using several micro devices, which would bring fresh sensitivity to the study of interspecies interaction between P. aeruginosa and other organisms. PMID:23363620

  6. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation. PMID:26866757

  7. Expression of pili from Bacteroides nodosus in Pseudomonas aeruginosa.

    PubMed Central

    Elleman, T C; Hoyne, P A; Stewart, D J; McKern, N M; Peterson, J E

    1986-01-01

    The pili of Bacteroides nodosus, the causative agent of ovine footrot, constitute the major host-protective immunogen against homologous serotypic challenge. The pilin gene from B. nodosus 198 has been cloned and morphologically expressed as extracellular pili in Pseudomonas aeruginosa by using a plasmid-borne, thermoregulated expression system. B. nodosus pilin could not be detected in cultures of P. aeruginosa grown at 32 degrees C, but after induction at 37 degrees C, B. nodosus pili were expressed on the cell surface of P. aeruginosa to the virtual exclusion of the host cell pili. Pili harvested from induced P. aeruginosa cultures were used to immunize sheep against footrot. The serum agglutinating antibody titers of vaccinated sheep were comparable to those of sheep receiving pili from B. nodosus. Subsequent challenge of the sheep with B. nodosus 198 indicated that the recombinant- DNA-derived pili vaccine and the B. nodosus pili vaccine provided similar levels of protection against footrot. Images PMID:2877967

  8. Suppression of fungal growth exhibited by Pseudomonas aeruginosa.

    PubMed Central

    Kerr, J R

    1994-01-01

    Three surgery patients were monitored postoperatively, with particular reference to lung infection. In each case there was a clinical impression that Pseudomonas aeruginosa suppressed the growth of Candida albicans in patients with clinically significant lung infections from whom both of these organisms were isolated from serial sputum samples. Regrowth of C. albicans after P. aeruginosa eradication occurred in two patients, despite fluconazole therapy, to which both C. albicans isolates were susceptible. In all three patients, the strain of P. aeruginosa was found to inhibit the growth of the corresponding C. albicans strain in vitro. Further in vitro susceptibility studies revealed significant inhibition by 10 strains of P. aeruginosa of 11 strains of fungi known to infect humans; these were Candida krusei, Candida keyfr, Candida guillermondii, Candida tropicalis, Candida lusitaniae, Candida parapsilosis, Candida pseudotropicalis, Candida albicans, Torulopsis glabrata, Saccharomyces cerevisiae, and Aspergillus fumigatus. PMID:8150966

  9. Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa.

    PubMed

    Reimmann, C; Serino, L; Beyeler, M; Haas, D

    1998-11-01

    The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa. PMID:9846750

  10. Proteomic analysis of keratitis-associated Pseudomonas aeruginosa

    PubMed Central

    Sewell, Abby; Dunmire, Jeffrey; Wehmann, Michael; Rowe, Theresa

    2014-01-01

    Purpose To compare the proteomic profile of a clinical isolate of Pseudomonas aeruginosa (P. aeruginosa) obtained from an infected cornea of a contact lens wearer and the laboratory strain P. aeruginosa ATCC 10145. Methods Antibiotic sensitivity, motility, biofilm formation, and virulence tests were performed using standard methods. Whole protein lysates were analyzed with liquid chromatography/ tandem mass spectrometry (LC-MS/MS) in triplicate, and relative protein abundances were determined with spectral counting. The G test followed by a post hoc Holm-Sidak adjustment was used for the statistical analyses to determine significance in the differential expression of proteins between the two strains. Results A total of 687 proteins were detected. One-hundred thirty-three (133) proteins were significantly different between the two strains. Among these, 13 were upregulated, and 16 were downregulated in the clinical strain compared to ATCC 10145, whereas 57 were detected only in the clinical strain. The upregulated proteins are associated with virulence and pathogenicity. Conclusions Proteins detected at higher levels in the clinical strain of P. aeruginosa were proteins known to be virulence factors. These results confirm that the keratitis-associated P. aeruginosa strain is pathogenic and expresses a higher number of virulence factors compared to the laboratory strain ATCC 10145. Identification of the protein profile of the corneal strain of P. aeruginosa in this study will aid in elucidating novel intervention strategies for reducing the burden of P. aeruginosa infection in keratitis. PMID:25221424

  11. Pseudomonas aeruginosa colonization in patients with spinal cord injuries.

    PubMed Central

    Gilmore, D S; Bruce, S K; Jimenez, E M; Schick, D G; Morrow, J W; Montgomerie, J Z

    1982-01-01

    The prevalence of Pseudomonas aeruginosa colonization of patients with spinal cord injury was studied annually from 1976 to 1980. The urethra, perineum, rectum, drainage bag, and urine of patients on the spinal cord injury service were cultured. A total of 224 men and 32 women were studied. Most patients were managed with an external urinary collection system or padding, with or without intermittent catheterization. P. aeruginosa was cultured from one or more body sites (urethra, perineum, or rectum) in 65% of men and 18% of women. Drainage bags on the beds were frequently colonized with P. aeruginosa (73%). Significant bacteriuria with P. aeruginosa was present in 19% of the men and 13% of the women. P. aeruginosa colonization of body sites in men was closely associated with the use of an external urinary collection system. Significantly greater urethral and perineal colonization was found in men using an external urinary collection system. P. aeruginosa serotype 11 was the predominant serotype for the first 3 years, and the number of patients colonized with serotype 11 increased with length of hospital stay. The prevalence of serotype 11 significantly decreased in the last 2 years. The antibiotic susceptibility of the strains of P. aeruginosa isolated from these patients did not change in the 5 years, except that there was increasing susceptibility to carbenicillin in later years. This increasing susceptibility to carbenicillin was a reflection of a decreased prevalence of serotype 11 in these patients, since serotype 11 was more resistant than other serotypes to carbenicillin. PMID:6818251

  12. Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia

    PubMed Central

    Albrecht, Mark T; Wang, Wei; Shamova, Olga; Lehrer, Robert I; Schiller, Neal L

    2002-01-01

    Background Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia. Methods The PG-1 sensitivity/resistance and PG-1 binding properties of P. aeruginosa and B. cepacia were assessed using radial diffusion assays, radioiodinated PG-1, and surface plasmon resonance (BiaCore). Results The six P. aeruginosa strains examined were very sensitive to PG-1, exhibiting minimal active concentrations from 0.0625–0.5 μg/ml in radial diffusion assays. In contrast, all five B. cepacia strains examined were greater than 10-fold to 100-fold more resistant, with minimal active concentrations ranging from 6–10 μg/ml. When incubated with a radioiodinated variant of PG-1, a sensitive P. aeruginosa strain bound considerably more protegrin molecules per cell than a resistant B. cepacia strain. Binding/diffusion and surface plasmon resonance assays revealed that isolated lipopolysaccharide (LPS) and lipid A from the sensitive P. aeruginosa strains bound PG-1 more effectively than LPS and lipid A from resistant B. cepacia strains. Conclusion These findings support the hypothesis that the relative resistance of B. cepacia to protegrin is due to a reduced number of PG-1 binding sites on the lipid A moiety of its LPS. PMID:11980587

  13. Influence of zinc on Pseudomonas aeruginosa susceptibilities to imipenem.

    PubMed Central

    Cooper, G L; Louie, A; Baltch, A L; Chu, R C; Smith, R P; Ritz, W J; Michelsen, P

    1993-01-01

    Serial dilution susceptibility testing of imipenem against 59 clinical isolates of Pseudomonas aeruginosa, conducted simultaneously on single lots of Difco and BBL Mueller-Hinton agar (MHA), resulted in MICs for 90% of strains tested of 8 and 16 micrograms/ml, respectively. MICs for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas spp. were also higher on BBL MHA. Quantification of the cation content of the two MHAs by atomic absorption spectroscopy demonstrated that the zinc concentration in BBL MHA was 15 times greater than that measured in Difco MHA (2.61 and 0.17 micrograms/ml, respectively). Concentrations of calcium, magnesium, iron, manganese, and copper in the two agars were similar. Addition of zinc to Difco MHA resulted in increases in MICs of imipenem for P. aeruginosa but not in the MICs of ceftazidime or cefpirome for P. aeruginosa (P < 0.01). A lesser zinc effect was seen on the activity of imipenem against E. coli, K. pneumoniae, and Pseudomonas spp. The activities of ceftazidime and cefpirome were similar on both MHAs when tested against all gram-negative organisms in this study. Thus, the effect of zinc in MHA was clearly demonstrated by a significant increase in the MICs of imipenem for P. aeruginosa, and, to a lesser extent, for other gram-negative bacilli. PMID:8408557

  14. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.

    PubMed

    Cipollone, Rita; Frangipani, Emanuela; Tiburzi, Federica; Imperi, Francesco; Ascenzi, Paolo; Visca, Paolo

    2007-01-01

    Cyanide is a serious environmental pollutant and a biocontrol metabolite in plant growth-promoting Pseudomonas species. Here we report on the presence of multiple sulfurtransferases in the cyanogenic bacterium Pseudomonas aeruginosa PAO1 and investigate in detail RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) which converts cyanide to less toxic thiocyanate. RhdA is a cytoplasmic enzyme acting as the principal rhodanese in P. aeruginosa. The rhdA gene forms a transcriptional unit with the PA4955 and psd genes and is controlled by two promoters located upstream of PA4955 and rhdA. Both promoters direct constitutive RhdA expression and show similar patterns of activity, involving moderate down-regulation at the stationary phase or in the presence of exogenous cyanide. We previously observed that RhdA overproduction protects Escherichia coli against cyanide toxicity, and here we show that physiological RhdA levels contribute to P. aeruginosa survival under cyanogenic conditions. The growth of a DeltarhdA mutant is impaired under cyanogenic conditions and fully restored upon complementation with rhdA. Wild-type P. aeruginosa outcompetes the DeltarhdA mutant in cyanogenic coculture assays. Hence, RhdA could be regarded as an effector of P. aeruginosa intrinsic resistance to cyanide, insofar as it provides the bacterium with a defense mechanism against endogenous cyanide toxicity, in addition to cyanide-resistant respiration. PMID:17098912

  15. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    SciTech Connect

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  16. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization].

    PubMed

    Balko, O B; Avdieieva, L V

    2010-01-01

    Peculiarities of the structural organization of bacterial biofilm during its formation and disintegration have been investigated on the model of Pseudomonas aeruginosa UCM B-900 (ATCC 9027). It was shown, that development of the biofilm in a stationary system on glass was a two-vector process with changes in time and space. P. aeruginosa UCM B-900 biofilm is formed from single cells, passes through the stages of base components, net structure, islands and comes to the end with integration into a complete monolayer. The biofilm degradation repeats the stages of its formation in the reverse sequence. PMID:20812507

  17. Cell-to-cell signaling and Pseudomonas aeruginosa infections.

    PubMed Central

    Van Delden, C.; Iglewski, B. H.

    1998-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. Cell-to-cell signaling systems control the expression and allow a coordinated, cell-density-dependent production of many extracellular virulence factors. We discuss the possible role of cell-to-cell signaling in the pathogenesis of P. aeruginosa infections and present a rationale for targeting cell-to-cell signaling systems in the development of new therapeutic approaches. PMID:9866731

  18. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  19. Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzeri to antibacterial agents

    PubMed Central

    Russell, A. D.; Mills, A. P.

    1974-01-01

    A comparison has been made of the sensitivities to various antibiotic and non-antibiotic substances of some strains of Pseudomonas aeruginosa and P. stutzeri, the latter including strains isolated from eye and other cosmetic products and from other sources. Whereas P. aeruginosa strains showed a high resistance to cetrimide and to benzalkonium chloride, the P. stutzeri strains were generally more sensitive to these and to chlorhexidine. The P. stutzeri strains were also more sensitive to the various antibiotics tested. The loss of the ability to transfer an R factor by two strains of P. aeruginosa caused no significant change in their drug sensitivity pattern. PMID:4369876

  20. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  1. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections.

    PubMed

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  2. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Kumari, Hansi; Mathee, Kalai

    2013-01-01

    Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies. PMID:23143271

  3. ZnuA and zinc homeostasis in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Begg, Stephanie L.; Ween, Miranda P.; McAllister, Lauren J.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and a clinically significant opportunistic human pathogen. Central to the ability of P. aeruginosa to colonise both environmental and host niches is the acquisition of zinc. Here we show that P. aeruginosa PAO1 acquires zinc via an ATP-binding cassette (ABC) permease in which ZnuA is the high affinity, zinc-specific binding protein. Zinc uptake in Gram-negative organisms predominantly occurs via an ABC permease, and consistent with this expectation a P. aeruginosa ΔznuA mutant strain showed an ~60% reduction in cellular zinc accumulation, while other metal ions were essentially unaffected. Despite the major reduction in zinc accumulation, minimal phenotypic differences were observed between the wild-type and ΔznuA mutant strains. However, the effect of zinc limitation on the transcriptome of P. aeruginosa PAO1 revealed significant changes in gene expression that enable adaptation to low-zinc conditions. Genes significantly up-regulated included non-zinc-requiring paralogs of zinc-dependent proteins and a number of novel import pathways associated with zinc acquisition. Collectively, this study provides new insight into the acquisition of zinc by P. aeruginosa PAO1, revealing a hitherto unrecognized complexity in zinc homeostasis that enables the bacterium to survive under zinc limitation. PMID:26290475

  4. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa

    PubMed Central

    Calfee, M. Worth; Coleman, James P.; Pesci, Everett C.

    2001-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that controls numerous virulence factors through intercellular signals. This bacterium has two quorum-sensing systems (las and rhl), which act through the intercellular signals N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and N-butyryl-l-homoserine lactone (C4-HSL), respectively. P. aeruginosa also produces a third intercellular signal that is involved in virulence factor regulation. This signal, 2-heptyl-3-hydroxy-4-quinolone [referred to as the Pseudomonas quinolone signal (PQS)], is a secondary metabolite that is part of the P. aeruginosa quorum-sensing hierarchy. PQS can induce both lasB (encodes LasB elastase) and rhlI (encodes the C4-HSL synthase) in P. aeruginosa and is produced maximally during the late stationary phase of growth. Because PQS is an intercellular signal that is part of the quorum-sensing hierarchy and controls multiple virulence factors, we began basic studies designed to elucidate its biosynthetic pathway. First, we present data that strongly suggest that anthranilate is a precursor for PQS. P. aeruginosa converted radiolabeled anthranilate into radioactive PQS, which was bioactive. We also found that an anthranilate analog (methyl anthranilate) would inhibit the production of PQS. This analog was then shown to have a major negative effect on elastase production by P. aeruginosa. These data provide evidence that precursors of intercellular signals may provide viable targets for the development of therapeutic treatments that will reduce P. aeruginosa virulence. PMID:11573001

  5. Is levofloxacin as active as ciprofloxacin against Pseudomonas aeruginosa?

    PubMed

    Bonfiglio, G

    2001-01-01

    The in vitro activity of levofloxacin against 300 Pseudomonas aeruginosa isolated from hospitalized patients, with the exception of those recovered in intensive care or hematology units, was compared to ofloxacin, ciprofloxacin, piperacillin, amikacin, ceftazidime and imipenem. Imipenem showed the best activity (81.6%), followed by piperacillin (80.7%). The activity of levofloxacin was equal to that of ciprofloxacin (75.3%) but was more active than ofloxacin (58.1%). Moreover, the MIC values of levofloxacin did not show any statistical difference using two different inocula. Levofloxacin shows an excellent bactericidal activity being generally within one doubling dilution of the MIC. These results were also confirmed by the time-killing studies. In conclusion, according to the in vitro activity, levofloxacin could be considered a good option for the treatment of infections sustained by Pseudomonas aeruginosa, and clinical experiments are required to corroborate our in vitro data. PMID:11399859

  6. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species. PMID:19942379

  7. [Phlegmonous gastritis. Report of a case induced by Pseudomonas aeruginosa].

    PubMed

    Ramos Jiménez, F A; Arocena Cedrón, M G; Goikoetxea Artola, J M; Lázaro Aramburu, S; Múgica Barreiros, P

    1992-06-01

    The authors present a case of phlegmonous gastritis in a 65 year old patient. The diagnosis was made in the operating room and the treatment was conservative; no gastric resection was done. This clinical entity is interesting because it is a least frequent pathology, the pathogenic bacteria which was the cause (Pseudomona aeruginosa) has at this time not been reported in the literature, including the favorable outcome of the patient without gastric resection. PMID:1633018

  8. Monoclonal antibodies to Pseudomonas aeruginosa ferripyochelin-binding protein.

    PubMed Central

    Sokol, P A; Woods, D E

    1986-01-01

    Hybridomas secreting specific monoclonal antibodies against the Pseudomonas aeruginosa ferripyochelin-binding protein (FBP) were isolated. These monoclonal antibodies reacted with FBP in immunoblots of outer membrane preparations from all serotypes of P. aeruginosa. Two of the monoclonal antibodies also reacted with FBP in strains of P. putida, P. fluorescens, and P. stutzeri. These antibodies did not react with outer membranes of P. cepacia, "P. multivorans," P. maltophilia, or other gram-negative organisms. The monoclonal antibodies were opsonophagocytic and blocked the binding of [59Fe]ferripyochelin to isolated outer membranes of strain PAO. By indirect immunofluorescence techniques, the monoclonal antibodies were used to demonstrate that FBP is present on the cell surface of P. aeruginosa cells grown in low-iron but not high-iron medium. These observations were confirmed by using 125I in surface-labeling techniques. Images PMID:3091506

  9. Singly Flagellated Pseudomonas aeruginosa Chemotaxes Efficiently by Unbiased Motor Regulation

    PubMed Central

    Cai, Qiuxian; Li, Zhaojun; Ouyang, Qi

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that has long been known to chemotax. More recently, it has been established that chemotaxis is an important factor in the ability of P. aeruginosa to make biofilms. Genes that allow P. aeruginosa to chemotax are homologous with genes in the paradigmatic model organism for chemotaxis, Escherichia coli. However, P. aeruginosa is singly flagellated and E. coli has multiple flagella. Therefore, the regulation of counterclockwise/clockwise flagellar motor bias that allows E. coli to efficiently chemotax by runs and tumbles would lead to inefficient chemotaxis by P. aeruginosa, as half of a randomly oriented population would respond to a chemoattractant gradient in the wrong sense. How P. aeruginosa regulates flagellar rotation to achieve chemotaxis is not known. Here, we analyze the swimming trajectories of single cells in microfluidic channels and the rotations of cells tethered by their flagella to the surface of a variable-environment flow cell. We show that P. aeruginosa chemotaxes by symmetrically increasing the durations of both counterclockwise and clockwise flagellar rotations when swimming up the chemoattractant gradient and symmetrically decreasing rotation durations when swimming down the chemoattractant gradient. Unlike the case for E. coli, the counterclockwise/clockwise bias stays constant for P. aeruginosa. We describe P. aeruginosa’s chemotaxis using an analytical model for symmetric motor regulation. We use this model to do simulations that show that, given P. aeruginosa’s physiological constraints on motility, its distinct, symmetric regulation of motor switching optimizes chemotaxis. PMID:27048795

  10. MexXY multidrug efflux system of Pseudomonas aeruginosa

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention. PMID:23233851

  11. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    PubMed

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal. PMID:26874276

  12. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  13. Full virulence of Pseudomonas aeruginosa requires OprF.

    PubMed

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G J; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-03-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  14. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard

    2015-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid l-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. PMID:26552982

  15. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    SciTech Connect

    Saiman, L.; Cacalano, G.; Prince, A. )

    1990-08-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment.

  16. Effect of lipid and fatty acid composition of phospholipid vesicles on long-term stability and their response to Staphylococcus aureus and Pseudomonas aeruginosa supernatants.

    PubMed

    Marshall, Serena E; Hong, Sung-Ha; Thet, N T; Jenkins, A Toby A

    2013-06-11

    Phospholipid vesicles have been the focus of attention as potential vehicles for drug delivery, as they are biomimetic, easy to produce, and contain an aqueous compartment which can be used to carry hydrophilic material, such as drugs or dyes. Lipid vesicles used for this purpose present a particular challenge, as they are not especially stable and can rapidly break down and release their contents away from the target area, especially at physiological temperatures/environments. This study aims to investigate optimum methods for vesicle stabilization where the vesicles are employed as part of a system or technology that signals the presence of pathogenic bacteria via the effect of secreted cytolytic virulence factors on a sensor interface. A number of approaches have been investigated and are presented here as a systematic study of the long-term (14 day) stability at 37 °C, and at various pHs. The response of vesicles, both in suspension and within hydrogels, to Staphylococcus aureus (RN 4282) and Pseudomonas aeruginosa (PAO1) whole bacteria, and supernatants from overnight cultures of both (containing secreted proteins but free of cells), was measured via a sensitive encapsulated carboxyfluorescein release assay. The results showed that lipid chain length, cholesterol concentration, and stabilization via photopolymer stable components were critical in achieving stability. Finally, dispersion of the optimum vesicle formulation in hydrogel matrixes was investigated, culminating in the in vivo demonstration of a simple prototype wound dressing. PMID:23668367

  17. Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa.

    PubMed

    Petit, Stéphanie M-C; Lavenir, Raphaël; Colinon-Dupuich, Céline; Boukerb, Amine M; Cholley, Pascal; Bertrand, Xavier; Freney, Jean; Doléans-Jordheim, Anne; Nazaret, Sylvie; Laurent, Frédéric; Cournoyer, Benoit

    2013-10-01

    The significance of wastewater treatment lagoons (WWTLs) as point sources of clinically relevant Pseudomonas aeruginosa that can disseminate through rural and peri-urban catchments was investigated. A panel of P. aeruginosa strains collected over three years from WWTLs and community-acquired infections was compared by pulsed field gel electrophoresis (PFGE) DNA fingerprinting and multilocus sequence typing (MLST). Forty-four distantly related PFGE profiles and four clonal complexes were found among the WWTL strains analyzed. Some genotypes were repeatedly detected from different parts of WWTLs, including the influent, suggesting an ability to migrate and persist over time. MLST showed all investigated lineages to match sequence types described in other countries and strains from major clinical clones such as PA14 of ST253 and "C" of ST17 were observed. Some of these genotypes matched isolates from community-acquired infections recorded in the WWTL geographic area. Most WWTL strains harbored the main P. aeruginosa virulence genes; 13% harbored exoU-encoded cytoxins, but on at least six different genomic islands, with some of these showing signs of genomic instability. P. aeruginosa appeared to be highly successful opportunistic colonizers of WWTLs. Lagooning of wastewaters was found to favor dissemination of clinically relevant P. aeruginosa among peri-urban watersheds. PMID:23792168

  18. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa.

    PubMed

    Sawa, Teiji; Ito, Emi; Nguyen, Vinh Huu; Haight, Matthew

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes fatal acute lung infections in critically ill individuals. Its pathogenesis is associated with bacterial virulence conferred by the type III secretion system (TTSS), through which P. aeruginosa causes necrosis of the lung epithelium and disseminates into the circulation, resulting in bacteremia, sepsis, and mortality. TTSS allows P. aeruginosa to directly translocate cytotoxins into eukaryotic cells, inducing cell death. The P. aeruginosa V-antigen PcrV, a homolog of the Yersinia V-antigen LcrV, is an indispensable contributor to TTS toxin translocation. Vaccination against PcrV ensures the survival of challenged mice and decreases lung inflammation and injury. Both the rabbit polyclonal anti-PcrV antibody and the murine monoclonal anti-PcrV antibody, mAb166, inhibit TTS toxin translocation. mAb166 IgG was cloned, and a molecular engineered humanized anti-PcrV IgG antigen-binding fragment, KB001, was developed for clinical use. KB001 is currently undergoing Phase-II clinical trials for ventilator-associated pneumonia in France and chronic pneumonia in cystic fibrosis in USA. In these studies, KB001 has demonstrated its safety, a favorable pharmacokinetic profile, and promising potential as a nonantibiotic strategy to reduce airway inflammation and damage in P. aeruginosa pneumonia. PMID:25483637

  19. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGESBeta

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  20. A Network Biology Approach to Denitrification in Pseudomonas aeruginosa

    PubMed Central

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  1. Update on the treatment of Pseudomonas aeruginosa pneumonia.

    PubMed

    El Solh, Ali A; Alhajhusain, Ahmad

    2009-08-01

    Pseudomonas aeruginosa is an important cause of nosocomial pneumonia associated with a high morbidity and mortality rate. This bacterium expresses a variety of factors that confer resistance to a broad array of antimicrobial agents. Empirical antibiotic therapy is often inadequate because cultures from initial specimens grow strains that are resistant to initial antibiotics. Surveillance data, hospital antibiogram and individualization of regimens based on prior antibiotic use may reduce the risk of inadequate therapy. The use of combination therapies for P. aeruginosa pneumonia has been a long-advocated practice, but the potential increased value of combination therapy over monotherapy remains controversial. Doripenem and biapenem are new carbapenems that have excellent activity against P. aeruginosa; however, they lack activity against strains that express resistance to the currently available carbapenems. The polymyxins remain the most consistently effective agents against multidrug-resistant P. aeruginosa. Strains that are panantibiotic-resistant are rare, but their incidence is increasing. Antibiotic combinations that yield some degree of susceptibility in vitro are the recourse, although the efficacy of these regimens has yet to be established in clinical studies. Experimental polypeptides may provide a new therapeutic approach. Among these, the anti-PcrV immunoglobulin G antibody that blocks the type III secretion system-mediated virulence of P. aeruginosa has recently entered Phase I/II clinical trials. PMID:19520717

  2. Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice

    PubMed Central

    Facchini, Marcella; De Fino, Ida; Riva, Camilla; Bragonzi, Alessandra

    2014-01-01

    A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies. PMID:24686327

  3. A network biology approach to denitrification in Pseudomonas aeruginosa.

    PubMed

    Arat, Seda; Bullerjahn, George S; Laubenbacher, Reinhard

    2015-01-01

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide. PMID:25706405

  4. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  5. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  6. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide

    PubMed Central

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element. PMID:25494332

  7. [Pseudomonas aeruginosa colonisation in bronchiectatic patients and clinical reflections].

    PubMed

    Kömüs, Nuray; Tertemiz, Kemal Can; Akkoçlu, Atila; Gülay, Zeynep; Yilmaz, Erkan

    2006-01-01

    Bronchiectasis is characterized with irreversible dilatation according to destruction of epithelium, elastic and muscular layer. Most important cause of bronchiectasis is chronic bacterial infections. Pseudomonas aeruginosa colonisation is frequently seen in bronchiectatic patients. We aimed to find out P. aeruginosa colonisation frequency and clinical, radiological and spirometric reflections due to colonisation. We analysed 83 cases retrospectively. Mean age was 58.2 and 54.2% of them were female. Bronchiectasis were localised 19.3% in left lung, 19.3% right and 61.4% bilaterally. 29 (35.8%) normal, 28 (34.6%) obstructive, 7 (8.6%) restrictive, 17 (21%) mixed type disorders are detected in spirometric measures. Sputum culture performed in 50 cases. No microorganism colonisation determined in 30 (60%) cases, P. aeruginosa colonisation 16 (32%), Haemophilus influenzae 2 (4%), 1 (2%) Streptococcus pneumoniae and Proteus mirabilis 1 (2%) cases. P. aeruginosa colonisation determined more frequent in males (p<0.05). No significant correlation detected between colonisation and age or smoking habits (p>0.05). In cases with colonisation; clubbing and hemoptysis were significantly frequent (p<0.05). Only peribronchial thickening was significantly correlated with colonisation in radiological findings (p<0.05). In blood gase analysis PaO2, oxygen saturation were lower and PaCO2 higher in cases colonised with P. aeruginosa but it was not statisticaly significant (p>0.05). Hospitalization rate was higher in P. aeruginosa colonised cases (p>0.05). It is an important problem about mortality because of higher hemoptysis and hospitalisation requirement rate in P. aeruginosa colonised cases. PMID:17203422

  8. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  9. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy. PMID:26785289

  10. Insights into Mechanisms and Proteomic Characterisation of Pseudomonas aeruginosa Adaptation to a Novel Antimicrobial Substance

    PubMed Central

    Cierniak, Peter; Jübner, Martin; Müller, Stefan; Bender, Katja

    2013-01-01

    Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements. PMID:23869205

  11. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  12. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa

    PubMed Central

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  13. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa.

    PubMed

    Lee, Ji-Young; Park, Young Kyoung; Chung, Eun Seon; Na, In Young; Ko, Kwan Soo

    2016-01-01

    The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics. PMID:27150578

  14. Purification, crystallization and preliminary crystallographic analysis of the ligand-binding regions of the PctA and PctB chemoreceptors from Pseudomonas aeruginosa in complex with amino acids

    PubMed Central

    Rico-Jiménez, Miriam; Muñoz-Martínez, Francisco; Krell, Tino; Gavira, Jose A.; Pineda-Molina, Estela

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and one of the major model organisms for the study of chemotaxis. The bacterium harbours 26 genes encoding chemoreceptors, most of which have not been annotated with a function. The paralogous chemoreceptors PctA and PctB (Pseudomonas chemotactic transducer A and B) were found to mediate chemotaxis towards l-amino acids. However, the ligand spectrum of the receptors is quite different since the recombinant ligand-binding region (LBR) of PctA binds 17 different l-­amino acids whereas that of PctB recognizes only five. To determine the molecular basis underlying this ligand specificity, PctA-LBR and PctB-LBR have been purified and crystals have been produced after pre-incubation with l-­Ile and l-Arg, respectively. Initial crystallization conditions have been identified by the counter-diffusion method and X-ray data have been collected at 2.5 Å (PctA-LBR bound to l-Ile) and 3.14 Å (PctB-LBR bound to l-Arg) resolution. Crystals belonged to space groups P212121 and P3121, with unit-cell parameters a = 72.2, b = 78.5, c = 116.6 Å and a = b = 111.6, c = 117.4, respectively, for PctA-LBR and PctB-LBR. Molecular-replacement methods will be pursued for structural determination. PMID:24316847

  15. The Pseudomonas aeruginosa Lipid A Deacylase: Selection for Expression and Loss within the Cystic Fibrosis Airway

    PubMed Central

    Ernst, Robert K.; Adams, Kristin N.; Moskowitz, Samuel M.; Kraig, Gretchen M.; Kawasaki, Kiyoshi; Stead, Christopher M.; Trent, M. Stephen; Miller, Samuel I.

    2006-01-01

    Lipopolysaccharide (LPS) is the major surface component of gram-negative bacteria, and a component of LPS, lipid A, is recognized by the innate immune system through the Toll-like receptor 4/MD-2 complex. Pseudomonas aeruginosa, an environmental gram-negative bacterium that opportunistically infects the respiratory tracts of patients with cystic fibrosis (CF), can synthesize various structures of lipid A. Lipid A from P. aeruginosa strains isolated from infants with CF has a specific structure that includes the removal of the 3 position 3-OH C10 fatty acid. Here we demonstrate increased expression of the P. aeruginosa lipid A 3-O-deacylase (PagL) in isolates from CF infants compared to that in environmental isolates. PagL activity was increased in environmental isolates by growth in medium limited for magnesium and decreased by growth at low temperature in laboratory-adapted strains of P. aeruginosa. P. aeruginosa PagL was shown to be an outer membrane protein by isopycnic density gradient centrifugation. Heterologous expression of P. aeruginosa pagL in Salmonella enterica serovar Typhimurium and Escherichia coli resulted in removal of the 3-OH C14 fatty acid from lipid A, indicating that P. aeruginosa PagL recognizes either 3-OH C10 or 3-OH C14. Finally, deacylated lipid A species were not observed in some clinical P. aeruginosa isolates from patients with severe pulmonary disease, suggesting that loss of PagL function can occur during long-term adaptation to the CF airway. PMID:16352835

  16. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm

    PubMed Central

    Sauer, Karin; Camper, Anne K.; Ehrlich, Garth D.; Costerton, J. William; Davies, David G.

    2002-01-01

    Complementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for two-dimensional electrophoretic analysis and protein identification in chemostat and continuous-culture biofilm-grown populations. Using these approaches, we characterized five stages of biofilm development: (i) reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. Biofilm cells were shown to change regulation of motility, alginate production, and quorum sensing during the process of development. The average difference in detectable protein regulation between each of the five stages of development was 35% (approximately 525 proteins). When planktonic cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a sixfold or greater change in expression level (over 50% of the proteome). This difference was higher than when planktonic P. aeruginosa were compared with planktonic cultures of Pseudomonas putida. Las quorum sensing was shown to play no role in early biofilm development but was important in later stages. Biofilm cells in the dispersion stage were more similar to planktonic bacteria than to maturation-2 stage bacteria. These results demonstrate that P. aeruginosa displays multiple phenotypes during biofilm development and that knowledge of stage-specific physiology may be important in detecting and controlling biofilm growth. PMID:11807075

  17. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  18. Production of Quorum Sensing Inhibitors in Growing Onion Bulbs Infected with Pseudomonas aeruginosa E (HQ324110)

    PubMed Central

    Abd-Alla, Mohamed H.; Bashandy, Shymaa R.

    2012-01-01

    Eighteen organic compounds were present in growing onion bulbs cultivar Giza 6 infected with P. aeruginosa, but only fourteen of them are present in dry infected onion bulbs; however, four compounds were missing in dry onion. The missing compounds in dry infected onion bulbs are pantolactone, 4,5-dihydro-4,5-dimethylfuran-2(3H)-one, myristic acid, and linoleic acid. All of them were detected in growing onion (living cell) during Pseudomonas aeruginosa infection, and it is hypothesized that it may be produced by plants and act as defence system. Pantolactone and myristic acid were selected to explore their effects on growth and virulence factors of Pseudomonas aeruginosa. Exogenous application of pantolactone and myristic acid significantly inhibited pyocyanin production, protease, and lipase and polygalacturonase activity but did not have any significant effects on bacterial growth. The inhibition of virulence factors without reduction in bacterial growth may be providing strong support that these chemical molecules are general quorum sensing inhibitors than an antibacterial effect. Disruption of quorum sensing of pathogen indicates that this new approach has potential in fighting bacterial infections in human and plants. PMID:23724316

  19. Polyclonal and monoclonal antibody therapy for experimental Pseudomonas aeruginosa pneumonia.

    PubMed Central

    Pennington, J E; Small, G J; Lostrom, M E; Pier, G B

    1986-01-01

    A human immunoglobulin G preparation, enriched in antibodies to lipopolysaccharide (LPS) Pseudomonas aeruginosa antigens (PA-IGIV) and murine monoclonal antibodies (MAb) to P. aeruginosa Fisher immunotype-1 (IT-1) LPS antigen and outer membrane protein F (porin), were evaluated for therapeutic efficacy in a guinea pig model of P. aeruginosa pneumonia. The concentration of antibodies to IT-1 LPS was 7.6 micrograms/ml in PA-IGIV and 478 micrograms/ml in the IT-1 MAb preparation. No antibody to IT-1 was detected in MAb to porin. For study, animals were infected by intratracheal instillation of IT-1 P. aeruginosa and then treated 2 h later with intravenous infusions of PA-IGIV, IT-1 MAb, or porin MAb. Control groups received intravenous albumin, and routinely died from pneumonia. Both PA-IGIV (500 mg/kg) and IT-1 MAb (greater than or equal to 2.5 mg/kg) treatment resulted in increased survival (P less than 0.01 to 0.001), and also improved intrapulmonary killing of bacteria. Porin MAb failed to protect from fatal pneumonia. IT-1 MAb treatment produced more survivals than did PA-IGIV treatment but only at dosages of MAb resulting in serum antibody concentrations greater than those achieved with PA-IGIV. PA-IGIV and IT-1 MAb demonstrated in vitro and in vivo (posttreatment guinea pig serum) opsonophagocytic activity for the IT-1 challenge strain. However, the polyclonal preparation required complement, whereas the MAb did not. We conclude that passive immunization with polyclonal hyperimmune P. aeruginosa globulin or with MAb to LPS antigens may be useful in the treatment of acute P. aeruginosa pneumonia. The relative efficacies of such preparations may be limited, however, by their type-specific LPS antibody concentrations. PMID:3093385

  20. Characterisation of Pseudomonas aeruginosa related to bovine mastitis.

    PubMed

    Park, Hye Rim; Hong, Min Ki; Hwang, Sun Young; Park, Young Kyung; Kwon, Ka Hee; Yoon, Jang Won; Shin, Sook; Kim, Jae Hong; Park, Yong Ho

    2014-03-01

    Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitis-affected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates. PMID:24334080

  1. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa. PMID:17893761

  2. Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa.

    PubMed

    Serino, L; Reimmann, C; Baur, H; Beyeler, M; Visca, P; Haas, D

    1995-11-15

    Salicylate is a precursor of pyochelin in Pseudomonas aeruginosa and both compounds display siderophore activity. To elucidate the salicylate biosynthetic pathway, we have cloned and sequenced a chromosomal region of P. aeruginosa PAO1 containing two adjacent genes, designated pchB and pchA, which are necessary for salicylate formation. The pchA gene encodes a protein of 52 kDa with extensive similarity to the chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase (component I) and p-aminobenzoate synthase (component I), whereas the 11 kDa protein encoded by pchB does not show significant similarity with other proteins. The pchB stop codon overlaps the presumed pchA start codon. Expression of the pchA gene in P. aeruginosa appears to depend on the transcription and translation of the upstream pchB gene. The pchBA genes are the first salicylate biosynthetic genes to be reported. Salicylate formation was demonstrated in an Escherichia coli entC mutant lacking isochorismate synthase when this strain expressed both the pchBA genes, but not when it expressed pchB alone. By contrast, an entB mutant of E. coli blocked in the conversion of isochorismate to 2,3-dihydro-2,3-dihydroxybenzoate formed salicylate when transformed with a pchB expression construct. Salicylate formation could also be demonstrated in vitro when chorismate was incubated with a crude extract of P. aeruginosa containing overproduced PchA and PchB proteins; salicylate and pyruvate were formed in equimolar amounts. Furthermore, salicylate-forming activity could be detected in extracts from a P. aeruginosa pyoverdin-negative mutant when grown under iron limitation, but not with iron excess. Our results are consistent with a pathway leading from chorismate to isochorismate and then to salicylate plus pyruvate, catalyzed consecutively by the iron-repressible PchA and PchB proteins in P. aeruginosa. PMID:7500944

  3. A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa

    PubMed Central

    Nair, Anusree V.; Joseph, Neetha; Krishna, Kiran; Sneha, K. G.; Tom, Neenu; Jangid, Kamlesh; Nair, Shanta

    2015-01-01

    Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium having a versatile metabolic potential and great ecological and clinical significance. The geographical distribution of P. aeruginosahas revealed the existence of an unbiased genetic arrangement in terrestrial isolates. In contrast, there are very few reports about P. aeruginosa strains from marine environments. The present work was aimed at studying the distribution of P. aeruginosa in coastal waters along the Indian Peninsula and understanding the environmental influence on genotypic, metabolic and phenotypic characteristics by comparing marine and clinical isolates. Of the 785 marine isolates obtained on selective media, only 32 (~4.1%) were identified as P. aeruginosa, based on their fatty acid methyl ester profiles. A low Euclidian distance value (< 2.5) obtained from chemotaxonomic analysis suggested that all the environmental (coastal and marine) isolates originated from a single species. While UPGMA analyses of AP-PCR and phenotypic profiles separated the environmental and clinical isolates, fatty acid biotyping showed overlapping between most clinical and environmental isolates. Our study revealed the genetic diversity among different environmental isolates of P. aeruginosa. While biogeographical separation was not evident based solely on phenotypic and metabolic typing, genomic and metatranscriptomic studies are more likely to show differences between these isolates. Thus, newer and more insightful methods are required to understand the ecological distribution of this complex group of bacteria. PMID:26413053

  4. Pseudomonas aeruginosa PAO-1 Lipopolysaccharide-Diphtheria Toxoid Conjugate Vaccine: Preparation, Characterization and Immunogenicity

    PubMed Central

    Najafzadeh, Faezeh; Shapouri, Reza; Rahnema, Mehdi; Rokhsartalab Azar, Shadi; Kianmehr, Anvarsadat

    2015-01-01

    Background: Treatment of Pseudomonas aeruginosa PAO-1 infections through immunological means has been proved to be efficient and protective. Objectives: The purpose of this study was to produce a conjugate vaccine composed of detoxified lipopolysaccharide (D-LPS) P. aeruginosa and diphtheria toxoid (DT). Materials and Methods: Firstly, LPS was purified and characterized from P. aeruginosa PAO1 and then detoxified. D-LPS was covalently coupled to DT as a carrier protein via amidation method with adipic acid dihydrazide (ADH) as a spacer molecule and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAC) as a linker. The molar ratio of LPS to DT in the prepared conjugate was 3:1. The immunogenicity of D-LPS-DT conjugate vaccine in mice model was evaluated as well. Results: The conjugate was devoid of endotoxin activity and 0.125 U/mL of D-LPS was acceptable for immunization. D-LPS-DT conjugate was nonpyrogenic for rabbits and nontoxic for mice. Mice immunization with D-LPS-DT conjugate vaccine elicited the fourfold higher IgG antibody compared to D-LPS. Anti-LPS IgG antibody was predominantly IgG1 subclass and then IgG3, IgG2a and IgG2b, respectively. Conclusions: Vaccine based on the conjugation of P. aeruginosa PAO-1 LPS with DT increased anti-LPS antibodies and had a significant potential to protect against Pseudomonas infections. PMID:26301059

  5. Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection

    PubMed Central

    Zou, Cheng-Gang; Ma, Yi-Cheng; Dai, Li-Li; Zhang, Ke-Qin

    2014-01-01

    Autophagy, a conserved pathway that delivers intracellular materials into lysosomes for degradation, is involved in development, aging, and a variety of diseases. Accumulating evidence demonstrates that autophagy plays a protective role against infectious diseases by diminishing intracellular pathogens, including bacteria, viruses, and parasites. However, the mechanism by which autophagy regulates innate immunity remains largely unknown. Here, we show that autophagy is involved in host defense against a pathogenic bacterium Pseudomonas aeruginosa in the metazoan Caenorhabditis elegans. P. aeruginosa infection induces autophagy via a conserved extracellular signal-regulated kinase (ERK). Intriguingly, impairment of autophagy does not influence the intestinal accumulation of P. aeruginosa, but instead induces intestinal necrosis. Inhibition of necrosis results in the survival of autophagy-deficient worms after P. aeruginosa infection. These findings reveal a previously unidentified role for autophagy in protection against necrosis triggered by pathogenic bacteria in C. elegans and implicate that such a function of autophagy may be conserved through the inflammatory response in diverse organisms. PMID:25114220

  6. [Sodium houttuyfonate inhibits virulence related motility of Pseudomonas aeruginosa].

    PubMed

    Wu, Da-qiang; Huang, Wei-feng; Duan, Qiang-jun; Cheng, Hui-juan; Wang, Chang-zhong

    2015-04-01

    Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic. PMID:26281603

  7. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

    PubMed Central

    Peek, Mary E.; Bhatnagar, Abhinav; McCarty, Nael A.; Zughaier, Susu M.

    2012-01-01

    Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules) and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL) that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL's published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs. PMID:22973307

  8. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition.

    PubMed

    Peek, Mary E; Bhatnagar, Abhinav; McCarty, Nael A; Zughaier, Susu M

    2012-01-01

    Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules) and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL) that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL's published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs. PMID:22973307

  9. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection. PMID:22251040

  10. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.

    PubMed

    Frangipani, Emanuela; Slaveykova, Vera I; Reimmann, Cornelia; Haas, Dieter

    2008-10-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  11. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  12. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections.

    PubMed

    Wagner, Stefanie; Sommer, Roman; Hinsberger, Stefan; Lu, Cenbin; Hartmann, Rolf W; Empting, Martin; Titz, Alexander

    2016-07-14

    Infections with Pseudomonas aeruginosa have become a concerning threat in hospital-acquired infections and for cystic fibrosis patients. The major problem leading to high mortality lies in the appearance of drug-resistant strains. Therefore, a vast number of approaches to develop novel anti-infectives is currently pursued. These diverse strategies span from killing (new antibiotics) to disarming (antivirulence) the pathogen. Particular emphasis lies on the development of compounds that inhibit biofilms formed in chronic infections to restore susceptibility toward antibiotics. Numerous promising results are summarized in this perspective. Antibiotics with a novel mode of action will be needed to avoid cross resistance against currently used therapeutic agents. Importantly, antivirulence drugs are expected to yield a significantly reduced rate of resistance development. Most developments are still far from the application. It can however be expected that combination therapies, also containing antivirulence agents, will pave the way toward novel treatment options against P. aeruginosa. PMID:26804741

  13. Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa

    PubMed Central

    Wei, Qing; Ma, Luyan Z.

    2013-01-01

    Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms. PMID:24145749

  14. Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa.

    PubMed Central

    Mattick, J S; Bills, M M; Anderson, B J; Dalrymple, B; Mott, M R; Egerton, J R

    1987-01-01

    Type 4 fimbriae are found in a range of pathogenic bacteria, including Bacteroides nodosus, Moraxella bovis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The structural subunits of these fimbriae all contain a highly conserved hydrophobic amino-terminal sequence preceding a variable hydrophilic carboxy-terminal region. We show here that recombinant P. aeruginosa cells containing the B. nodosus fimbrial subunit gene under the control of a strong promoter (pL, from bacteriophage lambda) produced large amounts of fimbriae that were structurally and antigenically indistinguishable from those produced by B. nodosus. This was demonstrated by fimbrial isolation and purification, electrophoretic and Western transfer analyses, and immunogold labeling and electron microscopy. These results suggest that type 4 fimbriated bacteria use a common mechanism for fimbrial assembly and that the structural subunits are interchangeable, thereby providing a basis for the development of multivalent vaccines. Images PMID:2878919

  15. Chlorinated phenol-induced physiological antibiotic resistance in Pseudomonas aeruginosa.

    PubMed

    Muller, Jocelyn Fraga; Ghosh, Sudeshna; Ikuma, Kaoru; Stevens, Ann M; Love, Nancy G

    2015-11-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and an opportunistic pathogen with the ability to rapidly develop multidrug resistance under selective pressure. Previous work demonstrated that upon exposure to the environmental contaminant pentachlorophenol (PCP), P. aeruginosa PAO1 increases expression of multiple multidrug efflux pumps, including the MexAB-OprM pump. The current study describes increases in the antibiotic resistance of PAO1 upon exposure to PCP and other chlorinated organics, including triclosan. Only exposure to chlorinated phenols induced the mexAB-oprM-mediated antibiotic-resistant phenotype. Thus, chlorinated phenols have the potential to contribute to transient phenotypic increases of antibiotic resistance that are relevant when both compounds are present in the environment. PMID:26403431

  16. Biosurfactants production by Pseudomonas aeruginosa FR using palm oil.

    PubMed

    Oliveira, Fernando J S; Vazquez, Leonardo; De Campos, Norberto P; de França, Francisca P

    2006-03-01

    Biosurfactants production by a strain of Pseudomonas aeruginosa using palm oil as a sole carbon source was investigated. The experiments were carried out in 500-mL conical flasks containing 100 mL of mineral media supplemented with palm oil as the sole carbon source. The P. aeruginosa FR strain was able to reduce surface tension of three tested inorganic media. Rotation velocities from 100 to 150 rpm provided free-cell fermented media with the lowest surface tension of approx 33 mN/m. Emulsification index results of even 100% were achieved when diesel was used as oil phase. Eight surface-active compounds produced by the bacterium were identified by mass spectrometry. PMID:18563649

  17. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  18. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  19. Necrotizing stomatitis: report of 3 Pseudomonas aeruginosa-positive patients.

    PubMed

    Barasch, Andrei; Gordon, Sara; Geist, Rose Y; Geist, James R

    2003-08-01

    Necrotizing oral lesions have been described in immunosuppressed patients, usually in association with gingival and periodontal pathoses. The etiology of these lesions has not been completely elucidated. We present 3 patients with a type of necrotizing stomatitis in which clinical patterns appear distinct from the periodontal forms of the disease. The lesions yielded bacterial cultures positive for Pseudomonas aeruginosa and reverted to no growth in 2 patients after proper antibiotic therapy. We propose that P aeruginosa may be responsible for selected necrotizing oral lesions with a clinical presentation lacking typical necrotizing periodontal disease and that this condition may represent the intraoral counterpart of ecthyma gangrenosum. In such cases, bacterial culture of the lesion becomes imperative because the disease does not respond to typical periodontal and antimicrobial therapy. PMID:12931084

  20. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  1. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf.

    PubMed

    Lou, Zaixiang; Tang, Yuxia; Song, Xinyi; Wang, Hongxin

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL(-1). Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I) were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis) and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants. PMID:26370951

  2. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses

    PubMed Central

    McConnell, Kevin W.; McDunn, Jonathan E.; Clark, Andrew T.; Dunne, W. Michael; Dixon, David J.; Turnbull, Isaiah R.; DiPasco, Peter J.; Osberghaus, William F.; Sherman, Benjamin; Martin, James R.; Walter, Michael J.; Cobb, J. Perren; Buchman, Timothy G.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2009-01-01

    Objective Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, treatment involves only non-specific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar following disparate infections with similar mortalities. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Interventions Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple timepoints. Measurements and Main Results The host response was dependent upon the causative organism as well as kinetics of mortality, but the pro- and anti- inflammatory response was independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of 5 distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary MIP-2 and IL-10 with progression of infection while elevated plasma TNFsr2 and MCP-1 were indicative of fulminant disease with >90% mortality within 48 hours. Conclusions Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a potential therapeutic

  3. Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa.

    PubMed

    Cipollone, Rita; Bigotti, Maria Giulia; Frangipani, Emanuela; Ascenzi, Paolo; Visca, Paolo

    2004-12-01

    Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide. PMID:15522204

  4. Protective role of murine norovirus against Pseudomonas aeruginosa acute pneumonia.

    PubMed

    Thépaut, Marion; Grandjean, Teddy; Hober, Didier; Lobert, Pierre-Emmanuel; Bortolotti, Perrine; Faure, Karine; Dessein, Rodrigue; Kipnis, Eric; Guery, Benoit

    2015-01-01

    The murine norovirus (MNV) is a recently discovered mouse pathogen, representing the most common contaminant in laboratory mouse colonies. Nevertheless, the effects of MNV infection on biomedical research are still unclear. We tested the hypothesis that MNV infection could alter immune response in mice with acute lung infection. Here we report that co-infection with MNV increases survival of mice with Pseudomonas aeruginosa acute lung injury and decreases in vivo production of pro-inflammatory cytokines. Our results suggest that MNV infection can deeply modify the parameters studied in conventional models of infection and lead to false conclusions in experimental models. PMID:26338794

  5. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  6. Mitogenic effects of purified outer membrane proteins from Pseudomonas aeruginosa.

    PubMed Central

    Chen, Y H; Hancock, R E; Mishell, R I

    1980-01-01

    Three major outer membrane proteins from Pseudomonas aeruginosa PAO1 were purified and tested for their ability to stimulate resting murine lymphocytes to proliferate. It was demonstrated that picomole amounts of all three proteins were mitogenic for both intact and T-lymphocyte-depleted populations of spleen cells from C3H/HeJ mice. In contrast, they had no activity against either mature or immature thymocytes. Since the strain of mice used is unable to respond to lipopolysaccharide, we condlude that the three proteins are B-cell mitogens. Images Fig. 2 PMID:6769818

  7. Locus of the Pseudomonas aeruginosa toxin A gene.

    PubMed Central

    Hanne, L F; Howe, T R; Iglewski, B H

    1983-01-01

    The gene for Pseudomonas aeruginosa toxin A has been mapped in the late region of the chromosome of strain PAO. Strain PAO-PR1, which produces parental levels of toxin A antigen that is enzymatically inactive and nontoxic, was used as the donor for R68.45 plasmid-mediated genetic exchange. Strain PAO-PR1 (toxA1) was mated with toxin A-producing strains, and exconjugates for selected prototrophic markers were tested for the transfer of toxA1. The toxA1 gene was located between cnu-9001 and pur-67 at approximately 85 min on the PAO chromosome. PMID:6403508

  8. An unusual presentation of Pseudomonas aeruginosa blebitis following combined surgery

    PubMed Central

    Bharathi, Shabana; Raman, Ganesh V; Mohan, Dhavalikar Mrunali; Krishnan, Anjana

    2014-01-01

    We report a case of blebitis that occurred 3 years later following a combined glaucoma and cataract surgery. It was an atypical presentation, as patient had no classical fiery looking signs of blebitis despite the isolated organism being Pseudomonas aeruginosa. Improvized surgical techniques like use of Mitomycin C, releasable flap sutures though considered as part of the recommended procedure for better surgical outcomes, their role as potential risk factors for visually blinding complications like endophthalmitis are often overlooked. This case report throws light on such risk factors for bleb associated infections and recommends removal or trimming of all releasable sutures and the need for a regular postoperative follow-up. PMID:25370403

  9. Computer Simulation of the Rough Lipopolysaccharide Membrane of Pseudomonas Aeruginosa

    SciTech Connect

    Lins, Roberto D.; Straatsma, TP

    2001-08-01

    Lipopolysaccharides (LPS) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. The understanding of these mechanisms is crucial for the development of successful environmental bioremediation strategies. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on available experimentally determined structural information.

  10. Secretion of Elastinolytic Enzymes and Their Propeptides by Pseudomonas aeruginosa

    PubMed Central

    Braun, Peter; de Groot, Arjan; Bitter, Wilbert; Tommassen, Jan

    1998-01-01

    Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. The signal sequence is cleaved off during transport across the inner membrane and, in the periplasm, proelastase is further processed. We demonstrate that the propeptide and the mature elastase are both secreted but that the propeptide is degraded extracellularly. In addition, reduction of the extracellular proteolytic activity led to the accumulation of unprocessed forms of LasA and LasD in the extracellular medium, which shows that these enzymes are secreted in association with their propeptides. Furthermore, a hitherto undefined protein with homology to a Streptomyces griseus aminopeptidase accumulated under these conditions. PMID:9642203

  11. Secretion of elastinolytic enzymes and their propeptides by Pseudomonas aeruginosa.

    PubMed

    Braun, P; de Groot, A; Bitter, W; Tommassen, J

    1998-07-01

    Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. The signal sequence is cleaved off during transport across the inner membrane and, in the periplasm, proelastase is further processed. We demonstrate that the propeptide and the mature elastase are both secreted but that the propeptide is degraded extracellularly. In addition, reduction of the extracellular proteolytic activity led to the accumulation of unprocessed forms of LasA and LasD in the extracellular medium, which shows that these enzymes are secreted in association with their propeptides. Furthermore, a hitherto undefined protein with homology to a Streptomyces griseus aminopeptidase accumulated under these conditions. PMID:9642203

  12. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel

    PubMed Central

    Arivett, Brock A.; Ream, Dave C.; Fiester, Steven E.; Kidane, Destaalem

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  13. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. PMID:27516516

  14. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Conibear, Tim C R; Willcox, Mark D P; Flanagan, Judith L; Zhu, Hua

    2012-02-01

    Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system. PMID:21921113

  15. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa

    PubMed Central

    Habbal, O; Hasson, SS; El-Hag, AH; Al-Mahrooqi, Z; Al-Hashmi, N; Al-Bimani, Z; Al-Balushi, MS; Al-Jabri, AA

    2011-01-01

    Objective To investigate the antibacterial activity of henna (Lawsonia inermis Linn) obtained from different regions of Oman against a wide array of micro-organisms. Methods Fresh henna samples were obtained from different regions of Oman as leaves and seeds. 100 g fresh and dry leaves and 50 g of fresh and dry seeds were separately soaked in 500 mL of ethanol for three days, respectively, with frequent agitation. The mixture was filtered, and the crude extract was collected. The crude extract was then heated, at 48 °C in a water bath to evaporate its liquid content. The dry crude henna extract was then tested for its antibacterial activity using well-diffusion antibiotic susceptibility technique. Henna extracts were investigated for their antibacterial activity at different concentrations against a wide array of different micro-organisms including a laboratory standard bacterial strain of Pseudomonas aeruginosa (NCTC 10662) (P. aeruginosa) and eleven fresh clinical isolates of P. aeruginosa obtained from patients attending the Sultan Qaboos University Hospital (SQUH). 2-Hydroxy-p-Nathoqinone-Tech (2-HPNT, MW=174.16, C10H6O3) was included as control (at 50% concentration) along with the henna samples tested. Results Henna samples demonstrated antibacterial activity against all isolates but the highest susceptibility was against P. aeruginosa with henna samples obtained from Al-sharqyia region. Conclusions Omani henna from Al-sharqyia region demonstrates high in vitro anti-P. aeruginosa activity compared with many henna samples from different regions of Oman. PMID:23569753

  16. Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa

    PubMed Central

    Dehner, Carolyn; Morales-Soto, Nydia; Behera, Rabindra K.; Shrout, Joshua; Theil, Elizabeth C.; Maurice, Patricia A.

    2013-01-01

    Metabolism of iron derived from insoluble and/ or scarce sources is essential for pathogenic and environmental microbes. The ability of Pseudomonas aeruginosa to acquire iron from exogenous ferritin was assessed; ferritin is an iron-concentrating and antioxidant protein complex composed of a catalytic protein and caged ferrihydrite nanomineral synthesized from Fe(II) and O2 or H2O2. Ferritin and free ferrihydrite supported growth of P. aeruginosa with indistinguishable kinetics and final culture densities. The P. aeruginosa PAO1 mutant (ΔpvdDΔpchEF), which is incapable of siderophore production, grew as well as the wild type when ferritin was the iron source. Such data suggest that P. aeruginosa can acquire iron by siderophore-independent mechanisms, including secretion of small-molecule reductant(s). Protease inhibitors abolished the growth of the siderophore-free strain on ferritins, with only a small effect on growth of the wild type; predictably, protease inhibitors had no effect on growth with free ferrihydrite as the iron source. Proteolytic activity was higher with the siderophore-free strain, suggesting that the role of proteases in the degradation of ferritin is particularly important for iron acquisition in the absence of siderophores. The combined results demonstrate the importance of both free ferrihydrite, a natural environmental form of iron and a model for an insoluble form of partly denatured ferritin called hemosiderin, and caged ferritin iron minerals as bacterial iron sources. Ferritin is also revealed as a growth promoter of opportunistic, pathogenic bacteria such a P. aeruginosa in diseased tissues such as the cystic fibrotic lung, where ferritin concentrations are abnormally high. PMID:23417538

  17. Synergistic bactericidal effects of acrinol and tetracycline against Pseudomonas aeruginosa.

    PubMed

    Saji, M; Fujii, K; Ohkuni, H; Irie, N; Osono, E; Kato, F

    2000-06-01

    Combined treatment of acrinol (Ac) and tetracycline hydrochloride (Tc) against Pseudomonas aeruginosa strains isolated from clinical specimens synergistically increased the bactericidal effect. The minimum bactericidal concentration (MBC) of Ac against P. aeruginosa strain no. 985 was 200 microg/ml, while the MBC of Ac against strains no. 47 and no. 783 was above 800 microg/ml for each. The MBC of Tc was above 400 microg/ml against each of the tested strains. However, simultaneous treatment with 25 microg/ml Ac and 200 microg/ml Tc against P. aeruginosa strain no. 985 decreased the viable cell number from 107 cfu/ml to <10 cfu/ml within 24 h, while a higher concentration of Tc (400 microg/ml) with Ac (25 microg/ml) reduced the viable cell number to <10 cfu/ml within 8 h. A similar synergistic bactericidal effect of Ac and Tc was observed in strains no. 47 and no. 783 by treatment with 200 microg/ml Ac and 200 microg/ml or 400 microg/ml Tc. The degree of bactericidal effect against P. aeruginosa was proportional to the concentration of Tc under the condition of a constant concentration of Ac. Furthermore, Ac-treated cells of strain no. 47 were killed by a following Tc treatment, but cells pretreated with Tc did not show such a sensitivity to Ac. To induce the synergistic effect of Ac and Tc, Ac must be applied to P. aeruginosa before or at the same time as Tc. PMID:11810541

  18. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections. PMID:25704369

  19. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm.

    PubMed

    He, X; Hu, W; He, J; Guo, L; Lux, R; Shi, W

    2011-12-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota, which is often considered a health asset, studies of the oral commensal microbiota have been largely limited to their implication in oral conditions such as dental caries and periodontal disease. Less emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign or pathogenic bacteria. In this study, we used salivary microbiota derived from healthy human subjects to investigate protective effects against colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing or pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into the salivary microbial community during biofilm formation. Furthermore, in saliva medium supplemented with sucrose, the oral microbiota inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign or pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  20. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress.

    PubMed

    Orlandi, Viviana T; Bolognese, Fabrizio; Chiodaroli, Luca; Tolker-Nielsen, Tim; Barbieri, Paola

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. P. aeruginosa also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether P. aeruginosa pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of P. aeruginosa PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered P. aeruginosa more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment. PMID:26419906

  1. Prevalence and Antimicrobial-Resistance of Pseudomonas aeruginosa in Swimming Pools and Hot Tubs

    PubMed Central

    Lutz, Jonathan K.; Lee, Jiyoung

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen in recreational waters and the primary cause of hot tub folliculitis and otitis externa. The aim of this surveillance study was to determine the background prevalence and antimicrobial resistance profile of P. aeruginosa in swimming pools and hot tubs. A convenience sample of 108 samples was obtained from three hot tubs and eight indoor swimming pools. Water and swab samples were processed using membrane filtration, followed by confirmation with polymerase chain reaction. Twenty-three samples (21%) were positive for P. aeruginosa, and 23 isolates underwent susceptibility testing using the microdilution method. Resistance was noted to several antibiotic agents, including amikacin (intermediate), aztreonam, ceftriaxone, gentamicin, imipenem, meropenem (intermediate), ticarcillin/clavulanic acid, tobramycin (intermediate), and trimethoprim/sulfamethoxazole. The results of this surveillance study indicate that 96% of P. aeruginosa isolates tested from swimming pools and hot tubs were multidrug resistant. These results may have important implications for cystic fibrosis patients and other immune-suppressed individuals, for whom infection with multidrug-resistant P. aeruginosa would have greater impact. Our results underlie the importance of rigorous facility maintenance, and provide prevalence data on the occurrence of antimicrobial resistant strains of this important recreational water-associated and nosocomial pathogen. PMID:21556203

  2. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate.

    PubMed

    Kashef, Nasim; Behzadian-Nejad, Qorban; Najar-Peerayeh, Shahin; Mousavi-Hosseini, Kamran; Moazzeni, Mohammad; Djavid, Gholamreza Esmaeeli

    2006-10-01

    Chronic infection with Pseudomonas aeruginosa is the main proven perpetrator of lung function decline and ultimate mortality in cystic fibrosis (CF) patients. Mucoid strains of this bacterium elaborate mucoid exopolysaccharide, also referred to as alginate. Alginate-based immunization of naïve animals elicits opsonic antibodies and leads to clearance of mucoid P. aeruginosa from the lungs. Alginate was isolated from mucoid P. aeruginosa strain 8821M by repeated ethanol precipitation, dialysis, proteinase and nuclease digestion, and chromatography. To improve immunogenicity, the purified antigen was coupled to tetanus toxoid (TT) with adipic acid dihydrazide (ADH) as a spacer and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) as a linker. The reaction mixture was passed through a Sepharose CL-4B column. The resulting conjugate was composed of TT and large-size alginate polymer at a ratio of about 3 : 1; it was non-toxic and non-pyrogenic, and elicited high titres of alginate-specific IgG. Antisera raised against the conjugate had high opsonic activity against the vaccine strain. The alginate conjugate was also able to protect mice against a lethal dose of mucoid P. aeruginosa. These data indicate that an alginate-based vaccine has significant potential to protect against chronic infection with mucoid P. aeruginosa in the CF host. PMID:17005795

  3. Cloning, expression and purification of penicillin-binding protein 3 from Pseudomonas aeruginosa CMCC 10104.

    PubMed

    An, Yan Dong; Du, Qi Zhen; Tong, Li Yan; Yu, Zhao Wu; Gong, Xing Wen

    2015-06-01

    Penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa is the primary target of β-lactams used to treat pseudomonas infections. Meanwhile, structure change and overproduction of PBP3 play important roles in the drug resistance of P. aeruginosa. Therefore, studies on the gene and structure of PBP3 are urgently needed. P. aeruginosa CMCC 10104 is a type culture strain common used in China. However, there is no report on its genomic and proteomic profiles. In this study, based on ftsI of P. aeruginosa PAO1, the gene encoding PBP3 was cloned from CMCC 10104. A truncated version of the ftsI gene, omitting the bases encoding the hydrophobic leader peptide (amino acids 1-34), was amplified by PCR. The cloned DNA shared 99.76% identity with ftsI from PAO1. Only four bases were different (66 C-A, 1020 T-C, 1233 T-C, and 1527 T-C). However, there were no differences between their deduced amino acid sequences. The recombinant PBP3 (rPBP3), containing a 6-histidine tag, was expressed in Escherichia coli BL21 (DE3). Immobilized metal affinity chromatography (IMAC) with Ni(2+)-NTA agarose was used for its purification. The purified rPBP3 was identified by SDS-PAGE and western blot analysis, and showed a single band at about 60kDa with purity higher than 95%. The penicillin-binding assay indicated that the obtained rPBP3 was functional and not hindered by the presence of the C-terminal His-tag. The protocol described in this study offers a method for obtaining purified recombinant PBP3 from P. aeruginosa CMCC 10104. PMID:25514204

  4. Production of a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid from high oleic safflower oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA), originally found in small amount mainly from plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial ...

  5. Thermostable Lipoxygenase, a Key Enzyme in the Conversion of Linoleic Acid into Thrihydroxy-octadecenoic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOX) constitute a family of lipid-peroxidizing enzymes catalyzing the oxidation of unsaturated fatty acid with (1Z,4Z)-pentadiene structural unit, leading to formation of the conjugated (Z,E)-hydroperoxydienoic acid. LOXs have been known to be widely distributed in plants and animals...

  6. Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum.

    PubMed

    Gupta, C P; Sharma, A; Dubey, R C; Maheshwari, D K

    1999-01-01

    A plant growth promotory bacterial strain, isolated from the potato rhizosphere, was characterized as Pseudomonas aeruginosa (GRC1). The isolate produced an hydroxamate type of siderophore after 48 h of incubation on tryptic soy medium under iron deficient conditions. The in vitro antifungal activity of P. aeruginosa was tested against two soil-borne plant pathogens, Macrophomina phaseolina and Fusarium oxysporum. The antagonistic behaviour of the isolate was tested by dual culture technique. The growth inhibition of M. phaseolina and F. oxysporum was 74.1% and 70.5%, respectively, after 5 days of incubation. The production of hydrocyanic acid and indole acetic acid was also recorded under normal growth conditions. PMID:10581709

  7. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  8. Impact of quorum sensing on fitness of Pseudomonas aeruginosa.

    PubMed

    Heurlier, Karin; Dénervaud, Valérie; Haas, Dieter

    2006-04-01

    In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments. PMID:16503417

  9. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa

    PubMed Central

    Tan, Hao; Zhang, Lu; Weng, Yuding; Chen, Ronghao; Zhu, Feng; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM. PMID:27014238

  10. Genotypic analysis of Pseudomonas aeruginosa isolated from ocular infection.

    PubMed

    Yamaguchi, Satoshi; Suzuki, Takashi; Kobayashi, Takeshi; Oka, Naoko; Ishikawa, Eri; Shinomiya, Hiroto; Ohashi, Yuichi

    2014-07-01

    Pseudomonas aeruginosa is the causative pathogen of keratitis, conjunctivitis, and dacryocystitis. However little is known about their clinical epidemiology in Japan. In this study we investigated the genotypic characterization and serotype of P. aeruginosa isolates from ocular infections. Thirty-four clinical P. aeruginosa isolates were characterized according to infection type, the type III secretion system (TTSS), serotype, and multilocus sequence typing (MLST). We divided the isolates into four clinical infection types as follows: Contact lens (CL)-related keratitis (CL-keratitis; 15 isolates), non CL-related keratitis (non CL-keratitis; 8 isolates), conjunctivitis (7 isolates), and dacryocystitis (4 isolates). Regarding the TTSS classification and serotyping classification, no significant differences were found among the infection types. Two clusters (I, II) and three subclusters (A, B, C) were classified according to MLST. CL-keratitis isolates with exoU positivity were clustered in II-B, and conjunctivitis was clustered in cluster I. Some linkage was found between the genetic background and CL-keratitis or conjunctivitis. PMID:24746897

  11. Pseudomonas aeruginosa bacteriophage phi PLS27-lipopolysaccharide interactions.

    PubMed Central

    Jarrell, K F; Kropinski, A M

    1981-01-01

    We investigated the phi PLS27 receptor in Pseudomonas aeruginosa strain PAO lipopolysaccharide (LPS) by analyzing a resistant mutant. This mutant, which was designated AK1282, had the most defective LPS yet reported for a P. aeruginosa rough mutant; this LPS contained only lipid A, 2-keto-3-deoxyoctonate, heptose, and alanine as major components. In addition, this LPS lacked galactosamine, which is present in the inner core of the LPS of other rough mutants. The loss of galactosamine but only a small decrease in the alanine content indicated that the core of strain PAO LPS differed from the core structure which has been suggested for the LPS of other well-characterized P. aeruginosa strains. Our analysis also indicated that galactosamine residues may be crucial for phi PLS27 receptor activity of the LPS. Electrodialysis of LPS and conversion to salt forms (sodium or triethylamine) influenced the phage-inactivating capacity of the LPS, as did the medium in which the inactivation occurred; experiments performed in 1/10-strength broth resulted in much lower PhI50 (concentration of LPS causing a 50% decrease in the titer of phage during 1 h of incubation at 37 degrees C) values than experiments performed in regular-strength broth. Sonication of the LPS also increased the phage-inactivating capacities of the LPS preparations. PMID:6798225

  12. Antimicrobial activities of Saudi honey against Pseudomonas aeruginosa

    PubMed Central

    Al-Nahari, Alaa A.M.; Almasaudi, Saad B.; Abd El-Ghany, El Sayed M.; Barbour, Elie; Al Jaouni, Soad K.; Harakeh, Steve

    2015-01-01

    Five types of imported and local honey were screened for both their bacteriocidal/bacteriostatic activities against both Imipenem resistant and sensitive Pseudomonas aeruginosa in both Brain Heart infusion broth and Mueller–Hinton agar. The results indicated that the effect was concentration and type of honey dependant. All types of honey tested exerted a full inhibition of bacterial growth at the highest concentration tested of 50% at 24 h of contact. The inhibitory effect of honey on bacterial growth was clear with concentrations of 20% and 10% and this effect was most evident in the case of Manuka honey as compared to Nigella sativa honey and Seder honey. Manuka honey UMF +20 showed a bacteriocidal activity on both Imipenem resistant and sensitive P. aeruginosa, while Seder honey and N. sativa honey exerted only a bacteriostatic effect. Manuka honey UMF +10 showed most effect on antimicrobial resistance. Manuka honey UMF +10 had an effect on modulation of Imipenem resistant P. aeruginosa. Conclusion: The results indicated that various types of honey affected the test organisms differently. Modulation of antimicrobial resistance was seen in the case Manuka honey UMF +10. PMID:26288553

  13. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  14. Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa.

    PubMed

    Mukherjee, Sayanti; Chaki, Shaswati; Das, Sukhen; Sen, Saswati; Dutta, Samir Kr; Dastidar, Sujata G

    2011-07-01

    The dicarbonyl compound methylglyoxal is a natural constituent of Manuka honey produced from Manuka flowers in New Zealand. It is known to possess both anticancer and antibacterial activity. Such observations prompted to investigate the ability of methylglyoxal as a potent drug against multidrug resistant Pseudomonas aeruginosa. A total of 12 test P. aeruginosa strains isolated from various hospitals were tested for their resistances against many antibiotics, most of which are applied in the treatment of P. aeruginosa infections. Results revealed that the strains were resistant to many drugs at high levels, only piperacillin, carbenicillin, amikacin and ciprofloxacin showed resistances at comparatively lower levels. Following multiple experimentations it was observed that methylglyoxal was also antimicrobic against all the strains at comparable levels. Distinct and statistically significant synergism was observed between methylglyoxal and piperacillin by disc diffusion tests when compared with their individual effects. The fractional inhibitory concentration index of this combination evaluated by checkerboard analysis, was 0.5, which confirmed synergism between the pair. Synergism was also noted when methylglyoxal was combined with carbenicillin and amikacin. PMID:21800506

  15. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa.

    PubMed

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  16. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  17. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms.

    PubMed

    Cutruzzolà, Francesca; Frankenberg-Dinkel, Nicole

    2016-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  18. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa

    PubMed Central

    Caiazza, Nicky C.; Shanks, Robert M. Q.; O'Toole, G. A.

    2005-01-01

    Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed. PMID:16237018

  19. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  20. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  1. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections. PMID:24151196

  2. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  3. Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa.

    PubMed Central

    Beard, M K; Mattick, J S; Moore, L J; Mott, M R; Marrs, C F; Egerton, J R

    1990-01-01

    Type 4 fimbriae (pili) are found in a wide variety of gram-negative bacteria and are composed of small structural subunits which share significant sequence homology among different species, especially at their amino-terminal ends. Previous studies demonstrating morphogenetic expression of Bacteroides nodosus fimbriae from cloned subunit genes in Pseudomonas aeruginosa suggested that there is a common mechanism for type 4 fimbriae assembly and that the structural subunits are interchangeable (J. S. Mattick et al., J. Bacteriol. 169:33-41, 1987). Here we have examined the expression of Moraxella bovis fimbrial subunits in P. aeruginosa. M. bovis subunits were assembled into extracellular fimbriae in this host, in some cases as a homopolymer but in others as a mosaic with the indigenous subunit, indicating structural equivalence. This result contrasts with other studies in which recombinant P. aeruginosa expressing different subunits produced fimbriae composed almost exclusively of one subunit or the other (T. C. Elleman and J. E. Peterson, Mol. Microbiol. 1:377-380, 1987). Both observations can be explained by reversibility of subunit-subunit interactions at the site of assembly, with the forward equilibrium favoring chain extension between compatible subunits. Images PMID:1970564

  4. PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa.

    PubMed

    Tan, Hao; Zhang, Lu; Weng, Yuding; Chen, Ronghao; Zhu, Feng; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2016-01-01

    Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM. PMID:27014238

  5. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  6. Epidemiology of Pseudomonas aeruginosa in a tertiary referral teaching hospital.

    PubMed

    Bradbury, R S; Champion, A C; Reid, D W

    2009-10-01

    A genotypically indistinguishable strain of Pseudomonas aeruginosa (Australian epidemic strain III: AES III) has previously been found in a proportion of adults with cystic fibrosis (CF) in Tasmania, Australia. The aim of this study was to identify a source of these infections within the major tertiary referral hospital for the State of Tasmania, and to determine if this strain could be isolated from settings other than the CF lung. A total of 120 isolates of P. aeruginosa were collected from clinical and environmental sources within the hospital and from environmental locations in the hospital vicinity. These isolates were genotyped by random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR) and antimicrobial susceptibility testing was performed using the Clinical and Laboratory Standards Institute method. Confirmation of similar genotypes identified by RAPD-PCR was performed using pulsed-field gel electrophoresis with restriction enzyme SpeI. AES III was not recovered from any source other than the respiratory secretions of CF patients. P. aeruginosa in the non-CF settings was found to be panmictic, and no cross-infection or acquisition of hospital environment strains by patients was observed. PMID:19699556

  7. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    PubMed

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  8. Pyoverdine and Proteases Affect the Response of Pseudomonas aeruginosa to Gallium in Human Serum

    PubMed Central

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco

    2015-01-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  9. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  10. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  11. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Niewerth, Heiko

    2014-01-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule. PMID:25239889

  12. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones. PMID:25062779

  13. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids

    PubMed Central

    Fourie, Ruan; Ells, Ruan; Swart, Chantel W.; Sebolai, Olihile M.; Albertyn, Jacobus; Pohl, Carolina H.

    2016-01-01

    Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens. PMID:26955357

  14. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa.

    PubMed

    Hariprasad, P; Chandrashekar, S; Singh, S Brijesh; Niranjana, S R

    2014-08-01

    A new Pseudomonas strain, designated as 2apa was isolated from tomato rhizosphere and identified as a member of species Pseudomonas aeruginosa based on its morphology, conventional, biochemical, cell wall fatty acid methyl ester analysis, and 16S rRNA gene sequence analysis. The strain 2apa was positive for root colonization, indole acetic acid (IAA), salicylic acid and siderophore production and inhibited the growth of wide range of microorganisms. Antimicrobial substances produced by this strain with further purification and structure elucidation proved to be phenazine. Under laboratory and greenhouse conditions the strain promoted plant growth and suppressed a wide range of foliar and root pathogens in tomato. The protection offered by strain 2apa to foliar pathogens is considered as induced systemic resistance and was further confirmed by enhanced accumulation of phenolics, elicitation of lipoxygenas activity, and jasmonic acid levels. The broad-spectrum antimicrobial and induced systemic resistance exhibiting strain P. aeruginosa 2apa can be used as an effective biological control candidate against devastating fungal and bacterial pathogens, which attack both root and foliar portions of tomato plant. Production of other functional traits such as IAA and siderophore may enhance its potential as biofertilizer. PMID:23681707

  15. A theoretical and experimental proteome map of Pseudomonas aeruginosa PAO1

    PubMed Central

    Lecoutere, Elke; Verleyen, Peter; Haenen, Steven; Vandersteegen, Katrien; Noben, Jean-Paul; Robben, Johan; Schoofs, Liliane; Ceyssens, Pieter-Jan; Volckaert, Guido; Lavigne, Rob

    2012-01-01

    A total proteome map of the Pseudomonas aeruginosa PAO1 proteome is presented, generated by a combination of two-dimensional gel electrophoresis and protein identification by mass spectrometry. In total, 1128 spots were visualized, and 181 protein spots were characterized, corresponding to 159 different protein entries. In particular, protein chaperones and enzymes important in energy conversion and amino acid biosynthesis were identified. Spot analysis always resulted in the identification of a single protein, suggesting sufficient spot resolution, although the same protein may be detected in two or more neighboring spots, possibly indicating posttranslational modifications. Comparison to the theoretical proteome revealed an underrepresentation of membrane proteins, though the identified proteins cover all predicted subcellular localizations and all functional classes. These data provide a basis for subsequent comparative studies of the biology and metabolism of P. aeruginosa, aimed at unraveling global regulatory networks. PMID:22950023

  16. Purification and Characterization of a Staphylolytic Enzyme from Pseudomonas aeruginosa1

    PubMed Central

    Burke, M. E.; Pattee, P. A.

    1967-01-01

    A strain of Pseudomonas aeruginosa has been shown to produce an enzyme that lyses viable cells of Staphylococcus aureus. The maximal yield of the enzyme was obtained from shake flask cultures of P. aeruginosa which were grown for 18 to 22 hr at 37 C in Trypticase Soy Broth. A 333-fold purification of the enzyme was obtained by acetone precipitation of the culture liquor, followed by column chromatography on phosphonic acid cellulose and Bio-Gel P2. The staphylolytic enzyme exhibited maximal activity at 37 C in 0.01 m sodium phosphate (pH 8.5) and was stable at 37 C in the pH range of 7.5 to 9.5. The inhibition and stabilization of the enzyme by various organic and inorganic materials was investigated. Spheroplasts of S. aureus were formed by treating viable cells with the staphylolytic enzyme in 1 m sucrose or human serum. PMID:4960924

  17. Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit.

    PubMed

    Garvey, M I; Bradley, C W; Tracey, J; Oppenheim, B

    2016-09-01

    Pseudomonas aeruginosa is an important nosocomial pathogen, colonizing hospital water supplies including taps and sinks. We report a cluster of P. aeruginosa acquisitions during a period of five months from tap water to patients occupying the same burns single room in a critical care unit. Pseudomonas aeruginosa cultured from clinical isolates from four different patients was indistinguishable from water strains by pulsed-field gel electrophoresis. Water outlets in critical care may be a source of P. aeruginosa despite following the national guidance, and updated guidance and improved control measures are needed to reduce the risks of transmission to patients. PMID:27249962

  18. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa.

    PubMed

    Gambari, Roberto; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria Cristina; Mancini, Irene; Tamanini, Anna; Cabrini, Giulio

    2010-12-15

    Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance. PMID:20615393

  19. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds. PMID:26825819

  20. Intranasal Immunization Strategy To Impede Pilin-Mediated Binding of Pseudomonas aeruginosa to Airway Epithelial Cells

    PubMed Central

    Hsieh, Jennifer C.; Tham, Doris M.; Feng, Weijun; Huang, Fan; Embaie, Selamawit; Liu, Keyi; Dean, Deborah; Hertle, Ralf; FitzGerald, David J.; Mrsny, Randall J.

    2005-01-01

    Prevention of pulmonary Pseudomonas aeruginosa infections represents a critical unmet medical need for cystic fibrosis (CF) patients. We have examined the tenet that a mucosal immunization approach can reduce interactions of a piliated form of this opportunistic pathogen with respiratory epithelial cells. Vaccinations were performed using ntPEpilinPAK, a protein chimera composed of a nontoxic form of P. aeruginosa exotoxin A (ntPE), where the C-terminal loop amino acid sequence of the PAK strain pilin protein was inserted in place of the ntPE Ib domain. Intranasal (i.n.) immunization of BALB/c mice with ntPEpilinPAK generated both serum and saliva immune responses. A series of in vitro studies showed that diluted samples of saliva obtained from immunized mice reduced pilin-dependent P. aeruginosa binding to polarized human tracheal epithelial cells, protected human pulmonary epithelial cells from cytotoxic actions associated with bacterial challenge, and reduced exotoxin A toxicity. Overall, i.n. administration of ntPEpilinPAK induced mucosal and systemic immune responses that may be beneficial for blocking early stage adhesion and/or infection events of epithelial cell-P. aeruginosa interactions at oropharyngeal surfaces. PMID:16239575

  1. Proteome and carbon flux analysis of Pseudomonas aeruginosa clinical isolates from different infection sites.

    PubMed

    Lassek, Christian; Berger, Antje; Zühlke, Daniela; Wittmann, Christoph; Riedel, Katharina

    2016-05-01

    Pseudomonas aeruginosa is known as opportunistic pathogen frequently isolated from different infection sites. To investigate the expression rates of P. aeruginosa proteins commonly expressed by different clinical isolates, absolute protein quantities were determined employing a gel-free and data-independent LC-IMS(E) approach. Moreover, the metabolic diversity of these isolates was investigated by (13) C-metabolic flux analyses. 812 proteins were reproducibly identified and absolutely quantified for the reference strain P. aeruginosa PAO1, 363 of which were also identified and relatively quantified in all isolates. Whilst the majority of these proteins were expressed in constant amounts, expression rates of 42 proteins were highly variable between the isolates. Notably, the outer membrane protein OprH and the response regulator PhoP were strongly expressed in burned wounds isolates compared to lung/urinary tract isolates. Moreover, proteins involved in iron/amino acids uptake were found to be highly abundant in urinary tract isolates. The fluxome data revealed a conserved glycolysis, and a niche-specific divergence in fluxes through the glyoxylate shunt and the TCA cycle among the isolates. The integrated proteome/fluxome analysis did not indicate straightforward correlation between the protein amount and flux, but rather points to additional layers of regulation that mediate metabolic adaption of P. aeruginosa to different host environments. All MS data have been deposited in the ProteomeXchange with identifier PXD002373 (http://proteomecentral.proteomexchange.org/dataset/PXD002373). PMID:26959854

  2. Pathogen Special: Vibrio Cholerae, Pseudomonas Aeruginosa and Xylella Fastidiosa

    PubMed Central

    2000-01-01

    One could almost say that it is the latest fashion to sequence a bacterial genome. However, this would belittle the efforts of those working on these important organisms, whose data will greatly help those working on the prevention of disease in the fields of medicine and agriculture. In this feature we present a guided tour of the latest additions to the ‘sequenced microbes’ club. Vibrio cholerae is the causative agent of cholera, which is still a threat in countries with poor sanitation and unsafe drinking water. Pseudomonas aeruginosa is responsible for a large proportion of opportunistic human infections, typically infecting those with compromised immune systems, particularly cystic fibrosis patients, those patients on respirators and burn victims. Xylella fastidiosa is a plant pathogen that attacks citrus fruits by blocking the xylem, resulting in juiceless fruits of no commercial value. PMID:11119308

  3. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    PubMed Central

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108

  4. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections.

    PubMed

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  5. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations. PMID:26962762

  6. Characterization of Pseudomonas aeruginosa mutants with altered piliation.

    PubMed Central

    Johnson, K; Lory, S

    1987-01-01

    The pilus-specific Pseudomonas aeruginosa bacteriophage P04 was used to select spontaneous mutants of strain PAK which have altered piliation. The largest class of phage-resistant mutants synthesized the pilin polypeptide, but did not assemble pili. These mutants are likely to contain mutations in genes required for pilus assembly and not mutations in the pilin structural gene, as they could not be complemented by a normal copy of the pilin gene. In addition, two alterations in pilin gene transcription were found among the mutants--hyperpiliated mutants which overproduce pilin mRNA, and a mutant with temperature-sensitive pilin gene transcription. We also present a model for the regulation of pilin gene transcription by a feedback mechanism sensitive to the relative rates of pilus assembly and disassembly. Images PMID:2445731

  7. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment. PMID:27148715

  8. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    PubMed Central

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  9. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  10. Prediction of piperacillin-tazobactam susceptibility among Enterobacteriaceae, Pseudomonas aeruginosa, and other bacteria using ticarcillin-clavulanic acid, ceftazidime, and other broad-spectrum antimicrobial in vitro test results.

    PubMed

    Jones, R N; Sutton, L D; Cantrell, H F; Lankford, R B

    1994-11-01

    The ability of various in vitro beta-lactam susceptibility test results to predict the susceptibility of piperacillin-tazobactam (a new beta-lactam-beta-lactamase inhibitor combination) was assessed using more than 46,000 recent clinical isolates. The organisms were tested by reference-quality National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution procedures and interpreted by the currently published NCCLS criteria. The recommended antimicrobial tests that would accurately predict the piperacillin-tazobactam in vitro efficacy had an overall very major, false-susceptible rate of only 0.6% (< or = 1.5% is acceptable). The following drug tests can be used to judge piperacillin-tazobactam activity and spectrum (low patient risk) conservatively: for Enterobacteriaceae use ticarcillin-clavulanic acid results (0.6% very major error); for Pseudomonas aeruginosa use piperacillin (0.1%) results; for enterococci use ampicillin or ampicillin-sulbactam (1.8%) results; for Haemophilus influenzae and Moraxella catarrhalis use cefotaxime or cefuroxime or ceftriaxone (1.5%); and for staphylococci use oxacillin by NCCLS recommendations. When the piperacillin-tazobactam testing reagents become available, the direct testing of this combination should be applied to relevant clinical isolates. The piperacillin-tazobactam break points should be reassessed as indicated by the cited minimum inhibitory concentration population analysis to improve predictive accuracy; H. influenzae susceptibility modified to < or = 2/4 micrograms/ml and Enterococcus species susceptibility tested at < or = 16/4 micrograms. PMID:7874881

  11. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  12. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa

    PubMed Central

    Chan, Benjamin K.; Sistrom, Mark; Wertz, John E.; Kortright, Kaitlyn E.; Narayan, Deepak; Turner, Paul E.

    2016-01-01

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections. PMID:27225966

  13. Denitrification by Pseudomonas Aeruginosa Under Simulated Engineered Martain Conditions

    NASA Astrophysics Data System (ADS)

    Hart, S. D.; Currier, P. A.; Thomas, D. J.

    The growth of Pseudomonas aeruginosa in denitrifying medium was observed for 14 days in the presence of a martian soil analog (JSC Mars-1) and elevated CO2 levels. A four-way test was conducted comparing growth of experimental samples to growth in the presence of inert silica (“Earth soil”) and normal terrestrial atmosphere. The combination of 50 mL of fluorescence-denitrification medium and 10 grams of soil additive simulated an aquatic environment, which was contained in sealed culture bottles. Nitrite assays of the media (to test for consumption during denitrification), gas sampling from the bottles to observe nitrogen production, and colony counts to quantify growth rate were all performed at 0, 7 and 14 days after inoculation. Supplemental tests performed included nitrate assays (to confirm the occurrence of denitrification) and culture fluorescence (as a non-invasive growth test). Growth and denitrification took place under all conditions, and no significant differ- ences were observed between samples. These data indicate that the presence of simulated martian regolith and elevated CO2 have little or no effect on the growth of or denitrification by P. aeruginosa at the concentrations used.

  14. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa

    PubMed Central

    Kim, Wook

    2010-01-01

    Summary Bacterial populations frequently act as a collective by secreting a wide range of compounds necessary for cell-cell communication, host colonization and virulence. However, how such behaviors avoid exploitation by spontaneous ‘cheater’ mutants that use but do not contribute to secretions remains unclear. We investigate this question using Pseudomonas aeruginosa swarming, a collective surface motility requiring massive secretions of rhamnolipid biosurfactants. We first show that swarming is immune to the evolution of rhlA− ‘cheaters’. We then demonstrate that P. aeruginosa resists cheating through metabolic prudence: wild-type cells secrete biosurfactants only when the cost of their production and impact on individual fitness is low, therefore preventing non-secreting strains from gaining an evolutionary advantage. Metabolic prudence works because the carbon-rich biosurfactants are only produced when growth is limited by another growth limiting nutrient, the nitrogen source. By genetically manipulating a strain to produce the biosurfactants constitutively we show that swarming becomes cheatable: a non-producing strain rapidly outcompetes and replaces this obligate cooperator. We argue that metabolic prudence, which may first evolve as a direct response to cheating or simply to optimize growth, can explain the maintenance of massive secretions in many bacteria. More generally, prudent regulation is a mechanism to stabilize cooperation. PMID:21166901

  15. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-01-01

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections. PMID:27225966

  16. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase

    PubMed Central

    Beassoni, Paola R.; Gallarato, Lucas A.; Boetsch, Cristhian; Garrido, Mónica N.; Lisa, Angela T.

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn−1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4+ is an activator of the enzyme and may function at concentrations lower than those of K+; (iii) Zn2+ is also an activator of paPpx and may substitute Mg2+ in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg2+ and capable of producing ATP regardless of the presence or absence of K+ or NH4+ ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity. PMID:26576296

  17. Genes related to chromate resistance by Pseudomonas aeruginosa PAO1.

    PubMed

    Rivera, Sonia L; Vargas, Eréndira; Ramírez-Díaz, Martha I; Campos-García, Jesús; Cervantes, Carlos

    2008-08-01

    Chromate-hypersensitive mutants of the Pseudomonas aeruginosa PAO1 strain were isolated using transposon-insertion mutagenesis. Comparison of the nucleotide sequences of the regions interrupted in the mutants with the PAO1 genome revealed that the genes affected in three mutant strains were oprE (ORF PA0291), rmlA (ORF PA5163), and ftsK (ORF PA2615), respectively. A relationship of these genes with chromate tolerance has not been previously reported. No other phenotypic changes were observed in the oprE mutant but its resistance to chromate was not fully restored by expressing the ChrA protein, which extrudes chromate ions from the cytoplasm to the periplasmic space. These data suggest that OprE participates in the efflux of chromate from the periplasm to the outside. Increased susceptibility of the rmlA mutant to the metals cadmium and mercury and to the anion-superoxide generator paraquat suggests a protective role of LPS against chromate toxicity. A higher susceptibility of the ftsK mutant to compounds affecting DNA structure (ciprofloxacin, tellurite, mitomycin C) suggests a role of FtsK in the recombinational repair of DNA damage caused by chromate. In conclusion, the P. aeruginosa genome contains diverse genes related to its intrinsic resistance to chromate. Systems pertaining to the outer membrane (OprE), the cell wall (LPS), and the cytoplasm (FtsK) were identified in this work as involved in chromate protection mechanisms. PMID:18446454

  18. Glycosylation Substrate Specificity of Pseudomonas aeruginosa 1244 Pilin*S

    PubMed Central

    Horzempa, Joseph; Comer, Jason E.; Davis, Sheila A.; Castric, Peter

    2008-01-01

    The β-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the “tail” region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur. PMID:16286455

  19. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa

    PubMed Central

    Persat, Alexandre; Inclan, Yuki F.; Engel, Joanne N.; Stone, Howard A.; Gitai, Zemer

    2015-01-01

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity. PMID:26041805

  20. [New Virulent Bacteriophages Active against Multiresistant Pseudomonas aeruginosa Strains].

    PubMed

    Balarjishvili, N Sh; Kvachadze, L I; Kutateladze, M I; Meskhi, T Sh; Pataridze, T K; Berishvili, T A; Tevdoradze, E Sh

    2015-01-01

    The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of anti-microbial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and polyacrylamide gel electrophoresis in the presence of envelope protein SDS were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multi-drug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity. PMID:26859962

  1. Pseudomonas aeruginosa: my research passion. Interview by Hannah Branch.

    PubMed

    Hazlett, Linda

    2013-07-01

    Linda Hazlett is a department chair and distinguished professor at Wayne State University (MI, USA). Her research is focused on the host immune response to Pseudomonas aeruginosa and its role in ocular infections. Dr Hazlett has been funded continuously by the NIH by R01 support for 34 years. She is currently principal investigator of two R01 grants from the National Eye Institute that study pathogenesis of P. aeruginosa in the eye. Dr Hazlett oversees four Course Directors who lead Year 1 medical student teaching, in addition to two graduate course directors. Furthermore, although not involved in medical teaching, she educates graduate students and mentors a Research Scientist and a Research Assistant Professor. Throughout her career, Dr Hazlett has achieved several honors and awards including Distinguished Professor at Wayne State University (2008), National Eye Institute Core Center (P30) grant for 1987-2013, Chair of Physiology Search 2008-2009, Member of the Academy of Scholars at Wayne State University, Association for Research in Vision and Ophthalmology fellow at the Gold Medal level (2009) and was an invited speaker at the Gordon Conference 2010. PMID:23841630

  2. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    PubMed Central

    Hentzer, Morten; Wu, Hong; Andersen, Jens Bo; Riedel, Kathrin; Rasmussen, Thomas B.; Bagge, Niels; Kumar, Naresh; Schembri, Mark A.; Song, Zhijun; Kristoffersen, Peter; Manefield, Mike; Costerton, John W.; Molin, Søren; Eberl, Leo; Steinberg, Peter; Kjelleberg, Staffan; Høiby, Niels; Givskov, Michael

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip® microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response. PMID:12881415

  3. Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins.

    PubMed Central

    Carnoy, C; Scharfman, A; Van Brussel, E; Lamblin, G; Ramphal, R; Roussel, P

    1994-01-01

    The attachment of Pseudomonas aeruginosa to human respiratory mucus represents an important step in the development of lung infection, especially in cases of cystic fibrosis. For this purpose, microtiter plate adhesion assays have been developed and have suggested that nonpilus adhesins of P. aeruginosa are the most important ones for binding to human respiratory mucins. In order to characterize these mucin-binding adhesins, outer membrane proteins (OMP) from two adhesive strains, 1244-NP and PAK-NP, and their poorly adhesive rpoN mutants, 1244-N3 and PAK-N1, were prepared by a mild extraction with Zwittergent 3-14. Mucin-binding adhesins were detected after polyacrylamide gel electrophoresis and blotting of the OMP on nitrocellulose replicas, using human bronchial mucins labeled with 125I. The binding properties of these OMP with lactotransferrin, another glycoprotein abundant in respiratory mucus, were also studied. Radiolabeled mucins detected four bands at 48, 46, 28, and 25 kDa with strain PAK-NP. With the nonmucoid strain 1244-NP, five bands were observed at 48, 46, 42, 28, and 25 kDa. The bands at 48 and 25 kDa were also visualized by radiolabeled lactotransferrin. These bands were partially or completely displaced by nonradiolabeled respiratory mucin glycopeptides but not by tetramethylurea, suggesting that they recognized carbohydrate sites. In contrast, the poorly adhesive strains showed weakly binding bands. These results demonstrate that outer membranes from two different nonpiliated P. aeruginosa strains express multiple adhesins with an affinity for human respiratory mucins and/or lactotransferrin. Images PMID:8168955

  4. Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene.

    PubMed Central

    Yahr, T L; Hovey, A K; Kulich, S M; Frank, D W

    1995-01-01

    The transcriptional regulation of the Pseudomonas aeruginosa exoS gene was investigated. Expression of exoS in P. aeruginosa PA103 was dependent upon growth in a low-cation environment and the presence of a functional exsA gene. Promoter fusion analysis indicated that a 285-bp PstI-NsiI fragment, located 5' of the exoS coding region, contained a functional promoter for exoS. Expression of the reporter gene was inducible in a low-cation growth environment and required a functional copy of exsA. Divergent promoters, coordinately regulated with exoS transcription, were identified within the PstI-NsiI fragment. A fusion derivative of ExsA, MALA3A2, was shown to bind directly to the PstI-NsiI probe. DNase I protection analysis demonstrated that MALA3A2 bound to the intergenic region between the postulated -35 boxes of each promoter region. Northern (RNA) blot analysis with probes internal to and upstream of exoS demonstrated that separate, coordinately regulated mRNAs were expressed in P. aeruginosa. These data suggested that a locus, coregulated with exoS transcription, was located upstream of exoS. DNA sequence analysis of the exoS upstream region revealed three open reading frames, ORF 1, ORF 2, and ORF 3. ORF 1 demonstrated significant homology to the SycE/YerA protein of Yersinia sp. SycE/YerA is postulated to function as a chaperone for the YopE cytotoxin. The loci encoding YopE and ExoS show similarities in genetic organization, protein composition, and regulation. PMID:7868588

  5. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase.

    PubMed

    Owings, Joshua P; Kuiper, Emily G; Prezioso, Samantha M; Meisner, Jeffrey; Varga, John J; Zelinskaya, Natalia; Dammer, Eric B; Duong, Duc M; Seyfried, Nicholas T; Albertí, Sebastián; Conn, Graeme L; Goldberg, Joanna B

    2016-02-12

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  6. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.

    PubMed

    Soh, Eliza Ye-Chen; Chhabra, Siri R; Halliday, Nigel; Heeb, Stephan; Müller, Christine; Birmes, Franziska S; Fetzner, Susanne; Cámara, Miguel; Chan, Kok-Gan; Williams, Paul

    2015-11-01

    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation. PMID:25809238

  7. [Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation].

    PubMed

    Ben Haj Khalifa, Anis; Moissenet, Didier; Vu Thien, Hoang; Khedher, Mohamed

    2011-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. The virulence factors play an important pathological role in the colonization, the survival of the bacteria and the invasion of tissues. There are two types of virulence factors: (1) factors involved in the acute infection: these factors are either on the surface of P. aeruginosa, either secreted. The pili allow adherence to the epithelium. The exoenzyme S and other adhesins reinforce the adherence to epithelial cells. The exotoxin A is responsible of tissue necrosis. Phospholipase C is a thermolabile haemolysin. The pathogenic role of exoenzyme S is attributable to the disruption of normal cytoskeletal organization, the destruction of immunoglobulin G and A, leads to depolymerization of actin filaments and contributes to the resistance to macrophages. P. aeruginosa produces at least four proteases causing bleeding and tissue necrosis; (2) factors involved in the chronic infection: siderophores (pyoverdin and pyochelin), allow the bacteria to multiply in the absence of ferrous ions. The strains isolated from patients with cystic fibrosis have a pseudocapsule of alginate that protects the bacterium from phagocytosis, dehydration and antibiotics. Moreover, it improves adherence to epithelial cells forming a biofilm. Two different types of regulation systems control the expression of the majority of these virulence factors: the two-component transcriptional regulatory system and the quorum sensing system. These two mechanisms are necessary to the survival and the proliferation of this microorganism in the host. PMID:21896403

  8. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  9. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  10. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    PubMed

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr. PMID:26188263

  11. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in Catfish

    PubMed Central

    2013-01-01

    Background The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections. The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. Results The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8–10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. Conclusion Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem. PMID:24369750

  12. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Hammond, John H.; Dolben, Emily F.; Smith, T. Jarrod; Bhuju, Sabin

    2015-01-01

    ABSTRACT In Pseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanr derivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanr strains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections. IMPORTANCE Pseudomonas aeruginosa causes acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients. P. aeruginosa uses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS, lasR, are frequently

  13. Pseudomonas aeruginosa for the Evaluation of Swimming Pool Chlorination and Algicides

    PubMed Central

    Fitzgerald, G. P.; DerVartanian, M. E.

    1969-01-01

    Concentrations of ammonia and the chlorine stabilizer, cyanuric acid, which could be expected in swimming pools decreased the rate of kill by chlorine of the potential pathogen, Pseudomonas aeruginosa. The effect of cyanuric acid increased as the concentration of chlorine decreased, a fact of significance from a public health view. Quaternary ammonium algcides had little effect on the kill rate of chlorine, but an organic mercury algicide had a synergistic effect with chlorine when the chlorine activity was stressed by the addition of ammonia or the use of 100 times the normal concentration of bacteria. The effect of natural waters, rain, beaches, and swimming pools on the kill rate by 0.5 mg of chlorine per liter indicated that a treatment time of 1 hr or more was required to kill 99.9% of 106 Pseudomonas cells per ml. The synergism of chlorine and the organic mercury algicide was also demonstrated with these waters and with sewage treatment plant effluents. The necessity of developing and using laboratory tests which simulate conditions in swimming pools with heavy loads of swimmers, as opposed to tests in chlorine demand-free conditions, is discussed. Samples taken from well-supervised swimming pools when the swimmer load had been especially high required treatment times of 1 to 3 hr to obtain 99.9% kills of the potential pathogen, P. aeruginosa, with 0.5 mg of chlorine per liter. PMID:4976325

  14. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  15. [Surviving Forms in Antibiotic-Treated Pseudomonas aeruginosa].

    PubMed

    Mulyukin, A L; Kozlova, A N; Sorokin, V V; Suzina, N E; Cherdyntseva, T A; Kotova, I B; Gaponov, A M; Tutel'yan, A V; El'-Registan, G I

    2015-01-01

    Survival of bacterial populations treated with lethal doses of antibiotics is ensured by the presence of very small numbers of persister cells. Unlike antibiotic-resistant cells, antibiotic tolerance of persisters is not inheritable and reversible. The present work provides evidence supporting the hypothesis of transformation (maturation) of persisters of an opportunistic pathogen Pseudomonas aeruginosa revealed by ciprofloxacin (CF) treatment (25-100 μg/mL) into dormant cystlike cells (CLC) and non-culturable cells (NC), as was described previously for a number. of non-spore-forming bacteria. Subpopulations of type 1 and type 2 persisters, which survived antibiotic treatment and developed into dormant forms, were heterogeneous in their capacity to form colonies or microcolonies upon germination, in resistance to heating at 70 degrees C, and in cell morphology Type 1 persisters, which were formed after 1-month incubation in the stationary-phase cultures in the medium with decreased C and N concentrations, developed in several types of surviving cells, including those similar to CLC in cell morphology. In the course of 1-month incubation of type 2 persisters, which were formed in exponentially growing cultures, other types of surviving cells developed: immature CLC and L-forms. Unlike P. aeruginosa CLC formed in the control post-stationary phase cultures without antibiotic treatment, most of 1-month persisters, especially type 2 ones, were characterized by the loss of colony-forming capacity, probably due to transition into an uncultured state with relatively high numbers of live intact cells (Live/Dead test). Another survival strategy of P. aeruginosa populations was ensured by a minor subpopulation of CF-tolerant and CF-resistant cells able to grow in the form of microcolonies or regular colonies of decreased size in the presence of the antibiotic. The described P. aeruginosa dormant forms may be responsible for persistent forms in bacteria carriers and latent

  16. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa.

    PubMed

    Clarke-Pearson, Michael F; Brady, Sean F

    2008-10-01

    The pvc gene cluster from Pseudomonas aeruginosa has been linked to the biosynthesis of both the pyoverdine chromophore and pseudoverdine. Our reinvestigation of the role this gene cluster plays in P. aeruginosa secondary metabolite biosynthesis shows that its major product is actually paerucumarin, a novel isonitrile functionalized cumarin. PMID:18689486

  17. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  18. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  19. Draft Genome Sequence of a Klebsiella pneumoniae Carbapenemase-Positive Sequence Type 111 Pseudomonas aeruginosa Strain

    PubMed Central

    Dotson, Gabrielle A.; Dekker, John P.; Palmore, Tara N.; Segre, Julia A.

    2016-01-01

    Here, we report the draft genome sequence of a sequence type 111 Pseudomonas aeruginosa strain isolated in 2014 from a patient at the NIH Clinical Center. This P. aeruginosa strain exhibits pan-drug resistance and harbors the blaKPC-2 gene, encoding the Klebsiella pneumoniae carbapenemase enzyme, on a plasmid. PMID:26868386

  20. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa.

    PubMed

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  1. PSEUDOMONAS AERUGINOSA-FECAL COLIFORM RELATIONSHIPS IN ESTUARINE AND FRESH RECREATIONAL WATERS

    EPA Science Inventory

    This study has shown that Pseudomonas aeruginosa cannot be used as the basis of water standards for the prevention of enteric disease during the recreational use of surface waters. However, P. aeruginosa determinations, when used in conjunction with the assay of fecal coliforms o...

  2. MOLECULAR CHARACTERIZATION OF 'PSEUDOMONAS AERUGINOSA' BACTERIOPHAGES: IDENTIFICATION AND CHARACTERIZATION OF THE NOVEL VIRUS B86

    EPA Science Inventory

    The authors have characterized a new phage, B86, of Pseudomonas aeruginosa isolated from nature. It is a temperate, uv-inducible, generalized transducing phage. To determine the relatedness of his phage to other characterized P. aeruginosa phages, DNA homology studies were carrie...

  3. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  4. Synthesis and characterization of a Pseudomonas aeruginosa alginate-toxin A conjugate vaccine.

    PubMed Central

    Cryz, S J; Fürer, E; Que, J U

    1991-01-01

    Alginate from Pseudomonas aeruginosa 3064 was depolymerized by controlled heating in dilute acid. The resulting depolymerized alginate (Mr less than 60,000) was covalently coupled to toxin A with adipic acid dihydrazide as a spacer molecule and carbodiimide as a linker. The resulting conjugate was composed of toxin A and depolymerized alginate at a ratio of 4:1 and possessed an Mr of 260,000. The conjugate was nontoxic and nonpyrogenic. While native alginate (Mr greater than 640,000) given in a range of doses was poorly immunogenic in mice and rabbits, the conjugate induced high levels of antibody which bound to native alginate. Rabbits, but not mice, also produced an antitoxin immunoglobulin antibody response. Alginate derived from three other strains of P. aeruginosa competed with the homologous 3064 alginate for binding to anticonjugate antibody. This indicates that the conjugate elicits an antibody response able to recognize heterologous alginates. The serum from rabbits immunized with the conjugate was effective at promoting the uptake and killing of mucoid strains of P. aeruginosa by human polymorphonuclear leukocytes. In contrast, immunization with native alginate did not engender an opsonic antibody response. Rabbit anticonjugate antibody also neutralized the cytotoxic potential of toxin A. PMID:1898901

  5. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Plyuta, Vladimir; Zaitseva, Julia; Lobakova, Elena; Zagoskina, Natalia; Kuznetsov, Alexander; Khmel, Inessa

    2013-11-01

    In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms. Biofilm formation of P. aeruginosa PAO1 was enhanced 3- to 7-fold under the action of vanillin and epicatechin, and 2- to 2.5-fold in the presence of 4-hydroxybenzoic, gallic, cinnamic, sinapic, ferulic, and chlorogenic acids. At higher concentrations, these compounds displayed an inhibiting effect. Similar experiments carried out for comparison with Agrobacterium tumefaciens C58 showed the same pattern. Vanillin, 4-hydroxybenzoic, and gallic acids at concentrations within the range of 40 to 400 μg/mL increased the production of N-3-oxo-dodecanoyl-homoserine lactone in P. aeruginosa PAO1 which suggests a possible relationship between stimulation of biofilm formation and Las Quorum Sensing system of this bacterium. Using biosensors to detect N-acyl-homoserine lactones (AHL), we demonstrated that the plant phenolics studied did not mimic AHLs. PMID:23594262

  6. Multi drug resistant Pseudomonas aeruginosa: Pathogen burden and associated antibiogram in a tertiary care hospital of Pakistan.

    PubMed

    Ullah, Waheed; Qasim, Muhammad; Rahman, Hazir; Bari, Fazli; Khan, Saadullah; Rehman, Zia Ur; Khan, Zahid; Dworeck, Tamara; Muhammad, Noor

    2016-08-01

    Pseudomonas aeruginosa is an important pathogen of both community and hospital acquired infections, and a major threat to public health for continuous emergence of multi-drug resistance. Current prevalence and pattern of multidrug resistance in the clinical isolates of P. aeruginosa is reported here. Samples were collected from September 2013 to January 2014 tertiary care hospital, Peshawar. Samples were subjected to phenotypic and molecular based detection of P. aeruginosa and were further processed for multidrug resistance pattern. Out of 3700 samples, 102 were identified as MDR P. aeruginosa. Prevalence of MDR isolates were found in pus (34.3%), wounds (28.4%), urine (19.6%), blood (14.7%) and sputum (2.9%) respectively. Isolates were more resistant to Sulphamethoxazole/Trimethoprim (98.04%), Amoxycillin/Clavulanic acid, Doxycycline and Chloramphenicol (95.1%) each, while least resistant to Imipenem (43.1%), Cefoperazone/Sulbactam (50.98%) and Amikacin (53.9%). Extensive MDR pattern was observed in P. aeruginosa was found as (n = 17, 16.6%) isolates were resistant to all four classes of antibiotics. Increased burden of MDR P. aeruginosa was documented in the study. Moreover, some isolates were even resistant to four classes of antibiotics. Findings of the study will be helpful to devise an appropriate antibiotic treatment strategy against MDR P. aeruginosa to cope the chances of evolving resistant pathogens. PMID:27317858

  7. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria. PMID:25535873

  8. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Rizvi, Hina

    2014-06-01

    Plant Growth Promoting Rhizobacteria (PGPR), whose role is still underestimated, plays an important (or perhaps essential) role in improving plant growth. The comprehensive understanding of bacterial plant growth promoting mechanism helps to get sustainable agriculture production under biotic and abiotic stresses. In the present study, plant growth promoting (PGP) bacterial strain Pseudomonas aeruginosa having maximum inhibitory concentration of 1500mg kg(-1) against Zn was isolated from arable land, irrigated with industrial effluent and evaluated to determine it bioremediation potential. The study was mainly focused on plant biomass production, nutrient uptake and oxidative stress tolerance in relation to the activities of antioxidative enzymes and the content of non-enzymatic antioxidants. The oxidative stress tolerance was measured by estimating the MDA accumulation as well as H2O2 production in wheat plants under Zn (1000mg kg(-1)) stress and inoculation of soil with Zn resistant Pseudomonas aeruginosa. Zn in rooting medium reduced the plant growth, leaf photosynthetic pigments as well as uptake of N and P. However, content of MDA and H2O2 increased at higher concentration of Zn. Inoculation of P. aeruginosa improved the uptake of P and N in wheat plants with an increase in leaf chlorophyll, total soluble protein and plant biomass production. Analysis of plant root and shoot disclosed that Zn concentration was significantly lowered in P. aeruginosa inoculated zinc stressed plants as compare to the plants grown under Zn stress only. The amelioration of adverse effects of Zn stress on biomass production due to P. aeruginosa inoculation was related with enhanced antioxidative enzyme activities (SOD, POD and CAT), and the contents of non-enzymatic components such as ascorbic acid and total phenolics (TPC) as compare to Zn-treated plants. The up-gradation in antioxidative defense mechanism, resulted a reduction in H2O2 and MDA content due to the scavenging of ROS

  9. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection.

    PubMed Central

    Wang, J; Mushegian, A; Lory, S; Jin, S

    1996-01-01

    Pseudomonas aeruginosa, an opportunistic human pathogen, is a major causative agent of mortality and morbidity in immunocompromised patients and those with cystic fibrosis genetic disease. To identify new virulence genes of P. aeruginosa, a selection system was developed based on the in vivo expression technology (IVET) that was first reported in Salmonella system. An adenine-requiring auxotrophic mutant strain of P. aeruginosa was isolated and found avirulent on neutropenic mice. A DNA fragment that can complement the mutant strain, containing purEK operon that is required for de novo biosynthesis of purine, was sequenced and used in the IVET vector construction. By applying the IVET selection system to a neutropenic mouse infection model, genetic loci that are specifically induced in vivo were identified. Twenty-two such loci were partially sequenced and analyzed. One of them was a well-studied virulence factor, pyochelin receptor (FptA), that is involved in iron acquisition. Fifteen showed significant homology to reported sequences in GenBank, while the remaining six did not. One locus, designated np20, encodes an open reading frame that shares amino acid sequence homology to transcriptional regulators, especially to the ferric uptake regulator (Fur) proteins of other bacteria. An insertional np20 null mutant strain of P. aeruginosa did not show a growth defect on laboratory media; however, its virulence on neutropenic mice was significantly reduced compared with that of a wild-type parent strain, demonstrating the importance of the np20 locus in the bacterial virulence. The successful isolation of genetic loci that affect bacterial virulence demonstrates the utility of the IVET system in identification of new virulence genes of P. aeruginosa. Images Fig. 2 Fig. 4 PMID:8816818

  10. Characterization of Pseudomonas aeruginosa isolated from chronically infected children with cystic fibrosis in India

    PubMed Central

    Agarwal, Gunjan; Kapil, Arti; Kabra, Susheel Kumar; Das, Bimal Kumar; Dwivedi, Sada Nand

    2005-01-01

    Background Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods. Results We studied 56 patients with CF attending the Pediatric Chest clinic at All India Institute of Medical Sciences, New Delhi, India during August 1998-August 2001. These patients were regularly followed up at the clinic. Out of 56 patients, 27 were culture positive for P. aeruginosa where 8 were chronically infected (Group1) and 19 were intermittently colonized with the organism (Group2). Patients under Group1 had significantly higher rates of hospitalization, death and colonization with different colony morphotypes (p < 0.05). The isolates from Group1 patients were the positive producers of extended spectrum beta lactamase. A total of 5 auxotrophs were recovered from 2 patients where one was chronically infected with P. aeruginosa and the other was a recently enrolled patient. The auxotrophs had the specific requirement for methionine and arginine. Molecular typing revealed 33 ERIC-PCR (E1-E33) and 5 PCR-ribotyping (P1-P5) patterns. By ERIC-PCR, 4 patients were colonized with 2–4 genotypes and the remaining 23 patients were colonized with the single genotype. Conclusion With chronicity of infection, P. aeruginosa becomes multidrug resistant, diversifies its colony morphology, acquires mucoidity and shows auxotrophy for amino acids. The chronically infected patients can be colonized with multiple genotypes. Thus in a particular clinical set up, high index of suspicion should be there for diagnosis of CF patients so as to prevent the delay in diagnosis and management of CF

  11. The identification, typing, and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from mink with hemorrhagic pneumonia.

    PubMed

    Qi, Jing; Li, Lulu; Du, Yijun; Wang, Shourong; Wang, Jinwen; Luo, Yanbo; Che, Jie; Lu, Jinxing; Liu, Hui; Hu, Guangchun; Li, Jixia; Gong, Yanwen; Wang, Guisheng; Hu, Ming; Shiganyan; Liu, Yuqing

    2014-06-01

    The biological characteristics and molecular epidemiology of Pseudomonas aeruginosa associated with mink hemorrhagic pneumonia from Shandong province of eastern China were determined in this study. From 2010 to 2011, 30 mink P. aeruginosa isolates were identified from lung, fecal and feed samples of clinical cases and subjected to serotyping, antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) using SpeI. The P. aeruginosa isolates belonged to four serotypes-21 of type G, four of type I, three of type M, one of type B, and one non-typable strain. The strains were divided into four large groups as determined by PFGE. Isolates from the group 2 were highly homologous and were obtained from the same region as an epidemic. All of the isolates were sensitive to piperacillin, piperacillin/tazobactam, ceftazidime, cefepime, imipenem, amikacin, gentamicin and tobramycin and resistant to ampicillin, cefuroxime and cefuroxime axetil. A high frequency of resistance was found to ampicillin/sulbactam, cefazolin, cefotetan, ceftriaxone, nitrofurantoin, and trimethoprim/sulfamethoxazole (96.7%). Resistance to ticarcillin/clavulanic acid, ciprofloxacin and levofloxacin was less common (13.3%). There was no relationship between antibiotic resistance and serotype distribution of the isolates. The epidemic serotype of P. aeruginosa from the mink hemorrhagic pneumonia in Shandong province was type G, which was a clone of commonly found in this province. These findings reveal the genetic similarities and antimicrobial susceptibility profiles of P. aeruginosa from clinical cases of mink hemorrhagic pneumonia and will facilitate the prevention and control of the disease in Shandong province of China. PMID:24629901

  12. The Pseudomonas aeruginosa antimetabolite L -2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor

    PubMed Central

    Rojas Murcia, Nelson; Lee, Xiaoyun; Waridel, Patrice; Maspoli, Alessandro; Imker, Heidi J.; Chai, Tiancong; Walsh, Christopher T.; Reimmann, Cornelia

    2015-01-01

    The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed. PMID:25814981

  13. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    PubMed

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit. PMID:22333699

  14. Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa IFO 3455.

    PubMed Central

    Okuda, K; Morihara, K; Atsumi, Y; Takeuchi, H; Kawamoto, S; Kawasaki, H; Suzuki, K; Fukushima, J

    1990-01-01

    The DNA-encoding alkaline proteinase (AP) of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, the gene-incorporated bacteria expressed high levels of both AP activity and AP antigens. The amino acid sequence deduced from the nucleotide sequence revealed that the mature AP consists of 467 amino acids with a relative molecular weight of 49,507. The amino acid composition predicted from the DNA sequence was similar to the chemically determined composition of purified AP reported previously. The amino acid sequence analysis revealed that both the N-terminal side sequence of the purified AP and several internal lysyl peptide fragments were identical to the deduced amino acid sequences. The percent homology of amino acid sequences between AP and Serratia protease was about 55%. The zinc ligands and an active site of the AP were predicted by comparing the structure of the enzyme with of Serratia protease, thermolysin, Bacillus subtilis neutral protease, and Pseudomonas elastase. PMID:2123832

  15. Mapping of export signals of Pseudomonas aeruginosa pilin with alkaline phosphatase fusions.

    PubMed Central

    Strom, M S; Lory, S

    1987-01-01

    Pili of Pseudomonas aeruginosa are assembled from monomers of the structural subunit, pilin, after secretion of this protein across the bacterial membrane. These subunits are initally synthesized as precursors (prepilin) with a six-amino-acid leader peptide that is cleaved off during or after membrane traversal, followed by methylation of the amino-terminal phenylalanine residue. This report demonstrates that additional sequences from the N terminus of the mature protein are necessary for membrane translocation. Gene fusions were made between amino-terminal coding sequences of the cloned pilin gene (pilA) and the structural gene for Escherichia coli alkaline phosphatase (phoA) devoid of a signal sequence. Fusions between at least 45 amino acid residues of the mature pilin and alkaline phosphatase resulted in translocation of the fusion proteins across the cytoplasmic membranes of both P. aeruginosa and E. coli strains carrying recombinant plasmids, as measured by alkaline phosphatase activity and Western blotting. Fusion proteins constructed with the first 10 amino acids of prepilin (including the 6-amino-acid leader peptide) were not secreted, although they were detected in the cytoplasm. Therefore, unlike that of the majority of secreted proteins that are synthesized with transient signal sequences, the membrane traversal of pilin across the bacterial membrane requires the transient six-amino-acid leader peptide as well as sequences contained in the N-terminal region of the mature pilin protein. Images PMID:2885309

  16. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  17. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  18. Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins

    SciTech Connect

    Nguyen, Y.; Jackson, S; Aidoo, F; Junop, M; Burrows, L

    2010-01-01

    Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-{angstrom} X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal {alpha}-helix and four-stranded antiparallel {beta}-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the {alpha}{beta}-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA{sub PA14}, compensatory changes allow for maintenance of a similar shape.

  19. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones.

    PubMed

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A; Domínguez, M Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis; Oliver, Antonio

    2013-11-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  20. Dispersion of TiO₂ nanoparticle agglomerates by Pseudomonas aeruginosa.

    PubMed

    Horst, Allison M; Neal, Andrea C; Mielke, Randall E; Sislian, Patrick R; Suh, Won Hyuk; Mädler, Lutz; Stucky, Galen D; Holden, Patricia A

    2010-11-01

    Engineered nanoparticles are increasingly incorporated into consumer products and are emerging as potential environmental contaminants. Upon environmental release, nanoparticles could inhibit bacterial processes, as evidenced by laboratory studies. Less is known regarding bacterial alteration of nanoparticles, including whether bacteria affect physical agglomeration states controlling nanoparticle settling and bioavailability. Here, the effects of an environmental strain of Pseudomonas aeruginosa on TiO₂ nanoparticle agglomerates formed in aqueous media are described. Environmental scanning electron microscopy and cryogenic scanning electron microscopy visually demonstrated bacterial dispersion of large agglomerates formed in cell culture medium and in marsh water. For experiments in cell culture medium, quantitative image analysis verified that the degrees of conversion of large agglomerates into small nanoparticle-cell combinations were similar for 12-h-growth and short-term cell contact experiments. Dispersion in cell growth medium was further characterized by size fractionation: for agglomerated TiO₂ suspensions in the absence of cells, 81% by mass was retained on a 5-μm-pore-size filter, compared to only 24% retained for biotic treatments. Filtrate cell and agglomerate sizes were characterized by dynamic light scattering, revealing that the average bacterial cell size increased from 1.4 μm to 1.9 μm because of nano-TiO₂ biosorption. High-magnification scanning electron micrographs showed that P. aeruginosa dispersed TiO₂ agglomerates by preferential biosorption of nanoparticles onto cell surfaces. These results suggest a novel role for bacteria in the environmental transport of engineered nanoparticles, i.e., growth-independent, bacterially mediated size and mass alterations of TiO₂ nanoparticle agglomerates. PMID:20851981

  1. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  2. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants

    SciTech Connect

    Koch, A.K.; Fiechter, A.; Reiser, J. ); Kaeppeli, O. )

    1991-07-01

    The authors isolated transposon Tn5-GM-induced mutants of Pseudomonas aeruginosa PG201 that were unable to grow in minimal media containing hexadecane as a carbon source. Some of these mutants lacked extracellular rhamnolipids, as shown by measuring the surface and interfacial tensions of the cell culture supernatants. Furthermore, the concentrated culture media of the mutant strains were tested for the presence of rhamnolipids by thin-layer chromatography and for rhamnolipid activities, including hemolysis and growth inhibition of Bacillus subtilis. Mutant 65E12 was unable to produce extracellular rhamnolipids under any of the inhibition of Bacillus subtilis. Mutant 65E12 was unable to produce extracellular rhamnolipids under any of the conditions tested, lacked the capacity to take up {sup 14}C-labeled hexadecane, and did not grow in media containing individual alkanes with chain lengths ranging from C{sub 12} to C{sub 19}. However, growth on these alkanes and uptake of ({sup 14}C)hexadecane were restored when small amounts of purified rhamnolipids were added to the cultures. Mutant 59C7 was unable to grow in media containing hexadecane, nor was it able to take up ({sup 14}C)hexadecane uptake. The addition of small amounts of rhamnolipids restored on alkanes and ({sup 14}C)hexadecane uptake. In glucose-containing media, however, mutant 59C7 produced rhamnolipids at levels about twice as high as those of the wild-type strain. These results show that rhamnolipids play a major role in hexadecane uptake and utilization by P.aeruginosa.

  3. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms.

    PubMed

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  4. Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2013-01-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  5. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains.

    PubMed

    Klockgether, Jens; Munder, Antje; Neugebauer, Jens; Davenport, Colin F; Stanke, Frauke; Larbig, Karen D; Heeb, Stephan; Schöck, Ulrike; Pohl, Thomas M; Wiehlmann, Lutz; Tümmler, Burkhard

    2010-02-01

    Pseudomonas aeruginosa PAO1 is the most commonly used strain for research on this ubiquitous and metabolically versatile opportunistic pathogen. Strain PAO1, a derivative of the original Australian PAO isolate, has been distributed worldwide to laboratories and strain collections. Over decades discordant phenotypes of PAO1 sublines have emerged. Taking the existing PAO1-UW genome sequence (named after the University of Washington, which led the sequencing project) as a blueprint, the genome sequences of reference strains MPAO1 and PAO1-DSM (stored at the German Collection for Microorganisms and Cell Cultures [DSMZ]) were resolved by physical mapping and deep short read sequencing-by-synthesis. MPAO1 has been the source of near-saturation libraries of transposon insertion mutants, and PAO1-DSM is identical in its SpeI-DpnI restriction map with the original isolate. The major genomic differences of MPAO1 and PAO1-DSM in comparison to PAO1-UW are the lack of a large inversion, a duplication of a mobile 12-kb prophage region carrying a distinct integrase and protein phosphatases or kinases, deletions of 3 to 1,006 bp in size, and at least 39 single-nucleotide substitutions, 17 of which affect protein sequences. The PAO1 sublines differed in their ability to cope with nutrient limitation and their virulence in an acute murine airway infection model. Subline PAO1-DSM outnumbered the two other sublines in late stationary growth phase. In conclusion, P. aeruginosa PAO1 shows an ongoing microevolution of genotype and phenotype that jeopardizes the reproducibility of research. High-throughput genome resequencing will resolve more cases and could become a proper quality control for strain collections. PMID:20023018

  6. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Zhang, Shenghua; Ye, Chengsong; Lin, Huirong; Lv, Lu; Yu, Xin

    2015-02-01

    The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy. PMID:25584685

  7. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa

    PubMed Central

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-01-01

    The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid) could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs) and stationary phase (with OMPs) A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices. PMID:26733995

  8. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon.

    PubMed Central

    Poole, K; Krebes, K; McNally, C; Neshat, S

    1993-01-01

    An outer membrane protein of 50 kDa (OprK) was overproduced in a siderophore-deficient mutant of Pseudomonas aeruginosa capable of growth on iron-deficient minimal medium containing 2,2'-dipyridyl (0.5 mM). The expression of OprK in the mutant (strain K385) was associated with enhanced resistance to a number of antimicrobial agents, including ciprofloxacin, nalidixic acid, tetracycline, chloramphenicol, and streptonigrin. OprK was inducible in the parent strain by growth under severe iron limitation, as provided, for example, by the addition of dipyridyl or ZnSO4 to the growth medium. The gene encoding OprK (previously identified as ORFC) forms part of an operon composed of three genes (ORFABC) implicated in the secretion of the siderophore pyoverdine. Mutants defective in ORFA, ORFB, or ORFC exhibited enhanced susceptibility to tetracycline, chloramphenicol, ciprofloxacin, streptonigrin, and dipyridyl, consistent with a role for the ORFABC operon in multiple antibiotic resistance in P. aeruginosa. Sequence analysis of ORFC (oprK) revealed that its product is homologous to a class of outer membrane proteins involved in export. Similarly, the products of ORFA and ORFB exhibit homology to previously described bacterial export proteins located in the cytoplasmic membrane. These data suggest that ORFA-ORFB-oprK (ORFC)-dependent drug efflux contributes to multiple antibiotic resistance in P. aeruginosa. We propose, therefore, the designation mexAB (multiple efflux) for ORFAB. Images PMID:8226684

  9. Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1.

    PubMed

    Yamano, Y; Nishikawa, T; Komatsu, Y

    1993-05-01

    The porin oprE gene of Pseudomonas aeruginosa PAO1 was isolated. Its nucleotide sequence indicated that the structural gene of 1383 nucleotide residues encodes a precursor consisting of 460 amino acid residues with a signal peptide of 29 amino acid residues, which was confirmed by the N-terminal 23-amino-acid sequence and the reaction with anti-OprE polyclonal antiserum. Anaerobiosis induced OprE production at the transcription level. The transcription start site was determined to be 40 nucleotides upstream from the ATG initiation codon. The control region contained an appropriately situated E sigma 54 recognition site and the putative second half of an ANR box. The amino acid sequence of OprE had some clusters of sequence homologous with that of OprD of P. aeruginosa, which might be responsible for the outer membrane permeability of imipenem and basic amino acids. PMID:8394980

  10. Lipopolysaccharide of Marinobacter litoralis inhibits swarming motility and biofilm formation in Pseudomonas aeruginosa PA01.

    PubMed

    Sardar, Raj Kumar; Kavita, Kumari; Jha, Bhavanath

    2015-06-01

    The lipopolysaccharide (LPS) was isolated from a marine bacterium identified as Marinobacter litoralis BK09 using 16S rRNA gene sequence similarity analysis. The GCMS analysis showed that the LPS contained 3-hydroxy-dodecanoic acid (C12:0 3OH) (49%), dodecanoic acid (C12:0) (24%) and decanoic acid (C10:0) (19%) as major fatty acids, and the polysaccharide constituents were fucose (53.79%), xylose (28.04%) and mannose (18.15%). The LPS almost completely inhibited swarming motility in Pseudomonas aeruginosa PA01. It also reduced biofilm formation by 50% with no adverse effect on cell growth. The production of virulence factor such as pyocyanin pigment was reduced (∼40%) by the LPS. The LPS did not show any limulus amoebocyte lysate (LAL) gelation activity. The repression of swarming motility, pyocyanin production and biofilm formation by the LPS suggests its potential application against P. aeruginosa infection. This is the first report on characterization and application of LPS from M. litoralis. PMID:25843881

  11. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  12. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients.

    PubMed

    Marvig, Rasmus Lykke; Sommer, Lea M; Jelsbak, Lars; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa causes chronic airway infections in patients with cystic fibrosis (CF), and it is directly associated with the morbidity and mortality connected with this disease. The ability of P. aeruginosa to establish chronic infections in CF patients is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational mechanisms, genetic adaptation and transmission events. Finally, we summarize the advances in relation to medical applications and laboratory evolution experiments. PMID:25865196

  13. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene.

    PubMed Central

    Duchêne, M; Schweizer, A; Lottspeich, F; Krauss, G; Marget, M; Vogel, K; von Specht, B U; Domdey, H

    1988-01-01

    Porin F is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. It forms water-filled pores of variable size. Porin F is a candidate for a vaccine against P. aeruginosa because it antigenically cross-reacts in all serotype strains of the International Antigenic Typing Scheme. We have isolated the gene for porin F from a lambda EMBL3 bacteriophage library by using oligodeoxynucleotide hybridization probes and have determined its nucleotide sequence. Different peptide sequences obtained from isolated porin F confirmed the deduced protein sequence. The mature protein consists of 326 amino acid residues and has a molecular weight of 35,250. The precursor contains an N-terminal signal peptide of 24 amino acid residues. S1 protection and primer extension experiments, together with Northern (RNA) blots, indicate that the mRNA coding for porin F is monocistronic with short untranslated regions of about 58 bases at the 5' end and about 47 bases at the 3' end. The sequences in the -10 and -35 regions upstream of the transcriptional start site are closely related to the Escherichia coli promoter consensus sequences, which explains why the porin F gene is expressed in E. coli under the control of its own promoter. The amino acid sequence of porin F is not homologous to the different E. coli porins OmpF, OmpC, LamB, and PhoE. On the other hand, a highly homologous region of 30 amino acids between the OmpA proteins of different enteric bacteria and porin F of P. aeruginosa was detected. The core region of the homology to E. coli OmpA had 11 of 12 amino acid residues in common. Images PMID:2447060

  14. Targeting the Type Three Secretion System in Pseudomonas aeruginosa.

    PubMed

    Anantharajah, Ahalieyah; Mingeot-Leclercq, Marie-Paule; Van Bambeke, Françoise

    2016-09-01

    The injectisome type three secretion system (T3SS) is a major virulence factor in Pseudomonas aeruginosa. This bacterium is responsible for severe infections in immunosuppressed or cystic fibrosis patients and has become resistant to many antibiotics. Inhibitors of T3SS may therefore constitute an innovative therapeutic target. After a brief description of the T3SS and its regulation, this review presents strategies to inhibit T3SS-mediated toxicity and describes the main families of existing inhibitors. Over the past few years, 12 classes of small-molecule inhibitors and two types of antibody have been discovered and evaluated in vitro for their capacity to inhibit T3SS expression or function, and to protect host cells from T3SS-mediated cytotoxicity. While only one small molecule has been tested in vivo, a bifunctional antibody targeting both the translocation apparatus of the T3SS and a surface polysaccharide is currently in Phase II clinical trials. PMID:27344210

  15. Variability in Pseudomonas aeruginosa Lipopolysaccharide Expression during Crude Oil Degradation

    PubMed Central

    Norman, R. Sean; Frontera-Suau, Roberto; Morris, Pamela J.

    2002-01-01

    Bacterial utilization of crude oil components, such as the n-alkanes, requires complex cell surface adaptation to allow adherence to oil. To better understand microbial cell surface adaptation to growth on crude oil, the cell surface characteristics of two Pseudomonas aeruginosa strains, U1 and U3, both isolated from the same crude oil-degrading microbial community enriched on Bonny Light crude oil (BLC), were compared. Analysis of growth rates demonstrated an increased lag time for U1 cells compared to U3 cells. Amendment with EDTA inhibited U1 and U3 growth and degradation of the n-alkane component of BLC, suggesting a link between cell surface structure and crude oil degradation. U1 cells demonstrated a smooth-to-rough colony morphology transition when grown on BLC, while U3 cells exhibited rough colony morphology at the outset. Combining high-resolution atomic force microscopy of the cell surface and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracted lipopolysaccharides (LPS), we demonstrate that isolates grown on BLC have reduced O-antigen expression compared with that of glucose-grown cells. The loss of O-antigen resulted in shorter LPS molecules, increased cell surface hydrophobicity, and increased n-alkane degradation. PMID:12324360

  16. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  17. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  18. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    SciTech Connect

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-11-12

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 {angstrom} resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an 'arm' structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.

  19. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.

    PubMed

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-09-23

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 A resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an "arm" structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  20. Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa.

    PubMed

    Buckling, Angus; Harrison, Freya; Vos, Michiel; Brockhurst, Michael A; Gardner, Andy; West, Stuart A; Griffin, Ashleigh

    2007-11-01

    Why should organisms cooperate with each other? Helping close relatives that are likely to share the same genes (kin selection) is one important explanation that is likely to apply across taxa. The production of metabolically costly extracellular iron-scavenging molecules (siderophores) by microorganisms is a cooperative behaviour because it benefits nearby conspecifics. We review experiments focusing on the production of the primary siderophore (pyoverdin) of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, which test kin selection theories that seek to explain the evolution of cooperation. First, cooperation is indeed favoured when individuals interact with their close relatives and when there is competition between groups of cooperators and noncooperators, such that the benefit of cooperation can be realized. Second, the relative success of cheats and cooperators is a function of their frequencies within populations. Third, elevated mutation rates can confer a selective disadvantage under conditions when cooperation is beneficial, because high mutation rates reduce how closely bacteria are related to each other. Fourth, cooperative pyoverdin production is also shown to be favoured by kin selection in vivo (caterpillars), and results in more virulent infections. Finally, we briefly outline ongoing and future work using this experimental system. PMID:17919300

  1. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  2. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    PubMed

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  3. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa

    PubMed Central

    O'Brien, Siobhán; Hodgson, David J.; Buckling, Angus

    2014-01-01

    Bacteria are often iron-limited, and hence produce extracellular iron-scavenging siderophores. A crucial feature of siderophore production is that it can be an altruistic behaviour (individually costly but benefitting neighbouring cells), thus siderophore producers can be invaded by non-producing social ‘cheats’. Recent studies have shown that siderophores can also bind other heavy metals (such as Cu and Zn), but in this case siderophore chelation actually reduces metal uptake by bacteria. These complexes reduce heavy metal toxicity, hence siderophore production may contribute to toxic metal bioremediation. Here, we show that siderophore production in the context of bioremediation is also an altruistic trait and can be exploited by cheating phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. Specifically, we show that in toxic copper concentrations (i) siderophore non-producers evolve de novo and reach high frequencies, and (ii) producing strains are fitter than isogenic non-producing strains in monoculture, and vice versa in co-culture. Moreover, we show that the evolutionary effect copper has on reducing siderophore production is greater than the reduction observed under iron-limited conditions. We discuss the relevance of these results to the evolution of siderophore production in natural communities and heavy metal bioremediation. PMID:24898376

  4. Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Polyphosphate Metabolism

    PubMed Central

    Renninger, Neil; Knopp, Roger; Nitsche, Heino; Clark, Douglas S.; Keasling, Jay D.

    2004-01-01

    The polyphosphate kinase gene from Pseudomonas aeruginosa was overexpressed in its native host, resulting in the accumulation of 100 times the polyphosphate seen with control strains. Degradation of this polyphosphate was induced by carbon starvation conditions, resulting in phosphate release into the medium. The mechanism of polyphosphate degradation is not clearly understood, but it appears to be associated with glycogen degradation. Upon suspension of the cells in 1 mM uranyl nitrate, nearly all polyphosphate that had accumulated was degraded within 48 h, resulting in the removal of nearly 80% of the uranyl ion and >95% of lesser-concentrated solutions. Electron microscopy, energy-dispersive X-ray spectroscopy, and time-resolved laser-induced fluorescence spectroscopy (TRLFS) suggest that this removal was due to the precipitation of uranyl phosphate at the cell membrane. TRLFS also indicated that uranyl was initially sorbed to the cell as uranyl hydroxide and was then precipitated as uranyl phosphate as phosphate was released from the cell. Lethal doses of radiation did not halt phosphate secretion from polyphosphate-filled cells under carbon starvation conditions. PMID:15574942

  5. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI.

    PubMed

    Passador, L; Tucker, K D; Guertin, K R; Journet, M P; Kende, A S; Iglewski, B H

    1996-10-01

    A series of structural analogs of the Pseudomonas aeruginosa autoinducer [PAI, N-3-oxo-dodecanoyl homoserine lactone] were obtained and tested for their ability to act as autoinducers in stimulating the expression of the gene for elastase (lasB) by measuring beta-galactosidase production from a lasB-lacZ gene fusion in the presence of the transcriptional activator LasR. The data suggest that the length of the acyl side chain of the autoinducer molecule is the most critical factor for activity. Replacement of the ring O by S in the homoserine lactone moiety can be tolerated. Tritium-labelled PAI ([3H]PAI) was synthesized and used to demonstrate the association of [3H]PAI with cells overexpressing LasR. The PAI analogs were also tested for their ability to compete with [3H]PAI for binding of LasR. Results from the competition assays suggest that once again the length of the acyl side chain appears to be crucial for antagonist activity. The presence of the 3-oxo moiety also plays a significant role in binding since analogs which lacked this moiety were much less effective in blocking binding of [3H]PAI. All analogs demonstrating competition with PAI in binding to LasR also exhibited the ability to activate lasB expression, suggesting that they are functional analogs of PAI. PMID:8830697

  6. Production of Biologically Active 7,10-dihydroxy-8(E)-octadecenoic Acid from Korean Pine Seed Oil by Pseudomonas aeruginosa PR3.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxyl group of hydroxyl fatty acid (HFA) cause HFA to carry special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Microbial conversion of oleic acid into 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) caused DOD to carry strong antibacterial activit...

  7. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  8. Effect of aerosol immunization with RE 595 Salmonella minnesota on lung bactericidal activity against Serratia marcescens, Enterobacter cloacae, and Pseudomonas aeruginosa.

    PubMed

    LaForce, F M

    1977-08-01

    Intrapulmonary bactericidal activity was measured after mice were given 3 weekly aerosol exposures to acid-hydrolyzed Re 595 Salmonella minnesota. Ten days after their last immunization, mice were challenged with aerolized Serratia marcescens, Enterobacter cloacae, or Pseudomonas aeruginosa. Quantitative bacterial counts in ground lung were obtained immediately after exposure and again 4 hours later. Enhanced bactericidal activity against Serratia marcescens and Enterobacter cloacae was seen in immunized animals, whereas no difference with Pseudomonas aeruginosa was noted. In separate studies, immunization with Serratia marcescens yielded a similar enhancement of lung bactericidal activity. Mucociliary transport, as measured by disappearance of aerosolized Serratia marcescens labeled with phosphorus-32, was identical for both immunized and control animals. Using a standardized in vitro mouse alveolar macrophage phagocytic system, lung washes from animals immunized with Re 595 Salmonella minnesota had significant opsonic activity for Serratia marcescens but not for Pseudomonas aeruginosa. PMID:407823

  9. Pseudomonas aeruginosa Promotes Escherichia coli Biofilm Formation in Nutrient-Limited Medium

    PubMed Central

    Culotti, Alessandro; Packman, Aaron I.

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  10. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. PMID:26610432

  11. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  12. Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa.

    PubMed

    Pan, Yaping; Teng, Di; Burke, Andrew C; Haase, Elaine M; Scannapieco, Frank A

    2009-02-01

    Pseudomonas aeruginosa is an important opportunistic bacterial pathogen, causing infections of the respiratory and other organ systems in susceptible hosts. P. aeruginosa infection is initiated by adhesion to and invasion of mucosal epithelial cells. The failure of host defenses to eliminate P. aeruginosa from mucosal surfaces results in P. aeruginosa proliferation, sometimes followed by overt infection and tissue destruction. There is growing evidence that associates poor oral health and respiratory infection. An in vitro model system for bacterial invasion of respiratory epithelial cells was used to investigate the influence of oral bacteria on P. aeruginosa epithelial cell invasion. Oral pathogens including Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter (Actinobacillus) actinomycetemcomitans increased invasion of P. aeruginosa into HEp-2 cells from one- to threefold. In contrast, non-pathogenic oral bacteria such as Actinomyces naeslundii and Streptococcus gordonii showed no significant influence on P. aeruginosa invasion. P. aeruginosa together with oral bacteria stimulated greater cytokine production from HEp-2 cells than did P. aeruginosa alone. P. aeruginosa in combination with periodontal pathogens also increased apoptosis of HEp-2 cells and induced elevated caspase-3 activity. These results suggest that oral bacteria, especially periodontal pathogens, may foster P. aeruginosa invasion into respiratory epithelial cells to enhance host cell cytokine release and apoptosis. PMID:19041936

  13. Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression.

    PubMed Central

    Cacalano, G; Kays, M; Saiman, L; Prince, A

    1992-01-01

    The pathogenesis of Pseudomonas aeruginosa infection in cystic fibrosis (CF) is a complex process attributed to specific characteristics of both the host and the infecting organism. In this study, the properties of the PAO1 neuraminidase were examined to determine its potential role in facilitating Pseudomonas colonization of the respiratory epithelium. The PAO1 neuraminidase was 1000-fold more active than the Clostridium perfringens enzyme in releasing sialic acid from respiratory epithelial cells. This effect correlated with increased adherence of PAO1 to epithelial cells after exposure to PAO1 neuraminidase and was consistent with in vitro studies demonstrating Pseudomonas adherence to asialoganglioside receptors. The regulation of the neuraminidase gene nanA was examined in Pseudomonas and as cloned and expressed in Escherichia coli. In hyperosmolar conditions neuraminidase expression was increased by 50% (P less than 0.0004), an effect which was OmpR dependent in E. coli. In Pseudomonas the osmotic regulation of neuraminidase production was dependent upon algR1 and algR2, genes involved in the transcriptional activation of algD, which is responsible for the mucoid phenotype of Pseudomonas and pathognomonic for chronic infection in CF. Under the hyperosmolar conditions postulated to exist in the CF lung, nanA is likely to be expressed to facilitate the initial adherence of Pseudomonas to the respiratory tract. Images PMID:1601994

  14. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    PubMed

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  15. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  16. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  17. Environmental optimization for bioconversion of triolein into 7,10-dihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA), originally found in small amounts mainly from plant systems, are well known to have special properties such as higher viscosity and reactivity compared with other normal fatty acids. These special properties make HFAs have high industrial potentials in a wide range of app...

  18. Efflux as a glutaraldehyde resistance mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms.

    PubMed

    Vikram, Amit; Bomberger, Jennifer M; Bibby, Kyle J

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms. PMID:25824217

  19. Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms

    PubMed Central

    Vikram, Amit; Bomberger, Jennifer M.

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms. PMID:25824217

  20. Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes

    PubMed Central

    2015-01-01

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field. PMID:25384256

  1. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa.

    PubMed

    Mekić, S; Matanović, K; Šeol, B

    2011-07-30

    Pseudomonas aeruginosa is a common cause of otitis externa in dogs, and treatment of these infections is becoming problematic because of the increasing number of multiresistant strains. The aim of the present study was to compare the in vitro activities of cefepime, ceftazidime, enrofloxacin, ciprofloxacin, gentamicin and ticarcillin/clavulanic acid against 104 strains of P aeruginosa isolated from dogs with otitis externa. Antimicrobial susceptibility and minimum inhibitory concentrations, in µg/ml, were evaluated by the E test (bioMérieux). The most active compound was ceftazidime, with 100 per cent efficiency. The majority of tested strains were susceptible to ticarcillin/clavulanic acid (89.4 per cent), followed by ciprofloxacin (88.5 per cent) and cefepime (60.6 per cent). The highest resistance was observed to enrofloxacin (51.9 per cent) and gentamicin (43.3 per cent). Large numbers of strains were intermediately susceptible to antibiotics registered for use in veterinary medicine in Croatia--enrofloxacin (47.1 per cent) and gentamicin (41.3 per cent). PMID:21742683

  2. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions.

    PubMed

    Yoon, Sang Sun; Coakley, Ray; Lau, Gee W; Lymar, Sergei V; Gaston, Benjamin; Karabulut, Ahmet C; Hennigan, Robert F; Hwang, Sung-Hei; Buettner, Garry; Schurr, Michael J; Mortensen, Joel E; Burns, Jane L; Speert, David; Boucher, Richard C; Hassett, Daniel J

    2006-02-01

    Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2 also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways. PMID:16440061

  3. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions

    PubMed Central

    Yoon, Sang Sun; Coakley, Ray; Lau, Gee W.; Lymar, Sergei V.; Gaston, Benjamin; Karabulut, Ahmet C.; Hennigan, Robert F.; Hwang, Sung-Hei; Buettner, Garry; Schurr, Michael J.; Mortensen, Joel E.; Burns, Jane L.; Speert, David; Boucher, Richard C.; Hassett, Daniel J.

    2006-01-01

    Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2–) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2– also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways. PMID:16440061

  4. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    PubMed

    Lo Sciuto, Alessandra; Fernández-Piñar, Regina; Bertuccini, Lucia; Iosi, Francesca; Superti, Fabiana; Imperi, Francesco

    2014-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery. PMID:25093328

  5. Structural and Functional Characterization of Pseudomonas aeruginosa AlgX

    PubMed Central

    Riley, Laura M.; Weadge, Joel T.; Baker, Perrin; Robinson, Howard; Codée, Jeroen D. C.; Tipton, Peter A.; Ohman, Dennis E.; Howell, P. Lynne

    2013-01-01

    The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 Å resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition “pinch point” that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases. PMID:23779107

  6. Determination of the O-serovars of Pseudomonas aeruginosa by slide coagglutination.

    PubMed

    Ansorg, R; Knoche, M

    1984-06-01

    Determination of the somatic (O-) antigens of Pseudomonas aeruginosa by conventional slide agglutination is frequently complicated by the barely discernible, slow reaction of native cells. For diagnostic purposes a more practical procedure, a coagglutination test, has been developed in which protein A bearing Staphylococcus aureus (ATCC 12598) cells are added to the agglutination process occurring between specific anti-O serum and native Pseudomonas aeruginosa. Compared to the conventional method, slide O-coagglutination yields larger agglutinates in a shorter mean reaction time, i.e. one minute vs four minutes. Moreover, strains not reacting in the O-agglutination method or reacting only with polyvalent anti-O serum can be grouped by O-coagglutination, and cross reactions between reference strains of different O-groups do not occur. This method facilitates O-grouping of Pseudomonas aeruginosa in epidemiological investigations. PMID:6205872

  7. Role of outer membrane proteins in imipenem diffusion in Pseudomonas aeruginosa.

    PubMed

    Lian, Z; Tianjue, Y

    1999-03-01

    The present study identified the properties of porins in the outer membrane in Pseudomonas aeruginosa, and showed the role of outer membrane in determining imipenem diffusion in Pseudomonas aeruginosa. The molecular weight of the major outer membrane protein was analyzed by SDS-PAGE. The purification of the porins in Pseudomonas aeruginosa was achieved by DEAE ion-exchange HPLC. The purified outer membrane proteins were reconstituted with phosphatidylcholine and dicetylphosphate into membrane vesicles, and were tested by the liposomes swelling method for the diffusion of imipenem. The permeability assay showed that OprC (70 kD), OprD2 (46 kD), and OprE (43 kD) were the channel-forming proteins. But only OprD2 was thought to be the likely route of imipenem diffusion. PMID:12899386

  8. Draft Genome Sequence of Quorum-Sensing and Quorum-Quenching Pseudomonas aeruginosa Strain MW3a

    PubMed Central

    Wong, Cheng Siang; Yin, Wai-Fong; Chan, Xin Yue

    2014-01-01

    Pseudomonas aeruginosa has a broad range of habitation, from aquatic environments to human lungs. The coexistence of quorum-sensing and quorum-quenching activities occurs in P. aeruginosa strain MW3a. In this work, we present the draft genome sequence of P. aeruginosa MW3a, an interesting bacterium isolated from a marine environment. PMID:24744329

  9. Extracellular Ser/Thr/Tyr phosphorylated proteins of Pseudomonas aeruginosa PA14 strain.

    PubMed

    Ouidir, Tassadit; Jarnier, Frédérique; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2014-09-01

    Protein phosphorylation on serine, threonine, and tyrosine is known to be involved in a wide variety of cellular processes, signal transduction, and bacterial virulence. We characterized, for the first time, the extracellular phosphoproteins of the Pseudomonas aeruginosa PA14 strain. We identified 28 phosphoproteins (59 phosphosites) including enzymes, with various phosphorylation sites, known as potent secreted virulence factors in P. aeruginosa. The high phosphorylation level of these virulence factors might reflect a relationship between Ser/Thr/Tyr phosphorylation and virulence. PMID:24965220

  10. Local imipenem activity against Pseudomonas aeruginosa decreases in vivo in the presence of siliconized latex.

    PubMed

    Pichardo, C; Conejo, M C; Docobo-Pérez, F; Velasco, C; López-Rojas, R; García, I; Pachón-Ibáñez, M E; Rodríguez, J M; Pachón, J; Pascual, A

    2011-02-01

    Zinc eluted from siliconized latex (SL) increases resistance of Pseudomonas aeruginosa to imipenem in vitro. A foreign body peritonitis model was used to evaluate the activity of imipenem using SL or silicone (S) implants. No differences were observed in mortality, positive blood cultures and tissue bacterial counts between SL and S implants. Implant-associated counts, however, were significantly higher in the SL group. It is concluded that SL decreases the activity of imipenem against P. aeruginosa. PMID:20936490

  11. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    PubMed

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end. PMID:12686625

  12. THE APPLICATION OF PEPTIDE NUCLEIC ACID PROBES FOR RAPID DETECTION AND ENUMERATION OF EUBACTERIA, STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA IN RECREATIONAL BEACHES OF S. FLORIDA. (R828830)

    EPA Science Inventory

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, S...

  13. [First outbreak report of VIM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in Japan].

    PubMed

    Miki, Kanji; Takegawa, Hiroshi; Etoh, Masaaki; Hayashi, Michio; Haruta, Tsunekazu; Yamane, Kunikazu; Arakawa, Yoshichika

    2010-11-01

    VIM-1 metallo-beta-lactamase (MBL) producing Pseudomonas aeruginosa was isolated from 35 Kobe City Medical Center General Hospital patients from September 2007 to July 2008. All but one were highly resistant to all beta-lactams, aminoglycoside, and fluoroquinolone, and one susceptible to amikacin. Strains negative to a disk diffusion screening test using sodium mercaptoacetate for detecting MBL numbered 35. PCR for MBL indicated all strains were positive for bla(VIWM-1). These strains were indistinguishable by pulsed-field gel electrophoresis, indicating an outbreak of infections caused by VIM-1 MBL producing Pseudomonas aeruginosa. After intervention to control contact, the outbreak was controlled. PMID:21226324

  14. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae.

    PubMed

    Senthilkumar, S; Anthonisamy, A; Arunkumar, S; Sivakumari, V

    2011-01-01

    Microorganisms play an important role in the bioconversion and total breakdown of pesticides in the environment. This study was conducted to assess the pesticide degradation (endosulfan and methyl parathion) ability of the bacteria and fungi (Pseudomonas aeruginosa and Trichoderma viridae). The screening test conducted to reveal the ability to degrade endosulfan and methyl parathion shows that Trichoderma viridae was effective compared to Pseudomonas aeruginosa. The pesticide degradation was estimated by optical density method. Methyl parathion was highly degraded compared to endosulfan. This study clearly proves that pesticides and their residue degradation can be accelerated by employing microbes which can be effectively utilized both as biocontrol agent and soil cleanser. PMID:22324156

  15. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Smadhi, Meriem; Gingras, Marc; Abderrahim, Raoudha

    2014-01-01

    Summary Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation. PMID:25246957

  16. Antimicrobial resistance and molecular typing of pseudomonas aeruginosa isolated from surgical wounds in Lagos, Nigeria.

    PubMed

    Smith, Stella; Ganiyu, Olaniyi; John, Rachael; Fowora, Muinah; Akinsinde, Kehinde; Odeigah, Peter

    2012-01-01

    The aim of the study was to determine the resistance patterns of Pseudomonas aeruginosa isolates recovered from patients with surgical wounds in hospitals and also to investigate their epidemiological relatedness using molecular typing techniques. Twenty Pseudomonas sp. isolated from surgical wounds were subjected to antibiotic susceptibility testing by disk diffusion, plasmid profile, SDS-PAGE and PCR using the parC, gyr A gene and RAPD using the 1254 primer. The isolates showed resistance to 12 different antibiotics with six being 100% resistant. Plasmids were detected in 16 (80%) of the isolates. The RAPD-PCR using the primer 1254, SDS-PAGE classified the 20 Pseudomonas spp. into 5 and 6 types respectively. Pseudomona aeruginosa strains isolated from surgical wounds were generally resistant to a broad range of antibiotics and this is rather worrisome. The typing techniques classified the 20 isolates into 5 and 6 groups. PMID:22837123

  17. Structural and Functional Analysis of the Pyocyanin Biosynthetic Protein PhzM from Pseudomonas aeruginosa

    SciTech Connect

    Parsons,J.; Greenhagen, B.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.

    2007-01-01

    Pyocyanin is a biologically active phenazine produced by the human pathogen Pseudomonas aeruginosa. It is thought to endow P. aeruginosa with a competitive growth advantage in colonized tissue and is also thought to be a virulence factor in diseases such as cystic fibrosis and AIDS where patients are commonly infected by pathogenic Pseudomonads due to their immunocompromised state. Pyocyanin is also a chemically interesting compound due to its unusual oxidation-reduction activity. Phenazine-1-carboxylic acid, the precursor to the bioactive phenazines, is synthesized from chorismic acid by enzymes encoded in a seven-gene cistron in P. aeruginosa and in other Pseudomonads. Phenzine-1-carboxylic acid is believed to be converted to pyocyanin by the sequential actions of the putative S-adenosylmethionine-dependent N-methyltransferase PhzM and the putative flavin-dependent hydroxylase PhzS. Here we report the 1.8 {angstrom} crystal structure of PhzM determined by single anomalous dispersion. Unlike many methyltransferases, PhzM is a dimer in solution. The 36 kDa PhzM polypeptide folds into three domains. The C-terminal domain exhibits the {alpha}/{beta}-hydrolase fold typical of small molecule methyltransferases. Two smaller N-terminal domains form much of the dimer interface. Structural alignments with known methyltransferases show that PhzM is most similar to the plant O-methyltransferases that are characterized by an unusual intertwined dimer interface. The structure of PhzM contains no ligands, and the active site is open and solvent-exposed when compared to structures of similar enzymes. In vitro experiments using purified PhzM alone demonstrate that it has little or no ability to methylate phenzine-1-carboxylic acid. However, when the putative hydroxylase PhzS is included, pyocyanin is readily produced. This observation suggests that a mechanism has evolved in P. aeruginosa that ensures efficient production of pyocyanin via the prevention of the formation and

  18. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology. PMID:26952777

  19. Synthesis and biological properties of thiazole-analogues of pyochelin, a siderophore of Pseudomonas aeruginosa.

    PubMed

    Noël, Sabrina; Hoegy, Françoise; Rivault, Freddy; Rognan, Didier; Schalk, Isabelle J; Mislin, Gaëtan L A

    2014-01-01

    Pyochelin is a siderophore common to all strains of Pseudomonas aeruginosa utilized by this Gram-negative bacterium to acquire iron(III). FptA is the outer membrane transporter responsible of ferric-pyochelin uptake in P. aeruginosa. We describe in this Letter the synthesis and the biological properties ((55)Fe uptake, binding to FptA) of several thiazole analogues of pyochelin. Among them we report in this Letter the two first pyochelin analogues able to bind FptA without promoting any iron uptake in P. aeruginosa. PMID:24332092

  20. Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses.

    PubMed Central

    Castric, P A; Deal, C D

    1994-01-01

    The nucleotide sequences of three previously undescribed Pseudomonas aeruginosa pilin structural genes are presented. Comparisons of deduced pilin primary structure and flanking DNA sequence allowed placement of these and six previously published sequences into one of two groups. Epitope mapping, using overlapping immobilized peptides representing the pilin primary structure, with antipilin monoclonal antibodies revealed several B-cell determinants grouped near the carboxyl terminus of P. aeruginosa 1244 pilin. One determinant was found to reside near the pilin constant region. These determinants were found associated with the pili of 31 of 95 P. aeruginosa clinical isolates. PMID:7507890

  1. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  2. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGESBeta

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; Vallet, Sophie; Jansson, Janet K.; Burgaud, Gaëtan; Rosec, Sylvain; Gouriou, Stéphanie; Rault, Gilles; Coton, Emmanuel; et al

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  3. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    SciTech Connect

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel; Vallet, Sophie; Jansson, Janet K.; Bergaud , Gaetaqn; Rosec, Silvain; Gourious, Stephanie; Rault, Gilles; Coton, Emmanuel; Barbier, George; Hery-Arnaud, Geneveieve

    2015-08-09

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

  4. The Pseudomonas aeruginosa Transcriptional Landscape Is Shaped by Environmental Heterogeneity and Genetic Variation

    PubMed Central

    Schniederjans, Monika; Khaledi, Ariane; Hornischer, Klaus; Schulz, Sebastian; Bielecka, Agata; Eckweiler, Denitsa; Pohl, Sarah; Häussler, Susanne

    2015-01-01

    ABSTRACT Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseudomonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 different environmental conditions. Our approach allowed dissection of the impact of the genetic background versus environmental cues on P. aeruginosa gene expression profiles and revealed that phenotypic variation was larger in response to changing environments than between genomically different isolates. We demonstrate that mutations within the global regulator LasR affect more than one trait (pleiotropy) and that the interaction between mutations (epistasis) shapes the P. aeruginosa phenotypic plasticity landscape. Because of pleiotropic and epistatic effects, average genotype and phenotype measures appeared to be uncorrelated in P. aeruginosa. PMID:26126853

  5. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization.

    PubMed

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; Vallet, Sophie; Jansson, Janet K; Burgaud, Gaëtan; Rosec, Sylvain; Gouriou, Stéphanie; Rault, Gilles; Coton, Emmanuel; Barbier, Georges; Héry-Arnaud, Geneviève

    2015-01-01

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state. PMID:26266076

  6. Computer-Aided Identification of Recognized Drugs as Pseudomonas aeruginosa Quorum-Sensing Inhibitors▿ †

    PubMed Central

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

    2009-01-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections. PMID:19364871

  7. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.

    PubMed

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

    2009-06-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections. PMID:19364871

  8. Vaccine potential of Pseudomonas aeruginosa O-polysaccharide-toxin A conjugates.

    PubMed Central

    Cryz, S J; Lang, A B; Sadoff, J C; Germanier, R; Fürer, E

    1987-01-01

    Serologically reactive O-polysaccharide from nine serotypes of Pseudomonas aeruginosa were covalently linked to toxin A via reductive amination, with adipic acid dihydrazide serving as a spacer molecule. The conjugates were composed of toxin A/O-polysaccharide ratios ranging from 1.17:1 to 3:1. All possessed an average Mr of greater than 10(6), were devoid of ADP ribosyltransferase activity associated with toxin A, and were nontoxic for mice and guinea pigs. The conjugates were stable from toxic reversion when stored at 37 degrees C for 28 days. The conjugation condition used preserved a substantial proportion of critical epitopes on the toxin A molecule as shown by the ability of toxin A-neutralizing monoclonal antibodies to react with the various conjugates. All nine conjugates were capable of evoking an antitoxin A and an antilipopolysaccharide immunoglobulin G (IgG) response in mice and rabbits. Rabbit antitoxin A IgG was capable of neutralizing the cytotoxic effect of toxin A, whereas mice immunized with any of the conjugates were protected against toxin A intoxication. Rabbit anti-conjugate IgG, when passively transferred to mice, was highly effective at preventing fatal P. aeruginosa burn wound sepsis. PMID:3110065

  9. Expression, purification and functional characterization of a novel 3α-hydroxysteroid dehydrogenase from Pseudomonas aeruginosa.

    PubMed

    Chen, Jianmin; Gao, Xiufeng; Hong, Lin; Ma, Liting; Li, Yongsheng

    2015-11-01

    3α-Hydroxysteroid dehydrogenase (3α-HSD) catalyzes the oxidation of the 3-hydroxyl group of steroids. The enzymatic conversion is a critical step in the enzymatic assay of urinary sulfated bile acids (SBAs), which is a valuable diagnosis index of hepatobiliary diseases. However, the source of 3α-HSD for clinical applications is limited. In this study, an open reading frame (ORF) encoding a novel 3α-HSD was successfully cloned from Pseudomonas aeruginosa and expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified by immobilized metal ion affinity chromatography. Enzyme characterization studies revealed that the protein has 3α-HSD activity and the Km value for sodium cholate is 1.06 mmol L(-1). More than 60% relative enzyme activity was observed in a wide range of pH and temperature, with an optimum pH at 8.0 and an optimum temperature at 30°C. The enzyme's good thermostability under 40°C would be favorable in clinical applications. Ion interference experiments indicated that Zn(2+) was an activating cofactor which increased the enzyme activity 1.75-fold. With the favorable characteristics mentioned above, the new 3α-HSD is a promising enzyme for clinical applications. More importantly, the present work is the first report on a 3α-HSD from P. aeruginosa. PMID:26193374

  10. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions.

    PubMed

    Patil, Sandeep; Paradeshi, Jayasinh; Chaudhari, Bhushan

    2016-08-01

    Charcoal rot severely limits the soybean crop yield under saline conditions. The present studies focus on biocontrol and plant growth promoting potential of phenazine producing moderately halotolerant Pseudomonas aeruginosa (GS-33) in soybean under saline soil conditions. A marine isolate; GS-33 was identified as P. aeruginosa based on polyphasic characterization. This strain showed potent in vitro biocontrol activity against charcoal rot causing fungus Macrophomina phaseolina. It was capable of producing phenazine-1-carboxylic acid even at elevated salt concentrations. Moreover, GS-33 possessed other biocontrol traits like production of siderophores, HCN and protease under saline conditions. Multiple traits for plant growth promotion such as synthesis of IAA, NH3 , and solubilization of phosphate were also exhibited by GS-33. Plant growth promoting and biocontrol control potentials of GS-33 were evaluated by pot assay under saline soil conditions. Higher biomass and chlorophyll content were observed in GS-33 treated seedlings. A greater reduction in charcoal rot caused by fungal pathogens under both normal and saline soil conditions in GS-33 treated seedlings was observed. In a nut shell, phenazine producing halotolerant strain GS-33 could mitigate saline soil conditions (abiotic stress) and infestation of M. phaseolina (biotic stress) in soybean. PMID:27213894

  11. Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3

    PubMed Central

    Zhao, Xia; Chen, Canhuang; Shen, Wei; Huang, Guangtao; Le, Shuai; Lu, Shuguang; Li, Ming; Zhao, Yan; Wang, Jing; Rao, Xiancai; Li, Gang; Shen, Mengyu; Guo, Keke; Yang, Yuhui; Tan, Yinling; Hu, Fuquan

    2016-01-01

    The interactions between Bacteriophage (phage) and host bacteria are widespread in nature and influences of phage replication on the host cells are complex and extensive. Here, we investigate genome-wide interactions of Pseudomonas aeruginosa (P. aeruginosa) and its temperate phage PaP3 at five time points during phage infection. Compared to the uninfected host, 38% (2160/5633) genes of phage-infected host were identified as differentially expressed genes (DEGs). Functional analysis of the repressed DEGs revealed infection-stage-dependent pathway communications. Based on gene co-expression analysis, most PaP3 middle genes were predicted to have negative impact on host transcriptional regulators. Sub-network enrichment analysis revealed that adjacent genes of PaP3 interacted with the same host genes and might possess similar functions. Finally, our results suggested that during the whole infection stage, the early genes of PaP3 had stronger regulatory role in host gene expression than middle and late genes, while the host genes involved amino acid metabolism were the most “vulnerable” targets of these phage genes. This work provides the basis for understanding survival mechanisms of parasites and host, and seeking phage gene products that could potentially be used in anti-bacterial infection. PMID:26750429

  12. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  13. Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots

    PubMed Central

    Andersen, A. S.; Joergensen, B.; Bjarnsholt, T.; Johansen, H.; Karlsmark, T.; Givskov, M.; Krogfelt, K. A.

    2010-01-01

    Maggot debridement therapy (MDT) is widely used for debridement of chronic infected wounds; however, for wounds harbouring specific bacteria limited effect or failure of the treatment has been described. Here we studied the survival of Lucilia sericata maggots encountering Pseudomonas aeruginosa PAO1 in a simple assay with emphasis on the quorum-sensing (QS)-regulated virulence. The maggots were challenged with GFP-tagged P. aeruginosa wild-type (WT) PAO1 and a GFP-tagged P. aeruginosa ΔlasR rhlR (ΔRR) QS-deficient mutant in different concentrations. Maggots were killed in the presence of WT PAO1 whereas the challenge with the QS mutant showed a survival reduction of ∼25 % compared to negative controls. Furthermore, bacterial intake by the maggots was lower in the presence of WT PAO1 compared to the PAO1 ΔRR mutant. Maggot excretions/secretions (ES) were assayed for the presence of QS inhibitors; only high doses of ES showed inhibition of QS in P. aeruginosa. Thus P. aeruginosa was shown to be toxic to L. sericata maggots. This, coupled to the preferential feeding by the maggots and reduced ingestion of P. aeruginosa, could explain MDT failure in wounds colonized by P. aeruginosa. Wounds heavily colonized with P. aeruginosa should be a counterindication for MDT unless used in combination with a pre-treatment with other topical therapeutics targeting P. aeruginosa. PMID:19892758

  14. Functional characterization of macrophage receptors for in vitro phagocytosis of unopsonized Pseudomonas aeruginosa.

    PubMed Central

    Speert, D P; Wright, S D; Silverstein, S C; Mah, B

    1988-01-01

    The phagocytic receptor for unopsonized Pseudomonas aeruginosa was characterized functionally using human monocyte-derived macrophages. Freshly isolated human peripheral blood monocytes were unable to ingest unopsonized P. aeruginosa; ingestion did not occur until the cells had been in culture for 2 d and it became maximal after 4 d. Macrophages plated on coverslips derivatized with anti-BSA IgG or with human gamma-globulin lost the capacity to phagocytose unopsonized P. aeruginosa, unopsonized zymosan, and EIgG but bound C3bi-coated erythrocytes normally. Each of the four human IgG subclasses and Fc fragments of anti-BSA IgG inhibited phagocytosis of both unopsonized P. aeruginosa and EIgG. Phagocytosis of P. aeruginosa and zymosan was markedly impaired and EIgG minimally inhibited if macrophages were plated on coverslips derivatized with mannan or when mannan was added to the phagocytosis buffer. Phagocytosis of P. aeruginosa and zymosan, and binding of EC3bi was dependent on the presence of divalent cations, but phagocytosis of EIgG was not. The macrophage phagocytic receptor for unopsonized P. aeruginosa was inactivated by proteolytic enzymes. Phagocytosis of P. aeruginosa was inhibited by D-mannose, L-fucose, and alpha methyl mannoside, but not by L-mannose, D-fucose, or D-glucose. The same sugars inhibited phagocytosis of unopsonized zymosan. We conclude that phagocytosis of unopsonized P. aeruginosa by human monocyte-derived macrophages is facilitated by mannose receptors. Images PMID:3138287

  15. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa.

    PubMed

    Kim, Yong-Guy; Lee, Jin-Hyung; Kim, Chang-Jin; Lee, Jae-Chan; Ju, Yoon Jung; Cho, Moo Hwan; Lee, Jintae

    2012-12-01

    Members of the actinomycetes family are a rich source of bioactive compounds including diverse antibiotics. This study sought to identify novel and non-toxic biofilm inhibitors from the actinomycetes library for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. After the screening of 4104 actinomycetes strains, we found that the culture spent medium (1 %, v/v) of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 inhibited P. aeruginosa biofilm formation by 90 % without affecting the growth of planktonic P. aeruginosa cells, while the spent media enhanced the swarming motility of P. aeruginosa. Global transcriptome analyses revealed that the spent medium of Streptomyces sp. BFI 230 induced expression of phenazine, pyoverdine, pyochelin synthesis genes, and iron uptake genes in P. aeruginosa. The addition of exogenous iron restored the biofilm formation and swarming motility of P. aeruginosa in the presence of the spent medium of Streptomyces sp. BFI 230, which suggests that the Streptomyces sp. BFI 230 strain interfered iron acquisition in P. aeruginosa. Experiments on solvent extraction, heat treatment, and proteinase K treatment suggested that hydrophilic compound(s), possibly extracellular peptides or proteins from Streptomyces sp. BFI 230 cause the biofilm reduction of P. aeruginosa. Together, this study indicates that actinomycetes strains have an ability to control the biofilm of P. aeruginosa. PMID:22722911

  16. Plasma-Mediated Inactivation of Pseudomonas aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System

    PubMed Central

    Vandervoort, Kurt G.; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturabilty are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  17. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells.

    PubMed

    Dasgupta, Debdeep; Kumar, Abhinash; Mukhopadhyay, Balaram; Sengupta, Tapas K

    2015-10-01

    Pseudomonas sp. has long been known for production of a wide range of secondary metabolites during late exponential and stationary phases of growth. Phenazine derivatives constitute a large group of secondary metabolites produced by microorganisms including Pseudomonas sp. Phenazine 1,6-di-carboxylic acid (PDC) is one of such metabolites and has been debated for its origin from Pseudomonas sp. The present study describes purification and characterization of PDC isolated from culture of a natural isolate of Pseudomonas sp. HRW.1-S3 while grown in presence of crude oil as sole carbon source. The isolated PDC was tested for its effect on biofilm formation by another environmental isolate of Pseudomonas sp. DSW.1-S4 which lacks the ability to produce any phenazine compound. PDC showed profound effect on both planktonic as well as biofilm mode of growth of DSW.1-S4 at concentrations between 5 and 20 μM. Interestingly, PDC showed substantial cytotoxicity against three cancer cell lines and against both Gram-positive and Gram-negative bacteria. Thus, the present study not only opens an avenue to understand interspecific cooperation between Pseudomonas species which may lead its applicability in bioremediation, but also it signifies the scope of future investigation on PDC for its therapeutic applications. PMID:26051670

  18. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

    PubMed Central

    Periasamy, Saravanan; Nair, Harikrishnan A. S.; Lee, Kai W. K.; Ong, Jolene; Goh, Jie Q. J.; Kjelleberg, Staffan; Rice, Scott A.

    2015-01-01

    Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl, and Pel during biofilm formation of P. aeruginosa in a defined and experimentally informative mixed species biofilm community, consisting of P. aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Loss of the Psl polysaccharide had the biggest impact on the integration of P. aeruginosa in the mixed species biofilms, where the percent composition of the psl mutant was significantly lower (0.06%) than its wild-type (WT) parent (2.44%). In contrast, loss of the Pel polysaccharide had no impact on mixed species biofilm development. Loss of alginate or its overproduction resulted in P. aeruginosa representing 8.4 and 18.11%, respectively, of the mixed species biofilm. Dual species biofilms of P. aeruginosa and K. pneumoniae were not affected by loss of alginate, Pel, or Psl, while the mucoid P. aeruginosa strain achieved a greater biomass than its parent strain. When P. aeruginosa was grown with P. protegens, loss of the Pel or alginate polysaccharides resulted in biofilms that were not significantly different from biofilms formed by the WT PAO1. In contrast, overproduction of alginate resulted in biofilms that were comprised of 35–40% of P. aeruginosa, which was significantly higher than the WT (5–20%). Loss of the Psl polysaccharide significantly reduced the percentage composition of P. aeruginosa in dual species biofilms with P. protegens (<1%). Loss of the Psl polysaccharide significantly disrupted the communal stress resistance of the three species biofilms. Thus, the polysaccharide composition of an individual species significantly impacts mixed species biofilm development and the emergent properties of such communities. PMID

  19. Antimicrobial effects of Pseudomonas aeruginosa on survivability and recovery of Campylobacter jejuni on poultry products.

    PubMed

    Davis, M A; Conner, D E

    2007-04-01

    Three types of poultry products representing differences in skin coverage were tested to determine the ability of Pseudomonas aeruginosa to inhibit growth of Campylobacter jejuni. Processed ready-to-cook poultry carcasses were obtained from the Poultry Research Unit at Auburn University and were not subjected to any treatment to reduce or eliminate the native microflora on the carcasses. Carcasses were cut into wing sections (drumette, flat, tip), split breast pieces (with and without bone), and boneless, skinless breast pieces. Equal numbers of the 3 product types were subjected to 1 of 6 treatments: 1) uninoculated, 2) C. jejuni only, 3) P. aeruginosa type 1 only, 4) P. aeruginosa type 2 only, 5) C. jejuni + P. aeruginosa type 1, or 6) C. jejuni + P. aeruginosa type 2. Products were inoculated at 10(4) to 10(5) cfu. Postinoculation, equal numbers of product type were also subjected to the following: 1) aerobic or vacuum packaging, 2) storage temperature of 4 or 10 degrees C, and 3) storage of 0, 1, 2, 3, or 4 d. Products were sampled after storage duration to determine the population of C. jejuni and P. aeruginosa. Individual pieces were rinsed with 50 mL of buffered peptone water. The recovered rinse was used to make appropriate dilutions and spiral plated onto Campy-Cefex and Pseudomonas P agars. Campy-Cefex plates were incubated microaerophilically at 42 degrees C for 48 h, whereas Pseudomonas P plates were incubated aerobically at 37 degrees C for 24 to 48 h. Random suspect colonies on Campy-Cefex plates were confirmed by cell morphology when viewed under microscopic examination. Suspect colonies on Pseudomonas P plates produced a blue color in the medium indicative of glycerol reduction. At both 4 and 10 degrees C, neither type of P. aeruginosa inhibited the growth or survival of C. jejuni compared to plates that were inoculated with C. jejuni only. PMID:17369550

  20. Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase.

    PubMed

    Deschamps, Joshua D; Ogunsola, Abiola F; Jameson, J Brian; Yasgar, Adam; Flitter, Becca A; Freedman, Cody J; Melvin, Jeffrey A; Nguyen, Jason V M H; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Bomberger, Jennifer M; Holman, Theodore R

    2016-06-14

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial and chronic infections in immunocompromised patients. P. aeruginosa secretes a lipoxygenase, LoxA, but the biological role of this enzyme is currently unknown. LoxA is poorly similar in sequence to both soybean LOX-1 (s15-LOX-1) and human 15-LOX-1 (37 and 39%, respectively) yet has kinetics comparably fast versus those of s15-LOX-1 (at pH 6.5, Kcat = 181 ± 6 s(-1) and Kcat/KM = 16 ± 2 μM(-1) s(-1)). LoxA is capable of efficiently catalyzing the peroxidation of a broad range of free fatty acid (FA) substrates (e.g., AA and LA) with high positional specificity, indicating a 15-LOX. Its mechanism includes hydrogen atom abstraction [a kinetic isotope effect (KIE) of >30], yet LoxA is a poor catalyst against phosphoester FAs, suggesting that LoxA is not involved in membrane decomposition. LoxA also does not react with 5- or 15-HETEs, indicating poor involvement in lipoxin production. A LOX high-throughput screen of the LOPAC library yielded a variety of low-micromolar inhibitors; however, none selectively targeted LoxA over the human LOX isozymes. With respect to cellular activity, the level of LoxA expression is increased when P. aeruginosa undergoes the transition to a biofilm mode of growth, but LoxA is not required for biofilm growth on abiotic surfaces. However, LoxA does appear to be required for biofilm growth in association with the host airway epithelium, suggesting a role for LoxA in mediating bacterium-host interactions during colonization. PMID:27226387

  1. Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa.

    PubMed

    Hu, Yanmei; Keniry, Megan; Palmer, Stephanie O; Bullard, James M

    2016-08-01

    Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines. PMID:27246774

  2. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature

    PubMed Central

    Penesyan, Anahit; Kumar, Sheemal S.; Kamath, Karthik; Shathili, Abdulrahman M.; Venkatakrishnan, Vignesh; Krisp, Christoph; Packer, Nicolle H.; Molloy, Mark P.; Paulsen, Ian T.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such

  3. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections.

    PubMed

    Rubin, J; Walker, R D; Blickenstaff, K; Bodeis-Jones, S; Zhao, S

    2008-09-18

    Infections with antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to determine antimicrobial susceptibility of 106 strains of Pseudomonas aeruginosa isolated from dogs with otitis and pyoderma from 2003 to 2006 in the United States. Three antimicrobial panels, including 6 classes and 32 antimicrobial agents, were used. A wide range of susceptibility patterns were noted with some isolates being resistant to between 8 and 28 (mean 16) of the antimicrobials tested. Among the beta-lactams, all isolates were resistant to ampicillin, cefoxitin, cefpodoxime, cephalothin and cefazolin followed by amoxicillin/clavulanic acid (99%), ceftiofur (97%), ceftriaxone (39%), cefotaxime (26%), and cefotaxime/clavulanic acid (20%), whereas less than 7% of isolates were resistant to ceftazidime/clavulanic acid, ceftazidime, piperacillin/tazobactam or cefepime. Two isolates were resistant to the carbapenems. Among the quinolones and fluoroquinolones, the most isolates were resistant to naladixic acid (96%), followed by orbifloxacin (52%), difloxacin (43%), enrofloxacin (31%), marbofloxacin (27%), gatifloxacin (23%), levofloxacin (21%), and ciprofloxacin (16%). Among the aminoglycosides, the most resistance was seen to kanamycin (90%), followed by streptomycin (69%), gentamicin (7%), and amikacin (3%). Of the remaining antimicrobials 100% of the isolates were resistant to chloramphenicol followed by tetracycline (98%), trimethoprim/sulfamethoxazole (57%), and sulfisoxazole (51%). Point mutations were present in gyrA, gyrB, parC, and/or parE genes among 34 of the 102 naladixic acid-resistant isolates. Two isolates contained class 1 integrons carrying aadA gene conferring streptomycin and spectinomycin resistance. The findings suggest that many antimicrobial agents commonly used in companion animals may not constitute appropriate therapy for canine pseudomonas infections. PMID:18395369

  4. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity.

    PubMed

    Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar

    2016-09-01

    The multi-drug resistance offered by Pseudomonas aeruginosa to antibiotics can be attributed towards its propensity to develop biofilm, modification in cell membrane and to efflux antibacterial drugs. The present study explored the activity of Glycyrrhiza glabra and one of its pure compounds, glycyrrhizic acid against P. aeruginosa and their mechanism of action in terms of the effect on membrane permeability, efflux activity, and biofilm formation were determined. Minimum inhibitory concentrations were determined by using broth dilution technique. The minimum bactericidal concentrations were assessed on agar plate. The MIC of the extract and glycyrrhizic acid was found to be 200 and 100 μg ml(-1), respectively. The MBC was found to be 800 and 400 μg ml(-1) in the case of extract and glycyrrhizic acid, respectively. Time -dependent killing efficacy was also estimated. Flowcytometric analysis with staining methods was used to determine the effect of extract and glycyrrhizic acid at 2 × MIC on different physiological parameters and compared it with the standard (antibiotic). The growth of P. aeruginosa was significantly inhibited by extract and the pure compound. The herbal extract and the glycyrrhic acid were also found to effective in targeting the physiological parameters of the bacteria that involve cell membrane permeabilization, efflux activity, and biofilm formation. This study reports the antipseudomonal action of Glycyrrhiza glabra and one of its compound and provides insight into their mode of action. PMID:27392698

  5. A Peptide of Heparin Cofactor II Inhibits Endotoxin-Mediated Shock and Invasive Pseudomonas aeruginosa Infection

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; van der Plas, Mariena J. A.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections. PMID:25047075

  6. Pseudomonas aeruginosa Phenotypes Associated With Eradication Failure in Children With Cystic Fibrosis

    PubMed Central

    Mayer-Hamblett, Nicole; Ramsey, Bonnie W.; Kulasekara, Hemantha D.; Wolter, Daniel J.; Houston, Laura S.; Pope, Christopher E.; Kulasekara, Bridget R.; Armbruster, Catherine R.; Burns, Jane L.; Retsch-Bogart, George; Rosenfeld, Margaret; Gibson, Ronald L.; Miller, Samuel I.; Khan, Umer; Hoffman, Lucas R.

    2014-01-01

    Background. Pseudomonas aeruginosa is a key respiratory pathogen in people with cystic fibrosis (CF). Due to its association with lung disease progression, initial detection of P. aeruginosa in CF respiratory cultures usually results in antibiotic treatment with the goal of eradication. Pseudomonas aeruginosa exhibits many different phenotypes in vitro that could serve as useful prognostic markers, but the relative relationships between these phenotypes and failure to eradicate P. aeruginosa have not been well characterized. Methods. We measured 22 easily assayed in vitro phenotypes among the baseline P. aeruginosa isolates collected from 194 participants in the 18-month EPIC clinical trial, which assessed outcomes after antibiotic eradication therapy for newly identified P. aeruginosa. We then evaluated the associations between these baseline isolate phenotypes and subsequent outcomes during the trial, including failure to eradicate after antipseudomonal therapy, emergence of mucoidy, and occurrence of an exacerbation. Results. Baseline P. aeruginosa isolates frequently exhibited phenotypes thought to represent chronic adaptation, including mucoidy. Wrinkly colony surface and irregular colony edges were both associated with increased risk of eradication failure (hazard ratios [95% confidence intervals], 1.99 [1.03–3.83] and 2.14 [1.32–3.47], respectively). Phenotypes reflecting defective quorum sensing were significantly associated with subsequent mucoidy, but no phenotype was significantly associated with subsequent exacerbations during the trial. Conclusions. Pseudomonas aeruginosa phenotypes commonly considered to reflect chronic adaptation were observed frequently among isolates at early detection. We found that 2 easily assayed colony phenotypes were associated with failure to eradicate after antipseudomonal therapy, both of which have been previously associated with altered biofilm formation and defective quorum sensing. PMID:24863401

  7. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol. PMID:27102839

  8. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils.

    PubMed

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Høiby, Niels

    2016-07-01

    Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa strains, including clinical isolates from non-chronically infected CF patients. Thus, oral prophylaxis with anti-Pseudomonas aeruginosa IgY may boost the innate immunity against Pseudomonas aeruginosa in the CF setting by facilitating a rapid and prompt bacterial clearance by PMNs. PMID:26901841

  9. Multiple ecthyma gangrenosum in a healthy infant with community-acquired Pseudomonas aeruginosa sepsis.

    PubMed

    Wu, Chang-Teng; Huang, Jing-Long

    2010-10-01

    We report the case of a previously healthy 8-month-old infant girl with Pseudomonas aeruginosa sepsis who presented to a pediatric emergency department with multiple ecthyma gangrenosum. Skin manifestations are uncommon in Pseudomonas infection. Ecthyma gangrenosum is a rare, distinct skin disorder associated with potentially fatal underlying Pseudomonas sepsis. Although typically occurring in immunocompromised or neutropenic patients, it can occasionally affect otherwise healthy children. This case demonstrates the critical importance of the pediatrician's identification of ecthyma gangrenosum to give directed antipseudomonal therapy. PMID:20930597

  10. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from urine samples of Urinary Tract Infections patients in Karachi, Pakistan

    PubMed Central

    Shah, Dania Aijaz; Wasim, Shehnaz; Essa Abdullah, Farhan

    2015-01-01

    Objective: The aim of this study was to evaluate the antibiotic resistance pattern of Psedomonas aeruginosa and its prevalence in patients with urinary tract infections (UTI) for effective treatment in a developing country like Pakistan. Methods: This is an observational study conducted for a period of ten months which ended on December 2013 at the Dr. Essa Laboratory and Diagnostic Centre in Karachi. A total of 4668 urine samples of UTI patients were collected and standard microbiological techniques were performed to identify the organisms in urine cultures. Antibiotic susceptibility testing was performed by Kirby-Bauer technique for twenty five commonly used antimicrobials and then analyzed on SPSS version 17. Results: P. aeruginosa was isolated in 254 cultures (5.4%). The most resistant drugs included Ceclor(100%) and Cefizox (100%) followed by Amoxil/Ampicillin (99.6%), Ceflixime (99.6%), Doxycycline (99.6%), Cefuroxime (99.2%), Cephradine (99.2%), Cotrimoxazole (99.2%), Nalidixic acid (98.8%), Pipemidic acid (98.6%) and Augmentin (97.6%). Conclusion: Emerging resistant strains of Pseudomonas aeruginosa are potentially linked to injudicious use of drugs leading to ineffective empirical therapy and in turn, appearance of even more resistant strains of the bacterium. Therefore, we recommend culture and sensitivity testing to determine the presence of P.aeruginosa prior to specific antimicrobial therapy. PMID:26101487

  11. Inhibitory effect of biocides on the viable masses and matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.

    PubMed

    Toté, K; Horemans, T; Vanden Berghe, D; Maes, L; Cos, P

    2010-05-01

    Bacteria and matrix are essential for the development of biofilms, and assays should therefore target both components. The current European guidelines for biocidal efficacy testing are not adequate for sessile microorganisms; hence, alternative discriminatory test protocols should be used. The activities of a broad range of biocides on Staphylococcus aureus and Pseudomonas aeruginosa biofilms were evaluated using such in vitro assays. Nearly all selected biocides showed a significant decrease in S. aureus biofilm viability, with sodium hypochlorite and peracetic acid as the most active biocides. Only hydrogen peroxide and sodium hypochlorite showed some inhibitory effect on the matrix. Treatment of P. aeruginosa biofilms was roughly comparable to that of S. aureus biofilms. Peracetic acid was the most active on viable mass within 1 min of contact. Isopropanol ensured a greater than 99.999% reduction of P. aeruginosa viability after at least 30 min of contact. Comparable to results with S. aureus, sodium hypochlorite and hydrogen peroxide markedly reduced the P. aeruginosa matrix. This study clearly demonstrated that despite their aspecific mechanisms of action, most biocides were active only against biofilm bacteria, leaving the matrix undisturbed. Only hydrogen peroxide and sodium hypochlorite were active on both the biofilm matrix and the viable mass, making them the better antibiofilm agents. In addition, this study emphasizes the need for updated and standardized guidelines for biofilm susceptibility testing of biocides. PMID:20363795

  12. Anabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa: nucleotide sequence and transcriptional control of the argF structural gene.

    PubMed Central

    Itoh, Y; Soldati, L; Stalon, V; Falmagne, P; Terawaki, Y; Leisinger, T; Haas, D

    1988-01-01

    In Pseudomonas aeruginosa PAO the anabolic ornithine carbamoyltransferase (OTCase, EC 2.1.3.3) is the product of the argF gene and the only arginine biosynthetic enzyme whose synthesis is repressible by arginine. We have determined the complete nucleotide sequence of the argF gene including its promoter-control region. The deduced amino acid sequence of the anabolic OTCase consists of 305 residues (Mr 33,924), and this was confirmed by the N-terminal amino acid sequence, the total amino acid composition, and the subunit Mr of the purified enzyme. The native anabolic OTCase (Mr 110,000 to 125,000) was found to be a trimer by cross-linking experiments. P. aeruginosa also has a catabolic OTCase (the arcB gene product), which catalyzes the reverse reaction of the anabolic conversion. At the nucleotide sequence level, the P. aeruginosa argF gene had 52.4% identity with the arcB gene. The Escherichia coli argF and argI genes, which code for anabolic OTCase isoenzymes, had 47.3 and 44.9% identity, respectively, with the P. aeruginosa argF sequence. This suggests that these four genes have evolved from a common ancestral gene. The arcB gene appears to be more closely related to the E. coli argF gene than to the P. aeruginosa argF gene. Two transcripts (mRNA-1, mRNA-2) of the P. aeruginosa argF gene were identified by S1 mapping. The transcription initiation site for mRNA-1 was preceded by sequences having partial homology with the E. coli -35 and -10 consensus promoter sequences. No sequence similar to consensus promoters of enteric bacteria was found upstream of the 5' end of mRNA-2. E. coli carrying a P. aeruginosa argF+ recombinant plasmid produced mRNA-1 with low efficiency but no (or very little) mRNA-2. Arginine repressed argF transcription in P. aeruginosa. In the argF promoter region no sequence homologous to the "arg box" (arginine operator module) of E. coli was found. The mechanism of arginine repression in P. aeruginosa thus appears to be different from that in

  13. CLONING AND EXPRESSION OF THE CATA AND CATBC GENE CLUSTERS FROM PSEUDOMONAS AERUGINOSA PAO

    EPA Science Inventory

    A 9.9-kilobase (kb) BAMIII estriction endonuclease fragment encoding the catA and catBC gene clusters was selected from a gene bank of the Pseudomonas aeruginosa PAO1c chromosome. he catA, catB, and catC genes encode enzymes that catalyze consecutive reactions in the catechol bra...

  14. Draft Genome Assembly of Pseudomonas aeruginosa Quality Control Reference Strain Boston 41501.

    PubMed

    Minogue, T D; Daligault, H E; Davenport, K W; Broomall, S M; Bruce, D C; Chain, P S; Coyne, S R; Gibbons, H S; Jaissle, J; Chertkov, O; Freitas, T; Rosenzweig, C N; Xu, Y; Johnson, S L

    2014-01-01

    We present the scaffolded genome assembly of Pseudomonas aeruginosa Boston 41501, now publicly available in GenBank (JOVK00000000) in 10 contigs placed into a single scaffold. The 6.82-Mbp genome contains 66.1% G+C content and 6,295 coding sequences, including type 4 pilus and type 3 secretion system production genes. PMID:25278526

  15. Draft Genome Assembly of Pseudomonas aeruginosa Quality Control Reference Strain Boston 41501

    PubMed Central

    Minogue, T. D.; Daligault, H. E.; Davenport, K. W.; Broomall, S. M.; Bruce, D. C.; Chain, P. S.; Coyne, S. R.; Gibbons, H. S.; Jaissle, J.; Chertkov, O.; Freitas, T.; Rosenzweig, C. N.; Xu, Y.

    2014-01-01

    We present the scaffolded genome assembly of Pseudomonas aeruginosa Boston 41501, now publicly available in GenBank (JOVK00000000) in 10 contigs placed into a single scaffold. The 6.82-Mbp genome contains 66.1% G+C content and 6,295 coding sequences, including type 4 pilus and type 3 secretion system production genes. PMID:25278526

  16. Draft Genome Sequence of a Pseudomonas aeruginosa Strain Able To Decompose N,N-Dimethyl Formamide

    PubMed Central

    Yan, Ming; Xu, Lin; Wei, Li; Zhang, Liting

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium, which uses a variety of organic chemicals as carbon sources. Here, we report the genome sequence of the Cu1510 isolate from wastewater containing a high concentration of N,N-dimethyl formamide. PMID:26847883

  17. [In-vitro antibiotic resistance of hospital and non-hospital strains of Pseudomonas aeruginosa].

    PubMed

    Ceddia, T; Marinucci, M C; Parravano, N

    1979-03-30

    The AA report about the resistence towards antibiotics of 42 stocks of Pseudomonas aeruginosa isolated from hospitalized patients and of 18 stocks isolated from non hospitalized patients. The most active antibiotics are Gentamicine, Neomicine and Streptomicine. Interestingly towards Tobramicine no resistence has been detected. The stocks isolated from hospitalized patients have generally shown a higher resistence. PMID:121701

  18. CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA CHL004

    EPA Science Inventory

    In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 (Vesper et al 1996) has been found to concentrated Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of the washed lyophilized cells grown in the presence of lea...

  19. Pseudomonas aeruginosa septic shock associated with ecthyma gangrenosum in an infant with agammaglobulinemia.

    PubMed

    Almeida, João Fernando Lourenço de; Sztajnbok, Jaques; Troster, Eduardo Juan; Vaz, Flávio Adolfo Costa

    2002-01-01

    Ecthyma gangrenosum (EG) due to Pseudomonas aeruginosa is a rare and invasive infection that can be associated with agammaglobulinemia. The cornerstone of the treatment is based on prompt recognition with appropriate antibiotic coverage and intravenous immunoglobulin. The authors report a case of EG emphasizing the clinical and therapeutic aspects of this condition. PMID:12163911

  20. Ecthyma gangrenosum caused by Pseudomonas aeruginosa in a patient with astrocytoma treated with chemotherapy.

    PubMed

    De Vos, Filip Yves Francine Léon; Middelburg, Tom Alexander; Seynaeve, Caroline; de Jonge, Maja J A

    2010-02-01

    Ecthyma gangrenosum, presenting as embolic lesions caused by Pseudomonas aeruginosa infection, has distinct pathognomonic features and a high mortality rate in patients with bacteremia, but when recognized early is easily treated. In this case report we describe this disseminated infection in an adult patient treated with chemotherapy for an astrocytoma. PMID:20054603

  1. Draft Genome Sequences of 63 Pseudomonas aeruginosa Isolates Recovered from Cystic Fibrosis Sputum

    PubMed Central

    Spilker, Theodore

    2016-01-01

    Here, we report the draft genome sequences of 63 Pseudomonas aeruginosa isolates, recovered in culture of sputum from 15 individuals with cystic fibrosis (CF) receiving care in a single CF care center over a 13-year period. These sequences add value to studies of within-host evolution of bacterial pathogens during chronic infection. PMID:27103710

  2. Role of the Novel OprD Family of Porins in Nutrient Uptake in Pseudomonas aeruginosa

    PubMed Central

    Tamber, Sandeep; Ochs, Martina M.; Hancock, Robert E. W.

    2006-01-01

    To circumvent the permeability barrier of its outer membrane, Pseudomonas aeruginosa has evolved a series of specific porins. These channels have binding sites for related classes of molecules that facilitate uptake under nutrient-limited conditions. Here, we report on the identification of a 19-member family of porins similar to the basic-amino-acid-specific porin OprD. The members of this family fell into one of two phylogenetically distinct clusters, one bearing high similarity to OprD and the other bearing most similarity to the putative phenylacetic acid uptake porin PhaK of Pseudomonas putida. Analysis of the genome context, operon arrangement, and regulation of the PhaK-like porin OpdK indicated that it might be involved in vanillate uptake. This result was confirmed by demonstrating that an opdK mutant had a deficiency in the ability to grow on vanillate as a carbon source. To extrapolate these data to other paralogues within this family, the substrate specificities of 6 of the 17 remaining OprD homologues were inferred using an approach similar to that used with opdK. The specificities determined were as follows: OpdP, glycine-glutamate; OpdC, histidine; OpdB, proline; OpdT, tyrosine; OpdH, cis-aconitate; and OpdO, pyroglutamate. Thus, members of the OprD subfamily took up amino acids and related molecules, and those characterized members most similar to PhaK were responsible for the uptake of a diverse array of organic acids. These results imply that there is a functional basis for the phylogenetic clustering of these proteins and provide a framework for studying OprD homologues in other organisms. PMID:16352820

  3. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    PubMed

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  4. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO.

    PubMed Central

    Kropinski, A M; Lewis, V; Berry, D

    1987-01-01

    Growth of Pseudomonas aeruginosa PAO1 at 15 to 45 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharides (LPSs), and outer membrane proteins of the cells. Cells grown at 15 degrees C contained, relative to those cultivated at 45 degrees C, increased levels of the phospholipid fatty acids hexadecenoate and octadecenoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation with decreases in dodecanoic and hexadecanoic acids and increases in the level of 3-hydroxydecanoate and 2-hydroxdodecanoate as the growth temperature decreased. In addition, LPS extracted from cells cultivated at the lower temperatures contained a higher content of long-chain S-form molecules than that isolated from cells grown at higher temperatures. On the other hand, the percentage of LPS cores substituted with side-chain material decreased from 37.6 mol% at 45 degrees C to 19.3 mol% at 15 degrees C. The outer membrane protein profiles indicated that at low growth temperatures there was an increase in a polypeptide with an apparent molecular weight of 43,000 and decreases in the content of 21,000 (protein H1)- and 27,500-molecular-weight proteins. Images PMID:3106325

  5. Review: Antibiotic discovery in the age of structural biology - a comprehensive overview with special reference to development of drugs for the treatment of Pseudomonas aeruginosa infection.

    PubMed

    Koehnke, Alessa; Friedrich, Reinhard E

    2015-01-01

    Due to the persistence and spread of antibiotic resistance, the discovery and exploitation of new antibiotic targets should be the subject of intensive research. Effective strategies are required to develop antibiotic alternatives. Antibiotics that act on new targets or via novel mechanisms have the greatest likelihood of overcoming resistance. In particular, there is a lack of specific antibiotics for Pseudomonas aeruginosa, one of the leading causes of healthcare-associated infections, exhibiting high resistance levels. Herein we describe how structure-based drug design can be used to achieve new antibiotics for the treatment of Pseudomonas aeruginosa infection, using an essential enzyme of the fatty acid synthesis pathway from P. aeruginosa as an example. PMID:25792642

  6. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis.

    PubMed

    Pihl, Maria; Davies, Julia R; Chávez de Paz, Luis E; Svensäter, Gunnel

    2010-08-01

    Pseudomonas aeruginosa and Staphylococcus epidermidis are common opportunistic pathogens associated with medical device-related biofilm infections. 16S rRNA-FISH and confocal laser scanning microscopy were used to study these two bacteria in dual-species biofilms. Two of the four S. epidermidis strains used were shown to form biofilms more avidly on polymer surfaces than the other two strains. In dual-species biofilms, the presence of P. aeruginosa reduced biofilm formation by S. epidermidis, although different clinical isolates differed in their susceptibility to this effect. The most resistant isolate coexisted with P. aeruginosa for up to 18 h and was also resistant to the effects of the culture supernatant from P. aeruginosa biofilms, which caused dispersal from established biofilms of other S. epidermidis strains. Thus, different strains of S. epidermidis differed in their capacity to withstand the action of P. aeruginosa, with some being better equipped than others to coexist in biofilms with P. aeruginosa. Our data suggest that where S. epidermidis and P. aeruginosa are present on abiotic surfaces such as medical devices, S. epidermidis biofilm formation can be inhibited by P. aeruginosa through two mechanisms: disruption by extracellular products, possibly polysaccharides, and, in the later stages, by cell lysis. PMID:20528934

  7. Targeting iron uptake to control Pseudomonas aeruginosa infections in cystic fibrosis.

    PubMed

    Smith, Daniel J; Lamont, Iain L; Anderson, Greg J; Reid, David W

    2013-12-01

    The aerobic Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen responsible for life-threatening acute and chronic infections in humans. As part of chronic infection P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an impermeable and protective barrier against currently available antimicrobial agents. P. aeruginosa has an absolute requirement for iron for infection success. By influencing cell-cell communication (quorum sensing) and virulence factor expression, iron is a powerful regulator of P. aeruginosa behaviour. Consequently, the imposed perturbation of iron acquisition systems has been proposed as a novel therapeutic approach to the treatment of P. aeruginosa biofilm infection. In this review, we explore the influence of iron availability on P. aeruginosa infection in the lungs of the people with the autosomal recessive condition cystic fibrosis as an archetypal model of chronic P. aeruginosa biofilm infection. Novel therapeutics aimed at disrupting P. aeruginosa are discussed, with an emphasis placed on identifying the barriers that need to be overcome in order to translate these promising in vitro agents into effective therapies in human pulmonary infections. PMID:23143541

  8. Inhalation with Fucose and Galactose for Treatment of Pseudomonas Aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    Hauber, Hans-Peter; Schulz, Maria; Pforte, Almuth; Mack, Dietrich; Zabel, Peter; Schumacher, Udo

    2008-01-01

    Background: Colonisation of cystic fibrosis (CF) lungs with Pseudomonas aeruginosa is facilitated by two lectins, which bind to the sugar coat of the surface lining epithelia and stop the cilia beating. Objectives: We hypothesized that P. aeruginosa lung infection should be cleared by inhalation of fucose and galactose, which compete for the sugar binding site of the two lectins and thus inhibit the binding of P. aeruginosa. Methods: 11 adult CF patients with chronic infection with P. aeruginosa were treated twice daily with inhalation of a fucose/galactose solution for 21 days (4 patients only received inhalation, 7 patients received inhalation and intravenous antibiotics). Microbial counts of P. aeruginosa, lung function measurements, and inflammatory markers were determined before and after treatment. Results: The sugar inhalation was well tolerated and no adverse side effects were observed. Inhalation alone as well as combined therapy (inhalation and antibiotics) significantly decreased P. aeruginosa in sputum (P < 0.05). Both therapies also significantly reduced TNFα expression in sputum and peripheral blood cells (P < 0.05). No change in lung function measurements was observed. Conclusions: Inhalation of simple sugars is a safe and effective measure to reduce the P. aeruginosa counts in CF patients. This may provide an alternative therapeutical approach to treat infection with P. aeruginosa. PMID:19043609

  9. Genome macrorestriction analysis of sequential Pseudomonas aeruginosa isolates from bronchiectasis patients without cystic fibrosis.

    PubMed Central

    Hla, S W; Hui, K P; Tan, W C; Ho, B

    1996-01-01

    The respiratory tracts of bronchiectasis patients may be persistently colonized with Pseudomonas aeruginosa, despite intensive chemotherapy. The organism may undergo phenotypic changes in these patients, providing misleading typing results by conventional methods. We prospectively studied eight bronchiectasis patients without cystic fibrosis over a period of 1 year. A high microbial load of P. aeruginosa was found in 70% of sputum samples collected. Of these, 55 sequential P. aeruginosa isolates were characterized by a genotyping method, pulsed-field gel electrophoresis, to overcome the problem of differentiating the P. aeruginosa strains during chemotherapy. Genome macrorestriction fingerprinting patterns were analyzed after digestion with XbaI restriction endonuclease. Of the eight patients, six harbored a single dominant strain of P. aeruginosa, with an intrapatient macrorestriction similarity pattern range of 96 to 100%. The other two patients were infected with mixed bacterial isolates including P. aeruginosa. However, diversity was observed in the P. aeruginosa isolates from all eight patients, with a relatedness of only 55 to 65%. The study further strengthens the fact that pulsed-field gel electrophoresis can be used efficiently and effectively to differentiate P. aeruginosa strains in bronchiectasis patients without cystic fibrosis. PMID:8904417

  10. Effects of clinical isolates of Pseudomonas aeruginosa on Staphylococcus epidermidis biofilm formation.

    PubMed

    Pihl, Maria; Chávez de Paz, Luis E; Schmidtchen, Artur; Svensäter, Gunnel; Davies, Julia R

    2010-08-01

    Pseudomonas aeruginosa is often found in chronic infections, including cystic fibrosis lung infections and those related to chronic wounds and venous ulcers. At the latter sites, P. aeruginosa can be isolated together with Staphylococcus epidermidis, and we have therefore explored the effect of clinical isolates and laboratory strains of P. aeruginosa strains on colonization by S. epidermidis in dual-species biofilms. Biofilm formation was assayed using 16S rRNA FISH and confocal laser scanning microscopy. Among the six P. aeruginosa strains tested, one particular strain, denoted 14:2, exerted a significant inhibitory effect, and even after 6 h, S. epidermidis levels in dual-species biofilms were reduced by >85% compared with those without P. aeruginosa. Interestingly, strain 14:2 was found to be negative for classical virulence determinants including pyocyanin, elastase and alkaline protease. Therefore, we suggest that less virulent phenotypes of P. aeruginosa, which may develop over time in chronic infections, could counteract colonization by S. epidermidis, ensuring persistence and dominance by P. aeruginosa in the host micro-habitat. Further studies are required to explain the inhibitory effect on S. epidermidis, although extracellular polysaccharides produced by P. aeruginosa might play a role in this phenomenon. PMID:20579097

  11. Structure and Function of the Type III Secretion System of Pseudomonas aeruginosa

    PubMed Central

    Galle, Marlies; Carpentier, Isabelle; Beyaert, Rudi

    2012-01-01

    Pseudomonas aeruginosa is a dangerous pathogen particularly because it harbors multiple virulence factors. It causes several types of infection, including dermatitis, endocarditis, and infections of the urinary tract, eye, ear, bone, joints and, of particular interest, the respiratory tract. Patients with cystic fibrosis, who are extremely susceptible to Pseudomonas infections, have a bad prognosis and high mortality. An important virulence factor of P. aeruginosa, shared with many other gram-negative bacteria, is the type III secretion system, a hollow molecular needle that transfers effector toxins directly from the bacterium into the host cell cytosol. This complex macromolecular machine works in a highly regulated manner and can manipulate the host cell in many different ways. Here we review the current knowledge of the structure of the P. aeruginosa T3SS, as well as its function and recognition by the immune system. Furthermore, we describe recent progress in the development and use of therapeutic agents targeting the T3SS. PMID:23305368

  12. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    PubMed

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications. PMID:26875795

  13. Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes.

    PubMed Central

    König, B; Jaeger, K E; Sage, A E; Vasil, M L; König, W

    1996-01-01

    Previously, we have shown that Pseudomonas aeruginosa lipase and phospholipase C (PLC), two extracellular lipolytic enzymes, interact with each other during 12-hydroxyeicosatetraenoic acid (HETE) generation from human platelets. In this regard. the addition of purified P. aeruginosa lipase to PLC-containing crude P. aeruginosa culture supernatants enhances the generation of the chemotactically active 12-HETE from human platelets. Therefore, we analyzed the interaction of purified P. aeruginosa lipase and purified hemolytic P. aeruginosa PLC with regard to inflammatory mediator release from human platelets, neutrophilic and basophilic granulocytes, and monocytes. Purified P. aeruginosa PLC, but not purified lipase by itself, induced 12-HETE generation from human platelets, the generation of leukotriene B4 (LTB4) and oxygen metabolites, enzyme release from human neutrophils, and histamine release from basophils but diminished interleukin-8 (IL-8) release from human monocytes in a dose-dependent manner. The addition of purified lipase enhanced PLC-induced 12-HETE and LTB4 generation, did not influence enzyme, histamine, or IL-8 release, but diminished the PLC-induced chemiluminescent response. Similar results were obtained when the hemolytic PLC from Clostridium perfringens was used instead of P. aeruginosa PLC. For further comparison, we used the well-defined calcium ionophore A23187 and phorbol-12-myristate-13-acetate (PMA) as stimuli. Lipase enhanced calcium ionophore-induced LTB4 generation and beta-glucuronidase release but reduced calcium ionophore-induced and PMA-induced chemiluminescence. In parallel, we analyzed the role of lipase in a crude P. aeruginosa culture supernatant containing PLC and lipase. Lipase activity in the P. aeruginosa culture supernatant was inhibited by treatment with the lipase-specific inhibitor hexadecylsulfonyl fluoride, leaving the activity of PLC unaffected. The capacity of "lipase-inactivated culture supernatant" to induce 12-HETE

  14. Pseudomonas aeruginosa acquisition on an intensive care unit: relationship between antibiotic selective pressure and patients' environment

    PubMed Central

    2011-01-01

    Introduction The purpose of this study was to investigate the relationship among Pseudomonas aeruginosa acquisition on the intensive care unit (ICU), environmental contamination and antibiotic selective pressure against P. aeruginosa. Methods An open, prospective cohort study was carried out in a 16-bed medical ICU where P. aeruginosa was endemic. Over a six-month period, all patients without P. aeruginosa on admission and with a length of stay >72 h were included. Throat, nasal, rectal, sputum and urine samples were taken on admission and at weekly intervals and screened for P. aeruginosa. All antibiotic treatments were recorded daily. Environmental analysis included weekly tap water specimen culture and the presence of other patients colonized with P. aeruginosa. Results A total of 126 patients were included, comprising 1,345 patient-days. Antibiotics were given to 106 patients (antibiotic selective pressure for P. aeruginosa in 39). P. aeruginosa was acquired by 20 patients (16%) and was isolated from 164/536 environmental samples (31%). Two conditions were independently associated with P. aeruginosa acquisition by multivariate analysis: (i) patients receiving ≥3 days of antibiotic selective pressure together with at least one colonized patient on the same ward on the previous day (odds ratio (OR) = 10.3 ((% confidence interval (CI): 1.8 to 57.4); P = 0.01); and (ii) presence of an invasive device (OR = 7.7 (95% CI: 2.3 to 25.7); P = 0.001). Conclusions Specific interaction between both patient colonization pressure and selective antibiotic pressure is the most relevant factor for P. aeruginosa acquisition on an ICU. This suggests that combined efforts are needed against both factors to decrease colonization with P. aeruginosa. PMID:21306623

  15. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.

    PubMed

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A; Ho, Evi X; Lamont, Iain L; Reimmann, Cornelia; Hooper, Lora V; Koh, Andrew Y

    2015-08-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  16. Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation.

    PubMed Central

    de Smet, M J; Friedman, M B; Gunsalus, I C

    1989-01-01

    Two Pseudomonas strains (PpG777 and PaG158) were derived from the parent isolate Pseudomonas incognita (putida). Strain PpG777 resembles the parental culture in growth on linalool as a source of carbon and slight growth on p-cymene, whereas PaG158 grows well on p-cymene, but not on linalool or other terpenes tested, and has a P. aeruginosa phenotype. Curing studies indicate that linalool metabolism is controlled by an extrachromosomal element whose loss forms a stable strain PaG158 with the p-cymene growth and P. aeruginosa phenotype characters. The plasmid can be transferred by PpG777 to both P. putida and P. aeruginosa strains. Surprisingly, the latter assume the P. putida phenotype. We conclude that the genetic potential to oxidize p-cymene is inherent in PpG777 but expression is repressed. Similarly, this observation implies that support of linalool oxidation effectively conceals the P. aeruginosa character. PMID:2504698

  17. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin.

    PubMed

    Youard, Zeb A; Mislin, Gaëtan L A; Majcherczyk, Paul A; Schalk, Isabelle J; Reimmann, Cornelia

    2007-12-01

    The siderophore pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine. In Pseudomonas aeruginosa, the first cysteine residue is converted to its D-isoform during thiazoline ring formation whereas the second cysteine remains in its L-configuration, thus determining the stereochemistry of the two interconvertible pyochelin diastereoisomers as 4'R, 2''R, 4''R (pyochelin I) and 4'R, 2''S, 4''R (pyochelin II). Pseudomonas fluorescens CHA0 was found to make a different stereoisomeric mixture, which promoted growth under iron limitation in strain CHA0 and induced the expression of its biosynthetic genes, but was not recognized as a siderophore and signaling molecule by P. aeruginosa. Reciprocally, pyochelin promoted growth and induced pyochelin gene expression in P. aeruginosa, but was not functional in P. fluorescens. The structure of the CHA0 siderophore was determined by mass spectrometry, thin-layer chromatography, NMR, polarimetry, and chiral HPLC as enantio-pyochelin, the optical antipode of the P. aeruginosa siderophore pyochelin. Enantio-pyochelin was chemically synthesized and confirmed to be active in CHA0. Its potential biosynthetic pathway in CHA0 is discussed. PMID:17938167

  18. Whirlpool-associated folliculitis caused by Pseudomonas aeruginosa: report of an outbreak and review.

    PubMed

    Ratnam, S; Hogan, K; March, S B; Butler, R W

    1986-03-01

    An outbreak of folliculitis caused by Pseudomonas aeruginosa serotype O:7 occurred among the guests of a hotel in St. John's, Newfoundland, Canada, and the source of the infection was traced to the hotel whirlpool. Of 36 persons who used the whirlpool, 26 (72%) developed folliculitis within 1 to 5 days after exposure; the attack rate was significantly higher for children (90%) than for adults (50%). The rash characteristics were consistent with those of Pseudomonas folliculitis previously described (T. L. Gustafson, J. D. Band, R. H. Hutcheson, Jr., and W. Schaffner, Rev. Infect. Dis. 5:1-8, 1983). This is considered to be the first outbreak in which P. aeruginosa serotype O:7 has been incriminated. Published reports to date of outbreaks of Pseudomonas folliculitis associated with the use of whirlpools, hot tubs, swimming pools, etc., were reviewed. PMID:3082930

  19. Mode of action of the protein, SP127, which enhances the activity of macrolide antibiotics against Pseudomonas aeruginosa.

    PubMed

    Kikuchi, M; Nakao, Y

    1977-03-01

    Antibiotics, the activity of which enhanced against Pseudomonas aeruginosa by SP127, were restricted to the basic macrolide antibiotics such as erythromycin, maridomycin and oleandomycin, the neutral macrolide antibiotics such as lankamycin and lankacidin C, vancomycin and enramycin. Synergistic activity of SP127 with the above antibiotics was found against Pseudomonas aeruginosa and several strains of Escherichia coli, but not against Proteus vulgaris and macrolide-resistant Staphylococcus aureus. SP127 had extremely weak proteolytic but no lytic activity. From the isotopic experiments, the action of SP127 was partially attributed to the promotion of antibiotic penetration to cells of Pseudomonas aeruginosa. PMID:405356

  20. Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa.

    PubMed

    Lee, Mijoon; Domínguez-Gil, Teresa; Hesek, Dusan; Mahasenan, Kiran V; Lastochkin, Elena; Hermoso, Juan A; Mobashery, Shahriar

    2016-06-17

    A family of 11 lytic transglycosylases in Pseudomonas aeruginosa, an opportunistic human pathogen, turn over the polymeric bacterial cell wall in the course of its recycling, repair, and maturation. The functions of these enzymes are not fully understood. We disclose herein that SltB3 of P. aeruginosa is an exolytic lytic transglycosylase. We characterize its reaction and its products by the use of peptidoglycan-based molecules. The enzyme recognizes a minimum of four sugars in its substrate but can process a substrate comprised of a peptidoglycan of 20 sugars. The ultimate product of the reaction is N-acetylglucosamine-1,6-anhydro-N-acetylmuramic acid. The X-ray structure of this enzyme is reported for the first time. The enzyme is comprised of four domains, arranged within an annular conformation. The polymeric linear peptidoglycan substrate threads through the opening of the annulus, as it experiences turnover. PMID:27035839

  1. Novel 6′-N-Aminoglycoside Acetyltransferase AAC(6′)-Iaj from a Clinical Isolate of Pseudomonas aeruginosa

    PubMed Central

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Shimojima, Masahiro

    2013-01-01

    Pseudomonas aeruginosa NCGM1588 has a novel chromosomal class 1 integron, In151, which includes the aac(6′)-Iaj gene. The encoded protein, AAC(6′)-Iaj, was found to consist of 184 amino acids, with 70% identity to AAC(6′)-Ia. Escherichia coli transformed with a plasmid containing the aac(6′)-Iaj gene acquired resistance to all aminoglycosides tested except gentamicin. Of note, aac(6′)-Iaj contributed to the resistance to arbekacin. Thin-layer chromatography revealed that AAC(6′)-Iaj acetylated all aminoglycosides tested except gentamicin. These findings indicated that AAC(6′)-Iaj is a functional acetyltransferase that modifies the amino groups at the 6′ positions of aminoglycosides and contributes to aminoglycoside resistance of P. aeruginosa NCGM1588, including arbekacin. PMID:23070167

  2. Autogenous regulation and kinetics of induction of Pseudomonas aeruginosa recA transcription as analyzed with operon fusions.

    PubMed Central

    Horn, J M; Ohman, D E

    1988-01-01

    A promoterless chloramphenicol acetyltransferase gene (cat) was used to construct recA-cat operon fusions to quantitatively examine the transcriptional regulation of the Pseudomonas aeruginosa recA gene in P. aeruginosa PAO. Wild-type P. aeruginosa containing the recA8-cat fusion was treated with methyl methanesulfonate (MMS) and showed immediate induction of chloramphenicol acetyltransferase (CAT) specific activity, whereas a recA::Tn501 mutant of P. aeruginosa containing recA8-cat showed no induction with MMS. This indicated that a functional copy of recA was required for derepression of recA transcription and that P. aeruginosa recA protein was a positive regulatory factor promoting its own expression. Compared with that in the wild type, the uninduced level of CAT in recA8-cat-containing cells was reduced by approximately one-half in the recA::Tn501 mutant, indicating that recA+-dependent spontaneous induction contributes to the uninduced levels of recA expression in P. aeruginosa. MMS (0.012%) caused recA-directed CAT synthesis to increase almost immediately, with maximum CAT activity, fourfold higher than uninduced levels, attained at 60 min postinduction. The kinetics of recA8-cat fusion activity were shown to be directly related to the MMS doses used. Another fusion called recAa1-cat, where cat was located between the two transcriptional terminators of the P. aeruginosa recA gene, also showed dose-dependent induction by MMS, but the CAT activity from recAa1-cat was only one-half of that obtained with recA8-cat under the same conditions. Treatment of recA+ P. aeruginosa containing recA8-cat with UV irradiation produced an immediate effect on recA8-cat transcription and showed little UV dose dependency at doses of 5 J/m2 or greater. Treatment with 10 J/m2 produced peak levels of recA-directed CAT activity, fivefold higher than background levels, by 60 min postirradiation; CAT activity remained at peak levels during the 120 min of the experiment. In contrast

  3. Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa.

    PubMed

    Kim, Meong Il; Hong, Minsun

    2016-09-01

    Pyridoxal kinase is a ubiquitous enzyme essential for pyridoxal 5'-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Previously, two catalytic mechanisms were proposed with regard to Pdx kinases, in which either the aspartate or the cysteine residue is involved as a catalytic residue. Because the Pdx kinase of Pseudomonas aeruginosa (PaPdxK) contains both residues, the catalytic mechanism of PaPdxK remains elusive. To elucidate the substrate-recognition and catalytic mechanisms of PaPdxK, the crystal structure of PaPdxK was determined at a 2.0 Å resolution. The PaPdxK structure possesses a channel that can accommodate substrates and a metallic cofactor. Our structure-based biochemical and mutational analyses in combination with modeling studies suggest that PaPdxK catalysis is mediated by an acid-base mechanism through the catalytic acid Asp225 and a helical dipole moment. PMID:27425248

  4. Crystal Structure and RNA Binding of the Tex Protein from Pseudomonas aeruginosa

    SciTech Connect

    Johnson,S.; Close, D.; Robinson, H.; Vallet-Gely, I.; Dove, S.; Hill, C.

    2008-01-01

    Tex is a highly conserved bacterial protein that likely functions in a variety of transcriptional processes. Here, we describe two crystal structures of the 86-kDa Tex protein from Pseudomonas aeruginosa at 2.3 and 2.5 Angstroms resolution, respectively. These structures reveal a relatively flat and elongated protein, with several potential nucleic acid binding motifs clustered at one end, including an S1 domain near the C-terminus that displays considerable structural flexibility. Tex binds nucleic acids, with a preference for single-stranded RNA, and the Tex S1 domain is required for this binding activity. Point mutants further demonstrate that the primary nucleic acid binding site corresponds to a surface of the S1 domain. Sequence alignment and modeling indicate that the eukaryotic Spt6 transcription factor adopts a similar core structure. Structural analysis further suggests that the RNA polymerase and nucleosome interacting regions of Spt6 flank opposite sides of the Tex-like scaffold. Therefore, the Tex structure may represent a conserved scaffold that binds single-stranded RNA to regulate transcription in both eukaryotic and prokaryotic organisms.

  5. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

    PubMed Central

    Meletis, G; Exindari, M; Vavatsi, N; Sofianou, D; Diza, E

    2012-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species. PMID:23935307

  6. A study on the effect of Pseudomonas aeruginosa in semen on bovine fertility.

    PubMed Central

    Eaglesome, M D; Garcia, M M; Bielanski, A B

    1995-01-01

    Two experiments were done to demonstrate whether the presence of Pseudomonas aeruginosa in bovine semen could affect fertilization and/or early embryonic development. In the first experiment, superovulated heifers were inseminated with semen naturally contaminated with P. aeruginosa (ADRI 102) or clean semen and seven day-old embryos were collected nonsurgically. The endometrium of treated heifers appeared more sensitive to the flush procedures. In experiment 2, heifers were inseminated at synchronized estrus with semen experimentally contaminated with P. aeruginosa (ADRI 102) and processed in the same way as commercial semen with antibiotics (gentamicin, lincomycin, spectinomycin and tylosin) or processed without antibiotics added. Embryos were recovered at slaughter seven days later. In general, there was no significant reduction in fertility or development of embryos in vitro as a result of relatively high numbers of P. aeruginosa in bovine semen. PMID:7704848

  7. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  8. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  9. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa.

    PubMed

    Elias, Sivan; Degtyar, Elena; Banin, Ehud

    2011-07-01

    Bacteria acquire iron through a highly specific mechanism involving iron-chelating molecules termed siderophores. The Gram-negative bacterium Pseudomonas aeruginosa can utilize siderophores produced by other micro-organisms to facilitate iron uptake. Here we show that a P. aeruginosa strain deficient in siderophore production can use the Vibrio cholerae siderophore vibriobactin as an iron source. In addition, we identified a P. aeruginosa gene, PA4156 (fvbA), encoding a protein highly homologous to the V. cholerae vibriobactin receptor (ViuA). A P. aeruginosa mutant in the two endogenous siderophores (pyoverdine and pyochelin) and in fvbA was unable to utilize vibriobactin as an iron source. Additionally, preliminary analyses revealed the involvement of vibriobactin, Fur protein and an IclR-type regulator, FvbR (PA4157), in fvbA regulation. PMID:21546589

  10. Anti-quorum sensing activity of selected sponge extracts: a case study of Pseudomonas aeruginosa.

    PubMed

    Pejin, Boris; Talevska, Aleksandra; Ciric, Ana; Glamoclija, Jasmina; Nikolic, Milos; Talevski, Trajce; Sokovic, Marina

    2014-01-01

    The anti-quorum sensing activities towards the bacterium Pseudomonas aeruginosa PA01 (pyocyanin production, biofilm formation and twitching and flagella motility) of two crude extracts (methanol and acetone) of the freshwater sponge Ochridaspongia rotunda (Arndt, 1937) were evaluated in vitro for the first time. Both extracts demonstrated P. aeruginosa pyocyanin inhibitory activity, reducing its production for 49.90% and 42.44%, respectively. In addition, they both showed higher anti-biofilm activity (48.29% and 53.99%, respectively) than ampicillin (30.84%). Finally, O. rotunda extracts effectively reduced twitching and flagella motility of P. aeruginosa. Taken all together, these results suggest that endemic sponge species from the oldest lake in Europe may offer novel bioactive natural products with promising medicinal potential towards P. aeruginosa infections. PMID:25039944

  11. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches.

    PubMed

    Lund-Palau, Helena; Turnbull, Andrew R; Bush, Andrew; Bardin, Emmanuelle; Cameron, Loren; Soren, Odel; Wierre-Gore, Natasha; Alton, Eric W F W; Bundy, Jacob G; Connett, Gary; Faust, Saul N; Filloux, Alain; Freemont, Paul; Jones, Andy; Khoo, Valerie; Morales, Sandra; Murphy, Ronan; Pabary, Rishi; Simbo, Ameze; Schelenz, Silke; Takats, Zoltan; Webb, Jeremy; Williams, Huw D; Davies, Jane C

    2016-06-01

    Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development. PMID:27175979

  12. Pseudomonas aeruginosa fur Overlaps with a Gene Encoding a Novel Outer Membrane Lipoprotein, OmlA

    PubMed Central

    Ochsner, Urs A.; Vasil, Adriana I.; Johnson, Zaiga; Vasil, Michael L.

    1999-01-01

    A novel outer membrane lipoprotein in Pseudomonas aeruginosa is encoded by the omlA gene, which was identified immediately upstream of the fur (ferric uptake regulator) gene. The omlA and fur genes were divergently transcribed and had overlapping promoter regions. The proximal fur P2 promoter and the omlA promoter shared a 5-bp DNA motif for their −10 promoter elements. The distal fur P1 promoter was located within the omlA coding sequence, and the omlA and fur T1 mRNAs overlapped by 154 nucleotides. Optimal expression of both fur and omlA required roughly 200 bp of DNA upstream of the promoter regions, suggesting the presence of cis-acting transcriptional activation elements located within the omlA and fur genes, respectively. The levels of Fur and OmlA proteins had no influence on omlA or fur expression, excluding any trans-acting cross-regulation between fur and omlA. Expression of omlA was constitutive regardless of growth phase, oxygen tension, iron concentration, pH, and temperature. OmlA contained a signal sequence typical of bacterial lipoproteins, with a cysteine as a putative cleavage and lipid attachment site. Inhibition of signal peptidase II by globomycin resulted in failure to process OmlA, thus giving strong evidence that OmlA is a lipoprotein. Cell fractionation followed by Western blot analysis indicated that all OmlA protein is localized in the outer membrane. Mature OmlA was an acidic (pI = 4.5) protein of 17.3 kDa and had close to 40% amino acid sequence identity to SmpA (small protein A) of Escherichia coli, Vibrio cholerae, and Haemophilus influenzae, a protein of unknown function. All P. aeruginosa strains tested as well as Pseudomonas fluorescens were found to produce OmlA. A mutant strain with impaired production of OmlA but no change in the expression of the overlapping fur gene was constructed. The omlA mutant was hypersusceptible to anionic detergents such as sodium dodecyl sulfate and deoxycholate, and it showed increased

  13. Rational design of a transition state analogue with picomolar affinity for Pseudomonas aeruginosa PvdQ, a siderophore biosynthetic enzyme.

    PubMed

    Clevenger, Kenneth D; Wu, Rui; Er, Joyce A V; Liu, Dali; Fast, Walter

    2013-10-18

    The Pseudomonas aeruginosa enzyme PvdQ can process different substrates involved in quorum-sensing or in siderophore biosynthesis. Substrate selectivity was evaluated using steady-state kinetic constants for hydrolysis of N-acyl-homoserine lactones (HSLs) and p-nitrophenyl fatty acid esters. PvdQ prefers substrates with alkyl chains between 12 and 14 carbons long that do not bear a 3-oxo substitution and is revealed here to have a relatively high specificity constant for selected N-acyl-HSLs (kcat/KM = 10(5) to 10(6) M(-1) s(-1)). However, endogenous P. aeruginosa N-acyl-HSLs are ≥100-fold disfavored, supporting the conclusion that PvdQ was not primarily evolved to regulate endogenous quorum-sensing. PvdQ plays an essential biosynthetic role for the siderophore pyoverdine, on which P. aeruginosa depends for growth in iron-limited environments. A series of alkylboronate inhibitors was found to be reversible, competitive, and extremely potent (Ki ≥ 190 pM). A 1.8 Å X-ray structure shows that 1-tridecylboronic acid forms a monocovalent bond with the N-terminal β-chain Ser residue in the PvdQ heterodimer, mimicking a reaction transition state. This boronic acid inhibits growth of P. aeruginosa in iron-limited media, reproducing the phenotype of a genetic pvdQ disruption, although co-administration of an efflux pump inhibitor is required to maintain growth inhibition. These findings support the strategy of designing boron-based inhibitors of siderophore biosynthetic enzymes to control P. aeruginosa infections. PMID:23883096

  14. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene.

    PubMed Central

    Totten, P A; Lara, J C; Lory, S

    1990-01-01

    The product of the rpoN gene is an alternative sigma factor of RNA polymerase which is required for transcription of a number of genes in members of the family Enterobacteriaceae, including those that specify enzymes of nitrogen assimilation, amino acid uptake, and degradation of a variety of organic molecules. We have previously shown that transcription of the pilin gene of Pseudomonas aeruginosa also requires RpoN (K. S. Ishimoto and S. Lory, Proc. Natl. Acad. Sci. USA 86:1954-1957, 1989) and have undertaken a more extensive survey of genes under RpoN control. Strains of P. aeruginosa that carry an insertionally inactivated rpoN gene were constructed and shown to be nonmotile because of the inability of these mutants to synthesize flagellin. The mutation in rpoN had no effect on expression of extracellular polypeptides, outer membrane proteins, and the alginate capsule. However, the rpoN mutants were glutamine auxotrophs and were defective in glutamine synthetase, indicating defects in nitrogen assimilation. In addition, the P. aeruginosa rpoN mutants were defective in urease activity. These findings indicate that the sigma factor encoded by the rpoN gene is used by P. aeruginosa for transcription of a diverse set of genes that specify biosynthetic enzymes, degradative enzymes, and surface components. These rpoN-controlled genes include pili and flagella which are required for full virulence of the organism. Images FIG. 1 FIG. 2 PMID:2152909

  15. The Stringent Response Controls Catalases in Pseudomonas aeruginosa and Is Required for Hydrogen Peroxide and Antibiotic Tolerance

    PubMed Central

    Khakimova, Malika; Ahlgren, Heather G.; Harrison, Joe J.; English, Ann M.

    2013-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing. PMID:23457248

  16. Pseudomonas aeruginosa in Cystic Fibrosis Patients With G551D-CFTR Treated With Ivacaftor

    PubMed Central

    Heltshe, Sonya L.; Mayer-Hamblett, Nicole; Burns, Jane L.; Khan, Umer; Baines, Arthur; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Background. Ivacaftor improves outcomes in cystic fibrosis (CF) patients with the G551D mutation; however, effects on respiratory microbiology are largely unknown. This study examines changes in CF respiratory pathogens with ivacaftor and correlates them with baseline characteristics and clinical response. Methods. The G551D Observational Study enrolled a longitudinal observational cohort of US patients with CF aged 6 years and older with at least 1 copy of the G551D mutation. Results were linked with retrospective and prospective culture data in the US Cystic Fibrosis Foundation's National Patient Registry. Pseudomonas aeruginosa infection category in the year before and year after ivacaftor was compared and correlated with clinical findings. Results. Among 151 participants prescribed ivacaftor, 29% (26/89) who were culture positive for P. aeruginosa the year prior to ivacaftor use were culture negative the year following treatment; 88% (52/59) of those P. aeruginosa free remained uninfected. The odds of P. aeruginosa positivity in the year after ivacaftor compared with the year prior were reduced by 35% (odds ratio [OR], 0.65; P < .001). Ivacaftor was also associated with reduced odds of mucoid P. aeruginosa (OR, 0.77; P = .013) and Aspergillus (OR, 0.47; P = .039), but not Staphylococcus aureus or other common CF pathogens. Patients with intermittent culture positivity and higher forced expiratory volume in 1 second (FEV1) were most likely to turn culture negative. Reduction in P. aeruginosa was not associated with change in FEV1, body mass index, or hospitalizations. Conclusions. Pseudomonas aeruginosa culture positivity was significantly reduced following ivacaftor treatment. Efficacious CFTR modulation may contribute to lower frequency of culture positivity for P. aeruginosa and other respiratory pathogens, particularly in patients with less established disease. PMID:25425629

  17. High Throughput Screen Identifies Natural Product Inhibitor of Phenylalanyl-tRNA Synthetase from Pseudomonas aeruginosa and Streptococcus pneumoniae.

    PubMed

    Hu, Yanmei; Palmer, Stephanie O; Munoz, Hector; Bullard, James M

    2014-01-01

    Pseudomonas aeruginosa and Streptococcus pneumoniae are causative agents in a wide range of infections. Genes encoding proteins corresponding to phenylalanyl-tRNA synthetase (PheRS) were cloned from both bacteria. The two forms of PheRS were kinetically evaluated and the K(m)'s for P. aeruginosa PheRS with its three substrates, phenylalanine, ATP and tRNA(Phe) were determined to be 48, 200, and 1.2 µM, respectively, while the K(m)'s for S. pneumoniae PheRS with respect to phenylalanine, ATP and tRNA(Phe) were 21, 225 and 0.94 µM, respectively. P. aeruginosa and S. pneumoniae PheRS were used to screen a natural compound library and a single compound was identified that inhibited the function of both enzymes. The compound inhibited P. aeruginosa and S. pneumoniae PheRS with IC50's of 2.3 and 4.9 µM, respectively. The compound had a K(I) of 0.83 and 0.98 µM against P. aeruginosa and S. pneumoniae PheRS, respectively. The minimum inhibitory concentration (MIC) of the compound was determined against a panel of Gram positive and negative bacteria including efflux pump mutants and hyper-sensitive strains. MICs against wild-type P. aeruginosa and S. pneumoniae cells in culture were determined to be 16 and 32 µg/ml, respectively. The mechanism of action of the compound was determined to be competitive with the amino acid, phenylalanine, and uncompetitive with ATP. There was no inhibition of cytoplasmic protein synthesis, however, partial inhibition of the human mitochondrial PheRS was observed. PMID:25601215

  18. Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts.

    PubMed

    Lorè, Nicola Ivan; Cigana, Cristina; De Fino, Ida; Riva, Camilla; Juhas, Mario; Schwager, Stephan; Eberl, Leo; Bragonzi, Alessandra

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host. PMID:22558188

  19. Cystic Fibrosis-Niche Adaptation of Pseudomonas aeruginosa Reduces Virulence in Multiple Infection Hosts

    PubMed Central

    De Fino, Ida; Riva, Camilla; Juhas, Mario; Schwager, Stephan; Eberl, Leo; Bragonzi, Alessandra

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host. PMID:22558188

  20. Antigenic relationship between the common antigen (OEP) of Pseudomonas aeruginosa and Vibrio cholerae.

    PubMed Central

    Hirao, Y; Homma, J Y

    1978-01-01

    Antibodies were found by the OEP-passive hemagglutination test to cross-react with the common antigen (OEP) of Pseudomonas aeruginosa in sera of rabbits immunized with two serotype (Inaba and Ogawa) strains of Vibrio cholerae. The titer in the OEP-passive hemagglutination reaction rose later than did the agglutinin titer and reached a peak of 640 to 1,280. The titers of OEP antibody formation in rabbits immunized with V. cholerae were almost the same as that of P. aeruginosa. The common antigen of P. aeruginosa was confirmed to exist serologically in both strains of V. cholerae as determined by the indirect fluorescent antibody test and the agar gel precipitin test. Passive immunization with the V. cholerae immune rabbit serum significantly protected mice against P. aeruginosa infection. Purified antibodies cross-reacting with the OEP of P. aeruginosa derived from the V. cholerae immune rabbit sera by OEP-coupled affinity chromatography protected mice against P. aeruginosa infection as compared with the control group, which was injected with 100 microgram of immunoglobin G not containing OEP antibody. The purified antibodies (2.5 microgram per mouse) protected animals challenged with approximately 10,000 50% lethal doses in the control group. Consequently, the common antigen (OEP) of P. aeruginosa proved to be a common antigen of V. cholerae both serologically and in possessing infection protective properties. PMID:75846

  1. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia.

    PubMed

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E; Obrecht, Daniel; Bragonzi, Alessandra

    2016-08-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections. PMID:27297477

  2. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  3. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  4. Enhanced Clearance of Pseudomonas aeruginosa by Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Bedi, Brahmchetna; Yuan, Zhihong; Joo, Myungsoo; Zughaier, Susu M; Goldberg, Joanna B; Arbiser, Jack L; Hart, C Michael; Sadikot, Ruxana T

    2016-07-01

    The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ). Macrophages treated with a PPARγ agonist (pioglitazone) showed enhanced phagocytosis and bacterial killing of PAO1. It is known that PAO1 QS molecules are inactivated by PON-2. QS molecules are also known to inhibit activation of PPARγ by competitively binding PPARγ receptors. In accord with this observation, we found that infection of macrophages with PAO1 inhibited expression of PPARγ and PON-2. Mechanistically, we show that PPARγ induces macrophage paraoxonase 2 (PON-2), an enzyme that degrades QS molecules produced by P. aeruginosa Gene silencing studies confirmed that enhanced clearance of PAO1 in macrophages by PPARγ is PON-2 dependent. Further, we show that PPARγ agonists also enhance clearance of P. aeruginosa from lungs of mice infected with PAO1. Together, these data demonstrate that P. aeruginosa impairs the ability of host cells to mount an immune response by inhibiting PPARγ through secretion of QS molecules. These studies define a novel mechanism by which PPARγ contributes to the host immunoprotective effects during bacterial infection and suggest a role for PPARγ immunotherapy for P. aeruginosa infections. PMID:27091928

  5. Pseudomonas aeruginosa Triggers Macrophage Autophagy To Escape Intracellular Killing by Activation of the NLRP3 Inflammasome

    PubMed Central

    Deng, Qiuchan; Wang, Yi; Zhang, Yuanqing; Li, Meiyu; Li, Dandan; Huang, Xi; Wu, Yongjian; Pu, Jieying

    2015-01-01

    Assembly of the inflammasome has recently been identified to be a critical event in the initiation of inflammation. However, its role in bacterial killing remains unclear. Our study demonstrates that Pseudomonas aeruginosa infection induces the assembly of the NLRP3 inflammasome and the sequential secretion of caspase1 and interleukin-1β (IL-1β) in human macrophages. More importantly, activation of the NLRP3 inflammasome reduces the killing of P. aeruginosa in human macrophages, without affecting the generation of antimicrobial peptides, reactive oxygen species, and nitric oxide. In addition, our results demonstrate that P. aeruginosa infection increases the amount of the LC3-II protein and triggers the formation of autophagosomes in human macrophages. The P. aeruginosa-induced autophagy was enhanced by overexpression of NLRP3, ASC, or caspase1 but was reduced by knockdown of these core molecules of the NLRP3 inflammasome. Treatment with IL-1β enhanced autophagy in human macrophages. More importantly, IL-1β decreased the macrophage-mediated killing of P. aeruginosa, whereas knockdown of ATG7 or Beclin1 restored the IL-1β-mediated suppression of bacterial killing. Collectively, our study explores a novel mechanism employed by P. aeruginosa to escape from phagocyte killing and may provide a better understanding of the interaction between P. aeruginosa and host immune cells, including macrophages. PMID:26467446

  6. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review. PMID:24294593

  7. Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus.

    PubMed Central

    Fleiszig, S M; Zaidi, T S; Ramphal, R; Pier, G B

    1994-01-01

    To gain access to the corneal epithelium and cause infections keratitis, bacterial pathogens must first interact with ocular surface factors that could affect bacterial adherence. In this study, we demonstrated that the mucus layer, and, in particular, the mucin fraction of mucus, modulated adherence to intact corneal epithelium of Pseudomonas aeruginosa but not that of Staphylococcus aureus or Streptococcus pyogenes. Removal of endogenous mucus from rat or rabbit eyes increased the adherence of P. aeruginosa by 3- to 10-fold. Ocular mucus obtained from rat eyes, porcine stomach mucin, or bovine submaxillary gland mucin inhibited adherence of P. aeruginosa to uninjured corneal epithelium. The mucin fraction of ocular mucus, purified by ultracentrifugation, was found to contain the inhibitory activity, and inhibition was demonstrated at concentrations of mucin as low as 35 micrograms/ml. Ocular mucin was the only material tested that inhibited adherence of P. aeruginosa to an injured cornea. However, the binding of P. aeruginosa to immobilized substrates in vitro did not predict which fraction would possess antiadherence activity: bacteria bound well to whole ocular mucus, mucin, the nonmucin fraction of ocular mucus, and dilute human tears as well as to porcine stomach mucin and bovine submaxillary gland mucin. The effectiveness of the mucin fraction of ocular mucus at inhibiting the binding of P. aeruginosa to the cornea implies that this material is a barrier that protects the surface of the eye from P. aeruginosa adherence. PMID:8168942

  8. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin a