Science.gov

Sample records for acid pseudomonas aeruginosa

  1. Transport of Aromatic Amino Acids by Pseudomonas aeruginosa

    PubMed Central

    Kay, W. W.; Gronlund, Audrey F.

    1971-01-01

    Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan. PMID:4994029

  2. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  3. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  4. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  5. Triclosan-induced modification of unsaturated fatty acid metabolism and growth in Pseudomonas aeruginosa PAO1.

    PubMed

    Bullard, James W; Champlin, Franklin R; Burkus, Janna; Millar, Sarah Y; Conrad, Robert S

    2011-03-01

    Triclosan is a broad-spectrum antimicrobial agent having low toxicity which facilitates its incorporation into numerous personal and health care products. Although triclosan acts against a wide range of gram-positive and gram-negative bacteria by affecting fatty acid biosynthesis, it is ineffective against the opportunistic pathogen Pseudomonas aeruginosa. Wild-type strain P. aeruginosa PAO1 was used as a model system to determine the effects of triclosan on fatty acid metabolism in resistant microorganisms. This was accomplished by cultivating P. aeruginosa PAO1 cultures in the presence of different concentrations of triclosan, monitoring growth rates turbidimetrically, and harvesting in stationary phase. Readily extractable lipids (RELs) were obtained from freeze-dried cells after washing and analyzed using gas chromatography coupled with mass spectrometry. Resultant data demonstrated that triclosan caused dose-dependent increases in the amounts of trans-C(16:1) and trans-C(18:1) fatty acids, with concomitant decreases in their respective cyclopropyl analogs. Triclosan did not affect the relative concentrations of saturated, cis unsaturated, or the overall ratios of combined C(16) to C(18) fatty acid species. The readily extractable lipid fractions contained triclosan proportional to triclosan concentrations in the growth media. The presence or absence of triclosan in either liquid or solid media did not affect the antimicrobial susceptibilities of P. aeruginosa PAO1 to a battery of unrelated antimicrobials. Triclosan decreased growth rate in a dose-dependent manner at soluble concentrations. Incorporation of triclosan into the REL fraction was accompanied by increased levels of trans unsaturated fatty acids, decreased levels of cyclopropyl fatty acids, and decrease in growth rate. These alterations may contribute to triclosan resistance in P. aeruginosa PAO1.

  6. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  7. Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations.

    PubMed

    Ghorbal, Salma Kloula Ben; Chatti, Abdelwaheb; Sethom, Mohamed Marwan; Maalej, Lobna; Mihoub, Mouadh; Kefacha, Sana; Feki, Moncef; Landoulsi, Ahmed; Hassen, Abdennaceur

    2013-07-01

    The changes in lipid composition enable the micro-organisms to maintain membrane functions in the face of environmental fluctuations. The relationship between membrane fatty acid composition and UV-C stress was determined for mid-exponential phase and stationary phase Pseudomonas aeruginosa. The total lipids were obtained by dichloromethane/methanol (3:1) and were quantified by GC. The TLC analysis of phospholipids showed the presence of three major fractions phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Significant modifications, as manifested by an increase of UFA, were obtained. Interestingly, this microorganism showed a remarkable capacity for recovery from the stressful effects of UV-C.

  8. Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Saravanan, D.

    2013-04-01

    Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

  9. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  10. D‐amino acids do not inhibit Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Frye, Mitchell; Gagnon, Patricia; Vogel, Joseph P.; Chole, Richard

    2016-01-01

    Objective Pseudomonas aeruginosa, a known biofilm‐forming organism, is an opportunistic pathogen that plays an important role in chronic otitis media, tracheitis, cholesteatoma, chronic wounds, and implant infections. Eradication of biofilm infections has been a challenge because the biofilm phenotype provides bacteria with a protective environment from the immune system and antibiotics; thus, there has been great interest in adjunctive molecules that may inhibit biofilm formation or cause biofilm dispersal. There are reports that D‐amino acids may inhibit biofilms. In this study, we test the ability of various D‐amino acids to inhibit P. aeruginosa biofilm formation in vitro. Study Design We evaluated the effect of D‐alanine (10 mM), D‐leucine (10 mM), D‐methionine (10 mM), D‐tryptophan (10 mM), and D‐tyrosine (10 uM and 1 mM) on biofilm formation in two commonly studied laboratory strains of P. aeruginosa: PAO1 and PA14. Methods Biofilms were grown in 24‐well and 96‐well tissue culture plates, documented photographically and stained with 0.1% crystal violet and solubilized in 33% glacial acetic acid for quantification. Results In strains PAO1 and PA14, the addition of D‐amino acids did not result in an inhibitory effect on biofilm growth in 24‐well plates. Repeating the study in 96‐well plates confirmed our findings that D‐amino acids do not inhibit biofilm formation of P. aeruginosa. Conclusion We conclude that D‐amino acids only slow the production of biofilms rather than completely prevent biofilm formation; therefore, D‐amino acids represent a poor option for potential clinically therapeutic interventions. Level of Evidence N/A. PMID:28286870

  11. Pseudomonas aeruginosa Directly Shunts β-Oxidation Degradation Intermediates into De Novo Fatty Acid Biosynthesis

    PubMed Central

    Yuan, Yanqiu; Leeds, Jennifer A.

    2012-01-01

    We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C8-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed. PMID:22753057

  12. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  13. Energy metabolism and alginate biosynthesis in Pseudomonas aeruginosa: role of the tricarboxylic acid cycle.

    PubMed Central

    Schlictman, D; Kavanaugh-Black, A; Shankar, S; Chakrabarty, A M

    1994-01-01

    Infection with mucoid, alginate-producing strains of Pseudomonas aeruginosa is the leading cause of mortality among patients with cystic fibrosis. Alginate production by P. aeruginosa is not constitutive but is triggered by stresses such as starvation. The algR2 (also termed algQ) gene has been previously identified as being necessary for mucoidy; an algR2 mutant strain is unable to produce alginate when grown at 37 degrees C. We show here that the levels of phosphorylated succinyl coenzyme A synthetase (Scs) and nucleoside diphosphate kinase (Ndk), which form a complex in P. aeruginosa, are reduced in the algR2 mutant. We were able to correlate the lower level of phosphorylated Scs with a decrease in Scs activity. Western blots (immunoblots) also showed a decreased level of Ndk in the algR2 mutant, but the presence of another kinase activity sensitive to Tween 20 provides the missing Ndk function. The effect of AlgR2 on tricarboxylic acid (TCA) cycle enzymes appears to be specific for Scs, since none of the other TCA cycle enzymes measured showed a significant decrease in activity. Furthermore, the ability of the algR2 mutant to grow on TCA cycle intermediates, but not glucose, is impaired. These data indicate that AlgR2 is responsible for maintaining proper operation of the TCA cycle and energy metabolism. Images PMID:7928963

  14. Chronic Pseudomonas aeruginosa cervical osteomyelitis

    PubMed Central

    Meher, Sujeet Kumar; Jain, Harsh; Tripathy, Laxmi Narayan; Basu, Sunandan

    2016-01-01

    Pseudomonas aeruginosa is a rare cause of osteomyelitis of the cervical spine and is usually seen in the background of intravenous drug use and immunocompromised state. Very few cases of osteomyelitis of the cervical spine caused by pseudomonas aeruginosa have been reported in otherwise healthy patients. This is a case presentation of a young female, who in the absence of known risk factors for cervical osteomyelitis presented with progressively worsening neurological signs and symptoms. PMID:27891039

  15. Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial conversions of unsaturated fatty acids often generate polyhydroxy fatty acids rendering them to have new properties such as higher viscosity and reactivity. A bacterial strain Pseudomonas aeruginosa (PR3) has been intensively studied to produce mono-, di-, and tri-hydroxy fatty acids from...

  16. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by

  17. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease

    PubMed Central

    Walasek, Paula; Honek, John F

    2005-01-01

    Background The alkaline protease from Pseudomonas aeruginosa (AprA) is a member of the metzincin superfamily of metalloendoproteases. A key feature of these proteases is a conserved methionine-containing 1,4-tight β turn at the base of the active site zinc binding region. Results To explore the invariant methionine position in this class of protease, incorporation of a nonnatural fluorinated methionine, L-difluoromethionine (DFM), into this site was accomplished. Although overproduction of the N-terminal catalytic fragment of AprA resulted in protein aggregates which could not be resolved, successful heterologous production of the entire AprA was accomplished in the presence and absence of the nonnatural amino acid. DFM incorporation was found to only slightly alter the enzyme kinetics of AprA. In addition, differential scanning calorimetry indicated no significant alteration in the thermal stability of the modified enzyme. Conclusion Although invariant in all metzincin proteases, the methionine 214 position in AprA can be successfully replaced by the nonnatural amino acid DFM resulting in little effect on protein structure and function. This study indicates that the increased size of the methyl group by the introduction of two fluorines is still sufficiently non-sterically demanding, and bodes well for the application of DFM to biophysical studies of protein structure and function in this class of protease. PMID:16221305

  18. Isolation of dicarboxylic acid- and glucose-binding proteins from Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Cohen, M A; Merrick, J M

    1976-01-01

    Inducible binding proteins for C4-dicarboxylic acids (DBP) and glucose (GBP) were isolated from Pseudomonas aeruginosa by extraction of exponential-phase cells with 0.2 M MgC12 (pH 8.5) and by an osmotic shock procedure without affecting cell viability. DBP synthesis was induced by growth on aspartate, alpha-ketoglutarate, succinate, fumarate, malate, and malonate but not by growth on acetate, citrate, pyruvate, or glucose. Binding of succinate by DBP was competitively inhibited by 10-fold concentrations of fumarate and malate but not by a variety of related substances. GBP synthesis and transport of methyl alpha-glucoside by whole cells were induced by growth on glucose or pyruvate plus galactose, 2-deoxyglucose, or methyl alpha-glucoside but not by growth on gluconate, succinate, acetate, or pyruvate. The binding of radioactive glucose by GBP was significantly inhibited by 10-fold concentrations of glucose, galactose, and glucose-1-phosphate but not by the other carbohydrates tested. The binding of glucose by GBP or succinate by DBP did not result in any chemical alteration of the substrates. PMID:824281

  19. Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa

    PubMed Central

    Notch, Emily G.; Goodale, Britton C.; Barnaby, Roxanna; Coutermarsh, Bonita; Berwin, Brent; Taylor, Vivien F.; Jackson, Brian P.; Stanton, Bruce A.

    2015-01-01

    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa. PMID:26554712

  20. [Pneumonia due to Pseudomonas aeruginosa].

    PubMed

    Vallés, Jordi; Mariscal, Dolors

    2005-12-01

    Pseudomonas aeruginosa is one of the leading causes of Gram-negative nosocomial pneumonia. It is the most common cause of ventilator-associated pneumonia and carries the highest mortality among hospital-acquired infections. P. aeruginosa produces a large number of toxins and surface components that make it especially virulent compared with other microorganisms. These include pili, flagella, membrane bound lipopolysaccharide, and secreted products such as exotoxins A, S and U, elastase, alkaline protease, cytotoxins and phospholipases. The most common mechanism of infection in mechanically ventilated patients is through aspiration of upper respiratory tract secretions previously colonized in the process of routine nursing care or via contaminated hands of hospital personnel. Intravenous therapy with an antipseudomonal regimen should be started immediately when P. aeruginosa pneumonia is suspected or confirmed. Empiric therapy with drugs active against P. aeruginosa should be started, especially in patients who have received previous antibiotics or present late-onset pneumonia.

  1. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA)

    PubMed Central

    Chifiriuc, Mariana–Carmen; Veronica, Lazar; Dracea, Olguta; Ditu, Lia-Mara; Smarandache, Diana; Bucur, Marcela; Larion, Cristina; Cernat, Ramona; Sasarman, Elena

    2007-01-01

    The discovery of communication systems regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. In this paper we describe the effect of subinhibitory concentrations of phenyllactic acid (PLA) on the pathogenicity of Pseudomonas aeruginosa in mice. The animals were inoculated by oral (p.o.), intranasal (i.n.), intravenous (i.v.) and intraperitoneal (i.p.) routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed up during 16 days after infection and the body weight, mortality and morbidity rate were measured every day. The microbial charge was studied by viable cell counts in lungs, spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosa bacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route) and very high cell counts in blood, lungs, intestine and spleen. In contrast, the animal batches infected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality) and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA) can act as a potent antagonist of Pseudomonas (P.) aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  2. Environmental optimization for production of 7, 10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial conversions of free unsaturated fatty acids often generate novel hydroxy fatty acids (HFA), which are known to have special properties such as higher viscosity and reactivity. Among microbial strains known to produce HFAs, Pseudomonas aeruginosa PR3 has been well studied to produce 7,10-d...

  3. A Novel Role for an ECF Sigma Factor in Fatty Acid Biosynthesis and Membrane Fluidity in Pseudomonas aeruginosa

    PubMed Central

    Boechat, Ana Laura; Kaihami, Gilberto Hideo; Politi, Mario José; Lépine, François; Baldini, Regina L.

    2013-01-01

    Extracytoplasmic function (ECF) sigma factors are members of cell-surface signaling systems, abundant in the opportunistic pathogen Pseudomonas aeruginosa. Twenty genes coding for ECF sigma factors are present in P. aeruginosa sequenced genomes, most of them being part of TonB systems related to iron uptake. In this work, poorly characterized sigma factors were overexpressed in strain PA14, in an attempt to understand their role in the bacterium´s physiology. Cultures overexpressing SigX displayed a biphasic growth curve, reaching stationary phase earlier than the control strain, followed by subsequent growth resumption. During the first stationary phase, most cells swell and die, but the remaining cells return to the wild type morphology and proceed to a second exponential growth. This is not due to compensatory mutations, since cells recovered from late time points and diluted into fresh medium repeated this behavior. Swollen cells have a more fluid membrane and contain higher amounts of shorter chain fatty acids. A proteomic analysis was performed to identify differentially expressed proteins due to overexpression of sigX, revealing the induction of several fatty acid synthesis (FAS) enzymes. Using qRT-PCR, we showed that at least one isoform from each of the FAS pathway enzymes were upregulated at the mRNA level in the SigX overexpressing strain thus pointing to a role for this ECF sigma factor in the FAS regulation in P. aeruginosa. PMID:24386415

  4. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.

    PubMed

    Zhou, Lian; Jiang, Hai-Xia; Sun, Shuang; Yang, Dan-Dan; Jin, Kai-Ming; Zhang, Wei; He, Ya-Wen

    2016-03-01

    Bacterial phenazine metabolites belong to a group of nitrogen-containing heterocyclic compounds with antimicrobial activities. In this study, a rhizosphere Pseudomonas aeruginosa strain PA1201 was isolated and identified through 16S rDNA sequence analysis and fatty acid profiling. PA1201 inhibited the growth of various pathogenic microorganisms, including Rhizotonia solani, Magnaporthe grisea, Fusarium graminearum, Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Staphylococcus aureus. High Performance Liquid Chromatography showed that PA1201 produced high levels of phenazine-1-carboxylic acid (PCA), a registered green fungicide 'Shenqinmycin' with the fermentation titers of 81.7 mg/L in pigment producing medium (PPM) and 926.9 mg/L in SCG medium containing soybean meal, corn steep liquor and glucose. In addition, PA1201 produced another antifungal metabolite, phenazine-1-carboxaminde (PCN), a derivative of PCA, with the fermentation titers of 18.1 and 489.5 mg/L in PPM and SCG medium respectively. To the best of our knowledge, PA1201 is a rhizosphere originating P. aeruginosa strain that congenitally produces the highest levels of PCA and PCN among currently reported P. aeruginosa isolates, which endows it great biotechnological potential to be transformed to a biopesticide-producing engineering strain.

  5. Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas aeruginosa Quorum Sensing Signals

    PubMed Central

    Lowery, Colin A.; Park, Junguk; Gloeckner, Christian; Meijler, Michael M.; Mueller, Ryan S.; Boshoff, Helena I.; Ulrich, Ricky L.; Barry, Clifton E.; Bartlett, Douglas H.; Kravchenko, Vladimir V.; Kaufmann, Gunnar F.; Janda, Kim D.

    2009-01-01

    In Nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the Gram-negative bacterium Pseudomonas aeruginosa, an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C12-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C12-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in Nature as well as significant human pathogens. The mechanism of action of C12-TA was also elucidated and C12-TA was found to dissipate both the membrane potential and pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C12-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species, and also to defend against both host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C12-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics. PMID:19807189

  6. Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity.

    PubMed Central

    Douglas, C M; Collier, R J

    1987-01-01

    Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) has been identified by photoaffinity labeling as a residue within the NAD binding site (S.F. Carroll and R.J. Collier, J. Biol. Chem. 262:8707-8711, 1987). To explore the function of Glu-553 we used oligonucleotide-directed mutagenesis to replace this residue with Asp in cloned ETA and expressed the mutant gene in Escherichia coli K-12. ADP-ribosylation activity of Asp-553 ETA in cell extracts was about 1,800-fold lower and toxicity for mouse L-M929 fibroblasts was at least 10,000-fold lower than that of the wild-type toxin. Extracts containing Asp-553 ETA inhibited the cytotoxicity of authentic ETA on L-M929 fibroblasts, suggesting that the mutant toxin competes for ETA receptors. The results indicate that Glu-553 is crucial for ADP-ribosylation activity and, consequently, cytotoxicity of ETA. Substitution or deletion of this residue may be a route to new ETA vaccines. Images PMID:2889718

  7. Oxidation of 1-Tetradecene by Pseudomonas aeruginosa

    PubMed Central

    Markovetz, A. J.; Klug, M. J.; Forney, F. W.

    1967-01-01

    Pseudomonas aeruginosa strain Sol 20 was grown on 1-tetradecene as sole carbon source, and a vinyl-unsaturated 14-carbon monocarboxylic acid, 13-tetradecenoic acid, was identified from culture fluid. This acid was not produced when n-tetradecane served as substrate for growth. Oxidation of the methyl group represents one method of attack on the 1-alkene by this organism. Tentative identification of 2-tetradecanol indicates that an attack on the double bond is also occurring. α, ω-Dienes would not support growth. PMID:4962057

  8. Pseudomonas aeruginosa: breaking down barriers.

    PubMed

    Berube, Bryan J; Rangel, Stephanie M; Hauser, Alan R

    2016-02-01

    Many bacterial pathogens have evolved ingenious ways to escape from the lung during pneumonia to cause bacteremia. Unfortunately, the clinical consequences of this spread to the bloodstream are frequently dire. It is therefore important to understand the molecular mechanisms used by pathogens to breach the lung barrier. We have recently shown that Pseudomonas aeruginosa, one of the leading causes of hospital-acquired pneumonia, utilizes the type III secretion system effector ExoS to intoxicate pulmonary epithelial cells. Injection of these cells leads to localized disruption of the pulmonary-vascular barrier and dissemination of P. aeruginosa to the bloodstream. We put these data in the context of previous studies to provide a holistic model of P. aeruginosa dissemination from the lung. Finally, we compare P. aeruginosa dissemination to that of other bacteria to highlight the complexity of bacterial pneumonia. Although respiratory pathogens use distinct and intricate strategies to escape from the lungs, a thorough understanding of these processes can lay the foundation for new therapeutic approaches for bacterial pneumonia.

  9. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  10. Extensive reduction of cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with a D-amino acid mixture.

    PubMed

    Sanchez, Zoe; Tani, Akio; Kimbara, Kazuhide

    2013-02-01

    Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a D-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells.

  11. Efficacy of 1% acetic acid in the treatment of chronic wounds infected with Pseudomonas aeruginosa: prospective randomised controlled clinical trial.

    PubMed

    Madhusudhan, V L

    2016-12-01

    Chronic wounds are those wounds that are persistent and do not respond to any sort of treatment. The concept of using topical antiseptics on open wounds is to prevent and treat infections. They also help to shorten the time taken to heal the wounds. The use of topical agents on wounds to prevent infection is a minimal ability to develop resistance to the microorganisms. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with innate resistance to many antibiotics. In places that are economically backward, these problems get compounded by the inability of patients to afford newer expensive drugs. Topically applied dilute acetic acid, which is cheap and easily available, has been found to be effective in such chronic wounds. In the present study, an attempt has been made to use 1% acetic acid as the sole antimicrobial agent for the treatment of pseudomonal wound infections. A control limb was used in which the wounds were treated with normal saline. Our objective was to evaluate the efficacy of acetic acid in low concentration of 1% in chronic wounds infected with P. aeruginosa. This was a prospective study conducted over a period of 6 months.

  12. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  13. Carbenicillin resistance of Pseudomonas aeruginosa.

    PubMed Central

    Rodríguez-Tebar, A; Rojo, F; Dámaso, D; Vázquez, D

    1982-01-01

    Four strains of Pseudomonas aeruginosa obtained from clinical isolates which are carbenicillin resistant were studied to find the cause(s) of resistance to this beta-lactam antibiotic. The electrophoresis patterns of the four strains (PH20610, PH20815, PH4011, and PH4301) were found to be different from those of a wild-type strain, P. aeruginosa NCTC 10662, and appeared to lack penicillin-binding protein 2. Affinity of other penicillin-binding proteins from strains PH20610 and PH20815 for carbenicillin seemed to be normal or slightly diminished. Electrophoretic patterns of penicillin-binding proteins from strains PH4011 and PH4301 had more profound differences, since the affinities of their penicillin-binding proteins 1a, 1b, and 4 for carbenicillin were decreased by nearly two orders of magnitude relative to the preparations from the wild-type strain. Kinetic studies on binding of carbenicillin to penicillin-binding proteins both in isolated membrane preparations and in intact cells revealed that carbenicillin penetration into resistant cells was a much slower process than in susceptible cells, suggesting that the outer envelope structures serve as an efficient barrier against carbenicillin entry into our P. aeruginosa strains from clinical isolates. PMID:6821456

  14. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  15. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources.

    PubMed

    Chan, Pui-Ling; Yu, Vincent; Wai, Lam; Yu, Hoi-Fu

    2006-01-01

    In this study, medium-chain-length polyhydroxyalkanoates (mcl-PHAs) were produced by Pseudomonas aeruginosa using different carbon sources. Decanoic acid induced the highest (9.71% [+/- 0.7]) mcl-PHAs accumulation in bacterial cells at 47 h. The cells preferred to accumulate and degrade the polyhydroxyoctanoate than polyhydroxydecanoate (PHD) during early stage and final stage of the growth, respectively. The production cost of mcl-PHAs can be reduced by using edible oils as the carbon source. The bacteria accumulated 6% (+/- 0.7) of mcl-PHAs in the presence of olive oil. Besides, reused oil was another potential carbon source for the reduction of the production cost of mcl-PHAs. Overall, PHD was the major constituent in the accumulated mcl-PHAs.

  16. Lipid interaction of Pseudomonas aeruginosa exotoxin A. Acid-triggered permeabilization and aggregation of lipid vesicles.

    PubMed Central

    Menestrina, G; Pederzolli, C; Forti, S; Gambale, F

    1991-01-01

    We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin. Images FIGURE 7 FIGURE 8 FIGURE 12

  17. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa.

    PubMed

    Reyes-Darias, José A; Yang, Yiling; Sourjik, Victor; Krell, Tino

    2015-05-01

    The PctA and PctB chemoreceptors of Pseudomonas aeruginosa mediate chemotaxis toward amino acids. A general feature of signal transduction processes is that a signal input is converted into an output. We have generated chimeras combining the Tar signaling domain with either the PctA or PctB ligand binding domain (LBD). Escherichia coli harboring either PctA-Tar or PctB-Tar mediated chemotaxis toward amino acids. The responses of both chimeras were determined using fluorescence resonance energy transfer, and the derived EC50 values are a measure of output. PctA-Tar and PctB-Tar responded to 19 and 11 L-amino acids respectively. The EC50 values of PctA-Tar responses differed by more than three orders of magnitude, whereas PctB-Tar responded preferentially to L-Gln. The comparison of amino acid binding constants and the corresponding EC50 values for both receptors revealed statistically significant correlations between inputs and outputs. PctA and PctB possess a double PDC (PhoQ-DcuS-CitA) LBD - a family of binding domain found in various other amino acid chemoreceptors. Similarly, various chemoreceptors share the preferential response to certain amino acids (e.g. L-Cys, L-Ser and L-Thr) that we observed for PctA. Defining the specific inputs and outputs of these chemoreceptors is an important step toward better understanding of their physiological role.

  18. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  19. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  20. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids

    NASA Astrophysics Data System (ADS)

    Taylor, Erik N.; Kummer, Kim M.; Dyondi, Deepti; Webster, Thomas J.; Banerjee, Rinti

    2013-12-01

    Infections are both frequent and costly in hospitals around the world, leading to longer hospital stays, overuse of antibiotics, and excessive costs to the healthcare system. Moreover, antibiotic resistant organisms, such as Pseudomonas aeruginosa are increasing in frequency, leading to 1.7 million infections per year in USA hospitals, and 99 000 deaths, both due to the evolution of antibiotic resistance and the formation of biofilms on medical devices. In particular, respiratory infections are costly, deadly to 4.5 million persons per year worldwide, and can spread to the lungs through the placement of endotracheal tubing. In this study, towards a reduction in infections, solid lipid nanoparticles were formulated from free fatty acids, or natural lipophilic constituents found in tissues of the body. A strategy was developed to target infections by producing coatings made of non-toxic chemistries lauric acid and oleic acid delivered by core-shell solid lipid nanoparticles that act against bacteria by multiple mechanisms at the nanoscale, including disruption of bacteria leading to DNA release, and reducing the adhesion of dead bacteria to ~1%. This is the first such study to explore an anti-infection surface relying on these multi-tier strategies at the nanoscale.

  1. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  2. Quorum sensing systems differentially regulate the production of phenazine-1-carboxylic acid in the rhizobacterium Pseudomonas aeruginosa PA1201

    PubMed Central

    Sun, Shuang; Zhou, Lian; Jin, Kaiming; Jiang, Haixia; He, Ya-Wen

    2016-01-01

    Pseudomonas aeruginosa strain PA1201 is a newly identified rhizobacterium that produces high levels of the secondary metabolite phenazine-1-carboxylic acid (PCA), the newly registered biopesticide Shenqinmycin. PCA production in liquid batch cultures utilizing a specialized PCA-promoting medium (PPM) typically occurs after the period of most rapid growth, and production is regulated in a quorum sensing (QS)-dependent manner. PA1201 contains two PCA biosynthetic gene clusters phz1 and phz2; both clusters contribute to PCA production, with phz2 making a greater contribution. PA1201 also contains a complete set of genes for four QS systems (LasI/LasR, RhlI/RhlR, PQS/MvfR, and IQS). By using several methods including gene deletion, the construction of promoter-lacZ fusion reporter strains, and RNA-Seq analysis, this study investigated the effects of the four QS systems on bacterial growth, QS signal production, the expression of phz1 and phz2, and PCA production. The possible mechanisms for the strain- and condition-dependent expression of phz1 and phz2 were discussed, and a schematic model was proposed. These findings provide a basis for further genetic engineering of the QS systems to improve PCA production. PMID:27456813

  3. Discrepancies between disk diffusion and broth susceptibility studies of the activity of ticarcillin plus clavulanic acid against ticarcillin-resistant Pseudomonas aeruginosa.

    PubMed Central

    Manian, F A; Alford, R H

    1986-01-01

    Ticarcillin and clavulanic acid in combination were tested against 40 Pseudomonas aeruginosa isolates resistant to ticarcillin by disk diffusion. A total of 21 isolates (53%) were susceptible to ticarcillin-clavulanate by disk diffusion, under currently recommended criteria for ticarcillin susceptibility. Macro-broth dilution tests (ticarcillin plus clavulanic acid, 2 micrograms/ml) confirmed susceptibility (MIC less than or equal to 64 micrograms/ml) of only 8 (38%) of 21 isolates. Time-kill studies of disk diffusion susceptible isolates indicated 2 log10 or greater killing of most isolates at 6 h in broth containing ticarcillin (64 micrograms/ml) combined with clavulanic acid (1, 2, 5, or 10 micrograms/ml). After 6 h, regrowth was common in all concentrations of clavulanic acid except 10 micrograms/ml. Regrowth populations were resistant to ticarcillin-clavulanate by MIC determination. Poor bactericidal activity of ticarcillin-clavulanate against ticarcillin-resistant P. aeruginosa was confirmed, as most isolates did not undergo 99.9% or greater killing at 24 h in all concentrations of clavulanic acid. Serotype O-11 was our most common serotype and was associated with disk diffusion "pseudosusceptibility." Concomitant disk diffusion testing of ticarcillin-clavulanate and ticarcillin is recommended for testing the susceptibility of P. aeruginosa to ticarcillin-clavulanate by disk diffusion. P. aeruginosa isolates resistant to ticarcillin should as a rule be considered also resistant to ticarcillin-clavulanate, despite apparent susceptibility by disk diffusion. PMID:3092732

  4. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system.

    PubMed

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio; Fabbri, Enrica; Borgatti, Monica; Lampronti, Ilaria; Finotti, Alessia; Nielsen, Peter E; Gambari, Roberto

    2017-02-03

    Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits PAO1 induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against Pseudomonas can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection.

  5. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-08-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL.

  6. Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa.

    PubMed Central

    Sakagami, Y; Yokoyama, H; Nishimura, H; Ose, Y; Tashima, T

    1989-01-01

    The mechanisms of resistance of Pseudomonas aeruginosa to benzalkonium chloride (BC) were studied. The effluence of cell components was observed in susceptible P. aeruginosa by electron microscopy, but resistant P. aeruginosa seemed to be undamaged. No marked changes in cell surface potential between Escherichia coli NIHJC-2 and a spheroplast strain were found. The contents of phospholipids (PL) and fatty and neutral lipids (FNL) in the cell walls of resistant P. aeruginosa were higher than those in the cell walls of susceptible P. aeruginosa. The amounts of BC adsorbed to PL and FNL of cell walls of BC-resistant P. aeruginosa were lower than those for BC-susceptible P. aeruginosa. Fifteen species of cellular fatty acids were identified by capillary gas chromatography and gas chromatography-mass spectrometry. The ability of BC to permeate the cell wall was reduced because of the increase in cellular fatty acids. These results suggested that the resistance of P. aeruginosa to BC is mainly a result of increased in the contents of PL and FNL. In resistant P. aeruginosa, the decrease in the amount of BC adsorbed is likely to be the result of increases in the contents of PL and FNL. Images PMID:2506813

  7. The Accessory Genome of Pseudomonas aeruginosa

    PubMed Central

    Kung, Vanderlene L.; Ozer, Egon A.; Hauser, Alan R.

    2010-01-01

    Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging. PMID:21119020

  8. Detection of KPC Carbapenemase in Pseudomonas aeruginosa Isolated From Clinical Samples Using Modified Hodge Test and Boronic Acid Phenotypic Methods and Their Comparison With the Polymerase Chain Reaction

    PubMed Central

    Falahat, Saeed; Shojapour, Mana; Sadeghi, Abdorrahim

    2016-01-01

    Background Bacterial resistance to antibiotics has become a major source of concern for public health. Pseudomonas aeruginosa strains are important opportunistic pathogens. These bacteria have a high resistance to a wide range of existing antimicrobials and antibiotics. Objectives The present study was performed to evaluate the frequency of KPC in P. aeruginosa isolated from clinical samples of educational hospitals of Arak University of Medical Sciences, using the mentioned phenotypic and genotypic methods. Materials and Methods One hundred and eight non-duplicate clinical isolates of P. aeruginosa were collected from hospitals of Arak University of Medical Sciences, Arak, Iran. Antibacterial susceptibility was determined by the disk diffusion method. KPC production was confirmed by the Modified Hodge Test (MHT), which is a phenotypic test, and combined-disk test with boronic acid and the Polymerase Chain Reaction (PCR). Results In the present study, 13 isolates (12%) of P. aeruginosa were positive for KPC, using PCR. Comparison of the two phenotypic methods used in this study showed that boronic acid is more sensitive than MHT in identification of KPC-producing strains (84.6% vs. 77%). Conclusions Utilization of reliable methods for identifying carbapenemase-producing strains and determining their antibiotic resistance pattern could have a very important role in treatment of infections caused by these strains. A substantial amount of P. aeruginosa isolated from clinical samples of hospitals in Arak (Iran) produce KPC carbapenemase. Due to their low specificity, MHT and boronic acid phenotypic methods could not completely identify KPC-producing P. aeruginosa. However, the sensitivity of boronic acid phenotypic method in detection of KPC was higher than MHT. PMID:27800140

  9. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    PubMed Central

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  10. Occurrence of Pseudomonas aeruginosa in Kuwait soil.

    PubMed

    Al-Saleh, Esmaeil; Akbar, Abrar

    2015-02-01

    Environmentally ubiquitous bacteria such as Pseudomonas aeruginosa evolved mechanisms to adapt and prevail under diverse conditions. In the current investigation, strains of P. aeruginosa demonstrating high rates of crude oil utilization and tolerance to high concentrations of heavy metals were found in both crude oil-contaminated and uncontaminated sites in Kuwait, and were dominant in the contaminated sites. The incidence of P. aeruginosa in tested soils implies the definitive pattern of crude oil contamination in the selection of the bacterial population in petroleum-contaminated sites in Kuwait. Surprisingly, the unculturable P. aeruginosa in different soil samples showed significant high similarity coefficients based on 16S-RFLP analyses, implying that the unculturable fraction of existing bacterial population in environmental samples is more stable and, hence, reliable for phylogenetic studies compared to the culturable bacteria.

  11. Osmoregulation in Pseudomonas aeruginosa under hyperosmotic shock.

    PubMed

    Velasco, R; Burgoa, R; Flores, E; Hernández, E; Villa, A; Vaca, S

    1995-01-01

    Pseudomonas aeruginosa PAO1 strain was found to be able to tolerate 700 mM NaCl. 0.5 mM of the osmoprotectant betaine restablished the growth of this strain in 1200 mM NaCl. Intracellular K+ and glutamate concentrations of P. aeruginosa PAO1 after an hyperosmotic shock (400 mM NaCl) showed a permanent increase. Adition of betaine (0.5 mM) to the medium with NaCl had an inhibitory effect on the intracellular accumulation of glutamate. The results indicate that P. aeruginosa PAO1 resists high NaCl concentrations, K+ accumulation and glutamate synthesis probably being the first mechanisms involved in adaptation to osmotic stress. Also is is demonstrated that betaine modulates intracellular glutamate levels in osmotically stressed P. aeruginosa PAO1.

  12. Fatty Acid Biosynthesis in Pseudomonas aeruginosa Is Initiated by the FabY Class of β-Ketoacyl Acyl Carrier Protein Synthases

    PubMed Central

    Yuan, Yanqiu; Sachdeva, Meena; Leeds, Jennifer A.

    2012-01-01

    The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes. PMID:22753059

  13. Acquisition and Role of Molybdate in Pseudomonas aeruginosa

    PubMed Central

    Pederick, Victoria G.; Eijkelkamp, Bart A.; Ween, Miranda P.; Begg, Stephanie L.; Paton, James C.

    2014-01-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  14. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    PubMed

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  15. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  16. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  17. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  18. Yield and kinetic constants estimation in the production of hydroxy fatty acids from oleic acid in a bioreactor by Pseudomonas aeruginosa 42A2.

    PubMed

    Martin-Arjol, Ignacio; Llacuna, Joan Llorens; Manresa, Angeles

    2014-12-01

    We modelled the production of hydroxy fatty acids from oleic acid by Pseudomonas aeruginosa 42A2 in a bioreactor with a non-dispersive aeration system. First, we designed an adapted wetted-wall gas-absorption column, offering a k La value of 39.9 h(-1), to enhance oxygen absorption in the culture media and prevent foam formation. Then, we analysed different kinetic models to simulate the yield coefficients and the kinetic constants in this bacterial transformation. Monod model fitting (μ max1 = 0.51 h(-1), K S1 = 1.60 C-mol l(-1), μ max2 = 0.12 h(-1), K S2 = 0.035 C-mol l(-1), and k 2 = 0.033 h(-1)) showed a good accuracy with the experimental data sets and was chosen for its simplicity. Lastly, mass balances were carried out to establish the stoichiometry of this biotransformation with the following yield coefficients, Υ X/OA, Υ X/(10S)-HPOME and Υ (10S)-HPOME/(7S10S)-HPOME of 0.172, 0.347 and 2.388 C-mol C-mol(-1), respectively.

  19. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

    PubMed

    Lee, Xiaoyun; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; Reimmann, Cornelia

    2013-02-01

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control.

  20. Developing an international Pseudomonas aeruginosa reference panel.

    PubMed

    De Soyza, Anthony; Hall, Amanda J; Mahenthiralingam, Eshwar; Drevinek, Pavel; Kaca, Wieslaw; Drulis-Kawa, Zuzanna; Stoitsova, Stoyanka R; Toth, Veronika; Coenye, Tom; Zlosnik, James E A; Burns, Jane L; Sá-Correia, Isabel; De Vos, Daniel; Pirnay, Jean-Paul; Kidd, Timothy J; Reid, David; Manos, Jim; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard; McClean, Siobhán; Winstanley, Craig

    2013-12-01

    Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.

  1. Effect of hypochlorous acid solution on the eradication and prevention of Pseudomonas aeruginosa infection, serum biochemical variables, and cecum microbiota in rats.

    PubMed

    Goto, Kazuo; Kuwayama, Eri; Nozu, Ryoko; Ueno, Masami; Hayashimoto, Nobuhito

    2015-01-01

    In this study, hypochlorous acid solution, a weak acid, provided as drinking water to rats, was evaluated for its ability to eradicate and prevent Pseudomonas aeruginosa infection, while monitoring its simultaneous effect on serum biochemical variables and microbiota in the rat cecum. The results suggest that the solution could not eliminate the bacteria in the experimentally infected rats; however, the administration of a 10-parts-per-million (ppm) hypochlorous acid solution as drinking water was effective in inhibiting horizontal spread of P. aeruginosa infection among cage mates. Additionally, exposure to hypochlorous solution did not have any effect on serum biochemical variables of the rat including levels of total cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin, total bilirubin, lipase, amylase, urea nitrogen, total protein, calcium (Ca), phosphorus (P), sodium (Na), chlorine (Cl), except for potassium (K) levels. The most frequently isolated bacteria in the rat cecum included species belonging to Bacteroidales, Lactobacillus, Clostridiales, Erysipelotrichaceae, Akkermansia, Coriobacteriales, and Firmicutes. The ratio of the terminal restriction fragment length polymorphism (T-RFLP) peaks did not differ across rats administered with 5 and 10 ppm weak acid solution as compared to the control group for any of the bacteria, except for Erysipelotrichaceae and Firmicutes, where the ratio of T-RFLP peaks was higher in the 5 ppm group for Erysipelotrichaceae and in the 10 ppm group for Firmicutes than that in the control group (P<0.01). The results suggest that the weak acid hypochlorous solution could not eradicate P. aeruginosa completely from rats. The solution was effective in preventing infection without affecting serum biochemical variables; however, some of bacterial microbiota may have changed due to administration of the solution.

  2. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    PubMed

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  3. Effects of azlocillin in combination with clavulanic acid, sulbactam, and N-formimidoyl thienamycin against beta-lactamase-producing, carbenicillin-resistant Pseudomonas aeruginosa.

    PubMed Central

    Calderwood, S B; Gardella, A; Philippon, A M; Jacoby, G A; Moellering, R C

    1982-01-01

    We investigated the effects of the combination of azlocillin with the beta-lactamase inhibitors clavulanic acid and sulbactam and with N-formimidoyl thienamycin against strains of Pseudomonas aeruginosa with R-factor-mediated carbenicillin resistance. The 10 strains tested (1 R-, 9 R+) were isogenic, except for the presence of individual plasmids determining each of nine plasmid-mediated beta-lactamases found in P. aeruginosa. We utilized a checkerboard technique for testing antibiotic combinations. Low concentrations of clavulanic acid produced synergy with azlocillin against the strains producing the TEM-1, TEM-2, PSE-1, PSE-3, and PSE-4 beta-lactamases; for the strains producing the OXA-1, OXA-2, OXA-3, and PSE-2 beta-lactamases, such synergy was not found. With sulbactam, synergy was demonstrated in all strains except that producing PSE-2 beta-lactamase; for several strains, however, the concentration of sulbactam required to produce synergy was substantially higher than that for clavulanic acid. N-Formimidoyl thienamycin was highly active as a single agent against all of the strains, regardless of beta-lactamase production. The combination of N-formimidoyl thienamycin and azlocillin produced synergy against only two of the strains tested. PMID:6100423

  4. Resistance to pefloxacin in Pseudomonas aeruginosa.

    PubMed Central

    Michea-Hamzehpour, M; Lucain, C; Pechere, J C

    1991-01-01

    Mechanisms of resistance to pefloxacin were investigated in four isogenic Pseudomonas aeruginosa strains: S (parent isolate; MIC, 2 micrograms/ml), PT1 and PT2 (posttherapy isolates obtained in animals; MICs, 32 and 128 micrograms/ml, respectively), and PT2-r (posttherapy isolate obtained after six in vitro subpassages of PT2; MIC, 32 micrograms/ml). [2-3H]adenine incorporation (indirect evidence of DNA gyrase activity) in EDTA-permeabilized cells was less affected by pefloxacin in PT2 and PT2-r (50% inhibitory concentration, 0.27 and 0.26 microgram/ml, respectively) than it was in S and PT1 (50% inhibitory concentration, 0.04 and 0.05 microgram/ml, respectively). Reduced [14C]pefloxacin labeling of intact cells in strains PT1 and PT2 correlated with more susceptibility to EDTA and the presence of more calcium (P less than 0.05) and phosphorus in the outer membrane fractions. Outer membrane protein analysis showed reduced expression of protein D2 (47 kDa) in strains PT1 and PT2. Other proteins were apparently similar in all strains. The addition of calcium chloride (2 mM) to the sodium dodecyl sulfate-solubilized samples of outer membrane proteins, before heating and Western blotting, probed with monoclonal antibody anti-OmpF showed electrophoretic mobility changes of OmpF in strains PT1 and PT2 which were not seen in strain S. Calcium-induced changes were reversed with ethyleneglycoltetraacetate. Decreased [14C]pefloxacin labeling was further correlated with an altered lipopolysaccharide pattern and increased 3-deoxy-D-mannooctulosonic acid concentration (P less than 0.01). These findings suggested that resistance to pefloxacin is associated with altered DNA gyrase in strain PT2-r, with altered permeability in PT1, and with both mechanisms in PT2. The decreased expression of protein D2 and the higher calcium and lipopolysaccharide contents of the outer membrane could be responsible for the permeability deficiency in P. aeruginosa. Images PMID:1645509

  5. D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Sanchez, Carlos J; Akers, Kevin S; Romano, Desiree R; Woodbury, Ronald L; Hardy, Sharanda K; Murray, Clinton K; Wenke, Joseph C

    2014-08-01

    Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of D-amino acids (D-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of D-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. D-Met, D-Phe, and D-Trp at concentrations of ≥ 5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (D-Met/D-Phe/D-Trp). When combined with D-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of D-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of D-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.

  6. d-Amino Acids Enhance the Activity of Antimicrobials against Biofilms of Clinical Wound Isolates of Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Akers, Kevin S.; Romano, Desiree R.; Woodbury, Ronald L.; Hardy, Sharanda K.; Murray, Clinton K.; Wenke, Joseph C.

    2014-01-01

    Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of d-amino acids (d-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of d-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. d-Met, d-Phe, and d-Trp at concentrations of ≥5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (d-Met/d-Phe/d-Trp). When combined with d-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of d-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of d-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity. PMID:24841260

  7. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  8. Spaceflight Effects on Virulence of Pseudomonas Aeruginosa

    NASA Astrophysics Data System (ADS)

    Broadway, S.; Goins, T.; Crandell, C.; Richards, C.; Patel, M.; Pyle, B.

    2008-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen found in the environment. It is known to infect the immunocompromised. The organism has about 25 virulence genes that play different roles in disease processes. Several exotoxin proteins may be produced, including ExoA, ExoS, ExoT and ExoY, and other virulence factors. In spaceflight, possible increased expression of P. aeruginosa virulence proteins could increase health risks for spaceflight crews who experience decreased immunity. Cultures of P. aeruginosa strains PA01 and PA103 grown on orbit on Shuttle Endeavour flight STS-123 vs. static ground controls were used for analysis. The production of ETA was quantitated using an ELISA procedure. Results showed that while flight cultures of PA103 produced slightly more ETA than corresponding ground controls, the opposite was found for PA01. While it appears that spaceflight has little effect on ETA, stimulation of other virulence factors could cause increased virulence of this organism in space flight. Similar increased virulence in spaceflight has been observed for other bacteria. This is important because astronauts may be more susceptible to opportunistic pathogens including P. aeruginosa.

  9. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  10. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  11. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed Central

    Askeland, R A; Morrison, S M

    1983-01-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. PMID:6410989

  12. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    PubMed

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  13. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    from ingesting P. aeruginosa in drinking water is low. The risk is slightly higher if the subject is taking an antibiotic resisted by P. aeruginosa. The fact that individuals on ampicillin are more susceptible to Pseudomonas gastrointestinal infection probably results from suppression of normal intestinal flora, which would allow Pseudomonas to colonize. The process of estimating risk was significantly constrained because of the absence of specific (quantitative) occurrence data for Pseudomonas. Sensitivity analysis shows that the greatest source of variability/uncertainty in the risk assessment is from the density distribution in the exposure rather than the dose-response or water consumption distributions. In summary, two routes appear to carry the greatest health risks from contacting water contaminated with P. aeruginosa (1) skin exposure in hot tubs and (2) lung exposure from inhaling aerosols.

  14. Biotransformation of myrcene by Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet (UV) analysis, gas chromatography (GC), and gas chromatography-mass spectroscopy (GC-MS). Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0%) and α-terpineol (7.7%) and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5%) and 2,6-dimethyloctane (9.3%), with a total yield of 88.8%. PMID:21609445

  15. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    PubMed Central

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  16. OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.

    PubMed

    Kucharska, Iga; Seelheim, Patrick; Edrington, Thomas; Liang, Binyong; Tamm, Lukas K

    2015-12-01

    OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded β-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.

  17. Cryptic transposable phages of Pseudomonas aeruginosa

    SciTech Connect

    Krylov, V.N.; Mit`kina, L.N.; Pleteneva, E.A.; Aleshin, V.V.

    1995-11-01

    Frequencies of nucleotide sequences homologous to phage transposons (PT) of two species, D3112 and B3, were assessed in genomes of natural Pseudomonas aeruginosa strains by the dot-blot hybridization method. These strains were incapable of liberating viable phages on a lawn of the PA01 standard indicator strain of P. aeruginosa. It was shown that the homologies detected belong to two groups, high and intermediate, with respect to homology level. Homology patterns were classified as high when they provided signals comparable to those for hybridization in a positive control; patterns were classified as intermediate when the hybridization level was higher than the background level, but lower than in the positive control. Homologous PT sequences were designated as cryptic PT. Intact cryptic PT prophages were shown to exist in genomes of particular natural strains manifesting a higher level of hybridization. However, the growth of these phages was limited by the restriction system of strain PA01. It is possible to isolate strains maintaining the growth of some cryptic PT. These strains differed from P. aeruginosa with respect to the specificity of the restriction and modification system. Nevertheless, in most cases, the attempt to identify a novel host capable of maintaining growth of a cryptic PT failed. Natural strains often carry cryptic PT related to both known PT species, D3112 and B3. The frequency of cryptic PT is extremely high, reaching 30% in strains with a high level of homology only and up to 50% in all strains exhibiting homology. This high PT frequency is assumed to be associated with the considerable variation of P. aeruginosa. 15 refs., 1 fig., 2 tabs.

  18. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.

    PubMed

    Sun, Zhenxin; Kang, Yun; Norris, Michael H; Troyer, Ryan M; Son, Mike S; Schweizer, Herbert P; Dow, Steven W; Hoang, Tung T

    2014-01-01

    Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient

  19. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  20. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa.

    PubMed

    Zhu, Kun; Rock, Charles O

    2008-05-01

    Pseudomonas aeruginosa secretes a rhamnolipid (RL) surfactant that functions in hydrophobic nutrient uptake, swarming motility, and pathogenesis. We show that RhlA supplies the acyl moieties for RL biosynthesis by competing with the enzymes of the type II fatty acid synthase (FASII) cycle for the beta-hydroxyacyl-acyl carrier protein (ACP) pathway intermediates. Purified RhlA forms one molecule of beta-hydroxydecanoyl-beta-hydroxydecanoate from two molecules of beta-hydroxydecanoyl-ACP and is the only enzyme required to generate the lipid component of RL. The acyl groups in RL are primarily beta-hydroxydecanoyl, and in vitro, RhlA has a greater affinity for 10-carbon substrates, illustrating that RhlA functions as a molecular ruler that selectively extracts 10-carbon intermediates from FASII. Eliminating either FabA or FabI activity in P. aeruginosa increases RL production, illustrating that slowing down FASII allows RhlA to more-effectively compete for beta-hydroxydecanoyl-ACP. In Escherichia coli, the rate of fatty acid synthesis increases 1.3-fold when RhlA is expressed, to ensure the continued formation of fatty acids destined for membrane phospholipid even though 24% of the carbon entering FASII is diverted to RL synthesis. Previous studies have placed a ketoreductase, called RhlG, before RhlA in the RL biosynthetic pathway; however, our experiments show that RhlG has no role in RL biosynthesis. We conclude that RhlA is necessary and sufficient to form the acyl moiety of RL and that the flux of carbon through FASII accelerates to support RL production and maintain a supply of acyl chains for phospholipid synthesis.

  1. Thermal mitigation of Pseudomonas aeruginosa biofilms

    PubMed Central

    O’Toole, Ann; Ricker, Erica B.; Nuxoll, Eric

    2015-01-01

    Bacterial biofilms infect 2 – 4 % of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7 × 109 CFU cm−2) and subjected to thermal shocks ranging from 50 °C to 80 °C for durations of 1 to 30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control. PMID:26371591

  2. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C

    PubMed Central

    Ambler, R. P.

    1974-01-01

    Cytochrome c-551 was prepared from nine different strains of Pseudomonas aeruginosa and six of Pseudomonas fluorescens biotype C, and their amino acid sequences were compared with the sequences previously determined for the cytochromes of type strains of each species. The standard of sequence examination was such that all single amino acid substitutions, delections or insertions ought to have been detected. Balanced double changes in sites in the same part of the sequence might have escaped detection. The standard of some of the quantitative amino acid analyses was not as high as would be required for the investigation of completely unknown sequences. Eight of the Ps. aeruginosa sequences could not be distinguished from the type sequence, whereas the ninth had a single amino acid substitution. The sequences from Ps. fluorescens biotype C were more varied, differing in from zero to four substitutions from the type sequence, with the most diverse sequences differing in seven positions. The results for Ps. aeruginosa are interpreted as evidence that neutral mutations are not responsible for much molecular evolution. The superficially paradoxical differences in the results for the two species are discussed. PMID:4362497

  3. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings

    PubMed Central

    Brandenburg, Kenneth S.; Calderon, Diego F.; Kierski, Patricia R.; Brown, Amanda L.; Shah, Nihar M.; Abbott, Nicholas L.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Czuprynski, Charles J.

    2016-01-01

    Chronic non-healing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building upon prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the 3-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing. PMID:26342168

  4. Purification of extracellular lipase from Pseudomonas aeruginosa.

    PubMed Central

    Stuer, W; Jaeger, K E; Winkler, U K

    1986-01-01

    Lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was excreted by Pseudomonas aeruginosa PAC1R during the late logarithmic growth phase. Characterization of cell-free culture supernatants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of significant amounts of lipopolysaccharide, part of which seemed to be tightly bound to lipase. After concentration of culture supernatants by ultrafiltration, lipase-lipopolysaccharide complexes were dissociated by treatment with EDTA-Tris buffer and subsequent sonication in the presence of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized lipase was purified by isoelectric focusing in an agarose gel containing the same detergent; the lipase activity appeared in a single peak corresponding to a distinct band in the silver-stained gel. The isoelectric point was 5.8. Analysis of purified lipase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and scanning revealed an apparent molecular weight of 29,000 and a specific activity of 760 mu kat/mg of protein. Estimations based on these data showed that a single P. aeruginosa cell excreted about 200 molecules of lipase, each having a molecular activity of 2.2 X 10(4) per s. Images PMID:3096967

  5. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  6. Long-Chain Fatty Acid Sensor, PsrA, Modulates the Expression of rpoS and the Type III Secretion exsCEBA Operon in Pseudomonas aeruginosa

    SciTech Connect

    Kang, Y.; Lunin, V. V.; Skarina, T.; Savchenko, A.; Schurr, M. J.; Hoang, T. T.

    2009-01-01

    The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5{beta}-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.

  7. Pectin-Derived Acidic Oligosaccharides Improve the Outcome of Pseudomonas aeruginosa Lung Infection in C57BL/6 Mice.

    PubMed

    Bernard, Henry; Desseyn, Jean-Luc; Gottrand, Frédéric; Stahl, Bernd; Bartke, Nana; Husson, Marie-Odile

    2015-01-01

    The administration of prebiotics as oligosaccharides (OS), by acting on intestinal microbiota, could modulate the immune and inflammatory response and represent a new strategy to improve the outcome of bacterial infection. The aim of this study was to determine whether pectin-derived acidic oligosaccharides (pAOS) could modulate the outcome of pulmonary P. aeruginosa (PA) infection in C57BL/6 mice, which develop a Th1 response to PA lung infection. Mice were randomized for 5 weeks to consume a control or a 5% pAOS diet and chronically infected by PA. Resistance to a second PA infection was also analyzed by reinfecting the surviving mice 2 weeks after the first infection. Compared with control mice, mice fed pAOS had reduced mortality (P<0.05). This improvement correlated with a better control of the inflammatory response with a lower neutrophil count on day 1 (P<0.05), a sustained neutrophil and macrophage recruitment on days 2 and 3 (P<0.01) a greater and sustained IL-10 release in lung (P<0.05) and a reduction of the Th1 response and M1 activation with a lower IFN-γ/IL-4 (P<0.01) and nos2/arg1 (P<0.05) ratios. These results coincided with a modulation of the intestinal microbiota as shown by an increased butyric acid concentration in feces (P<0.05). Moreover, pAOS decreased the bacterial load (P<0.01) in mice reinfected 2 weeks after the first infection, suggesting that pAOS could reduce pulmonary exacerbations. In conclusion, pAOS improved the outcome of PA infection in C57BL/6 mice by modulating the intestinal microbiota and the inflammatory and immune responses.

  8. Pectin- Derived Acidic Oligosaccharides Improve the Outcome of Pseudomonas aeruginosa Lung Infection in C57BL/6 Mice

    PubMed Central

    Bernard, Henry; Desseyn, Jean-Luc; Gottrand, Frédéric; Stahl, Bernd; Bartke, Nana; Husson, Marie-Odile

    2015-01-01

    The administration of prebiotics as oligosaccharides (OS), by acting on intestinal microbiota, could modulate the immune and inflammatory response and represent a new strategy to improve the outcome of bacterial infection. The aim of this study was to determine whether pectin-derived acidic oligosaccharides (pAOS) could modulate the outcome of pulmonary P. aeruginosa (PA) infection in C57BL/6 mice, which develop a Th1 response to PA lung infection. Mice were randomized for 5 weeks to consume a control or a 5% pAOS diet and chronically infected by PA. Resistance to a second PA infection was also analyzed by reinfecting the surviving mice 2 weeks after the first infection. Compared with control mice, mice fed pAOS had reduced mortality (P<0.05). This improvement correlated with a better control of the inflammatory response with a lower neutrophil count on day 1 (P<0.05), a sustained neutrophil and macrophage recruitment on days 2 and 3 (P<0.01) a greater and sustained IL-10 release in lung (P<0.05) and a reduction of the Th1 response and M1 activation with a lower IFN-γ/IL-4 (P<0.01) and nos2/arg1 (P<0.05) ratios. These results coincided with a modulation of the intestinal microbiota as shown by an increased butyric acid concentration in feces (P<0.05). Moreover, pAOS decreased the bacterial load (P<0.01) in mice reinfected 2 weeks after the first infection, suggesting that pAOS could reduce pulmonary exacerbations. In conclusion, pAOS improved the outcome of PA infection in C57BL/6 mice by modulating the intestinal microbiota and the inflammatory and immune responses. PMID:26599638

  9. Isolation of oxidase-negative Pseudomonas aeruginosa from sputum culture.

    PubMed

    Hampton, K D; Wasilauskas, B L

    1979-05-01

    Two isolates of Pseudomonas aeruginosa lacking characteristic indophenol oxidase were recovered from a sputum specimen. A discussion of the characteristic biochemical tests and antibiograms along with a possible explanation for this phenomenon is presented.

  10. Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking.

    PubMed

    Weidel, Elisabeth; de Jong, Johannes C; Brengel, Christian; Storz, Michael P; Braunshausen, Andrea; Negri, Matthias; Plaza, Alberto; Steinbach, Anke; Müller, Rolf; Hartmann, Rolf W

    2013-08-08

    Pseudomonas aeruginosa employs a characteristic pqs quorum sensing (QS) system that functions via the signal molecules PQS and its precursor HHQ. They control the production of a number of virulence factors and biofilm formation. Recently, we have shown that sulfonamide substituted 2-benzamidobenzoic acids, which are known FabH inhibitors, are also able to inhibit PqsD, the enzyme catalyzing the last and key step in the biosynthesis of HHQ. Here, we describe the further optimization and characterization of this class of compounds as PqsD inhibitors. Structural modifications showed that both the carboxylic acid ortho to the amide and 3'-sulfonamide are essential for binding. Introduction of substituents in the anthranilic part of the molecule resulted in compounds with IC50 values in the low micromolar range. Binding mode investigations by SPR with wild-type and mutated PqsD revealed that this compound class does not bind into the active center of PqsD but in the ACoA channel, preventing the substrate from accessing the active site. This binding mode was further confirmed by docking studies and STD NMR.

  11. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Pseudomonas aeruginosa Catalyze Pyocyanin and Phenazine-1-carboxylic Acid Reduction via the Subunit Dihydrolipoamide Dehydrogenase.

    PubMed

    Glasser, Nathaniel R; Wang, Benjamin X; Hoy, Julie A; Newman, Dianne K

    2017-03-31

    Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro, suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD(+) (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD(+) in LpdG and other enzymes, achieving the same end by a different mechanism.

  12. First report of NDM-1-producing Pseudomonas aeruginosa in Egypt.

    PubMed

    Zafer, Mai Mahmoud; Amin, Mady; El Mahallawy, Hadir; Ashour, Mohammed Seif El-Din; Al Agamy, Mohamed

    2014-12-01

    This work reports the occurrence of New Delhi metallo-beta-lactamase 1 (NDM-1) in metallo-beta-lactamase-producing Pseudomonas aeruginosa in Egypt for the first time, and the presence of more than one blaMBL gene in carbapenem-resistant P. aeruginosa.

  13. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  14. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  15. Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production.

    PubMed

    Jin, Kaiming; Zhou, Lian; Jiang, Haixia; Sun, Shuang; Fang, Yunling; Liu, Jianhua; Zhang, Xuehong; He, Ya-Wen

    2015-11-01

    The secondary metabolite phenazine-1-carboxylic acid (PCA) is an important component of the newly registered biopesticide Shenqinmycin. We used a combined method involving gene, promoter, and protein engineering to modify the central biosynthetic and secondary metabolic pathways in the PCA-producing Pseudomonas aeruginosa strain PA1201. The PCA yield of the resulting strain PA-IV was increased 54.6-fold via the following strategies: (1) blocking PCA conversion and enhancing PCA efflux pumping; (2) increasing metabolic flux towards the PCA biosynthetic pathway through the over-production of two DAHP synthases and blocking the synthesis of 21 secondary metabolites; (3) increasing the PCA precursor supply through the engineering of five chorismate-utilizing enzymes; (4) engineering the promoters of two PCA biosynthetic gene clusters. Strain PA-IV produced 9882 mg/L PCA in fed-batch fermentation, which is twice as much as that produced by the current industrial strain. Strain PA-IV was also genetically stable and comparable to Escherichia coli in cytotoxicity.

  16. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacterium Pseudomonas aeruginosa PA1201.

    PubMed

    Sun, Shuang; Chen, Bo; Jin, Zi-Jing; Zhou, Lian; Fang, Yun-Ling; Thawai, Chitti; Rampioni, Giordano; He, Ya-Wen

    2017-03-18

    Phenazines are important secondary metabolites that have been found to affect a broad spectrum of organisms. Two almost identical gene clusters phz1 and phz2 are responsible for phenazines biosynthesis in the rhizobacterium Pseudomonas aeruginosa PA1201. Here, we show that the transcriptional regulator RsaL is a potent repressor of phenazine-1-carboxylic acid (PCA) biosynthesis. RsaL negatively regulates phz1 expression and positively regulates phz2 expression via multiple mechanisms. First, RsaL binds to a 25-bp DNA region within the phz1 promoter to directly repress phz1 expression. Second, RsaL indirectly regulates the expression of both phz clusters by decreasing the activity of the las and pqs quorum sensing (QS) systems, and by promoting the rhl QS system. Finally, RsaL represses phz1 expression through the downstream transcriptional regulator CdpR. RsaL directly binds to the promoter region of cdpR to positively regulate its expression, and subsequently CdpR regulates phz1 expression in a negative manner. We also show that RsaL represents a new mechanism for the turnover of the QS signal molecule N-3-oxododecanoyl-homoserine lactone (3-oxo-C12-HSL). Overall, this study elucidates RsaL control of phenazines biosynthesis and indicates that a PA1201 strain harboring deletions in both the rsaL and cdpR genes could be used to improve the industrial production of PCA.

  17. Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311).

    PubMed

    Ambily, P S; Jisha, M S

    2014-09-01

    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has received greater attention. Pseudomonas aeruginosa MTCC 10311 was isolated from detergent contaminated soil which had degraded 96% of SDS in 48 hrs. Attempts were made to study the metabolic byproducts of SDS degradation using GC-MS analysis. Analysis of ether extracts of surfactant established the sequential production of Dodecanol, Dodecanal and Decanoic acid. At this point, the pathway diverged into the formation of acid residues through beta oxidation. This SDS degrading isolate, Pseudomonas aeruginosa can be exploited for decontamination of detergent contaminated waste water.

  18. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  19. Secretion of phospholipase C by Pseudomonas aeruginosa.

    PubMed Central

    Stinson, M W; Hayden, C

    1979-01-01

    The conditions necessary for the secretion of phospholipase C (phosphatidylcholine cholinephosphohydrolase) by Pseudomonas aeruginosa were studied. Enzyme secretion by washed cell suspensions required a carbon source and ammonium, potassium, and calcium ions. The calcium requirement could be substituted by magnesium and strontium but not by copper, manganese, cobalt, or zinc. During growth in liquid medium, cells secreted phospholipase C during late logarithmic and early stationary phases. Secretion was repressed by the addition of inorganic phosphate but not by organic phosphates, glucose, or sodium succinate. Studies with tetracycline indicated that de novo protein synthesis was necessary for the secretion of phospholipase C and that the exoenzyme was not released from a preformed periplasmic pool. Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin. Images PMID:114487

  20. Comprehensive transposon mutant library of Pseudomonas aeruginosa

    PubMed Central

    Jacobs, Michael A.; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V.; Manoil, Colin

    2003-01-01

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering. PMID:14617778

  1. Comprehensive transposon mutant library of Pseudomonas aeruginosa.

    PubMed

    Jacobs, Michael A; Alwood, Ashley; Thaipisuttikul, Iyarit; Spencer, David; Haugen, Eric; Ernst, Stephen; Will, Oliver; Kaul, Rajinder; Raymond, Christopher; Levy, Ruth; Chun-Rong, Liu; Guenthner, Donald; Bovee, Donald; Olson, Maynard V; Manoil, Colin

    2003-11-25

    We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.

  2. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.

    PubMed

    Wade, Dana S; Calfee, M Worth; Rocha, Edson R; Ling, Elizabeth A; Engstrom, Elana; Coleman, James P; Pesci, Everett C

    2005-07-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and beta-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.

  3. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    PubMed

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

  4. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  5. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  6. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model.

    PubMed

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA.

  7. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model

    PubMed Central

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA. PMID:28289406

  8. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  9. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa

    PubMed Central

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-01-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ΔsprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms. PMID:24376018

  10. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa.

    PubMed

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich

    2014-02-01

    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  11. Characterization of a Pseudomonas aeruginosa Fatty Acid Biosynthetic Gene Cluster: Purification of Acyl Carrier Protein (ACP) and Malonyl-Coenzyme A:ACP Transacylase (FabD)

    PubMed Central

    Kutchma, Alecksandr J.; Hoang, Tung T.; Schweizer, Herbert P.

    1999-01-01

    A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding β-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding β-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding β-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD, is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis-vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H6-FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption–ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4′-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H6-FabD exhibited malonyl-CoA:ACP transacylase activity. PMID:10464226

  12. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa.

    PubMed

    Long, Timothy E; Keding, Lexie C; Lewis, Demetria D; Anstead, Michael I; Withers, T Ryan; Yu, Hongwei D

    2016-02-15

    Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in diseases of the lungs. The extracellular polymeric substances (EPS) of respiratory Pseudomonas biofilms are largely comprised of anionic molecules such as rhamnolipids and alginate that promote a mucoid phenotype. In this Letter, we examine the ability of negatively-charged fluoroquinolones to transverse the EPS and inhibit the growth of mucoid P. aeruginosa. Anionic fluoroquinolones were further compared with standard antibiotics via a novel microdiffusion assay to evaluate drug penetration through pseudomonal alginate and respiratory mucus from a patient with cystic fibrosis.

  13. Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    PubMed

    Le, Shuai; Yao, Xinyue; Lu, Shuguang; Tan, Yinling; Rao, Xiancai; Li, Ming; Jin, Xiaolin; Wang, Jing; Zhao, Yan; Wu, Nicholas C; Lux, Renate; He, Xuesong; Shi, Wenyuan; Hu, Fuquan

    2014-04-28

    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa.

  14. Production and properties of crude enterotoxin of Pseudomonas aeruginosa.

    PubMed

    Grover, S; Batish, V K; Srinivasan, R A

    1990-05-01

    Pseudomonas aeruginosa CTM-3 was found to be the most potentially enterotoxigenic strain out of the 12 isolates recovered from milk, as a high fluid length ratio, i.e. F/L (1.1) in rabbit gut and a strong permeability response in rabbit skin (38.5 mm2 necrotic zone) was obtained with this culture. No clear-cut relationship between the two tests was observed. Six of the ethidium bromide (300 micrograms/ml) cured variants of this culture completely lost their ability to produce enterotoxin indicating the possible involvement of a plasmid in enterotoxin synthesis. The crude enterotoxin from P. aeruginosa CTM-3 was completely inactivated in 15 s at 72 degrees C. However, it was fairly stable at pH values in the range 4.5-7.5. Both pepsin and trypsin inactivated the enterotoxin activity at a concentration of 40 micrograms/ml. Organic acids, formalin and hydrogen peroxide had no significant effect on the enterotoxin activity. The need for further investigations with purified preparations is emphasized.

  15. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators.

    PubMed

    Flitter, Becca A; Hvorecny, Kelli L; Ono, Emiko; Eddens, Taylor; Yang, Jun; Kwak, Daniel H; Bahl, Christopher D; Hampton, Thomas H; Morisseau, Christophe; Hammock, Bruce D; Liu, Xinyu; Lee, Janet S; Kolls, Jay K; Levy, Bruce D; Madden, Dean R; Bomberger, Jennifer M

    2017-01-03

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognate diol, eliminating a proresolving signal that potently suppresses IL-8-driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.

  16. A simple test for the detection of KPC and metallo-β-lactamase carbapenemase-producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin.

    PubMed

    Pasteran, F; Veliz, O; Faccone, D; Guerriero, L; Rapoport, M; Mendez, T; Corso, A

    2011-09-01

    We evaluated the ability of the combination disk test (CDT) and the Modified Hodge Test (MHT) to discriminate between various carbapenemase-producing Pseudomonas aeruginosa isolates (KPC, n = 36; metallo-β-lactamase (MBL), n = 38) and carbapenemase non-producers (n = 75). For the CDT, the optimal inhibitor concentrations and cut-off values were: 600 μg of 3-aminophenylboronic acid (APB) per disk (an increment of ≥4 mm), 1000 μg of dipicolinic acid (DPA) per disk (an increment of ≥5 mm) and 3000 μg of cloxacillin per disk (an increment of ≥3 mm). APB had excellent sensitivity (97%) and specificity (97%) for the detection of KPC enzymes. DPA detected MBL enzymes with a sensitivity and specificity of 97% and 81%, respectively. The MHT resulted in a low sensitivity (78%) and specificity (57%). The CDT could be very useful in daily practice to provide fast and reliable detection of KPC and MBL carbapenemases among P. aeruginosa isolates.

  17. Effect of carbon and nitrogen sources on neutral proteinase production by Pseudomonas aeruginosa.

    PubMed

    Nigam, J N; Pillai, K R; Baruah, J N

    1981-01-01

    A strain of Pseudomonas aeruginosa from soil produced large quantities of extracellular neutral proteinase and could utilize several organic substances as carbon and nitrogen sources for enzyme production. The growth media required the presence of a high amount of phosphate when glucose was the carbon source. The intermediates of citric-acid cycle acids supported the proteinase production more than any other carbon sources. However, complex nitrogenous substances supported enzyme production more efficiently. Higher concentration of casamino acids suppressed the protinase synthesis.

  18. Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial modification of naturally occurring materials is one of the efficient ways to add new values to them. Hydroxylation of free unsaturated fatty acids by microorganism is a good example of those modifications. Among microbial strains studied for that purpose, a new bacterial isolate Pseudom...

  19. Pseudomonas Aeruginosa Endocarditis in Acute Myeloid Leukemia: A Rare Complication

    PubMed Central

    J, Barshay; A, Nemets; A, Ducach; G, Lugassy

    2008-01-01

    Infectious endocarditis is a rarely encountered complication among leukemia patient during induction therapy. We describe a young patient who developed prolonged high fever after aggressive chemotherapy for Acute Myeloid Leukemia. Pseudomonas Aeruginosa endocarditis was found to be the etiology for the febrile state. Our purpose is to emphasize the need for an early diagnosis of this rare, albeit treatable complication. PMID:23675106

  20. Pseudomonas aeruginosa sepsis in stem cell transplantation patients.

    PubMed

    Fanci, Rosa; Pecile, Patrizia; Casalone, Enrico; Mengoni, Alessio; Tamburini, Elena; Guidi, Stefano; Cecconi, Daniela; Bosi, Alberto; Nicoletti, Pierluigi; Mastromei, Giorgio

    2006-07-01

    We report the epidemiological investigation of an outbreak of Pseudomonas aeruginosa infection in 6 patients who shared, during different periods, the same 2 rooms of a bone marrow transplantation unit. Phenotypic and molecular analysis of isolates from patients and from the environment strongly suggested a single, environmental source of infection.

  1. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms.

    PubMed Central

    Hoyle, B D; Williams, L J; Costerton, J W

    1993-01-01

    Production of mucoid exopolysaccharide by planktonic, chemostat-derived, and adherent Pseudomonas aeruginosa 579 bacteria was separately monitored for 7 days by using a lacZ-algD promoter-reporter gene and assays of total carbohydrate and metabolic activity. Mucoid exopolysaccharide production was transiently elevated following adherence but declined to planktonic levels by day 7. PMID:8423105

  2. In Vitro Activity of Fusidic Acid (CEM-102, Sodium Fusidate) against Staphylococcus aureus Isolates from Cystic Fibrosis Patients and Its Effect on the Activities of Tobramycin and Amikacin against Pseudomonas aeruginosa and Burkholderia cepacia▿

    PubMed Central

    McGhee, Pamela; Clark, Catherine; Credito, Kim; Beachel, Linda; Pankuch, Glenn A.; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    We tested the MICs of fusidic acid (CEM-102) plus other agents against 40 methicillin-resistant Staphylococcus aureus (MRSA) isolates from cystic fibrosis patients and the activities of fusidic acid with or without tobramycin or amikacin against Pseudomonas aeruginosa, MRSA, and Burkholderia cepacia isolates from cystic fibrosis patients in a 24-h time-kill study. Fusidic acid was potent (MICs, 0.125 to 0.5 μg/ml; a single 500-mg dose of fusidic acid at 8 h averaged 8 to 12. 5 μg/ml with 91 to 97% protein binding) against all MRSA strains. No antagonism was observed; synergy occurred for one MRSA strain treated with fusidic acid plus tobramycin. PMID:21343445

  3. Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions.

    PubMed

    Abinaya Sindu, P; Gautam, Pennathur

    2017-01-01

    Metal fatty acid salts (MFAS) in untreated industrial effluents cause environmental pollution. The use of biocompatible agents for remediation may help in reducing the harm caused to the ambient aquatic organism. Pseudomonas aeruginosa is a ubiquitous organism that thrives under harsh conditions and is resistant to toxic metal ions. The present study shows a proof-of-concept of using this organism in the biodegradation of MFAS. MFAS were prepared and we studied their effect on the growth of the planktonic form and the formation of biofilm by P. aeruginosa. We observed biofilm formation in the presence of all the MFAS when used as the sole carbon source, albeit the quantity of biofilm formed in the presence of cadmium and copper was less. There was no effect on the planktonic form of the organism but the formation of biofilm increased in the presence of magnesium palmitate. This study shows that metal ions play a pivotal role in the formation of biofilm. HPLC (high-performance liquid chromatography) analysis of the biofilm polysaccharide showed that hexose sugar was a major component when compared with pentose sugar. The structure of biofilm polysaccharide and the coordination of the metal ion with the biofilm polysaccharide were confirmed by FTIR (Fourier transform infrared spectroscopy) and Raman spectroscopy.

  4. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa

    PubMed Central

    Pesci, Everett C.; Milbank, Jared B. J.; Pearson, James P.; McKnight, Susan; Kende, Andrew S.; Greenberg, E. Peter; Iglewski, Barbara H.

    1999-01-01

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-l-homoserine lactone and N-butyryl-l-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones. PMID:10500159

  5. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms.

    PubMed

    Webster, Thaddaeus A; Sismaet, Hunter J; Chan, I-ping J; Goluch, Edgar D

    2015-11-07

    The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P. aeruginosa exposed to 16 and 100 mg L(-1) colistin sulfate, respectively. Samples were removed from the microfluidic chamber, analyzed for viability using staining, and streaked onto culture plates to confirm that the P. aeruginosa cells were affected by the antibiotics. The correlation between electrical signal drop and the viability of P. aeruginosa cells after antibiotic exposure highlights the usefulness of this approach for future low cost antibiotic screening applications.

  6. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary

    PubMed Central

    Szabó, Dora; Szentandrássy, Julia; Juhász, Zsuzsa; Katona, Katalin; Nagy, Károly; Rókusz, László

    2008-01-01

    Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country. PMID:18513394

  7. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    SciTech Connect

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-22

    PA4991 is a FAD-dependent oxidoreductase from the pathogen P. aeruginosa that is essential for virulence and survival in the infected host. The structure of this enzyme, determined to 2.4 Å resolution, reveals that PA4991 belongs to the GR{sub 2} family of flavoenzymes. The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR{sub 2} family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.

  8. Molecular epidemiology of Pseudomonas aeruginosa in an intensive care unit.

    PubMed Central

    Döring, G.; Hörz, M.; Ortelt, J.; Grupp, H.; Wolz, C.

    1993-01-01

    Genotyping was used to analyse Pseudomonas aeruginosa isolates from sink drains and 15 intubated patients as part of a 3-month prospective study of strain transmission in a medical-surgical intensive care unit. Ninety percent of all washbasin drains were persistently contaminated with several P. aeruginosa genotypes. In 60% (9/15) of the patients, P. aeruginosa colonization or infection was hospital-acquired: P. aeruginosa strains isolated from these patients were present in hospital sinks or in other patients before their admission. Since all patients were immobile, personnel were the probable route of transmission of P. aeruginosa in the hospital. The mechanism of strain transmission from sinks to hands during hand washing was investigated in a children's hospital. When P. aeruginosa was present at densities of > 10(5)/c.f.u. per ml in sink drains, hand washing resulted in hand contamination with P. aeruginosa via aerosol generation in the majority of experiments or P. aeruginosa was detected using an air sampler above the washing basin. High P. aeruginosa cfu were present at 4.30 h in the eight sinks (5.4 x 10(5)-7.0 x 10(10) c.f.u./ml), whereas at 13.00 h P. aeruginosa c.f.u. were significantly lower (3.1 x 10(2)-8.0 x 10(5) c.f.u./ml). These data reveal that the danger of bacterial contamination of hands during hand washing is highest in the morning. The identified transmission routes demand more effective hygienic measures in hospital settings particularly concerning personnel hands and sink drains. Images Fig. 1 PMID:8519308

  9. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  10. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  11. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages

    PubMed Central

    Mittal, Rahul; Lisi, Christopher V.; Kumari, Hansi; Grati, M’hamed; Blackwelder, Patricia; Yan, Denise; Jain, Chaitanya; Mathee, Kalai; Weckwerth, Paulo H.; Liu, Xue Z.

    2016-01-01

    Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host–pathogen interaction will provide novel avenues to design effective treatment modalities against OM. PMID:27917157

  12. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis

    PubMed Central

    Rada, Balázs

    2017-01-01

    Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa. PMID:28282951

  13. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  14. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa.

    PubMed

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H; Wiegmann, Daniel D; Sherman, David H; McKay, Robert M; LiPuma, John J; Wildschutte, Hans

    2017-01-15

    Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains.

  15. Influence of Pseudomonas Aeruginosa on Exacerbation in Patients with Bronchiectasis

    PubMed Central

    Chawla, Kiran; Vishwanath, Shashidhar; Manu, Mohan K; Lazer, Bernaitis

    2015-01-01

    Background: A majority of the studies done on the western population have shown that Pseudomonas aeruginosa causes many severe infections in patients with bronchiectasis as compared to other pathogens. There is scarcity of similar data from the Asian population. Materials and Methods: A prospective study was undertaken to identify the various pathogens isolated from the respiratory samples of 117 patients with bronchiectasis from south India and to compare the clinicomicrobiological profile of infections caused by P. aeruginosa and other respiratory pathogens. Results: The respiratory pathogens were isolated from 63 (53.8%) patients. P. aeruginosa was the most common isolate (46.0%) followed by Klebsiella pneumoniae (14.3%) and other pathogenic bacteria. Patients included in the P. aeruginosa group had a higher number of exacerbations (p: 0.008), greater number of hospital admissions (p: 0.007), a prolonged hospital stay (p: 0.03), and poor lung function, compared to the patients infected with the non-Pseudomonas group. Conclusion: It is necessary to investigate the etiology of respiratory tract infections among bronchiectasis patients followed by the prompt management of cases diagnosed with P. aeruginosa infections, so as to lower the morbidity and have a better prognosis. PMID:25722615

  16. Engineering of FRT-lacZ fusion constructs: induction of the Pseudomonas aeruginosa fadAB1 operon by medium and long chain-length fatty acids

    PubMed Central

    Son, Mike S.; Nguyen, David T.; Kang, Yun; Hoang, Tung T.

    2008-01-01

    Without prior knowledge of the promoters of various genes in bacteria, it can be difficult to study gene regulation using reporter-gene fusions. Regulation studies of promoters are ideal at their native locus, which do not require prior knowledge of promoter regions. Based on a previous study with FRT-lacZ-KmR constructs, we constructed two novel FRT-lacZ-GmR plasmids. This allows easy engineering of P. aeruginosa reporter-gene fusions, post-mutant construction with the Flp-FRT system. We demonstrate the usefulness of one of these FRT-lacZ-GmR plasmids to study the regulation of the fadAB1 operon in P. aeruginosa at its native locus. The fadAB1 operon, involved in fatty acid (FA) degradation, was significantly induced in the presence of several medium chain-length fatty acids (MCFA) and, to a lesser degree, long chain-length fatty acids (LCFA). In addition to the previous work on the FRT-lacZ-KmR tools, these new constructs increase the repertoire of tools that can be applied to P. aeruginosa or other species and strains of bacteria where kanamycin resistance may not be appropriate. PMID:18221997

  17. Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa

    PubMed Central

    Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva; Schneider, Gunter

    2016-01-01

    The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecular replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR2 family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity. PMID:26841760

  18. A case of Pseudomonas Aeruginosa commercial tattoo infection.

    PubMed

    Maloberti, A; Betelli, M; Perego, M R; Foresti, S; Scarabelli, G; Grassi, G

    2015-11-18

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause disease in immunocompromised patients but also burn wounds and other cutaneous infections. We report the case of a 31 years old woman with a P. Aeruginosa commercial tattoo infection treated with intravenous antibiotic therapy. Today tattooing is increasingly common and despite specific regulations many cases of tattoo site infection are reported in the literature. Principal actual tattoo infective epidemiology includes Streptococcus pyogenes, Staphylococcus aureus and mycosis infections and parenteral transmission of HIV, HBV and HCV but also recently published cases of Methicillin-Resistant Staphylococcus aureus and non tuberculous mycobacterium tattoo infection.

  19. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa.

    PubMed Central

    Rae, J L; Cutfield, J F; Lamont, I L

    1997-01-01

    A mutant of Pseudomonas aeruginosa, OT2100, which appeared to be defective in the production of the fluorescent yellow-green siderophore pyoverdine had been isolated previously following transposon mutagenesis (T. R. Merriman and I. L. Lamont, Gene 126:17-23, 1993). DNA from either side of the transposon insertion site was cloned, and the sequence was determined. The mutated gene had strong identity with the dihydrolipoamide acetyltransferase (E2) components of pyruvate dehydrogenase (PDH) from other bacterial species. Enzyme assays revealed that the mutant was defective in the E2 subunit of PDH, preventing assembly of a functional complex. PDH activity in OT2100 cell extracts was restored when extract from an E1 mutant was added. On the basis of this evidence, OT2100 was identified as an aceB or E2 mutant. A second gene, aceA, which is likely to encode the E1 component of PDH, was identified upstream from aceB. Transcriptional analysis revealed that aceA and aceB are expressed as a 5-kb polycistronic transcript from a promoter upstream of aceA. An intergenic region of 146 bp was located between aceA and aceB, and a 2-kb aceB transcript that originated from a promoter in the intergenic region was identified. DNA fragments upstream of aceA and aceB were shown to have promoter activities in P. aeruginosa, although only the aceA promoter was active in Escherichia coli. It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH. PMID:9171401

  20. Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa

    PubMed Central

    Nguyen, Angela T.; Jones, Jace W.; Ruge, Max A.; Kane, Maureen A.

    2015-01-01

    ABSTRACT Cystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. While Staphylococcus aureus is the dominant lung pathogen in young CF patients, Pseudomonas aeruginosa becomes predominant by adulthood. P. aeruginosa produces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis of S. aureus in coculture, providing an iron source to P. aeruginosa both in vitro and in vivo. We previously showed that production of one such AQ, the Pseudomonas quinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity against S. aureus during coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, a P. aeruginosa ΔprrF mutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression of S. aureus. We show that the presence of S. aureus suppresses the ΔprrF1,2 mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multiple P. aeruginosa strains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions of P. aeruginosa with S. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections. IMPORTANCE Chronic polymicrobial infections involving Pseudomonas aeruginosa and Staphylococcus aureus are a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced

  1. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA).

    PubMed

    Cruz, J; Flórez, J; Torres, R; Urquiza, M; Gutiérrez, J A; Guzmán, F; Ortiz, C C

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  2. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from ‑7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  3. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  4. Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections

    PubMed Central

    Cigana, Cristina; Lorè, Nicola Ivan; Riva, Camilla; De Fino, Ida; Spagnuolo, Lorenza; Sipione, Barbara; Rossi, Giacomo; Nonis, Alessandro; Cabrini, Giulio; Bragonzi, Alessandra

    2016-01-01

    Repeated cycles of infections, caused mainly by Pseudomonas aeruginosa, combined with a robust host immune response and tissue injury, determine the course and outcome of cystic fibrosis (CF) lung disease. As the disease progresses, P. aeruginosa adapts to the host modifying dramatically its phenotype; however, it remains unclear whether and how bacterial adaptive variants and their persistence influence the pathogenesis and disease development. Using in vitro and murine models of infection, we showed that P. aeruginosa CF-adaptive variants shaped the innate immune response favoring their persistence. Next, we refined a murine model of chronic pneumonia extending P. aeruginosa infection up to three months. In this model, including CFTR-deficient mice, we unveil that the P. aeruginosa persistence lead to CF hallmarks of airway remodelling and fibrosis, including epithelial hyperplasia and structure degeneration, goblet cell metaplasia, collagen deposition, elastin degradation and several additional markers of tissue damage. This murine model of P. aeruginosa chronic infection, reproducing CF lung pathology, will be instrumental to identify novel molecular targets and test newly tailored molecules inhibiting chronic inflammation and tissue damage processes in pre-clinical studies. PMID:26883959

  5. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  6. COMPARATIVE TAXONOMY OF CRYSTALLOGENIC STRAINS OF PSEUDOMONAS AERUGINOSA AND PSEUDOMONAS CHLORORAPHIS

    PubMed Central

    Haynes, William C.; Rhodes, Lenora J.

    1962-01-01

    Haynes, William C. (Northern Utilization Research and Development Division, Peoria, Ill.) and Lenora J. Rhodes. Comparative taxonomy of crystallogenic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. J. Bacteriol. 84:1080–1084. 1962.—Only 11 of 39 strains received in the Agricultural Research Service Culture Collection under the designation Pseudonomas chlororaphis proved to be authentic; 28 were typical, pyocyanogenic strains of P. aeruginosa. The reason for this disproportionately high rate of misidentification apparently arises from an erroneous belief that the ability to produce green and yellow crystals of chlororaphin and oxychlororaphin is confined to P. chlororaphis. The ability of many strains of P. aeruginosa to do likewise is not well known. Inasmuch as the characteristic is not unique to P. chlororaphis, other criteria are required to distinguish crystallogenic strains of these species. After a taxonomic comparison of 18 strains of P. chlororaphis and 47 crystallogenic strains of P. aeruginosa, it was determined that there are three main distinctions: (i) P. aeruginosa grows well at 42 C but fails to grow upon serial transfer at 5 C, whereas P. chlororaphis fails to grow at 42 C, but grows well at 5 C: (ii) most strains of P. aeruginosa produce pyocyanin, whereas P. chlororaphis strains do not; (iii) P. aeruginosa cells possess only one or two polar flagella, whereas P. chlororaphis usually has at least four, sometimes as many as eight, polar flagella. PMID:13963593

  7. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR

    PubMed Central

    Jami Al-Ahmadi, G.; Zahmatkesh Roodsari, R.

    2016-01-01

    Summary Pseudomonas aeruginosa is an important life-threatening nosocomial pathogen that plays a prominent role in wound infections of burned patients. We designed this study to identify the isolates of P. aeruginosa recovered from burned patients at the genus and species level through primers targeting oprI and oprL genes, and analyzed their antimicrobial resistance pattern. Over a 2-month period, wound samples were taken from burned patients and plated on MacConkey agar. All suspected colonies were primarily screened for P. aeruginosa by a combination of phenotypic tests. Molecular identifications of colonies were done using specific primers for oprI and oprL genes. Bacterial isolates were recovered from burn wound infections. Based on phenotypical identification tests, 138 (34%) P. aeruginosa isolates were identified; whereas by molecular techniques, just 128 P. aeruginosa yielded amplicon of oprL gene using species-specific primers, verifying the identity of P. aeruginosa; the others yielded amplicon of oprI gene using genus-specific primers, confirming the identity of fluorescent pseudomonads. This study indicates that molecular detection of P. aeruginosa in burn patients employing the OprL gene target is a useful technique for the early and precise detection of P. aeruginosa. PCR detection should be carried out as well as phenotypic testing for the best aggressive antibiotic treatment of P. aeruginosa strains at an earlier stage. It also has significant benefits on clinical outcomes. PMID:28289359

  8. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus

    PubMed Central

    Borrero-de Acuña, José Manuel; Rohde, Manfred; Wissing, Josef; Jänsch, Lothar; Schobert, Max; Molinari, Gabriella; Timmis, Kenneth N.

    2016-01-01

    ABSTRACT Oxidative phosphorylation using multiple-component, membrane-associated protein complexes is the most effective way for a cell to generate energy. Here, we systematically investigated the multiple protein-protein interactions of the denitrification apparatus of the pathogenic bacterium Pseudomonas aeruginosa. During denitrification, nitrate (Nar), nitrite (Nir), nitric oxide (Nor), and nitrous oxide (Nos) reductases catalyze the reaction cascade of NO3− → NO2− → NO → N2O → N2. Genetic experiments suggested that the nitric oxide reductase NorBC and the regulatory protein NosR are the nucleus of the denitrification protein network. We utilized membrane interactomics in combination with electron microscopy colocalization studies to elucidate the corresponding protein-protein interactions. The integral membrane proteins NorC, NorB, and NosR form the core assembly platform that binds the nitrate reductase NarGHI and the periplasmic nitrite reductase NirS via its maturation factor NirF. The periplasmic nitrous oxide reductase NosZ is linked via NosR. The nitrate transporter NarK2, the nitrate regulatory system NarXL, various nitrite reductase maturation proteins, NirEJMNQ, and the Nos assembly lipoproteins NosFL were also found to be attached. A number of proteins associated with energy generation, including electron-donating dehydrogenases, the complete ATP synthase, almost all enzymes of the tricarboxylic acid (TCA) cycle, and the Sec system of protein transport, among many other proteins, were found to interact with the denitrification proteins. This deduced nitrate respirasome is presumably only one part of an extensive cytoplasmic membrane-anchored protein network connecting cytoplasmic, inner membrane, and periplasmic proteins to mediate key activities occurring at the barrier/interface between the cytoplasm and the external environment. IMPORTANCE The processes of cellular energy generation are catalyzed by large multiprotein enzyme complexes

  9. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species.

  10. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-03-17

    Biofilm is a community of microbes that typically inhabits on surfaces and is encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environments and influence our life tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium, known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicates the eradication of the biofilm infection and leading to the development of chronic infections. In this review, we discuss a history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms of its own or in association with other bacterial species (i.e., multi-species biofilms) are discussed in detail.

  11. Paraffin Oxidation in Pseudomonas aeruginosa I. Induction of Paraffin Oxidation

    PubMed Central

    van Eyk, J.; Bartels, Trude J.

    1968-01-01

    The induction of paraffin oxidation in intact cells of Pseudomonas aeruginosa was investigated. Oxidation of 14C-heptane by cell-free extracts of adapted cells showed that the activity of whole cells is a reliable reflection of the synthesis of the first enzyme in the degradation of n-alkanes. Induction was significantly affected by glucose and could be completely repressed by malate. The amino acids l-proline, l-alanine, l-arginine, and l-tyrosine exhibited a rather low repressor action. Malonate, a nonrepressive carbon source, allowed gratuitous enzyme synthesis. A number of compounds which did not sustain growth were found to be suitable substitutes for paraffins as an inducer. Among these were cyclopropane and diethoxymethane. The induction studied under conditions of gratuity with the latter compound as an inducer showed immediate linear kinetics only at saturating inducer concentrations. With n-hexane as the inducer, a lag time was always observed, even when high concentrations were used. PMID:4979100

  12. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    2013-02-04

    To elucidate the working mechanism of the "broad substrate specificity" by the Pseudomonas aeruginosa aryl sulfatase (PAS) enzyme, we present here a full quantum chemical study performed at the density functional level. This enzyme is able to catalyze the hydrolysis of the original p-nitrophenyl-sulfate (PNPS) substrate and the promiscuous p-nitrophenyl-phosphate (PNPP) one with comparable reaction kinetics. Based on the obtained results, a multistep mechanism including activation of the nucleophile, the nucleophilic attack, and the cleavage of the S-O (P-O) bond is proposed. Regarding the phosphate monoester, the results indicate that only some steps of the promiscuous reaction are identical to those in the native process. Differences concern mainly the last step in which the His115 residue acts as a general base to accept the proton by the O atom of the FGly51 in the PNPS, whereas in PNPP, the Asp317 protonated residue works as a general acid to deliver a proton by a water molecule to the oxygen atom of the C-O bond. The shapes of the relative potential-energy surface (PES) are similar in the two examined cases but the rate-determining step is different (nucleophile attack vs. nucleophile activation). The influence of the dispersion contributions on the investigated reactions was also taken into account.

  13. Full Virulence of Pseudomonas aeruginosa Requires OprF▿

    PubMed Central

    Fito-Boncompte, Laurène; Chapalain, Annelise; Bouffartigues, Emeline; Chaker, Hichem; Lesouhaitier, Olivier; Gicquel, Gwendoline; Bazire, Alexis; Madi, Amar; Connil, Nathalie; Véron, Wilfried; Taupin, Laure; Toussaint, Bertrand; Cornelis, Pierre; Wei, Qing; Shioya, Koki; Déziel, Eric; Feuilloley, Marc G. J.; Orange, Nicole; Dufour, Alain; Chevalier, Sylvie

    2011-01-01

    OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression. PMID:21189321

  14. Polymorphonuclear Leukocytes Restrict Growth of Pseudomonas aeruginosa in the Lungs of Cystic Fibrosis Patients

    PubMed Central

    Kragh, Kasper N.; Alhede, Morten; Jensen, Peter Ø.; Moser, Claus; Scheike, Thomas; Jacobsen, Carsten S.; Seier Poulsen, Steen; Eickhardt-Sørensen, Steffen Robert; Trøstrup, Hannah; Christoffersen, Lars; Hougen, Hans-Petter; Rickelt, Lars F.; Kühl, Michael; Høiby, Niels

    2014-01-01

    Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also observed in vitro, where this limitation was alleviated in the presence of the alternative electron acceptor nitrate. The finding that P. aeruginosa growth patterns correlate with the number of surrounding PMNs points to a bacteriostatic effect by PMNs via their strong O2 consumption, which slows the growth of P. aeruginosa in infected CF lungs. In support of this, the growth of P. aeruginosa was significantly higher in the respiratory airways than in the conducting airways of mice. These results indicate a complex host-pathogen interaction in chronic P. aeruginosa infection of the CF lung whereby PMNs slow the growth of the bacteria and render them less susceptible to antibiotic treatment while enabling them to persist by anaerobic respiration. PMID:25114118

  15. Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli.

    PubMed

    Zimmermann, A; Reimmann, C; Galimand, M; Haas, D

    1991-06-01

    Anaerobic growth of Pseudomonas aeruginosa on nitrate or arginine requires the anr gene, which codes for a positive control element (ANR) capable of functionally complementing an fnr mutation in Escherichia coli. The anr gene was sequenced; it showed 51% identity with the fnr gene at the amino acid sequence level. Four cysteine residues known to be essential in the FNR protein are conserved in ANR. The anr gene product (deduced Mr 27,129) was visualized by the maxicell method and migrated like a 32 kDa protein in gel electrophoresis under denaturing conditions. An anr mutant of P. aeruginosa constructed by gene replacement was defective in nitrate respiration, arginine deiminase activity, and hydrogen cyanide biosynthesis, underscoring the diverse metabolic functions of ANR during oxygen limitation. Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae, and Pseudomonas mendocina all had a functional analogue of ANR, indicating that similar anaerobic control mechanisms exist in these bacteria.

  16. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  17. Pseudomonas aeruginosa Virulence and Therapy: Evolving Translational Strategies

    PubMed Central

    Veesenmeyer, Jeffrey L.; Lisboa, Thiago; Rello, Jordi

    2009-01-01

    Structured abstract Objective Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjuvant therapies. Data Source Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. Data Extraction and Synthesis P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus of much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjuvant therapies capable of improving outcomes. Conclusions Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections. PMID:19325463

  18. [Resistance to antibiotics in Pseudomonas aeruginosa in Colombian hospitals].

    PubMed

    Villa, Lina M; Cortés, Jorge A; Leal, Aura L; Meneses, Andrés; Meléndez, Martha P

    2013-12-01

    Pseudomonas aeruginosa infections cause high morbidity and mortality. We performed a descriptive analysis of the rates of antibiotic resistance in isolates of P. aeruginosa in 33 hospitals enrolled in a surveillance network in Colombia. The study was conducted between January 2005 and December 2009 .9905 isolates of P. aeruginosa were identified, (4.9% of all strains). In intensive care units (ICU) P. aeruginosa showed an overall resistance to aztreonam, cefepime , ceftazidime, imipenem, meropenem , and piperacillin / tazobactam of 31.8% , 23.9% , 24.8%, 22.5%, 20.3% and 22.3%, respectively. Resistance rates increased for piperacillin/tazobactam, cefepime, and imipenem; remained unchanged for meropenem; and decreased for aminoglycosides, quinolones and ceftazidime. Resistance to one, two and three or more families of antibiotics was found in 17%, 12.5%, and 32.1%, respectively. In samples collected from the wards, the resistance rate was lower but usually over 10%. Antibiotic resistance in P. aeruginosa isolates in hospitalized patients and particularly in those admitted to ICUs in Colombia is high.

  19. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa.

    PubMed

    Niemirowicz, Katarzyna; Swiecicka, Izabela; Wilczewska, Agnieszka Z; Misztalewska, Iwona; Kalska-Szostko, Beata; Bienias, Kamil; Bucki, Robert; Car, Halina

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.

  20. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  1. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

    PubMed

    Toll-Riera, Macarena; San Millan, Alvaro; Wagner, Andreas; MacLean, R Craig

    2016-05-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs.

  2. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  3. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  4. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  5. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines.

    PubMed

    Campodónico, Victoria L; Llosa, Nicolás J; Grout, Martha; Döring, Gerd; Maira-Litrán, Tomás; Pier, Gerald B

    2010-02-01

    Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.

  6. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  7. Inactivation of aminoglycosides against Pseudomonas aeruginosa by a nutrition supplementation solution.

    PubMed

    Ammash, H S; Essa, F Y; Padron, V A

    1994-05-01

    1. Possible interference of a nutritional solution (Vamin) with the activity of several aminoglycosides against Pseudomonas aeruginosa was evaluated in vitro. 2. Inactivation in cultures of 0.75, 1.2, 2.8, 65 micrograms/ml of gentamicin, kanamycin, amikacin, streptomycin, and tobramycin was induced by the addition of 1:20 v/v of the nutritional solution. 3. This inactivation was due to the presence of specific amino acids in the mixture. Deletions of amino acids from the media and amino acid analysis of the cellular pool revealed that valine, leucine, isoleucine, tyrosine, tryptophan, phenylalanine, cysteine, methionine, or threonine were responsible for the inactivation. 4. The concentration of threonine decreased in kanamycin and amikacin treated cells suggesting that certain aminoglycoside antibiotics undergo a decrease in activity when sensitive Ps. aeruginosa are treated with a nutrient solution. 5. Specific amino acids may interfere with the activity of antibiotics by circumventing their effect on amino acid biosynthesis.

  8. Environmental Pseudomonads Inhibit Cystic Fibrosis Patient-Derived Pseudomonas aeruginosa

    PubMed Central

    Chatterjee, Payel; Davis, Elizabeth; Yu, Fengan; James, Sarah; Wildschutte, Julia H.; Wiegmann, Daniel D.; Sherman, David H.; McKay, Robert M.; LiPuma, John J.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied

  9. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide

    PubMed Central

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element. PMID:25494332

  10. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide.

    PubMed

    Zhu, Xin; Ma, Zhi; Wang, Jiajun; Chou, Shuli; Shan, Anshan

    2014-01-01

    Here, we found that simple substitution of amino acids in the middle position of the hydrophobic face of an amphipathic peptide RI16 with tryptophan (T9W) considerably transformed into an antimicrobial peptide specifically targeting Pseudomonas aeruginosa. Minimal inhibitory concentration (MIC) results demonstrated that T9W had a strong and specifically antimicrobial activity against P. aeruginosa, including antibiotic-resistant strains, but was not active against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Staphyfococcus epidermidis. Fluorescent spectroscopic assays indicated that T9W interacted with the membrane of P. aeruginosa, depolarizing the outer and the inner membrane of bacterial cells. Salt susceptibility assay showed that T9W still maintained its strong anti-pseudomonas activity in the presence of salts at physiological concentrations, and in hemolytic and MTT assays T9W also showed no toxicity against human blood cells and macrophages. In vivo assay demonstrated that T9W also displayed no toxicity to Chinese Kun Ming (KM) mice. Furthermore, the strong antibiofilm activity was also observed with the peptide T9W, which decreased the percentage of biomass formation in a dose-dependent manner. Overall, these findings indicated that design of single-pathogen antimicrobial agents can be achieved by simple amino acid mutation in naturally occurring peptide sequences and this study suggested a model of optimization/design of anti-pseudomonas drugs in which the tryptophan residue was a conserved element.

  11. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  12. Insights into Mechanisms and Proteomic Characterisation of Pseudomonas aeruginosa Adaptation to a Novel Antimicrobial Substance

    PubMed Central

    Cierniak, Peter; Jübner, Martin; Müller, Stefan; Bender, Katja

    2013-01-01

    Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements. PMID:23869205

  13. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-01-01

    Background: Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. Objectives: To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. Materials and Methods: A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Results: Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. blaIMP and blaVIM genes were detected in 11.7% and 0.4% of isolates, respectively. blaSPM and blaNDM genes were not observed. Conclusions: Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections. PMID:25774271

  14. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an

  15. Reducing Virulence and Biofilm of Pseudomonas aeruginosa by Potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin.

    PubMed

    Gökalsın, Barış; Aksoydan, Busecan; Erman, Burak; Sesal, Nüzhet Cenk

    2017-03-02

    Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.

  16. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  17. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  18. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    PubMed

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections.

  19. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase

    PubMed Central

    Vance, Russell E.; Hong, Song; Gronert, Karsten; Serhan, Charles N.; Mekalanos, John J.

    2004-01-01

    In mammals, lipoxygenases play key roles in inflammation by initiating the transformation of arachidonic acid into potent bioactive lipid mediators such as leukotrienes and lipoxins. In general, most bacteria are believed to lack lipoxygenases and their polyunsaturated fatty acid substrates. It is therefore of interest that an ORF (PA1169) with high homology to eukaryotic lipoxygenases was discovered by analysis of the whole-genome sequence of the opportunistic bacterial pathogen Pseudomonas aeruginosa. Using TLC and liquid chromatography-UV-tandem mass spectrometry (LC-UV-MS-MS), we demonstrate that PA1169 encodes a bacterial lipoxygenase (LoxA) that converts arachidonic acid into 15-hydroxyeicosatetraenoic acid (15-HETE). Although mammalian lipoxygenases are cytoplasmic enzymes, P. aeruginosa LoxA activity is secreted. Taken together, these results suggest a mechanism by which a pathogen-secreted lipoxygenase may modulate host defense and inflammation via alteration of the biosynthesis of local chemical mediators. PMID:14766977

  20. Host defense mechanisms against pneumonia due to Pseudomonas aeruginosa.

    PubMed

    Pennington, J E; Ehrie, M G; Hickey, W F

    1984-01-01

    Pneumonia due to Pseudomonas aeruginosa is associated with unusually high mortalities. Accordingly, efforts to define better the most important components of lung defenses against this infection are justified as a prelude to defining improved management strategies. In this report, a guinea pig model of experimental aspiration pseudomonas pneumonia was employed for studies of cellular and humoral mechanisms of pulmonary defense. Animals treated with cortisone acetate plus cyclophosphamide experienced decreased survival from pneumonia, and survival rates correlated directly with the degree of myelosuppression. Numbers of pulmonary macrophages and polymorphonuclear neutrophils were reduced in drug-treated animals before impairment of macrophage antibacterial function. Thus, a reduction in numbers of phagocytes alone was sufficient to markedly reduce lung defenses. In additional experiments, normal guinea pigs were vaccinated with a lipopolysaccharide pseudomonas vaccine. Improved survival from pneumonia correlated with high titers of type-specific, heat-stable opsonic antibody. It is concluded that adequate numbers of lung phagocytes, plus type-specific opsonic antibody, represent the ideal status for lung defense against P. aeruginosa infection.

  1. Purification, crystallization and preliminary crystallographic analysis of the ligand-binding regions of the PctA and PctB chemoreceptors from Pseudomonas aeruginosa in complex with amino acids

    PubMed Central

    Rico-Jiménez, Miriam; Muñoz-Martínez, Francisco; Krell, Tino; Gavira, Jose A.; Pineda-Molina, Estela

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and one of the major model organisms for the study of chemotaxis. The bacterium harbours 26 genes encoding chemoreceptors, most of which have not been annotated with a function. The paralogous chemoreceptors PctA and PctB (Pseudomonas chemotactic transducer A and B) were found to mediate chemotaxis towards l-amino acids. However, the ligand spectrum of the receptors is quite different since the recombinant ligand-binding region (LBR) of PctA binds 17 different l-­amino acids whereas that of PctB recognizes only five. To determine the molecular basis underlying this ligand specificity, PctA-LBR and PctB-LBR have been purified and crystals have been produced after pre-incubation with l-­Ile and l-Arg, respectively. Initial crystallization conditions have been identified by the counter-diffusion method and X-ray data have been collected at 2.5 Å (PctA-LBR bound to l-Ile) and 3.14 Å (PctB-LBR bound to l-Arg) resolution. Crystals belonged to space groups P212121 and P3121, with unit-cell parameters a = 72.2, b = 78.5, c = 116.6 Å and a = b = 111.6, c = 117.4, respectively, for PctA-LBR and PctB-LBR. Molecular-replacement methods will be pursued for structural determination. PMID:24316847

  2. Monocyte Profiles in Critically Ill Patients With Pseudomonas Aeruginosa Sepsis

    ClinicalTrials.gov

    2017-02-02

    Pseudomonas Infections; Pseudomonas Septicemia; Pseudomonas; Pneumonia; Pseudomonal Bacteraemia; Pseudomonas Urinary Tract Infection; Pseudomonas Gastrointestinal Tract Infection; Sepsis; Sepsis, Severe; Critically Ill

  3. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  4. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Kim, Jung-Ae; Lee, Jintae

    2012-04-01

    The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

  5. Identification, cloning, and expression of Pseudomonas aeruginosa phosphorylcholine phosphatase gene.

    PubMed

    Massimelli, María J; Beassoni, Paola R; Forrellad, Marina A; Barra, José L; Garrido, Mónica N; Domenech, Carlos E; Lisa, Angela T

    2005-05-01

    Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.

  6. Effects of azithromycin in Pseudomonas aeruginosa burn wound infection

    PubMed Central

    Nichols, DP; Caceres, S; Caverly, L; Fratelli, C; Kim, SH; Malcolm, KC; Poch, KR; Saavedra, M; Solomon, G; Taylor-Cousar, J; Moskowitz, SM; Nick, JA

    2013-01-01

    Background Cutaneous thermal injuries (i.e. burns) remain a common form of debilitating trauma and outcomes are often worsened by wound infection with environmental bacteria, chiefly Pseudomonas aeruginosa. Materials and Methods We tested the effects of early administration of a single dose of azithromycin, with or without subsequent anti-pseudomonal antibiotics, in a mouse model of standardized thermal injury infected with P. aeruginosa on both wound site and systemic infection. We also tested the antimicrobial effects of these antibiotics alone or combined in comparative biofilm and planktonic cultures in vitro. Results In our model, early azithromycin administration significantly reduced wound and systemic infection without altering wound site or circulating neutrophil activity. The antimicrobial effect of azithromycin was additive with ciprofloxacin but significantly reduced the antimicrobial effect of tobramycin. This pattern was reproduced in biofilm cultures and not observed in planktonic cultures of P. aeruginosa. Conclusion these data suggest that early administration of azithromycin following burn-related trauma and infection may reduce P. aeruginosa infection and potential interactions with other antibiotics should be considered when designing future studies. PMID:23478086

  7. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?

    PubMed

    Kirisits, Mary Jo; Parsek, Matthew R

    2006-12-01

    Pseudomonas aeruginosa is a Gram-negative bacterial species that causes several opportunistic human infections. This organism is also found in the environment, where it is renowned (like other Pseudomonads) for its ability to use a wide variety of compounds as carbon and energy sources. It is a model species for studying group-related behaviour in bacteria. Two types of group behaviour it engages in are intercellular signalling, or quorum sensing, and the formation of surface-associated communities called biofilms. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infections. Quorum sensing regulates the expression of several secreted virulence factors and quorum sensing mutant strains are attenuated for virulence in animal models. Biofilms have been implicated in chronic infections. Two examples are the chronic lung infections afflicting people suffering from cystic fibrosis and colonization of indwelling medical devices. This review will discuss quorum sensing and biofilm formation and studies that link these two processes.

  8. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  9. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  10. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated With Azithromycin

    PubMed Central

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-01-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors and natural products) are measured using phenotypic assays. However, advances in mass spectrometry based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. While previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reducing pathogenicity, we observed no clear decrease in specialized metabolite production. PMID:25801585

  11. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources

    PubMed Central

    Reinhart, Alexandria A.; Oglesby-Sherrouse, Amanda G.

    2016-01-01

    Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection. PMID:27983658

  12. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  13. Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin

    NASA Astrophysics Data System (ADS)

    Phelan, Vanessa V.; Fang, Jinshu; Dorrestein, Pieter C.

    2015-06-01

    In microbiology, changes in specialized metabolite production (cell-to-cell signaling metabolites, virulence factors, and natural products) are measured using phenotypic assays. However, advances in mass spectrometry-based techniques including imaging mass spectrometry (IMS) now allow researchers to directly visualize the production of specialized metabolites from microbial colony biofilms. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the effect of the macrolide antibiotic azithromycin (AZM) on colony biofilms of Pseudomonas aeruginosa. Although previous research suggested that AZM may inhibit cell-to-cell signaling of P. aeruginosa and thereby reduce pathogenicity, we observed no clear decrease in specialized metabolite production.

  14. [Water used for hemodialysis equipment: where is Pseudomonas aeruginosa?].

    PubMed

    Ducki, Sébastien; Francini, Nicolas; Blech, Marie-Françoise

    2005-05-01

    The water used in dilution of the dialysis solutions constitutes an essential element of the efficiency and the safety of this therapeutics. Water must be specifically treated, and some technical rules must be respected, such as disinfection of the equipment for water treatment, to guarantee a satisfying level for whole the installation. This article reports the investigations, which were led to find the spring of Pseudomonas aeruginosa which contamined in a recurring way the water feeding dialysis equipment. The observation of samples'chronology and an analysis of the sanitary pad suggested a contamination during disinfection. Sample of residual water from the pump used for the injection of Dialox identified this reservoir as origin of the contamination. To stop this contamination by P. aeruginosa, a pump maintenance revision and purges of the system were used.

  15. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis

    PubMed Central

    Campόdonico, Victoria L; Gadjeva, Mihaela; Paradis-Bleau, Catherine; Uluer, Ahmet; Pier, Gerald B

    2013-01-01

    Defective expression or function of the cystic fibrosis transmembrane conductance regulator (CFTR) underlies the hypersusceptibility of cystic fibrosis (CF) patients to chronic airway infections, particularly with Pseudomonas aeruginosa. CFTR is involved in the specific recognition of P. aeruginosa, thereby contributing to effective innate immunity and proper hydration of the airway surface layer (ASL). In CF, the airway epithelium fails to initiate an appropriate innate immune response, allowing the microbe to bind to mucus plugs that are then not properly cleared because of the dehydrated ASL. Recent studies have identified numerous CFTR-dependent factors that are recruited to the epithelial plasma membrane in response to infection and that are needed for bacterial clearance, a process that is defective in CF patients hypersusceptible to infection with this organism. PMID:18262467

  16. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  17. Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa.

    PubMed

    Linker, A; Evans, L R

    1984-09-01

    Strains of Pseudomonas aeruginosa which produce an alginate-like slime polysaccharide were shown to also synthesize an intracellular enzyme which can degrade these polysaccharides and the seaweed alginic acids. The enzyme acts as an eliminase introducing delta 4,5 unsaturation into the uronic acid moiety. It appears to be a polymannuronide lyase which degrades the polysaccharides, depending on their uronic acid composition, to a series of oligosaccharides, the smallest of which is a disaccharide. L-Guluronic acid linkages are not split. The Pseudomonas alginase resembles other bacterial alginases and enzymes from molluscs but differs in some important properties, such as extent of degradation and linkage preference. Nonmucoid forms of the organism produce detectable but much lower amounts of enzyme.

  18. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  19. Pseudomonas aeruginosa exoenzyme S induces proliferation of human T lymphocytes.

    PubMed Central

    Mody, C H; Buser, D E; Syme, R M; Woods, D E

    1995-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is responsible for devastating acute and chronic infections, which include bronchiectasis in cystic fibrosis, nosocomial pneumonia, and infection of burn wounds. Previous studies have demonstrated that these patients have impaired host responses, including cell-mediated immune responses, which are important in anti-Pseudomonas host defense. The P. aeruginosa exoproduct, exoenzyme S, has a number of characteristics which suggest that it might be important in cell-mediated immunity. To determine whether exoenzyme S activates lymphocytes to proliferate, peripheral blood mononuclear cells (PBMC) from normal volunteers were stimulated with purified exoenzyme S, and the lymphocyte response was assessed by measuring [3H]thymidine uptake and by counting the number of cells after various times in culture. Ninety-five percent of healthy adult donors had a lymphocyte response to exoenzyme S. The optimal lymphocyte response occurred on day 7, with 4 x 10(5) PBMC per microtiter well when cells were stimulated with 10 micrograms exoenzyme S per ml. [3H]thymidine uptake correlated with an increase in the number of mononuclear cells, indicating that proliferation occurred. In unseparated PBMC, T cells, and to a lesser extent B cells, proliferated. Purified T cells proliferated, while purified B cells proliferated only after the addition of irradiated T cells. Thus, T lymphocytes are necessary and sufficient for the proliferative response to exoenzyme S. We speculate that exoenzyme S from P. aeruginosa is important in T-lymphocyte-mediated host defense to P. aeruginosa. In strategies to enhance impaired cell-mediated immunity, exoenzyme S should be considered as a potential stimulant. PMID:7537248

  20. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction.

    PubMed

    Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2016-01-01

    Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined.

  1. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Hansen, Gorm Mørk; Belstrøm, Daniel; Nilsson, Martin; Helqvist, Steffen; Nielsen, Claus Henrik; Holmstrup, Palle; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2016-01-01

    Chronic infection is associated with an increased risk of atherothrombotic disease and direct bacterial infection of arteries has been suggested to contribute to the development of unstable atherosclerotic plaques. In this study, we examined coronary thrombi obtained in vivo from patients with ST-segment elevation myocardial infarction (STEMI) for the presence of bacterial DNA and bacteria. Aspirated coronary thrombi from 22 patients with STEMI were collected during primary percutaneous coronary intervention and arterial blood control samples were drawn from radial or femoral artery sheaths. Analyses were performed using 16S polymerase chain reaction and with next-generation sequencing to determine bacterial taxonomic classification. In selected thrombi with the highest relative abundance of Pseudomonas aeruginosa DNA, peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) with universal and species specific probes was performed to visualize bacteria within thrombi. From the taxonomic analysis we identified a total of 55 different bacterial species. DNA from Pseudomonas aeruginosa represented the only species that was significantly associated with either thrombi or blood and was >30 times more abundant in thrombi than in arterial blood (p<0.0001). Whole and intact bacteria present as biofilm microcolonies were detected in selected thrombi using universal and P. aeruginosa-specific PNA-FISH probes. P. aeruginosa and vascular biofilm infection in culprit lesions may play a role in STEMI, but causal relationships remain to be determined. PMID:28030624

  2. [Necrotizing fasciitis caused by pseudomonas aeruginosa (an obervation)].

    PubMed

    Abada, A; Benhmidoune, L; Tahiri, H; Essalim, K; Chakib, A; Elbelhadji, M; Rachid, R; Zaghloul, K; Amraoui, A

    2007-01-01

    Necrotizing fasciitis is an exceptional and severe form of subcutaneous gangrene which requires early diagnosis and emergency treatment. We report the case of a 24 year old woman presenting with necrotizing fasciitis after pansinusitis resistant to treatment. The germ detected was pseudomonas aeruginosa. The infection was controled with intensive care, antibiotics and surgical resection of necrotic tissues. The aim of this observation is to highlight the clinical characteristics of this disease, and to insist on the necessity to recognize the early symptoms and to start treatment as soon as possible.

  3. Vaccines for Pseudomonas aeruginosa: A long and winding road

    PubMed Central

    Priebe, Gregory P.; Goldberg, Joanna B.

    2015-01-01

    Summary Despite the recognition of Pseudomonas aeruginosa is an opportunistic pathogen, no vaccine against this bacteria have come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed. PMID:24575895

  4. The Approach to Pseudomonas aeruginosa in Cystic Fibrosis.

    PubMed

    Talwalkar, Jaideep S; Murray, Thomas S

    2016-03-01

    There is a high prevalence of Pseudomonas aeruginosa in patients with cystic fibrosis and clear epidemiologic links between chronic infection and morbidity and mortality exist. Prevention and early identification of infection are critical, and stand to improve with the advent of new vaccines and laboratory methods. Once the organism is identified, a variety of treatment options are available. Aggressive use of antipseudomonal antibiotics is the standard of care for acute pulmonary exacerbations in cystic fibrosis, and providers must take into account specific patient characteristics when making treatment decisions related to antibiotic selection, route and duration of administration, and site of care.

  5. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf.

    PubMed

    Lou, Zaixiang; Tang, Yuxia; Song, Xinyi; Wang, Hongxin

    2015-09-08

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL(-1). Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I) were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis) and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  6. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  7. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.

  8. [Pseudomonas aeruginosa bacteriaemia: new clinical and therapeutic aspects ].

    PubMed

    Janbon, F; Despaux, E; Lepeu, G; Jonquet, O; Santoni, A; Balmayer, B; Bertrand, A

    1982-06-01

    Fifty one cases of Pseudomonas aeruginosa bacteriaemia observed during the last 12 years are reported. Thirty five patients were over fifty years old; 92 p. cent were admitted for several days and about 50 p. cent were in post-operative period. A previous antibiotherapy and an impaired status are promotive factors. The respiratory or peritoneal origins are the most frequent. All patients were feverish; 24 have had an infectious shock which was inaugural in 12 cases. Seven pneumonitis, 3 endocarditis, one pericarditis and 2 osteitis were observed. An ecthyma gangrenosum was noted in three patients. Mortality was 70 p. cent. Comparison between recovered and died patients improved bad prognosis of old age, post operative period, neoplasic, previous organica weakness and pulmonary or peritoneal origins. Used alone, colimycin has seemed to be more effective than aminosid antibiotics; but their association with betalactamins was better. An in vitro study of the susceptibility of 100 Pseudomonas aeruginosa strains has proved the interest of piperacillin and cefsulodin; azlocillin, cefoperazone and ceftriaxone are just less effective.

  9. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants.

    PubMed

    D'Argenio, David A; Calfee, M Worth; Rainey, Paul B; Pesci, Everett C

    2002-12-01

    Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.

  10. Bacteriophages for the treatment of Pseudomonas aeruginosa infections.

    PubMed

    Harper, D R; Enright, M C

    2011-07-01

    Bacteriophages were first identified in 1915 and were used as antimicrobial agents from 1919 onwards. Despite apparent successes and widespread application, early users did not understand the nature of these agents and their efficacy remained controversial. As a result, they were replaced in the west by chemical antibiotics once these became available. However, bacteriophages remained a common therapeutic approach in parts of Eastern Europe where they are still in use. Increasing levels of antibiotic-resistant bacterial infections are now driving demand for novel therapeutic approaches. In cases where antibiotic options are limited or nonexistent, the pressure for new agents is greatest. One of the most prominent areas of concern is multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa is a prominent member of this class and is the cause of damaging infections that can be resistant to successful treatment with conventional antibiotics. At the same time, it exhibits a number of properties that make it a suitable target for bacteriophage-based approaches, including growth in biofilms that can hydrolyse following phage infection. Pseudomonas aeruginosa provides a striking example of an infection where clinical need and the availability of a practical therapy coincide.

  11. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds.

    PubMed

    Fazli, Mustafa; Bjarnsholt, Thomas; Kirketerp-Møller, Klaus; Jørgensen, Bo; Andersen, Anders Schou; Krogfelt, Karen A; Givskov, Michael; Tolker-Nielsen, Tim

    2009-12-01

    The spatial organization of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds was investigated in the present study. Wound biopsy specimens were obtained from patients diagnosed as having chronic venous leg ulcers, and bacterial aggregates in these wounds were detected and located by the use of peptide nucleic acid-based fluorescence in situ hybridization and confocal laser scanning microscopy (CLSM). We acquired CLSM images of multiple regions in multiple sections cut from five wounds containing P. aeruginosa and five wounds containing S. aureus and measured the distance of the bacterial aggregates to the wound surface. The distance of the P. aeruginosa aggregates to the wound surface was significantly greater than that of the S. aureus aggregates, suggesting that the distribution of the bacteria in the chronic wounds was nonrandom. The results are discussed in relation to our recent finding that swab culturing techniques may underestimate the presence of P. aeruginosa in chronic wounds and in relation to the hypothesis that P. aeruginosa bacteria located in the deeper regions of chronic wounds may play an important role in keeping the wounds arrested in a stage dominated by inflammatory processes.

  12. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm

    PubMed Central

    He, Xuesong; Hu, Wei; He, Jian; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2012-01-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota which is often considered a health asset, studies of the oral commensal microbial flora have been largely limited to their implication in oral diseases such as dental caries and periodontal diseases; Little emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign/pathogenic bacteria. In this study, we used the salivary microbiota derived from healthy human subjects to investigate protective effects against the colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing and pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into salivary microbial community during biofilm formation. Furthermore, in the saliva medium supplemented with 0.05% (w/v) sucrose, the oral flora inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign/pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  13. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  14. Cloning, expression and purification of penicillin-binding protein 3 from Pseudomonas aeruginosa CMCC 10104.

    PubMed

    An, Yan Dong; Du, Qi Zhen; Tong, Li Yan; Yu, Zhao Wu; Gong, Xing Wen

    2015-06-01

    Penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa is the primary target of β-lactams used to treat pseudomonas infections. Meanwhile, structure change and overproduction of PBP3 play important roles in the drug resistance of P. aeruginosa. Therefore, studies on the gene and structure of PBP3 are urgently needed. P. aeruginosa CMCC 10104 is a type culture strain common used in China. However, there is no report on its genomic and proteomic profiles. In this study, based on ftsI of P. aeruginosa PAO1, the gene encoding PBP3 was cloned from CMCC 10104. A truncated version of the ftsI gene, omitting the bases encoding the hydrophobic leader peptide (amino acids 1-34), was amplified by PCR. The cloned DNA shared 99.76% identity with ftsI from PAO1. Only four bases were different (66 C-A, 1020 T-C, 1233 T-C, and 1527 T-C). However, there were no differences between their deduced amino acid sequences. The recombinant PBP3 (rPBP3), containing a 6-histidine tag, was expressed in Escherichia coli BL21 (DE3). Immobilized metal affinity chromatography (IMAC) with Ni(2+)-NTA agarose was used for its purification. The purified rPBP3 was identified by SDS-PAGE and western blot analysis, and showed a single band at about 60kDa with purity higher than 95%. The penicillin-binding assay indicated that the obtained rPBP3 was functional and not hindered by the presence of the C-terminal His-tag. The protocol described in this study offers a method for obtaining purified recombinant PBP3 from P. aeruginosa CMCC 10104.

  15. Production of a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid from high oleic safflower oil by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA), originally found in small amount mainly from plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial ...

  16. Pseudomonas aeruginosa outer membrane lipoprotein I gene: molecular cloning, sequence, and expression in Escherichia coli.

    PubMed Central

    Duchêne, M; Barron, C; Schweizer, A; von Specht, B U; Domdey, H

    1989-01-01

    Lipoprotein I (OprI) is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. Like porin protein F (OprF), it is a vaccine candidate because it antigenically cross-reacts with all serotype strains of the International Antigenic Typing Scheme. Since lipoprotein I was expressed in Escherichia coli under the control of its own promoter, we were able to isolate the gene by screening a lambda EMBL3 phage library with a mouse monoclonal antibody directed against lipoprotein I. The monocistronic OprI mRNA encodes a precursor protein of 83 amino acid residues including a signal peptide of 19 residues. The mature protein has a molecular weight of 6,950, not including bound glycerol and lipid. Although the amino acid sequences of protein I of P. aeruginosa and Braun's lipoprotein of E. coli differ considerably (only 30.1% identical amino acid residues), peptidoglycan in E. coli, are identical. Using lipoprotein I expressed in E. coli, it can now be tested whether this protein alone, without P. aeruginosa lipopolysaccharide contaminations, has a protective effect against P. aeruginosa infections. Images PMID:2502533

  17. PME-1, an extended-spectrum β-lactamase identified in Pseudomonas aeruginosa.

    PubMed

    Tian, Guo-Bao; Adams-Haduch, Jennifer M; Bogdanovich, Tatiana; Wang, Hong-Ning; Doi, Yohei

    2011-06-01

    A novel extended-spectrum β-lactamase (ESBL) was identified in a Pseudomonas aeruginosa clinical isolate obtained from a patient admitted to a hospital in Pennsylvania in 2008. The patient had a prolonged hospitalization in a hospital in Dubai, United Arab Emirates, before being transferred to the United States. The novel ESBL, designated PME-1 (Pseudomonas aeruginosa ESBL 1), is a molecular class A, Bush-Jacoby-Medeiros group 2be enzyme and shared 50, 43, and 41% amino acid identity with the L2 β-lactamase of Stenotrophomonas maltophilia, CTX-M-9, and KPC-2, respectively. PME-1 conferred clinically relevant resistance to ceftazidime, cefotaxime, cefepime, and aztreonam in P. aeruginosa PAO1 but not to carbapenems. Purified PME-1 showed good hydrolytic activity against ceftazidime, cefotaxime, and aztreonam, while activity against carbapenems and cefepime could not be measured. PME-1 was inhibited well by β-lactamase inhibitors, including clavulanic acid, sulbactam, and tazobactam. The bla(PME-1) gene was carried by an approximately 9-kb plasmid and flanked by tandem ISCR24 elements.

  18. Heterogeneity of Pseudomonas aeruginosa in Brazilian Cystic Fibrosis Patients

    PubMed Central

    Silbert, Suzane; Barth, Afonso Luis; Sader, Hélio S.

    2001-01-01

    The aim of this study was to assess the diversity and genomic variability of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients being treated at a university hospital in Brazil. Ninety-seven isolates of P. aeruginosa from 43 CF patients were characterized by macrorestriction analysis of chromosomal DNA by pulsed-field gel electrophoresis (PFGE) and tested for susceptibility to 20 antimicrobial agents by broth microdilution. It was possible to evaluate single isolates from 20 patients and multiple isolates (two to seven) from 23 patients collected during a 22-month period. Among all of the unrelated patients, we detected only one pair of patients sharing a common strain. Among the 77 isolates from 23 patients who had multiple isolates analyzed, we identified 37 major types by PFGE, and five different colonization patterns were recognized. The isolates were susceptible to several antimicrobial agents, although consecutive isolates from the same patient may display differences in their susceptibilities. Mucoid isolates were more resistant (P < 0.001) than nonmucoid isolates to five antibiotics. Our results indicate that CF patients remain colonized by more than one strain of P. aeruginosa for long periods of time. In addition, the finding of several different genotypes in the same patient suggests that the colonizing strain may occasionally be replaced. PMID:11682517

  19. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence.

    PubMed

    Park, P W; Pier, G B; Hinkes, M T; Bernfield, M

    2001-05-03

    Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.

  20. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine.

    PubMed Central

    Pier, G B; DesJardin, D; Grout, M; Garner, C; Bennett, S E; Pekoe, G; Fuller, S A; Thornton, M O; Harkonen, W S; Miller, H C

    1994-01-01

    Chronic lung infection with mucoid Pseudomonas aeruginosa is the major pathologic feature of cystic fibrosis. Previous studies suggested that a failure to produce opsonic antibody to the mucoid exopolysaccharide (MEP; also called alginate) capsule is associated with the maintenance of chronic bacterial infection. Provision of MEP-specific opsonic antibodies has therapeutic potential. To evaluate the ability of MEP to elicit opsonic antibodies, humans were immunized with two lots of MEP vaccine that differed principally in molecular size. Lot 2 had a larger average MEP polymer size. Both vaccines were well tolerated, but lot 1 was poorly immunogenic, inducing long-lived opsonic antibodies in only 2 of 28 vaccinates given doses of 10 to 150 micrograms. In contrast, at the optimal dose of 100 micrograms, lot 2 elicited long-lived opsonic antibodies in 80 to 90% of the vaccinates. The antibodies elicited by both lots enhanced deposition of C3 onto mucoid P. aeruginosa cells and mediated opsonic killing of heterologous mucoid strains expressing distinct MEP antigens. These results indicate that the polymers of MEP with the largest molecular sizes safely elicit opsonic antibodies in a sufficiently large proportion of vaccinates to permit studies of active and passive immunization of cystic fibrosis patients against infection with mucoid P. aeruginosa. PMID:8063415

  1. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Prost, Lynne; Starkey, Melissa; Parsek, Matthew R

    2005-08-01

    In this study, we report the isolation of small, rough, strongly cohesive colony morphology variants from aging Pseudomonas aeruginosa PAO1 biofilms. Similar to many of the P. aeruginosa colony morphology variants previously described in the literature, these variants autoaggregate in liquid culture and hyperadhere to solid surfaces. They also exhibit increased hydrophobicity and reduced motility compared to the wild-type parent strain. Despite the similarities in appearance of our colony morphology variant isolates on solid medium, the isolates showed a range of responses in various phenotypic assays. These variants form biofilms with significant three-dimensional structure and more biomass than the wild-type parent. To further explore the nature of the variants, their transcriptional profiles were evaluated. The variants generally showed increased expression of the psl and pel loci, which have been previously implicated in the adherence of P. aeruginosa to solid surfaces. When a mutation in the psl locus was introduced into a colony morphology variant, the colony morphology was only partially affected, but hyperadherence and autoaggregation were lost. Finally, similar colony morphology variants were found in isolates from cystic fibrosis patients. These variants displayed many of the same characteristics as the laboratory variants, suggesting a link between laboratory and cystic fibrosis biofilms.

  2. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms

    PubMed Central

    2015-01-01

    The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal. PMID:26260455

  3. Measuring antimicrobial susceptibility of Pseudomonas aeruginosa using Poloxamer 407 gel.

    PubMed

    Yamada, Hiroyuki; Koike, Naohito; Ehara, Tomoko; Matsumoto, Tetsuya

    2011-04-01

    Pseudomonas aeruginosa is a Gram-negative bacterium that causes various opportunistic infections. Chronic and intractable infections with P. aeruginosa are closely related to the high levels of resistance displayed by this organism to antimicrobial agents and its ability to form biofilms. Although the standard method for examining antimicrobial resistance involves susceptibility testing using Mueller-Hinton agar or broth, this method does not take into account the influence of biofilm formation on antimicrobial susceptibility. Poloxamer 407 is a hydrophilic, nonionic surfactant of the more general class of copolymers that can be used to culture bacteria with similar properties as cells in a biofilm environment. Therefore, the aim of this study was to compare the antimicrobial susceptibility of bacteria cultured in Poloxamer 407 gel to those grown on Mueller-Hinton agar using the Kirby-Bauer disk diffusion method with 24 strains of P. aeruginosa. Antimicrobial sensibility differed between the two mediums, with >60% of the strains displaying increased resistance to β-lactams when cultured on Poloxamer 407 gel. In addition, scanning electron microscopy revealed that typical biofilm formation and extracellular polymeric substance production was only observed with bacteria grown on Poloxamer 407 gel. Therefore, antimicrobial susceptibility test using Poloxamer 407 gel may provide more accurate information and allow the selection of suitable antimicrobial agents for treating patients infected with biofilm-forming pathogens.

  4. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems

    PubMed Central

    Singh, Braj R.; Singh, Brahma N.; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H.; Singh, Harikesh B.

    2015-01-01

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling. PMID:26347993

  5. In vitro antimicrobial activity of LED irradiation on Pseudomonas aeruginosa.

    PubMed

    Petrini, Morena; Trentini, Paolo; Tripodi, Domenico; Spoto, Giuseppe; D'Ercole, Simonetta

    2017-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen responsible of many deaths due to nosocomial pneumonia each year. It is particularly resistant to many different classes of antibiotics and disinfectants. For all these reasons, there is the necessity to find novel approaches of treatment. The aim of this study was to evaluate the effect of 880nm light emitting diodes (LED) irradiation on P. aeruginosa, in vitro. Different LED irradiation parameters (time, energy output and the addition of methylene blue and chlorhexidine) have been tested in order to evaluate the effects on this bacterium. After treatment, the colony forming units per milliliter (CFU mL-1) were recorded and the data were submitted to ANOVA and Bonferroni post hoc tests at a level of significance of 5%. A statistical significant reduction of bacterial count has been registered after 5min of LED irradiation. The antibacterial effect was directly proportional to irradiation time and the output energy. The pre-treatment with methylene blue, seems to be not effective against P. aeruginosa, independently from irradiation parameters. On the contrary, the contemporary action of LED and chlorhexidine has shown a great reduction of bacterial count that was statistical significant respect chlorhexidine and LED alone. The effect of LED irradiation was visible also after 24h, when a lower bacterial count characterized all irradiated samples respect controls.

  6. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  7. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.

  8. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1

    PubMed Central

    Pereira Jr, Nei; Freire, Denise M.G.

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L−1–10.9 g L−1). These results offer promising pathways for the optimization of processes for the production of rhamnolipids. PMID:27257553

  9. Gallium induces the production of virulence factors in Pseudomonas aeruginosa.

    PubMed

    García-Contreras, Rodolfo; Pérez-Eretza, Berenice; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Coria-Jiménez, Rafael; Rangel-Vega, Adrián; Maeda, Toshinari; Wood, Thomas K

    2014-02-01

    The novel antimicrobial gallium is a nonredox iron III analogue with bacteriostatic and bactericidal properties, effective for the treatment of Pseudomonas aeruginosa in vitro and in vivo in mouse and rabbit infection models. It interferes with iron metabolism, transport, and presumably its homeostasis. As gallium exerts its antimicrobial effects by competing with iron, we hypothesized that it ultimately will lead cells to an iron deficiency status. As iron deficiency promotes the expression of virulence factors in vitro and promotes the pathogenicity of P. aeruginosa in animal models, it is anticipated that treatment with gallium will also promote the production of virulence factors. To test this hypothesis, the reference strain PA14 and two clinical isolates from patients with cystic fibrosis were exposed to gallium, and their production of pyocyanin, rhamnolipids, elastase, alkaline protease, alginate, pyoverdine, and biofilm was determined. Gallium treatment induced the production of all the virulence factors tested in the three strains except for pyoverdine. In addition, as the Ga-induced virulence factors are quorum sensing controlled, co-administration of Ga and the quorum quencher brominated furanone C-30 was assayed, and it was found that C-30 alleviated growth inhibition from gallium. Hence, adding both C-30 and gallium may be more effective in the treatment of P. aeruginosa infections.

  10. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa

    PubMed Central

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems. PMID:27075730

  11. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  12. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1.

    PubMed

    Soares Dos Santos, Alexandre; Pereira, Nei; Freire, Denise M G

    2016-01-01

    Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.

  13. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials

    PubMed Central

    Grishin, A. V.; Krivozubov, M. S.; Karyagina, A. S.; Gintsburg, A. L.

    2015-01-01

    Pseudomonas aeruginosa is one of the most widespread and troublesome opportunistic pathogens that is capable of colonizing various human tissues and organs and is often resistant to many currently used antibiotics. This resistance is caused by different factors, including the acquisition of specific resistance genes, intrinsic capability to diminish antibiotic penetration into the bacterial cell, and the ability to form biofilms. This situation has prompted the development of novel compounds differing in their mechanism of action from traditional antibiotics that suppress the growth of microorganisms or directly kill bacteria. Instead, these new compounds should decrease the pathogens’ ability to colonize and damage human tissues by inhibiting the virulence factors and biofilm formation. The lectins LecA and LecB that bind galactose and fucose, as well as oligo- and polysaccharides containing these sugars, are among the most thoroughly-studied targets for such novel antibacterials. In this review, we summarize the results of experiments highlighting the importance of these proteins for P. aeruginosa pathogenicity and provide information on existing lectins inhibitors and their effectiveness in various experimental models. Particular attention is paid to the effects of lectins inhibition in animal models of infection and in clinical practice. We argue that lectins inhibition is a perspective approach to combating P. aeruginosa. However, despite the existence of highly effective in vitro inhibitors, further experiments are required in order to advance these inhibitors into pre-clinical studies. PMID:26085942

  14. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa.

    PubMed

    Damron, F Heath; Goldberg, Joanna B

    2012-05-01

    Pseudomonas aeruginosa, a Gram-negative bacterium, is a significant opportunistic pathogen associated with skin and soft tissue infections, nosocomial pneumonia and sepsis. In addition, it can chronically colonize the lungs of cystic fibrosis (CF) patients. Overproduction of the exopolysaccharide called alginate provides P. aeruginosa with a selective advantage and facilitates survival in the CF lung. The in vitro phenotype of alginate overproduction observed on solid culture media is referred to as mucoid. Expression of the alginate machinery and biosynthetic enzymes are controlled by the extracytoplasmic sigma factor, σ(22) (AlgU/T). The key negative regulator of both σ(22) activity and the mucoid phenotype is the cognate anti-sigma factor MucA. MucA sequesters σ(22) to the inner membrane inhibiting the sigma factor's transcriptional activity. The well-studied mechanism for transition to the mucoid phenotype is mutation of mucA, leading to loss of MucA function and therefore activation of σ(22) . Recently, regulated intramembrane proteolysis (RIP) has been recognized as a mechanism whereby proteolysis of the anti-sigma factor MucA leads to active σ(22) allowing P. aeruginosa to respond to environmental stress conditions by overproduction of alginate. The goal of this review is to illuminate the pathways leading to RIP that have been identified and proposed.

  15. General and condition-specific essential functions of Pseudomonas aeruginosa

    PubMed Central

    Lee, Samuel A.; Gallagher, Larry A.; Thongdee, Metawee; Staudinger, Benjamin J.; Lippman, Soyeon; Singh, Pradeep K.; Manoil, Colin

    2015-01-01

    The essential functions of a bacterial pathogen reflect the most basic processes required for its viability and growth, and represent potential therapeutic targets. Most screens for essential genes have assayed a single condition—growth in a rich undefined medium—and thus have not distinguished genes that are generally essential from those that are specific to this particular condition. To help define these classes for Pseudomonas aeruginosa, we identified genes required for growth on six different media, including a medium made from cystic fibrosis patient sputum. The analysis used the Tn-seq circle method to achieve high genome coverage and analyzed more than 1,000,000 unique insertion positions (an average of one insertion every 6.0 bp). We identified 352 general and 199 condition-specific essential genes. A subset of assignments was verified in individual strains with regulated expression alleles. The profile of essential genes revealed that, compared with Escherichia coli, P. aeruginosa is highly vulnerable to mutations disrupting central carbon-energy metabolism and reactive oxygen defenses. These vulnerabilities may arise from the stripped-down architecture of the organism’s carbohydrate utilization pathways and its reliance on respiration for energy generation. The essential function profile thus provides fundamental insights into P. aeruginosa physiology as well as identifying candidate targets for new antibacterial agents. PMID:25848053

  16. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems.

    PubMed

    Singh, Braj R; Singh, Brahma N; Singh, Akanksha; Khan, Wasi; Naqvi, Alim H; Singh, Harikesh B

    2015-09-08

    Quorum sensing (QS) is a chemical communication process that Pseudomonas aeruginosa uses to regulate virulence and biofilm formation. Disabling of QS is an emerging approach for combating its pathogenicity. Silver nanoparticles (AgNPs) have been widely applied as antimicrobial agents against human pathogenic bacteria and fungi, but not for the attenuation of bacterial QS. Here we mycofabricated AgNPs (mfAgNPs) using metabolites of soil fungus Rhizopus arrhizus BRS-07 and tested their effect on QS-regulated virulence and biofilm formation of P. aeruginosa. Transcriptional studies demonstrated that mfAgNPs reduced the levels of LasIR-RhlIR. Treatment of mfAgNPs inhibited biofilm formation, production of several virulence factors (e.g. LasA protease, LasB elastrase, pyocyanin, pyoverdin, pyochelin, rhamnolipid, and alginate) and reduced AHLs production. Further genes quantification analyses revealed that mfAgNPs significantly down-regulated QS-regulated genes, specifically those encoded to the secretion of virulence factors. The results clearly indicated the anti-virulence property of mfAgNPs by inhibiting P. aeruginosa QS signaling.

  17. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence

    PubMed Central

    Gonzalez, Manuel R.; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai

    2016-01-01

    ABSTRACT Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the

  18. Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    PubMed

    Gonzalez, Manuel R; Fleuchot, Betty; Lauciello, Leonardo; Jafari, Paris; Applegate, Lee Ann; Raffoul, Wassim; Que, Yok-Ai; Perron, Karl

    2016-01-01

    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound

  19. Use of an ultraviolet light at point-of-dispense faucet to eliminate Pseudomonas aeruginosa.

    PubMed

    Gerba, Charles P

    2015-05-01

    Tap water is believed to be a significant source of Pseudomonas aeruginosa in health care environments. This study evaluated an ultraviolet (UV) light point-of-dispense water treatment system for control of P aeruginosa. No P aeruginosa was detected in 30 different water dispensers in which the UV light device had been operating for 1-34 months. In comparison, P aeruginosa was found in other taps that did not feature this UV light system.

  20. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    PubMed

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections.

  1. Genetics of O-Antigen Biosynthesis in Pseudomonas aeruginosa

    PubMed Central

    Rocchetta, H. L.; Burrows, L. L.; Lam, J. S.

    1999-01-01

    Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants. PMID:10477307

  2. (1)H NMR-Based Global Metabolic Studies of Pseudomonas aeruginosa upon Exposure of the Quorum Sensing Inhibitor Resveratrol.

    PubMed

    Chen, Tongtong; Sheng, Jiyang; Fu, Yonghong; Li, Minghui; Wang, Junsong; Jia, Ai-Qun

    2017-02-03

    Quorum sensing (QS) is a process of bacterial communication that has been a novel target for drug discovery. Pyocyanin quantification assay confirmed that resveratrol was an effective quorum sensing inhibitor (QSI) against Pseudomonas aeruginosa PAO1. In this study, the global metabolite changes of P. aeruginosa PAO1 exposed to QSI resveratrol were investigated by (1)H NMR spectroscopy. A total of 40 metabolites containing amino acids, organic acid, organic amine, and energy storage compounds were identified. The changed metabolic profile indicated that resveratrol influenced pathways including oxidative stress, protein synthesis, and energy metabolism. Oxidative stress could upregulate the expression of genes related to QS in P. aeruginosa. It suggested that resveratrol could inhibit the QS systems in P. aeruginosa PAO1 by relieving oxidative stress due to its antioxidant activity. On the other hand, resveratrol could attenuate the pathogenicity of P. aeruginosa PAO1 by disturbing the TCA cycle so that anaerobic respiration could suppress the virulence because anaerobiosis could induce the loss of cytotoxicity regulated by QS in P. aeruginosa. These findings deepened our comprehending of the metabolic responses of P. aeruginosa PAO1 to resveratrol and pinpointed the possible underlying mechanism of resveratrol's inhibition effect on QS in P. aeruginosa PAO1.

  3. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection.

    PubMed

    Turner, Keith H; Everett, Jake; Trivedi, Urvish; Rumbaugh, Kendra P; Whiteley, Marvin

    2014-07-01

    Opportunistic infections caused by Pseudomonas aeruginosa can be acute or chronic. While acute infections often spread rapidly and can cause tissue damage and sepsis with high mortality rates, chronic infections can persist for weeks, months, or years in the face of intensive clinical intervention. Remarkably, this diverse infectious capability is not accompanied by extensive variation in genomic content, suggesting that the genetic capacity to be an acute or a chronic pathogen is present in most P. aeruginosa strains. To investigate the genetic requirements for acute and chronic pathogenesis in P. aeruginosa infections, we combined high-throughput sequencing-mediated transcriptome profiling (RNA-seq) and genome-wide insertion mutant fitness profiling (Tn-seq) to characterize gene expression and fitness determinants in murine models of burn and non-diabetic chronic wound infection. Generally we discovered that expression of a gene in vivo is not correlated with its importance for fitness, with the exception of metabolic genes. By combining metabolic models generated from in vivo gene expression data with mutant fitness profiles, we determined the nutritional requirements for colonization and persistence in these infections. Specifically, we found that long-chain fatty acids represent a major carbon source in both chronic and acute wounds, and P. aeruginosa must biosynthesize purines, several amino acids, and most cofactors during infection. In addition, we determined that P. aeruginosa requires chemotactic flagellar motility for fitness and virulence in acute burn wound infections, but not in non-diabetic chronic wound infections. Our results provide novel insight into the genetic requirements for acute and chronic P. aeruginosa wound infections and demonstrate the power of using both gene expression and fitness profiling for probing bacterial virulence.

  4. Synthesis, processing, and transport of Pseudomonas aeruginosa elastase.

    PubMed

    Kessler, E; Safrin, M

    1988-11-01

    Three cell-associated elastase precursors with approximate molecular weights of 60,000 (P), 56,000 (Pro I), and 36,000 (Pro II) were identified in Pseudomonas aeruginosa cells by pulse-labeling with [35S]methionine and immunoprecipitation. In the absence of inhibitors, cells of a wild-type strain as well as those of the secretion-defective mutant PAKS 18 accumulated Pro II as the only elastase-related radioactive protein. EDTA but not EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] inhibited the formation of Pro II, and this inhibition was accompanied by the accumulation of Pro I. P accumulated in cells labeled in the presence of ethanol (with or without EDTA), dinitrophenol plus EDTA, or carbonyl cyanide m-chlorophenyl hydrazone plus EDTA. Pro I and Pro II were localized to the periplasm, and as evident from pulse-chase experiments, Pro I was converted to the mature extracellular enzyme with Pro II as an intermediate of the reaction. P was located to the membrane fraction. Pro I but not Pro II was immunoprecipitated by antibodies specific to a protein of about 20,000 molecular weight (P20), which, as we showed before (Kessler and Safrin, J. Bacteriol. 170:1215-1219, 1988), forms a complex with an inactive periplasmic elastase precursor of about 36,000 molecular weight. Our results suggest that the elastase is made by the cells as a preproenzyme (P), containing a signal sequence of about 4,000 molecular weight and a "pro" sequence of about 20,000 molecular weight. Processing and export of the preproenzyme involve the formation of two periplasmic proenzyme species: proelastase I (56 kilodaltons [kDa]) and proelastase II (36 kDa). The former is short-lived, whereas proelastase II accumulates temporarily in the periplasm, most likely as a complex with the 20-kDa propeptide released from proelastase I upon conversion to proelastase II. The final step in elastase secretion seems to required both the proteolytic removal of a small peptide

  5. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa

    PubMed Central

    Garreta, Albert; Val-Moraes, Silvana P.; García-Fernández, Queralt; Busquets, Montserrat; Juan, Carlos; Oliver, Antonio; Ortiz, Antonio; Gaffney, Betty J.; Fita, Ignacio; Manresa, Àngels; Carpena, Xavi

    2013-01-01

    Lipoxygenases (LOXs), which are essential in eukaryotes, have no confirmed function in prokaryotes that are devoid of polyunsaturated fatty acids. The structure of a secretable LOX from Pseudomonas aeruginosa (Pa_LOX), the first available from a prokaryote, presents significant differences with respect to eukaryotic LOXs, including a cluster of helices acting as a lid to the active center. The mobility of the lid and the structural variability of the N-terminal region of Pa_LOX was confirmed by comparing 2 crystal forms. The binding pocket contains a phosphatidylethanolamine phospholipid with branches of 18 (sn-1) and 14/16 (sn-2) carbon atoms in length. Carbon atoms from the sn-1 chain approach the catalytic iron in a manner that sheds light on how the enzymatic reaction might proceed. The findings in these studies suggest that Pa_LOX has the capacity to extract and modify unsaturated phospholipids from eukaryotic membranes, allowing this LOX to play a role in the interaction of P. aeruginosa with host cells.—Garreta, A., Val-Moraes, S. P., García-Fernández, Q., Montserrat Busquets, C. J., Oliver, A., Ortiz, A., Gaffney, B. J., Fita, I., Manresa, A., Carpena, X. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. PMID:23985801

  6. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids

    PubMed Central

    Fourie, Ruan; Ells, Ruan; Swart, Chantel W.; Sebolai, Olihile M.; Albertyn, Jacobus; Pohl, Carolina H.

    2016-01-01

    Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens. PMID:26955357

  7. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Niewerth, Heiko

    2014-01-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule. PMID:25239889

  8. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43.

    PubMed

    Müller, Christine; Birmes, Franziska S; Niewerth, Heiko; Fetzner, Susanne

    2014-12-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.

  9. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs

    PubMed Central

    Sawa, Teiji; Hamaoka, Saeko; Kinoshita, Mao; Kainuma, Atsushi; Naito, Yoshifumi; Akiyama, Koichi; Kato, Hideya

    2016-01-01

    Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species (Ps. fluorescens, Ps. lundensis, Ps. weihenstephanensis, Ps. marginalis, Ps. rhodesiae, Ps. synxantha, Ps. libanensis, Ps. extremaustralis, Ps. veronii, Ps. simiae, Ps. trivialis, Ps. tolaasii, Ps. orientalis, Ps. taetrolens, Ps. syringae, Ps. viridiflava, and Ps. cannabina) and 8 Gram-negative bacteria from three other genera (Photorhabdus, Aeromonas, and Paludibacterium). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin. PMID:27792159

  10. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  11. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa.

    PubMed Central

    Johnson, M K; Boese-Marrazzo, D

    1980-01-01

    Of 12 strains of Pseudomonas aeruginosa, 10 were found to produce heat-stable extracellular hemolysin in highly aerated peptone broth supplemented with glycerol, fructose, or mannitol. Glucose supported good hemolysin production only in medium that was highly buffered. The yield of both cells and hemolysin was lower with organic acids as supplement. Growth-limiting phosphate concentrations produced maximum hemolysin levels. Purified hemolysin preparations contained two hemolytic glycolipids. The kinetics of hemolysis at various levels of purified lysin and the effects of variation in lysin and erythrocyte concentration are described. Images Fig. 3 PMID:6776058

  12. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa.

    PubMed

    Hariprasad, P; Chandrashekar, S; Singh, S Brijesh; Niranjana, S R

    2014-08-01

    A new Pseudomonas strain, designated as 2apa was isolated from tomato rhizosphere and identified as a member of species Pseudomonas aeruginosa based on its morphology, conventional, biochemical, cell wall fatty acid methyl ester analysis, and 16S rRNA gene sequence analysis. The strain 2apa was positive for root colonization, indole acetic acid (IAA), salicylic acid and siderophore production and inhibited the growth of wide range of microorganisms. Antimicrobial substances produced by this strain with further purification and structure elucidation proved to be phenazine. Under laboratory and greenhouse conditions the strain promoted plant growth and suppressed a wide range of foliar and root pathogens in tomato. The protection offered by strain 2apa to foliar pathogens is considered as induced systemic resistance and was further confirmed by enhanced accumulation of phenolics, elicitation of lipoxygenas activity, and jasmonic acid levels. The broad-spectrum antimicrobial and induced systemic resistance exhibiting strain P. aeruginosa 2apa can be used as an effective biological control candidate against devastating fungal and bacterial pathogens, which attack both root and foliar portions of tomato plant. Production of other functional traits such as IAA and siderophore may enhance its potential as biofertilizer.

  13. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB).

    PubMed Central

    Hoang, T T; Schweizer, H P

    1997-01-01

    The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemophilus influenzae. Chromosomal fabA and fabB mutants were isolated; the mutants were auxotrophic for unsaturated fatty acids. A temperature-sensitive fabA mutant was obtained by site-directed mutagenesis of a single base that induced a G101D change; this mutant grew normally at 30 degrees C but not at 42 degrees C, unless the growth medium was supplemented with oleate. By physical and genetic mapping, the fabAB genes were localized between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map. PMID:9286984

  14. A physical genome map of Pseudomonas aeruginosa PAO.

    PubMed Central

    Römling, U; Grothues, D; Bautsch, W; Tümmler, B

    1989-01-01

    A complete macrorestriction map of the 5.9 Mb genome of Pseudomonas aeruginosa PAO (DSM 1707) was constructed by the combination of various one- and two-dimensional pulsed field gel electrophoresis techniques. A total of 51 restriction sites (36 SpeI sites, 15 DpnI sites) were placed on the physical map yielding an average resolution of 110 kb. Several genes encoding virulence factors and enzymes of metabolic pathways were located on the anonymous map by Southern hybridization. Distances between the gene loci were similar on the genetic and physical maps, suggesting an even distribution of genome mobility throughout the bacterial chromosome. The four rRNA operons were organized in pairs of inverted repeats. The two-dimensional macro-restriction techniques described herein are generally applicable for the genome mapping of any prokaryote and lower eukaryote which yields resolvable fragment patterns on two-dimensional pulsed field gels. Images PMID:2512121

  15. Heat shock mediated labelling of Pseudomonas aeruginosa with quantum dots.

    PubMed

    Kumar, Natasha; Wiraja, Christian; Palanisamy, Kannan; Marsili, Enrico; Xu, Chenjie

    2016-06-01

    Biocompatible nanoparticles are good candidates to label bacteria for imaging and diagnosis purposes. A high labeling efficiency reduces the concentration of nanoparticles required for labeling and allows the labeled bacteria to be tracked for longer periods. This report explores the optimal labeling strategy for Pseudomonas aeruginosa, a common gram-negative opportunistic pathogen, with quantum dots. Three strategies including direct incubation, calcium chloride treatment, and heat shock are compared and the labeling efficiency is assessed through fluorescence microscopy and flow cytometry analysis. Of the three, heat shock is finally selected due to its comparable labeling efficiency and simplicity. Through the assay of the respiration rate of bacteria together with morphology analysis, the heat shock process does not show any negative effect over the cells activity even at sub-toxic concentrations.

  16. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    PubMed

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  17. Production of proteinase on noncarbohydrate carbon sources by Pseudomonas aeruginosa.

    PubMed

    Morihara, K

    1965-09-01

    Proteinase production by Pseudomonas aeruginosa was studied in medium containing noncarbohydrate materials, especially various hydrocarbons, as the sole carbon source. On heavy oil, kerosene, n-paraffinic hydrocarbon of C(12), C(14), or C(16), and propylene glycol, the bacteria grew well and high protinase production was observed. However, production on paraffinic hydrocarbon differed remarkably with strains of varied origins. The elastase-positive strain, IFO 3455, showed abundant growth and high proteinase production on medium containing a paraffin of C(12), C(14), or C(16), whereas the elastase-negative strain, IFO 3080, showed little growth on the same medium. Neither elastase-positive nor elastase-negative strains, however, utilized n-paraffins of C(5) to C(10), or various aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, and anthracene. The proteinases produced on the noncarbohydrate medium were identical with those produced in glucose medium.

  18. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    PubMed Central

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  19. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation

    PubMed Central

    Sinha, Sangram; Mukherjee, Samir Kumar

    2009-01-01

    A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411

  20. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  1. Production of exotoxin A by Pseudomonas aeruginosa in a chemically defined medium.

    PubMed

    DeBell, R M

    1979-04-01

    A defined medium was developed in which easily measured quantities of exotoxin A (PE) were produced by Pseudomonas aeruginosa PA-103. The medium contained three L-amino acids (arginine, aspartic acid, and alanine), basal and trace salts including 14 mM K2HPO4, 14 mM glucose, and 140 mM glycerol. The concentrations of amino acids which yielded most satisfactory results were 6 mM alanine, 13 mM aspartic acid, and 16 mM arginine. The identity of PE in the culture supernatant fluid was demonstrated by adenosine diphosphate-ribosyl transferase activity and by immunodiffusion with sheep antitoxin elicited with purified PE and with PE produced in Trypticase soy broth dialysate and pure PE as controls. PE production was also demonstrated by mouse lethality and passive hemagglutination. As compared to Trypticase soy broth dialysate, P. aeruginosa produced 25 to 50% PE in the defined medium. Different strains of P. aeruginosa produced PE in the defined medium in proportions relative to those in Trypticase soy broth dialysate.

  2. High Temperature Induced Antibiotic Sensitivity in Pseudomonas aeruginosa.

    DTIC Science & Technology

    1984-08-01

    protoplasts by actinomycin-D. J. Mol. Biol. 6: 247 - 249. 6. Ingram, J.M., K.-J. Cheng and J.W. Costerton. 1973. Alkaline phosphatase of Pseudomonas...bacteria. J. Bacteriol. 111: 827 - 832. 11. Mach, B. and E.L. Tatum. 1963. Ribonucleic acid synthesis in protoplasts of Escherichia coli: inhibition by

  3. ISOLATION AND PRELIMINARY CHARACTERISTICS OF THREE BACTERIOPHAGES ASSOCIATED WITH A LYSOGENIC STRAIN OF PSEUDOMONAS AERUGINOSA, 12

    PubMed Central

    Feary, Thomas W.; Fisher, Earl; Fisher, Thelma N.

    1964-01-01

    Feary, Thomas W. (Tulane University School of Medicine, New Orleans, La.), Earl Fisher, Jr., and Thelma N. Fisher. Isolation and preliminary characteristics of three bacteriophages associated with a lysogenic strain of Pseudomonas aeruginosa. J. Bacteriol. 87:196–208. 1964.—Three bacteriophages designated 7v, 7m, and 7s were isolated from a lysogenic strain of Pseudomonas aeruginosa designated Ps-7. The three viruses were found to be completely unrelated on the basis of plaque morphology, host range, serology, ultraviolet induction, sensitivity to heat, and particle morphology as revealed by electron microscopy. In addition, it was shown that the three phages were incapable of plaque formation on bacteria other than various strains of P. aeruginosa. Of the three phages, only phage 7v was capable of plaque formation on strain Ps-7. The growth of phage 7v on strain Ps-7 exhibited properties which suggest that this virus arises as the result of mutation in a temperate phage for which strain Ps-7 is lysogenic. Phages 7m and 7s are incapable of plaque formation on strain Ps-7, but are adsorbed at characteristic rates to cell suspensions of strain Ps-7. The relationship between phage 7m and strain Ps-7 was shown to meet the classical criteria for lysogeny. Because phage 7s contains ribonucleic acid as its nucleic acid component, it was concluded that its production by strain Ps-7 and the demonstration of immunity of strain Ps-7 to infection by phage 7s were not sufficient evidence to define the nature of the relationship between phage 7s and P. aeruginosa strain Ps-7. It was observed that under certain conditions the infectious titer of phage 7s preparations are markedly reduced in the presence of ribonuclease. Images PMID:14102854

  4. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds.

  5. Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates.

    PubMed

    Stevenson, Bradley J; Waller, Christopher C; Ma, Paul; Li, Kunkun; Cawley, Adam T; Ollis, David L; McLeod, Malcolm D

    2015-10-01

    The hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference. In this work, the heterologously expressed and purified arylsulfatase from Pseudomonas aeruginosa is shown to promote the mild enzyme-catalyzed hydrolysis of a range of steroid sulfates. The substrate scope of this P. aeruginosa arylsulfatase hydrolysis is compared with commercial crude enzyme preparations such as that derived from H. pomatia. A detailed kinetic comparison is reported for selected examples. Hydrolysis in a urine matrix is demonstrated for dehydroepiandrosterone 3-sulfate and epiandrosterone 3-sulfate. The purified P. aeruginosa arylsulfatase contains only sulfatase activity allowing for the selective hydrolysis of sulfate esters in the presence of glucuronide conjugates as demonstrated in the short three-step chemoenzymatic synthesis of 5α-androstane-3β,17β-diol 17-glucuronide (ADG, 1) from epiandrosterone 3-sulfate. The P. aeruginosa arylsulfatase is readily expressed and purified (0.9 g per L of culture) and thus provides a new and selective method for the hydrolysis of steroid sulfate esters in analytical sample preparation.

  6. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity.

    PubMed

    Bandara, H M H N; Nguyen, D; Mogarala, S; Osiñski, M; Smyth, H D C

    2015-01-01

    Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.

  7. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa

    PubMed Central

    Persat, Alexandre; Inclan, Yuki F.; Engel, Joanne N.; Stone, Howard A.; Gitai, Zemer

    2015-01-01

    Bacteria have evolved a wide range of sensing systems to appropriately respond to environmental signals. Here we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa detects contact with surfaces on short timescales using the mechanical activity of its type IV pili, a major surface adhesin. This signal transduction mechanism requires attachment of type IV pili to a solid surface, followed by pilus retraction and signal transduction through the Chp chemosensory system, a chemotaxis-like sensory system that regulates cAMP production and transcription of hundreds of genes, including key virulence factors. Like other chemotaxis pathways, pili-mediated surface sensing results in a transient response amplified by a positive feedback that increases type IV pili activity, thereby promoting long-term surface attachment that can stimulate additional virulence and biofilm-inducing pathways. The methyl-accepting chemotaxis protein-like chemosensor PilJ directly interacts with the major pilin subunit PilA. Our results thus support a mechanochemical model where a chemosensory system measures the mechanically induced conformational changes in stretched type IV pili. These findings demonstrate that P. aeruginosa not only uses type IV pili for surface-specific twitching motility, but also as a sensor regulating surface-induced gene expression and pathogenicity. PMID:26041805

  8. Pseudomonas aeruginosa: my research passion. Interview by Hannah Branch.

    PubMed

    Hazlett, Linda

    2013-07-01

    Linda Hazlett is a department chair and distinguished professor at Wayne State University (MI, USA). Her research is focused on the host immune response to Pseudomonas aeruginosa and its role in ocular infections. Dr Hazlett has been funded continuously by the NIH by R01 support for 34 years. She is currently principal investigator of two R01 grants from the National Eye Institute that study pathogenesis of P. aeruginosa in the eye. Dr Hazlett oversees four Course Directors who lead Year 1 medical student teaching, in addition to two graduate course directors. Furthermore, although not involved in medical teaching, she educates graduate students and mentors a Research Scientist and a Research Assistant Professor. Throughout her career, Dr Hazlett has achieved several honors and awards including Distinguished Professor at Wayne State University (2008), National Eye Institute Core Center (P30) grant for 1987-2013, Chair of Physiology Search 2008-2009, Member of the Academy of Scholars at Wayne State University, Association for Research in Vision and Ophthalmology fellow at the Gold Medal level (2009) and was an invited speaker at the Gordon Conference 2010.

  9. Mechanical destruction of pseudomonas aeruginosa biofilms by ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Bigelow, Timothy A.; Halverson, Larry J.; Middendorf, Jill; Rusk, Ben

    2012-10-01

    Medical implants are prone to colonization by bacterial biofilms, which are highly resistant to antibiotics. Normally, surgery is required to replace the infected implant. One promising non-invasive treatment option is to destroy the biofilm with high-intensity focused ultrasound (HIFU) exposure. In our study, Pseudomonas aeruginosa bacterial biofilms were grown on graphite disks in a flow chamber for three days prior to exposing them to ultrasound pulses of varying duration or burst period. The pulses were 20 cycles in duration at a frequency of 1.1 MHz from a spherically focused transducer (f/1, 63 mm focal length), creating peak compressional and rarefactional pressures at the disk surface of 30 and 13 MPa, respectively. P. aeruginosa were tagged with GFP and cells killed by HIFU were visualized using propidium iodide, which permeates membranes of dead cells, to aid determining the extent of biofilm destruction and whether cells are alive or dead. Our results indicate that a 30-s exposure and 6-ms pulse period or those combinations with the same number of pulses, were sufficient to destroy the biofilm and to kill the remaining cells. Reducing the number of pulses decreased biofilm destruction, leaving more dead and live bacteria on the surface.

  10. Genotyping of Pseudomonas aeruginosa isolated from cockroaches and human urine.

    PubMed

    Saitou, Keiko; Furuhata, Katsunori; Fukuyama, Masafumi

    2010-10-01

    Molecular-epidemiological analysis of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals and from patient urine was performed, employing randomly amplified polymorphic DNA (RAPD) analysis to investigate the usefulness of RAPD analysis. Four specific bands at positions of 993, 875, 521, and 402 bp were commonly detected using primer 272 in 16 of 45 cockroach-derived strains (35.6%), but not in 21 urine-derived strains. On analysis using primer 208, 4 specific bands at positions of 1,235, 1,138, 1,068, and 303 bp were commonly detected in 15 of the 45 cockroach-derived (33.3%) and 10 of the 21 patient urine-derived (47.6%) strains, in a total of 25 of 66 strains (37.8%). On cluster analysis, 12 (48.5%) and 16 (66.7%) clusters were grouped based on a homology of 89% or greater, using primer 272 and primer 208, respectively, showing that primer 208 was suitable for the confirmation of diversity. Seven patterns were clustered based on 100% homology using either primer, and 6 of these consisted of only cockroach-derived strains. In the individual groups with 100% homology, all strains in the group were isolated at an identical site during the same period. P. aeruginosa isolated from cockroaches showed diverse genotypes suggesting several sources of contamination, indicating the necessity for investigating infection control targeting cockroaches inhabiting hospitals.

  11. Pseudomonas aeruginosa Exopolyphosphatase Is Also a Polyphosphate: ADP Phosphotransferase.

    PubMed

    Beassoni, Paola R; Gallarato, Lucas A; Boetsch, Cristhian; Garrido, Mónica N; Lisa, Angela T

    2015-01-01

    Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn-1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4 (+) is an activator of the enzyme and may function at concentrations lower than those of K(+); (iii) Zn(2+) is also an activator of paPpx and may substitute Mg(2+) in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg(2+) and capable of producing ATP regardless of the presence or absence of K(+) or NH4 (+) ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.

  12. Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    PubMed Central

    Lins, R D; Straatsma, T P

    2001-01-01

    Lipopolysaccharides (LPSs) form the major constituent of the outer membrane of Gram-negative bacteria, and are believed to play a key role in processes that govern microbial metal binding, microbial adsorption to mineral surfaces, and microbe-mediated oxidation/reduction reactions at the bacterial exterior surface. A computational modeling capability is being developed for the study of geochemical reactions at the outer bacterial envelope of Gram-negative bacteria. A molecular model for the rough LPS of Pseudomonas aeruginosa has been designed based on experimentally determined structural information. An electrostatic model was developed based on Hartree-Fock SCF calculations of the complete LPS molecule to obtain partial atomic charges. The exterior of the bacterial membrane was assembled by replication of a single LPS molecule and a single phospholipid molecule. Molecular dynamics simulations of the rough LPS membrane of P. aeruginosa were carried out and trajectories were analyzed for the energetic and structural factors that determine the role of LPS in processes at the cell surface. PMID:11463645

  13. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.

    PubMed

    Chan, Benjamin K; Sistrom, Mark; Wertz, John E; Kortright, Kaitlyn E; Narayan, Deepak; Turner, Paul E

    2016-05-26

    Increasing prevalence and severity of multi-drug-resistant (MDR) bacterial infections has necessitated novel antibacterial strategies. Ideally, new approaches would target bacterial pathogens while exerting selection for reduced pathogenesis when these bacteria inevitably evolve resistance to therapeutic intervention. As an example of such a management strategy, we isolated a lytic bacteriophage, OMKO1, (family Myoviridae) of Pseudomonas aeruginosa that utilizes the outer membrane porin M (OprM) of the multidrug efflux systems MexAB and MexXY as a receptor-binding site. Results show that phage selection produces an evolutionary trade-off in MDR P. aeruginosa, whereby the evolution of bacterial resistance to phage attack changes the efflux pump mechanism, causing increased sensitivity to drugs from several antibiotic classes. Although modern phage therapy is still in its infancy, we conclude that phages, such as OMKO1, represent a new approach to phage therapy where bacteriophages exert selection for MDR bacteria to become increasingly sensitive to traditional antibiotics. This approach, using phages as targeted antibacterials, could extend the lifetime of our current antibiotics and potentially reduce the incidence of antibiotic resistant infections.

  14. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.

    PubMed

    Sio, Charles F; Otten, Linda G; Cool, Robbert H; Diggle, Stephen P; Braun, Peter G; Bos, Rein; Daykin, Mavis; Cámara, Miguel; Williams, Paul; Quax, Wim J

    2006-03-01

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3' position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.

  15. Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO1

    PubMed Central

    Sio, Charles F.; Otten, Linda G.; Cool, Robbert H.; Diggle, Stephen P.; Braun, Peter G.; Bos, Rein; Daykin, Mavis; Cámara, Miguel; Williams, Paul; Quax, Wim J.

    2006-01-01

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3′ position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies. PMID:16495538

  16. The increasing threat of Pseudomonas aeruginosa high-risk clones.

    PubMed

    Oliver, Antonio; Mulet, Xavier; López-Causapé, Carla; Juan, Carlos

    2015-01-01

    The increasing prevalence of chronic and hospital-acquired infections produced by multidrug-resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa strains is associated with significant morbidity and mortality. This growing threat results from the extraordinary capacity of this pathogen for developing resistance through chromosomal mutations and from the increasing prevalence of transferable resistance determinants, particularly those encoding carbapenemases or extended-spectrum β-lactamases (ESBLs). P. aeruginosa has a nonclonal epidemic population structure, composed of a limited number of widespread clones which are selected from a background of a large quantity of rare and unrelated genotypes that are recombining at high frequency. Indeed, recent concerning reports have provided evidence of the existence of MDR/XDR global clones, denominated high-risk clones, disseminated in hospitals worldwide; ST235, ST111, and ST175 are likely those more widespread. Noteworthy, the vast majority of infections by MDR, and specially XDR, strains are produced by these and few other clones worldwide. Moreover, the association of high-risk clones, particularly ST235, with transferable resistance is overwhelming; nearly 100 different horizontally-acquired resistance elements and up to 39 different acquired β-lactamases have been reported so far among ST235 isolates. Likewise, MDR internationally-disseminated epidemic strains, such as the Liverpool Epidemic Strain (LES, ST146), have been noted as well among cystic fibrosis patients. Here we review the population structure, epidemiology, antimicrobial resistance mechanisms and virulence of the P. aeruginosa high-risk clones. The phenotypic and genetic factors potentially driving the success of high-risk clones, the aspects related to their detection in the clinical microbiology laboratory and the implications for infection control and public health are also discussed.

  17. Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase*

    PubMed Central

    Owings, Joshua P.; Kuiper, Emily G.; Prezioso, Samantha M.; Meisner, Jeffrey; Varga, John J.; Zelinskaya, Natalia; Dammer, Eric B.; Duong, Duc M.; Seyfried, Nicholas T.; Albertí, Sebastián; Conn, Graeme L.; Goldberg, Joanna B.

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that trimethylates elongation factor-thermo-unstable (EF-Tu) on lysine 5. Lysine 5 methylation occurs in a temperature-dependent manner and is generally only seen when P. aeruginosa is grown at temperatures close to ambient (25 °C) but not at higher temperatures (37 °C). We have previously identified the gene, eftM (for EF-Tu-modifying enzyme), responsible for this modification and shown its activity to be associated with increased bacterial adhesion to and invasion of respiratory epithelial cells. Bioinformatic analyses predicted EftM to be a Class I S-adenosyl-l-methionine (SAM)-dependent methyltransferase. An in vitro methyltransferase assay was employed to show that, in the presence of SAM, EftM directly trimethylates EF-Tu. A natural variant of EftM, with a glycine to arginine substitution at position 50 in the predicted SAM-binding domain, lacks both SAM binding and enzyme activity. Mass spectrometry analysis of the in vitro methyltransferase reaction products revealed that EftM exclusively methylates at lysine 5 of EF-Tu in a distributive manner. Consistent with the in vivo temperature dependence of methylation of EF-Tu, preincubation of EftM at 37 °C abolished methyltransferase activity, whereas this activity was retained when EftM was preincubated at 25 °C. Irreversible protein unfolding at 37 °C was observed, and we propose that this instability is the molecular basis for the temperature dependence of EftM activity. Collectively, our results show that EftM is a thermolabile, SAM-dependent methyltransferase that directly trimethylates lysine 5 of EF-Tu in P. aeruginosa. PMID:26677219

  18. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.

    PubMed

    Soh, Eliza Ye-Chen; Chhabra, Siri R; Halliday, Nigel; Heeb, Stephan; Müller, Christine; Birmes, Franziska S; Fetzner, Susanne; Cámara, Miguel; Chan, Kok-Gan; Williams, Paul

    2015-11-01

    In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.

  19. Regional Control of Chromosome Segregation in Pseudomonas aeruginosa

    PubMed Central

    Lagage, Valentine

    2016-01-01

    Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in the gammaproteobacterium Pseudomonas aeruginosa, where impairing the ParABS system is very detrimental for growth, as it increases the generation time and leads to the formation of anucleate cells and to oriC mispositioning inside the cell. In this study, we investigate in vivo the ParABS system in P. aeruginosa. Using chromatin immuno-precipitation coupled with high throughput sequencing, we show that ParB binds to four parS site located within 15 kb of oriC in vivo, and that this binding promotes the formation of a high order nucleoprotein complex. We show that one parS site is enough to prevent anucleate cell formation, therefore for correct chromosome segregation. By displacing the parS site from its native position on the chromosome, we demonstrate that parS is the first chromosomal locus to be separated upon DNA replication, which indicates that it is the site of force exertion of the segregation process. We identify a region of approximatively 650 kb surrounding oriC in which the parS site must be positioned for chromosome segregation to proceed correctly, and we called it “competence zone” of the parS site. Mutant strains that have undergone specific genetic rearrangements allow us to propose that the distance between oriC and parS defines this “competence zone”. Implications for the control of chromosome segregation in P. aeruginosa are discussed. PMID:27820816

  20. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran

    PubMed Central

    Goli, Hamid Reza; Nahaei, Mohammad Reza; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Samadi Kafil, Hossein; Aghazadeh, Mohammad

    2016-01-01

    Background and Objectives: The prevalence of multidrug resistant Pseudomonas aeruginosa is the main reason of new drugs resurgence such as colistin. The main objectives of this study were to determine the antibiotic resistance pattern and the rate of colistin resistance along with its correlation with overexpression of MexAB-OprM and MexXY-OprM efflux pumps among P. aeruginosa isolates. Materials and Methods: Hundred clinical isolates were collected from 100 patients during 6 months in 2014. Susceptibility to the eight antibiotics was investigated using Kirby-Bauer and agar dilution methods. The Quantitative Real-time PCR was used to determine the expression levels of efflux genes. Results: Resistance rates to various antibiotics were as follows: ticarcillin (73%), ciprofloxacin (65%), aztreonam (60%), ceftazidime (55%), gentamicin (55%), imipenem (49%), piperacillin/tazobactam (34%) and colistin (2%). In disk diffusion method, only two isolates were non susceptible to colistin, however in agar dilution method the two isolates were confirmed as resistant and two others were intermediate resistant. Sixty eight (68%) isolates were multi-drug resistant and 10 isolates were susceptible to all tested antibiotics. Both colistin resistant isolates showed overexpression of both efflux pumps, but two intermediate resistant isolates exhibited reduction of efflux genes expression. Conclusions: Emergence of colistin resistance is increasing in P. aeruginosa indicating great challenge in the treatment of infections caused by MDR strains of this organism in Iran. ParRS may promote either induced or constitutive resistance to colistin through the activation of distinct mechanisms such as MDR efflux pumps, and LPS modification. PMID:27092226

  1. Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids.

    PubMed

    Palmer, Gregory C; Schertzer, Jeffrey W; Mashburn-Warren, Lauren; Whiteley, Marvin

    2011-01-01

    Pseudomonas aeruginosa produces a quorum sensing molecule termed the Pseudomonas Quinolone Signal (2-heptyl-3-hydroxy-4-quinolone; PQS) that regulates an array of genes involved in virulence. This chapter addresses four related techniques useful for detecting and quantifying PQS. First, extraction of PQS from complex mixtures (e.g. cell cultures) is described. Separation of PQS from extracts by Thin-Layer Chromatography (TLC) is used in combination with the natural fluorescence of the molecule for quantification. A second separation technique for the PQS precursor HHQ using High-Performance Liquid Chromatography (HPLC) is also described, and this assay exploits the molecule's characteristic absorbance for quantification. A third method for quantification of PQS from simple mixtures (e.g. enzyme assays) using fluorescence is outlined. Finally, a protocol for determining PQS interactions with membrane lipids through Fluorescence Resonance Energy Transfer (FRET) is presented. These techniques allow for quantification and characterization of PQS from diverse environments, a prerequisite to understanding the biological functions of QS molecules.

  2. Chemically defined antimicrobial susceptibility test medium for Pseudomonas aeruginosa.

    PubMed

    Jorgensen, J H; Lee, J C; Jones, P M

    1977-03-01

    A chemically defined growth medium containing physiological concentrations of magnesium and calcium ions was utilized in a microdilution procedure for antimicrobial drug susceptibility testing of Pseudomonas aeruginosa. Determinations of growth end points were simplified by use of sodium citrate as a sole carbon source and bromothymol blue as a pH indicator. Growth of the test organisms was detectable by a change in the indicator color from green to blue after alkalinization of the medium due to citrate utilization. Minimal inhibitory concentrations of amikacin, carbenicillin, gentamicin, and tobramycin were determined on 100 recent clinical isolates of Pseudomonas. Parallel determinations using the microdilution procedure and a conventional tube-broth dilution technique incorporating Mueller-Hinton broth with identical magnesium and calcium content generally agreed within one twofold dilution. Modal minimal inhibitory concentrations for susceptible strains using the microdilution method were: amikacin, 6 mug/ml; carbenicillin, 50 mug/ml; gentamicin, 1.5 mug/ml; tobramycin, 1.5 mug/ml. This modified microdilution technique allowed rapid, definitive minimal inhibitory concentration determinations, using growth end points defined by a color indicator change.

  3. Arginine Is a Critical Substrate for the Pathogenesis of Pseudomonas aeruginosa in Burn Wound Infections.

    PubMed

    Everett, Jake; Turner, Keith; Cai, Qiuxian; Gordon, Vernita; Whiteley, Marvin; Rumbaugh, Kendra

    2017-03-14

    Environmental conditions affect bacterial behavior and can greatly influence the course of an infection. However, the environmental cues that elicit bacterial responses in specific infection sites are relatively unknown. Pseudomonas aeruginosa is ubiquitous in nature and typically innocuous. However, it is also one of the most prevalent causes of fatal sepsis in burn wound patients. The aim of this study was to determine the impact of environmental factors, specifically the availability of arginine, on the pathogenesis of P. aeruginosa in burn wound infections. Comparison of burned versus noninjured tissue revealed that l-arginine (l-Arg) was significantly depleted in burn wounds as a consequence of elevated arginase produced by myeloid-derived suppressor cells. We also observed that l-Arg was a potent chemoattractant for P. aeruginosa, and while low concentrations of l-Arg increased P. aeruginosa's swimming motility, high concentrations resulted in diminished swimming. Based on these observations, we tested whether the administration of exogenous l-Arg into the burn wound could attenuate the virulence of P. aeruginosa in thermally injured mice. Administration of l-Arg resulted in decreased P. aeruginosa spread and sepsis and increased animal survival. Taken together, these data demonstrate that the availability of environmental arginine greatly influences the virulence of P. aeruginosa in vivo and may represent a promising phenotype-modulating tool for future therapeutic avenues.IMPORTANCE Despite our growing understanding of the pathophysiology of burn wounds and the evolution of techniques and practices to manage infections, sepsis remains a significant medical concern for burn patients. P. aeruginosa continues to be a leader among all causes of bacteremic infections due to its tendency to cause complications in immunocompromised patients and its ubiquitous presence in the hospital setting. With the unforgiving emergence of multidrug-resistant strains, it

  4. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  5. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  6. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  7. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  8. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    PubMed

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr.

  9. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in Catfish

    PubMed Central

    2013-01-01

    Background The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections. The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. Results The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8–10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. Conclusion Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem. PMID:24369750

  10. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  11. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  12. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3

    PubMed Central

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H.; Studholme, David J.; Passos da Silva, Daniel

    2014-01-01

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3. PMID:24994800

  13. Draft Genome Sequence of Beneficial Rice Rhizosphere Isolate Pseudomonas aeruginosa PUPa3.

    PubMed

    Uzelac, Gordana; Bertani, Iris; Kojic, Milan; Paszkiewicz, Konrad H; Studholme, David J; Passos da Silva, Daniel; Venturi, Vittorio

    2014-07-03

    Pseudomonas aeruginosa PUPa3 is a rhizosphere-colonizing and plant growth-promoting strain isolated from the rhizosphere of rice. This strain has, however, been shown to be pathogenic in two nonmammalian infection models. Here we report the draft genome sequence of P. aeruginosa PUPa3.

  14. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  15. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    PubMed Central

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa. PMID:27194047

  16. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  17. Plasmid-Determined Resistance to Boron and Chromium Compounds in Pseudomonas aeruginosa

    PubMed Central

    Summers, Anne O.; Jacoby, George A.

    1978-01-01

    Plasmids determining resistance to arsenic, mercury, silver, and tellurium compounds in Escherichia coli and Pseudomonas aeruginosa were tested for resistance to 40 other metal compounds. Resistance to trivalent boron and hexavalent chromium compounds was a property of certain P. aeruginosa plasmids. PMID:96730

  18. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation.

    PubMed

    Pezzoni, Magdalena; Meichtry, Martín; Pizarro, Ramón A; Costa, Cristina S

    2015-01-01

    One of the main stress factors that bacteria face in the environment is solar ultraviolet-A (UVA) radiation, which leads to lethal effects through oxidative damage. The aim of this work was to investigate the role of 2-heptyl-3-hydroxi-4-quinolone (the Pseudomonas quinolone signal or PQS) in the response of Pseudomonas aeruginosa to UVA radiation. PQS is an intercellular quorum sensing signal associated to membrane vesicles which, among other functions, regulates genes related to iron acquisition, forms stable complexes with iron and participates in oxidative phenomena. UVA exposure of the wild-type PAO1 strain and a pqsA mutant unable to produce PQS revealed a sensitising role for this signal. Research into the mechanism involved in this phenomenon revealed that catalase, an essential factor in the UVA defence, is not related to PQS-mediated UVA sensitivity. Absorption of UVA by PQS produced its own photo-degradation, oxidation of the probe 2',7'- dichlorodihydrofluorescein and generation of singlet oxygen and superoxide anion, suggesting that this signal could be acting as an endogenous photosensitiser. The results presented in this study could explain the high sensitivity to UVA of P. aeruginosa when compared to enteric bacteria.

  19. Exposure of Pseudomonas aeruginosa to green tea polyphenols enhances the tolerance to various environmental stresses.

    PubMed

    Liu, Xiaoxiang; Li, Jianrong; Yang, Yi; Chen, Xiaoqiang

    2012-12-01

    Green tea polyphenols (GTP) are widely used as food preservatives and are considered to be extremely safe. However, the bacterial response to GTP has not been well studied. Here we investigated whether short exposure of Pseudomonas aeruginosa to sub-lethal dose of GTP could lead to cross-resistance to some environmental stresses. One-hour exposure of P. aeruginosa to 1 mg/ml GTP significantly increased the tolerance to oxidants (2 mM H(2)O(2), 4 mM tert-butylhydroperoxide), low pH solution (pH 4.0) containing various organic acids (60 mM citric, acetic, propionic or lactic acid) and other stress conditions (47 °C, 25 % NaCl, 12 % ethanol and 150 μg/ml crystal violet). The development of H(2)O(2) tolerance in GTP-exposed cells was prevented by chloramphenicol, a well-known inhibitor of protein synthesis in prokaryotic cells. Furthermore, we observed significantly increased catalase activity after GTP exposure, suggesting that P. aeruginosa develops GTP-induced cross-resistance by increasing synthesis of protective protein. These observations raise concerns over the underlying risks associated with using GTP as food preservatives.

  20. Purification, characterization, and immunological cross-reactivity of alginates produced by mucoid Pseudomonas aeruginosa from patients with cystic fibrosis.

    PubMed

    Pedersen, S S; Espersen, F; Høiby, N; Shand, G H

    1989-04-01

    Alginates from nine mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis were purified by repeated ethanol precipitation, nuclease digestion, anion-exchange chromatography, dialysis, and lyophilization. Uronic acid constituted 72% of the dry weight when mannuronolactone was used as the internal standard in the carbazole-borate assay for uronic acids. The average degree of acetylation was 16%, and the ratio of mannuronic acid to gluluronic acid was 4.7. No homopolymeric blocks of guluronic acid were found when analyzed by nuclear magnetic resonance spectroscopy. Contaminating proteins were denatured by heating, and during purification the content of protein relative to alginate fell from 566 to 0.9%. The content of lipopolysaccharide was 0.012%. No immunological or biological activity was attributable to the protein or lipopolysaccharide content as estimated by immunoblotting, enzyme-linked immunosorbent assay (ELISA), and a neutrophil chemotaxis assay. Rabbits were hyperimmunized with P. aeruginosa alginates and alginate from the seaweed Laminaria hyperborea, and an ELISA that detected alginate-specific antibodies was developed. Antibodies to P. aeruginosa alginate were detected by ELISA in 1:4,000 dilutions of serum from patients with cystic fibrosis with chronic P. aeruginosa lung infection. The serological cross-reactions between serum from the nine patients with cystic fibrosis and the corresponding P. aeruginosa alginates were investigated and showed considerable heterogeneity. This finding indicates that P. aeruginosa alginate from more than one P. aeruginosa strain should be used in serological tests. There was no serological cross-reactivity between P. aeruginosa and Laminaria hyperborea alginate in either rabbits or patients with cystic fibrosis.

  1. Secretion of Pseudomonas aeruginosa Type III Cytotoxins is Dependent on Pseudomonas Quinolone Signal Concentration

    PubMed Central

    Singh, G.; Wu, B.; Baek, M.S.; Camargo, A.; Nguyen, A.; Slusher, N.A.; Srinivasan, R.; Wiener-Kronish, J.P.; Lynch, S.V.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two-component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent posttranslational control, specifically governing type III cytotoxin secretion, exists in this species. PMID:20570614

  2. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  3. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  4. Fructooligosacharides Reduce Pseudomonas aeruginosa PAO1 Pathogenicity through Distinct Mechanisms

    PubMed Central

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed. PMID:24465697

  5. Biological Markers of Pseudomonas aeruginosa Epidemic High-Risk Clones

    PubMed Central

    Mulet, Xavier; Cabot, Gabriel; Ocampo-Sosa, Alain A.; Domínguez, M. Angeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis

    2013-01-01

    A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total of 20 isolates from each of 4 resistance groups (XDR, MDR, ModR [resistant to 1 or 2 classes], and MultiS [susceptible to all antipseudomonals]), recovered from a multicenter study of P. aeruginosa bloodstream infections performed in 10 Spanish hospitals, were analyzed. A further set of 20 XDR isolates belonging to epidemic high-risk clones (ST-175 [n = 6], ST-111 [n = 7], and ST-235 [n = 7]) recovered from different geographical locations was also studied. When unknown, genotypes were documented through multilocus sequence typing. The biological parameters evaluated included twitching, swimming, and swarming motility, biofilm formation, production of pyoverdine and pyocyanin, spontaneous mutant frequencies, and the in vitro competition index (CI) obtained with a flow cytometry assay. All 20 (100%) XDR, 8 (40%) MDR, and 1 (5%) ModR bloodstream isolate from the multicenter study belonged to high-risk clones. No significant differences were observed between clonally diverse ModR and MultiS isolates for any of the parameters. In contrast, MDR/XDR high-risk clones showed significantly increased biofilm formation and mutant frequencies but significantly reduced motility (twitching, swimming, and swarming), production of pyoverdine and pyocyanin, and fitness. The defined biological markers of high-risk clones, which resemble those resulting from adaptation to chronic infections, could be useful for the design of specific treatment and infection control strategies. PMID:23979744

  6. Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins

    SciTech Connect

    Nguyen, Y.; Jackson, S; Aidoo, F; Junop, M; Burrows, L

    2010-01-01

    Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-{angstrom} X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal {alpha}-helix and four-stranded antiparallel {beta}-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the {alpha}{beta}-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA{sub PA14}, compensatory changes allow for maintenance of a similar shape.

  7. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase.

    PubMed

    Coleman, James P; Hudson, L Lynn; McKnight, Susan L; Farrow, John M; Calfee, M Worth; Lindsey, Claire A; Pesci, Everett C

    2008-02-01

    Pseudomonas aeruginosa is an opportunistic human pathogen which relies on several intercellular signaling systems for optimum population density-dependent regulation of virulence genes. The Pseudomonas quinolone signal (PQS) is a 3-hydroxy-4-quinolone with a 2-alkyl substitution which is synthesized by the condensation of anthranilic acid with a 3-keto-fatty acid. The pqsABCDE operon has been identified as being necessary for PQS production, and the pqsA gene encodes a predicted protein with homology to acyl coenzyme A (acyl-CoA) ligases. In order to elucidate the first step of the 4-quinolone synthesis pathway in P. aeruginosa, we have characterized the function of the pqsA gene product. Extracts prepared from Escherichia coli expressing PqsA were shown to catalyze the formation of anthraniloyl-CoA from anthranilate, ATP, and CoA. The PqsA protein was purified as a recombinant His-tagged polypeptide, and this protein was shown to have anthranilate-CoA ligase activity. The enzyme was active on a variety of aromatic substrates, including benzoate and chloro and fluoro derivatives of anthranilate. Inhibition of PQS formation in vivo was observed for the chloro- and fluoroanthranilate derivatives, as well as for several analogs which were not PqsA enzymatic substrates. These results indicate that the PqsA protein is responsible for priming anthranilate for entry into the PQS biosynthetic pathway and that this enzyme may serve as a useful in vitro indicator for potential agents to disrupt quinolone signaling in P. aeruginosa.

  8. Detection of extended spectrum beta lactamases, ampc beta lactamases and metallobetalactamases in clinical isolates of ceftazidime resistant Pseudomonas Aeruginosa.

    PubMed

    Umadevi, Sivaraman; Joseph, Noyal M; Kumari, Kandha; Easow, Joshy M; Kumar, Shailesh; Stephen, Selvaraj; Srirangaraj, Sreenivasan; Raj, Sruthi

    2011-10-01

    We studied the prevalence of ceftazidime resistance in Pseudomonas aeruginosa and the rates of extended-spectrum β-lactamase (ESBL), AmpC β-lactamase (AmpC) and metallo-β-lactamase (MBL) production among the ceftazidime resistant Pseudomonas aeruginosa. A very high rate of MBL production was observed, which suggested it to be an important contributing factor for ceftazidime resistance among Pseudomonas aeruginosa.

  9. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons.

    PubMed

    Schneider, Henriette; Geginat, Gernot; Hogardt, Michael; Kramer, Alexandra; Dürken, Matthias; Schroten, Horst; Tenenbaum, Tobias

    2012-06-01

    We analyzed an outbreak of invasive infections with an exotoxin U positive Pseudomonas aeruginosa strain within a pediatric oncology care unit. Environmental sampling and molecular characterization of the Pseudomonas aeruginosa strains led to identification of the outbreak source. An errant water jet into the sink within patient rooms was observed. Optimized outbreak management resulted in an abundance of further Pseudomonas aeruginosa infections within the pediatric oncology care unit.

  10. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.

    PubMed

    Rojas-Rosas, Oscar; Villafaña-Rojas, Juan; López-Dellamary, Fernando A; Nungaray-Arellano, Jesús; González-Reynoso, Orfil

    2007-07-01

    The production and characterization of polyhydroxyalkanoic acids (PHAs) from glucose in Pseudomonas aeruginosa ATCC 9027 is described. We determined that the synthesis of PHAs was not due to a complete lack of nitrogen source, as previously reported for other microorganisms. The synthesis of PHAs was observed during exponential growth and it depended on the carbon/nitrogen ratio in the culture. More significantly, the specific PHA accumulation rate in this phase was higher than that observed in the storage phase. This phenomenon was a consequence of higher extracellular production rates of gluconate and 2-ketogluconate detected during the storage phase. Therefore, the production of those acids decreased the synthesis of PHAs in P. aeruginosa. The maximum percentage of PHA accumulation obtained was 10.8% of the cell dry matter when all the glucose was consumed. The monomer composition of this PHA consisted only of saturated 3-hydroxy fatty acids (octanoic, decanoic, and dodecanoic acids) as shown by gas chromatography - mass spectroscopy and nuclear magnetic resonance analyses, where 3-hydroxydecanoic acid was the main component because of the high affinity of its PhaC synthase for this monomer. The physical properties of this PHA were determined by differential scanning calorimetry and gel permeation chromatography.

  11. Comparative Molecular docking analysis of DNA Gyrase subunit A in Pseudomonas aeruginosaPAO1.

    PubMed

    Gupta, Aman; Sharma, Vanashika; Tewari, Ashish Kumar; Surenderkumar, Vipul; Wadhwa, Gulshan; Mathur, Ashwani; Sharma, Sanjeev Kumar; Jain, Chakresh Kumar

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterium known for causing chronic infections in cystic fibrosis and chronic obstructive pulmonary disease (COPD) patients. Recently, several drug targets in Pseudomonas aeruginosa PAO1 have been reported using network biology approaches on the basis of essentiality and topology and further ranked on network measures viz. degree and centrality. Till date no drug/ligand molecule has been reported against this targets.In our work we have identified the ligand /drug molecules, through Orthologous gene mapping against Bacillus subtilis subsp. subtilis str. 168 and performed modelling and docking analysis. From the predicted drug targets in PA PAO1, we selected those drug targets which show statistically significant orthology with a model organism and whose orthologs are present in all the selected drug targets of PA PAO1.Modeling of their structure has been done using I-Tasser web server. Orthologous gene mapping has been performed using Cluster of Orthologs (COGs) and based on orthology; drugs available for Bacillus sp. have been docked with PA PAO1 protein drug targets using MoleGro virtual docker version 4.0.2.Orthologous gene for PA3168 gyrA is BS gyrAfound in Bacillus subtilis subsp. subtilis str. 168. The drugs cited for Bacillus sp. have been docked with PA genes and energy analyses have been made. Based on Orthologous gene mapping andin-silico studies, Nalidixic acid is reported as an effective drug against PA3168 gyrA for the treatment of CF and COPD.

  12. Persistence mechanisms in Pseudomonas aeruginosa from cystic fibrosis patients undergoing ciprofloxacin therapy.

    PubMed Central

    Diver, J M; Schollaardt, T; Rabin, H R; Thorson, C; Bryan, L E

    1991-01-01

    The mechanisms of persistence to ciprofloxacin in nine sets of Pseudomonas aeruginosa strains isolated during ciprofloxacin therapy of chronic lung infections in cystic fibrosis patients were studied. Low to moderate levels of ciprofloxacin resistance developed in each case. Each set of pretherapy ciprofloxacin-susceptible, during-therapy ciprofloxacin-resistant, and posttherapy ciprofloxacin-susceptible isolates were shown to be genotypically related by using a radiolabeled epidemiological gene probe. All ciprofloxacin-resistant isolates were found to have altered susceptibilities to both nalidixic acid and various chemically unrelated antibiotics. Analysis of possible resistance mechanisms showed that the strains had altered outer membrane protein or lipopolysaccharide profiles. Complementation of possible DNA gyrase mutations with a plasmid-borne, wild-type Escherichia coli gyrA gene indicated that altered DNA gyrase was at least partly responsible for ciprofloxacin resistance in all strains tested. Attempts to generate ciprofloxacin-susceptible revertants in vitro showed that in some strains reversion was rapid in the absence of ciprofloxacin, while in other strains it was not possible to generate revertants. These data indicate that persistence of Pseudomonas aeruginosa to ciprofloxacin involves changes in DNA gyrase and is associated with pleiotropic changes in outer membrane proteins and lipopolysaccharide. Images PMID:1656866

  13. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa.

    PubMed

    Pustelny, Christian; Albers, Alexander; Büldt-Karentzopoulos, Klaudia; Parschat, Katja; Chhabra, Siri Ram; Cámara, Miguel; Williams, Paul; Fetzner, Susanne

    2009-12-24

    2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) is a quorum-sensing signal molecule used by Pseudomonas aeruginosa. The structural similarity between 3-hydroxy-2-methyl-4(1H)-quinolone, the natural substrate for the 2,4-dioxygenase, Hod, and PQS prompted us to investigate whether Hod quenched PQS signaling. Hod is capable of catalyzing the conversion of PQS to N-octanoylanthranilic acid and carbon monoxide. In P. aeruginosa PAO1 cultures, exogenously supplied Hod protein reduced expression of the PQS biosynthetic gene pqsA, expression of the PQS-regulated virulence determinants lectin A, pyocyanin, and rhamnolipids, and virulence in planta. However, the proteolytic cleavage of Hod by extracellular proteases, competitive inhibition by the PQS precursor 2-heptyl-4(1H)-quinolone, and PQS binding to rhamnolipids reduced the efficiency of Hod as a quorum-quenching agent. Nevertheless, these data indicate that enzyme-mediated PQS inactivation has potential as an antivirulence strategy against P. aeruginosa.

  14. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Zhang, Shenghua; Ye, Chengsong; Lin, Huirong; Lv, Lu; Yu, Xin

    2015-02-03

    The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy.

  15. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.

    PubMed

    Toyofuku, Masanori; Roschitzki, Bernd; Riedel, Katharina; Eberl, Leo

    2012-10-05

    Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells.

  16. Identification of Chemical Compounds That Inhibit Protein Synthesis in Pseudomonas aeruginosa.

    PubMed

    Palmer, Stephanie O; Hu, Yanmei; Keniry, Megan; Bullard, James M

    2016-11-21

    Four inhibitory compounds were identified using a poly-uridylic acid (polyU) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa in an in vitro screen of a synthetic compound library. The compounds were specific for inhibition of bacterial protein synthesis. In enzymatic assays, the compounds inhibited protein synthesis with IC50 values ranging from 20 to 60 μM. Minimum inhibitory concentrations (MICs) were determined in cultures for a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae All the compounds were observed to have broad-spectrum activity and inhibited an efflux pump mutant strain of P. aeruginosa with MICs of 0.5-16 μg/mL. The molecular target of two compounds was determined to be PheRS. These two compounds were bacteriostatic against both Gram-positive and Gram-negative pathogens. In competition assays, they were not observed to compete with the natural substrates ATP or phenylalanine for active site binding. The other two compounds directly inhibited the ribosome and were bactericidal against both Gram-positive and Gram-negative pathogens. In cytotoxicity MTT testing in human cell lines, the compounds were shown to be from 2500- to 30,000-fold less active than the control staurosporine.

  17. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    PubMed

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  18. Prevention of Pseudomonas aeruginosa adhesion by electric currents.

    PubMed

    Shim, Soojin; Hong, Seok Hoon; Tak, Yongsug; Yoon, Jeyong

    2011-02-01

    The process of controlling bacterial adhesion using an electric current deserves attention because of its ease of automation and environmentally friendly nature. This study investigated the role of electric currents (negative, positive, alternating) for preventing adhesion of Pseudomonas aeruginosa and achieving bacterial inactivation. Indium tin oxide (ITO) film was used as a working electrode to observe adhesion and inactivation under electric polarization. Electric current types were classified into negative, positive, and alternating current. The working electrode acted as a cathode or anode by applying a negative or positive current, and an alternating current indicates that the negative current was combined sequentially with the positive current. The numbers of adhered cells were compared under a flow condition, and the in situ behavior of the bacterial cells and the extent of their inactivation were also investigated using time-lapse recording and live/dead staining, respectively. The application of a negative current prevented bacterial adhesion significantly (∼81% at 15.0 μA cm(-2)). The positive current did not significantly inhibit adhesion (<20% at 15.0 μA cm(-2)), compared to the nonpolarized case. The alternating current had a similar effect as the negative current on preventing bacterial adhesion, but it also exhibited bactericidal effects, making it the most suitable method for bacterial adhesion control.

  19. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  20. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    SciTech Connect

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  1. Uranyl Precipitation by Pseudomonas aeruginosa via Controlled Polyphosphate Metabolism

    PubMed Central

    Renninger, Neil; Knopp, Roger; Nitsche, Heino; Clark, Douglas S.; Keasling, Jay D.

    2004-01-01

    The polyphosphate kinase gene from Pseudomonas aeruginosa was overexpressed in its native host, resulting in the accumulation of 100 times the polyphosphate seen with control strains. Degradation of this polyphosphate was induced by carbon starvation conditions, resulting in phosphate release into the medium. The mechanism of polyphosphate degradation is not clearly understood, but it appears to be associated with glycogen degradation. Upon suspension of the cells in 1 mM uranyl nitrate, nearly all polyphosphate that had accumulated was degraded within 48 h, resulting in the removal of nearly 80% of the uranyl ion and >95% of lesser-concentrated solutions. Electron microscopy, energy-dispersive X-ray spectroscopy, and time-resolved laser-induced fluorescence spectroscopy (TRLFS) suggest that this removal was due to the precipitation of uranyl phosphate at the cell membrane. TRLFS also indicated that uranyl was initially sorbed to the cell as uranyl hydroxide and was then precipitated as uranyl phosphate as phosphate was released from the cell. Lethal doses of radiation did not halt phosphate secretion from polyphosphate-filled cells under carbon starvation conditions. PMID:15574942

  2. Electron Flow through Nitrotyrosinate in Pseudomonas aeruginosa Azurin

    PubMed Central

    Warren, Jeffrey J.; Herrera, Nadia; Hill, Michael G.; Winkler, Jay R.; Gray, Harry B.

    2013-01-01

    We have designed ruthenium-modified Pseudomonas aeruginosa azurins that incorporate 3-nitrotyrosine (NO2YOH) between Ru(2,2′-bipyridine)2(imidazole)(histidine) and Cu redox centers in electron transfer (ET) pathways. We investigated the structures and reactivities of three different systems: RuH107NO2YOH109, RuH124NO2YOH122, and RuH126NO2YOH122. RuH107NO2YOH109, unlabeled H124NO2YOH122, and unlabeled H126NO2YOH122 were structurally characterized. The pKas of NO2YOH at positions 122 and 109 are 7.2 and 6.0, respectively. Reduction potentials of 3-nitrotyrosinate (NO2YO−)-modified azurins were estimated from cyclic and differential pulse voltammetry data: oxidation of NO2YO−122 occurs near 1.1 versus NHE; that for NO2YO−109 is near 1.2 V. Our analysis of transient optical spectroscopic experiments indicates that hopping via NO2YO− enhances CuI oxidation rates over single-step ET by factors of 32 (RuH107NO2YO−109), 46 (RuH126NO2YO−122), and 13 (RuH124NO2YO−122). PMID:23859602

  3. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  4. Variability in Pseudomonas aeruginosa Lipopolysaccharide Expression during Crude Oil Degradation

    PubMed Central

    Norman, R. Sean; Frontera-Suau, Roberto; Morris, Pamela J.

    2002-01-01

    Bacterial utilization of crude oil components, such as the n-alkanes, requires complex cell surface adaptation to allow adherence to oil. To better understand microbial cell surface adaptation to growth on crude oil, the cell surface characteristics of two Pseudomonas aeruginosa strains, U1 and U3, both isolated from the same crude oil-degrading microbial community enriched on Bonny Light crude oil (BLC), were compared. Analysis of growth rates demonstrated an increased lag time for U1 cells compared to U3 cells. Amendment with EDTA inhibited U1 and U3 growth and degradation of the n-alkane component of BLC, suggesting a link between cell surface structure and crude oil degradation. U1 cells demonstrated a smooth-to-rough colony morphology transition when grown on BLC, while U3 cells exhibited rough colony morphology at the outset. Combining high-resolution atomic force microscopy of the cell surface and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracted lipopolysaccharides (LPS), we demonstrate that isolates grown on BLC have reduced O-antigen expression compared with that of glucose-grown cells. The loss of O-antigen resulted in shorter LPS molecules, increased cell surface hydrophobicity, and increased n-alkane degradation. PMID:12324360

  5. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  6. Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

    2011-01-01

    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

  7. Inhibition of Neisseria gonorrhoeae by a Bacteriocin from Pseudomonas aeruginosa

    PubMed Central

    Morse, Stephen A.; Vaughan, Patrick; Johnson, Deanne; Iglewski, Barbara H.

    1976-01-01

    Supernatants from broth-grown cultures of Pseudomonas aeruginosa PA 103 exhibited bactericidal activity against Neisseria gonorrhoeae. The concentration of the bactericidal substance increased significantly after induction by mitomycin C. Purification was effected by salt fractionation, chromatography on diethylaminoethyl-cellulose, and sedimentation by centrifugation at 100,000 × g for 90 min. Electron microscopy of this purified preparation revealed structures resembling R-type pyocins in both the contracted and uncontracted state. Pyocins in the contracted state were observed in association with the gonococcal cell surface. No loss of bactericidal activity was observed after treatment with proteolytic enzymes. Standard pyocin typing procedures identified the pyocin pattern as 611 131. The bactericidal activity of this pyocin was examined on various species of Neisseria. Out of 56 strains of N. gonorrhoeae from disseminated and nondisseminated infections, all were susceptible to pyocin 611 131. However, only 3 of 20 strains of N. meningitidis and 5 of 16 strains of N. lactamica were susceptible. The bactericidal activity that pyocin 611 131 has for N. gonorrhoeae and other species of Neisseria is significant because it departs from the expected specificity that heretofore has distinguished bacteriocins from most “classical” antibiotics. Images PMID:825024

  8. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa

    PubMed Central

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas

    2016-01-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  9. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    PubMed Central

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  10. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction

    PubMed Central

    Yang, Xiaojing; Kuk, Jane; Moffat, Keith

    2008-01-01

    Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 Å resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an “arm” structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity. PMID:18799746

  11. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms.

    PubMed Central

    Suci, P A; Mittelman, M W; Yu, F P; Geesey, G G

    1994-01-01

    Bacterial infections associated with indwelling medical devices often demonstrate an intrinsic resistance to antimicrobial therapies. In order to explore the possibility of transport limitation to biofilm bacteria as a contributing factor, the penetration of a fluoroquinolone antibiotic, ciprofloxacin, through Pseudomonas aeruginosa biofilms was investigated. Attenuated total reflection Fourier transform infrared (ATR/FT-IR) spectrometry was employed to monitor bacterial colonization of a germanium substratum, transport of ciprofloxacin to the biofilm-substratum interface, and interaction of biofilm components with the antibiotic in a flowing system. Transport of the antibiotic to the biofilm-substratum interface during the 21-min exposure to 100 micrograms/ml was found to be significantly impeded by the biofilm. Significant changes in IR bands of the biofilm in regions of the spectrum associated with RNA and DNA vibrational modes appeared following exposure to the antibiotic, indicating chemical modification of biofilm components. These results suggest that transport limitations may be an important factor in the antimicrobial resistance of biofilm bacteria and that ATR/FT-IR spectrometry may be used to follow the time course of antimicrobial action in biofilms in situ. Images PMID:7811031

  12. Child abuse followed by fatal systemic Pseudomonas aeruginosa infection.

    PubMed

    Senati, Massimo; Polacco, Matteo; Grassi, Vincenzo M; Carbone, Arnaldo; De-Giorgio, Fabio

    2013-01-01

    Child abuse has become an increasingly serious diagnostic challenge for physicians. The clinical manifestations include malnutrition and sometimes infection. In fact, stress in children has been reported to increase corticosteroid levels. As a consequence, the thymus begins an involution process, producing a severe impairment in cellular and humoral immunity. Here, we report the case of a 7-year-old child who suffered a prolonged history of abuse and died from a systemic Pseudomonas aeruginosa infection. An initial local chronic infection propagated to the pelvic lymph nodes in an immunologically weak body and evolved into abscesses/phlegmons of the pelvic tissue, sepsis, acute respiratory distress syndrome, multiple organ failure and finally, death. Abused children have to be considered as potentially immunologically impaired patients; therefore, it is very important to screen them for opportunistic infections. Moreover, a history of unusual or recurring infections may indicate abuse, especially neglect or malnutrition. In these cases, further investigations should be conducted to determine if a protective service case should be opened. Thus, there is a need for multidisciplinary cooperation to ensure the early identification and prevention of child abuse.

  13. Novel polymeric nanoparticles targeting the lipopolysaccharides of Pseudomonas aeruginosa.

    PubMed

    Long, Y; Li, Z; Bi, Q; Deng, C; Chen, Z; Bhattachayya, S; Li, C

    2016-04-11

    Considering outburst of various infectious diseases globally, nanoparticle assisted targeted drug delivery has emerged as a promising strategy that can enhance the therapeutic efficacy and minimize the undesirable side effects of an antimicrobial agents. Molecular imprinting is a newly developed strategy that can synthesize a drug carrier with highly stable ligand-like 'cavity', may serve as a new platform of ligand-free targeted drug delivery systems. In this study, we use the amphiphilic lipopolysaccharides, derived from Pseudomonas aeruginosa as imprinting template and obtained an evenly distributed sub-40 nm polymeric nanoparticles by using inverse emulsion method. These molecularly imprinted nanoparticles (MIPNPs) showed specific binding to the lipopolysaccharide as determined by fluorescence polarization and microscale thermophoresis. MIPNPs showed selective recognition of target bacteria as detected by flow cytometry. Additionally, MIPNPs exhibited the in vivo targeting capabilities in both the keratitis model and meningitis model. Moreover, the photosensitizer methylene blue-loaded MIPNPs presented significantly strong inhibition of bacterial Growth, compared to non-imprinted controls for in vitro model of the photodynamic therapy. Our study shows an attempt to design a magic bullet by molecular imprinting that may provide a novel approach to generate synthetic carrier for targeting pathogen and treatment for a variety of infectious human diseases.

  14. Experimental Pseudomonas aeruginosa Infection of the Mouse Cornea

    PubMed Central

    Gerke, John R.; Magliocco, Michael V.

    1971-01-01

    Pseudomonas aeruginosa infection of human cornea is rare but serious. The work of previous investigators using experimental infection primarily of rabbit cornea resulted in successful therapy for 10 to 50% of clinical cases. The advantage of using the mouse is demonstrated. The methods we adapted for characterizing the untreated experimental infection included: incising the cornea to enable establishing the infection; corneal examination with a steroscopic microscope; grading corneal pathology; qualitative and quantitative monitoring of the infecting bacteria by culturing and staining sectioned and dissected tissues. The characteristics of the tissue pathology, host response, and infection were similar to those reported for other animals and man. Corneal pathology was frequently nearly maximal 1 day after infection; host response involved a progression of events of long duration; pathology persisted well beyond the period of bacterial infection. The infection was essentially noncommunicable, and invasiveness was limited to the tissues of the incised eye. The results show the possibility of tests for invasiveness of clinical isolates and for screening for therapeutic and prophylactic measures. PMID:16557955

  15. MrkD sub 1P from Klebsiella pneumoniae IA565 Allows for Co-existence with Pseudomonas aeruginosa and Protection from Protease-mediated Biofilm Detachment

    DTIC Science & Technology

    2013-11-01

    secreted effectors, such as phenazines , rhamnolipids, cis-2-decenoic acid, alkaline protease, exotoxins, and elastase, which are used by P. aeruginosa...demonstrated with various types of microorganisms, including Candida albi- cans, which is sensitive to phenazine (41), and Staphylococcus au- reus...2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines . mBio 4(1):e00526 – 00512. doi:10 .1128/mBio

  16. Alginate Lyase Promotes Diffusion of Aminoglycosides through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa

    PubMed Central

    Hatch, Richard A.; Schiller, Neal L.

    1998-01-01

    We demonstrated that a 2% suspension of Pseudomonas aeruginosa alginate completely blocked the diffusion of gentamicin and tobramycin, but not that of carbenicillin, illustrating how alginate production can help protect P. aeruginosa growing within alginate microcolonies in patients with cystic fibrosis (CF) from the effects of aminoglycosides. This aminoglycoside diffusion barrier was degraded with a semipurified preparation of P. aeruginosa alginate lyase, suggesting that this enzyme deserves consideration as an adjunctive agent for CF patients colonized by mucoid strains of P. aeruginosa. PMID:9559826

  17. Virulence genome analysis of Pseudomonas aeruginosa VRFPA10 recovered from patient with scleritis.

    PubMed

    Murugan, Nandagopal; Malathi, Jambulingam; Umashankar, Vetrivel; Madhavan, Hajib Narahari Rao

    2017-06-01

    Infectious keratitis is a major cause of blindness, next to cataract and majority of cases are mainly caused by gram negative bacterium Pseudomonas aeruginosa (P. aeruginosa). In this study, we investigated a P. aeruginosa VRFPA10 genome which exhibited susceptibility to commonly used drugs in vitro but the patient had poor prognosis due to its hyper virulent nature. Genomic analysis of VRFPA10 deciphered multiple virulence factors and P.aeruginosa Genomic Islands (PAGIs) VRFPA10 genome which correlated with hyper virulence nature of the organism. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession numbers LFMZ01000001-LFMZ01000044.

  18. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    SciTech Connect

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  19. Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F gene.

    PubMed Central

    Duchêne, M; Schweizer, A; Lottspeich, F; Krauss, G; Marget, M; Vogel, K; von Specht, B U; Domdey, H

    1988-01-01

    Porin F is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. It forms water-filled pores of variable size. Porin F is a candidate for a vaccine against P. aeruginosa because it antigenically cross-reacts in all serotype strains of the International Antigenic Typing Scheme. We have isolated the gene for porin F from a lambda EMBL3 bacteriophage library by using oligodeoxynucleotide hybridization probes and have determined its nucleotide sequence. Different peptide sequences obtained from isolated porin F confirmed the deduced protein sequence. The mature protein consists of 326 amino acid residues and has a molecular weight of 35,250. The precursor contains an N-terminal signal peptide of 24 amino acid residues. S1 protection and primer extension experiments, together with Northern (RNA) blots, indicate that the mRNA coding for porin F is monocistronic with short untranslated regions of about 58 bases at the 5' end and about 47 bases at the 3' end. The sequences in the -10 and -35 regions upstream of the transcriptional start site are closely related to the Escherichia coli promoter consensus sequences, which explains why the porin F gene is expressed in E. coli under the control of its own promoter. The amino acid sequence of porin F is not homologous to the different E. coli porins OmpF, OmpC, LamB, and PhoE. On the other hand, a highly homologous region of 30 amino acids between the OmpA proteins of different enteric bacteria and porin F of P. aeruginosa was detected. The core region of the homology to E. coli OmpA had 11 of 12 amino acid residues in common. Images PMID:2447060

  20. Production of Biologically Active 7,10-dihydroxy-8(E)-octadecenoic Acid from Korean Pine Seed Oil by Pseudomonas aeruginosa PR3.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxyl group of hydroxyl fatty acid (HFA) cause HFA to carry special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Microbial conversion of oleic acid into 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) caused DOD to carry strong antibacterial activit...

  1. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in Pseudomonas aeruginosa

    PubMed Central

    Huang, Yong-Heng; Lin, Jin-Shui; Ma, Jin-Cheng; Wang, Hai-Hong

    2016-01-01

    Pseudomonas aeruginosa is extremely resistant to triclosan. Previous studies have shown that P. aeruginosa encodes a triclosan-resistant enoyl-acyl-carrier protein reductase (ENR), FabV, and that deletion of fabV causes P. aeruginosa to be extremely sensitive to triclosan. In this report, we complemented a P. aeruginosa fabV deletion strain with several triclosan-resistant ENR encoding genes, including Vibrio cholerae fabV, Bacillus subtilis fabL and Enterococcus faecalis fabK. All complemented strains restored triclosan resistance to the level of the wild-type strain, which confirmed that triclosan-resistant ENR allows P. aeruginosa to be extremely resistant to triclosan. Moreover, fabV exhibits pleiotropic effects. Deletion of fabV led P. aeruginosa to show attenuated swarming motility, decreased rhamnolipid, pyoverdine and acyl-homoserine lactones (AHLs) production. Complementation of the fabV mutant with any one ENR encoding gene could restore these features to some extent, in comparison with the wild-type strain. Furthermore, we found that addition of exogenous AHLs could restore the fabV mutant strain to swarm on semisolid plates and to produce more virulence factors than the fabV mutant strain. These findings indicate that deletion of fabV reduced the activity of ENR in P. aeruginosa, decreased fatty acid synthesis, and subsequently depressed the production of AHLs and other virulence factors, which finally may led to a reduction in the pathogenicity of P. aeruginosa. Therefore, fabV should be an ideal target for the control of P. aeruginosa infectivity. PMID:27965638

  2. Expression of a fully functional cd1 nitrite reductase from Pseudomonas aeruginosa in Pseudomonas stutzeri.

    PubMed

    Arese, Marzia; Zumft, Walter G; Cutruzzolà, Francesca

    2003-01-01

    Nitrite reductases are redox enzymes catalysing the one electron reduction of nitrite to nitrogen monoxide (NO) within the bacterial denitrification process. We have cloned the gene for cd(1) nitrite reductase (Pa-nirS) from Pseudomonas aeruginosa into the NiRS(-) strain MK202 of Pseudomonas stutzeri and expressed the enzyme under denitrifying conditions. In the MK202 strain, denitrification is abolished by the disruption of the endogenous nitrite reductase gene; thus, cells can be grown only in the presence of oxygen. After complementation with Pa-nirS gene, cells supplemented with nitrate can be grown in the absence of oxygen. The presence of nitrite reductase was proven in vivo by the demonstration of NO production, showing that the enzyme was expressed in the active form, containing both heme c and d(1). A purification procedure for the recombinant PaNir has been developed, based on the P. aeruginosa purification protocol; spectroscopic analysis of the purified protein fully confirms the presence of the d(1) heme cofactor. Moreover, the functional characterisation of the recombinant NiR has been carried out by monitoring the production of NO by the purified NiR enzyme in the presence of nitrite by an NO electrode. The full recovery of the denitrification properties in the P. stutzeri MK202 strain by genetic complementation with Pa-NiR underlines the high homology between enzymes of nitrogen oxianion respiration. Our work provides an expression system for cd(1) nitrite reductase and its site-directed mutants in a non-pathogenic strain and is a starting point for the in vivo study of recombinant enzyme variants.

  3. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase.

    PubMed

    Zumft, W G; Dreusch, A; Löchelt, S; Cuypers, H; Friedrich, B; Schneider, B

    1992-08-15

    The nosZ genes encoding the multicopper enzyme nitrous oxide reductase of Alcaligenes eutrophus H16 and the type strain of Pseudomonas aeruginosa were cloned and sequenced for structural comparison of their gene products with the homologous product of the nosZ gene from Pseudomonas stutzeri [Viebrock, A. & Zumft, W. G. (1988) J. Bacteriol. 170, 4658-4668] and the subunit II of cytochrome-c oxidase (COII). Both types of enzymes possess the CuA binding site. The nosZ genes were identified in cosmid libraries by hybridization with an internal 1.22-kb PstI fragment (NS220) of nosZ from P. stutzeri. The derived amino acid sequences indicate unprocessed gene products of 70084 Da (A. eutrophus) and 70695 Da (P. aeruginosa). The N-terminal sequences of the NosZ proteins have the characteristics of signal peptides for transport. A homologous domain, extending over at least 50 residues, is shared among the three derived NosZ sequences and the CuA binding region of 32 COII sequences. Only three out of nine cysteine residues of the NosZ protein (P. stutzeri) are invariant. Cys618 and Cys622 are assigned to a binuclear center, A, which is thought to represent the CuA site of NosZ and is located close to the C terminus. Two conserved histidines, one methionine, one aspartate, one valine and two aromatic residues are also part of the CuA consensus sequence, which is the domain homologous between the two enzymes. The CuA consensus sequence, however, lacks four strictly conserved residues present in all COII sequences. Cys165 is likely to be a ligand of a second binuclear center, Z, for which we assume mainly histidine coordination. Of 23 histidine residues in NosZ (P. stutzeri), 14 are invariant, 7 of which are in regions with a degree of conservation well above the 50% positional identity between the Alcaligenes and Pseudomonas sequences. Conserved tryptophan residues are located close to several potential copper ligands. Trp615 may contribute to the observed quenching of

  4. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  5. Assessment of the effectiveness of silver-coated dressing, chlorhexidine acetate (0.5%), citric acid (3%), and silver sulfadiazine (1%) for topical antibacterial effects against the multi-drug resistant Pseudomonas aeruginosa infecting full-skin thickness burn wounds on rats.

    PubMed

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 10(8) CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp.

  6. Assessment of the Effectiveness of Silver-Coated Dressing, Chlorhexidine Acetate (0.5%), Citric Acid (3%), and Silver Sulfadiazine (1%) for Topical Antibacterial Effects Against the Multi-Drug Resistant Pseudomonas Aeruginosa Infecting Full-Skin Thickness Burn Wounds on Rats

    PubMed Central

    Yabanoglu, Hakan; Basaran, Ozgur; Aydogan, Cem; Azap, Ozlem Kurt; Karakayali, Feza; Moray, Gokhan

    2013-01-01

    The aim of this study was to compare the effects of four different topical antimicrobial dressings on a multi-drug resistant Pseudomonas aeruginosa contaminated full-thickness burn wound rat model. A total of 40 adult male Wistar albino rats were used. The control group (group 1), silver sulfadiazine (1%) group 2, chlorhexidine acetate (0.5%) group 3, citric acid (3%) group 4, and silver-coated dressing group 5 were compared to assess the antibacterial effects of a daily application to a 30% full-skin thickness burn wound seeded 10 minutes earlier with 108 CFU (colony forming unit)/0.5 mL of a multi-drug resistant Pseudomonas aeruginosa strain. Five groups (1 control group and 4 treatment groups) were compared. The administration of third-degree burns to all rats was confirmed based on histopathologic data. The tissue cultures from groups 2 and 5 exhibited significant differences compared to those of the other 3 groups, whereas no significant differences were observed between groups 1, 3, and 4. The effectiveness of the treatments was as follows: 1% silver sulfadiazine > silver-coated dressing > 3% citric acid > 0.5% chlorhexidine acetate > control group. Our results supported the efficacy of topical therapy by silver sulfadiazine and silver-coated dressing on infections caused by multi-drug resistant Pseudomonas spp. PMID:24229034

  7. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa.

    PubMed

    Abdel-Rhman, Shaymaa Hassan; El-Mahdy, Areej Mostafa; El-Mowafy, Mohammed

    2015-01-01

    Mixed-species biofilms could create a protected environment that allows for survival to external antimicrobials and allows different bacterial-fungal interactions. Pseudomonas aeruginosa-Candida albicans coexistence is an example for such mixed-species community. Numerous reports demonstrated how P. aeruginosa or its metabolites could influence the growth, morphogenesis, and virulence of C. albicans. In this study, we investigated how the C. albicans quorum sensing compounds, tyrosol and farnesol, might affect Egyptian clinical isolates of P. aeruginosa regarding growth, antibiotic sensitivity, and virulence. We could demonstrate that tyrosol possesses an antibacterial activity against P. aeruginosa (10 µM inhibited more than 50% of growth after 16 h cultivation). Moreover, we could show for the first time that tyrosol strongly inhibits the production of the virulence factors hemolysin and protease in P. aeruginosa, whereas farnesol inhibits, to lower extent, hemolysin production in this bacterial pathogen. Cumulatively, tyrosol is expected to strongly affect P. aeruginosa in mixed microbial biofilm.

  8. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.

    PubMed

    Müller, Christine; Birmes, Franziska S; Rückert, Christian; Kalinowski, Jörn; Fetzner, Susanne

    2015-11-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.

  9. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Rückert, Christian; Kalinowski, Jörn

    2015-01-01

    Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 μM and 21 s−1, respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases. PMID:26319870

  10. QapR (PA5506) represses an operon that negatively affects the Pseudomonas quinolone signal in Pseudomonas aeruginosa.

    PubMed

    Tipton, Kyle A; Coleman, James P; Pesci, Everett C

    2013-08-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa.

  11. QapR (PA5506) Represses an Operon That Negatively Affects the Pseudomonas Quinolone Signal in Pseudomonas aeruginosa

    PubMed Central

    Tipton, Kyle A.; Coleman, James P.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa. PMID:23708133

  12. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  13. Structural and Functional Characterization of Pseudomonas aeruginosa AlgX

    PubMed Central

    Riley, Laura M.; Weadge, Joel T.; Baker, Perrin; Robinson, Howard; Codée, Jeroen D. C.; Tipton, Peter A.; Ohman, Dennis E.; Howell, P. Lynne

    2013-01-01

    The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 Å resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition “pinch point” that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases. PMID:23779107

  14. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants.

    PubMed

    García-Contreras, Rodolfo; Lira-Silva, Elizabeth; Jasso-Chávez, Ricardo; Hernández-González, Ismael L; Maeda, Toshinari; Hashimoto, Takahiro; Boogerd, Fred C; Sheng, Lili; Wood, Thomas K; Moreno-Sánchez, Rafael

    2013-12-01

    Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³⁺ to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga.

  15. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.

    PubMed

    Southey-Pillig, Christopher J; Davies, David G; Sauer, Karin

    2005-12-01

    Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the

  16. Preparation and biophysical characterization of recombinant Pseudomonas aeruginosa phosphorylcholine phosphatase.

    PubMed

    Beassoni, Paola R; Berti, Federico Pérez de; Otero, Lisandro H; Risso, Valeria A; Ferreyra, Raul G; Lisa, Angela T; Domenech, Carlos E; Ermácora, Mario R

    2010-06-01

    Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.

  17. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  18. Effect of environment on sensitivity of Neisseria gonorrhoeae to Pseudomonas aeruginosa bacteriocins.

    PubMed Central

    Stein, D C; Hebeler, B H; Young, F E

    1980-01-01

    The effect of environmental variation on the susceptibility of Neisseria gonorrhoeae to pyocin produced by Pseudomonas aeruginosa was examined. Susceptibility to at least one pyocin was demonstrated in strains of N. gonorrhoeae (99%), N. meningitidis (35%), and N. lactamica (47%). The degree of sensitivity to pyocin displayed by N. gonorrhoeae was affected by varying the pH of the growth environment. Gonococcal strains were more sensitive to growth inhibition by pyocins at an alkaline pH and less sensitive to growth inhibition at an acid pH. Inhibitory titers fluctuated during nonselective subculture of fresh clinical isolates. There was no apparent correlation between auxotype and sensitivity to pyocin. Also, no relationship between colony morphology and pyocin sensitivity was seen. PMID:6783533

  19. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes.

    PubMed

    Scott, Sarah A; Spencer, Cierra T; O'Reilly, Matthew C; Brown, Kyle A; Lavieri, Robert R; Cho, Chul-Hee; Jung, Dai-Il; Larock, Richard C; Brown, H Alex; Lindsley, Craig W

    2015-02-20

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.

  20. Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection.

    PubMed

    Caron, Emilie; Desseyn, Jean-Luc; Sergent, Luce; Bartke, Nana; Husson, Marie-Odile; Duhamel, Alain; Gottrand, Frédéric

    2015-01-28

    Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes pneumonia in immunocompromised humans and severe pulmonary damage in patients with cystic fibrosis. Imbalanced fatty acid incorporation in membranes, including increased arachidonic acid and decreased DHA concentrations, is known to play a critical role in chronic inflammation associated with bacterial infection. Other lipids, such as EPA and alkylglycerols, are also known to play a role in inflammation, particularly by stimulating the immune system, decreasing inflammation and inhibiting bacterial growth. In this context, the goal of the present study was to assess the effect of dietary DHA/EPA, in a 2:1 ratio, and alkylglycerols, as natural compounds extracted from oils of rays and chimeras, respectively, on the inflammatory reaction induced by P. aeruginosa pulmonary infection in mice. To this end, mice were fed with a control diet or isolipidic, isoenergetic diets prepared with oils enriched in DHA/EPA (2:1) or alkylglycerols for 5 weeks before the induction of acute P. aeruginosa lung infection by endotracheal instillation. In our model, DHA/EPA (2:1) significantly improved the survival of mice after infection, which was associated with the acceleration of bacterial clearance and the resolution of inflammation leading to the improvement of pulmonary injuries. By contrast, alkylglycerols did not affect the outcomes of P. aeruginosa infection. Our findings suggest that supplementation with ray oil enriched in DHA/EPA (2:1) can be considered as a preventive treatment for patients at risk for P. aeruginosa infection.

  1. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-09-01

    Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.

  2. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions

    PubMed Central

    Yoon, Sang Sun; Coakley, Ray; Lau, Gee W.; Lymar, Sergei V.; Gaston, Benjamin; Karabulut, Ahmet C.; Hennigan, Robert F.; Hwang, Sung-Hei; Buettner, Garry; Schurr, Michael J.; Mortensen, Joel E.; Burns, Jane L.; Speert, David; Boucher, Richard C.; Hassett, Daniel J.

    2006-01-01

    Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2–) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2– also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways. PMID:16440061

  3. The Cysteine Dioxygenase Homologue from Pseudomonas aeruginosa Is a 3-Mercaptopropionate Dioxygenase*

    PubMed Central

    Tchesnokov, Egor P.; Fellner, Matthias; Siakkou, Eleni; Kleffmann, Torsten; Martin, Lois W.; Aloi, Sekotilani; Lamont, Iain L.; Wilbanks, Sigurd M.; Jameson, Guy N. L.

    2015-01-01

    Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site. PMID:26272617

  4. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection.

    PubMed

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-09-28

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body.

  5. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection

    PubMed Central

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-01-01

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body. PMID:24765368

  6. Research on the treatment of Pseudomonas aeruginosa pneumonia in children by macrolide antibiotics

    PubMed Central

    Huang, Xu-qiang; Deng, Li; Lu, Gen; He, Chun-hui; Wu, Pei-qiong; Xie, Zhi-wei; Ashraf, Muhammad Aqeel

    2015-01-01

    To observe a therapeutic effect of macrolide antibiotics in children with Pseudomonas aeruginosa pneumonia. Fifty-four cases of children with Pseudomonas aeruginosa pneumonia were randomly divided into an observation group (n=30) and a control group (n=24). The observation group was treated with macrolide antibiotics and cefoperazone/sulbactam. The control group was treated with cefoperazone/sulbactam during a course of 10–14 days. The total effective rate was 93.3% in the observation group, and 58.3% in the control group, and results in the observation group were superior to the control group notably (P>0.05). There were no significant differences in bacterial clearance rate, adverse reaction rate between two groups (P>0.05). The combined application of cefoperazone/sulbactam with macrolide antibiotics to treat Pseudomonas aeruginosa pneumonia in children would be a more effective clinical method. PMID:28352740

  7. Multidrug resistant Pseudomonas aeruginosa infection in children undergoing chemotherapy and hematopoietic stem cell transplantation

    PubMed Central

    Caselli, Désirée; Cesaro, Simone; Ziino, Ottavio; Zanazzo, Giulio; Manicone, Rosaria; Livadiotti, Susanna; Cellini, Monica; Frenos, Stefano; Milano, Giuseppe M.; Cappelli, Barbara; Licciardello, Maria; Beretta, Chiara; Aricò, Maurizio; Castagnola, Elio

    2010-01-01

    Pseudomonas aeruginosa is one leading gram-negative organism associated with nosocomial infections. Bacteremia is life-threatening in the immunocompromised host. Increasing frequency of multi-drug-resistant (MDRPA) strains is concerning. We started a retrospective survey in the pediatric hematology oncology Italian network. Between 2000 and 2008, 127 patients with Pseudomonas aeruginosa bacteremia were reported from 12 centers; 31.4% of isolates were MDRPA. Death within 30 days of a positive blood culture occurred in 19.6% (25/127) of total patients; in patients with MDRPA infection it occurred in 35.8% (14/39). In the multivariate analysis, only MDRPA had significant association with infection-related death. This is the largest series of Pseudomonas aeruginosa bacteremia cases from pediatric hematology oncology centers. Monitoring local bacterial isolates epidemiology is mandatory and will allow empiric antibiotic therapy to be tailored to reduce fatalities. PMID:20305140

  8. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  9. VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa.

    PubMed

    Piao, Zheng-Hao; Kim, Mi Sun; Jeong, Mira; Yun, Sohyun; Lee, Suk Hyung; Sun, Hu-Nan; Song, Hae Young; Suh, Hyun-Woo; Jung, Haiyoung; Yoon, Suk Ran; Kim, Tae-Don; Lee, Young-Ho; Choi, Inpyo

    2012-11-01

    Vitamin-D3 upregulated protein-1 (VDUP1) is a stress response protein. Pseudomonas aeruginosa (P. aeruginosa) infection is a leading cause of death. Mice infected with live P. aeruginosa exhibit significantly decreased VDUP1 expression. However, the function of VDUP1 during P. aeruginosa-induced mouse bacteremic shock is unknown. To address the function of VDUP1 in P. aeruginosa-infected mice, we constructed a bacteremic shock model wherein both wild-type and VDUP1-deficient mice were infected intra-peritoneally with live P. aeruginosa. We found that VDUP1-deficient mice were more resistant to P. aeruginosa-induced bacteremic shock than wild-type mice, as shown by the increased survival, accelerated bacterial clearance and suppression of cytokine overproduction of the VDUP1-deficient mice. VDUP1 promoted the recruitment of neutrophils into the peritoneal cavities of infected mice. VDUP1 impeded the phagocytosis of non-opsonized P. aeruginosa via phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. P. aeruginosa infection induced the generation of reactive oxygen species (ROS), and the increased production of ROS by the peritoneal cells of VDUP1-deficient mice was advantageous in clearing the bacteria. Overall, VDUP1 aggravates bacteremic shock; thus, VDUP1 can be considered a target molecule for the inhibition of P. aeruginosa-induced bacteremic shock.

  10. Nosocomial Infections with IMP-19−Producing Pseudomonas aeruginosa Linked to Contaminated Sinks, France

    PubMed Central

    Amoureux, Lucie; Riedweg, Karena; Chapuis, Angélique; Bador, Julien; Siebor, Eliane; Péchinot, André; Chrétien, Marie-Lorraine; de Curraize, Claire

    2017-01-01

    We isolated IMP-19–producing Pseudomonas aeruginosa from 7 patients with nosocomial infections linked to contaminated sinks in France. We showed that blaIMP-19 was located on various class 1 integrons among 8 species of gram-negative bacilli detected in sinks: P. aeruginosa, Achromobacter xylosoxidans, A. aegrifaciens, P. putida, Stenotrophomonas maltophilia, P. mendocina, Comamonas testosteroni, and Sphingomonas sp. PMID:28098548

  11. Antibiotic Tolerance Induced by Lactoferrin in Clinical Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients

    PubMed Central

    Andrés, María T.; Viejo-Diaz, Mónica; Pérez, Francisco; Fierro, José F.

    2005-01-01

    Lactoferrin-induced cell depolarization and a delayed tobramycin-killing effect on Pseudomonas aeruginosa cells were correlated. This antibiotic tolerance effect (ATE) reflects the ability of a defense protein to modify the activity of an antibiotic as a result of its modulatory effect on bacterial physiology. P. aeruginosa isolates from cystic fibrosis patients showed higher ATE values (≤6-fold) than other clinical strains. PMID:15793153

  12. A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases.

    PubMed

    Cahan, R; Axelrad, I; Safrin, M; Ohman, D E; Kessler, E

    2001-11-23

    Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.

  13. Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking

    PubMed Central

    Vater, Svenja M.; Weiße, Sebastian; Maleschlijski, Stojan; Lotz, Carmen; Koschitzki, Florian; Schwartz, Thomas; Obst, Ursula; Rosenhahn, Axel

    2014-01-01

    Holographic 3D tracking was applied to record and analyze the swimming behavior of Pseudomonas aeruginosa. The obtained trajectories allow to qualitatively and quantitatively analyze the free swimming behavior of the bacterium. This can be classified into five distinct swimming patterns. In addition to the previously reported smooth and oscillatory swimming motions, three additional patterns are distinguished. We show that Pseudomonas aeruginosa performs helical movements which were so far only described for larger microorganisms. Occurrence of the swimming patterns was determined and transitions between the patterns were analyzed. PMID:24498187

  14. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Smadhi, Meriem; Gingras, Marc; Abderrahim, Raoudha

    2014-01-01

    Summary Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation. PMID:25246957

  15. Biodegradation of methyl parathion and endosulfan using Pseudomonas aeruginosa and Trichoderma viridae.

    PubMed

    Senthilkumar, S; Anthonisamy, A; Arunkumar, S; Sivakumari, V

    2011-01-01

    Microorganisms play an important role in the bioconversion and total breakdown of pesticides in the environment. This study was conducted to assess the pesticide degradation (endosulfan and methyl parathion) ability of the bacteria and fungi (Pseudomonas aeruginosa and Trichoderma viridae). The screening test conducted to reveal the ability to degrade endosulfan and methyl parathion shows that Trichoderma viridae was effective compared to Pseudomonas aeruginosa. The pesticide degradation was estimated by optical density method. Methyl parathion was highly degraded compared to endosulfan. This study clearly proves that pesticides and their residue degradation can be accelerated by employing microbes which can be effectively utilized both as biocontrol agent and soil cleanser.

  16. THE APPLICATION OF PEPTIDE NUCLEIC ACID PROBES FOR RAPID DETECTION AND ENUMERATION OF EUBACTERIA, STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA IN RECREATIONAL BEACHES OF S. FLORIDA. (R828830)

    EPA Science Inventory

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, S...

  17. Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis.

    PubMed

    Ouidir, Tassadit; Jouenne, Thierry; Hardouin, Julie

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in vulnerable individuals. It is known that post-translational modifications (PTMs) play a key role in bacterial physiology. Their characterization is still challenging and the recent advances in proteomics allow large-scale and high-throughput analyses of PTMs. Here, we provide an overview of proteomic data about the modified proteins in P. aeruginosa. We emphasize the significant contribution of proteomics in knowledge enhancement of PTMs (phosphorylation, N-acetylation and glycosylation) and we discuss their importance in P. aeruginosa physiology.

  18. Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies

    PubMed Central

    Reitz, Allen B.; Ramirez, Ursula D.; Stith, Linda; Du, Yanming; Smith, Garry R.; Jaffe, Eileen K.

    2010-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of the essential heme, chlorophyll and vitamin B12 heme pigments. PBGS activity is regulated by assembly state, with certain oligomers exhibiting biological activity and others either partially or completely inactive, affording an innovative means of allosteric drug action. Pseudomonas aeruginosa PBGS is functionally active as an octamer, and inactive as a dimer. We have identified a series of compounds that stabilize the inactive P. aeruginosa dimer by a computational prescreen followed by native PAGE gel mobility shift analysis. From those results, we have prepared related thiadiazoles and evaluated their ability to regulate P. aeruginosa PBGS assembly state. PMID:21643541

  19. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  20. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains.

    PubMed

    Heo, Yun-Jeong; Chung, In-Young; Choi, Kelly B; Cho, You-Hee

    2007-01-01

    R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P. aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P. aeruginosa population dynamics to promote and maintain its biodiversity.

  1. Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas aeruginosa by Increasing Iron Availability

    PubMed Central

    Tettmann, Beatrix; Niewerth, Christine; Kirschhöfer, Frank; Neidig, Anke; Dötsch, Andreas; Brenner-Weiss, Gerald; Fetzner, Susanne; Overhage, Joerg

    2016-01-01

    The 2-alkyl-3-hydroxy-4(1H)-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS) system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA, and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms. PMID:28018312

  2. Structural and Functional Analysis of the Pyocyanin Biosynthetic Protein PhzM from Pseudomonas aeruginosa

    SciTech Connect

    Parsons,J.; Greenhagen, B.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.

    2007-01-01

    Pyocyanin is a biologically active phenazine produced by the human pathogen Pseudomonas aeruginosa. It is thought to endow P. aeruginosa with a competitive growth advantage in colonized tissue and is also thought to be a virulence factor in diseases such as cystic fibrosis and AIDS where patients are commonly infected by pathogenic Pseudomonads due to their immunocompromised state. Pyocyanin is also a chemically interesting compound due to its unusual oxidation-reduction activity. Phenazine-1-carboxylic acid, the precursor to the bioactive phenazines, is synthesized from chorismic acid by enzymes encoded in a seven-gene cistron in P. aeruginosa and in other Pseudomonads. Phenzine-1-carboxylic acid is believed to be converted to pyocyanin by the sequential actions of the putative S-adenosylmethionine-dependent N-methyltransferase PhzM and the putative flavin-dependent hydroxylase PhzS. Here we report the 1.8 {angstrom} crystal structure of PhzM determined by single anomalous dispersion. Unlike many methyltransferases, PhzM is a dimer in solution. The 36 kDa PhzM polypeptide folds into three domains. The C-terminal domain exhibits the {alpha}/{beta}-hydrolase fold typical of small molecule methyltransferases. Two smaller N-terminal domains form much of the dimer interface. Structural alignments with known methyltransferases show that PhzM is most similar to the plant O-methyltransferases that are characterized by an unusual intertwined dimer interface. The structure of PhzM contains no ligands, and the active site is open and solvent-exposed when compared to structures of similar enzymes. In vitro experiments using purified PhzM alone demonstrate that it has little or no ability to methylate phenzine-1-carboxylic acid. However, when the putative hydroxylase PhzS is included, pyocyanin is readily produced. This observation suggests that a mechanism has evolved in P. aeruginosa that ensures efficient production of pyocyanin via the prevention of the formation and

  3. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.

    PubMed

    Krylov, Victor N

    2014-01-01

    Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.

  4. Assessment of biofilm formation in Pseudomonas aeruginosa by antisense mazE-PNA.

    PubMed

    Valadbeigi, Hassan; Sadeghifard, Nourkhoda; Salehi, Majid Baseri

    2017-03-01

    The hallmark patogenicity in Pseudomonas aeruginosa (P. aeruginosa) is biofilm formation that is not easy to eradicate, because it has variety mechanisms for antibiotic resistance. In addition, toxin-antitoxin (TA) system may play role in biofilm formation. The current study aimed to evaluate the role of TA loci in biofilm formation. Therefore, 18 P. aeruginosa clinical isolates were collected and evaluated for specific biofilm and TA genes. The analysis by RT-qPCR demonstrated that expression of mazE antitoxin in biofilm formation was increase. On the other hand, mazE antitoxin TA system was used as target for antisense PNA. mazE-PNA was able to influence in biofilm formation and was inhibit at 5,10 and 15 μM concentrations biofilm formation in P. aeruginosa. Therefore, it could be highlighted target for anti-biofilm target to eradicate P. aeruginosa biofilm producer.

  5. Pseudomonas aeruginosa PAO1 resistance to Zinc pyrithione: phenotypic changes suggest the involvement of efflux pumps.

    PubMed

    Abdel Malek, Suzanne M; Al-Adham, Ibrahim S; Matalka, Khalid Z; Collier, Philip J

    2009-08-01

    The aim of this study is to investigate the involvement of an efflux pump in the development of Pseudomonas aeruginosa resistance to zinc pyrithione (ZnPT). In the presence of efflux inhibitor carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), the minimum inhibitory concentration of ZnPT for P. aeruginosa resistant cells is reduced significantly (p < 0.05). In addition, the concentration of ZnPT excluded by the resistant bacteria was reduced significantly (p < 0.01). However, the above reductions did not reach the levels measured for P. aeruginosa PAO1 sensitive strain. Furthermore, such changes in P. aeruginosa resistant cells were correlated with the overexpression of outer membrane proteins, reduced sensitivity toward imipenem (p < 0.01) and increased sensitivity toward sulphatriad and chloramphenicol (p < 0.05). In a continuation to a previous study, we conclude that P. aeruginosa resistance to ZnPT is multifactorial and involves induced efflux systems.

  6. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  7. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    SciTech Connect

    Keravec, Marlene; Mounier, Jerome; Prestat , Emmanuel; Vallet, Sophie; Jansson, Janet K.; Bergaud , Gaetaqn; Rosec, Silvain; Gourious, Stephanie; Rault, Gilles; Coton, Emmanuel; Barbier, George; Hery-Arnaud, Geneveieve

    2015-08-09

    Abstract Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly more prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.

  8. A Genetic Screen Reveals Novel Targets to Render Pseudomonas aeruginosa Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics

    PubMed Central

    Lee, Kang-Mu; Lee, Keehoon; Go, Junhyeok; Park, In Ho; Shin, Jeon-Soo; Choi, Jae Young; Kim, Hyun Jik; Yoon, Sang Sun

    2017-01-01

    Pseudomonas aeruginosa is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. P. aeruginosa, however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype P. aeruginosa strain, and identified two mutants (ΔbamB and ΔfabY) that exhibited decrease in survival after lysozyme treatment. The bamB and fabY genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different in vivo infection models. The mutants also showed susceptibility to several antibiotics. Especially, ΔbamB mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The ΔfabY displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different P. aeruginosa mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of P. aeruginosa infection. PMID:28299285

  9. A Genetic Screen Reveals Novel Targets to Render Pseudomonas aeruginosa Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics.

    PubMed

    Lee, Kang-Mu; Lee, Keehoon; Go, Junhyeok; Park, In Ho; Shin, Jeon-Soo; Choi, Jae Young; Kim, Hyun Jik; Yoon, Sang Sun

    2017-01-01

    Pseudomonas aeruginosa is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. P. aeruginosa, however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype P. aeruginosa strain, and identified two mutants (ΔbamB and ΔfabY) that exhibited decrease in survival after lysozyme treatment. The bamB and fabY genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different in vivo infection models. The mutants also showed susceptibility to several antibiotics. Especially, ΔbamB mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The ΔfabY displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different P. aeruginosa mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of P. aeruginosa infection.

  10. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.

    PubMed

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

    2009-06-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections.

  11. Factors Affecting Comparative Resistance of Naturally Occurring and Subcultured Pseudomonas aeruginosa to Disinfectants

    PubMed Central

    Carson, L. A.; Favero, M. S.; Bond, W. W.; Petersen, N. J.

    1972-01-01

    A strain of Pseudomonas aeruginosa was isolated in pure culture from the reservoir of a hospital mist therapy unit by an extinction-dilution technique; its natural distilled water environment was used as a growth and maintenance medium. After a single subculture on Trypticase soy agar, the strain showed a marked decrease in resistance to inactivation by acetic acid, glutaraldehyde, chlorine dioxide, and a quaternary ammonium compound when compared with naturally occurring cells grown in mist therapy unit water. The following factors were observed to affect the relative resistances of naturally occurring and subcultured cells of the P. aeruginosa strain: (i) temperature at which the cultures were incubated prior to exposure to disinfectants, (ii) growth phase of the cultures at the time of exposure to disinfectants, (iii) nature of the suspending menstruum for disinfectants, and (iv) exposure to fluorescent light during incubation of inocula prior to testing. The applied significance of these findings may alter the present concepts of disinfectant testing as well as routine control procedures in the hospital environment. PMID:4624209

  12. Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour.

    PubMed

    Tremblay, Julien; Richardson, Anne-Pascale; Lépine, François; Déziel, Eric

    2007-10-01

    Pseudomonas aeruginosa presents three types of motilities: swimming, twitching and swarming. The latter is characterized by rapid and coordinated group movement over a semisolid surface resulting from morphological differentiation and intercellular interactions. A striking feature of P. aeruginosa swarming motility is the formation of migrating tendrils producing colonies with complex fractal-like patterns. Previous studies have shown that normal swarming motility is intimately related to the production of extracellular surface-active molecules: rhamnolipids (RLs), composed of monorhamnolipids (mono-RLs) and dirhamnolipids (di-RLs), and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs). Here, we report that (i) di-RLs attract active swarming cells while HAAs behave as strong repellents, (ii) di-RLs promote and HAAs inhibit tendril formation and migration, (iii) di-RLs and HAAs display different diffusion kinetics on a surface as di-RLs spread faster than HAAs in agar, (iv) di-RLs and HAAs have no effect on swimming cells, suggesting that swarming cells are different from swimming cells not only in morphology but also at the regulatory level and (v) mono-RLs act as wetting agents. We propose a model explaining how HAAs and di-RLs together modulate the behaviour of swarming migrating cells by acting as self-produced negative and positive chemotactic-like stimuli.

  13. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  14. Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3

    PubMed Central

    Zhao, Xia; Chen, Canhuang; Shen, Wei; Huang, Guangtao; Le, Shuai; Lu, Shuguang; Li, Ming; Zhao, Yan; Wang, Jing; Rao, Xiancai; Li, Gang; Shen, Mengyu; Guo, Keke; Yang, Yuhui; Tan, Yinling; Hu, Fuquan

    2016-01-01

    The interactions between Bacteriophage (phage) and host bacteria are widespread in nature and influences of phage replication on the host cells are complex and extensive. Here, we investigate genome-wide interactions of Pseudomonas aeruginosa (P. aeruginosa) and its temperate phage PaP3 at five time points during phage infection. Compared to the uninfected host, 38% (2160/5633) genes of phage-infected host were identified as differentially expressed genes (DEGs). Functional analysis of the repressed DEGs revealed infection-stage-dependent pathway communications. Based on gene co-expression analysis, most PaP3 middle genes were predicted to have negative impact on host transcriptional regulators. Sub-network enrichment analysis revealed that adjacent genes of PaP3 interacted with the same host genes and might possess similar functions. Finally, our results suggested that during the whole infection stage, the early genes of PaP3 had stronger regulatory role in host gene expression than middle and late genes, while the host genes involved amino acid metabolism were the most “vulnerable” targets of these phage genes. This work provides the basis for understanding survival mechanisms of parasites and host, and seeking phage gene products that could potentially be used in anti-bacterial infection. PMID:26750429

  15. A thermo-stable lysine aminopeptidase from Pseudomonas aeruginosa: Isolation, purification, characterization, and sequence analysis.

    PubMed

    Wu, Yan Tao; Zhou, Nan Di; Zhou, Zhe Min; Gao, Xin Xing; Tian, Ya Ping

    2014-10-01

    Pseudomonas aeruginosa NJ-814, isolated from garden soil, produced an extracellular aminopeptidase that was purified using ammonium sulfate precipitation and ion exchange chromatography. The purity was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the Mr value of the enzyme was estimated to be 55 kDa. The purified enzyme shows maximum activity at pH 9.0 and 80 °C. It exhibits high thermo-stability. Half of the activity can remain after incubation at 80 °C for 119 min. It is stable within pH range of 7.5-10.5. It is strongly activated by Co(2+) and inhibited by Fe(2+) , Cu(2+) , Ni(2+) , Zn(2+) , and ethylene diamine tetraacetic acid (EDTA). The specificity of the enzyme was investigated. Within several aminoacyl-p-nitroanilines (AA-pNA), Lys-pNA is proven to be the optimal substrate. The Michaelis-Menten constant (Km ) of the enzyme for Lys-pNA and Leu-pNA were 2.32 and 9.41 mM, respectively. Peptide map fingerprinting shows that the sequence of the enzyme is highly similar to aminopeptidase Y from P. aeruginosa 18A. It can be speculated that this enzyme is a Zn(2+) -dependent enzyme and contains two zinc ions in its active site.

  16. Pseudomonas aeruginosa on vinyl-canvas inflatables and foam teaching aids in swimming pools.

    PubMed

    Schets, F M; van den Berg, H H J L; Baan, R; Lynch, G; de Roda Husman, A M

    2014-12-01

    Swimming pool-related Pseudomonas aeruginosa infections mainly result in folliculitis and otitis externa. P. aeruginosa forms biofilms on surfaces in the swimming pool environment. The presence of P. aeruginosa on inflatables and foam teaching aids in 24 public swimming pools in the Netherlands was studied. Samples (n = 230) were taken from 175 objects and analysed for P. aeruginosa by culture. Isolated P. aeruginosa were tested for antibiotic resistance by disk diffusion. P. aeruginosa was detected in 63 samples (27%), from 47 objects (27%) in 19 (79%) swimming pools. More vinyl-canvas objects (44%) than foam objects (20%) were contaminated, as were wet objects (43%) compared to dry objects (13%). Concentrations were variable, and on average higher on vinyl-canvas than on foam objects. Forty of 193 (21%) P. aeruginosa isolates from 11 different objects were (intermediate) resistant to one or more of 12 clinically relevant antibiotics, mostly to imipenem and aztreonam. The immediate risk of a P. aeruginosa infection from exposure to swimming pool objects seems limited, but the presence of P. aeruginosa on pool objects is unwanted and requires attention of pool managers and responsible authorities. Strict drying and cleaning policies are needed for infrequently used vinyl-canvas objects.

  17. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa

    PubMed Central

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L.; Pier, Gerald B.; Golan, David E.

    2009-01-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (ΔF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH2-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial “internalization platform” involving both caveolin-1 and functional, laterally mobile CFTR. PMID:19386787

  18. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa.

    PubMed

    Bajmoczi, Milan; Gadjeva, Mihaela; Alper, Seth L; Pier, Gerald B; Golan, David E

    2009-08-01

    Patients with cystic fibrosis (CF) exhibit defective innate immunity and are susceptible to chronic lung infection with Pseudomonas aeruginosa. To investigate the molecular bases for the hypersusceptibility of CF patients to P. aeruginosa, we used the IB3-1 cell line with two defective CF transmembrane conductance regulator (CFTR) genes (DeltaF508/W1282X) to generate isogenic stable, clonal lung epithelial cells expressing wild-type (WT)-CFTR with an NH(2)-terminal green fluorescent protein (GFP) tag. GFP-CFTR exhibited posttranslational modification, subcellular localization, and anion transport function typical of WT-CFTR. P. aeruginosa internalization, a component of effective innate immunity, required functional CFTR and caveolin-1, as shown by: 1) direct correlation between GFP-CFTR expression levels and P. aeruginosa internalization; 2) enhanced P. aeruginosa internalization by aminoglycoside-induced read through of the CFTR W1282X allele in IB3-1 cells; 3) decreased P. aeruginosa internalization following siRNA knockdown of GFP-CFTR or caveolin-1; and 4) spatial association of P. aeruginosa with GFP-CFTR and caveolin-1 at the cell surface. P. aeruginosa internalization also required free lateral diffusion of GFP-CFTR, allowing for bacterial coclustering with GFP-CFTR and caveolin-1 at the plasma membrane. Thus efficient initiation of innate immunity to P. aeruginosa requires formation of an epithelial "internalization platform" involving both caveolin-1 and functional, laterally mobile CFTR.

  19. Production and characteristics of a heavy metals removing bioflocculant produced by Pseudomonas aeruginosa.

    PubMed

    Eman Zakaria, Gomaa

    2012-01-01

    TIhe flocculating activity ofa bioflocculant produced by Pseudomonas aeruginosa ATCC-10145 using kaolin clay was assayed. The influence of carbon, nitrogen sources, pH and culture temperature on bioflocculant production was investigated. The effects of cationic compounds, bioflocculant dosage, pH and temperature on flocculating activity were also determined. Of the cations tested, Ca2+, K+, Na+, Zn2+, Mg2+ and Cu2+ improved flocculating activity whereas Fe3+ and Al3+ caused its inhibition. The highest flocculating activity was observed at pH 7.0.The bioflocculant had a good flocculating activity of 80.50% for kaolin suspension with a dosage of only 1%. The bioflocculant was heat-stable and its activity was only decreased to 60.16% after heating at 100 degrees C for 60 min. Chemical analyses of the purified bioflocculant indicated that it was a sugar-protein derivative, composed of protein (27%, w/w) and carbohydrate (89%,w/w) including neutral sugar, uronic acid and amino sugar as the principal constituents in the relative weight proportions of 30.6%, 2.35% and 0.78%, respectively. The elemental analysis of the bioflocculant revealed the mass proportion of C, H and N was 19.06, 3.88 and 4.32 (%), correspondingly. Fourier transform infrared analysis showed that the exopolymers consisted of carboxyl, hydroxyl, amino and sugar derivative groups. The heavy metal adsorption by the bioflocculant of Pseudomonas aeruginosa was found to be influenced by the initial metal concentration, bioflocculant concentration and pH of the biosorption solution. This study demonstrates that microbial bioflocculant has potential to be used as an alternative bioremedial tool for industrial effluents and wastewater treatments which are co-contaminated with heavy metals.

  20. Plasma-Mediated Inactivation of Pseudomonas aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System

    PubMed Central

    Vandervoort, Kurt G.; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturabilty are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  1. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    PubMed

    Vandervoort, Kurt G; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  2. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine.

    PubMed

    Theilacker, Christian; Coleman, Fadie T; Mueschenborn, Simone; Llosa, Nicolas; Grout, Martha; Pier, Gerald B

    2003-07-01

    Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies

  3. Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells.

    PubMed

    Dasgupta, Debdeep; Kumar, Abhinash; Mukhopadhyay, Balaram; Sengupta, Tapas K

    2015-10-01

    Pseudomonas sp. has long been known for production of a wide range of secondary metabolites during late exponential and stationary phases of growth. Phenazine derivatives constitute a large group of secondary metabolites produced by microorganisms including Pseudomonas sp. Phenazine 1,6-di-carboxylic acid (PDC) is one of such metabolites and has been debated for its origin from Pseudomonas sp. The present study describes purification and characterization of PDC isolated from culture of a natural isolate of Pseudomonas sp. HRW.1-S3 while grown in presence of crude oil as sole carbon source. The isolated PDC was tested for its effect on biofilm formation by another environmental isolate of Pseudomonas sp. DSW.1-S4 which lacks the ability to produce any phenazine compound. PDC showed profound effect on both planktonic as well as biofilm mode of growth of DSW.1-S4 at concentrations between 5 and 20 μM. Interestingly, PDC showed substantial cytotoxicity against three cancer cell lines and against both Gram-positive and Gram-negative bacteria. Thus, the present study not only opens an avenue to understand interspecific cooperation between Pseudomonas species which may lead its applicability in bioremediation, but also it signifies the scope of future investigation on PDC for its therapeutic applications.

  4. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis.

    PubMed

    Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric; Attrée, Ina

    2017-01-24

    Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication.

  5. Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa.

    PubMed

    Hu, Yanmei; Keniry, Megan; Palmer, Stephanie O; Bullard, James M

    2016-08-01

    Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines.

  6. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis

    PubMed Central

    Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric

    2017-01-01

    ABSTRACT   Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472

  7. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature

    PubMed Central

    Penesyan, Anahit; Kumar, Sheemal S.; Kamath, Karthik; Shathili, Abdulrahman M.; Venkatakrishnan, Vignesh; Krisp, Christoph; Packer, Nicolle H.; Molloy, Mark P.; Paulsen, Ian T.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such

  8. Discovery and Analysis of Natural-Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa

    PubMed Central

    Hu, Yanmei; Keniry, Megan; Palmer, Stephanie O.

    2016-01-01

    Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa. This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines. PMID:27246774

  9. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    PubMed

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  10. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity.

    PubMed

    Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar

    2016-09-01

    The multi-drug resistance offered by Pseudomonas aeruginosa to antibiotics can be attributed towards its propensity to develop biofilm, modification in cell membrane and to efflux antibacterial drugs. The present study explored the activity of Glycyrrhiza glabra and one of its pure compounds, glycyrrhizic acid against P. aeruginosa and their mechanism of action in terms of the effect on membrane permeability, efflux activity, and biofilm formation were determined. Minimum inhibitory concentrations were determined by using broth dilution technique. The minimum bactericidal concentrations were assessed on agar plate. The MIC of the extract and glycyrrhizic acid was found to be 200 and 100 μg ml(-1), respectively. The MBC was found to be 800 and 400 μg ml(-1) in the case of extract and glycyrrhizic acid, respectively. Time -dependent killing efficacy was also estimated. Flowcytometric analysis with staining methods was used to determine the effect of extract and glycyrrhizic acid at 2 × MIC on different physiological parameters and compared it with the standard (antibiotic). The growth of P. aeruginosa was significantly inhibited by extract and the pure compound. The herbal extract and the glycyrrhic acid were also found to effective in targeting the physiological parameters of the bacteria that involve cell membrane permeabilization, efflux activity, and biofilm formation. This study reports the antipseudomonal action of Glycyrrhiza glabra and one of its compound and provides insight into their mode of action.

  11. Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa.

    PubMed

    Tashiro, Yosuke; Inagaki, Aya; Ono, Kaori; Inaba, Tomohiro; Yawata, Yutaka; Uchiyama, Hiroo; Nomura, Nobuhiko

    2014-01-01

    Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air-liquid interface.

  12. Bactericidal antibody response to Pseudomonas aeruginosa by adults with urinary tract infections.

    PubMed Central

    Smalley, D L; Ourth, D D

    1979-01-01

    In this investigation we found that adults with upper urinary tract infections caused by Pseudomonas aeruginosa produced serum antibodies with bactericidal activity against the bacterium. Seventeen of 20 infected adults showed bactericidal activity with a titer range of 1:10 to 1:10,000. PMID:117024

  13. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.

    PubMed

    Ivanova, Elena P; Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Watson, Gregory S; Watson, Jolanta A; Baulin, Vladimir A; Pogodin, Sergey; Wang, James Y; Tobin, Mark J; Löbbe, Christian; Crawford, Russell J

    2012-08-20

    Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when incubated on cicada wings, Pseudomonas aeruginosa cells are not repelled; instead they are penetrated by the nanopillar arrays present on the wing surface, resulting in bacterial cell death. Cicada wings are effective antibacterial, as opposed to antibiofouling, surfaces.

  14. Clonal Dissemination of Pseudomonas aeruginosa Isolates Producing Extended-Spectrum β-Lactamase SHV-2a

    PubMed Central

    Jeannot, Katy; Fournier, Damien; Müller, Emeline; Cholley, Pascal

    2013-01-01

    From January to December 2011, 24 Pseudomonas aeruginosa strains producing the extended-spectrum β-lactamase SHV-2a were identified in 13 hospitals in France. With one exception, all the strains belonged to the same clone. Double-disk synergy tests with cefepime and clavulanate were able to detect all the SHV-2a-positive isolates. PMID:23241379

  15. Clonal dissemination of Pseudomonas aeruginosa isolates producing extended-spectrum β-lactamase SHV-2a.

    PubMed

    Jeannot, Katy; Fournier, Damien; Müller, Emeline; Cholley, Pascal; Plésiat, Patrick

    2013-02-01

    From January to December 2011, 24 Pseudomonas aeruginosa strains producing the extended-spectrum β-lactamase SHV-2a were identified in 13 hospitals in France. With one exception, all the strains belonged to the same clone. Double-disk synergy tests with cefepime and clavulanate were able to detect all the SHV-2a-positive isolates.

  16. Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation.

    PubMed

    Tang, Yongjun; Zou, Jun; Ma, Chao; Ali, Zeeshan; Li, Zhiyang; Li, Xiaolong; Ma, Ninging; Mou, Xianbo; Deng, Yan; Zhang, Liming; Li, Kai; Lu, Guangming; Yang, Haowen; He, Nongyue

    2013-01-01

    A method for highly sensitive and rapid detection of Pseudomonas aeruginosa, based on magnetic enrichment and magnetic separation, is described in this paper. The magnetic nanoparticles (MNPs) were applied to adsorb genome DNA after the sample was lysed. The DNA binding MNPs were directly subjected to polymerase chain reaction (PCR) to amplify gyrB specific sequence of Pseudomonas aeruginosa. The biotin labeled PCR products were detected by chemiluminescence when they were successively incubated with the probes-modified MNPs and alkaline phosphatase (ALP) labeled streptavidin (SA). Agarose gel electrophoresis analyses approved the method of in situ PCR to be highly reliable. The factors which could affect the chemiluminiscence were studied in detail. The results showed that the MNPs of 400 nm in diameter are beneficial to the detection. The sequence length and the binding site of the probe with a target sequence have obvious effects on the detection. The optimal concentration of the probes, hybridization temperature and hybridization time were 10 μM, 60 ºC and 60 mins, respectively. The method of in situ PCR based on MNPs can greatly improve the utilization rate of the DNA template ultimately enhancing the detection sensitivity. Experiment results proved that the primer and probe had high specificity, and Pseudomonas aeruginosa was successfully detected with detection limits as low as 10 cfu/mL by this method, while the detection of a single Pseudomonas aeruginosa can also be achieved.

  17. Imipenem antagonism of the in vitro activity of piperacillin against Pseudomonas aeruginosa.

    PubMed Central

    Bertram, M A; Young, L S

    1984-01-01

    The MICs of imipenem and piperacillin, alone and in combination, against Pseudomonas aeruginosa were determined in a checkerboard titration microdilution assay. A dramatic, one-way antagonism of imipenem for piperacillin was demonstrated in 28 of the 35 strains examined; antagonism was associated with the induction of a beta-lactamase. PMID:6435517

  18. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    DTIC Science & Technology

    1981-08-01

    Pseudomonas aeruginosa and Enterobacter aerogenes and bilirubin and SGOT of 280 units. On the third day after his initial procedure he was begun on...Some characteristics of th.. outer membrane material released by growing enterotoxigenic Escherichia cali. Infect. Immun. 29:704-713, 1980.

  19. CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA CHL004

    EPA Science Inventory

    In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 (Vesper et al 1996) has been found to concentrated Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of the washed lyophilized cells grown in the presence of lea...

  20. Draft Genome Sequence of a Pseudomonas aeruginosa Strain Able To Decompose N,N-Dimethyl Formamide

    PubMed Central

    Yan, Ming; Xu, Lin; Wei, Li; Zhang, Liting

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium, which uses a variety of organic chemicals as carbon sources. Here, we report the genome sequence of the Cu1510 isolate from wastewater containing a high concentration of N,N-dimethyl formamide. PMID:26847883

  1. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-review.

    PubMed

    Andonova, Maria; Urumova, Valentina

    2013-09-01

    The present review aims to provide insight into the complex interactions between the host and Pseudomonas aeruginosa-an opportunistic microbial agent causing skin infections. Heat, humidity and skin pH are among the factors beneficial for the development of this Gram-negative agent. To cause infection, Pseudomonas aeruginosa should first overcome the primary mechanisms of defense including the cell elements and humoral factors of the skin, as well as non-specific responses-phagocytosis, inflammation, acute phase response. All they are analysed with emphasis on the fact that their detailed understanding would help revealing their potential and allow for their efficient control. The microorganism, being more alterable and more flexible than the host, uses stealth strategies and modes of life. The review goes over the arsenal of virulence factors, used by Pseudomonas aeruginosa to attack the host defense mechanisms. The bacterial pathogenic strategies for invasion, resulting in collapse of skin defense are analysed. Several novel therapeutic approached to Pseudomonas aeruginosa skin infections are briefly reviewed.

  2. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils

    PubMed Central

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Høiby, Niels

    2016-01-01

    ABSTRACT Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa strains, including clinical isolates from non-chronically infected CF patients. Thus, oral prophylaxis with anti-Pseudomonas aeruginosa IgY may boost the innate immunity against Pseudomonas aeruginosa in the CF setting by facilitating a rapid and prompt bacterial clearance by PMNs. PMID:26901841

  3. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    PubMed

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.

  4. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa.

    PubMed

    Parr, S R; Barber, D; Greenwood, C

    1976-08-01

    The production of the soluble cytochrome oxidase/nitrite reductase in the bacterium Pseudomonas aeruginosa is favoured by anaerobic conditions and the presence of KNO3(20g/l) in the culture medium. Of three methods commonly used for the disruption of bacterial suspensions (ultrasonication, liquid-shear homogenization and glass-bead grinding), sonication proved the most efficient in releasing the Pseudomonas cytochrome oxidase. A polarographic assay of Pseudomonas cytochrome oxidase activity with sodium ascorbate as substrate and NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride as electron mediator is described. A purification procedure was developed which can be used on the small scale (40-litre cultures) or the large scale (400-litre cultures) and provides high yields of three respiratory-chain proteins, Pseudomonas cytochrome oxidase, cytochrome c551 and azurin, in a pure state. A typical preparation of 250g of Ps.aeruginosa cell paste yielded 180mg of Pseudomonas cytochrome oxidase, 81 mg of Pseudomonas cytochrome c551 and 275mg of Pseudomonas azurin.

  5. Dynamics of Pseudomonas aeruginosa association with anionic hydrogel surfaces in the presence of aqueous divalent-cation salts.

    PubMed

    Tran, Victoria B; Sung, Ye Suel; Fleiszig, Suzanne M J; Evans, David J; Radke, C J

    2011-10-01

    Binding of bacteria to solid surfaces is complex with many aspects incompletely understood. We investigate Pseudomonas aeruginosa uptake kinetics onto hydrogel surfaces representative of soft-contact lenses made of nonionic poly(2-hydroxyethylmethacrylate) (p-HEMA), anionic poly(methacrylic acid) (p-MAA), and anionic poly(acrylic acid) (p-AA). Using a parallel-plate flow cell under phase-contrast microscopy, we document a kinetic "burst" at the anionic hydrogel surface: dilute aqueous P. aeruginosa first rapidly accumulates and then rapidly depletes. Upon continuing flow, divalent cations in the suspending solution sorb into the hydrogel network causing the previously surface-accumulated bacteria to desorb. The number of bacteria eventually bound to the surface is low compared to the nonionic p-HEMA hydrogel. We propose that the kinetic burst is due to reversible divalent-cation bridging between the anionic bacteria and the negatively charged hydrogel surface. The number of surface bridging sites diminishes as divalent cations impregnate into and collapse the gel. P. aeruginosa association with the surface then falls. Low eventual binding of P. aeruginosa to the anionic hydrogel is ascribed to increased surface hydrophilicity compared to the counterpart nonionic p-HEMA hydrogel.

  6. Inhibitory Effect of Biocides on the Viable Masses and Matrices of Staphylococcus aureus and Pseudomonas aeruginosa Biofilms▿

    PubMed Central

    Toté, K.; Horemans, T.; Berghe, D. Vanden; Maes, L.; Cos, P.

    2010-01-01

    Bacteria and matrix are essential for the development of biofilms, and assays should therefore target both components. The current European guidelines for biocidal efficacy testing are not adequate for sessile microorganisms; hence, alternative discriminatory test protocols should be used. The activities of a broad range of biocides on Staphylococcus aureus and Pseudomonas aeruginosa biofilms were evaluated using such in vitro assays. Nearly all selected biocides showed a significant decrease in S. aureus biofilm viability, with sodium hypochlorite and peracetic acid as the most active biocides. Only hydrogen peroxide and sodium hypochlorite showed some inhibitory effect on the matrix. Treatment of P. aeruginosa biofilms was roughly comparable to that of S. aureus biofilms. Peracetic acid was the most active on viable mass within 1 min of contact. Isopropanol ensured a greater than 99.999% reduction of P. aeruginosa viability after at least 30 min of contact. Comparable to results with S. aureus, sodium hypochlorite and hydrogen peroxide markedly reduced the P. aeruginosa matrix. This study clearly demonstrated that despite their aspecific mechanisms of action, most biocides were active only against biofilm bacteria, leaving the matrix undisturbed. Only hydrogen peroxide and sodium hypochlorite were active on both the biofilm matrix and the viable mass, making them the better antibiofilm agents. In addition, this study emphasizes the need for updated and standardized guidelines for biofilm susceptibility testing of biocides. PMID:20363795

  7. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa.

    PubMed

    Pan, Ya-Ping; Xu, Yuan-Hong; Wang, Zhong-Xin; Fang, Ya-Ping; Shen, Ji-Lu

    2016-08-01

    Efflux pump systems are one of the most important mechanisms conferring multidrug resistance in Pseudomonas aeruginosa. MexAB-OprM efflux pump is one of the largest multi-drug resistant efflux pumps with high-level expression, which is controlled by regulatory genes mexR, nalC, and nalD. This study investigated the role of efflux pump MexAB-OprM in 75 strains of carbapenem-resistant P. aeruginosa and evaluated the influence of point mutation of the regulatory genes. The minimum inhibitory concentrations of imipenem and meropenem, with or without MC207110, an efflux pump inhibitor, were determined by agar dilution method to select the positive strains for an overexpressed active efflux pump. Carba NP test and EDTA-disk synergy test were used for the detection of carbapenemase and metallo-β-lactamases, respectively. The gene mexA, responsible for the fusion protein structure, and the reference gene rpoD of the MexAB-OprM pump were amplified by real-time PCR. The quantity of relative mRNA expression was determined simultaneously. By PCR method, the efflux regulatory genes mexR, nalC, and nalD and outer membrane protein OprD2 were amplified for the strains showing overexpression of MexAB-OprM and subsequently analyzed by BLAST. Among the 75 P. aeruginosa strains, the prevalence of efflux pump-positive phenotype was 17.3 % (13/75). Carba NP test and EDTA-disk synergy test were all negative in the 13 strains. PCR assay results showed that ten strains overexpressed the MexAB-OprM efflux pump and were all positive for the regulatory genes mexR, nalC, and nalD. Sequence analysis indicated that of the ten isolates, nine had a mutation (Gly → Glu) at 71st amino acid position in NalC, and eight also had a mutation (Ser → Arg) at 209th position in NalC. Only one strain had a mutation (Thr → Ile) at the 158th amino acid position in NalD, whereas eight isolates had mutations in MexR. In conclusion, overexpression of efflux pump MexAB-OprM plays an important role in

  8. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  9. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  10. Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation.

    PubMed

    Ramphal, R; Small, P M; Shands, J W; Fischlschweiger, W; Small, P A

    1980-02-01

    Adherence of Pseudomonas aeruginosa to normal, injured, and regenerating tracheal mucosa was examined by scanning electron microscopy. Uninfected and influenza-infected murine tracheas were exposed to six strains of P. aeruginosa isolated from human sources and one strain of platn origin. All of the strains tested adhered to desquamating cells of the infected tracheas, but not to normal mucosa, the basal cell layer, or the regenerating epithelium. Adherence increased when the incubation time of the bacteria with the trachea was prolonged. Strains isolated from human tracheas appeared to adhere better than strains derived from the urinary tract. After endotracheal intubation of ferrets, P. aeruginosa adhered only to the injured cells and to areas of exposed basement membrane. We call this phenomenon "opportunistic adherence" and propose that alteration of the cell surfaces or cell injury facilitates the adherence of this bacterium and that adherence to injured cells may be a key to the pathogenesis of opportunistic Pseudomonas infections.

  11. Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis

    PubMed Central

    2012-01-01

    Introduction Chronic pulmonary infection is the hallmark of Cystic Fibrosis lung disease. Searching for faster and easier screening may lead to faster diagnosis and treatment of Pseudomonas aeruginosa (P. aeruginosa). Our aim was to analyze and build a model to predict the presence of P. aeruginosa in sputa. Methods Sputa from 28 bronchiectatic patients were used for bacterial culturing and analysis of volatile compounds by gas chromatography–mass spectrometry. Data analysis and model building were done by Partial Least Squares Regression Discriminant analysis (PLS-DA). Two analysis were performed: one comparing P. aeruginosa positive with negative cultures at study visit (PA model) and one comparing chronic colonization according to the Leeds criteria with P. aeruginosa negative patients (PACC model). Results The PA model prediction of P. aeruginosa presence was rather poor, with a high number of false positives and false negatives. On the other hand, the PACC model was stable and explained chronic P. aeruginosa presence for 95% with 4 PLS-DA factors, with a sensitivity of 100%, a positive predictive value of 86% and a negative predictive value of 100%. Conclusion Our study shows the potential for building a prediction model for the presence of chronic P. aeruginosa based on volatiles from sputum. PMID:23031195

  12. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-12-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth.

  13. Pseudomonas aeruginosa and Its Bacterial Components Influence the Cytokine Response in Thymocytes and Splenocytes

    PubMed Central

    Zimmermann, Corinna; Mausberg, Anne K.; Dehmel, Thomas; Kieseier, Bernd C.; Hartung, Hans-Peter; Hofstetter, Harald H.

    2016-01-01

    Infections with Pseudomonas aeruginosa may cause many different diseases. The spectrum of such infections in general includes inflammation and bacterial sepsis. Hospital-acquired pneumonia, naturally resistant to a wide range of antibiotics, is associated with a particularly high mortality rate in mechanically ventilated patients. The pathogenesis of P. aeruginosa is complex and mediated by several virulence factors, as well as cell-associated factors. We have previously demonstrated that stimulation with different bacteria triggers the cytokine response of thymocytes. In this study, we investigated the effect of P. aeruginosa and its different components on the cytokine production of immature and mature immune cells. We found that the induced cytokine pattern in the thymus and the spleen after infections with P. aeruginosa is primarily mediated by lipopolysaccharide (LPS) of the outer cell membrane, but other components of the bacterium can influence the cytokine secretion as well. Stimulation with heat-killed P. aeruginosa and LPS does not influence the amount of cytokine-producing CD4+ T cells but instead suppresses the emergence of Th17 cells. However, stimulation with P. aeruginosa or its components triggers the interleukin-17 (IL-17) response both in thymocytes and in splenocytes. We conclude that infections with P. aeruginosa affect the cytokine secretion of immature and mature cells and that IL-17 and Th17 cells play only a minor role in the development of pathological systemic inflammatory disease conditions during P. aeruginosa infections. Therefore, other inflammatory immune responses must be responsible for septic reactions of the host. PMID:26902726

  14. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    PubMed Central

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-01-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth. PMID:27941841

  15. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa

    PubMed Central

    Zhao, Xia; Chen, Canhuang; Jiang, Xingyu; Shen, Wei; Huang, Guangtao; Le, Shuai; Lu, Shuguang; Zou, Lingyun; Ni, Qingshan; Li, Ming; Zhao, Yan; Wang, Jing; Rao, Xiancai; Hu, Fuquan; Tan, Yinling

    2016-01-01

    The impact of phage infection on the host cell is severe. In order to take over the cellular machinery, some phage proteins were produced to shut off the host biosynthesis early in the phage infection. The discovery and identification of these phage-derived inhibitors have a significant prospect of application in antibacterial treatment. This work presented a phage protein, gp70.1, with non-specific inhibitory effects on Pseudomonas aeruginosa and Escherichia coli. Gp70.1 was encoded by early gene – orf 70.1 from P. aeruginosa phage PaP3. The P. aeruginosa with a plasmid encoding gp70.1 showed with delayed growth and had the appearance of a small colony. The combination of multifaceted analysis including microarray-based transcriptomic analysis, RT-qPCR, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics and phenotype experiments were performed to investigate the effects of gp70.1 on P. aeruginosa. A total of 178 genes of P. aeruginosa mainly involved in extracellular function and metabolism were differentially expressed in the presence of gp70.1 at three examined time points. Furthermore, our results indicated that gp70.1 had an extensive impact on the extracellular phenotype of P. aeruginosa, such as motility, pyocyanin, extracellular protease, polysaccharide, and cellulase. For the metabolism of P. aeruginosa, the main effect of gp70.1 was the reduction of amino acid consumption. Finally, the RNA polymerase sigma factor RpoS was identified as a potential cellular target of gp70.1. Gp70.1 was the first bacterial inhibitor identified from Pseudomonas aeruginosa phage PaP3. It was also the first phage protein that interacted with the global regulator RpoS of bacteria. Our results indicated the potential value of gp70.1 in antibacterial applications. This study preliminarily revealed the biological function of gp70.1 and provided a reference for the study of other phage genes sharing similarities with orf70.1. PMID:27725812

  16. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals.

    PubMed

    Birmes, Franziska S; Wolf, Timo; Kohl, Thomas A; Rüger, Kai; Bange, Franz; Kalinowski, Jörn; Fetzner, Susanne

    2017-01-01

    Pseudomonas aeruginosa employs 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone (HHQ) as quorum sensing signal molecules, which contribute to a sophisticated regulatory network controlling the production of virulence factors and antimicrobials. We demonstrate that Mycobacterium abscessus(T) and clinical M. abscessus isolates are capable of degrading these alkylquinolone signals. Genome sequences of 50 clinical M. abscessus isolates indicated the presence of aqdRABC genes, contributing to fast degradation of HHQ and PQS, in M. abscessus subsp. abscessus strains, but not in M. abscessus subsp. bolletii and M. abscessus subsp. massiliense isolates. A subset of 18 M. a. subsp. abscessus isolates contained the same five single nucleotide polymorphisms (SNPs) compared to the aqd region of the type strain. Interestingly, representatives of these isolates showed faster PQS degradation kinetics than the M. abscessus type strain. One of the SNPs is located in the predicted promoter region of the aqdR gene encoding a putative transcriptional regulator, and two others lead to a variant of the AqdC protein termed AqdC(II), which differs in two amino acids from AqdC(I) of the type strain. AqdC, the key enzyme of the degradation pathway, is a PQS dioxygenase catalyzing quinolone ring cleavage. While transcription of aqdR and aqdC is induced by PQS, transcript levels in a representative of the subset of 18 isolates were not significantly altered despite the detected SNP in the promoter region. However, purified recombinant AqdC(II) and AqdC(I) exhibit different kinetic properties, with approximate apparent Km values for PQS of 14 μM and 37 μM, and kcat values of 61 s(-1) and 98 s(-1), respectively, which may (at least in part) account for the observed differences in PQS degradation rates of the strains. In co-culture experiments of P. aeruginosa PAO1 and M. abscessus, strains harboring the aqd genes reduced the PQS levels

  17. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals

    PubMed Central

    Birmes, Franziska S.; Wolf, Timo; Kohl, Thomas A.; Rüger, Kai; Bange, Franz; Kalinowski, Jörn; Fetzner, Susanne

    2017-01-01

    Pseudomonas aeruginosa employs 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone (HHQ) as quorum sensing signal molecules, which contribute to a sophisticated regulatory network controlling the production of virulence factors and antimicrobials. We demonstrate that Mycobacterium abscessusT and clinical M. abscessus isolates are capable of degrading these alkylquinolone signals. Genome sequences of 50 clinical M. abscessus isolates indicated the presence of aqdRABC genes, contributing to fast degradation of HHQ and PQS, in M. abscessus subsp. abscessus strains, but not in M. abscessus subsp. bolletii and M. abscessus subsp. massiliense isolates. A subset of 18 M. a. subsp. abscessus isolates contained the same five single nucleotide polymorphisms (SNPs) compared to the aqd region of the type strain. Interestingly, representatives of these isolates showed faster PQS degradation kinetics than the M. abscessus type strain. One of the SNPs is located in the predicted promoter region of the aqdR gene encoding a putative transcriptional regulator, and two others lead to a variant of the AqdC protein termed AqdCII, which differs in two amino acids from AqdCI of the type strain. AqdC, the key enzyme of the degradation pathway, is a PQS dioxygenase catalyzing quinolone ring cleavage. While transcription of aqdR and aqdC is induced by PQS, transcript levels in a representative of the subset of 18 isolates were not significantly altered despite the detected SNP in the promoter region. However, purified recombinant AqdCII and AqdCI exhibit different kinetic properties, with approximate apparent Km values for PQS of 14 μM and 37 μM, and kcat values of 61 s-1 and 98 s-1, respectively, which may (at least in part) account for the observed differences in PQS degradation rates of the strains. In co-culture experiments of P. aeruginosa PAO1 and M. abscessus, strains harboring the aqd genes reduced the PQS levels, whereas

  18. Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant.

    PubMed

    Calfee, M Worth; Shelton, John G; McCubrey, James A; Pesci, Everett C

    2005-02-01

    Pseudomonas aeruginosa is a gram-negative bacterium that causes serious infections in immunocompromised individuals and cystic fibrosis patients. This opportunistic pathogen controls many of its virulence factors and cellular functions through the activity of three cell-to-cell signals, N-(3-oxododecanoyl)-L-homoserine lactone, N-butyryl-L-homoserine lactone, and the Pseudomonas quinolone signal (PQS). The activity of these signals is dependent upon their ability to dissolve in and freely diffuse through the aqueous solution in which P. aeruginosa happens to reside. Despite this, our data indicated that PQS was relatively insoluble in aqueous solutions, which led us to postulate that P. aeruginosa could be producing a PQS-solubilizing factor. In this report, we show that the P. aeruginosa-produced biosurfactant rhamnolipid greatly enhances the solubility of PQS in aqueous solutions. The enhanced solubility of PQS led to an increase in PQS bioactivity, as measured by both a gene induction assay and an apoptosis assay. This is the first demonstration of the importance of a bacterial surfactant in the solubilization and bioactivity of a cell-to-cell signal.

  19. Bilateral Granulomatous and Fibrinoheterophilic Otitis Interna due to Pseudomonas aeruginosa in a Captive Little Bustard ( Tetrax tetrax ).

    PubMed

    Scala, Christopher; Langlois, Isabelle; Lemberger, Karin

    2015-06-01

    A captive juvenile little bustard ( Tetrax tetrax ) was presented for acute onset of right head tilt and right circling. The bird failed to respond to supportive care and systemic antibiotic therapy. A bilateral granulomatous and fibrinoheterophilic otitis interna due to Pseudomonas aeruginosa was diagnosed postmortem by histopathologic examination and bacterial culture. In bustards, Pseudomonas species have been documented in the normal bacterial flora of the oropharynx and are frequently reported in upper respiratory tract infections. This is the first report of a peripheral vestibular syndrome due to P aeruginosa otitis interna in a bustard species. Pseudomonas aeruginosa should be included as a possible cause of otitis and peripheral vestibular syndrome in bustards.

  20. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Karlowsky, J A; Hoban, D J; Zelenitsky, S A; Zhanel, G G

    1997-09-01

    Adaptive resistance to aminoglycoside killing and cytoplasmic accumulation occurs in cultures of originally susceptible Pseudomonas aeruginosa following an initial incubation with aminoglycoside. Anaerobiosis has also been reported to reduce bacterial killing and limit cytoplasmic aminoglycoside accumulation. We hypothesized that a common mechanism may facilitate reduced bacterial killing and aminoglycoside accumulation in both cases. Northern blot analysis of P. aeruginosa adaptively resistant to gentamicin demonstrated increased mRNA levels of both denA (nitrite reductase), which facilitates terminal electron acceptance in the anaerobic respiratory pathway, and its regulatory protein, ANR, in the absence of promoter DNA sequence changes, when compared with controls. These observations suggested that P. aeruginosa may regulate the expression of genes in its anaerobic respiratory pathway in response to aminoglycosides and may explain, at least partially, P. aeruginosa adaptive resistance to aminoglycosides.

  1. A study on the effect of Pseudomonas aeruginosa in semen on bovine fertility.

    PubMed Central

    Eaglesome, M D; Garcia, M M; Bielanski, A B

    1995-01-01

    Two experiments were done to demonstrate whether the presence of Pseudomonas aeruginosa in bovine semen could affect fertilization and/or early embryonic development. In the first experiment, superovulated heifers were inseminated with semen naturally contaminated with P. aeruginosa (ADRI 102) or clean semen and seven day-old embryos were collected nonsurgically. The endometrium of treated heifers appeared more sensitive to the flush procedures. In experiment 2, heifers were inseminated at synchronized estrus with semen experimentally contaminated with P. aeruginosa (ADRI 102) and processed in the same way as commercial semen with antibiotics (gentamicin, lincomycin, spectinomycin and tylosin) or processed without antibiotics added. Embryos were recovered at slaughter seven days later. In general, there was no significant reduction in fertility or development of embryos in vitro as a result of relatively high numbers of P. aeruginosa in bovine semen. PMID:7704848

  2. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    PubMed Central

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  3. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa.

    PubMed

    Knezevic, Petar; Curcin, Sanja; Aleksic, Verica; Petrusic, Milivoje; Vlaski, Ljiljana

    2013-01-01

    Pseudomonas aeruginosa is a highly resistant opportunistic pathogen and an important etiological agent of various types of infections. During the last decade, P. aeruginosa phages have been extensively examined as alternative antimicrobial agents. The aim of the study was to determine antimicrobial effectiveness of combining subinhibitory concentrations of gentamicin, ceftriaxone, ciprofloxacin or polymyxin B with P. aeruginosa-specific bacteriophages belonging to families Podoviridae and Siphoviridae. The time-kill curve method showed that a combination of bacteriophages and subinhibitory concentrations of ceftriaxone generally reduced bacterial growth, and synergism was proven for a Siphoviridae phage σ-1 after 300 min of incubation. The detected alteration in morphology after ceftriaxone application, resulting in cell elongation, along with its specific mode of action, seemed to be a necessary but was not a sufficient reason for phage-antibiotic synergism. The phenomenon offers an opportunity for future development of treatment strategies for potentially lethal infections caused by P. aeruginosa.

  4. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia.

    PubMed

    Correa, Adriana; Del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J; Rojas, Laura; Cantón, Rafael; Arias, Cesar A; Villegas, Maria V

    2015-04-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia.

  5. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  6. Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa.

    PubMed Central

    Liu, P V; Shokrani, F

    1978-01-01

    Strains of Pseudomonas aeruginosa able to grow readily in serum (serum resistant) produce siderophores in large quantity, enabling them to extract iron from transferrins. The term pyochelin has been proposed for this group of compounds. Pyochelin extractable with ethyl acetate and designated pyochelin A appears to be a mixture of catechols and other phenolates. The structures of water-soluble siderophores, designated pyochelin B, have not been determined. Pyochelins enabled growth in serum of strains of serum-sensitive P. aeruginosa and other gram-negative bacilli. Serum-resistant strains of P. aeruginosa tended to be more virulent than equally toxigenic strains of the serum-sensitive group. However, incorporation of pyochelins into the inocula of serum-sensitive strains could reduce, rather than enhance, their virulence. Utilization of pyochelins by serum-sensitive strains of P. aeruginosa rendered some of these organisms resistant to pyocins which were otherwise lethal to them. Images PMID:103839

  7. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa

    PubMed Central

    Guo, Mingquan; Feng, Chunyan; Ren, Jie; Zhuang, Xuran; Zhang, Yan; Zhu, Yongzhang; Dong, Ke; He, Ping; Guo, Xiaokui; Qin, Jinhong

    2017-01-01

    The global increase in multidrug resistant (MDR) bacteria has led to phage therapy being refocused upon. A novel endolysin, LysPA26, containing a lysozyme-like domain, was screened against Pseudomonas aeruginosa in this study. It had activity against MDR P. aeruginosa without pretreatment with an outer-membrane permeabilizer. LysPA26 could kill up to 4 log units P. aeruginosa in 30 min. In addition, temperature and pH effect assays revealed that LysPA26 had good stability over a broad range of pH and temperatures. Moreover, LysPA26 could kill other Gram-negative bacteria, such as Klebsiella pneumonia, Acinetobacter baumannii and Escherichia coli, but not Gram-positive bacteria. Furthermore, LysPA26 could eliminate P. aeruginosa in biofilm formation. Our current results show that LysPA26 is a new and promising antimicrobial agent for the combat of Gram-negative pathogens. PMID:28289407

  8. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa

    PubMed Central

    Meletis, G; Exindari, M; Vavatsi, N; Sofianou, D; Diza, E

    2012-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen associated with a range of nosocomial infections. This microorganism is noted for its intrinsic resistance to antibiotics and for its ability to acquire genes encoding resistance determinants. Among the beta-lactam antibiotics, carbapenems with antipseudomonal activity are important agents for the therapy of infections due to P. aeruginosa. The development of carbapenem resistance among P. aeruginosa strains is multifactorial. Plasmid or integron-mediated carbapenemases, increased expression of efflux systems, reduced porin expression and increased chromosomal cephalosporinase activity have all been defined as contributory factors. Phenotypic tests and molecular techniques are used for the characterization of the resistance determinants. The isolation of carbapenem resistant strains is alarming and requires the implementation of strict infection control measures in order to prevent the spread of carbapenemase encoding genes to unrelated clones or to other bacterial species. PMID:23935307

  9. Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia

    PubMed Central

    del Campo, Rosa; Perenguez, Marcela; Blanco, Victor M.; Rodríguez-Baños, Mercedes; Perez, Federico; Maya, Juan J.; Rojas, Laura; Cantón, Rafael; Arias, Cesar A.; Villegas, Maria V.

    2015-01-01

    The ability of Pseudomonas aeruginosa to develop resistance to most antimicrobials represents an important clinical threat worldwide. We report the dissemination in several Colombian hospitals of two predominant lineages of extensively drug-resistant (XDR) carbapenemase-producing P. aeruginosa strains. These lineages belong to the high-risk clones sequence type 111 (ST111) and ST235 and harbor blaVIM-2 on a class 1 integron and blaKPC-2 on a Tn4401 transposon, respectively. Additionally, P. aeruginosa ST1492, a novel single-locus variant of ST111, was identified. Clonal dissemination and the presence of mobile genetic elements likely explain the successful spread of XDR P. aeruginosa strains in Colombia. PMID:25605362

  10. Crystal Structure and RNA Binding of the Tex Protein from Pseudomonas aeruginosa

    SciTech Connect

    Johnson,S.; Close, D.; Robinson, H.; Vallet-Gely, I.; Dove, S.; Hill, C.

    2008-01-01

    Tex is a highly conserved bacterial protein that likely functions in a variety of transcriptional processes. Here, we describe two crystal structures of the 86-kDa Tex protein from Pseudomonas aeruginosa at 2.3 and 2.5 Angstroms resolution, respectively. These structures reveal a relatively flat and elongated protein, with several potential nucleic acid binding motifs clustered at one end, including an S1 domain near the C-terminus that displays considerable structural flexibility. Tex binds nucleic acids, with a preference for single-stranded RNA, and the Tex S1 domain is required for this binding activity. Point mutants further demonstrate that the primary nucleic acid binding site corresponds to a surface of the S1 domain. Sequence alignment and modeling indicate that the eukaryotic Spt6 transcription factor adopts a similar core structure. Structural analysis further suggests that the RNA polymerase and nucleosome interacting regions of Spt6 flank opposite sides of the Tex-like scaffold. Therefore, the Tex structure may represent a conserved scaffold that binds single-stranded RNA to regulate transcription in both eukaryotic and prokaryotic organisms.

  11. Use of the paraffin wax baiting system for identification of Pseudomonas aeruginosa clinical isolates.

    PubMed

    Massengale, A R; Ollar, R A; Giordano, S J; Felder, M S; Aronoff, S C

    1999-11-01

    Pseudomonas aeruginosa is the primary pathogen among the Pseudomonads and is known for its minimal nutritional requirements, capacity to use paraffin as a sole carbon source, and biofilm formation. Because the ability of Pseudomonads to grow on paraffin is not commonly found among human pathogens and the primary Pseudomonas human pathogen is P. aeruginosa, we studied the adaptation of the paraffin baiting system for the growth and identification of clinical isolates of P. aeruginosa. We also studied the effectiveness of combining a fluorescence assay measuring fluorescein (pyoverdin) production and oxidase test with the paraffin baiting assay for P. aeruginosa speciation. Strains were tested for the capacity to use paraffin as a sole carbon source using the paraffin baiting system with Czapek's minimal salt medium. Of 111 P. aeruginosa clinical isolates tested for using paraffin as a sole carbon source, 45% exhibited growth on paraffin at 24 h and 76.6% exhibited growth on paraffin at 48 h. The ability of the reference strains and clinical isolates were then tested for their ability to associate with the paraffin slide in the presence of an additional carbon source. Of 111 P. aeruginosa clinical isolates tested, 85 strains (76.6%), and 102 (93%) were associated with the paraffin surface at 24 and 48 h. We successfully combined fluorescence and oxidase assays with the paraffin baiting system for identification of P. aeruginosa. The simple and inexpensive paraffin baiting system is a useful method for the identification and study of P. aeruginosa suitable for both the clinical and research laboratory.

  12. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    PubMed

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  13. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  14. Second harmonic generation imaging of corneal stroma after infection by Pseudomonas aeruginosa

    PubMed Central

    Robertson, Danielle M.; Rogers, Nathan A.; Petroll, W. Matthew; Zhu, Meifang

    2017-01-01

    Pseudomonas aeruginosa is a pathogenic gram-negative organism that has the ability to cause blinding corneal infections following trauma and during contact lens wear. In this study, we investigated the directional movement and orientation of an invasive corneal isolate of P. aeruginosa in the corneal stroma during infection of ex vivo and in vivo rabbit corneas using multiphoton fluorescence and second harmonic generation (SHG) imaging. Ex vivo, rabbit corneas were subject to three partial thickness wounds prior to inoculation. In vivo, New Zealand white rabbits were fit with P. aeruginosa laden contact lenses in the absence of a penetrating wound. At all time points tested, infiltration of the corneal stroma by P. aeruginosa revealed a high degree of alignment between the bacteria and collagen lamellae ex vivo (p < 0.001). In vivo, P. aeruginosa traveled throughout the stroma in discrete regions or bands. Within each region, the bacteria showed good alignment with collagen lamellae (P = 0.002). Interestingly, in both the in vitro and in vivo models, P. aeruginosa did not appear to cross the corneal limbus. Taken together, our findings suggest that P. aeruginosa exploits the precise spacing of collagen lamellae in the central cornea to facilitate spread throughout the stroma.

  15. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jin-Hyung; Cho, Moo Hwan; Lee, Jintae

    2011-01-01

    Intercellular signal indole and its derivative hydroxyindoles inhibit Escherichia coli biofilm and diminish Pseudomonas aeruginosa virulence. However, indole and bacterial indole derivatives are unstable in the microbial community because they are quickly degraded by diverse bacterial oxygenases. Hence, this work sought to identify novel, non-toxic, stable and potent indole derivatives from plant sources for inhibiting the biofilm formation of E. coli O157:H7 and P. aeruginosa. Here, plant auxin 3-indolylacetonitrile (IAN) was found to inhibit the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth. IAN more effectively inhibited biofilms than indole for the two pathogenic bacteria. Additionally, IAN decreased the production of virulence factors including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), pyocyanin and pyoverdine in P. aeruginosa. DNA microarray analysis indicated that IAN repressed genes involved in curli formation and glycerol metabolism, whereas IAN induced indole-related genes and prophage genes in E. coli O157:H7. It appeared that IAN inhibited the biofilm formation of E. coli by reducing curli formation and inducing indole production. Also, corroborating phenotypic results of P. aeruginosa, whole-transcriptomic data showed that IAN repressed virulence-related genes and motility-related genes, while IAN induced several small molecule transport genes. Furthermore, unlike bacterial indole derivatives, plant-originated IAN was stable in the presence of either E. coli or P. aeruginosa. Additionally, indole-3-carboxyaldehyde was another natural biofilm inhibitor for both E. coli and P. aeruginosa.

  16. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  17. Annona glabra Flavonoids Act As Antimicrobials by Binding to Pseudomonas aeruginosa Cell Walls

    PubMed Central

    Galvão, Stanley de S. L.; Monteiro, Andrea de S.; Siqueira, Ezequias P.; Bomfim, Maria Rosa Q.; Dias-Souza, Marcus Vinícius; Ferreira, Gabriella F.; Denadai, Angelo Márcio L.; Santos, Áquila R. C.; Lúcia dos Santos, Vera; de Souza-Fagundes, Elaine M.; Fernandes, Elizabeth S.; Monteiro-Neto, Valério

    2016-01-01

    Pseudomonas aeruginosa is an important pathogen in opportunistic infections in humans. The increased incidence of antimicrobial-resistant P. aeruginosa isolates has highlighted the need for novel and more potent therapies against this microorganism. Annona glabra is known for presenting different compounds with diverse biological activities, such as anti-tumor and immunomodulatory activities. Although other species of the family display antimicrobial actions, this has not yet been reported for A. glabra. Here, we investigated the antimicrobial activity of the ethyl acetate fraction (EAF) obtained from the leaf hydroalcoholic extract of A. glabra. EAF was bactericidal against different strains of P. aeruginosa. EAF also presented with a time- and concentration-dependent effect on P. aeruginosa viability. Testing of different EAF sub-fractions showed that the sub-fraction 32-33 (SF32-33) was the most effective against P. aeruginosa. Analysis of the chemical constituents of SF32-33 demonstrated a high content of flavonoids. Incubation of this active sub-fraction with P. aeruginosa ATCC 27983 triggered an endothermic reaction, which was accompanied by an increased electric charge, suggesting a high binding of SF32-33 compounds to bacterial cell walls. Collectively, our results suggest that A. glabra-derived compounds, especially flavonoids, may be useful for treating infections caused by P. aeruginosa. PMID:28066374

  18. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  19. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    PubMed Central

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm−1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device. PMID:28349938

  20. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa.

    PubMed

    Oglesby-Sherrouse, Amanda G; Djapgne, Louise; Nguyen, Angela T; Vasil, Adriana I; Vasil, Michael L

    2014-04-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.

  1. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections.

    PubMed

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review.

  2. Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia

    PubMed Central

    Cigana, Cristina; Bernardini, Francesca; Facchini, Marcella; Alcalá-Franco, Beatriz; Riva, Camilla; De Fino, Ida; Rossi, Alice; Ranucci, Serena; Misson, Pauline; Chevalier, Eric; Brodmann, Maj; Schmitt, Michel; Wach, Achim; Dale, Glenn E.

    2016-01-01

    The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa. We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections. PMID:27297477

  3. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    NASA Astrophysics Data System (ADS)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  4. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    PubMed Central

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; De, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pa