Science.gov

Sample records for acid ra induces

  1. Fasting Induces IL-1 Resistance and Free-Fatty Acid-Mediated Up-Regulation of IL-1R2 and IL-1RA

    PubMed Central

    Joesting, Jennifer J.; Moon, Morgan L.; Gainey, Stephen J.; Tisza, Brittany L.; Blevins, Neil A.; Freund, Gregory G.

    2014-01-01

    Objective: Weight-loss is a near societal obsession and many diet programs use significant calorie restriction including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 h fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 h. Expression of the endogenous IL-1 antagonists, IL-1 receptor type 2 (IL-1R2), and IL-1 receptor antagonist (IL-1RA) was determined as were sickness behaviors before and after IL-1β administration. Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver) and IL-1RA (68-fold in liver). Fasted mice were protected from IL-1β-induced weight-loss, hypoglycemia, loss of locomotor, and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1β on IL-1R2 gene expression in adipose tissue and liver (2.6- and 1.6-fold, respectively). Fasting not only increased IL-1RA and IL-1R2 protein 2.5- and 3.2-fold, respectively, in liver but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs) and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14- and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation. PMID:25071776

  2. Additive Effects of Retinoic Acid (RA) and Bone Morphogenetic Protein 4 (BMP-4) Apoptosis Signaling in Retinoblastoma Cell Lines

    PubMed Central

    Müller, Patrick; Doliva, Rebekka; Busch, Maike; Philippeit, Claudia; Stephan, Harald; Dünker, Nicole

    2015-01-01

    Retinoids have been shown to serve promising therapeutic agents for human cancers, e.g. the treatment of neuroblastoma. Synthetic retinoids, specific for particular retinoic acid (RA) receptors, are tested as new therapy strategies. In the present study, application of recombinant retinoic acid (RA) lowers retinoblastoma (RB) cell viability and induces apoptosis in RB cell lines. Combined treatment of RA and bone morphogenetic protein 4 (BMP-4) increases the pro-apoptotic effect of RA in the RB cells lines WERI-Rb1, Y-79, RB355, RBL-30 and RBL-15, indicating an additive effect. We could show that in WERI-Rb1 cells RA/BMP-4 mediated cell death is at least partially caspase-dependent, whereby RA and BMP-4 additively increased (i) Apaf-1 mRNA levels, (ii) caspase-9 cleavage activity and (iii) the number of activated, cleaved caspase-3 positive cells. Compared to single application of RA and BMP-4, combined RA/BMP-4 treatment significantly augments mRNA levels of the retinoic acid receptors (RARs) RARα and RARß and the retinoic X receptor (RXR) RXRγ suggesting an interaction in the induction of these RA receptor subtypes in WERI-Rb1 cells. Agonist studies revealed that both, RARs and RXRs are involved in RA/BMP-4 mediated apoptosis in WERI-Rb1 retinoblastoma cells. Employing specific RAR subtype antagonists and a RXRß and RXRγ knockdown, we proved that RA/BMP-4 apoptosis signaling in WERI-Rb1 cells requires the RA receptor subtypes RARα, RARß, RXRß and RXRγ. Deciphering signaling mechanisms underlying apoptosis induction of RA and BMP-4 in WERI-Rb1 cells, our study provides useful starting-points for future retinoid-based therapy strategies in retinoblastoma. PMID:26173116

  3. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA.

    PubMed

    Rochette-Egly, Cécile

    2015-01-01

    Retinoic acid (RA), the active derivative of vitamin A, a fat-soluble vitamin, plays key roles in cell growth and differentiation by activating nuclear receptors, RARs (α, β and γ), which are ligand dependent regulators of transcription. The past years highlighted several novelties in the field that increased the complexity of RA effects. Indeed, in addition to its classical genomic effects, RA also has extranuclear and non-transcriptional effects. RA induces the rapid and transient activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of RARs at a conserved serine residue located in the N-terminal domain and their coregulators. In order to investigate the relevance of RARs' phosphorylation in cell differentiation, mouse embryonic stem (mES) cells were used as a model. When treated with RA, these pluripotent cells give rise to neuronal cells. Cells invalidated for each RAR were generated as well as stable rescue lines expressing RARs mutated in phosphor acceptor sites. Such a strategy revealed that RA-induced neuronal differentiation involves the RARγ2 subtype and requires RARγ2 phosphorylation. Moreover, in gene expression profiling experiments, the phosphorylated form of RARγ2 was found to regulate a small subset of genes through binding a novel RA response element consisting of two direct repeats with a 7 base pair spacer. These new findings suggest an important role for RAR phosphorylation during cell differentiation, and pave the way for further investigations with other cell types and during embryonic development. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. PMID:24768681

  4. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells

    PubMed Central

    Bunaciu, Rodica P.; LaTocha, Dorian H.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association. PMID:26287494

  5. Choline kinase alpha expression during RA-induced neuronal differentiation: role of C/EBPβ.

    PubMed

    Domizi, Pablo; Aoyama, Chieko; Banchio, Claudia

    2014-04-01

    Neuronal differentiation is a complex process characterized by a halt in proliferation and extension of neurites from the cell body. This process is accompanied by changes in gene expression that mediate the redirection leading to neurite formation and function. Acceleration of membrane phospholipids synthesis is associated with neurite elongation, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. The transcription of two genes in particular encoding key enzymes in the CDP-choline pathway for PtdCho biosynthesis are stimulated; the Chka gene for choline kinase (CK) alpha isoform and the Pcyt1a gene for the CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. We report that the stimulation of CKα expression during retinoic acid (RA) induced differentiation depends on a promoter region that contains two CCAAT/Enhancer-binding Protein-β (C/EBPβ) sites. We demonstrate that during neuronal differentiation of Neuro-2a cells, RA induces Chka expression by a mechanism that involves ERK1/2 activation which triggers C/EBPβ expression. Elevated levels of C/EBPβ bind to the Chka proximal promoter (Box1) inducing CKα expression. In addition we identified a downstream sequence named Box2 which together with Box1 is required for the promoter to reach the full induction. This is the first elucidation of the mechanism by which the expression of Chka is coordinately regulated during neuronal differentiation. PMID:24440820

  6. atRA-induced apoptosis of mouse embryonic palate mesenchymal cells involves activation of MAPK pathway

    SciTech Connect

    Yu Zengli . E-mail: yuzengli@263.net; Xing Ying . E-mail: xingy@zzu.edu.cn

    2006-08-15

    Our previous studies have shown that atRA treatment resulted in cell-cycle block and growth inhibition in mouse embryonic palatal mesenchymal (MEPM). In the current study, gestation day (GD) 13 MEPM cells were used to test the hypothesis that the growth inhibition by atRA is due to apoptosis. The effects of atRA on apoptosis were assessed by performing MTT assay, Cell Death Detection ELISA and flow cytometry, respectively. Data analysis confirmed that atRA treatment induced apoptosis-like cell death, as shown by decreased cell viability and increased fragmented DNA and sub-G1 fraction. atRA-induced apoptosis was associated with upregulation of bcl-2, translocation of bax protein to the mitochondria from the cytosol, activation of caspase-3 and cytochrome c release into cytosol. atRA-induced apoptosis was abrogated by z-DEVD-fmk, a caspase-3 specific inhibitor, and z-VAD-fmk, a general caspase inhibitor, suggesting that the atRA-induced cell death of MEPM cells occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, atRA treatment caused a strong and sustained activation of c-Jun N-terminal kinase (JNK) and p38 kinase (p38), as well as an early but transient activation of extracellular signal-regulated kinase (ERK). Importantly, atRA-induced DNA fragmentation and capase-3 activation were prevented by pretreatment with the JNK inhibitor (SP600125) and the p38 MAPK inhibitor (SB202190), but not by pretreatment with MEK inhibitor (U0126). From these results, we suggest that mitogen-activated protein kinase-dependent pathways is involved in the atRA-induced apoptosis of MEPM cells.

  7. ZebRA: An overview of retinoic acid signaling during zebrafish development.

    PubMed

    Samarut, Eric; Fraher, Daniel; Laudet, Vincent; Gibert, Yann

    2015-02-01

    Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. PMID:24928143

  8. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  9. Anti-Citrullinated Protein Antibodies Induce Macrophage Subset Disequilibrium in RA Patients.

    PubMed

    Zhu, Wei; Li, Xiu; Fang, Shaohong; Zhang, Xiaoli; Wang, Ying; Zhang, Tongshuai; Li, Zhaoying; Xu, Yanwen; Qu, Siying; Liu, Chuanliang; Gao, Fei; Pan, Haile; Wang, Guangyou; Li, Hulun; Sun, Bo

    2015-12-01

    We used samples from rheumatoid arthritis (RA) patients to examine whether Anti-citrullinated protein antibodies (ACPAs) alter macrophage subset distribution and promote RA development. Macrophage subset distributions and interferon regulatory factor 4 (IRF4) and IRF5 expressions were analyzed. ACPAs were purified by affinity column. After RA and osteoarthritis (OA) patients' macrophages were cocultured with ACPAs, macrophage subsets and IRF4 and IRF5 expressions were measured. Small interfering RNAs (siRNAs) were transfected into ACPA-activated cells to suppress IRF4 or IRF5. Fluorescence-activated cell sorting (FACS), Western blot, and immunohistochemistry were performed. Macrophage subset disequilibrium occurred in RA patient synovial fluids. IRF4 and IRF5 were all expressed in the synovial fluid and synovium. ACPAs (40 IU/ml) could induce macrophages to polarize to M1 subsets, and the percentage of increased M1/M2 ratio of RA patients was higher than that of the OA patients. ACPAs also induce IRF4 and IRF5 protein expressions. IRF5 siRNA transfection impaired ACPA activity significantly. We demonstrated that macrophage subset disequilibrium occurred in RA patients. ACPAs induced IRF5 activity and led to M1 macrophage polarization. PMID:26063186

  10. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  11. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  12. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  13. Effect of 9-cis retinoic acid (RA) on progesterone and estradiol secretion and RA receptor expression in the chicken ovarian follicles.

    PubMed

    Pawłowska, Katarzyna; Sechman, Andrzej; Suchanek, Iwona; Grzegorzewska, Agnieszka; Rzasa, Janusz

    2008-01-01

    Several lines of evidence indicate that retinoids, derivates of vitamin A, affect reproductive function in birds, however, the mechanism of their action in the ovary is still unknown. Therefore, the present study was designed (i) to show whether in the domestic hen 9-cis retinoic acid (9-cis RA), one of the retinoids, influences steroid secretion in vitro by white and yellow chicken ovarian follicles, and (ii) to detect expression of retinoic acid RXR receptor mRNA in these follicles. The white follicles (small: 1-4 mm, medium: 4-6 mm and large 6-8 mm in diameter) and the three largest yellow preovulatory follicles (F3-F1; 25-37 mm) were isolated from the ovary 3 h before ovulation. The granulosa layer was separated from the theca layer in the preovulatory follicles, which were subsequently divided into 4 equal pieces. The isolated whole white follicles or parts of the granulosa or theca layers were incubated for 24 h at 38 degrees C in Eagle's medium in the following 4 groups: control, ovine LH (oLH; 10 ng/ml), 9-cis RA (100 ng/ml) and 9-cis RA + oLH. After incubation, the medium was collected for estradiol (E2) and progesterone (P4) determination while tissues were saved for protein assay. It was found that 9-cis RA affects steroid secretion from chicken ovarian follicles. It decreased E2 secretion from white follicles and from the theca layer of the two largest (F2 and F1) preovulatory follicles. 9-cis RA had no effect on oLH-stimulated E2 secretion by the white follicles and yellow F2 and F1 follicles, but it diminished E2 secretion by F3 follicles. As regards P4, the effect of 9-cis RA was opposite; it increased P4 secretion from the granulosa layer of all preovulatory follicles. 9-cis RA did not change oLH-stimulated P4 secretion by granulosa layers ofF3 and F2 follicles, however, it inhibited oLH-enhanced P4 secretion from the F1 granulosa layer. In a separate experiment, the presence of mRNA encoding RXR was found in the stroma and all follicles of the

  14. Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor {alpha} (RAR{alpha})-, RAR{beta}-, or RAR{gamma}-selective ligand in combination with retinoid Z receptor-specific ligand

    SciTech Connect

    Roy, B.; Taneja, R.; Chambon, P.

    1995-12-01

    This research indicates thatn retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers activate transcription of RA-responsive genes and induce cell differentiation of P19 and F9 cells in a ligand-dependent manner. 43 refs., 4 figs., 2 tabs.

  15. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: Suppression of interferon-gamma-induced JAK/STAT phosphorylation.

    PubMed

    Choi, Woo-Hyuck; Ji, Kyung-Ae; Jeon, Sae-Bom; Yang, Myung-Soon; Kim, Ho; Min, Kyoung-Jin; Shong, Minho; Jou, Ilo; Joe, Eun-Hye

    2005-04-01

    The anti-inflammatory effect of retinoic acid (RA) has been investigated for several decades. However, the underlying mechanisms responsible for this effect are largely unknown. In this study, we demonstrate that 9-cis-RA (cRA) and all-trans-RA (tRA) inhibit interferon-gamma (IFN-gamma)-induced inflammatory responses in astrocytes. In primary cultured rat brain astrocytes and C6 astroglioma cells, both cRA and tRA decreased IFN-gamma-induced expression of interferon regulatory factor-1. Both RA isoforms also reduced IFN-gamma-induced activation of signal transducers and activators of transcription (STAT)1, STAT3, Janus kinase (JAK)1, and JAK2. This inhibitory effect was significant when cells were pre-treated with RA prior to IFN-gamma. Furthermore, the effect of pre-treated RA was abolished in the presence of cycloheximide, indicating a requirement for de novo protein synthesis. Suppressors of cytokine signaling (SOCS), which are negative regulators of the JAK/STAT pathway, may be candidate mediators of the anti-inflammatory function of RA. Both cRA and tRA induced SOCS3 mRNA expression. These results suggest that RA induces an anti-inflammatory effect by suppressing the activation of the JAK/STAT pathway in IFN-gamma-treated astrocytes. SOCS3 may be at least one of the mechanisms that mediate the anti-inflammatory roles of RA. PMID:15721283

  16. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. PMID:26594836

  17. Protective Effect of RA on Myocardial Infarction-Induced Cardiac Fibrosis via AT1R/p38 MAPK Pathway Signaling and Modulation of the ACE2/ACE Ratio.

    PubMed

    Liu, Qiaofeng; Tian, Jingwei; Xu, Yanan; Li, Chunmei; Meng, Xiangjing; Fu, Fenghua

    2016-09-01

    Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid, RA) is a major active constituent of Rosmarinus officinalis Linn. (rosemary) having significant anti-inflammatory, anti-apoptotic, and antioxidant effects. However, the cardioprotection of RA is still not understood. The present study was designed, for the first time, to investigate the cardioprotection of RA on myocardial infarction (MI)-induced cardiac fibrosis and to clarify the possible mechanisms. MI was induced in adult rats by left anterior descending coronary artery ligation, and animals were then administered RA (50, 100, or 200 mg/kg) by gavage. Compared with the model group, RA treatment ameliorated changes in the left ventricular systolic pressure (LVSP), +dp/dtmax, and -dp/dtmax after 4 weeks. This was associated with attenuation of infarct size, collagen volume fraction (CVF), expression of collagen I, collagen III, alpha smooth muscle actin (α-SMA), and hydroxyproline (Hyp) concentrations. RA treatment was also associated with decreased angiotensin-converting enzyme (ACE) expression and increased ACE2 expression, as well as decreased expression of angiotensin type 1 receptor (AT1R) and phospho-p38 mitogen-activated protein kinase (p38 MAPK). Thus, RA can protect against cardiac dysfunction and fibrosis following MI, likely due to decreasing ACE expression and increasing ACE2 expression via the AT1R/p38 MAPK pathway. PMID:27538767

  18. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models. PMID:26452500

  19. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis

    PubMed Central

    Raverdeau, Mathilde; Gely-Pernot, Aurore; Féret, Betty; Dennefeld, Christine; Benoit, Gérard; Davidson, Irwin; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B.

    2012-01-01

    Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male. PMID:23012458

  20. Polyglycolic acid induced inflammation

    PubMed Central

    Ceonzo, Kathleen; Gaynor, Anne; Shaffer, Lisa; Kojima, Koji; Vacanti, Charles A.; Stahl, Gregory L.

    2005-01-01

    Tissue and organ replacement have quickly outpaced available supply. Tissue bioengineering holds the promise for additional tissue availability. Various scaffolds are currently used, whereas polyglycolic acid (PGA), which is currently used in absorbable sutures and orthopedic pins, provides an excellent support for tissue development. Unfortunately, PGA can induce a local inflammatory response following implantation, so we investigated the molecular mechanism of inflammation in vitro and in vivo. Degraded PGA induced an acute peritonitis, characterized by neutrophil (PMN) infiltration following intraperitoneal injection in mice. Similar observations were observed using the metabolite of PGA, glycolide. Dissolved PGA or glycolide, but not native PGA, activated the classical complement pathway in human sera, as determined by classical complement pathway hemolytic assays, C3a and C5a production, C3 and immunoglobulin deposition. To investigate whether these in vitro observations translated to in vivo findings, we used genetically engineered mice. Intraperitoneal administration of glycolide or dissolved PGA in mice deficient in C1q, factor D, C1q and factor D or C2 and factor B demonstrated significantly reduced PMN infiltration compared to congenic controls (WT). Mice deficient in C6 also demonstrated acute peritonitis. However, treatment of WT or C6 deficient mice with a monoclonal antibody against C5 prevented the inflammatory response. These data suggest that the hydrolysis of PGA to glycolide activates the classical complement pathway. Further, complement is amplified via the alternative pathway and inflammation is induced by C5a generation. Inhibition of C5a may provide a potential therapeutic approach to limit the inflammation associated with PGA derived materials following implantation. PMID:16548688

  1. Sulfuric acid vapor in the atmosphere of Venus as observed by the Venus Express Radio Science experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, Janusz; Pätzold, Martin; Häusler, Bernd; Tellmann, Silvia; Bird, Mike; Andert, Tom

    2016-04-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in VeRa radio science observations. The amount of the absorption, which is used to derive the abundance of gaseous sulfuric acid, depends on the signal frequency. VeRa probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. We present H2SO4 profiles derived from S-band and X-band absorption during the first occultation season in 2006. The comparison of the H2SO4 profiles derived from both frequency bands provides a reliable picture of the H2SO4 abundance. Distinct differences in the S- and X-band profiles may give a clue to increased SO2 abundances. The derived VeRa results shall be compared with results provided by other experiments onboard Venus Express as well as with previous missions.

  2. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells.

    PubMed

    Zhang, Xi-Mei; Li, Qiu-Ming; Su, Dong-Ju; Wang, Ning; Shan, Zhi-Yan; Jin, Lian-Hong; Lei, Lei

    2010-03-01

    Recently, differentiated somatic cells had been reprogrammed to pluripotential state in vitro, and various tissue cells had been elicited from those cells. Epigenetic modifications allow differentiated cells to perpetuate the molecular memory needed for the cells to retain their identity. DNA methylation and histone deacetylation are important patterns involved in epigenetic modification, which take critical roles in regulating DNA expression. In this study, we dedifferentiated NIH/3T3 fibroblasts by 5-aza-2-deoxycytidine (5-aza-dC) and Trichstatin A (TSA) combination, and detected gene expression pattern, DNA methylation level, and differentiation potential of reprogrammed cells. As the results, embryonic marker Sox2, klf4, c-Myc and Oct4 were expressed in reprogrammed NIH/3T3 fibroblasts. Total DNA methylation level was significant decreased after the treatment. Moreover, exposure of the reprogrammed cells to all trans-retinoic acid (RA) medium elicited the generation of neuronal class IIIbeta-tubulin-positive, neuron-specific enolase (NSE)-positive, nestin-positive, and neurofilament light chain (NF-L)-positive neural-like cells. PMID:19263240

  3. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons

    PubMed Central

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  4. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice.

    PubMed

    Hammerschmidt, Swantje I; Friedrichsen, Michaela; Boelter, Jasmin; Lyszkiewicz, Marcin; Kremmer, Elisabeth; Pabst, Oliver; Förster, Reinhold

    2011-08-01

    Diarrheal diseases represent a major health burden in developing countries. Parenteral immunization typically does not induce efficient protection against enteropathogens because it does not stimulate migration of immune cells to the gut. Retinoic acid (RA) is critical for gut immunity, inducing upregulation of gut-homing receptors on activated T cells. In this study, we have demonstrated that RA can redirect immune responses elicited by s.c. vaccination of mice from skin-draining inguinal LNs (ingLNs) to the gut. When present during priming, RA induced robust upregulation of gut-homing receptors in ingLNs, imprinting gut-homing capacity on T cells. Concurrently, RA triggered the generation of gut-tropic IgA+ plasma cells in ingLNs and raised the levels of antigen-specific IgA in the intestinal lumen and blood. RA applied s.c. in vivo induced autonomous RA production in ingLN DCs, further driving efficient induction of gut-homing molecules on effector cells. Importantly, RA-supplemented s.c. immunization elicited a potent immune response in the small intestine that protected mice from cholera toxin–induced diarrhea and diminished bacterial loads in Peyer patches after oral infection with Salmonella. Thus, the use of RA as a gut-homing navigator represents a powerful tool to induce protective immunity in the intestine after s.c. immunization, offering what we believe to be a novel approach for vaccination against enteropathogens. PMID:21737878

  5. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  6. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  7. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  8. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  9. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  10. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  11. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  12. ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis.

    PubMed

    Janesick, Amanda; Abbey, Rachelle; Chung, Connie; Liu, Sophia; Taketani, Mao; Blumberg, Bruce

    2013-08-01

    Cells in the developing neural tissue demonstrate an exquisite balance between proliferation and differentiation. Retinoic acid (RA) is required for neuronal differentiation by promoting expression of proneural and neurogenic genes. We show that RA acts early in the neurogenic pathway by inhibiting expression of neural progenitor markers Geminin and Foxd4l1, thereby promoting differentiation. Our screen for RA target genes in early Xenopus development identified Ets2 Repressor Factor (Erf) and the closely related ETS repressors Etv3 and Etv3-like (Etv3l). Erf and Etv3l are RA responsive and inhibit the action of ETS genes downstream of FGF signaling, placing them at the intersection of RA and growth factor signaling. We hypothesized that RA regulates primary neurogenesis by inducing Erf and Etv3l to antagonize proliferative signals. Loss-of-function analysis showed that Erf and Etv3l are required to inhibit proliferation of neural progenitors to allow differentiation, whereas overexpression of Erf led to an increase in the number of primary neurons. Therefore, these RA-induced ETS repressors are key components of the proliferation-differentiation switch during primary neurogenesis in vivo. PMID:23824578

  13. Sinomenine suppresses osteoclast formation and Mycobacterium tuberculosis H37Ra-induced bone loss by modulating RANKL signaling pathways.

    PubMed

    Li, Xiaojuan; He, Longgang; Hu, Yiping; Duan, Heng; Li, Xianglian; Tan, Suiyi; Zou, Min; Gu, Chunping; Zeng, Xiangzhou; Yu, Le; Xu, Jiake; Liu, Shuwen

    2013-01-01

    Receptor activator of NF-κB ligand (RANKL) is essential for osteoclastogenesis. Targeting RANKL signaling pathways has been an encouraging strategy for treating lytic bone diseases such as osteoporosis and rheumatoid arthritis (RA). Sinomenine (SIN), derived from Chinese medicinal plant Sinomenioumacutum, is an active compound to treat RA, but its effect on osteoclasts has been hitherto unknown. In the present study, SIN was found to ameliorate M. tuberculosis H37Ra (Mt)-induced bone loss in rats with a decreased serum level of TRACP5b and RANKL, and an increased level of osteoprotegerin (OPG). In vitro study also showed that SIN could inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, MMP-9, TRACP were inhibited by SIN in a dose dependent manner. Signal transduction studies showed that SIN could obviously reduce the expression of RANK adaptor molecule TRAF6 and down-regulate RANKL-induced NF-κB activation. It decreased the RANKL-induced p38, JNK posphorylation but not ERK1/2 posphorylation. SIN could also reduce RANKL-mediated calcium influx which is associated with TRAF6/c-Src complex. Finally, SIN suppressed RANKL induced AP-1 and NFAT transcription, as well as the gene expression of NFATc1 and AP-1 components (Fra-1, Fra-2, c-Fos). The protein expression of c-Fos and TRAF6 were also inhibited by SIN after RANKL stimulation. Taken together, SIN could attenuate osteoclast formation and Mt-induced bone loss by mediating RANKL signaling pathways. PMID:24066131

  14. Phenotypic effects of an induced mutation of the ObRa isoform of the leptin receptor★

    PubMed Central

    Li, Zhiying; Ceccarini, Giovanni; Eisenstein, Michael; Tan, Keith; Friedman, Jeffrey Michael

    2013-01-01

    Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian physiology. To date, six splice variants of the leptin receptor gene have been identified [1–3]. These splice variants have identical extracellular leptin binding motifs but different intracellular C termini. The finding that mutations specifically ablating the function of ObRb cause obesity has established a critical role for this isoform in leptin signaling [1,7]. ObRa is the most abundant splicing isoform with a broad tissue distribution [5], and it has been proposed to play roles in regulating leptin bioavailability, CSF (cerebrospinal fluid) transport and function by forming heterodimers with ObRb and also activating signal transduction via JAK2 in-vitro [5–10]. To assess the in-vivo role of ObRa, we generated an ObRa KO mouse by deleting the ObRa-specific exon 19a. Homozygous mutant mice breed normally and are indistinguishable from wild-type mice on regular chow diet, but show a slightly increased basal plasma leptin, a slight improvement of their GTT and a slightly reduced response to systemic leptin administration. These mice also show a modest but statistically significant increase in weight when placed on a high fat diet with a slightly reduced CSF/plasma ratio of leptin. These data suggest that ObRa plays a role in mediating some of leptin's effects but that the phenotypic consequences are modest compared to a deletion of ObRb. PMID:24327953

  15. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration. PMID:27130522

  16. A Comparison of Apical Transportation in Severely Curved Canals Induced by Reciproc and BioRaCe Systems

    PubMed Central

    Nabavizadeh, Mohammadreza; Abbaszadegan, Abbas; Khojastepour, Leila; Amirhosseini, Mohsen; Kiani, Ebrahim

    2014-01-01

    Introduction: Preserving the apical root structure during cleaning and shaping of the canal has always been a challenge in endodontics particularly when the root canals are curved. The purpose of this in vitro study was to compare the apical transportation induced by the Reciproc and BioRaCe rotary systems in preparing the mesiobuccal root canal of the human maxillary molars. Materials and Methods: The mesiobuccal canals of sixty extracted maxillary molars with curvature angle of 25˚-35˚ were selected and randomly assigned into two groups. Each canal was prepared by either Reciproc or BioRaCe rotary systems. A double-digital radiographic technique and AutoCAD software were used to compare the apical transportation at 0.5, 1, 2, 3, 4 and 5 mm distances from the working length (WL). The distance between the master apical rotary file and the initial K-file in the superimposed radiographs determined the amount of apical transportation. An independent t-test was used to compare the groups. The statistical significant level was set at 0.05. Results: Apical transportation of the Reciproc group was significantly greater than the BioRaCe group in all distances (P<0.001). The maximum apical transportation occurred in the Reciproc group at 0.5 mm from the WL (0.048±0.0028 mm) and the minimum occurred for BioRaCe at 5 mm from the WL (0.010±0.0005 mm). Conclusions: The Reciproc system produced significantly more apical transportation than the BioRaCe, but this fact does not seem to negatively alter the clinical success or quality of root canal treatment. PMID:24688580

  17. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J

    2007-09-01

    The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226. PMID:17532223

  18. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells.

    PubMed

    Lembo, Serena; Balato, Anna; Di Caprio, Roberta; Cirillo, Teresa; Giannini, Valentina; Gasparri, Franco; Monfrecola, Giuseppe

    2014-01-01

    Ultraviolet radiation (UV) induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA) and rosmarinic acid (RA) are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm(2)) and simultaneously with EA (5 μM in 0.1% DMSO) or RA (2.7 μM in 0.5% DMSO). Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function. PMID:25162011

  19. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells.

    PubMed

    Lee, Youra; Lee, Ji-Yeon; Kim, Myoung Hee

    2014-09-01

    Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA-induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA-induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA-induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time-course gene expression profiles for all 39 Hox genes located in four different clusters-Hoxa, Hoxb, Hoxc, and Hoxd-were analyzed. Collinear expression of Hoxa and -b cluster genes was initiated earlier than that of the -c and -d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA-induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo. PMID:25212816

  20. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    SciTech Connect

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  1. Retinoic Acid Induces Ubiquitination-Resistant RIP140/LSD1 Complex to Fine-Tune Pax6 Gene in Neuronal Differentiation.

    PubMed

    Wu, Cheng-Ying; Persaud, Shawna D; Wei, Li-Na

    2016-01-01

    Receptor-interacting protein 140 (RIP140) is a wide-spectrum coregulator for hormonal regulation of gene expression, but its activity in development/stem cell differentiation is unknown. Here, we identify RIP140 as an immediate retinoic acid (RA)-induced dual-function chaperone for LSD1 (lysine-specific demethylase 1). RIP140 protects LSD1's catalytic domain and antagonizes its Jade-2-mediated ubiquitination and degradation. In RA-induced neuronal differentiation, the increased RIP140/LSD1 complex is recruited by RA-elevated Pit-1 to specifically reduce H3K4me2 modification on the Pax6 promoter, thereby repressing RA-induction of Pax6. This study reveals a new RA-induced gene repressive mechanism that modulates the abundance, enzyme quality, and recruitment of histone modifier LSD1 to neuronal regulator Pax6, which provides a homeostatic control for RA induction of neuronal differentiation. PMID:26372689

  2. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid.

    PubMed

    Kashyap, Vasundhra; Gudas, Lorraine J; Brenet, Fabienne; Funk, Patricia; Viale, Agnes; Scandura, Joseph M

    2011-02-01

    Retinoic acid (RA) regulates clustered Hox gene expression during embryogenesis and is required to establish the anterior-posterior body plan. Using mutant embryonic stem cell lines deficient in the RA receptor γ (RARγ) or Hoxa1 3'-RA-responsive element, we studied the kinetics of transcriptional and epigenomic patterning responses to RA. RARγ is essential for RA-induced Hox transcriptional activation, and deletion of its binding site in the Hoxa1 enhancer attenuates transcriptional and epigenomic activation of both Hoxa and Hoxb gene clusters. The kinetics of epigenomic reorganization demonstrate that complete erasure of the polycomb repressive mark H3K27me3 is not necessary to initiate Hox transcription. RARγ is not required to establish the bivalent character of Hox clusters, but RA/RARγ signaling is necessary to erase H3K27me3 from activated Hox genes during embryonic stem cell differentiation. Highly coordinated, long range epigenetic Hox cluster reorganization is closely linked to transcriptional activation and is triggered by RARγ located at the Hoxa1 3'-RA-responsive element. PMID:21087926

  3. Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zheng, Binbin; Ye, Libing; Zhang, Hongyu; Zhu, Sipin; Zheng, Xiaomeng; Xia, Qinghai; He, Zili; Wang, Qingqing; Xiao, Jian; Xu, Huazi

    2016-04-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood-brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI. PMID:26582233

  4. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

    PubMed

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C; Kaur, Gurcharan

    2012-01-01

    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty. PMID:22606332

  5. Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    PubMed Central

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C.; Kaur, Gurcharan

    2012-01-01

    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty. PMID:22606332

  6. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

    PubMed Central

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Hewage, Susara Ruwan Kumara Madduma; Chae, Sung Wook; Hyun, Jin Won

    2016-01-01

    This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases. PMID:26759705

  7. Rosmarinic Acid Attenuates Sodium Taurocholate-Induced Acute Pancreatitis in Rats by Inhibiting Nuclear Factor-κB Activation.

    PubMed

    Fan, Yu-Ting; Yin, Guo-Jian; Xiao, Wen-Qin; Qiu, Lei; Yu, Ge; Hu, Yan-Ling; Xing, Miao; Wu, De-Qing; Cang, Xiao-Feng; Wan, Rong; Wang, Xing-Peng; Hu, Guo-Yong

    2015-01-01

    Rosmarinic Acid (RA), a caffeic acid ester, has been shown to exert anti-inflammation, anti-oxidant and antiallergic effects. Our study aimed to investigate the effect of RA in sodium taurocholate ( NaTC )-induced acute pancreatitis, both in vivo and in vitro. In vivo, RA (50 mg/kg) was administered intraperitoneally 2 h before sodium taurocholate injection. Rats were sacrificed 12 h, 24 h or 48 h after sodium taurocholate injection. Pretreatment with RA significantly ameliorated pancreas histopathological changes, decreased amylase and lipase activities in serum, lowered myeloperoxidase activity in the pancreas, reduced systematic and pancreatic interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and inhibited NF-κB translocation in pancreas. In vitro, pretreating the fresh rat pancreatic acinar cells with 80 μ mol/L RA 2 h before 3750 nmol/L sodium taurocholate or 10 ng/L TNF-α administration significantly attenuated the reduction of isolated pancreatic acinar cell viability and inhibited the nuclear activation and translocation of NF-κB. Based on our findings, RA appears to attenuate damage in sodium taurocholate-induced acute pancreatitis and reduce the release of inflammatory cytokines by inhibiting the activation of NF-κB. These findings might provide a basis for investigating the therapeutic role of RA in managing acute pancreatits. PMID:26364660

  8. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice.

    PubMed

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai; Wang, Jianning; Wang, Miao; Chen, Mu; Hou, Jinsong; Huang, Hongzhang

    2016-08-26

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation of Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. PMID:27343556

  9. Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma.

    PubMed

    Guidoboni, Massimo; Zancai, Paola; Cariati, Roberta; Rizzo, Silvana; Dal Col, Jessica; Pavan, Alessandro; Gloghini, Annunziata; Spina, Michele; Cuneo, Antonio; Pomponi, Fabrizio; Bononi, Antonio; Doglioni, Claudio; Maestro, Roberta; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-15

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma with poor response to therapy and unfavorable prognosis. Here, we show that retinoic acid (RA) isomers significantly inhibit the proliferation of both primary MCL cultures (n = 7) and established cell lines (Granta 519 and SP-53) as shown by [(3)H]thymidine uptake and carboxyfluorescein diacetate succinimidyl ester labeling coupled with cyclin D1 staining. RA induces cell accumulation in G(0)-G(1) together with a marked up-regulation of p27(Kip1) by inhibiting ubiquitination and proteasome-dependent degradation of the protein. The p21(Cip1) inhibitor was also up-regulated by RA in Granta 519 cells, whereas the expression of cyclin D1 is unaffected. Most of RA-induced p27(Kip1) was bound to cyclin D1/cyclin-dependent kinase 4 complexes, probably contributing to the decreased cyclin-dependent kinase 4 kinase activity and pRb hypophosphorylation observed in RA-treated cells. Experiments with receptor-selective ligands indicate that RA receptor alpha cooperates with retinoid X receptors in mediating RA-dependent MCL cell growth inhibition. Notably, RA isomers, and particularly 9-cis-RA, also inhibited the growth-promoting effect induced in primary MCL cells by CD40 activation alone or in combination with interleukin-4. Immunohistochemical analysis showed that significant numbers of CD40L-expressing lymphoid cells are present in lymph node biopsies of MCL patients. These results therefore further strengthen the possibility that triggering of CD40 by infiltrating CD40L+ cells may continuously promote the growth of MCL cells in vivo. On these grounds, our findings that RA inhibits basal MCL proliferation as well as MCL growth-promoting effects exerted by microenvironmental factors make these compounds highly attractive in terms of potential clinical efficacy in this setting. PMID:15695403

  10. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3.

    PubMed

    Diao, Jiayu; Wei, Jin; Yan, Rui; Liu, Xin; Li, Qing; Lin, Lin; Zhu, Yanhe; Li, Hong

    2016-09-01

    Mitochondrial injury characterized by intracellular reactive oxygen species (ROS) accumulation plays a critical role in hyperglycemia-induced myocardium dysfunction. Previous studies have demonstrated that Rosmarinic Acid (RA) treatment and activating Signal transducer and activator of transcription 3 (STAT3) signaling pathway have protective effects on mitochondrial dysfunction in cardiomyocyte, but there is little data regarding cardiomyocyte under condition of high-glucose. The present study was undertaken to determine the relationship between RA and STAT3 activation, as well as their effects on high glucose-induced mitochondrial injury and apoptosis in H9c2 cardiomyocyte. Our results revealed that RA pretreatment suppressed high glucose-induced apoptosis in H9c2 cells. Moreover, the effect of RA on apoptosis was related with improved mitochondrial function, which was demonstrated by that RA attenuated high glucose-induced ROS generation, inhibited mitochondrial permeability transition pore (MPTP) activation, suppressed cytochrome c release and caspase-3 activation. In addition, the phosphorylation of STAT3 in H9c2 cells was inhibited under condition of high-glucose, but RA improved STAT3 phosphorylation. Importantly, inhibition of STAT3 expression by using STAT3-siRNA partly suppressed the effect of RA on high glucose-induced apoptosis. Taken together, pretreatment with RA suppressed high glucose-induced apoptosis in cardiomyocyte by ameliorating mitochondrial function and activating STAT3. PMID:27402269

  11. Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells†

    PubMed Central

    Tasseff, Ryan; Nayak, Satyaprakash; Song, Sang Ok; Yen, Andrew; Varner, Jeffrey D.

    2013-01-01

    Manipulation of differentiation programs has therapeutic potential in a spectrum of human cancers and neurodegenerative disorders. In this study, we integrated computational and experimental methods to unravel the response of a lineage uncommitted precursor cell-line, HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt) knock-out and knock-in HL-60 cell-lines with and without RA. The current model described the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was used to compensate for uncertain model parameters. The ensemble of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling. The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we investigated the robustness of the HL-60 network architecture to structural perturbations and generated experimentally testable hypotheses for future study. Taken together, the model presented here was a first step toward a systematic framework for analysis of programmed differentiation. These studies also demonstrated that mechanistic network modeling can help prioritize experimental directions by generating falsifiable hypotheses despite uncertainty. PMID:21437295

  12. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  13. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  14. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro

    PubMed Central

    Tan, Bo-Tao; Wang, Li; Li, Sen; Long, Zai-Yun; Wu, Ya-Min; Liu, Yuan

    2015-01-01

    Retinoic acid is an important molecular taking part in the development and homeostasis of nervous system. Neural stem cells (NSCs) are pluripotent cells that can differentiate into three main neural cells including neuron, astrocyte and oligodendrocyte. However, whether retinoic acid can induce NSCs derived from embryonic spinal cord differentiating into functional neurons and its efficiency are not clear. In this experiment, NSCs were isolated from embryonic 14 d spinal cord of rats. The growth and neuronal differentiation of NSCs induced by 500 nM RA was examined in vitro. It was indicated that compared with the control group, there were more differentiated cells with longer cytodendrites in the medium treated with RA at different time. And more, there were more neuronal marker positive cells in 500 nM RA group than the control group seven days after differentiation. At the same time, the expression of β-tublin III protein in RA group was higher than those in control group, which was contrary to the expression of astrocyte marker GFAP protein at seven days after differentiation. However the differentiated neurons, whether treated with RA or not both exhibited biological electrical reactivity after stimulated by glutamine. Therefore, these findings indicated that RA could promote growth of cellular dendrites and neuronal differentiation of NSCs, which also induce functional maturation of differentiated neurons finally. PMID:26339381

  15. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

    PubMed Central

    Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases. PMID:27034593

  16. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development.

    PubMed

    Alonso, M I; Martín, C; Carnicero, E; Bueno, D; Gato, A

    2011-07-01

    Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells. PMID:21594951

  17. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    SciTech Connect

    Okano, Junko . E-mail: okajun@anat1.med.kyoto-u.ac.jp; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.

  18. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-06-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141(hi), GARP(+) DCs displayed enhanced capacity to induce T regulatory cells compared to CD141(lo) and GARP(-) DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141(hi), GARP(+) DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  19. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-01-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  20. Does rosmarinic acid treatment have protective role against sepsis-induced oxidative damage in Wistar Albino rats?

    PubMed

    Bacanlı, M; Aydın, S; Taner, G; Göktaş, H G; Şahin, T; Başaran, A A; Başaran, N

    2016-08-01

    Reactive oxygen species are believed to be involved in the development of sepsis. Plant-derived phenolic compounds are thought to be possible therapeutic agents against sepsis because of their antioxidant properties. Rosmarinic acid (RA) is a phenolic compound commonly found in various plants, which has many biological activities including antioxidant activity. The aim of this study was to investigate the effects of RA on sepsis-induced DNA damage in the lymphocytes and liver and kidney cells of Wistar albino rats by alkaline comet assay with and without formamidopyrimidine DNA glycosylase protein. The oxidative stress parameters such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and total glutathione (GSH) and malondialdehyde (MDA) levels in the liver and kidney tissues and an inflammatory cytokine, tumor necrosis factor α (TNF-α) level in plasma were also evaluated. It is found that DNA damage in the lymphocytes, livers, and kidneys of the RA-treated rats was significantly lower than that in the sepsis-induced rats. RA treatment also decreased the MDA levels and increased the GSH levels and SOD and GSH-Px activities in the livers and kidneys of the sepsis-induced rats. Plasma TNF-α level was found to be decreased in the RA-treated rats. It seems that RA might have a role in the attenuation of sepsis-induced oxidative damage not only by decreasing the DNA damage but also by increasing the antioxidant status and DNA repair capacity of the animals. PMID:26429925

  1. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  2. Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells.

    PubMed

    Eck-Enriquez, K; Kiefer, T L; Spriggs, L L; Hill, S M

    2000-06-01

    It has been established that melatonin (Mlt) and retinoic acid, individually, inhibit the proliferation of the estrogen receptor-alpha (ER alpha)-positive MCF-7 breast cancer cell line. Our laboratory has previously demonstrated that Mlt and all-trans-retinoic acid (atRA) not only inhibit the proliferation, but also induce apoptosis of MCF-7 cells when used in a sequential regimen of Mlt followed 24 h later by atRA. Using this same MCF-7 breast cancer cell line, we investigated the potential pathways through which apoptosis is being induced. We found that treatment of MCF-7 cells with Mlt for 24 h before the addition of atRA decreased the protein levels of the death suppressor, Bcl-2, and increased, although with different time courses, the levels of the death promoters, Bax and Bak; however, there was no change in the levels of the tumor suppressor gene, p53. MCF-7 cells treated sequentially with Mlt and atRA also demonstrated an enhanced sensitivity to the apoptotic effects of atRA, which did not appear to be due to increased expression of the retinoic acid receptors, RAR alpha or RXR alpha, but rather to enhanced transcriptional activity of the RAR alpha. These data suggest that the sequential treatment regimen of Mlt and atRA may induce apoptosis by modulation of members of the Bcl-2 family of proteins. Thus, this combinatorial regimen, which reduces the concentration of atRA needed for clinical efficacy while enhancing its anti-tumorigenic activity, could be of great therapeutic benefit, and may, in fact, specifically induce the regression of established breast tumors due to its apoptosis-promoting effects. PMID:10965999

  3. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  4. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat.

    PubMed

    Eltony, Sohair A; Elmottaleb, Nashwa A; Gomaa, Asmaa M; Anwar, Mamdouh M; El-Metwally, Tarek H

    2016-03-01

    All-trans Retinoic acid (atRA) is instructive for the development of endocrine pancreas and is an integral component of β-cell induction protocols. We showed that atRA induces glucose-responsive endocrine transdifferentiation of pleomorphic pancreatic ductal adenocarcinoma cells in vitro. This study aimed to detect the role of atRA in improving the histological changes of the pancreas in diabetic rats. Forty young male Wistar rats were used and divided into three groups. Group I: normal vehicle control (N = 5). Group II: streptozotocin-induced diabetic rats (N = 20) were followed up at 0.0, 1, 2, and 4 weeks. Group III: streptozotocin-induced diabetic rats (N = 15) treated with atRA (2.5 mg/kg/day), were followed up at 1, 2, and 4 weeks. Specimens from the pancreas were processed for light, electron microscopy and pancreatic insulin mRNA expression. Blood samples were assayed for the levels of glucose, insulin, and total peroxides. In the atRA-treated group, the number of the islets and the islet area significantly increased. Strong insulin-immunoreactive endocrine-like cells were observed nearby the pancreatic acini and the interlobular ducts. Interestingly, insulin-positive cells seemed to arise from pancreatic acinar and ductal epithelium. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. Pancreatic insulin mRNA and blood indices were almost normalized. AtRA improved the histological changes of the pancreas and the blood indices in diabetic rats. PMID:26704900

  5. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  6. All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function.

    PubMed

    Bhatt, Sumantha; Qin, Jie; Bennett, Carole; Qian, Shiguang; Fung, John J; Hamilton, Thomas A; Lu, Lina

    2014-06-01

    Hepatic stellate cells (HSC) are a major source of the immunoregulatory metabolite all-trans retinoic acid (ATRA), which may contribute to the generation of tolerogenic dendritic cells (DCs) in the liver. The present study seeks to clarify the mechanism(s) through which ATRA promotes the development of tolerogenic DCs. Although bone marrow-derived ATRA-treated DCs (RA-DCs) and conventional DCs had comparable surface phenotype, RA-DCs had diminished stimulatory capacity and could directly inhibit the expansion of DC/OVA-stimulated OT-II T cells. Arginase-1 (Arg-1) was found promote suppression because 1) ATRA was a potent inducer of Arg-1 protein and activity, 2) the Arg-1 inhibitor N(w)-hydroxy nor-l-arginine partially reversed suppression, and 3) the suppressive function of RA-DCs was partially compromised using OT-II T cells from GCN2(-/-) mice, which are insensitive to Arg-1. Inducible NO synthase (iNOS), however, was found to be a more significant contributor to RA-DC function because 1) ATRA potentiated the expression of IFN-γ-induced iNOS, 2) suppressive function in RA-DCs was blocked by the iNOS inhibitor N(G)-monomethyl-l-arginine, monoacetate salt, and 3) RA-DCs derived from iNOS(-/-) mice exhibited near complete loss of tolerogenic function, despite sustained Arg-1 activity. The expression of iNOS and the suppressive function of RA-DCs were dependent on both IFN-γ and ATRA. Furthermore, the in vivo behavior of RA-DCs proved to be consistent with their in vitro behavior. Thus, we conclude that ATRA enhances both Arg-1 and iNOS expression in IFN-γ-treated DCs, resulting in a tolerogenic phenotype. These findings elucidate mechanisms through which ATRA may contribute to liver immune tolerance. PMID:24790153

  7. Retinoic acid-induced AP-1 transcriptional activity regulates B16 mouse melanoma growth inhibition and differentiation.

    PubMed

    Huang, Ying; Boskovic, Goran; Niles, Richard M

    2003-02-01

    Retinoic acid (RA) inhibits growth and induces differentiation of B16 mouse melanoma cells. These effects are accompanied by a large increase in PKCalpha mRNA and protein levels and surprisingly an increase in activating protein-1 (AP-1) transcriptional activity. To further investigate the RA-induced AP-1 activity we established clones of B16 cells stably expressing an AP-1-luciferase reporter gene. Treatment of these clones with phorbol dibutyrate increased AP-1 activity which peaked at 2-4 h and returned to baseline level by 24 h. In contrast, RA treatment resulted in a slow increase in AP-1 activity that reached a maximum level at 48 h and was maintained for the duration of the treatment. We tested the importance of the RA-induced AP-1 activity by establishing clones which stably express a dominant negative fos gene (A-fos) and have greatly diminished AP-1 activity. Growth rates of untreated A-fos expressing cells were similar to wt B16 and clones not expressing A-fos. However, clones expressing the dominant-negative fos had a markedly decreased sensitivity to RA-induced inhibition of anchorage-dependent and -independent growth. Treatment of wt B16 cells for 48 h with RA increased melanin production by two to fourfold, but this effect was completely lost in the A-fos clones. The ability of RA to induce RARbeta and PKCalpha expression was retained in A-fos clones, suggesting that A-fos was not interfering with RAR transcription activation functions. We tested whether the RA-induced AP-1 activity might be mediated by the ERK1/2 MAPK pathway. Inhibition of ERK1/2 phosphorylation stimulated AP-1 activity, which was not additive to that induced by RA. This finding raises the possibility that this MAPK pathway may be a target of retinoid action. Our observations suggest that AP-1 transcriptional activity induced by RA likely plays an important role in the biological changes mediated by this retinoid in B16 melanoma cells. PMID:12494454

  8. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries

    PubMed Central

    Bowles, Josephine; Feng, Chun-Wei; Miles, Kim; Ineson, Jessica; Spiller, Cassy; Koopman, Peter

    2016-01-01

    Substantial evidence exists that during fetal ovarian development in mammals, retinoic acid (RA) induces germ cells to express the pre-meiotic marker Stra8 and enter meiosis, and that these effects are prevented in the fetal testis by the RA-degrading P450 enzyme CYP26B1. Nonetheless, the role of RA has been disputed principally because germ cells in embryos lacking two major RA-synthesizing enzymes, ALDH1A2 and ALDH1A3, remain able to enter meiosis. Here we show that a third RA-synthesizing enzyme, ALDH1A1, is expressed in fetal ovaries, providing a likely source of RA in the absence of ALDH1A2 and ALDH1A3. In ovaries lacking ALDH1A1, the onset of germ cell meiosis is delayed. Our data resolve the conundrum posed by conflicting published data sets and reconfirm the model that meiosis is triggered by endogenous RA in the developing ovary. PMID:26892828

  9. Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Karthikkumar, V; Sivagami, G; Vinothkumar, R; Rajkumar, D; Nalini, N

    2012-11-01

    Colorectal cancer is one of the leading causes of cancer related deaths in Western countries and is becoming increasingly common in Asia. Rosmarinic acid (RA), one of the major components of polyphenol possesses attractive remedial features. The purpose of this study is to investigate the possible chemopreventive mechanism of action of RA against 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the circulatory antioxidant status and colonic bacterial enzymes activities. Additionally, we analyzed the aberrant crypt foci (ACF) formation and multiplicity in the colon of experimental groups. Wistar male rats were divided into six groups. Group 1 was control rats, group 2 rats received RA (10 mg/kg b.w., p.o. everyday), rats in groups 3-6 received DMH (20 mg/kg b.w., s.c.) for the first 4 weeks. In addition to DMH, groups 4-6 received 2.5, 5, and 10 mg/kg b.w. RA respectively. The results revealed that supplementation with RA significantly reduced the formation of ACF and ACF multiplicity in DMH treated rats. Moreover RA supplementation prevented the alterations in circulatory antioxidant enzymes and colonic bacterial enzymes activities. Overall, our results showed that all three doses of RA inhibited carcinogenesis, though the effect of the intermediary dose of 5 mg/kg b.w. was more pronounced. PMID:22960260

  10. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  11. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells

    PubMed Central

    Shen, Miaoqing; Bunaciu, Rodica P.; Congleton, Johanna; Jensen, Holly A.; Sayam, Lavanya G.; Varner, Jeffrey D.; Yen, Andrew

    2014-01-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation. PMID:21740303

  12. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S.

    2015-01-01

    Abstract We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog‐1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration‐free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose‐sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant‐negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell‐like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β‐catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390–1404 PMID:25546009

  13. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  14. A CC′ Loop Decoy Peptide Blocks the Interaction Between Act1 and IL-17RA to Attenuate IL-17- and IL-25-Induced Inflammation

    PubMed Central

    Liu, Caini; Swaidani, Shadi; Qian, Wen; Kang, Zizhen; Sun, Paige; Han, Yue; Wang, Chenhui; Gulen, Muhammet Fatih; Yin, Weiguo; Zhang, Chunjiang; Fox, Paul L; Aronica, Mark; Hamilton, Thomas A; Misra, Saurav; Deng, Junpeng; Li, Xiaoxia

    2012-01-01

    Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes that encode inflammatory factors and they are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for IL-17 and IL-25 signaling, and it is recruited to their receptors through heterotypic interactions between their SEFIR [SEF (similar expression to fibroblast growth factor genes)/IL-17R] domains. Modeling of SEFIR domains has shown their structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors (TLRs) and the IL-1R. Whereas the BB′ loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB′ loop from Act1 or IL-17RA (a common subunit of IL-17R and IL-25R) did not affect Act1–IL-17RA interactions. Instead, deletion of the CC′ loop from Act1 or IL-17RA abolished the interaction between Act1 and IL-17RA, suggesting that SEFIR and TIR domains interact in different manners. Surface plasmon resonance measurements showed that a peptide corresponding to the CC′ loop bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC′ loop sequence inhibited IL-17- and IL-25-mediated signaling, and it inhibited IL-17- and IL-25-induced responses in vitro and pulmonary inflammation in vivo. Together, these findings provide the molecular basis for the specificity of SEFIR versus TIR domain interactions and consequent signaling. Moreover, we suggest that the CC′ loop motif of SEFIR domains is a promising target for therapeutic strategies against IL-17- and IL-25-asssociated inflammatory diseases. PMID:22045852

  15. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  16. Retinoic acid activates human inducible nitric oxide synthase gene through binding of RAR{alpha}/RXR{alpha} heterodimer to a novel retinoic acid response element in the promoter

    SciTech Connect

    Zou Fang; Liu Yan; Liu Li; Wu Kailang; Wei Wei; Zhu Ying . E-mail: yingzhu@whu.edu.cn; Wu Jianguo . E-mail: wu9988@vip.sina.com

    2007-04-06

    Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RAR{alpha}/RXR{alpha} heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5 bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RAR{alpha}/RXR{alpha} directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RAR{alpha}/RXR{alpha}) in the induction of hiNOS by RA.

  17. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Fan Liu, Sau; Allen, B J

    2006-09-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226. PMID:16806950

  18. Amoxicillin/Clavulanic Acid-Induced Thrombocytopenia

    PubMed Central

    Saad, Aline; Azar, Marina; Khoueiry, Paul

    2014-01-01

    Introduction and Objective: Drug-induced thrombocytopenia is a common adverse effect reported in the literature. Typically patients present with a low platelet count with signs and symptoms ranging from bruising to bleeding, and major organ damage. Penicillin-induced thrombocytopenia previously reported in the literature is explained primarily through the hapten-dependent antibody process. The goal of this report is to present a case of an amoxicillin/clavulanic acid-induced thrombocytopenia. Case Presentation: A 23-year-old male presented to the emergency department with bruises on his arms and legs after completing a full course of amoxicillin/clavulanic acid of 625 mg twice a day for 5 days for tonsillitis. After several tests, the patient was diagnosed with thrombocytopenia induced by amoxicillin/clavulanic acid. The patient was treated with a corticosteroids taper regimen for 3 weeks. He was discharged after 3 days of inpatient treatment with instructions to avoid physical activity for 2 weeks. Two weeks post discharge, the follow-up showed that the platelet count had increased. Discussion: Penicillin-induced thrombocytopenia has been previously reported in the inpatient setting where bleeding was observed. However, the patient in this case report presented with bruises on his arms and legs. The diagnosis was made by the process of elimination; not all possible tests were conducted. The patient was prescribed corticosteroids that are not indicated for drug-induced thrombocytopenia. The Naranjo scale showed that this is a probable adverse event of amoxicillin/clavulanic acid. Conclusion: This is a unique case where amoxicillin/clavulanic acid was reported to be a probable cause of thrombocytopenia in an outpatient setting without signs of bleeding and without concomitant medications. PMID:25477568

  19. Recruitment of intestinal CD45RA+ and CD45RC+ cells induced by a candidate oral vaccine against porcine post-weaning colibacillosis.

    PubMed

    Bozić, Frane; Lacković, Gordana; Stokes, Christopher R; Valpotić, Ivica

    2002-07-01

    To assess the influence of a live attenuated oral vaccine against porcine post-weaning colibacillosis (PWC) induced by enterotoxigenic Escherichia coli (ETEC) on mucosal lymphoid cell CD45 isoforms expression, experimental group of weaned pigs (n=6) was immunized orally with F4ac+ non-ETEC strain (day 0) and challenged with F4ac+ ETEC strain 7 days latter. Non-immunized ETEC-infected pigs (n=6) served as control. All pigs were killed on post-challenge day 7. The small intestine was excised for isolation of jejunal lamina propria (JLP) and ileal Peyer's patch (IPP) lymphocytes and immunohistochemical studies. The results obtained by immunophenotyping of isolated cells show that the proportion of CD45RA+ and CD45RC+ JLP, but not IPP, cells were higher in the non-ETEC-immunized ETEC-infected pigs versus non-immunized infected. Additionally, while CD45RA+ JLP cells increased only slightly, the expression of CD45RC isoform on the JLP cells was significantly higher (P< or =0.01) in the experimental than in the control group. The results of the quantitative phenotypic analysis of isolated lymphocytes were not confirmed by immunohistochemical in situ staining. The majority of intestinal immune cells was found to express CD45RA antigen in situ, but no differences were observed between the two groups of weaned pigs neither in CD45RA+ nor in CD45RC+ cells. Our overall evidence indicates that the increased expression of CD45RC isoform was in fact induced in a limited number of JLP T cells in the vaccinated pigs. This was accompanied with the impaired protection of the vaccinated pigs from challenge-induced PWC. PMID:12007880

  20. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice.

    PubMed

    Zhou, Wenjing; Lin, Jiacheng; Chen, Hongen; Wang, Jingjing; Liu, Yan; Xia, Min

    2015-08-28

    It has been suggested that retinoic acid (RA) has a potential role in the prevention of atherosclerotic CVD. In the present study, we used J774A.1 cell lines and primary peritoneal macrophages to investigate the protective effects of RA on foam cell formation and atherogenesis in apoE-deficient (apoE- / -) mice. A total of twenty male apoE- / - mice (n 10 animals per group), aged 8 weeks, were fed on a high-fat diet (HFD) and treated with vehicle or 9-cis-RA for 8 weeks. The atherosclerotic plaque area in the aortic sinus of mice in the 9-cis-RA group was 40·7 % less than that of mice in the control group (P< 0·01). Mouse peritoneal macrophages from the 9-cis-RA group had higher protein expression levels of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) than those from the control group. Serum total and LDL-cholesterol concentrations were lower in the 9-cis-RA group than in the control group (P< 0·05). In vitro studies showed that incubation of cholesterol-loaded J774A.1 macrophages with 9-cis-RA (0·1, 1 and 10 μmol/l) induced cholesterol efflux in a dose-dependent manner. The 9-cis-RA treatment markedly attenuated lipid accumulation in macrophages exposed to oxidised LDL. Moreover, treatment with 9-cis-RA significantly increased the protein expression levels of ABCA1 and ABCG1 in J774A.1 macrophages in a dose-dependent manner. Furthermore, 9-cis-RA dose-dependently enhanced the protein expression level of liver X receptor-α (LXRα), the upstream regulator of ABCA1 and ABCG1. Taken together, the present results show that 9-cis-RA suppresses foam cell formation and prevents HFD-induced atherogenesis via the LXRα-dependent up-regulation of ABCA1 and ABCG1. PMID:26201974

  1. Retinoic Acid Protects Cardiomyocytes from High Glucose-Induced Apoptosis via Inhibition of Sustained Activation of NF-κB Signaling

    PubMed Central

    Nizamutdinova, Irina T.; Guleria, Rakeshwar S.; Singh, Amar B.; Kendall, Jonathan A.; Baker, Kenneth M.; Pan, Jing

    2012-01-01

    We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6 and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets. PMID:22718360

  2. A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation.

    PubMed

    Liu, Caini; Swaidani, Shadi; Qian, Wen; Kang, Zizhen; Sun, Paige; Han, Yue; Wang, Chenhui; Gulen, Muhammet Fatih; Yin, Weiguo; Zhang, Chunjiang; Fox, Paul L; Aronica, Mark; Hamilton, Thomas A; Misra, Saurav; Deng, Junpeng; Li, Xiaoxia

    2011-01-01

    Interleukin-17 (IL-17) and IL-25 signaling induce the expression of genes encoding inflammatory factors and are implicated in the pathology of various inflammatory diseases. Nuclear factor κB (NF-κB) activator 1 (Act1) is an adaptor protein and E3 ubiquitin ligase that is critical for signaling by either IL-17 or IL-25, and it is recruited to their receptors (IL-17R and IL-25R) through heterotypic interactions between the SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domain of Act1 and that of the receptor. SEFIR domains have structural similarity with the Toll-IL-1 receptor (TIR) domains of Toll-like receptors and IL-1R. Whereas the BB' loop of TIR is required for TIR-TIR interactions, we found that deletion of the BB' loop from Act1 or IL-17RA (a common subunit of both IL-17R and IL-25R) did not affect Act1-IL-17RA interactions; rather, deletion of the CC' loop from Act1 or IL-17RA abolished the interaction between both proteins. Surface plasmon resonance measurements showed that a peptide corresponding to the CC' loop of Act1 bound directly to IL-17RA. A cell-permeable decoy peptide based on the CC' loop sequence inhibited IL-17- or IL-25-mediated signaling in vitro, as well as IL-17- and IL-25-induced pulmonary inflammation in mice. Together, these findings provide the molecular basis for the specificity of SEFIR-SEFIR versus TIR-TIR domain interactions and consequent signaling. Moreover, we suggest that the CC' loop motif of SEFIR domains is a promising target for therapeutic strategies against inflammatory diseases associated with IL-17 or IL-25 signaling. PMID:22045852

  3. Retinoic acid metabolic change in retina and choroid of the guinea pig with lens-induced myopia

    PubMed Central

    Mao, Jun-Feng; Liu, Shuang-Zhen; Dou, Xiu-Qiong

    2012-01-01

    AIM To investigate the role of retinoic acid (RA) and retinaldehyde dehydrogenase-2 (RALDH2) of retina and choroid in the guinea pig lens-induced myopic eyes. METHODS Totally 45 guinea pigs, at age of three weeks, were randomly assigned into three groups: the normal control, the lens-induced group and the recovering group. Out of focus was induced by the -6.00D concave lens on the left eye, and lasted for 15 days. All animals underwent biometric measurement (corneal radius of curvature, refraction and axial length). Subsequently, RA content in the retina and RPE/choriod complex was detected by reversed-phase high-performance liquid chromatography. RALDH2 protein in the retina and RPE/choriod complex was evaluated by the immunohistochemical staining and Western blotting. RESULTS After wearing -6.00D lens for 15 days, axial length of the lens-induced eye extends and myopia was formed, with RA contents increasing in both the neural retina and RPE/choroid complex. Comparing with the lens-induced group, myopic degree significantly relieved, and its RA contents in both the neural retina and RPE/choroid complex decreased in the recovering group. In the normal control, RALDH2 protein was expressed positively in the retinal nerve fiber layer (RNFL), inner plexiform layer (IPL) and lateral border of outer nuclear layer (ONL). Retinal RALDH2 protein increased in the lens-induced group, and was also positive in the outer plexiform layer (OPL). In the recovering group, retinal RALDH2 protein attenuated the expression in the OPL turns to negative. RALDH2 protein was not expressed in the choroid of any group. CONCLUSION RA of retina and chorid participates in the regulation of the lens-induced myopia in guinea pigs, which may be related with retinal RALDH2 protein. PMID:23275899

  4. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression

    PubMed Central

    Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs. PMID:26162091

  5. Impaired Neural Differentiation Potency by Retinoic Acid Receptor-α Pathway Defect in Induced Pluripotent Stem Cells

    PubMed Central

    Hou, Pei-Shan; Huang, Wen-Chin; Chiang, Wei; Lin, Wei-Che

    2014-01-01

    Abstract Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells via ectopic gene expression and, similarly to embryonic stem cells (ESCs), possess powerful abilities to self-renew and differentiate into cells of various lineages. However, the neural differentiation potency of iPSCs remains unknown. In this study, we demonstrated the neural differentiation ability of iPSCs compared with ESCs using an retinoic acid (RA) induction system. The neural differentiation efficiency of iPSCs was obviously lower than that of ESCs. Retinoic acid receptor-α (RARα) was critical in the RA-induced neural differentiation of iPSCs, and the effect of RARα was confirmed by applying a specific RARα antagonist ER50891 to ESCs. These findings indicate that iPSCs do not possess the complete properties that ESCs have. PMID:25364979

  6. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    PubMed Central

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cells) and human melanocytes. Methods Melan-a cells and human melanocytes were cultured with fractional CO2 laser-treated keratinocyte-conditioned media. Melanin content and tyrosinase activity were evaluated in cells treated with or without tranexamic acid. Protein levels of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 were evaluated in melan-a cells. Signaling pathway molecules involved in melanogenesis in melanoma cells were also investigated. Results Tranexamic acid-treated melanocytes exhibited reduced melanin content and tyrosinase activity. Tranexamic acid also decreased tyrosinase, TRP-1, and TRP-2 protein levels. This inhibitory effect on melanogenesis was considered to be involved in extracellular signal-regulated kinase signaling pathways and subsequently microphthalmia-associated transcription factor degradation. Conclusion Tranexamic acid may be an attractive candidate for the treatment of PIH. PMID:26082580

  7. AXIAL SKELETAL AND HOX EXPRESSION DOMAIN ALTERATIONS INDUCED BY RETINOIC ACID, VALPROIC ACID AND BROMOXYNIL DURING MURINE DEVELOPMENT

    EPA Science Inventory

    ABSTRACT

    Retinoic acid (RA) alters the developmental fate of the axial skeletal anlage. "Anteriorizations" or "posteriorizations", the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered emb...

  8. Unexpected phenotypes of malformations induced in Xenopus tropicalis embryos by combined exposure to triphenyltin and 9-cis-retinoic acid.

    PubMed

    Zhu, Jingmin; Yu, Lin; Wu, Lijiao; Hu, Lingling; Shi, Huahong

    2014-03-01

    Xenopus tropicalis embryos were exposed for 48 hr to the mixtures of 5 μg Sn/L triphenyltin (TPT), which is a well-known endocrine disruptor, and 0.25-5 μg/L 9-cis retinoic acid (9c-RA), which is the natural ligand of retinoid X receptor. The phenotypes induced by combined exposure were more variable than those resulting from single exposure to either TPT or 9c-RA. The prominent phenotypes included underdeveloped head structures, abnormal eyes, narrow fins, enlarged proctodaeum, etc. Especially, combined exposure induced unexpected notochord malformations, which ranged from small swellings of the surface of the tails to the extension and extrusion of notochord out of the posterior tails. Compared with the 5 μg Sn/L TPT-treated group, the index of fin deficiency was not affected, and the index of axis deficiency was significantly increased with increasing RA concentrations in the mixtures. Our results suggest that combined exposure to TPT and 9c-RA induced not only more variable phenotypes of malformations than exposure to single compound but also some new and unexpected phenotypes. PMID:25079278

  9. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses.

    PubMed

    Chen, Qiuyan; Ross, A Catharine

    2015-01-01

    The MHC class-I like molecule CD1d presents glycolipid antigens and thereby activates invariant natural killer-T (NKT) cells. However, little is understood regarding the regulation of its expression. All-trans-retinoic acid (RA) and CD38, which is itself a target of RA, both independently regulate the differentiation of antigen presenting cells. In the current study, we treated human THP-1 cells and murine splenic cells with RA, with and without antibody-mediated ligation of cell-surface CD38. Whereas a physiological concentration (20 nM) of RA alone rapidly and markedly increased CD1d protein in THP-1 cells, there was a marked synergy between RA and ligation of CD38 with antibody to CD38. Moreover, RA and CD38 ligation differentially regulated CD1d protein distribution between the cell surface and intracellular compartments, as, whereas RA mainly increased intracellular CD1d protein, ligation of CD38 increased CD1d protein both at the cell surface and intracellularly. By confocal microscopy, CD1d was located close to the plasma membrane but only partially overlapped with LAMP1, a late endosomes/lysosomal marker. Furthermore, RA and/or CD38 ligation increased splenocyte proliferation and differentiation after treatment with the CD1 ligand α-galactosylceramide (αGalCer), evidenced by an increase in the number of splenic dendritic cells, NKT cells, and germinal center plasmacytes. RA also differentially regulated αGalCer-induced cytokine expression, increasing IL-4 and decreasing IFNγ production by total spleen cells and the NKT cell population. Our results indicate a previously unknown mechanism in which RA and CD38 differentially yet cooperatively regulate CD1d expression and antigen-presenting function, which could be important for the enhancement of immunity. PMID:25248321

  10. Metabolic Characterization of All-Trans-Retinoic Acid (ATRA)–Induced Craniofacial Development of Murine Embryos Using In Vivo Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Peng, Lihong; Wu, Renhua; Hu, Xiao; Zhang, Guishan; Tang, Shijie

    2014-01-01

    Aim To characterize the abnormal metabolic profile of all-trans-retinoic acid (ATRA)–induced craniofacial development in mouse embryos using proton magnetic resonance spectroscopy (1H-MRS). Methods Timed-pregnant mice were treated by oral gavage on the morning of embryonic gestation day 11 (E11) with all-trans-retinoic acid (ATRA). Dosing solutions were adjusted by maternal body weight to provide 30, 70, or 100 mg/kg RA. The control group was given an equivalent volume of the carrier alone. Using an Agilent 7.0 T MR system and a combination of surface coil coils, a 3 mm×3 mm×3 mm 1H-MRS voxel was selected along the embryonic craniofacial tissue. 1H-MRS was performed with a single-voxel method using PRESS sequence and analyzed using LCModel software. Hematoxylin and eosin was used to detect and confirm cleft palate. Result 1H-MRS revealed elevated choline levels in embryonic craniofacial tissue in the RA70 and RA100 groups compared to controls (P<0.05). Increased choline levels were also found in the RA70 and RA100 groups compared with the RA30 group (P<0.01). High intra-myocellular lipids at 1.30 ppm (IMCL13) in the RA100 group compared to the RA30 group were found (P<0.01). There were no significant changes in taurine, intra-myocellular lipids at 2.10 ppm (IMCL21), and extra-myocellular lipids at 2.30 ppm (EMCL23). Cleft palate formation was observed in all fetuses carried by mice administered 70 and 100 mg/kg RA. Conclusions This novel study suggests that the elevated choline and lipid levels found by 1H-MRS may represent early biomarkers of craniofacial defects. Further studies will determine performance of this test and pathogenetic mechanisms of craniofacial malformation. PMID:24816763

  11. Gene Expression Profiling Elucidates a Specific Role for RARγ in the Retinoic Acid Induced Differentiation of F9 Teratocarcinoma Stem Cells

    PubMed Central

    Su, Dan; Gudas, Lorraine J

    2010-01-01

    The biological effects of all-trans-retinoic acid (RA), a major active metabolite of retinol, are mainly mediated through its interactions with retinoic acid receptor (RARs α, β, γ) and retinoid X receptor (RXRs α, β, γ) heterodimers. RAR/RXR heterodimers activate transcription by binding to RA-response elements (RAREs or RXREs) in the promoters of primary target genes. Murine F9 teratocarcinoma stem cells have been widely used as a model for cellular differentiation and RA signaling during embryonic development. We identified and characterized genes that are differentially expressed in F9 wild type (Wt) and F9 RAR γ−/− cells, with and without RA treatment, through the use of oligonucleotide based microarrays. Our data indicate that RARγ, in the absence of exogenous RA, modulates gene expression. Genes such as Sfrp2, Tie1, Fbp2, Emp1, and Emp3 exhibited higher transcript levels in RA treated Wt, RARα−/− and RARβ2−/− lines than in RA-treated RARγ−/− cells, and represent specific RARγ targets. Other genes, such as Runx1, were expressed at lower levels in both F9 RARβ2−/− and RARγ−/− cell lines then in F9 Wt and RARα−/−. Genes specifically induced by RA at 6h with the protein synthesis inhibitor cycloheximide in F9 Wt, but not in RARγ−/− cells, included Hoxa3, Hoxa5, Gas1, Cyp26a1, Sfrp2, Fbp2, and Emp1. These genes represent specific primary RARγ targets in F9 cells. Several genes in the Wnt signaling pathway were regulated by RARγ. Delineation of the receptor specific actions of RA with respect to cell proliferation and differentiation should result in more effective therapies with this drug. PMID:18164278

  12. Comparative molecular pathology of cadmium- and all-trans-retinoic acid-induced postaxial forelimb ectrodactyly

    SciTech Connect

    Liao Xiaoyan; Lee, Grace S.; Shimizu, Hirohito; Collins, Michael D.

    2007-11-15

    Cadmium chloride (CdCl{sub 2}) and all-trans-retinoic acid (RA) induce postaxial forelimb ectrodactyly in C57BL/6N mice when administered during early limb development, and co-administration yields a synergistic response suggesting a common final pathway to the defect. In the current study, forelimb buds from embryos given high maternal teratogenic doses of CdCl{sub 2} or RA, or the combination of both agents at low doses were collected at various time points after treatment on GD 9.5 and examined for cellular apoptosis, proliferation, and patterning genes. Some cellular perturbations detected in the developing limb bud were similar for both teratogens, whereas other alterations were unique to each agent. For example, at 12 and 18 h, CdCl{sub 2} treatment increased apoptotic cells in the mesenchyme underneath the apical ectodermal ridge (AER), whereas RA caused apoptosis in the AER and proximal mesenchyme. Further, the combined low-dose treatment increased cell death synergistically in all three regions. CdCl{sub 2} and the low-dose combined treatment inhibited mesenchymal proliferation at 12 h, which was associated with induction of p21{sup cip1} and inhibition of phospho-c-Jun. In contrast, RA did not inhibit mesenchymal proliferation and did not induce p21{sup cip1} expression or change c-Jun phosphorylation. All three treatment groups showed a delay in the patterning of distal chondrogenesis centers as indicated by Sox9 expression. There was also common inhibition in the expression of AER markers, Fgf8 and Fgf4, and the mesenchymal marker Msx1 involved in the maintenance of epithelial-mesenchymal interactions. Collectively, a model is hypothesized where limb patterning can be perturbed by insults to both ectoderm and mesoderm.

  13. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy

    PubMed Central

    Eriksen, Agnete Bratsberg; Torgersen, Maria Lyngaas; Holm, Kristine Lillebø; Abrahamsen, Greger; Spurkland, Anne; Moskaug, Jan Øivind; Simonsen, Anne; Blomhoff, Heidi Kiil

    2015-01-01

    In the present study we have established a vital role of autophagy in retinoic acid (RA)-induced differentiation of toll-like receptor (TLR)-stimulated human B cells into Ig-secreting cells. Thus, RA enhanced autophagy in TLR9- and CD180-stimulated peripheral blood B cells, as revealed by increased levels of the autophagosomal marker LC3B-II, enhanced colocalization between LC3B and the lysosomal marker Lyso-ID, by a larger percentage of cells with more than 5 characteristic LC3B puncta, and by the concomitant reduction in the level of SQSTM1/p62. Furthermore, RA induced expression of the autophagy-inducing protein ULK1 at the transcriptional level, in a process that required the retinoic acid receptor RAR. By inhibiting autophagy with specific inhibitors or by knocking down ULK1 by siRNA, the RA-stimulated IgG production in TLR9- and CD180-mediated cells was markedly reduced. We propose that the identified prominent role of autophagy in RA-mediated IgG-production in normal human B cells provides a novel mechanism whereby vitamin A exerts its important functions in the immune system. PMID:25749095

  14. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells.

    PubMed

    Yung, Benjamin Y M

    2004-12-17

    The retinoic acid-induced differentiation of human leukemia HL-60 cells towards mature granulocytic cells was accompanied by the decline in the protein levels of c-myc, nucleophosmin/B23 and its promoter activity. These RA-induced effects were further enhanced by the concurrent treatment of HL-60 cells with p38 map kinase inhibitor SB203580 (SB). It seems that there is a strong correlation of nucleophosmin/B23 and c-Myc expressions in cells under RA treatment. Furthermore, nucleophosmin/B23 promoter activity decreased upon c-Myc antisense-mediated reduction of intracellular amount of c-Myc. CHIP assays showed that binding of c-Myc to the nucleophosmin/B23 promoter decreased in RA-treated cells. Thus, nucleophosmin/B23 expression is targeted by c-Myc during RA-induced differentiation. These results provide evidence for a novel mechanism of transcriptional downregulation of nucleophosmin/B23 and the functional role of c-Myc in RA-induced differentiation. PMID:15589822

  15. Suberoylanilide Hydroxamic Acid, an Inhibitor of Histone Deacetylase, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes.

    PubMed

    Chen, Hui; Pan, Jing; Wang, Jin-dan; Liao, Qiu-mei; Xia, Xiao-ru

    2016-02-01

    Here, we explored the effects of suberoylanilide hydroxamic acid (SAHA) on the viability and apoptosis of rheumatoid arthritis of fibroblast-like synoviocytes (rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS)). FLS obtained from RA patients were treated with SAHA. SAHA significantly inhibited the viability of RA FLS in a concentration-dependent manner up to 5 μM. SAHA-treated FLS showed a significant increase in the percentage of apoptosis and the expression and activity of caspase-3 and higher intracellular ROS levels. N-acetyl-l-cysteine (NAC) pretreatment significantly attenuated SAHA-induced apoptosis, decreasing the percentage of apoptosis by about 60 %. A significant decline in phosphorylated IκBα and nuclear factor kappa B (NF-κB) p65 and concomitant increase in total IκBα were shown in SAHA-treated FLS. Additionally, the levels of anti-apoptotic Bcl-2 proteins (Bcl-xL and Mcl-1) were significantly reduced by SAHA. Collectively, SAHA induces apoptosis of RA FLS, at least partially, through generation of ROS and suppression of NF-κB activation and Bcl-xL and Mcl-1 expression. PMID:26228975

  16. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    PubMed Central

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  17. Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis

    PubMed Central

    Natarajan, Sathish Kumar; Ingham, Sally A.; Mohr, Ashley M.; Wehrkamp, Cody J.; Ray, Anuttoma; Roy, Sohini; Cazanave, Sophie C.; Phillippi, Mary Anne; Mott, Justin L.

    2015-01-01

    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. Conclusion Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients. PMID:24753158

  18. Preparation of (228)Ra standard solution.

    PubMed

    Havelka, Miroslav

    2016-03-01

    For the preparation of a standard solution of (228)Ra, (228)Ra was isolated from (232)Th salt. Two simple methods were developed for Th-Ra separation. Both are based on a very good solubility of thorium nitrate in organic solvents. The first one used Ra co-precipitation with Pb in the form of Pb(NO3)2 from acetic acid solution. The second method was based on solvent extraction, remaining Th in the organic phase, while Ra was concentrated in the aqueous phase. The activity of (228)Ra (up to 20kBq) in the standard solution was related to the (232)Th standard by means of gamma ray spectrometry measurement. The obtained uncertainty was less than 0.7% (k=1). The standard solution was free of (232)Th and contained the carrier in the usual concentration (1gL(-1) BaCl2, 10gL(-1) HCl). PMID:26651171

  19. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin

    2015-08-01

    Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.

  20. In vivo ultraviolet-exposed human epidermal cells activate T suppressor cell pathways that involve CD4+CD45RA+ suppressor-inducer T cells

    SciTech Connect

    Baadsgaard, O.; Salvo, B.; Mannie, A.; Dass, B.; Fox, D.A.; Cooper, K.D. )

    1990-11-01

    In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis.

  1. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

    PubMed Central

    Lee, Ah Young; Hwang, Bo Ra; Lee, Myoung Hee; Lee, Sanghyun

    2016-01-01

    BACKGROUND/OBJECTIVES The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ. PMID:27247723

  2. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1.

    PubMed

    Everts, Helen B; Suo, Liye; Ghim, Shinge; Bennett Jenson, A; Sundberg, John P

    2015-12-01

    Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC. PMID:26416148

  3. Production and applications of rosmarinic acid and structurally related compounds.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Jin, Young-Ho; Park, Cheung-Seog

    2015-03-01

    Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy. PMID:25620368

  4. Retinoic acid receptor gamma-induced misregulation of chondrogenesis in the murine limb bud in vitro.

    PubMed

    Galdones, Eugene; Hales, Barbara F

    2008-11-01

    Vitamin A derivatives modulate gene expression through retinoic acid and rexinoid receptor (RAR/RXR) heterodimers and are indispensable for limb development. Of particular interest, RARgamma is highly expressed in cartilage, a target affected following retinoid-induced limb insult. The goal of this study was to examine how selective activation of RARgamma affects limb development. Forelimbs from E12.5 CD-1 mice were cultured for 6 days in the presence of all-trans RA (pan-RAR agonist; 0.1 or 1.0 microM) or BMS-189961 (BMS961, RARgamma-selective agonist; 0.01 or 0.1 microM) and limb morphology assessed. Untreated limbs developed normal cartilage elements whereas pan-RAR or RARgamma agonist-treated limbs exhibited reductive effects on chondrogenesis. Retinoid activity was assessed using RAREbeta2 (retinoic acid response element beta2)-lacZ reporter limbs; after 3 h of treatment, both drugs increased retinoid activity proximally. To elucidate the expression profiles of a subset of genes important for development, limbs were cultured for 3 h and cRNA hybridized to osteogenesis-focused microarrays. Two genes, matrix GLA protein (Mgp; chondrogenesis inhibitor) and growth differentiation factor-10 (Gdf10/Bmp3b) were induced by RA and BMS-189961. Real-time PCR was done to validate our results and whole mount in situ hybridizations against Mgp and Gdf10 localized their upregulation to areas of cartilage and programmed cell death, respectively. Thus, our results illustrate the importance of RARgamma in mediating the retinoid-induced upregulation of Mgp and Gdf10; determining their roles in chondrogenesis and cell death will help further unravel mechanisms underlying retinoid teratogenicity. PMID:18703560

  5. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  6. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  7. Zoledronic Acid-Induced Interface Dermatitis.

    PubMed

    Succaria, Farah; Collier, Mary; Mahalingam, Meera

    2015-12-01

    Zoledronic acid (ZA) is a bisphosphonate given intravenously, most commonly for the treatment of postmenopausal osteoporosis. Increase in usage of ZA because it was FDA-approved has resulted in increasing reports of side effects. For the most part, these are systemic. Cutaneous side effects associated with ZA are infrequent and limited to 2 reports of dermatomyositis to date. In both, patients presented with clinical and laboratory stigmata of dermatomyositis soon after initiation of therapy. In this report, we describe a 62-year-old woman who presented with diffuse, erythematous scaly plaques over the right thigh after 12 hours of infusion of ZA. Histopathologic examination of a skin biopsy from the right thigh revealed patchy scale crust containing neutrophils and inspissated serum, interface change with scattered individually necrotic keratinocytes, and a mild, superficial perivascular lymphocytic infiltrate with scattered eosinophils and pigment incontinence-findings consistent with an interface dermatitis. Given that the patient had no other systemic manifestations or laboratory abnormalities, to the best of our knowledge, ours is the first report of interface dermatitis secondary to ZA with the caveat that longer follow-up is required to definitively exclude the development of drug-induced connective tissue disease. PMID:26588338

  8. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model

    PubMed Central

    Wang, Gensheng; Evans, Christopher H; Benson, Janet M; Hutt, Julie A; Seagrave, JeanClare; Wilder, Julie A; Grieger, Joshua C; Samulski, R Jude; Terse, Pramod S

    2016-01-01

    Interleukin-1 (IL-1) plays an important role in the pathophysiology of osteoarthritis (OA), and gene transfer of IL-1 receptor antagonist (IL-1Ra) holds promise for OA treatment. A preclinical safety and biodistribution study evaluated a self-complementary adeno-associated viral vector carrying rat IL-1Ra transgene (sc-rAAV2.5rIL-1Ra) at 5 × 108, 5 × 109, or 5 × 1010 vg/knee, or human IL-1Ra transgene (sc-rAAV2.5hIL-1Ra) at 5 × 1010 vg/knee, in Wistar rats with mono-iodoacetate (MIA)–induced OA at days 7, 26, 91, 180, and 364 following intra-articular injection. The MIA-induced OA lesions were consistent with the published data on this model. The vector genomes persisted in the injected knees for up to a year with only limited vector leakage to systemic circulation and uptake in tissues outside the knee. Low levels of IL-1Ra expression and mitigation of OA lesions were observed in the vector-injected knees, albeit inconsistently. Neutralizing antibodies against the vector capsid developed in a dose-dependent manner, but only the human vector induced a small splenic T-cell immune response to the vector capsid. No local or systemic toxicity attributable to vector administration was identified in the rats as indicated by clinical signs, body weight, feed consumption, clinical pathology, and gross and microscopic pathology through day 364. Taken together, the gene therapy vector demonstrated a favorable safety profile. PMID:26817025

  9. Induced Differentiation of Human Myeloid Leukemia Cells into M2 Macrophages by Combined Treatment with Retinoic Acid and 1α,25-Dihydroxyvitamin D3

    PubMed Central

    Takahashi, Hiromichi; Hatta, Yoshihiro; Iriyama, Noriyoshi; Hasegawa, Yuichiro; Uchida, Hikaru; Nakagawa, Masaru; Makishima, Makoto; Takeuchi, Jin; Takei, Masami

    2014-01-01

    Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3. PMID:25409436

  10. Acanthoic acid ameliorates lipopolysaccharide-induced acute lung injury.

    PubMed

    Qiushi, Wang; Guanghua, Li; Guangquan, Xu

    2015-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effects of acanthoic acid on LPS-induced acute lung injury have not been reported. The purpose of this study was to investigate the protective effect of acanthoic acid on LPS-induced ALI and to clarify the possible anti-inflammatory mechanisms. In vivo, an LPS-induced ALI model in mice was used to assess the protective effects of acanthoic acid on ALI. Meanwhile, mouse alveolar macrophages MH-S were stimulated with LPS in the presence or absence of acanthoic acid. The expressions of TNF-α, IL-6 and IL-1β were measured by ELISA. LXRα and NF-κB expression were detected by Western blot analysis. The results showed that acanthoic acid downregulated LPS-induced TNF-α, IL-6 and IL-1β production in BALF. MPO activity and lung wet-to-dry ratio were also inhibited by acanthoic acid. In addition, acanthoic acid attenuated lung histopathologic changes. In vitro, acanthoic acid inhibited inflammatory cytokines TNF-α, IL-6 and IL-1β production and NF-κB activation in LPS-stimulated alveolar macrophages. Acanthoic acid was found to up-regulated the expression of LXRα. The inhibition of acanthoic acid on LPS-induced cytokines and NF-κB activation can be abolished by LXRα siRNA. In conclusion, our results suggested that the protective effect of acanthoic acid on LPS-induced ALI was due to its ability to activate LXRα, thereby inhibiting LPS-induced inflammatory response. PMID:25620130

  11. Postmenopausal loss of Ra acquired in adolescence or young adulthood: quantitative relationship to radiation-induced skeletal damage and dosimetric implications

    SciTech Connect

    Keane, A.T.; Rundo, J.; Essling, M.A.

    1988-05-01

    From the results of serial measurements of body /sup 226/Ra activity in 13 former luminous dial workers 30-60 y after relatively brief periods of intake of luminous compounds in adolescence or young adulthood, we determined the postmenopausal rate of elimination of Ra in percent of contemporary body Ra content per year. This rate was negatively correlated with the reduced x-ray score, a measure of radiation osteonecrosis observed radiographically in the 13 subjects (r = -0.85, P less than 0.001). The clearance rates of subjects retaining low Ra activity were greater than predicted by retention models. We conclude that for those members of the Ra-exposed population under study for health effects at our institution who sustained the lesser degrees of macroscopic skeletal damage, present estimates of skeletal absorbed dose are systematically low, by at most a factor of 2.

  12. Postmenopausal loss of Ra acquired in adolescence or young adulthood: quantitative relationship to radiation-induced skeletal damage and dosimetric implications.

    PubMed

    Keane, A T; Rundo, J; Essling, M A

    1988-05-01

    From the results of serial measurements of body 226Ra activity in 13 former luminous dial workers 30-60 y after relatively brief periods of intake of luminous compounds in adolescence or young adulthood, we determined the postmenopausal rate of elimination of Ra in percent of contemporary body Ra content per year. This rate was negatively correlated with the "reduced x-ray score," a measure of radiation osteonecrosis observed radiographically in the 13 subjects (r = -0.85, P less than 0.001). The clearance rates of subjects retaining low Ra activity were greater than predicted by retention models. We conclude that for those members of the Ra-exposed population under study for health effects at our institution who sustained the lesser degrees of macroscopic skeletal damage, present estimates of skeletal absorbed dose are systematically low, by at most a factor of 2. PMID:3360604

  13. Changes in Gene Expression Profiling of Apoptotic Genes in Neuroblastoma Cell Lines upon Retinoic Acid Treatment

    PubMed Central

    Celay, Jon; Blanco, Idoia; Lázcoz, Paula; Rotinen, Mirja; Castresana, Javier S.; Encío, Ignacio

    2013-01-01

    To determine the effect of retinoic acid (RA) in neuroblastoma we treated RA sensitive neuroblastoma cell lines with 9-cis RA or ATRA for 9 days, or for 5 days followed by absence of RA for another 4 days. Both isomers induced apoptosis and reduced cell density as a result of cell differentiation and/or apoptosis. Flow cytometry revealed that 9-cis RA induced apoptosis more effectively than ATRA. The expression profile of apoptosis and survival pathways was cell line specific and depended on the isomer used. PMID:23650528

  14. "Redefining RA": The RA Tool Kit

    ERIC Educational Resources Information Center

    Wyatt, Neal

    2008-01-01

    No one likes being two steps behind, and the fastest way to fall off the pace is by not keeping up with major titles and hot authors. Fortunately, there are numerous resources, both prepublication and postpublication, that can help. It is best when readers' advisory (RA) librarians know what is coming out months ahead of time--in order to think…

  15. Martin RA-30 Baltimore

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Martin RA-30 Baltimore: The Martin RA-30 Baltimore was a light bomber ordered by the Royal Air Force. Some examples were retained in the United States as part of a 'Reverse Lend-Lease.' This example was flown by the NACA from June 1943 until March 1944.

  16. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    PubMed

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  17. Flusilazole induces spatio-temporal expression patterns of retinoic acid-, differentiation- and sterol biosynthesis-related genes in the rat Whole Embryo Culture.

    PubMed

    Dimopoulou, Myrto; Verhoef, Aart; van Ravenzwaay, Bennard; Rietjens, Ivonne M C M; Piersma, Aldert H

    2016-09-01

    Embryotoxic responses are critically dependent on the timing of exposure during embryo development. Here, we examined the time- dependent developmental effects in rat embryos exposed to flusilazole (FLU), and their link to retinoic acid (RA) mediated pathways. To this end, we assessed the effects of 4h exposure of rat embryos in vitro to 300μM FLU during four developmental time windows (0-4, 4-8, 24-28 and 44-48h), evaluating morphological parameters, expression and localization of five genes directly or indirectly linked with the RA pathway. These were RA- (Cyp26a1 and Dhrs3), differentiation- (Gbx2 and Cdx1) and sterol biosynthesis- (Cyp51) related genes. Extended exposure for 48h to 300μM FLU resulted in morphological changes, typical for triazoles and RA, while the 4h exposure times did not. Time dependent significant upregulation of the five selected genes was observed. These results corroborate that the embryotoxic responses to FLU are correlated with the regulation of the RA pathway. Thus, these gene expression markers can be considered early biomarkers of FLU-induced potential developmental toxicity later in the development. PMID:27094377

  18. Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines.

    PubMed Central

    Braakhuis, B. J.; Klaassen, I.; van der Leede, B. M.; Cloos, J.; Brakenhoff, R. H.; Copper, M. P.; Teerlink, T.; Hendriks, H. F.; van der Saag, P. T.; Snow, G. B.

    1997-01-01

    Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition. Images Figure 6 PMID:9231918

  19. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method. PMID:22940414

  20. Lysophosphatidic acid induces osteocyte dendrite outgrowth

    SciTech Connect

    Karagiosis, Sue A.; Karin, Norm J.

    2007-05-25

    A method was developed to measure dendrite formation in bone cells. Lysophosphatidic acid (LPA) was found to stimulate dendrite outgrowth. It is postulated that LPA plays a role in regulating the osteocyte network in vivo.

  1. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. PMID:26002078

  2. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist

    PubMed Central

    Xu, Wenfeng; Presnell, Scott R.; Parrish-Novak, Julia; Kindsvogel, Wayne; Jaspers, Steve; Chen, Zhi; Dillon, Stacey R.; Gao, Zeren; Gilbert, Teresa; Madden, Karen; Schlutsmeyer, Stacy; Yao, Lena; Whitmore, Theodore E.; Chandrasekher, Yasmin; Grant, Francis J.; Maurer, Mark; Jelinek, Laura; Storey, Harold; Brender, Ty; Hammond, Angie; Topouzis, Stavros; Clegg, Christopher H.; Foster, Donald C.

    2001-01-01

    IL-22 is an IL-10 homologue that binds to and signals through the class II cytokine receptor heterodimer IL-22RA1/CRF2–4. IL-22 is produced by T cells and induces the production of acute-phase reactants in vitro and in vivo, suggesting its involvement in inflammation. Here we report the identification of a class II cytokine receptor designated IL-22RA2 (IL-22 receptor-α 2) that appears to be a naturally expressed soluble receptor. IL-22RA2 shares amino acid sequence homology with IL-22RA1 (also known as IL-22R, zcytor11, and CRF2–9) and is physically adjacent to IL-20Rα and IFN-γR1 on chromosome 6q23.3–24.2. We demonstrate that IL-22RA2 binds specifically to IL-22 and neutralizes IL-22-induced proliferation of BaF3 cells expressing IL-22 receptor subunits. IL-22RA2 mRNA is highly expressed in placenta and spleen by Northern blotting. PCR analysis using RNA from various tissues and cell lines showed that IL-22RA2 was expressed in a range of tissues, including those in the digestive, female reproductive, and immune systems. In situ hybridization revealed the dominant cell types expressing IL-22RA2 were mononuclear cells and epithelium. Because IL-22 induces the expression of acute phase reactants, IL-22RA2 may play an important role as an IL-22 antagonist in the regulation of inflammatory responses. PMID:11481447

  3. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Xu, Wenqing; Yang, Fujun; Zhang, Yujie; Shen, Xiu

    2016-01-01

    Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony–forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of 137Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice. PMID:27006381

  4. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice.

    PubMed

    Xu, Wenqing; Yang, Fujun; Zhang, Yujie; Shen, Xiu

    2016-07-01

    Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony-forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of (137)Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice. PMID:27006381

  5. PALATAL EXPRESSION OF TGFB ISOFORMS IN NORMAL AND RETINOIC ACID-TREATED EMBRYOS

    EPA Science Inventory

    Retinoic Acid (RA) is know to induce cleft palate in all mammalian species tested. he aetiology of RA-induced cleft palate has been extensively investigated in C57B16 mouse embryos by one of us 1. e have recently shown distinct site- and stage-specific expression pattern of the R...

  6. Dysregulated microRNA Clusters in Response to Retinoic Acid and CYP26B1 Inhibitor Induced Testicular Function in Dogs

    PubMed Central

    Kasimanickam, Vanmathy R.; Kasimanickam, Ramanathan K.; Dernell, William S.

    2014-01-01

    Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution

  7. Acid fog-induced bronchoconstriction. The role of hydroxymethanesulfonic acid

    SciTech Connect

    Aris, R.; Christian, D.; Sheppard, D.; Balmes, J.R. )

    1990-03-01

    Hydroxymethanesulfonate (HMSA), the bisulfite (HSO3-) adduct of formaldehyde (CH2O), is a common constituent of California acid fogs. HMSA, most stable in a fog pH range of 3 to 5, dissociates at 6.6, the pH of the fluid lining human airways. The dissociation of inhaled HMSA should theoretically generate sulfur dioxide and CH2O, both of which have bronchoconstrictor potential. Thus, we hypothesized that HMSA may have a specific bronchoconstrictor effect independent of its strength as an acid. To determine whether HMSA has such an effect, 19 subjects with mild to moderate asthma were studied using two different protocols. Initially, a mouthpiece study was performed in which 9 subjects, on 2 separate days, inhaled five aerosols containing either sequentially increasing concentrations (0, 30, 100, 300, and 1000 microM) of HMSA in 50 microM sulfuric acid (H2SO4) or 50 microM H2SO4 alone. The subjects inhaled each aerosol for 3 min during tidal breathing at rest. Specific airway resistance (SRaw) was measured before and after each 3-min exposure. There were no significant differences in the mean changes in SRaw among the various aerosol exposures. To confirm this lack of bronchoconstrictor effect of HMSA, we then performed a chamber study in which 10 freely breathing, intermittently exercising subjects were exposed to fog containing either 1 mM HMSA in 5 mM H2SO4 or 5 mM H2SO4 alone for 1 h. SRaw was measured before, during, and at the end of the 1-h exposure.

  8. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  9. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  10. Induction of CYP26A1 by Metabolites of Retinoic Acid: Evidence That CYP26A1 Is an Important Enzyme in the Elimination of Active Retinoids

    PubMed Central

    Topletz, Ariel R.; Tripathy, Sasmita; Foti, Robert S.; Shimshoni, Jakob A.; Nelson, Wendel L.

    2015-01-01

    All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD+, suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action. PMID:25492813

  11. Collision induced dissociation of alpha hydroxy acids

    NASA Astrophysics Data System (ADS)

    Bandu, Mary L.; Grubbs, Thomas; Kater, Marcus; Desaire, Heather

    2006-03-01

    Alpha hydroxy acids typically dissociate in tandem mass spectrometric experiments to produce product ions representing a neutral loss of 46 Da (CH2O2) in negative ion mode. Although it is widely accepted that the carboxylate group is lost in the dissociation process, the origin of the remaining two hydrogens is unclear. The current study utilizes an alpha hydroxy acid chemical library and deuterium labeling experiments to identify the origin of the two hydrogens lost during dissociation. Secondly, this study investigates the lower m/z region of the CID spectrum, a region previously unexplored, to aid in characterizing the dissociation mechanism. Further experiments testing the energy requirements and time parameters of the dissociation also are consistent with criteria previously defined for ion-neutral complex formation. In addition to describing the mechanism for the loss of CH2O2, we have conducted experiments that demonstrate the important chemical features of molecules that can prevent alpha hydroxy acids from undergoing the loss of 46 Da. By understanding the chemical composition of the 46 Da loss, the dissociation mechanism responsible for the loss, and the factors that hinder this mechanistic pathway, chemical information about alpha hydroxy acids can be obtained from their CID data.

  12. 228Ra and 226Ra Profiles from the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, H.; Chung, Y.; Lin, C.

    2005-05-01

    We previously reported the distributions of 228Ra and 226Ra in the northern South China Sea (SCS) which showed that both nuclides in surface waters were much higher than those in the open oceans because the SCS was enclosed mostly by landmasses which are known as sources of these nuclides. Large temporal and spectial variations were also observed probably due to the monsoons and intrusion of the Kuroshio Current. During a recent cruise conducted in the northern SCS in February, 2004, three vertical 228Ra profiles were measured by gamma spectrometry on the Ra isotopes which were concentrated first by the MnO2-impregnated acrylic fiber and then acid-washed as sample solution for counting. The two deep water 228Ra profiles are remarkably similar, showing high values in the surface layer and fairly uniform at about 10 to 13 dpm/100L below 200m depth but with a clear increase toward the bottom due to input from the underlying sediments. The shallow water profile on the shelf shows higher 228Ra values due to both vertical and horizontal mixing of the shelf water with additional source from the shore zone. Additional 228Ra profiles measured on samples from earlier cruises show that the deep water values may differ significantly (up to 5 dpm/100L) at the same location in different seasons or cruises. The associated 226Ra profiles are also variable but quite comparable to those in the northwest Pacific in deep water. 226Ra activities in the shallow water (less than 1000m depth) are higher in the SCS than in the open oceans. The 228Ra/226Ra activity ratios vary mostly from about 0.3 to 0.5 in the deep water. These values are much higher than those in the open oceans which are generally less than 0.1.

  13. Measuring the radium quartet (228Ra, 226Ra, 224Ra, 223Ra) in seawater samples using gamma spectrometry.

    PubMed

    van Beek, P; Souhaut, M; Reyss, J-L

    2010-07-01

    Radium isotopes are widely used in marine studies (eg. to trace water masses, to quantify mixing processes or to study submarine groundwater discharge). While 228Ra and 226Ra are usually measured using gamma spectrometry, short-lived Ra isotopes (224Ra and 223Ra) are usually measured using a Radium Delayed Coincidence Counter (RaDeCC). Here we show that the four radium isotopes can be analyzed using gamma spectrometry. We report 226Ra, 228Ra, 224Ra, 223Ra activities measured using low-background gamma spectrometry in standard samples, in water samples collected in the vicinity of our laboratory (La Palme and Vaccarès lagoons, France) but also in seawater samples collected in the plume of the Amazon river, off French Guyana (AMANDES project). The 223Ra and 224Ra activities determined in these samples using gamma spectrometry were compared to the activities determined using RaDeCC. Activities determined using the two techniques are in good agreement. Uncertainties associated with the 224Ra activities are similar for the two techniques. RaDeCC is more sensitive for the detection of low 223Ra activities. Gamma spectrometry thus constitutes an alternate method for the determination of short-lived Ra isotopes. PMID:20106569

  14. Cadmium induces retinoic acid signaling by regulating retinoic acid metabolic gene expression.

    PubMed

    Cui, Yuxia; Freedman, Jonathan H

    2009-09-11

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, beta,beta-carotene 15,15'-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1-6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1-6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 microm cadmium in Hepa 1-6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  15. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  16. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature. PMID:24147950

  17. An Inducible Fusaric Acid Tripartite Efflux Pump Contributes to the Fusaric Acid Resistance in Stenotrophomonas maltophilia

    PubMed Central

    Hu, Rouh-Mei; Liao, Sih-Ting; Huang, Chiang-Ching; Huang, Yi-Wei; Yang, Tsuey-Ching

    2012-01-01

    Background Fusaric acid (5-butylpicolinic acid), a mycotoxin, is noxious to some microorganisms. Stenotrophomonas maltophilia displays an intrinsic resistance to fusaric acid. This study aims to elucidate the mechanism responsible for the intrinsic fusaric acid resistance in S. maltophilia. Methodology A putative fusaric acid resistance-involved regulon fuaR-fuaABC was identified by the survey of the whole genome sequence of S. maltophilia K279a. The fuaABC operon was verified by reverse transcriptase-PCR. The contribution of the fuaABC operon to the antimicrobial resistance was evaluated by comparing the antimicrobials susceptibility between the wild-type strain and fuaABC knock-out mutant. The regulatory role of fuaR in the expression of the fuaABC operon was assessed by promoter transcription fusion assay. Results The fuaABC operon was inducibly expressed by fusaric acid and the inducibility was fuaR dependent. FuaR functioned as a repressor of the fuaABC operon in absence of a fusaric acid inducer and as an activator in its presence. Overexpression of the fuaABC operon contributed to the fusaric acid resistance. Significance A novel tripartite fusaric acid efflux pump, FuaABC, was identified in this study. Distinct from the formally classification, the FuaABC may constitute a new type of subfamily of the tripartite efflux pump. PMID:23236431

  18. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  19. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    PubMed Central

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. Results: The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Conclusion: Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration. PMID:25126019

  20. Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma

    PubMed Central

    Sonawane, Poonam; Cho, Hwang Eui; Tagde, Ashujit; Verlekar, Dattesh; Yu, Alice L; Reynolds, C Patrick; Kang, Min H

    2014-01-01

    Background and Purpose Isotretinoin (13-cis-retinoic acid; 13-cRA) is a differentiation inducer used to treat minimal residual disease after myeloablative therapy for high-risk neuroblastoma. However, more than 40% of children develop recurrent disease during or after 13-cRA treatment. The plasma concentrations of 13-cRA in earlier studies were considered subtherapeutic while 4-oxo-13-cis-RA (4-oxo-13-cRA), a metabolite of 13-cRA considered by some investigators as inactive, were greater than threefold higher than 13-cRA. We sought to define the metabolic pathways of 13-cRA and investigated the anti-tumour activity of its major metabolite, 4-oxo-13-cRA. Experimental Approach Effects of 13-cRA and 4-oxo-13-cRA on human neuroblastoma cell lines were assessed by DIMSCAN and flow cytometry for cell proliferation, MYCN down-regulation by reverse transcription PCR and immunoblotting, and neurite outgrowth by confocal microscopy. 13-cRA metabolism was determined using tandem MS in human liver microsomes and in patient samples. Key Results Six major metabolites of 13-cRA were identified in patient samples. Of these, 4-oxo-13-cRA was the most abundant, and 4-oxo-13-cRA glucuronide was also detected at a higher level in patients. CYP3A4 was shown to play a major role in catalysing 13-cRA to 4-oxo-13-cRA. In human neuroblastoma cell lines, 4-oxo-13-cRA and 13-cRA were equi-effective at inducing neurite outgrowth, inhibiting proliferation, decreasing MYCN mRNA and protein, and increasing the expression of retinoic acid receptor-β mRNA and protein levels. Conclusions and Implications We showed that 4-oxo-13-cRA is as active as 13-cRA against neuroblastoma cell lines. Plasma levels of both 13-cRA and 4-oxo-13-cRA should be evaluated in pharmacokinetic studies of isotretinoin in neuroblastoma. PMID:25039756

  1. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  2. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. PMID:25533183

  3. Mevalonates restore zoledronic acid-induced osteoclastogenesis inhibition.

    PubMed

    Nagaoka, Y; Kajiya, H; Ozeki, S; Ikebe, T; Okabe, K

    2015-04-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is likely to be caused by continuous imperfection of bone healing after surgical treatments in patients with long-term administration of nitrogen-containing bisphosphonates (NBPs). NBPs inhibit osteoclastic bone resorption by impairing the mevalonic acid sterol pathway in osteoclasts. Thus, we hypothesized that exogenous mevalonic acid metabolites restore the inhibitory effects of NBPs on osteoclastogenesis and bone remodeling. To clarify the effects of mevalonic acid metabolites, especially geranylgeranyl pyrophosphate (GGPP) and geranylgeranyl transferase substrate geranylgeranyl acid (GGOH), we examined the effects of zoledronic acid with or without GGOH or GGPP on osteoclast differentiation, multinucleation, and bone mineral deposition in tooth-extracted sockets. Zoledronic acid decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells derived from mouse osteoclast precursors treated with receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Zoledronic acid simultaneously suppressed not only the expressions of osteoclastic differentiation-related molecules such as TRAP, cathepsin K, calcitonin receptor, and vacuolar H-ATPase but also those of multinucleation-related molecules such as dendrocyte-expressed 7 transmembrane proteins and osteoclast stimulatory transmembrane protein. Treatment with GGOH or GGPP, but not farnesyl acid, restored the zoledronic acid-inhibited number of TRAP-positive multinuclear cells together with the expressions of these molecules. Although intraperitoneal administration of zoledronic acid and lipopolysaccharide into mice appeared to induce BRONJ-like lesions with empty bone lacunae and decreased mineral deposition in tooth-extracted socket, both GGOH and GGPP partially restored the inhibitory effects on zoledronic acid-related mineral deposition. These results suggest the potential of mevalonic acid

  4. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  5. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. PMID:24845645

  6. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia. PMID:27135739

  7. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  8. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  9. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  10. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development.

    PubMed

    Liu, Liqing; Suzuki, Kentaro; Nakagata, Naomi; Mihara, Kenichiro; Matsumaru, Daisuke; Ogino, Yukiko; Yashiro, Kenta; Hamada, Hiroshi; Liu, Zhonghua; Evans, Sylvia M; Mendelsohn, Cathy; Yamada, Gen

    2012-02-01

    Retinoic acid (RA) plays pivotal roles in organogenesis, and both excessive and reduced amounts of RA cause developmental abnormalities. Reproductive organs are susceptible to teratogen toxigenicity, and the genital tubercle (GT) is one such representative organ. The physiological function of endogenous RA signaling and the mechanisms of RA-induced teratogenicity are poorly understood during the GT development. The objective of this study is to understand the developmental and teratogenic roles of RA during GT development by analyzing genetically modified mouse models. We found dynamic patterns of gene expression for the RA-synthesizing enzyme, Raldh2, and for the RA-catabolizing enzyme, Cyp26b1, during GT development. Rarb, an indicator gene for RA signaling, starts its expression in the prospective corpus cavernosum penis and in the urethral plate epithelium (UE), which plays central roles during GT development. Excessive RA signaling in Cyp26b1(-/-) mutants leads to abnormal extents of cell proliferation and differentiation during GT development, and also upregulates expression of growth factor signalings. They include Sonic hedgehog (Shh) signaling and Bone morphogenetic protein (Bmp) signaling, which are expressed in the UE and its bilateral mesenchyme. RA signaling positively regulatesShh and Bmp4 expression during GT development as testified also by the experiment of RA administration and analyses of loss-of-function of RA signaling mutants. Thus, RA signaling is involved in the developmental cascade necessary for UE formation and GT development. PMID:22127979

  11. Human Gastric Epithelial Cells Contribute to Gastric Immune Regulation by Providing Retinoic Acid to Dendritic Cells

    PubMed Central

    Bimczok, Diane; Kao, John Y.; Zhang, Min; Cochrun, Steven; Mannon, Peter; Peter, Shajan; Wilcox, Charles M.; Mönkemüller, Klaus E.; Harris, Paul R.; Grams, Jayleen M.; Stahl, Richard D.; Smith, Phillip D.; Smythies, Lesley E.

    2014-01-01

    Despite the high prevalence of chronic gastritis caused by H. pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule, retinol, and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of retinol synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric DCs. Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation. PMID:25249167

  12. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  13. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  14. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  15. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    PubMed

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  16. Rapid Method for Ra-226 and Ra-228 in Water Samples

    SciTech Connect

    Maxwell, Sherrod, L. III

    2006-02-10

    The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  17. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration

    PubMed Central

    Liu, Hui-Xin; Hu, Ying; Wan, Yu-Jui Yvonne

    2016-01-01

    Background & Aims All-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration. Methods C57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied. Results RA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers. Conclusions Priming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation. PMID:26701854

  18. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  19. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2

    PubMed Central

    Namachivayam, Kopperuncholan; MohanKumar, Krishnan; Arbach, Dima; Jagadeeswaran, Ramasamy; Jain, Sunil K.; Natarajan, Viswanathan; Mehta, Dolly; Jankov, Robert P.; Maheshwari, Akhil

    2015-01-01

    Objective We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks’ gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms. Methods AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors. Results AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation. Conclusions AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation. PMID:26225425

  20. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  1. Bile acids induce hepatic differentiation of mesenchymal stem cells

    PubMed Central

    Sawitza, Iris; Kordes, Claus; Götze, Silke; Herebian, Diran; Häussinger, Dieter

    2015-01-01

    Mesenchymal stem cells (MSC) have the potential to differentiate into multiple cell lineages and their therapeutic potential has become obvious. In the liver, MSC are represented by stellate cells which have the potential to differentiate into hepatocytes after stimulation with growth factors. Since bile acids can promote liver regeneration, their influence on liver-resident and bone marrow-derived MSC was investigated. Physiological concentrations of bile acids such as tauroursodeoxycholic acid were able to initiate hepatic differentiation of MSC via the farnesoid X receptor and transmembrane G-protein-coupled bile acid receptor 5 as investigated with knockout mice. Notch, hedgehog, transforming growth factor-β/bone morphogenic protein family and non-canonical Wnt signalling were also essential for bile acid-mediated differentiation, whereas β-catenin-dependent Wnt signalling was able to attenuate this process. Our findings reveal bile acid-mediated signalling as an alternative way to induce hepatic differentiaion of stem cells and highlight bile acids as important signalling molecules during liver regeneration. PMID:26304833

  2. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  3. Retinoic acid expands the evolutionarily reduced dentition of zebrafish

    PubMed Central

    Seritrakul, Pawat; Samarut, Eric; Lama, Tenzing T. S.; Gibert, Yann; Laudet, Vincent; Jackman, William R.

    2012-01-01

    Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.—Seritrakul, P., Samarut, E., Lama, T. T. S., Gibert, Y., Laudet, V., Jackman, W. R. Retinoic acid expands the evolutionarily reduced dentition of zebrafish. PMID:22942074

  4. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby ...

  5. Leaching of 226Ra from components of uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1991-01-01

    A sequential extraction procedure was used to characterize the geochemical forms of 226Ra retained by mixtures of quartz sand and a variety of fine-grained rock and mineral species. These mixtures had previously been exposed to the sulfuric acid milling liquor of a simulated acid-leach uranium milling circuit. For most test cases, the major fraction of the 226Ra was extracted with 1 mol/1 NH4Cl and was deemed to be exchangeable. However, 226Ra retained by the barite-containing mixture was resistant to both 1 mol/1 NH4Cl and 1 mol/HCHCl extraction. ?? 1991.

  6. γ-Hydroxybutyric Acid-Induced Electrographic Seizures

    PubMed Central

    Cheung, Joseph; Lucey, Brendan P.; Duntley, Stephen P.; Darken, Rachel S.

    2014-01-01

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. Citation: Cheung J, Lucey BP, Duntley SP, Darken RS. γ-hydroxybutyric acid-induced electrographic seizures. J Clin Sleep Med 2014;10(7):811-812. PMID:25024661

  7. Oleanolic acid prevents glucocorticoid-induced hypertension in rats.

    PubMed

    Bachhav, Sagar S; Patil, Savita D; Bhutada, Mukesh S; Surana, Sanjay J

    2011-10-01

    The present study was designed to evaluate the antihypertensive activity of oleanolic acid isolated from Viscum articulatum, Burm. (Loranthaceae) in glucocorticoid (dexamethasone)-induced hypertension in rats and to propose a probable mechanism of action for this effect. Male Wistar rats (300-350 g) received dexamethasone (20 μg/kg/day s.c.) or saline (vehicle) for 10 days. In a prevention study, the rats received oleanolic acid (60 mg/kg i.p.) for 5 days, followed by dexamethasone or saline for 10 days. During this period the systolic blood pressure and body weight were evaluated on alternate days. At the end of the experiment, the weight of the thymus gland, plasma nitrate/nitrite (nitric oxide metabolites) concentration and cardiac lipid peroxidation value were determined. Oleanolic acid (60 mg/kg i.p.) significantly prevented a rise in the systolic blood pressure and cardiac lipid peroxidation level after administration of dexamethasone (p < 0.01 and p < 0.05, respectively) without showing any significant effect on the dexamethasone-induced change in body and thymus weights. The decrease in concentration of plasma nitrate/nitrite due to dexamethasone was prevented significantly in the group treated with oleanolic acid (p < 0.05). These findings suggest that oleanolic acid (60 mg/kg i.p.) prevents dexamethasone-induced hypertension in rats, which may be attributed to its antioxidant and nitric oxide releasing action. PMID:21953707

  8. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes.

    PubMed

    Fujihara, Masatoshi; Obara, Hisato; Watanabe, Yusaku; Ono, Hisaya K; Sasaki, Jun; Goryo, Masanobu; Harasawa, Ryô

    2011-07-01

    Although swarmer morphotypes of Proteus mirabilis have long been considered to result from surfaced-induced differentiation, the present findings show that, in broth medium containing urea, acidic conditions transform some swimmer cells into elongated swarmer cells. This study has also demonstrates that P. mirabilis cells grown in acidic broth medium containing urea enhance virulence factors such as flagella production and cytotoxicity to human bladder carcinoma cell line T24, though no significant difference in urease activity under different pH conditions was found. Since there is little published data on the behavior of P. mirabilis at various hydrogen-ion concentrations, the present study may clarify aspects of cellular differentiation of P. mirabilis in patients at risk of struvite formation due to infection with urease-producing bacteria, as well as in some animals with acidic or alkaline urine. PMID:21707738

  9. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  10. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?

    PubMed

    Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian

    2015-06-01

    Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. PMID:25810318

  11. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats

    PubMed Central

    Akomolafe, Seun F.; Akinyemi, Ayodele J.; Anadozie, Scholarstical O.

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity. PMID:27382634

  12. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity.

    PubMed

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun; Choi, Yun-Sik

    2016-05-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  13. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  14. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  15. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion.

    PubMed

    Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu

    2016-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. PMID:26774852

  16. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    PubMed Central

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes

  17. Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons.

    PubMed

    Holtsberg, F W; Steiner, M R; Keller, J N; Mark, R J; Mattson, M P; Steiner, S M

    1998-01-01

    A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 microM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 microM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 microM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 microM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1beta converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 microM LPA. LPA (1 microM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders. PMID:9422348

  18. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  19. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  20. Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis.

    PubMed

    Ignatowicz, E; Vezzani, A M; Rizzi, M; D'Incalci, M

    1991-11-01

    We investigated whether in vivo excitotoxicity was mediated by a mechanism of programmed cell death called apoptosis. Neurotoxic doses of kainic acid (1.2 nmol) and quinolinic acid (120 nmol) were unilaterally injected in the dorsal hippocampus of anesthetized rats. Eight or 16 h later the animals were killed and DNA was extracted from the injected hippocampi. DNA from mouse thymocytes exposed to methylprednisolone (10(-5) M for 6 h at 37 degrees C) was used as a positive control of apoptotic cells. No typical 'ladder' of DNA fragments (multimers of approximately 200 Kb) which characterizes apoptosis was seen in hippocampal cells after toxic doses of kainic or quinolinic acid, as assessed by agarose gel electrophoresis. This suggests that hippocampal nerve cell death induced in vivo by the excitotoxins is not mediated by apoptosis. PMID:1839770

  1. Fluorosulfonic acid and chlorosulfonic acid: possible candidates for OH-stretching overtone-induced photodissociation.

    PubMed

    Lane, Joseph R; Kjaergaard, Henrik G

    2007-10-01

    We have calculated the stationary points and internal reaction coordinate pathway for the dissociation of fluorosulfonic acid (FSO3H) and chlorosulfonic acid (ClSO3H). These sulfonic acids dissociate to sulfur trioxide and hydrogen fluoride and chloride, respectively. We have calculated the frequencies and intensities of the OH-stretching transitions of FSO3H and ClSO3H with an anharmonic oscillator local mode model. We find that excitation of the fourth and third OH-stretching overtones provide adequate energy for photodissociation of FSO3H and ClSO3H, respectively. We propose that experimental detection of the products of OH-stretching overtone-induced photodissociation of FSO3H and ClSO3H would be easier than the sulfuric acid (H2SO4) equivalent. The photodissociation of H2SO4 is thought to be important in the stratosphere. The FSO3H and ClSO3H experiment could be used in proxy to support the recently proposed OH-stretching overtone-induced photodissociation mechanism of H2SO4. PMID:17764162

  2. Retinoic acid expands the evolutionarily reduced dentition of zebrafish.

    PubMed

    Seritrakul, Pawat; Samarut, Eric; Lama, Tenzing T S; Gibert, Yann; Laudet, Vincent; Jackman, William R

    2012-12-01

    Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions. PMID:22942074

  3. Retinoic acid in alveolar development, maintenance and regeneration.

    PubMed Central

    Maden, Malcolm; Hind, Matthew

    2004-01-01

    Recent data suggest that exogenous retinoic acid (RA), the biologically active derivative of vitamin A, can induce alveolar regeneration in a rat model of experimental emphysema. Here, we describe a mouse model of disrupted alveolar development using dexamethasone administered postnatally. We show that the effects of dexamethasone are concentration dependent, dose dependent, long lasting and result in a severe loss of alveolar surface area. When RA is administered to these animals as adults, lung architecture and the surface area per unit of body weight are completely restored to normal. This remarkable effect may be because RA is required during normal alveolar development and administering RA re-awakens gene cascades used during development. We provide evidence that RA is required during alveologenesis in the mouse by showing that the levels of the retinoid binding proteins, the RA receptors and two RA synthesizing enzymes peak postnatally. Furthermore, an inhibitor of RA synthesis, disulphiram, disrupts alveologenesis. We also show that RA is required throughout life for the maintenance of lung alveoli because when rats are deprived of dietary retinol they lose alveoli and show the features of emphysema. Alveolar regeneration with RA may therefore be an important novel therapeutic approach to the treatment of respiratory diseases characterized by a reduced gas-exchanging surface area such as bronchopulmonary dysplasia and emphysema for which there are currently no treatments. PMID:15293808

  4. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  5. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-12-01

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  6. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  7. Potentiation of phenobarbital-induced anticonvulsant activity by pipecolic acid.

    PubMed

    Takahama, K; Miyata, T; Okano, Y; Kataoka, M; Hitoshi, T; Kasé, Y

    1982-07-01

    Pipecolic acid (PA) is an intermediate of lysine metabolism in the mammalian brain. Recent findings suggest a functional connection of PA as neuromodulator in GABAergic transmission. Since many drugs are postulated to produce their effects by interaction with the central GABA system, the influence of PA on the anticonvulsant activity of phenobarbital was examined. Pretreatment of mice with 50 mg . kg-1 of PA potentiated the suppressing effects of the barbiturate on electrically and chemically induced convulsions. However, there was no potentiation of the behavioral effects and hypothermia induced by phenobarbital. PA itself had no or only little effect on the convulsions, motor function and rectal temperature when given in i.p. doses up to 500 mg . kg-1. Intraventricular administration of 500 microgram of PA also did not suppress either type of convulsion, although it produced ptosis, hypotonia, sedation and hypothermia. The results are discussed in relation to GABA system. PMID:6288409

  8. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  9. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success. PMID:26548471

  10. Retinoic acid alone and in combination with cytosine arabinoside induces differentiation of human myelomonocytic and monoblastic leukaemic cells.

    PubMed

    Hassan, H T; Rees, J K

    1988-01-01

    The effect of retinoic acid (RA) alone and in combination with cytosine arabinoside (Ara-C) on differentiation of fresh human myeloid leukaemic cells from patients with AML was studied. Cells from six patients: three with acute myelomonocytic leukaemia AMMoL and three with acute monoblastic leukaemia AMoL with a percentage of blasts greater than 70, were treated in an in vitro primary suspension culture with retinoic acid (10(-7) M), cytosine arabinoside (100 ng/ml) or both in combination. Non-adherent mononuclear cells were seeded at a concentration of 5 x 10(5) cells/ml in RPMI 1640 culture medium supplemented with 20 per cent fetal bovine serum and 10 per cent (PHA-LCM) phytohaemagglutinin leucocyte conditioned medium and incubated for 6 days at 37 degrees C in a humidified incubator containing 5 per cent CO2 in air. Morphological and functional differentiation into terminal mature elements was induced in all leukaemia cells of the six patients following exposure to the combination of both agents. These results suggest the potential usefulness of the combination of a differentiating agent (retinoic acid) and an antileukaemic drug (cytosine arabinoside) in the treatment of acute myeloid leukaemias: AMMoL and AMoL. This combination warrants a clinical trial. PMID:3422632

  11. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage. PMID:23063544

  12. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    PubMed

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  13. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF. PMID:12504106

  14. Acid aspiration-induced airways hyperresponsiveness in mice.

    PubMed

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  15. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  16. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  17. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    PubMed

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  18. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  19. Differential Regulation of Bcl-xL Gene Expression by Corticosterone, Progesterone, and Retinoic Acid.

    PubMed

    Morrissy, Steve J; Sun, Haipeng; Zhang, Jack; Strom, Joshua; Chen, Qin M

    2016-06-01

    Corticosterone (CT), progesterone (PG), and retinoic acid (RA) are capable of inhibiting Doxorubicin (Dox) from inducing apoptosis in rat cardiomyocytes. Mechanistically, CT, PG, and RA induce increases of Bcl-xL protein and mRNA, and activate a 3.2 kb bcl-x gene promoter. CT and RA, but not PG, induced the activity of a 0.9 kb bcl-x promoter, containing sequences for AP-1 and NF-kB binding. RA, but not CT or PG, induced NF-kB activation. CT, but not PG or RA, induced AP-1 activation, and induction of the 0.9 kb bcl-x reporter by CT was inhibited by dominant negative c-Jun TAM-67 or removal of AP-1 binding site. Therefore, although CT, PG, and RA all induce Bcl-xL mRNA and protein, three independent mechanisms are in operation: while CT induces Bcl-xL via AP-1 transcription factor, and RA induces NF-kB activation and bcl-x promoter activity, PG induces Bcl-xL via a mechanism independent of NF-kB or AP-1. PMID:26915917

  20. Dietary eritadenine suppresses guanidinoacetic Acid-induced hyperhomocysteinemia in rats.

    PubMed

    Fukada, Shin-ichiro; Setoue, Minoru; Morita, Tatsuya; Sugiyama, Kimio

    2006-11-01

    We assessed the effect of eritadenine, a hypocholesterolemic factor isolated from the edible mushroom Lentinus edodes, on plasma homocysteine concentration using methyl-group acceptor-induced hyperhomocysteinemic rats. Male Wistar rats were fed a control diet or diets supplemented with a methyl-group acceptor or a precursor of methyl-group acceptor. Diets were supplemented with guanidinoacetic acid (GAA) at 2.5, 5, 7.5, and 10 g/kg, nicotinic acid (NiA) or ethanolamine (EA) at 5 and 10 g/kg, or glycine at 25 and 50 g/kg, and the rats were fed for 10 d (Expt. 1). Plasma total homocysteine concentration was increased 255 and 421% by 5 and 10 g/kg GAA, respectively, and 39 and 58% by 5 and 10 g/kg NiA, respectively, but not by EA or glycine. GAA supplementation dose-dependently decreased the hepatic S-adenosylmethionine (SAM) concentration and the activity of cystathionine beta-synthase (CBS) and increased the hepatic S-adenosylhomocysteine (SAH) and homocysteine concentrations. In another study in which rats were fed 5 g/kg GAA-supplemented diet for 1-10 d, plasma homocysteine and the other variables affected in Expt. 1 were affected in rats fed the GAA-supplemented diet (Expt. 2). We investigated the effect of supplementation of 5 g/kg GAA-supplemented diet with eritadenine (50 mg/kg) on plasma homocysteine concentration (Expt. 3). Eritadenine supplementation significantly suppressed the GAA-induced increase in plasma homocysteine concentration. Eritadenine also restored the decreased SAM concentration and CBS activity in the liver, whereas it further increased hepatic SAH concentration, suggesting that eritadenine might elicit its effect by both slowing homocysteine production and increasing cystathionine formation. The results confirm that GAA is a useful compound to induce experimental hyperhomocysteinemia and indicate that eritadenine can effectively counteract the hyperhomocysteinemic effect of GAA. PMID:17056803

  1. Inflammatory cells’ role in acetic acid-induced colitis

    PubMed Central

    Sanei, Mohammad H.; Hadizadeh, Fatemeh; Adibi, Peyman; Alavi, Sayyed Ali

    2014-01-01

    Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD). Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1), ex vivo (group 3), and enema after immune suppression (group 5). Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H2O2, we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP) and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful. PMID:25337523

  2. Dihydrolipoic acid induces cytotoxicity in mouse blastocysts through apoptosis processes.

    PubMed

    Houng, Wei-Li; Lin, Cheng-An J; Shen, Ji-Lin; Yeh, Hung-I; Wang, Hsueh-Hsiao; Chang, Walter H; Chan, Wen-Hsiung

    2012-01-01

    α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity. PMID:22489194

  3. Effect of arachidonic and eicosapentaenoic acids on acute lung injury induced by hypochlorous acid

    PubMed Central

    Wahn, H; Ruenauver, N; Hammerschmidt, S

    2002-01-01

    Background: Hypochlorous acid (HOCl) is the main oxidant of activated polymorphonuclear neutrophil granulocytes (PMN) and generated by myeloperoxidase during respiratory burst. This study investigates the effects of HOCl on pulmonary artery pressure (PAP) and vascular permeability and characterises the influence of arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the observed effects. Methods: HOCl (500, 1000, 2000 nmol/min) was continuously infused into the perfusate (Krebs-Henseleit buffer solution, KHB). AA or EPA in subthreshold doses (both 2 nmol/min) or buffer were simultaneously infused using a separate port. PAP, pulmonary venous pressure (PVP), ventilation pressure, and lung weight gain were continuously recorded. The capillary filtration coefficient (Kf,c) was calculated before and 30, 60, and 90 minutes after starting the HOCl infusion. Results: HOCl application resulted in a dose dependent increase in PAP and Kf,c. The onset of these changes was inversely related to the HOCl dose used. The combined infusion of AA with HOCl resulted in a significant additional rise in pressure and oedema formation which forced premature termination of all experiments. The combination of EPA with HOCl did not result in an enhancement of the HOCl induced rise in pressure and oedema formation. Conclusions: Changes in the pulmonary microvasculature caused by HOCl are differently influenced by ω-6 and ω-3 polyunsaturated free fatty acids, suggesting a link between neutrophil derived oxidative stress and pulmonary eicosanoid metabolism. PMID:12454302

  4. Ursodeoxycholic Acid Ameliorates Fructose-Induced Metabolic Syndrome in Rats

    PubMed Central

    2014-01-01

    The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication. PMID:25202970

  5. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose and muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation of 1.5% docosahexaenoic acid (22:6 n-3; DHA) with 0.5% t10, c12- conjugated linoleic acid (18:2 n-6; CLA) prevented the CLA-induced increase in expression of hepatic genes involved in fatty acid synthesis and the decrease in expression of genes involved in fat...

  6. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Reverses Trans-10, Cis-12 Conjugated Linoleic Acid Induced Insulin Resistance in Mice1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: t10, c12-Conjugated linoleic acid (CLA) induces insulin resistance and fatty liver in mice which can be reversed by fish oils. We determined if it is eicospentaenoic acid (20:5n-3, EPA) or docoshexaenoic acid (22:6n-3, DHA) that reverses these adverse effects of CLA. Research Design and M...

  7. Gibberellic Acid-induced Phase Change in Hedera helix as Studied by Deoxyribonucleic Acid-Ribonucleic Acid Hybridization 1

    PubMed Central

    Rogler, Charles E.; Dahmus, Michael E.

    1974-01-01

    Applications of gibberellic acid to the mature form of Hedera helix induce morphological reversions to the juvenile form of growth. The juvenile forms produced are stable with time and differ dramatically from the mature in phenotype. DNA-RNA hybridization techniques have been used to study the RNA populations of juvenile, mature and gibberellic acid-treated mature apices. Hybridization competition experiments using RNA extracted by a hot phenol technique and uniformly labeled in vitro with 3H dimethylsulfate show no qualitative differences between the species of RNA present in juvenile and mature apices. However, differences are observed in the frequency distribution of RNA species using both uniformly labeled or pulse-labeled RNA as a reference. RNA extracted from gibberellic acid-treated mature buds was a less effective competitor than control mature RNA and the difference observed was comparable to that observed between mature and juvenile RNA. These results indicate that at least part of the molecular basis of phase change and gibberellic acid action may involve an alteration in the rate of transcription of certain genes in the apices of the mature form. RNA extracted using the hot phenol procedure contained a fraction of rapidly labeled RNA which was not extractable with cold phenol. When RNA extracted only with cold phenol was used in competition experiments sequences unique to the juvenile were detected and sequences unique to the mature were not detected. Implications of these results in relation to possible post-transcriptional control mechanisms are discussed. PMID:16658844

  8. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  9. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  10. Ligand-dependent occupancy of the retinoic acid receptor beta 2 promoter in vivo.

    PubMed Central

    Dey, A; Minucci, S; Ozato, K

    1994-01-01

    Retinoic acid (RA) activates transcription of the RA receptor beta 2 (RAR beta 2) gene in embryonal carcinoma (EC) cells. This activation involves binding of the RAR/retinoid X receptor (RAR/RXR) heterodimer to the RA-responsive element (beta RARE). Dimethyl sulfate-based genomic footprinting was performed to examine occupancy of this promoter in P19 EC cells. No footprint was detected at the beta RARE prior to RA treatment, but a footprint was detected within the first hour of RA treatment. Concomitantly, other elements in the promoter, the cyclic AMP-responsive element and tetradecanoyl phorbol acetate-like-responsive element became footprinted. Footprints at these elements were induced by RA without requiring new protein synthesis and remained for the entire duration of RA treatment but rapidly reversed upon withdrawal of RA. A delayed protection observed at the initiator site was also reversed upon RA withdrawal. The RA-inducible footprint was not due to induction of factors that bind to these element, since in vitro assays showed that these factors are present in P19 cell extracts before RA treatment. Significantly, no RA-induced footprint was observed at any of these elements in P19 cells expressing a dominant negative RXR beta, in which RXR heterodimers are unable to bind to the beta RARE. Results indicate that binding of a liganded heterodimer receptor to the beta RARE is the initial event that allows other elements to gain access to the factors. In accordance, reporter analyses showed that a mutation in the beta RARE, but not those in other elements, abrogates RA activation of the promoter. It is likely that the RAR beta 2 promoter opens in a hierarchically ordered manner, signalled by the occupancy of liganded heterodimers. Images PMID:7969156

  11. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid. PMID:24043703

  12. The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons

    PubMed Central

    Pusceddu, Matteo M.; Nolan, Yvonne M.; Green, Holly F.; Robertson, Ruairi C.; Stanton, Catherine; Kelly, Philip; Dinan, Timothy G.

    2016-01-01

    Background: Chronic exposure to the glucocorticoid hormone corticosterone exerts cellular stress-induced toxic effects that have been associated with neurodegenerative and psychiatric disorders. Docosahexaenoic acid is a polyunsaturated fatty acid that has been shown to be of benefit in stress-related disorders, putatively through protective action in neurons. Methods: We investigated the protective effect of docosahexaenoic acid against glucocorticoid hormone corticosterone-induced cellular changes in cortical cell cultures containing both astrocytes and neurons. Results: We found that glucocorticoid hormone corticosterone (100, 150, 200 μM) at different time points (48 and 72 hours) induced a dose- and time-dependent reduction in cellular viability as assessed by methyl thiazolyl tetrazolium. Moreover, glucocorticoid hormone corticosterone (200 μM, 72 hours) decreased the percentage composition of neurons while increasing the percentage of astrocytes as assessed by βIII-tubulin and glial fibrillary acidic protein immunostaining, respectively. In contrast, docosahexaenoic acid treatment (6 μM) increased docosahexaenoic acid content and attenuated glucocorticoid hormone corticosterone (200 μM)-induced cell death (72 hours) in cortical cultures. This translates into a capacity for docosahexaenoic acid to prevent neuronal death as well as astrocyte overgrowth following chronic exposure to glucocorticoid hormone corticosterone. Furthermore, docosahexaenoic acid (6 μM) reversed glucocorticoid hormone corticosterone-induced neuronal apoptosis as assessed by terminal deoxynucleotidyl transferase–mediated nick-end labeling and attenuated glucocorticoid hormone corticosterone-induced reductions in brain derived neurotrophic factor mRNA expression in these cultures. Finally, docosahexaenoic acid inhibited glucocorticoid hormone corticosterone-induced downregulation of glucocorticoid receptor expression on βIII- tubulin-positive neurons. Conclusions: This work

  13. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    PubMed Central

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  14. γ-Hydroxybutyric acid-induced electrographic seizures.

    PubMed

    Cheung, Joseph; Lucey, Brendan P; Duntley, Stephen P; Darken, Rachel S

    2014-07-15

    We describe a case of absence-like electrographic seizures during NREM sleep in a patient who was taking sodium oxybate, a sodium salt of γ-hydroxybutyric acid (GHB). An overnight full montage electroencephalography (EEG) study revealed numerous frontally predominant rhythmic 1.5-2 Hz sharp waves and spike-wave activity during stage N2 and N3 sleep at the peak dose time for sodium oxybate, resembling atypical absence-like electrographic seizures. The patient was later weaned off sodium oxybate, and a repeat study did not show any such electrographic seizures. Absence-like seizures induced by GHB had previously been described in experimental animal models. We present the first reported human case of absence-like electrographic seizure associated with sodium oxybate. PMID:25024661

  15. Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells

    PubMed Central

    Jiang, Manrong; Zhu, Kejin; Grenet, Jose; Lahti, Jill M.

    2008-01-01

    Caspase-8 is frequently deleted or silenced in neuroblastoma and other solid tumor such as medulloblastoma and small cell lung carcinoma. Caspase-8 expression can be re-established in neuroblastoma cell lines by treatment with demethylating agents or with IFN-γ Here we show that four different retinoic acid (RA) derivatives also increase caspase-8 protein expression in neuroblastoma, medulloblastoma and small cell lung carcinoma cell lines. This increase in protein expression is mirrored by an increase in RNA expression in NB cells. However, the promoter region of the caspase-8 gene was not responsible for the induction of caspase-8 expression. Rather, we identified another intronic region containing a CREB binding site that was required for maximal induction of caspase-8 via RA. DNA-protein interaction assays revealed increased phospho-CREB binding to this response element in RA-treated NB cells. Furthermore, both mutation of the CREB binding site completely blocked caspase-8 induction in the luciferase reporter system assay and transfection of dominant-negative form of CREB repressed the up-regulation of caspase-8 by RA. Importantly, RA-released cells maintained caspase-8 expression for at least 2–5 days and were more sensitive to doxorubicin and TNFα. Thus, RA treatment in conjunction with TNFα and/or subsets of cytotoxic agents may have therapeutic benefits. PMID:18342014

  16. Valproic Acid and Other HDAC Inhibitors Induce Microglial Apoptosis and Attenuate Lipopolysaccharide- induced Dopaminergic Neurotoxicity

    PubMed Central

    Chen, Po See; Wang, Chao-Chuan; Bortner, Carl D.; Peng, Giia-Sheun; Wu, Xuefei; Pang, Hao; Lu, Ru-Band; Gean, Po-Wu; Chuang, De-Maw; Hong, Jau-Shyong

    2009-01-01

    Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation. Other HDAC inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinson’s disease. PMID:17850978

  17. The radiation-induced degradation of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Deeble, D. J.; Phillips, G. O.; Bothe, E.; Schuchmann, H.-P.; von Sonntag, C.

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K +), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base (overall half-lives at pH values of 4.8, 7 and 10.2 were 0.6, 1 and 0.1 ms). It would seem that more than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N 2O/O 2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N 2O/O 2, pulse-irradiated), showed a marked dependence on pH, with G-values (molecules/100 eV) of 0.7, 2.5 and 4.7 at pH values of 7, 9.7 and 10.4, respectively. Steady-state radiolysis (N 2O/O 2) was used to determine G-values for oxygen consumption [ G(-O 2) ≈ 6], carbon dioxide formation [ G(CO 2) = 0.8 in the absence of O 2 and 1.3 in its presence] and peroxide formation [ G(H 2O 2) ≈ 2; G(organic hydroperoxide) < 0.15].

  18. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  19. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  20. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  1. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  2. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  3. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    PubMed Central

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  4. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior.

    PubMed

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-07-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced changes in adult hippocampal neurogenesis, a form of structural plasticity sensitive to stress and implicated in aspects of depression and hippocampal function. RA was applied intracerebroventricularly (i.c.v.) to adult rats for 19 days after which animals were subjected to tests for depressive-like behavior (sucrose preference) and spatial learning and memory (water maze) performance. On day 27, adult hippocampal neurogenesis and astrogliosis was quantified using BrdU (newborn cell survival), PCNA (proliferation), doublecortin (DCX; neuronal differentiation), and GFAP (astrocytes) as markers. RA was found to increase retinoic acid receptor-α (RAR-α) protein expression in the hippocampus, suggesting an activation of RA-induced signaling mechanisms. RA further potently suppressed cell proliferation, newborn cell survival as well as neurogenesis, but not astrogliosis. These structural plasticity changes were significantly correlated with scores for anhedonia, a core symptom of depression, but not with water maze performance. Our results suggest that RA-induced impairments in hippocampal neurogenesis correlate with depression-like symptoms but not with spatial learning and memory in this design. Thus, manipulations aimed to enhance neurogenesis may help ameliorate emotional aspects of RA-associated mood disorders. © 2016 Wiley Periodicals, Inc. PMID:26860546

  5. Redox control of retinoic acid receptor activity: a novel mechanism for retinoic acid resistance in melanoma cells.

    PubMed

    Demary, K; Wong, L; Liou, J S; Faller, D V; Spanjaard, R A

    2001-06-01

    Retinoic acid (RA) slows growth and induces differentiation of tumor cells through activation of RA receptors (RARs). However, melanoma cell lines display highly variable responsiveness to RA, which is a poorly understood phenomenon. By using Northern and Western blot analyses, we show that RA-resistant A375 and RA-responsive S91 melanoma cells express comparable levels of major components of RAR-signaling pathways. However, A375 cells have substantially higher intracellular reactive oxygen species (ROS) levels than S91 cells. Lowering ROS levels in A375 cells through hypoxic culture conditions restores RAR-dependent trans-activity, which could be further enhanced by addition of the antioxidant N-acetyl-cysteine. Hypoxia also enhances RAR activity in the moderately RA-responsive C32 cells, which have intermediate ROS levels. Conversely, increasing oxidative stress in highly RA-responsive S91 and B16 cells, which have low ROS levels, by treatment with H(2)O(2) impairs RAR activity. Consistent with these observations, RA more potently inhibited the proliferation of hypoxic A375 cells than that of normoxic cells. Oxidative states diminish, whereas reducing conditions enhance, DNA binding of retinoid X receptor/RAR heterodimers in vitro, providing a molecular basis for the observed inverse correlation between RAR activity and ROS levels. The redox state of melanoma cells provides a novel, epigenetic control mechanism of RAR activity and RA resistance. PMID:11356710

  6. Separation of retinoid-induced epidermal and dermal thickening from skin irritation

    PubMed Central

    Fligiel, Helene; Zhang, Jian; Aslam, Muhammad Nadeem; Lu, Yi; Dehne, Lindsay A.; Keller, Evan T.

    2010-01-01

    The ability of the synthetic retinoid MDI-301, in which the carboxylic acid of 9-cis-retinoic acid (9-cis-RA) is replaced with an ester linkage, to induce epidermal and dermal thickening and skin irritation (erythema and flaking) in hairless (rhino) mice following its topical application was investigated in comparison with that of 14-all-trans-retinoic acid (14-all-trans-RA) and 9-cis-RA. MDI-301 induced epidermal proliferation leading to a thickened epidermis. Treated animals also demonstrated a prominent band of organized connective tissue immediately below the epidermis. In its ability to induce epidermal thickening, MDI-301 was quantitatively similar to 14-all-trans-RA and 9-cis-RA. However, unlike 14-all-trans-RA and 9-cis-RA, which produced skin irritation associated with a perivascular influx of mononuclear leukocytes into the dermis, there was no evidence of irritation with MDI-301 and little leukocyte infiltration. Intraperitoneal injection of either 14-all-trans-RA or MDI-301 also resulted in epidermal and dermal thickening. Irritation of skin was not observed in these animals but splenomegaly was prominent in animals treated with either agent. PMID:14564458

  7. Arsenic Trioxide (ATO) cooperates with All Trans Retinoic Acid (ATRA) to enhance MAPK activation and differentiation in Human Myeloblastic Leukemia (HL-60) cells

    PubMed Central

    Nayak, Satyaprakash; Shen, Miaoqing; Varner, Jeffrey D.; Yen, Andrew

    2016-01-01

    Arsenic trioxide (ATO) synergistically promotes retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells, a PML-RARα negative cell line. In PML-RARα positive myeloid leukemia cells, ATO is known to cause degradation of PML-RARα with subsequent induced myeloid differentiation. We find now that ATO by itself does not cause differentiation of the PML-RARα negative HL-60 cells, but enhances RA’s capability to cause differentiation. RA-induced differentiation of HL-60 cells is known to be propelled by an induced hyperactive/persistent MAPK signal. ATO augmented RA induced RAF/MEK/ERK axis signaling and expression of CD11b, an integrin receptor that is a myeloid differentiation marker. p47PHOX, a component of the respiratory burst machinery and inducible oxidative metabolism, functional differentiation marker were also enhanced. However, ATO did not enhance RA-induced CD38 expression, an early cell surface differentiation marker. ATO enhanced RA-induced population growth retardation without evidence of apoptosis or an enhanced G1/0 growth arrest. But compared to RA, ATO plus RA showed reduced pAKT, suggesting that an overall biosynthetic/metabolic retardation was seminal to the apparent enhanced growth retardation due to ATO. In sum, our results indicate that ATO can augment action of RA in causing differentiation of myeloid leukemia cells through promoting MAPK signaling and independent of PML-RARα. PMID:20615082

  8. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  9. Retinoic acid treatment of fibroblasts causes a rapid decrease in ( sup 3 H)inositol uptake

    SciTech Connect

    Sinha, R.; Creek, K.E.; Silverman-Jones, C.; de Luca, L.M. )

    1989-04-01

    NIH 3T3 fibroblasts treated with all-trans-retinoic acid (RA) showed a dramatic decrease in the uptake of ({sup 3}H)inositol compared to solvent-treated controls. The onset of RA-induced inhibition of ({sup 3}H)inositol uptake was rapid with a 10-15% decrease occurring after 2-3 h of RA exposure and 60-70% reduction after 16 h of RA treatment. A progressive dose-dependent decrease in inositol uptake was found as the concentration of RA increased from 10{sup {minus}8} to 10{sup {minus}5} M and the effect was fully reversible within 48 h after RA removal. RA inhibition of inositol uptake was also observed in 3T3-Swiss and Balb/3T3 cells but not in two virally transformed 3T3 cell lines. Phlorizin, amiloride, and monensin inhibited inositol uptake by 66, 74, and 58%, respectively, and this inhibition was additive when the cells were treated with RA as well as these inhibitors. A decreased incorporation of ({sup 3}H)inositol into polyphosphoinositides was also observed in RA-treated cells but not to the same extent as for ({sup 3}H)inositol uptake. In conclusion, RA treatment of 3T3 fibroblasts decreases the uptake of ({sup 3}H)inositol by up to 70% within 8 to 10 h at near physiological concentrations in a reversible and specific manner.

  10. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I.

    PubMed

    Böni-Schnetzler, Marianne; Boller, Simone; Debray, Sarah; Bouzakri, Karim; Meier, Daniel T; Prazak, Richard; Kerr-Conte, Julie; Pattou, Francois; Ehses, Jan A; Schuit, Frans C; Donath, Marc Y

    2009-12-01

    Islets of patients with type 2 diabetes mellitus (T2DM) display features of an inflammatory process including elevated levels of the cytokine IL-1beta, various chemokines, and macrophages. IL-1beta is a master regulator of inflammation, and IL-1 receptor type I (IL-1RI) blockage improves glycemia and insulin secretion in humans with T2DM and in high-fat-fed mice pointing to a pivotal role of IL-1RI activity in intra-islet inflammation. Given the association of dyslipidemia and T2DM, we tested whether free fatty acids (FFA) promote the expression of proinflammatory factors in human and mouse islets and investigated a role for the IL-1RI in this response. A comparison of 22 mouse tissues revealed the highest IL-1RI expression levels in islets and MIN6 beta-cells. FFA induced IL-1beta, IL-6, and IL-8 in human islets and IL-1beta and KC in mouse islets. Elevated glucose concentrations enhanced FFA-induced proinflammatory factors in human islets. Blocking the IL-1RI with the IL-1R antagonist (IL-1Ra) strongly inhibited FFA-mediated expression of proinflammatory factors in human and mouse islets. Antibody inhibition of IL-1beta revealed that FFA stimulated IL-1RI activity via the induction of the receptor ligand. FFA-induced IL-1beta and KC expression in mouse islets was completely dependent on the IL-1R/Toll-like receptor (TLR) docking protein Myd88 and partly dependent on TLR2 and -4. Activation of TLR2 in purified human beta-cells and islets stimulated the expression of proinflammatory factors, and IL-1RI activity increased the TLR2 response in human islets. We conclude that FFA and TLR stimulation induce proinflammatory factors in islets and that IL-1RI engagement results in signal amplification. PMID:19819943

  11. Uric acid protects erythrocytes from ozone-induced changes

    SciTech Connect

    Meadows, J.; Smith, R.C.

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  12. Chrysophanic Acid Induces Necrosis but not Necroptosis in Human Renal Cell Carcinoma Caki-2 Cells

    PubMed Central

    Choi, Joon-Seok

    2016-01-01

    Background: Chrysophanic acid, also known as chrysophanol, has a number of biological activities. It enhances memory and learning abilities, raises superoxide dismutase activity, and has anti-cancer effects in several model systems. According to previous reports, chrysophanic acid-induced cell death shares features of necrotic cell death. However, the molecular and cellular processes underlying chrysophanic acid-induced cell death remain poorly understood. Methods: Chrysophanic acid-induced cell death was monitored by cell viability assay and Annexin V-propidium iodide (PI) staining of renal cell carcinoma Caki-2 cells. The induction of intracellular reactive oxygen species (ROS) by chrysophanic acid and the suppression of ROS by anti-oxidants were evaluated by 2′,7′-dichlorofluorescin diacetate staining. The expression and phosphorylation of proteins that are involved in apoptosis and necroptosis were detected by immunoblotting. Results: The extent of chrysophanic acid-induced cell death was concentration and time dependent, and dead cells mainly appeared in the PI-positive population, which is a major feature of necrosis, upon fluorescence-activated cell sorting analysis. Chrysophanic acid-induced cell death was associated with the generation of intracellular ROS, and this effect was reversed by pretreatment with N-acetyl cysteine. Chrysophanic acid-induced cell death was not associated with changes in apoptotic or necroptotic marker proteins. Conclusions: The cell death induced by chrysophanic acid resembled neither apoptotic nor necroptotic cell death in human renal cell carcinoma Caki-2 cells. PMID:27390736

  13. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  14. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  15. Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response

    PubMed Central

    Ferry, Christine; Gaouar, Samia; Fischer, Benoit; Boeglin, Marcel; Paul, Nicodeme; Samarut, Eric; Piskunov, Aleksandr; Pankotai-Bodo, Gabriella; Brino, Laurent; Rochette-Egly, Cecile

    2011-01-01

    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3–based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA. PMID:22147914

  16. Valproic acid-induced pancreatitis in a 15-year-old boy with juvenile myoclonic epilepsy.

    PubMed

    Veri, Kadi; Uibo, Oivi; Talvik, Inga; Talvik, Tiina

    2013-01-01

    Drug-induced acute pancreatitis is a rare condition in childhood, and information about the incidence of valproic acid-induced acute pancreatitis in the pediatric population is scarce. In this clinical case, we report a first documented pediatric case of valproic acid-induced pancreatitis in Estonia. A 15-year-old boy with juvenile myoclonic epilepsy developed acute pancreatitis after 2-month therapy with valproic acid. The symptoms of pancreatitis subsided within 1 week after the discontinuation of treatment with valproic acid. Acute pancreatitis should be suspected in any pediatric patient with gastrointestinal symptoms during valproate treatment. PMID:24823930

  17. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  18. [Epigenetic variability induced by nicotinic acid in Triticum aestivum L].

    PubMed

    Bogdanova, E D

    2003-09-01

    The effect of nicotinic acid (NA) on hereditary traits of spring common wheat cultivar Kazakhstanskaya 126 (K.126) were studied under the laboratory and field conditions. Treatment of seeds and vegetating plants with 0.01-0.1% NA (aqueous solution) induced heritable epigenetic changes in wheat. As a result, strong tall plants with the long productive spike, large seeds, and several quantitative and qualitative characters other than in the original cultivar were obtained in the second and further generations after treatment. Crosses of changed plants with each other did not result in segregation with respect to leaf downiness or anthocyan stem color in F2-F4, suggesting the same epigenetic state of genes responsible for changed characters. In crosses with the original cultivar, characters of the changed plants always dominated in F1. Basing on the current views, the changes were attributed to a transition of the hl1 and pc recessive marker genes into new, dominant epiallelic states Hl1 and Pc, which respectively determine downy leaves and the colored stem. The NA effect was specific, since only one type of the variation was observed. The changed characters were stable, and no reversion to the original phenotype was detected in 57 generations. PMID:14582391

  19. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3. PMID:25868813

  20. Albumin-associated free fatty acids induce macropinocytosis in podocytes

    PubMed Central

    Chung, Jun-Jae; Huber, Tobias B.; Gödel, Markus; Jarad, George; Hartleben, Björn; Kwoh, Christopher; Keil, Alexander; Karpitskiy, Aleksey; Hu, Jiancheng; Huh, Christine J.; Cella, Marina; Gross, Richard W.; Miner, Jeffrey H.; Shaw, Andrey S.

    2015-01-01

    Podocytes are specialized epithelial cells in the kidney glomerulus that play important structural and functional roles in maintaining the filtration barrier. Nephrotic syndrome results from a breakdown of the kidney filtration barrier and is associated with proteinuria, hyperlipidemia, and edema. Additionally, podocytes undergo changes in morphology and internalize plasma proteins in response to this disorder. Here, we used fluid-phase tracers in murine models and determined that podocytes actively internalize fluid from the plasma and that the rate of internalization is increased when the filtration barrier is disrupted. In cultured podocytes, the presence of free fatty acids (FFAs) associated with serum albumin stimulated macropinocytosis through a pathway that involves FFA receptors, the Gβ/Gγ complex, and RAC1. Moreover, mice with elevated levels of plasma FFAs as the result of a high-fat diet were more susceptible to Adriamycin-induced proteinuria than were animals on standard chow. Together, these results support a model in which podocytes sense the disruption of the filtration barrier via FFAs bound to albumin and respond by enhancing fluid-phase uptake. The response to FFAs may function in the development of nephrotic syndrome by amplifying the effects of proteinuria. PMID:25915582

  1. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    PubMed

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  2. HLA-D region genes and rheumatoid arthritis (RA): importance of DR and DQ genes in conferring susceptibility to RA.

    PubMed Central

    Singal, D P; Green, D; Reid, B; Gladman, D D; Buchanan, W W

    1992-01-01

    The distribution of HLA-D region antigens was studied in three groups (I, IIa, and IIb) of patients with rheumatoid arthritis (RA): group I comprised 43 patients with mild, non-progressive RA, controlled by non-steroidal anti-inflammatory drugs without progression or erosions; group II comprised 94 patients with severe disease, who had earlier been treated with non-steroidal anti-inflammatory drugs and all had incomplete response requiring treatment with gold (sodium aurothiomalate). Of these, 46 patients (group IIa) responded to gold and the disease was well controlled, and the remaining 48 patients (group IIb) did not respond to gold and developed gold induced toxic reactions, including thrombocytopenia or proteinuria, or both. HLA-D region antigens were defined by serological and molecular (Southern blot analysis and oligonucleotide typing) techniques. The results show that DR4 was significantly increased in all three groups of patients. The prevalence of DR1, or DR1 in DR4 negative patients, and DR3 and DR4 associated DQw7 specificities, however, showed differences in these three groups of patients. The prevalence of DR1 and of DR1 in DR4 negative patients was increased only in patients with mild (group I) RA, but not in patients with severe (groups IIa and IIb) disease. On the other hand, the prevalence of DR4 associated DQw7 was significantly increased in patients with severe disease, but not in patients with mild RA. In addition, DR3 was significantly increased only in patients with severe disease who developed gold induced toxic reactions (group IIb). These data suggest that the HLA-D region genes which cause susceptibility to mild RA may be different from those causing susceptibility to severe RA. The results suggest that both DR and DQ (A, B) genes may be important in conferring susceptibility to RA: DR in mild disease and DQ in severe RA. Images PMID:1371662

  3. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    PubMed

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  4. Differential Incorporation of β-actin as A Component of RNA Polymerase II into Regulatory Regions of Stemness/Differentiation Genes in Retinoic Acid-Induced Differentiated Human Embryonic Carcinoma Cells

    PubMed Central

    Falahzadeh, Khadijeh; Shahhoseini, Maryam; Afsharian, Parvaneh

    2016-01-01

    Objective Nuclear actin is involved in transcription regulation by recruitment of histone modifiers and chromatin remodelers to the regulatory regions of active genes. In recent years, further attention has been focused on the role of actin as a nuclear protein in transcriptional processes. In the current study, the epigenetic role of nuclear actin on transcription regulation of two stemness (OCT4 and NANOG) and two differentiation) NESTIN and PAX6) marker genes was evaluated in a human embryonal carcinoma cell line (NT2) before and after differentiation induction. Materials and Methods In this experimental study, differentiation of embryonal cells was induced by retinoic acid (RA), and quantitative real-time polymerase chain reaction (PCR) was used to evaluate differential expression of marker genes before and 3 days after RA- induced differentiation. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR was then undertaken to monitor the incorporation of β-actin, as a functional component of RNA polymerase II, in the regulatory regions of marker genes. Results Data showed significant change in nuclear actin incorporation into the promoter regions of NESTIN and PAX6 after RA-induction. Conclusion We emphasize the dynamic functional role of nuclear actin in differentiation of embryonal cells and its role as a subunit of RNA polymerase II. PMID:27540526

  5. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  6. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    NASA Astrophysics Data System (ADS)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  7. Transcriptomic changes induced by mycophenolic acid in gastric cancer cells

    PubMed Central

    Dun, Boying; Sharma, Ashok; Xu, Heng; Liu, Haitao; Bai, Shan; Zeng, Lingwen; She, Jin-Xiong

    2014-01-01

    Background: Inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA) can inhibit proliferation and induce apoptosis in cancer cells. This study investigated the underlying molecular mechanisms of MPA’s anticancer activity. Methods: A gastric cancer cell line (AGS) was treated with MPA and gene expression at different time points was analyzed using Illumina whole genome microarrays and selected genes were confirmed by real-time RT-PCR. Results: Transcriptomic profiling identified 1070 genes with ≥2 fold changes and 85 genes with >4 fold alterations. The most significantly altered biological processes by MPA treatment include cell cycle, apoptosis, cell proliferation and migration. MPA treatment altered at least ten KEGG pathways, of which eight (p53 signaling, cell cycle, pathways in cancer, PPAR signaling, bladder cancer, protein processing in ER, small cell lung cancer and MAPK signaling) are cancer-related. Among the earliest cellular events induced by MPA is cell cycle arrest which may be caused by six molecular pathways: 1) up-regulation of cyclins (CCND1 and CCNE2) and down-regulation of CCNA2 and CCNB1, 2) down-regulation of cyclin-dependent kinases (CDK4 and CDK5); 3) inhibition of cell division related genes (CDC20, CDC25B and CDC25C) and other cell cycle related genes (MCM2, CENPE and PSRC1), 4) activation of p53, which activates the cyclin-dependent kinase inhibitors (CDKN1A), 5) impaired spindle checkpoint function and chromosome segregation (BUB1, BUB1B, BOP1, AURKA, AURKB, and FOXM1); and 6) reduction of availability of deoxyribonucleotides and therefore DNA synthesis through down-regulation of the RRM1 enzyme. Cell cycle arrest is followed by inhibition of cell proliferation, which is mainly attributable to the inhibition of the PI3K/AKT/mTOR pathway, and caspase-dependent apoptosis due to up-regulation of the p53 and FAS pathways. Conclusions: These results suggest that MPA has beneficial anticancer activity through

  8. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  9. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    PubMed

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  10. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide.

    PubMed

    Dillert, Ralf; Bahnemann, Detlef; Hidaka, Hisao

    2007-03-01

    The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time. PMID:17126882

  11. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    PubMed

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse. PMID:19288974

  12. Radium content and the 226Ra /228Ra activity ratio in groundwater from bedrock

    NASA Astrophysics Data System (ADS)

    Asikainen, Matti

    1981-08-01

    The relative abundance of 226Ra and 228Ra were determined in the groundwater from 125 drilled wells containing from < 0.1 to 51.3 pCi/l of 226Ra. The determination of 228Ra was carried out with a liquid scintillation counter by measuring only the weakly energetic β particles emitted from 228Ra. Thus the interference from the daughter nuclides of 226Ra was avoided, without specific separation of 228Ac. The direct measurement of 228Ra made the method decisively simpler and faster in terms of the chemistry involved. The concentration of 228Ra was found to be independent of the amount of 226Ra present in the samples. The concentrations of 228Ra were nearly the same over the whole range of 226Ra concentrations and the average sol 226Ra /228Ra ratio sharply increased as the 226Ra content of water increased. The 226Ra /228Ra ratio in the drilled wells varied from 0.3 to 26. Abnormally high 226Ra /228Ra ratios were found in areas with known uranium deposits as well as in several drilled wells at other locations. The abnormally high 226Ra /228Ra ratios present in groundwater suggest that the radioactivity anomaly is caused by uranium deposits and not by common rocks. In samples with a low radioactivity level the average 226Ra /228Ra ratio was slightly below unity, corresponding to the typical U/ Th ratio of granite, the most common kind of rock in the study area. The samples from the rapakivi area proved to be exceptional in that they had a low 226Ra /228Ra ratio independent of the concentration of 226Ra.

  13. A RARE of hepatic Gck promoter interacts with RARα, HNF4α and COUP-TFII that affect retinoic acid- and insulin-induced Gck expression.

    PubMed

    Li, Rui; Zhang, Rui; Li, Yang; Zhu, Bing; Chen, Wei; Zhang, Yan; Chen, Guoxun

    2014-09-01

    The expression of hepatic glucokinase gene (Gck) is regulated by hormonal and nutritional signals. How these signals integrate to regulate the hepatic Gck expression is unclear. We have shown that the hepatic Gck expression is affected by Vitamin A status and synergistically induced by insulin and retinoids in primary rat hepatocytes. We hypothesized that this is mediated by a retinoic acid responsive element (RARE) in the hepatic Gck promoter. Here, we identified the RARE in the hepatic Gck promoter using standard molecular biology techniques. The single nucleotide mutations affecting the promoter activation by retinoic acid (RA) were also determined for detail analysis of protein and DNA interactions. We have optimized experimental conditions for performing electrophoresis mobility shift assay and demonstrated the interactions of the retinoic acid receptor α (RARα), retinoid X receptor α (RXRα), hepatocyte nuclear factor 4α (HNF4α) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the rat nuclear extract with this RARE, suggesting their roles in the regulation of Gck expression. Chromatin immunoprecipitation assays demonstrated that recombinant adenovirus-mediated overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, significantly increased their occupancy in the hepatic Gck promoter in primary rat hepatocytes. Overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, also affected the RA- and insulin-mediated Gck expression in primary rat hepatocytes. In summary, this hepatic Gck promoter RARE interacts with RARα, HNF4α and COUP-TFII to integrate Vitamin A and insulin signals. PMID:24973045

  14. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures.

    PubMed

    Lego, Denise; Plaumann, Markus; Trantzschel, Thomas; Bargon, Joachim; Scheich, Henning; Buntkowsky, Gerd; Gutmann, Torsten; Sauer, Grit; Bernarding, Johannes; Bommerich, Ute

    2014-07-01

    Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration. PMID:24812006

  15. Retinoic acid affects calcium signaling in adult molluscan neurons.

    PubMed

    Vesprini, Nicholas D; Dawson, Taylor F; Yuan, Ye; Bruce, Doug; Spencer, Gaynor E

    2015-01-01

    Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons. PMID:25343782

  16. Endogenous Docosahexaenoic Acid (DHA) Prevents Aβ1-42 Oligomer-Induced Neuronal Injury.

    PubMed

    Tan, Yuan; Ren, Huixia; Shi, Zhe; Yao, Xiaoli; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Li, Peng; Yuan, Ti-Fei; Su, Huanxing

    2016-07-01

    The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) or n-3 fatty acid has been associated with reduced risk of Alzheimer's disease (AD) in epidemiological reports. However, the underlying mechanism remains to be elucidated. Here, we report that exogenous DHA administration could protect neurons against Aβ oligomer-induced injury both in vitro and in vivo, partly through reducing the endoplasmic reticulum (ER) stress, and preventing cell apoptosis. In transgenic fat-1 mice with enriched ω-3 fatty acids, Aβ oligomers induced fewer neuronal losses, when compared to wild-type (WT) mice. We conclude that endogenous DHA are neuroprotective in pathogenesis processes of AD. PMID:26021747

  17. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  18. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    PubMed

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  19. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    PubMed Central

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes. PMID:25050113

  20. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  1. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis

    PubMed Central

    Wu, Chen-Chi; Singh, Prashant; Chen, Mao-Chuain; Zimmerli, Laurent

    2010-01-01

    The non-protein amino acid beta-aminobutyric acid (BABA) enhances Arabidopsis resistance to microbial pathogens and abiotic stresses through potentiation of the Arabidopsis defence responses. In this study, it is shown that BABA induces the stress-induced morphogenic response (SIMR). SIMR is observed in plants exposed to sub-lethal stress conditions. Anthocyanin, a known modulator of stress signalling, was also found to accumulate in BABA-treated Arabidopsis. These data and a previous microarray study indicate that BABA induces a stress response in Arabidopsis. High concentrations of amino acids, except for L-glutamine, cause a general amino acid stress inhibition. General amino acid inhibition is prevented by the addition of L-glutamine. L-Glutamine was found to inhibit the BABA-mediated SIMR and anthocyanin accumulation, suggesting that the non-protein amino acid BABA causes a general amino acid stress inhibition in Arabidopsis. L-Glutamine also blocked BABA-induced resistance to heat stress and to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. During bacterial infection, priming of the salicylic acid-dependent defence marker PR1 was abolished by L-glutamine treatment. These results indicate that L-glutamine removal of the BABA-mediated stress response is concomitant with L-glutamine inhibition of BABA priming and BABA-induced resistance. PMID:20007686

  2. GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing.

    PubMed

    Benyó, Zoltán; Gille, Andreas; Kero, Jukka; Csiky, Marion; Suchánková, Marie Catherine; Nüsing, Rolf M; Moers, Alexandra; Pfeffer, Klaus; Offermanns, Stefan

    2005-12-01

    Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein-coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nicotinic acid-induced antilipolytic effects in adipocytes. One of the major problems of the pharmacotherapeutical use of nicotinic acid is a strong flushing response. This side effect, although harmless, strongly affects patient compliance. In the present study, we show that mice lacking PUMA-G did not show nicotinic acid-induced flushing. In addition, flushing in response to nicotinic acid was also abrogated in the absence of cyclooxygenase type 1, and mice lacking prostaglandin D(2) (PGD(2)) and prostaglandin E(2) (PGE(2)) receptors had reduced flushing responses. The mouse orthologue of GPR109A, PUMA-G, is highly expressed in macrophages and other immune cells, and transplantation of wild-type bone marrow into irradiated PUMA-G-deficient mice restored the nicotinic acid-induced flushing response. Our data clearly indicate that GPR109A mediates nicotinic acid-induced flushing and that this effect involves release of PGE(2) and PGD(2), most likely from immune cells of the skin. PMID:16322797

  3. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment

    PubMed Central

    Su, Meng; Alonso, Salvador; Jones, Jace W.; Yu, Jianshi; Kane, Maureen A.; Jones, Richard J.; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  4. All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment.

    PubMed

    Su, Meng; Alonso, Salvador; Jones, Jace W; Yu, Jianshi; Kane, Maureen A; Jones, Richard J; Ghiaur, Gabriel

    2015-01-01

    Differentiation therapy with all-trans retinoic acid (atRA) has markedly improved outcome in acute promyelocytic leukemia (APL) but has had little clinical impact in other AML sub-types. Cell intrinsic mechanisms of resistance have been previously reported, yet the majority of AML blasts are sensitive to atRA in vitro. Even in APL, single agent atRA induces remission without cure. The microenvironment expression of cytochrome P450 (CYP)26, a retinoid-metabolizing enzyme was shown to determine normal hematopoietic stem cell fate. Accordingly, we hypothesized that the bone marrow (BM) microenvironment is responsible for difference between in vitro sensitivity and in vivo resistance of AML to atRA-induced differentiation. We observed that the pro-differentiation effects of atRA on APL and non-APL AML cells as well as on leukemia stem cells from clinical specimens were blocked by BM stroma. In addition, BM stroma produced a precipitous drop in atRA levels. Inhibition of CYP26 rescued atRA levels and AML cell sensitivity in the presence of stroma. Our data suggest that stromal CYP26 activity creates retinoid low sanctuaries in the BM that protect AML cells from systemic atRA therapy. Inhibition of CYP26 provides new opportunities to expand the clinical activity of atRA in both APL and non-APL AML. PMID:26047326

  5. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  6. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice

    PubMed Central

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-01-01

    AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2

  7. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30. PMID:16086245

  8. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  9. Electrogenic responses induced by neutral amino acids in endoderm cells from Xenopus embryo.

    PubMed Central

    Bergman, C; Bergman, J

    1981-01-01

    1. Membrane potential measurements were carried out on endoderm cells from early Xenopus embryos in order to study neutral amino acid transport in non-excitable cells. 2. The electrical properties of the cell membrane were studied under normal conditions, then in the presence of various Na/K-pump inhibitors and at different Na, K and Cl concentrations in Ringer solution. Blockade of the Na/K-pump by ouabain, Li, cooling to 10 degrees C or low [Na]0 induces similar depolarizations of about 40 mV. 3. External application of various neutral L-amino acids induces reversible membrane depolarizations. The D-isomeric forms are found to be ineffective. The amino acid induced depolarizations are not accompanied by changes in membrane resistance. They do not show voltage dependence for potential changes of less than 40 mV. 4. The amino acid depolarization increases with increasing concentration and follows first order Michaëlian kinetics. Both the size and the time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, prolonged exposure to pump inhibitors or marked alteration of the Na

  10. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways

    PubMed Central

    LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN

    2016-01-01

    Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850

  11. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms.

    PubMed Central

    Folkesson, H G; Matthay, M A; Hébert, C A; Broaddus, V C

    1995-01-01

    Acid aspiration lung injury may be mediated primarily by neutrophils recruited to the lung by acid-induced cytokines. We hypothesized that a major acid-induced cytokine was IL-8 and that a neutralizing anti-rabbit-IL-8 monoclonal antibody (ARIL8.2) would attenuate acid-induced lung injury in rabbits. Hydrochloric acid (pH = 1.5 in 1/3 normal saline) or 1/3 normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetized rabbits. The rabbits were studied for 6 or 24 h. In acid-instilled rabbits without the anti-IL-8 monoclonal antibody, severe lung injury developed in the first 6 h; in the long-term experiments, all rabbits died with lung injury between 12 and 14 h. In acid-instilled rabbits given the anti-IL-8 monoclonal antibody (2 mg/kg, intravenously) either as pretreatment (5 min before the acid) or as treatment (1 h after the acid), acid-induced abnormalities in oxygenation and extravascular lung water were prevented and extravascular protein accumulation was reduced by 70%; in the long-term experiments, anti-IL-8 treatment similarly protected lung function throughout the 24-h period. The anti-IL-8 monoclonal antibody also significantly reduced air space neutrophil counts and IL-8 concentrations. This study establishes IL-8 as a critical cytokine for the development of acid-induced lung injury. Neutralization of IL-8 may provide the first useful therapy for this clinically important form of acute lung injury. Images PMID:7615779

  12. AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids*

    PubMed Central

    Schmidt, Daniel R.; Schmidt, Samuel; Holmstrom, Sam R.; Makishima, Makoto; Yu, Ruth T.; Cummins, Carolyn L.; Mangelsdorf, David J.; Kliewer, Steven A.

    2011-01-01

    Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids. PMID:21081494

  13. Papain reduces gastric acid secretion induced by histamine and other secretagogues in anesthetized rats.

    PubMed

    Cho, C H; Han, P W

    1984-04-01

    We studied the effect of papain on rats' gastric acid secretion and found that: 1. Feeding of latex of unripe papaya fruit significantly reduced gastric acid secretion induced by methacholine; 2. Feeding of crystalline papain in doses of 3.2 mg/kg reduced gastric acid secretion induced by histamine, methacholine and tetragastrin; 3. The reduction of gastric acid secretion was observed as early as 2 hours after papain feeding, lasted up to 48 hours, and waned within 96 hours; 4. Intraperitoneal injection of papain had no effect on acid secretion. These results led us to believe tha the effect of papain on gastric acid secretion is a local one acting directly on the gastric mucosa, and this local effect of a single dose of papain is reversible, causing no permanent damage to the mucosa. PMID:6400589

  14. Chemometrics-assisted Spectrofluorimetric Determination of Two Co-administered Drugs of Major Interaction, Methotrexate and Aspirin, in Human Urine Following Acid-induced Hydrolysis.

    PubMed

    Maher, Hadir M; Ragab, Marwa A A; El-Kimary, Eman I

    2015-01-01

    Methotrexate (MTX) is widely used to treat rheumatoid arthritis (RA), mostly along with non-steroidal anti-inflammatory drugs (NSAIDs), the most common of which is aspirin or acetyl salicylic acid (ASA). Since NSAIDs impair MTX clearance and increase its toxicity, it was necessary to develop a simple and reliable method for the monitoring of MTX levels in urine samples, when coadministered with ASA. The method was based on the spectrofluorimetric measurement of the acid-induced hydrolysis product of MTX, 4-amino-4-deoxy-10-methylpteroic acid (AMP), along with the strongly fluorescent salicylic acid (SA), a product of acid-induced hydrolysis of aspirin and its metabolites in urine. The overlapping emission spectra were resolved using the derivative method (D method). In addition, the corresponding derivative emission spectra were convoluted using discrete Fourier functions, 8-points sin xi polynomials, (D/FF method) for better elimination of interferences. Validation of the developed methods was carried out according to the ICH guidelines. Moreover, the data obtained using derivative and convoluted derivative spectra were treated using the non-parametric Theil's method (NP), compared with the least-squares parametric regression method (LSP). The results treated with Theil's method were more accurate and precise compared with LSP since the former is less affected by the outliers. This work offers the potential of both derivative and convolution using discrete Fourier functions in addition to the effectiveness of using the NP regression analysis of data. The high sensitivity obtained by the proposed methods was promising for measuring low concentration levels of the two drugs in urine samples. These methods were efficiently used to measure the drugs in human urine samples following their co-administration. PMID:26234512

  15. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  16. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  17. Protective effect of oleanolic acid on gentamicin induced nephrotoxicity in rats.

    PubMed

    Patil, Chandragouda R; Jadhav, Ramchandra B; Singh, Pushparaj K; Mundada, Sneha; Patil, Prabhakar R

    2010-01-01

    Oleanolic acid is a molecule of current therapeutic interest. In the present study, oleanolic acid isolated from the cuticular epithelium of Viscum articulatum Burm. f. (Viscaceae) was investigated for its protective effects on gentamicin-induced renal damage in rats. Nephrotoxicity was induced in rats by intraperitoneal injection of gentamicin at a dose of 100 mg/kg/day for 8 days. The effect of Oleanolic acid administered orally at doses 40, 60 and 80 mg/kg/day was assessed biochemically by determination of albumin, urea and creatinine in serum and urine samples and also through histopathological examination of the kidneys. Oleanolic acid protected the rat kidneys from gentamicin-induced nephrotoxicity as evident from a decrease in the serum and urine levels of creatinine, albumin and urea. Oleanolic acid also protected the rat kidneys from histological alterations induced by gentamicin and also improved the glomerular filtration rate. Compared with an earlier report on intraperitoneal administration of oleanolic acid in paracetamol-induced nephrotoxicity in rats, the data show that orally administered oleanolic acid also exerted a nephroprotective effect even in the case of a nephrotoxicant such as gentamicin, which directly deteriorates the kidney function without prior metabolism. PMID:19548288

  18. Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus.

    PubMed

    Kim, Hyo Geun; Jeong, Hyun Uk; Hong, Sung In; Oh, Myung Sook

    2015-12-01

    Epilepsy is a complex neurological disorder characterized by the repeated occurrence of electrical activity known as seizures. This activity induces increased intracellular calcium, which ultimately leads to neuronal damage. Houttuyniae Herba, the aerial part of Houttuynia cordata, has various pharmacological effects and is widely used as a traditional herb. In the present study, we evaluated the protective effects of Houttuyniae Herba water extract on kainic acid-induced neurotoxicity. Kainic acid directly acts on calcium release, resulting in seizure behavior, neuronal damage, and cognitive impairment. In a rat primary hippocampal culture system, Houttuyniae Herba water extract significantly protected neuronal cells from kainic acid toxicity. In a seizure model where mice received intracerebellar kainic acid injections, Houttuyniae Herba water extract treatment resulted in a lower seizure stage score, ameliorated cognitive impairment, protected neuronal cells against kainic acid-induced toxicity, and suppressed neuronal degeneration in the hippocampus. In addition, Houttuyniae Herba water extract regulated increases in the intracellular calcium level, its related downstream pathways (reactive oxygen species production and mitochondrial dysfunction), and calcium/calmodulin complex kinase type II immunoreactivity in the mouse hippocampus, which resulted from calcium influx stimulation induced by kainic acid. These results demonstrate the neuroprotective effects of Houttuyniae Herba water extract through inhibition of calcium generation in a kainic acid-induced epileptic model. PMID:26366753

  19. Retinoic acid modulates RAR alpha and RAR beta receptors in human glioma cell lines.

    PubMed

    Carpentier, A F; Leonard, N; Lacombe, J; Zassadowski, F; Padua, R A; Degos, L; Daumas-Duport, C; Chomienne, C

    1999-01-01

    To identify retinoic acid (RA) signalling pathways involved in growth and differentiation in cells of the glial lineage, two human glioma ceh lines were studied. The three RA receptors (RARs) mRNAs were constitutively expressed, and of the three RXRs, RXR beta appeared predominant. Western blotting analysis confirmed the constitutive expression of RAR alpha and RAR beta. Treatment with all-trans-RA induced morphological changes in the two cell lines, which progressed from their normal pattern of randomly oriented spindle-shaped cells to fibroblast-like glial cells. RA up-regulated RAR alpha and RAR beta mRNAs in both cell lines. Interestingly, RA treatment up-regulated RAR beta proteins but not RAR alpha proteins, suggesting post-transcriptional regulations of RAR transcripts in glioma cells. PMID:10652610

  20. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  1. Intraoperative 5-aminolevulinic acid-induced fluorescence in primary central nervous system lymphoma.

    PubMed

    Grossman, Rachel; Nossek, Erez; Shimony, Nir; Raz, Michal; Ram, Zvi

    2014-01-01

    The authors report a case of primary CNS lymphoma located in the floor of the fourth ventricle that showed intense fluorescence after preoperative administration of 5-aminolevulinic acid. The authors believe that this is the first demonstration of a 5-aminolevulinic acid-induced fluorescence pattern in primary CNS lymphoma. PMID:24138204

  2. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  3. Retinoic acid acts as a selective human IgA switch factor.

    PubMed

    Seo, Goo-Young; Jang, Young-Saeng; Kim, Jini; Choe, Jongseon; Han, Hye-Ju; Lee, Jeong-Min; Kang, Seong-Ho; Rhee, Ki-Jong; Park, Seok-Rae; Kim, Woan-Sub; Kim, Pyeung-Hyeun

    2014-08-01

    Retinoic acid (RA) is known to have several functions that lead to a potent mucosal IgA response. Nevertheless, its exact role in human IgA synthesis has yet to be elucidated. Thus, we investigated the role of RA in promoting IgA isotype switching in human B cells. We found that RA increased IgA production and the expression of germ-line IgA1 and IgA2 transcripts (GLTα1 and GLTα2). This induction occurred alongside an increase in the frequency of IgA1-secreting B cell clones, as assessed by limiting dilution analysis. Under the same conditions, RA did not increase IgM and IgG production. Am80, an agonist of RA receptor α (RARα), increased IgA production. In addition, RA activity was abrogated by LE540, an antagonist of RAR, suggesting that the RAR pathway is involved in RA-induced IgA production. Taken together, these results indicate that RA induces IgA isotype switching mainly through RARα in human B cells. PMID:24994461

  4. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling.

    PubMed

    Gibert, Yann; Bernard, Laure; Debiais-Thibaud, Melanie; Bourrat, Franck; Joly, Jean-Stephane; Pottin, Karen; Meyer, Axel; Retaux, Sylvie; Stock, David W; Jackman, William R; Seritrakul, Pawat; Begemann, Gerrit; Laudet, Vincent

    2010-09-01

    One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity. PMID:20445074

  5. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  6. Chromatin Changes in Dicer-Deficient Mouse Embryonic Stem Cells in Response to Retinoic Acid Induced Differentiation

    PubMed Central

    Cooney, Austin J.; Gunaratne, Preethi H.

    2013-01-01

    Loss of Dicer, an enzyme critical for microRNA biogenesis, results in lethality due to a block in mouse embryonic stem cell (mES) differentiation. Using ChIP-Seq we found increased H3K9me2 at over 900 CpG islands in the Dicer-/-ES epigenome. Gene ontology analysis revealed that promoters of chromatin regulators to be among the most impacted by increased CpG island H3K9me2 in ES (Dicer-/-). We therefore, extended the study to include H3K4me3 and H3K27me3 marks for selected genes. We found that the ES (Dicer-/-) mutant epigenome was characterized by a shift in the overall balance between transcriptionally favorable (H3K4me3) and unfavorable (H3K27me3) marks at key genes regulating ES cell differentiation. Pluripotency genes Oct4, Sox2 and Nanog were not impacted in relation to patterns of H3K27me3 and H3K4me3 and showed no changes in the rates of transcript down-regulation in response to RA. The most striking changes were observed in regards to genes regulating differentiation and the transition from self-renewal to differentiation. An increase in H3K4me3 at the promoter of Lin28b was associated with the down-regulation of this gene at a lower rate in Dicer-/-ES as compared to wild type ES. An increase in H3K27me3 in the promoters of differentiation genes Hoxa1 and Cdx2 in Dicer-/-ES cells was coincident with an inability to up-regulate these genes at the same rate as ES upon retinoic acid (RA)-induced differentiation. We found that siRNAs Ezh2 and post-transcriptional silencing of Ezh2 by let-7g rescued this effect suggesting that Ezh2 up-regulation is in part responsible for increased H3K27me3 and decreased rates of up-regulation of differentiation genes in Dicer-/-ES. PMID:24040281

  7. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  8. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  9. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. PMID:27133035

  10. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  11. Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

    PubMed Central

    Ahn, Joung Hoon; Kim, Min Hye; Kwon, Hyung Joo; Choi, Soo Young

    2013-01-01

    Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial β-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apoptotic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM. PMID:23440052

  12. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  13. Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis.

    PubMed

    Li, Minghui; Feng, Ruijuan; Ma, He; Dong, Ranran; Liu, Zhilong; Jiang, Wentao; Tao, Wenjing; Wang, Deshou

    2016-06-01

    Existing studies demonstrated that retinoic acid (RA) regulates meiotic initiation via stra8-independent pathway in teleosts which lack stra8 in their genomes. However, stra8 was recently identified from several fish species including Southern catfish (Silurus meridionalis). To explore the existence of stra8-dependent pathway in RA mediated meiotic initiation in fishes, in the present study, the genes encoding RA synthase aldh1a2 and catabolic enzyme cyp26a1 and cyp26b1 were cloned from the Southern catfish. By immunohistochemistry, Aldh1a2 signal was observed in gonads of both sexes during the meiotic initiation period. By real-time PCR, differentially expressed gene was observed for cyp26a1, but not for cyp26b1, in gonads during the meiotic initiation. Administration of exogenous RA or inhibition of endogenous RA degradation by either KET (RA catabolic enzyme inhibitor) or cyp26a1 knockdown using CRISPR/Cas9 induced advanced meiotic initiation in the ovaries as demonstrated by increased Stra8/stra8 expression and appearance of oocytes. In contrast, treatment with RA synthase inhibitor DEAB resulted in delayed meiotic initiation and Stra8/stra8 expression in the ovaries, which was rescued by exogenous RA administration. These results indicated that (1) RA triggers the onset of meiosis via stra8-dependent pathway in stra8 existing teleosts, as it does in tetrapods; (2) exogenous RA can rescue the endogenous RA deficiency; (3) Cyp26a1, instead of Cyp26b1, is the key catabolic enzyme involved in meiosis initiation in teleosts. Taken together, RA might trigger meiotic initiation via stra8-dependent and -independent pathway in different teleosts. PMID:26764212

  14. Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe.

    PubMed

    Yazawa, Hisashi; Ogiso, Masayo; Kumagai, Hiromichi; Uemura, Hiroshi

    2014-11-01

    We previously succeeded to obtain a high content of ricinoleic acid (RA), a hydroxylated fatty acid with great values as a petrochemical replacement, in fission yeast Schizosaccharomyces pombe by introducing Claviceps purpurea oleate Δ12-hydroxylase gene (CpFAH12). Although the production was toxic to S. pombe cells, we identified plg7, encoding phospholipase A2, as a multicopy suppressor that restored the growth defect by removing RA from phospholipids and induced secretion of a part of the released free RA into culture media. In this study, we extended our analysis and examined the effect of triglyceride (TG) lipase overexpression on the tolerance to RA toxicity and RA productivity. S. pombe has three TG lipase genes, ptl1, ptl2, and ptl3, which have high protein sequence similarities to each other and to Saccharomyces cerevisiae counterparts TGL3, TGL4, and TGL5, but only ptl2 overexpression suppressed the growth defect induced by RA production, and the culture grown at 20 °C secreted free RA into media like plg7 overexpression. Suppression by ptl2 was independent of plg7, and a large amount of free RA was accumulated in the cells concomitant with the decrease in RA moieties in phospholipids. Furthermore, the suppression by ptl2 was attenuated by bromoenol lactone (BEL), a phospholipase A2 specific inhibitor, suggesting that Ptl2p may have phospholipase activity. Simultaneous overexpression of ptl2 and plg7 in the FAH12 integrant increased secretion and intracellular accumulation of RA 1.2- and 1.3-fold, respectively, compared to those with single overexpression of plg7 on day 10 at 20 °C. PMID:25109267

  15. Effects of ascorbic acid supplementation on copper-induced oxidative changes in human erythrocytes

    SciTech Connect

    Calabrese, E.J.; Kemp, J.

    1985-01-01

    A previously reported study indicated that ascorbic acid reduces the occurrence of copper acetate-induced methemoglobin (METHB) formation in vitro. The present study was designed to evaluate these findings in an in vivo exposure of ascorbic acid (1 gm/day) for up to four weeks with an in vitro copper acetate incubation stress at baseline (just prior to supplementation) and at two and four weeks after initiation of treatment. The results indicated that the ascorbic acid supplementation had no significant effects on the occurrence of copper acetate induced oxidant stress (i.e. METHB increase and GSH decrease). Possible explanations for this apparent discrepancy are provided.

  16. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  17. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction.

    PubMed

    Beggs, Kevin M; McGreal, Steven R; McCarthy, Alex; Gunewardena, Sumedha; Lampe, Jed N; Lau, Christoper; Apte, Udayan

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. PMID:27153767

  18. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  19. Compilation of Spectroscopic Data of Radium (Ra I and Ra II)

    NASA Astrophysics Data System (ADS)

    Dammalapati, U.; Jungmann, K.; Willmann, L.

    2016-03-01

    Energy levels, wavelengths, lifetimes, and hyperfine structure constants for the isotopes of the first and second spectra of radium, Ra I and Ra II, have been compiled. Wavelengths and wavenumbers are tabulated for 226Ra and for other Ra isotopes. Isotope shifts and hyperfine structure constants of even and odd-A isotopes of neutral radium atom and singly ionized radium are included. Experimental lifetimes of the states for both neutral and ionic Ra are also added, where available. The information is beneficial for present and future experiments aimed at different physics motivations using neutral Ra and singly ionized Ra.

  20. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression. PMID:16033993

  1. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    PubMed

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient. PMID:15469756

  2. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation

    PubMed Central

    Mielke, Lisa A.; Jones, Sarah A.; Raverdeau, Mathilde; Higgs, Rowan; Stefanska, Anna; Groom, Joanna R.; Misiak, Alicja; Dungan, Lara S.; Sutton, Caroline E.; Streubel, Gundula; Bracken, Adrian P.

    2013-01-01

    Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significant increase in IL-22 secretion by γδ T cells and innate lymphoid cells. In addition, RA treatment enhanced production of the IL-22–responsive antimicrobial peptides Reg3β and Reg3γ in the colon. The attenuating effects of RA on colitis were reversed by treatment with an anti–IL-22 neutralizing antibody, demonstrating that RA mediates protection by enhancing IL-22 production. To define the molecular events involved, we used chromatin immunoprecipitation assays and found that RA promoted binding of RA receptor to the IL-22 promoter in γδ T cells. Our findings provide novel insights into the molecular events controlling IL-22 transcription and suggest that one key outcome of RA signaling may be to shape early intestinal immune responses by promoting IL-22 synthesis by γδ T cells and innate lymphoid cells. PMID:23690441

  3. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  4. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  5. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  6. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  7. Anomalous spin polarization in the photoreduction of chromone-2-carboxylic acid with alcohol induced by hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Ohara, Keishi; Mukai, Kazuo

    2000-02-01

    The addition effect of hydrochloric acid (HCl) on the photoreduction of chromone-2-carboxylic acid (CRCA) is studied by time-resolved EPR. The EPR lines of CRCA ketyl radical show an enhanced absorption in the presence of HCl, while without HCl these show an emissive character. On the other hand, the lines of the CRCA alkyl type radical show an emissive character whether HCl is included or not. The simultaneous reactions of the closely-lying two excited triplet states (T 1 and T 2) of CRCA may induce the above anomalous CIDEP behavior.

  8. Folic acid reverses uric acid crystal-induced surface OAT1 internalization by inhibiting RhoA activity in uric acid nephropathy

    PubMed Central

    WU, XINLIN; LIU, JIANXIANG; ZHANG, JIANQING; LIU, HENG; YAN, MIANSHENG; LIANG, BIRONG; XIE, HONGBO; ZHANG, SHIJUN; SUN, BAOGUO; ZHOU, HOUMING

    2016-01-01

    To investigate how organic anion transporter (OAT)-1 is involved in uric acid nephropathy (UAN), a rat model for UAN was established and the serum uric acid, blood urea nitrogen and serum creatinine levels were all measured, and observed to be increased. It was additionally identified that in UAN rats the surface OAT1 expression levels were reduced. By treating HEK cells with monosodium urate (MSU) crystals, it was observed that the cells exhibited a reduction in OAT1 levels. Furthermore, MSU crystals were observed to recruit Ras homolog family member A (RhoA), a small guanosine triphosphatase, to the membrane and activate it. Following RhoA activation, the OAT1 internalization rate was identified to be increased. The dominant-negative RhoA N19 mutation was able to block MSU-induced OAT1 internalization, indicating that the process was RhoA-dependent. Finally, the results indicated that folic acid, a daily nutritional supplement, was capable of rescuing MSU-induced nephropathy and OAT1 internalization. These observations indicated that uric acid crystals were able to reduce the OAT1 membrane distribution through activating RhoA, and that folic acid was capable of preventing MSU-induced OAT1 relocation by inhibiting the RhoA signaling pathway. PMID:26846716

  9. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases.

    PubMed

    Lin, Yu-Ting; Yu, Ya-Mei; Chang, Weng-Cheng; Chiang, Su-Yin; Chan, Hsu-Chin; Lee, Ming-Fen

    2016-06-01

    The metabolic disturbance of obesity is one of the most common risk factors of atherosclerosis. Resistin, an obesity-induced adipokine, can induce the expression of cell adhesion molecules and the attachment of monocytes to endothelial cells, which play an important role in the development of atherosclerosis. Ursolic acid, a pentacyclic triterpenoid found in fruits and many herbs, exhibits an array of biological effects such as anti-inflammatory and antioxidative properties. The aim of this study was to investigate the potential underlying mechanisms of the effect of ursolic acid on resistin-induced adhesion of U937 cells to human umbilical vein endothelial cells (HUVECs). Our data indicated that ursolic acid suppressed the adhesion of U937 to HUVECs and downregulated the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1), and E-selectin, in resistin-induced HUVECs by decreasing the production of intracellular reaction oxygen species (ROS) and attenuating the nuclear translocation of NFκB. Ursolic acid appeared to inhibit resistin-induced atherosclerosis, suggesting that ursolic acid may play a protective role in obesity-induced cardiovascular diseases. PMID:26991492

  10. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  11. Fatty Acid-Induced T Cell Loss Greases Liver Carcinogenesis.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2016-05-10

    A new study has added loss of CD4(+) T cells caused by aberrant lipid metabolism to the list of mechanisms promoting nonalcoholic steatohepatitis progression to liver cancer (Ma et al., 2016). Exposure of CD4(+) T cells to free linoleic acid causes their ROS-mediated depletion, thereby favoring liver cancer growth. PMID:27166937

  12. ASCORBID ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    ABSTRACT
    Evidence suggests that the antioxidant ascorbic acid (AA), plays an essential role in defending against oxidant attack in the airways. Decreased levels of AA have been reported in asthmatics but not at the site directly proximal to asthma pathology, i.e. the bronchial...

  13. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    PubMed

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways. PMID:25641731

  14. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  15. Nephroprotective Effect of Ursolic Acid in a Murine Model of Gentamicin-Induced Renal Damage

    PubMed Central

    Pai, Preethi G.; Chamari Nawarathna, Savindika; Kulkarni, Avdhooth; Habeeba, Umma; Reddy C., Sudarshan; Teerthanath, Srinivas; Shenoy, Jnaneshwara P.

    2012-01-01

    The present study evaluates the nephroprotective effects of ursolic acid in a murine model of gentamicin induced renal damage. Wistar albino rats of either sex, weighing 150–200 g were divided into 5 groups; normal saline, gentamicin 80 mg/kg, intraperitoneally for 8 days, ursolic acid at 2, 5, and 10 mg/kg, per oral for 8 days, ursolic acid administered 3 days prior and concurrently with gentamicin for 5 days. Blood urea, serum creatinine, uric acid and blood urea nitrogen analyses and microscopic examination of kidney were performed. Gentamicin treatment caused nephrotoxicity as evidenced by marked elevation in serum urea, serum uric acid, serum creatinine and blood urea nitrogen (162.33 ± 9.92 mg/dL, 3.13 ± 0.12 mg/dL, 6.85 ± 0.35 mg/dL and 75.86 ± 4.64 mg/dL; resp.) when compared to the saline treated groups. Co-administration of ursolic acid with gentamicin decreased the rise in these parameters in a dose dependent manner. Histopathological analysis revealed epithelial loss with intense granular degeneration in gentamicin treated rats, whereas ursolic acid mitigated the severity of gentamicin-induced renal damage. To conclude, our data suggest that ursolic acid exhibits renoprotective effect in gentamicin induced renal damage and further studies on its mechanis of action are warranted. PMID:22811930

  16. Jasmonic acid induced resistance in grapevines to a root and leaf feeder.

    PubMed

    Omer, A D; Thaler, J S; Granett, J; Karban, R

    2000-06-01

    We investigated the effects of induced resistance to the folivore Pacific spider mite, Tetranychus pacificus McGregor (Acari: Tetranychidae), as well as the root-feeding grape phylloxera Daktulosphaira vitifoliae (Fitch) (Homoptera: Phylloxeridae) in grapevines using exogenous applications of the natural plant inducer, jasmonic acid. Foliar jasmonic acid application at concentrations that caused no phytotoxicity significantly reduced the performance of both herbivores. There were less than half as many eggs produced by spider mites feeding on the induced leaves compared with control grapevine leaves. Induction reduced the numbers of phylloxera eggs and nymphal instars by approximately threefold and twofold, respectively, on induced compared with control grapevine roots. The negative demographic effects of jasmonic acid application appeared to be caused by changes in fecundity for the Pacific spider mite, and possibly changes in development rate and fecundity for grape phylloxera. PMID:10902339

  17. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  18. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    PubMed Central

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  19. Light-induced expression of fatty acid desaturase genes

    PubMed Central

    Kis, Mihály; Zsiros, Otto; Farkas, Tibor; Wada, Hajime; Nagy, Ferenc; Gombos, Zoltán

    1998-01-01

    In cyanobacterial cells, fatty acid desaturation is one of the crucial steps in the acclimation processes to low-temperature conditions. The expression of all the four acyl lipid desaturase genes of Synechocystis PCC 6803 was studied as a function of temperature and separately as a function of light. We used cells grown at 25°C in light-activated heterotrophic growth conditions. In these cells, the production of α-linolenic acid and 18:4 fatty acids was negligible and the synthesis of γ-linolenic acid was remarkably suppressed compared with those of the cells grown photoautotrophically. The cells grown in the light in the presence of glucose showed no difference in fatty acid composition compared with cells grown photoautotrophically. The level of desC mRNA for Δ9 desaturase was not affected by either the temperature or the light. It was constitutively expressed at 25°C with and without illumination. The level of desB transcripts was negligible in the dark-grown cells and was enhanced about 10-fold by exposure of the cells to light. The maximum level of expression occurred within 15 min. The level of desA and desD mRNAs was higher in dark-grown cells than that of desB mRNA for ω3 desaturase. However, the induction of both desA and desD mRNAs for Δ12 and Δ6 desaturases, respectively, was enhanced by light about 10-fold. Rifampicin, chloramphenicol, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea completely blocked the induction of the expression of desA, desB, and desD. Consequently, we suggest the regulatory role of light via photosynthetic processes in the induction of the expression of acyl lipid desaturases. PMID:9539715

  20. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging.

    PubMed

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  1. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    PubMed Central

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  2. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  3. The effects of retinoic acid on immunoglobulin synthesis by human cord blood mononuclear cells.

    PubMed

    Israel, H; Odziemiec, C; Ballow, M

    1991-06-01

    Derivatives of vitamin A have attracted considerable attention as agents which have immune potentiating properties and possibly tumor-suppressive effects. Recent investigations have shown that retinoic acid (RA) can augment immunoglobulin production of B-cell hybridomas from patients with immune deficiency. In this study we examined the ability of RA to modify the mitogen-induced polyclonal immunoglobulin synthesis of cord blood mononuclear cells (CBMC). RA in concentrations ranging from 10(-5) to 10(-7) M augmented IgM synthesis of CBMC in response to formalinized Cowans I strain Staphylococcus aureus (SAC) up to 45.6-fold which was greater at suboptimal responses to SAC. There were no changes in IgG or IgA synthesis and minimal effects on SAC-induced proliferative responses. RA did not produce similar changes in IgM synthesis of SAC-stimulated adult peripheral blood mononuclear cells (PBMC), and RA had no effect on the immunoglobulin synthesis of Epstein-Barr virus (EBV)-stimulated CBMC or adult PBMC. Time course studies showed that peak enhancement occurred when RA was added between 4 and 24 hr after culture initiation and required prior activation by SAC for augmentation of IgM synthesis. Cell separation experiments showed that prior incubation (18 hr) of an enriched T-cell fraction with RA enhanced the IgM synthesis of a T-cell-depleted B-cell fraction. These experiments and the findings that RA-induced augmentation of IgM production in response to SAC, but not to EBV suggest that the immunoregulatory effects of RA may be mediated by either T cells or T-cell products. Further studies will be necessary to understand the mechanism by which RA augments IgM synthesis of CBMC. PMID:2029794

  4. In vitro evidence that phosphatidylcholine protects against indomethacin/bile acid-induced injury to cells

    PubMed Central

    Dial, Elizabeth J.; Dawson, Paul A.

    2014-01-01

    Indomethacin is a powerful analgesic nonsteroidal anti-inflammatory drug (NSAID), but is limited in use by its primary side effect to cause gastrointestinal bleeding and serious injury. One factor important for exacerbating NSAID injury is the presence of bile acids, which may interact with indomethacin to form toxic mixed micelles in the gut. The development of a safer gastrointestinal formulation of indomethacin that is chemically complexed with phosphatidylcholine (PC-indomethacin) may offer an improved therapeutic agent, particularly in the presence of bile acid, but its potential protective mechanism is incompletely understood. Intestinal epithelial cells (IEC-6) were tested for injury with indomethacin (alone and plus various bile acids) compared with PC-indomethacin (alone and plus bile acids). To explore a role for bile acid uptake into cells as a requirement for NSAID injury, studies were performed using Madin-Darby canine kidney cells transfected with the apical sodium-dependent bile acid transporter (ASBT). Indomethacin, but not PC-indomethacin, was directly and dose-dependently injurious to IEC-6 cells. Similarly, the combination of any bile acid plus indomethacin, but not PC-indomethacin, induced cell injury. The expression of ASBT had a modest effect on the acute cytotoxicity of indomethacin in the presence of some conjugated bile acids. Complexing PC with indomethacin protected against the acute intestinal epithelial injury caused by indomethacin regardless of the presence of bile acids. The presence of luminal bile acid, but not its carrier-mediated uptake into the enterocyte, is required for acute indomethacin-induced cell injury. It is likely that initial cell damage induced by indomethacin occurs at or near the cell membrane, an effect exacerbated by bile acids and attenuated by PC. PMID:25477376

  5. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  6. Retinoic acid receptors: from molecular mechanisms to cancer therapy.

    PubMed

    di Masi, Alessandra; Leboffe, Loris; De Marinis, Elisabetta; Pagano, Francesca; Cicconi, Laura; Rochette-Egly, Cécile; Lo-Coco, Francesco; Ascenzi, Paolo; Nervi, Clara

    2015-02-01

    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported. PMID:25543955

  7. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Zhen; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-11-01

    Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes. PMID:22569276

  8. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects. PMID:22615395

  9. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation.

    PubMed

    Huang, Xiaojia; Yang, Kaiyong; Zhang, Yi; Wang, Qiang; Li, Yongjin

    2016-04-01

    Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders. PMID:26738727

  10. Inhibiting the platelet derived growth factor receptor increases signs of retinoic acid syndrome in myeloid differentiated HL- 60 cells

    PubMed Central

    Reiterer, Gudrun; Bunaciu, Rodica P.; Smith, James L.; Yen, Andrew

    2008-01-01

    PDGFR inhibitors are successfully used in a number of cancer treatments. The standard treatment for acute promyelocytic leukemia (APL) involves differentiation therapy with retinoic acid (RA). However, the relapse rates are significant. In the present work we evaluated the effects of RA therapy in the presence of PDGFR inhibitor, AG1296. Adding AG1296 with RA increased secretion of TNF-α, IL-8, and MMP-9 expression. This treatment induced higher levels of ICAM-1 endothelial cell expression, and increased cellular mobility. Inhibiting PDGFR enhanced RA-induced expression of integrin. Integrin ligand increased differentiation markers CD11b, inducible oxidative metabolism and PDGFR-â phosphorylation. While the neutrophil- endothelial cell interactions are strengthened by the combined treatment, the endotheliumsubstratum interactions are weakened, a situation common in RAS. PMID:18571505

  11. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    PubMed Central

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50 mg/kg, respectively) for a period of 56 days. After the treatment period, ISO (85 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days. ISO-induced rats showed a significant decrease in the activity of Na+ /K+ ATPase and increase in the activities of Ca2+ and Mg2+ ATPase in the heart and a significant (P<0.05) increase in the levels of glycoproteins in serum and the heart were also observed in ISO-induced rats. Pretreatment with phytic acid for a period of 56 days exhibited a significant (P<0.05) effect and altered these biochemical parameters positively in ISO-induced rats. Thus, our study shows that phytic acid has cardioprotective role in ISO-induced MI in rats.

  12. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression.

    PubMed

    Fang, Zhong-Ze; Zhang, Dunfang; Cao, Yun-Feng; Xie, Cen; Lu, Dan; Sun, Dong-Xue; Tanaka, Naoki; Jiang, Changtao; Chen, Qianming; Chen, Yu; Wang, Haina; Gonzalez, Frank J

    2016-01-15

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showed that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4(+) naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. PMID:26706406

  13. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity.

    PubMed

    Herraez, Elisa; Macias, Rocio I R; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J; Marin, Jose J G

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (-60%) and TCA-stimulated bile flow (-55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (<5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1>TCA>DHCA>UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin. PMID:19409403

  14. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (< 5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1 > TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  15. A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium.

    PubMed Central

    Lee, I S; Slonczewski, J L; Foster, J W

    1994-01-01

    Acid is an important environmental condition encountered by Salmonella typhimurium during its pathogenesis. Our studies have shown that the organism can actively adapt to survive potentially lethal acid exposures by way of at least three possibly overlapping systems. The first is a two-stage system induced in response to low pH by logarithmic-phase cells called the log-phase acid tolerance response (ATR). It involves a major molecular realignment of the cell including the induction of over 40 proteins. The present data reveal that two additional systems of acid resistance occur in stationary-phase cells. One is a pH-dependent system distinct from log-phase ATR called stationary-phase ATR. It was shown to provide a higher level of acid resistance than log-phase ATR but involved the synthesis of fewer proteins. Maximum induction of stationary-phase ATR occurred at pH 4.3. A third system of acid resistance is not induced by low pH but appears to be part of a general stress resistance induced by stationary phase. This last system requires the alternative sigma factor, RpoS. Regulation of log-phase ATR and stationary-phase ATR remains RpoS independent. Although the three systems are for the most part distinct from each other, together they afford maximum acid resistance for S. typhimurium. Images PMID:8113183

  16. Protective effect of taurohyodeoxycholic acid from Pulvis Fellis Suis on trinitrobenzene sulfonic acid induced ulcerative colitis in mice.

    PubMed

    He, Jiao; Liang, Jinru; Zhu, Sha; Zhao, Wenna; Zhang, Yongmin; Sun, Wenji

    2011-11-16

    Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and up-regulation of pro-inflammatory cytokines. The aim of this study is to evaluate the effect of taurohyodeoxycholic acid (THDCA) isolated from Pulvis Fellis Suis on acute ulcerative colitis model induced by trinitrobenzene sulfonic acid (TNBS) in mice. The efficacy of THDCA was studied by macroscopical and histological scoring systems as well as myeloperoxidase (MPO) activity. Serum levels, including tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed by enzyme-linked immunoassay. The expression of cyclooxygenase (COX)-2 in the colons was assessed by immunohistochemical analysis. Treatment with THDCA in doses of 25, 50 and 100mg/kg/day and sulfasalazine in a dose of 500 mg/kg/day used as reference for 7 consecutive days after the induction of colitis, significantly decreased colonic MPO activity, TNF-α, IL-6 serum levels and the expression of COX-2 in colon compared with TNBS induced ulcerative colitis model group. Moreover, THDCA attenuated the macroscopic colonic damage and the histopathological changes induced by TNBS. All the effects of these parameters were comparable to that of the standard sulfasalazine, especially at the highest dose level. The results suggested that THDCA from Pulvis Fellis Suis has a protective effect in TNBS-induced ulcerative colitis which might be due to its anti-inflammatory activities, and that it may have therapeutic value in the setting of inflammatory bowel disease. PMID:21925164

  17. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8+ T-cell migration to the porcine gut

    PubMed Central

    Chen, Xiaojuan; Tu, Chongzhi; Qin, Tao; Zhu, Liqi; Yin, Yinyan; Yang, Qian

    2016-01-01

    The digestive tract is the entry site for transmissible gastroenteritis virus (TGEV). TGEV transmission can be prevented if local immunity is established with increased lymphocytes. The current parenteral mode of vaccination stimulates systemic immunity well, but it does not induce sufficient mucosal immunity. Retinoic acid (RA) plays an important role in the induction of cells that imprint gut-homing molecules. We examined whether RA assist parenteral vaccination of pigs could improve mucosal immunity. We demonstrated that elevated numbers of gut-homing CD8+ T cells (which express α4β7 and CCR9 molecules) were presented in porcine inguinal lymph nodes and were recruited to the small intestine by RA. Intestinal mucosal immunity (IgA titre) and systemic immunity (serum IgG titre) were enhanced by RA. Therefore, we hypothesized that RA could induce DCs to form an immature mucosal phenotype and could recruit them to the small intestinal submucosa. Porcine T-cells expressed β7 integrin and CCR9 receptors and migrated to CCL25 by a mechanism that was dependent of activation by RA-pretreated DCs, rather than direct activation by RA. Together, our results provide powerful evidence that RA can assist whole inactivated TGEV (WI-TGEV) via subcutaneous (s.c.) immunization to generate intestinal immunity, and offer new vaccination strategies against TGEV. PMID:27080036

  18. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8(+) T-cell migration to the porcine gut.

    PubMed

    Chen, Xiaojuan; Tu, Chongzhi; Qin, Tao; Zhu, Liqi; Yin, Yinyan; Yang, Qian

    2016-01-01

    The digestive tract is the entry site for transmissible gastroenteritis virus (TGEV). TGEV transmission can be prevented if local immunity is established with increased lymphocytes. The current parenteral mode of vaccination stimulates systemic immunity well, but it does not induce sufficient mucosal immunity. Retinoic acid (RA) plays an important role in the induction of cells that imprint gut-homing molecules. We examined whether RA assist parenteral vaccination of pigs could improve mucosal immunity. We demonstrated that elevated numbers of gut-homing CD8(+) T cells (which express α4β7 and CCR9 molecules) were presented in porcine inguinal lymph nodes and were recruited to the small intestine by RA. Intestinal mucosal immunity (IgA titre) and systemic immunity (serum IgG titre) were enhanced by RA. Therefore, we hypothesized that RA could induce DCs to form an immature mucosal phenotype and could recruit them to the small intestinal submucosa. Porcine T-cells expressed β7 integrin and CCR9 receptors and migrated to CCL25 by a mechanism that was dependent of activation by RA-pretreated DCs, rather than direct activation by RA. Together, our results provide powerful evidence that RA can assist whole inactivated TGEV (WI-TGEV) via subcutaneous (s.c.) immunization to generate intestinal immunity, and offer new vaccination strategies against TGEV. PMID:27080036

  19. Linoleic acid attenuates cardioprotection induced by resolvin D1.

    PubMed

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Bourque-Riel, Valérie; Touchette, Charles; Rousseau, Guy

    2016-05-01

    We previously observed that resolvin D1 (RvD1), a metabolite of the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid, reduces infarct size by a mechanism involving the PI3-K/Akt pathway. In parallel, the beneficial effect of a high omega-3 PUFA diet on infarct size can be attenuated by increased omega-6 PUFA consumption. The present study was designed to determine if augmented linoleic acid (LA), an omega-6 PUFA administered at the same time, attenuates the cardioprotective action of RvD1. Male Sprague-Dawley rats received 0.1μg RvD1 alone or with one of three LA doses (1, 5 or 10μg) directly into the left ventricle chamber 5min before ischemia. The animals underwent 40min of ischemia by occlusion of the left descending coronary artery followed by 30min or 24h of reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion, while caspase-3, -8 and -9 and Akt activities were assessed at 30min of reperfusion. LA attenuated cardioprotection afforded by RvD1, resulting in significantly increased infarct size. Neutrophil accumulation and Akt activity were similar between groups. Caspase activities, especially caspase-9, which could be activated by ischemia, were stimulated in the presence of LA, suggesting that this omega-6 PUFA accentuates ischemia intensity. The present results indicate that LA significantly attenuates the beneficial effect of RvD1 on infarct size. Therefore, reduction of omega-6 intake should be considered to maintain the protection afforded by RvD1. PMID:27133431

  20. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells.

    PubMed

    Amengual, Jaume; Petrov, Petar; Bonet, M Luisa; Ribot, Joan; Palou, Andreu

    2012-11-01

    The vitamin A derivative retinoic acid (RA) is an important regulator of mammalian adiposity and lipid metabolism, primarily acting at the gene expression level through nuclear receptors of the RA receptor (RAR) and retinoid X receptor (RXR) subfamilies. Here, we studied cell-autonomous effects of RA on fatty acid metabolism, particularly fatty acid oxidation, in human hepatoma HepG2 cells. Exposure to all-trans RA (ATRA) up-regulated the expression of carnitine palmitoyl transferase-1 (CPT1-L) in HepG2 cells in a dose- and time-dependent manner, and increased cellular oxidation rate of exogenously added radiolabeled palmitate. The effect of ATRA on gene expression of CPT1-L was: dependent on ongoing transcription, reproduced by both 9-cis RA and a pan-RXR agonist (but not a pan-RAR agonist) and abolished following RXRα partial siRNA-mediated silencing. CPT1-L gene expression was synergistically induced in HepG2 cells simultaneously exposed to ATRA and a selective peroxisome proliferator-activated receptor α agonist. We conclude that ATRA treatment enhances fatty acid catabolism in hepatocytes through RXR-mediated mechanisms that likely involve the transactivation of the PPARα:RXR heterodimer. Knowledge of agents and nutrient-derivatives capable of enhancing substrate oxidation systemically and specifically in liver, and their mechanisms of action, may contribute to new avenues of prevention and treatment of fatty liver, obesity and other metabolic syndrome-related disorders. PMID:22871568

  1. Dietary amino acid-induced systemic lupus erythematosus.

    PubMed

    Montanaro, A; Bardana, E J

    1991-05-01

    The effects of dietary manipulations on autoimmune disease are understood poorly. In this article, we detail our experience with a human subject who developed autoimmune hemolytic anemia while participating in a research study that required the ingestion of alfalfa seeds. Subsequent experimental studies in primates ingesting alfalfa sprout seeds and L-canavanine (a prominent amino acid constituent of alfalfa) is presented. The results of these studies indicate a potential toxic and immunoregulatory role of L-canavanine in the induction of a systemic lupus-like disease in primates. PMID:1862241

  2. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  3. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line.

    PubMed Central

    Ruchaud, S; Duprez, E; Gendron, M C; Houge, G; Genieser, H G; Jastorff, B; Doskeland, S O; Lanotte, M

    1994-01-01

    In t(15;17) acute promyelocytic leukemia, all-trans retinoic acid (RA) induces leukemic cell maturation in vitro and remission in acute promyelocytic leukemia patients, but in vivo treatments invariably lead to relapse with resistance to RA. NB4, a maturation-inducible cell line, and NB4-RAr sublines (R1 and R2) displaying no maturation in the presence of RA have been isolated from a patient in relapse. We show that resistance to maturation is not a mere unresponsiveness to RA: rather, R1 "resistant" cells do respond to RA (1 microM) by sustained growth, become competent to undergo terminal maturation, and up-regulate CD11c/CD18 integrins. Interestingly, maturation of "resistant" cells, rendered competent by RA, can be achieved by cAMP-elevating agents (prostaglandin E, isoproterenol, cholera toxin, or phosphodiesterase inhibitor) or stable agonistic cAMP analogs such as (SP)-8-chloroadenosine cyclic 3',5'-phosphorothioate. This shows that activation of cAMP-dependent protein kinase (cA kinase) can override the RA resistance and suggests interdependent RA and cAMP signaling pathways in acute promyelocytic leukemia maturation. No such cooperation was observed in the R2 resistant cells, though their cA-kinase was functional. (RP)-8-Chloroadenosine cyclic 3',5'-phosphorothioate, which by displacing endogenous cAMP inhibits the basal cA-kinase activity, decreased the response of sensitive cells to RA. This raises the possibility that cA-kinase plays a key role in the maturation also of RA-sensitive cells. Our results define two discrete steps in the maturation process: an RA-dependent priming step that maintains proliferation while cells become competent to undergo maturation in response to retinoids and a cAMP-dependent step that triggers RA-primed cells to undergo terminal maturation. Uncoupling RA and cAMP action might cause the so-called "resistance." Images PMID:7915840

  4. Serum Bile Acids Are Associated with Pathological Progression of Hepatitis B-Induced Cirrhosis.

    PubMed

    Wang, Xiaoning; Xie, Guoxiang; Zhao, Aihua; Zheng, Xiaojiao; Huang, Fengjie; Wang, Yixing; Yao, Chun; Jia, Wei; Liu, Ping

    2016-04-01

    Recent metabonomic studies have identified an important role of bile acids in patients with liver cirrhosis. Serum bile acids, such as glycocholate (GCA), glycochenodeoxycholate (GCDCA), taurocholate (TCA), and taurochenodeoxycholate (TCDCA), increased significantly in liver cirrhosis patients. Our recently published urinary metabonomic study showed that glycocholate 3-glucuronide, taurohyocholate, TCA, glycolithocholate 3-sulfate, and glycoursodeoxycholate (GUDCA) were markedly increased in hepatitis B-induced cirrhotic patients (n = 63) compared with healthy controls (n = 31). The urinary levels of GUDCA were able to differentiate among three stages of cirrhotic patients with Child-Pugh (CP) score A, B, and C. In this study, we recruited two new cohorts of patients with hepatitis-B-induced cirrhosis and healthy control subjects and quantitatively profiled their serum bile acids using ultra-performance liquid chromatography triple quadrupole mass spectrometry. Serum bile acid profile and corresponding differential bile acids were characterized, in addition to the blood routine, liver, and renal function tests. The alterations of bile acids contributing to the intergroup variation between healthy controls and cirrhotic patients and among pathological stages of CP grade A, B and C were also investigated. Five bile acids, GCA, GCDCA, TCA, TCDCA, and GUDCA, were significantly altered among different stages of liver cirrhosis (n = 85), which was validated with an independent cohort of cirrhotic patients (n = 53). Our results show that dynamic alteration of serum bile acids is indicative of an exacerbated liver function, highlighting their potential as biomarkers for staging the liver cirrhosis and monitoring its progression. PMID:25964117

  5. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Omoruyi, F. O.; Budiaman, A.; Eng, Y.; Olumese, F. E.; Hoesel, J. L.; Ejilemele, A.; Okorodudu, A. O.

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly (P < 0.05) increased by phytic acid supplementation. Systemic IL-1β level was significantly (P < 0.05) elevated in the diabetic control and supplement treated groups. The liver lipogenic enzyme activities were not significantly altered among the groups. These results suggest that phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation. PMID:24454345

  6. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    PubMed

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. PMID:26559141

  7. Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone.

    PubMed Central

    Swanson, S. J.; Jones, R. L.

    1996-01-01

    The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins. PMID:12239377

  8. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.

    PubMed

    Jeon, Se Jin; Park, Ho Jae; Gao, Qingtao; Pena, Irene Joy Dela; Park, Se Jin; Lee, Hyung Eun; Woo, Hyun; Kim, Hee Jin; Cheong, Jae Hoon; Hong, Eunyoung; Ryu, Jong Hoon

    2015-09-01

    Prunella vulgaris is widely used as a herbal medicine for cancers, inflammatory diseases, and other infections. Although it has long been used, few studies have examined its effects on central nervous system function. Here, we first observed that ethanolic extracts of P. vulgaris (EEPV) prolonged pentobarbital-induced sleep duration in mice. It is known that EEPV consists of many active components including triterpenoid (ursolic acid and oleanolic acid), which have many biological activities. Therefore, we evaluated which EEPV components induced sleep extension in pentobarbital-mediated sleeping model in mice. Surprisingly, despite their structural similarity and other common functions such as anti-inflammation, anti-cancer, and tissue protection, only ursolic acid enhanced sleep duration in pentobarbital-treated mice. These results were attenuated by bicuculline treatment, which is a GABAA receptor antagonist. The present results suggest that ursolic acid from P. vulgaris enhances sleep duration through GABAA receptor activation and could be a therapeutic candidate for insomnia treatment. PMID:26102564

  9. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    PubMed

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  10. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  11. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation.

    PubMed

    Zhu, Xinfeng; Wang, Wenxue; Zhang, Xia; Bai, Jianhua; Chen, Gang; Li, Li; Li, Meizhang

    2015-01-01

    Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients. PMID:26571119

  12. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation

    PubMed Central

    Zhang, Xia; Bai, Jianhua; Chen, Gang; Li, Li; Li, Meizhang

    2015-01-01

    Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients. PMID:26571119

  13. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis.

    PubMed

    Hellmann-Regen, Julian; Heuser, Isabella; Regen, Francesca

    2013-12-01

    Worldwide bans on incandescent light bulbs (ILBs) drive the use of compact fluorescent light (CFL) bulbs, which emit ultraviolet (UV) radiation. Potential health issues of these light sources have already been discussed, including speculation about the putative biological effects on light exposed tissues, yet the underlying mechanisms remain unclear. We hypothesized photoisomerization of all-trans retinoic acid (at-RA), a highly light sensitive morphogen, into biologically less active isomers, as a mechanism mediating biological effects of CFLs. Local at-RA is anti-carcinogenic, entrains molecular rhythms and is crucial for skin homeostasis. Therefore, we quantified the impact of CFL irradiation on extra- and intracellular levels of RA isomers using an epidermal cell culture model. Moreover, a biologically relevant impact of CFL irradiation was assessed using highly at-RA-sensitive human neuroblastoma cells. Dose-dependent conversion of extra- and intracellular at-RA into the biologically less active 13-cis-isomer was significantly higher in CFL vs. ILB exposure and completely preventable by employing a UV-filter. Moreover, pre-irradiation of culture media by CFL attenuated at-RA-specific effects on cell viability in human at-RA-sensitive cells in a dose-dependent manner. These findings point towards a biological relevance of CFL-induced at-RA decomposition, providing a mechanism for CFL-mediated effects on environmental health. PMID:24135972

  14. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma.

    PubMed

    Liang, Zhengmin; Xu, Yangfeng; Wen, Xuemei; Nie, Haiying; Hu, Tingjun; Yang, Xiaofeng; Chu, Xiao; Yang, Jian; Deng, Xuming; He, Jiakang

    2016-01-01

    Rosmarinic acid (RA) has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova) were pretreated with RA (5, 10 or 20 mg/kg) at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF), significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR) compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB). Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation. PMID:27304950

  15. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    PubMed

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED. PMID:18951979

  16. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    PubMed Central

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment with aprotinin to inhibit tissue kallikrein reduced the scratching behaviour induced by sodium deoxycholic acid, whereas treatment with soybean trypsin inhibitor to inhibit plasma kallikrein did not.Although injection of kininase II inhibitor, lisinopril together with sodium deoxycholic acid did not alter the scratching behaviour, phosphoramidon, a neutral endopeptidase inhibitor, significantly increased the frequency of scratching.Homogenates of the skin excised from the backs of mice were subjected to gel-filtration column chromatography followed by an assay of kinin release by trypsin from each fraction separated. Less kinin release from the fractions containing kininogen of low molecular weight was observed in the skin injected with sodium deoxycholic acid than in normal skin.The frequency of scratching after the injection of sodium deoxycholic acid in plasma kininogen-deficient Brown Norway Katholiek rats was significantly lower than that in normal rats of the same strain, Brown Norway Kitasato rats.These results indicate that BK released from low-molecular-weight kininogen by tissue kallikrein, but not from high-molecular-weight kininogen by plasma kallikrein, may be involved in the scratching behaviour induced by the injection of sodium deoxycholic acid in the rodent. PMID:10051136

  17. Valproic Acid-Induced Hyperammonemia in the Elderly: A Review of the Literature

    PubMed Central

    Mittal, Vikrant; Muralee, Sunanda; Tampi, Rajesh R.

    2009-01-01

    Valproic acid and its derivatives are commonly used to treat many psychiatric conditions in the elderly. Hyperammonemia is a less common but important side effect of these drugs. The elderly patient appears highly vulnerable to this side effect of this group of medications. In this paper, we systematically review the published literature for hyperammonemia induced by valproic acid and its derivatives. We describe the three reported cases and review possible treatment strategies for this condition. PMID:19724652

  18. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. PMID:25745068

  19. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats. PMID:25746462

  20. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  1. Prevention of chromate induced oxidative stress by alpha-lipoic acid.

    PubMed

    Budhwar, Roli; Kumar, Sushil

    2005-06-01

    The parenteral administration of alpha-lipoic acid (LA) protected against chromate induced oxidative stress in mouse liver. A shift in Cr induced pro-oxidant state to antioxidant-state by LA was noteworthy. The degree of protection was significant and similar in different LA administration regimens (prior-, co- and post- parenteral Cr exposure) explored. An improved status of the tissue antioxidants by LA appeared to be the mechanism of mitigation. The results are of chemopreventive value and suggest a possible alternative to ascorbic acid for abrogation of Cr toxicity. PMID:15997482

  2. Increased fatty acid synthesis inhibits nitrogen starvation-induced autophagy in lipid droplet-deficient yeast.

    PubMed

    Régnacq, Matthieu; Voisin, Pierre; Sere, Yves Y; Wan, Bin; Soeroso, Venty M S; Bernard, Marianne; Camougrand, Nadine; Bernard, François-Xavier; Barrault, Christine; Bergès, Thierry

    2016-08-12

    Macroautophagy is a degradative pathway whereby cells encapsulate and degrade cytoplasmic material within endogenously-built membranes. Previous studies have suggested that autophagosome membranes originate from lipid droplets. However, it was recently shown that rapamycin could induce autophagy in cells lacking these organelles. Here we show that lipid droplet-deprived cells are unable to perform autophagy in response to nitrogen-starvation because of an accelerated lipid synthesis that is not observed with rapamycin. Using cerulenin, a potent inhibitor of fatty acid synthase, and exogenous addition of palmitic acid we could restore nitrogen-starvation induced autophagy in the absence of lipid droplets. PMID:27270031

  3. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite

    NASA Astrophysics Data System (ADS)

    Whiteman, Matthew; Hooper, D. Craig; Scott, Gwen S.; Koprowski, Hilary; Halliwell, Barry

    2002-09-01

    Chronic inflammation results in increased nitrogen monoxide (NO) formation and the accumulation of nitrite (NO). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels. Treatment of cells with NO but not nitrate (NO) substantially decreased HOCl-dependent cellular toxicity even when NO was added at low (μM) concentrations. In contrast, NO alone (even at 1 mM concentrations) did not affect cell viability or ATP and glutathione levels. These data suggest that NO accumulation at chronic inflammatory sites, where both HOCl and NO are overproduced, may be cytoprotective against damage caused by HOCl. We propose that this is because HOCl is removed by reacting with NO to give nitryl chloride (NO2Cl), which is less damaging in our cell system. inflammation | cell toxicity | nitryl chloride | nitric oxide | arthritis

  4. Isonicotinic acid hydrazide induced anagen effluvium and associated lichenoid eruption.

    PubMed

    Sharma, P K; Gautam, R K; Bhardwaj, M; Kar, H K

    2001-12-01

    A 32 year-old woman developed generalised lichenoid eruptions on her body followed by diffuse loss of scalp hair of the anagen effluvium type. She was receiving several anti-tubercular drugs, including rifampicin, isonicotinic acid hydrazide (INH), pyrazinamide, and ethambutol, for abdominal tuberculosis. INH, which is a leading cause of drug eruptions in the above group of drugs was withdrawn. However, the other antitubercular drugs were continued along with 40 mg of prednisolone in a single daily morning dose. The latter was discontinued slowly over a period of 10 weeks. There was complete recovery of hair loss and the regrowth started after 12 weeks of alopecia. Such anagen effluvium with lichenoid eruption following INH therapy has not been observed previously. The complete recovery from anagen effluvium is difficult to explain, but it could have been because of the early initiation of corticosteroid. PMID:11804071

  5. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  6. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  7. Lack of Acid Sphingomyelinase Induces Age-Related Retinal Degeneration

    PubMed Central

    Wu, Bill X.; Fan, Jie; Boyer, Nicholas P.; Jenkins, Russell W.; Koutalos, Yiannis; Hannun, Yusuf A.; Crosson, Craig E.

    2015-01-01

    Background Mutations of acid sphingomyelinase (ASMase) cause Niemann–Pick diseases type A and B, which are fatal inherited lipid lysosomal storage diseases, characterized with visceral organ abnormalities and neurodegeneration. However, the effects of suppressing retinal ASMase expression are not understood. The goal of this study was to determine if the disruption of ASMase expression impacts the retinal structure and function in the mouse, and begin to investigate the mechanisms underlying these abnormalities. Methods Acid sphingomyelinase knockout (ASMase KO) mice were utilized to study the roles of this sphingolipid metabolizing enzyme in the retina. Electroretinogram and morphometric analysis were used to assess the retinal function and structure at various ages. Sphingolipid profile was determined by liquid chromatography-mass spectrometry. Western blots evaluated the level of the autophagy marker LC3-II. Results When compared to control animals, ASMase KO mice exhibited significant age-dependent reduction in ERG a- and b-wave amplitudes. Associated with these functional deficits, morphometric analysis revealed progressive thinning of retinal layers; however, the most prominent degeneration was observed in the photoreceptor and outer nuclear layer. Additional analyses of ASMase KO mice revealed early reduction in ERG c-wave amplitudes and increased lipofuscin accumulation in the retinal pigment epithelium (RPE). Sphingolipid analyses showed abnormal accumulation of sphingomyelin and sphingosine in ASMase KO retinas. Western blot analyses showed a higher level of the autophagosome marker LC3-II. Conclusions These studies demonstrate that ASMase is necessary for the maintenance of normal retinal structure and function. The early outer retinal dysfunction, outer segment degeneration, accumulation of lipofuscin and autophagosome markers provide evidence that disruption of lysosomal function contributes to the age-dependent retinal degeneration exhibited by

  8. A Novel Bidirectional Interaction between endothelin-3 and Retinoic Acid in Rat Enteric Nervous System Precursors

    PubMed Central

    Gisser, Jonathan M.; Cohen, Ariella R.; Yin, Han; Gariepy, Cheryl E.

    2013-01-01

    Background Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung’s aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. Methods Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. Results Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. Conclusions A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations. PMID:24040226

  9. Proteomic Investigation into Betulinic Acid-Induced Apoptosis of Human Cervical Cancer HeLa Cells

    PubMed Central

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway. PMID:25148076

  10. Bile Acid-Induced Necrosis in Primary Human Hepatocytes and in Patients with Obstructive Cholestasis

    PubMed Central

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-01-01

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. PMID:25636263

  11. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC. PMID:25393616

  12. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    PubMed

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved. PMID:27513569

  13. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway.

    PubMed

    Elsayed, Abdelrahman M; Abdelghany, Tamer M; Akool, El-Sayed; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2016-03-01

    Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on

  14. Chlorogenic and Caftaric Acids in Liver Toxicity and Oxidative Stress Induced by Methamphetamine

    PubMed Central

    Koriem, Khaled M. M.; Soliman, Rowan E.

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective. PMID:25136360

  15. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes.

    PubMed

    Pawluczyk, Izabella Z A; Ghaderi Najafabadi, Maryam; Patel, Samita; Desai, Priyanka; Vashi, Dipti; Saleem, Moin A; Topham, Peter S

    2014-01-15

    Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity. PMID:24200502

  16. Hypochlorite-induced oxidation of amino acids, peptides and proteins.

    PubMed

    Hawkins, C L; Pattison, D I; Davies, M J

    2003-12-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction with HOCl within a cell due to their abundance and high reactivity with HOCl. This review summarizes information on the rate of reaction of HOCl with proteins, the nature of the intermediates formed, the mechanisms involved in protein oxidation and the products of these reactions. The predicted targets for reaction with HOCl from kinetic modeling studies and the consequences of HOCl-induced protein oxidation are also discussed. PMID:14661089

  17. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β.

    PubMed

    Fernández-Martínez, Ana B; Jiménez, María I Arenas; Manzano, Victoria Moreno; Lucio-Cazaña, Francisco J

    2012-12-01

    We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production

  18. Enantiopure phosphonic acids as chiral inducers: homochiral crystallization of cobalt coordination polymers showing field-induced slow magnetization relaxation.

    PubMed

    Feng, Jian-Shen; Ren, Min; Cai, Zhong-Sheng; Fan, Kun; Bao, Song-Song; Zheng, Li-Min

    2016-05-25

    This Communication reports, for the first time, that enantiopure phosphonic acids can serve as chirality-inducing agents towards homochiral coordination polymers. Hence homochiral chain compounds (M)- or (P)-Co(SO4)(1,3-bbix)(H2O)3 (1M or 1P) are obtained successfully using an achiral precursor of 1,3-bis((1H-benzo[d]imidazol-1-yl)methyl)benzene (1,3-bbix) in the presence of a catalytic amount of (S)- or (R)-3-phenyl-2-((phosphonomethyl)amino)propanoic acid [(S)- or (R)-2-ppapH3]. Furthermore, compound 1M provides the first example of homochiral cobalt compounds showing field-induced single ion magnet behavior. PMID:27108929

  19. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  20. Taxol induced apoptosis regulates amino acid transport in breast cancer cells.

    PubMed

    Wu, Yanyuan; Shen, Dejun; Chen, Zujian; Clayton, Sheila; Vadgama, Jaydutt V

    2007-03-01

    A major outcome from Taxol treatment is induction of tumor cell apoptosis. However, metabolic responses to Taxol-induced apoptosis are poorly understood. In this study, we hypothesize that alterations in specific amino acid transporters may affect the Taxol-induced apoptosis in breast cancer cells. In this case, the activity of the given transporter may serve as a biomarker that could provide a biological assessment of response to drug treatment. We have examined the mechanisms responsible for Taxol-induced neutral amino acid uptake by breast cancer cells, such as MCF-7, BT474, MDAMB231 and T47D. The biochemical and molecular studies include: (1) growth-inhibition (MTT); (2) transport kinetics: (3) substrate-specific inhibition; (4) effect of thiol-modifying agents NEM and NPM; (5) gene expression of amino acid transporters; and (6) apoptotic assays. Our data show that Taxol treatment of MCF-7 cells induced a transient increase in Na(+)-dependent transport of the neutral amino acid transporter B0 at both gene and protein level. This increase was attenuated by blocking the transporter in the presence of high concentrations of the substrate amino acid. Other neutral amino acid transporters such as ATA2 (System A) and ASC were not altered. Amino acid starvation resulted in the expected up-regulation of System A (ATA2) gene, but not for B0 and ASC. B0 was significantly down regulated. Taxol treatment had no significant effect on the uptake of arginine and glutamate as measured by System y(+) and X(-) (GC) respectively. Tunel assays and FACS cell cycle analysis demonstrated that both Taxol- and doxorubicin-induced upregulation of B0 transporter gene with accompanying increase in cell apoptosis, could be reversed partially by blocking the B0 transporter with high concentration of alanine, and/or by inhibiting the caspase pathway. Both Taxol and doxorubicin treatment caused a significant decrease in S-phase of the cell cycle. However, Taxol-induced an increase primarily

  1. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed. PMID:25297544

  2. Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction

    PubMed Central

    Goswami, Sumanta Kumar; Vishwanath, Manikanta; Gangadarappa, Suma Kallahalli; Razdan, Rema; Inamdar, Mohammed Naseeruddin

    2014-01-01

    Background: Diabetes induced sexual dysfunction is a leading cause of male sexual disorder and an early indicator of cardiovascular complication. Reactive oxygen species generated in body during diabetes is a main causative factor for erectile dysfunction, a sexual dysfunction. Adjuvant antioxidant therapy along with phosphodiesterases type 5 enzyme inhibitor (PDE5i) is more effective than PDE5i alone. Objective: The aim of the study was to investigate efficacy of ellagic acid a known antioxidant and sildenafil in diabetes induced erectile dysfunction. Materials and Methods: Type 1 diabetes was induced in male rats and rats were treated with ellagic acid (50 mg/kg, p.o.) and a combination of ellagic acid (50 mg/kg, p.o.) and sildenafil (5 mg/kg, p.o.), a PDE5i for 28 days. Sexual function was observed in diabetic rat and compared with those of treatment group and normal rats. Effect of ellagic acid was studied on advanced glycation end products (AGE) and isolated rat corpus cavernosum in vitro. Results: Sexual function of diabetic rats was found to be reduced and ellegic acid treatment could preserve sexual function of diabetic rats to some extent. Ellagic acid + sildenafil treatment was more efficient in management of diabetes induced sexual dysfunction. Ellagic acid inhibited (AGE) in vitro implying its role in reducing oxidative stress in diabetes. The polyphenol could not increase sexual function in normal rats and relax isolated rat corpus cavernosum smooth muscle significantly. Conclusion: The study proves usefulness of adjuvant antioxidant therapy in the management of erectile dysfunction in diabetes. PMID:25298678

  3. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  4. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  5. Non-destructive determination of 224Ra, 226Ra and 228Ra concentrations in drinking water by gamma spectroscopy.

    PubMed

    Parekh, Pravin; Haines, Douglas; Bari, Abdul; Torres, Miguel

    2003-11-01

    The U.S. Environmental Protection Agency mandates that drinking water showing gross alpha-activity greater than 0.19 Bq L(-1) should be analyzed for radium, a known human carcinogen. The recommended testing methods are intricate and laborious. The method reported in this paper is a direct, non-destructive gamma-spectroscopic method for the determination of 224Ra, 226Ra, and 228Ra, the three radium isotopes of environmental concern in drinking water. Large-volume Marinelli beakers (4.1-L capacity), especially designed for measuring radioactive gases, in conjunction with a low-background, high-efficiency (131%) germanium detector were used in this work. It was first established that radon, the gaseous decay product of radium, and its progeny are quantitatively retained in this Marinelli beaker. The 224Ra, 226Ra, and 228Ra activity concentrations are determined from the equilibrium activities of their progeny: 212Pb, 214Pb (214Bi), and 228Ac; and the gamma-lines used in the analysis are 238.6, 351.9 (and 609.2), and 911.2 keV, respectively. The 224Ra activity is determined from the first 1,000-min measurement performed after expulsion of radon from the sample. The 226Ra activity is determined from the second, 2,400-min measurement, made 3 to 5 d later, and the 228Ra activity is determined from either the first or the second measurement, depending on its concentration level. The method's minimum detectable activities are 0.017 Bq L(-1), 0.020 Bq L(-1), and 0.027 Bq L(-1) for 224Ra, 226Ra, and 228Ra, respectively, when measured under radioactive equilibrium. These limits are well within the National Primary Drinking Water Regulations required limit of 0.037 Bq L(-1) for 226Ra and for 228Ra. The precision and accuracy of the method, evaluated using the U.S. Environmental Protection Agency and the Environmental Resource Associates' quality control samples, were found to be within acceptable limits. PMID:14571995

  6. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney.

    PubMed

    Li, Chunling; Lin, Yu; Luo, Renfei; Chen, Shaoming; Wang, Feifei; Zheng, Peili; Levi, Moshe; Yang, Tianxin; Wang, Weidong

    2016-03-01

    Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid. PMID:26672616

  7. All-Trans Retinoic Acid Induces Expression of a Novel Intergenic Long Noncoding RNA in Adult rat Primary Hippocampal Neurons.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-02-01

    Around 90% of the mammalian genome undergoes pervasive transcription into various types of small and long regulatory noncoding RNAs, whereas only ∼ 1.5% codes for proteins. Long noncoding RNAs (lncRNAs) constitute diverse classes of sense- and antisense transcripts that are abundantly expressed in the mammalian central nervous system (CNS) in cell type- and developmental stage-specific manners. They are implicated in brain development, differentiation, neuronal plasticity, and other cognitive functions. Mammalian brain requires the vitamin A metabolite all-trans retinoic acid (atRA) for its normal development, differentiation, and cell-fate determination. However, its role in adult brain function is less understood. Here, we report atRA-mediated transcriptional upregulation of endogenous expression of a novel long intergenic noncoding RNA-rat brain expressed (LINC-RBE) in cultured primary hippocampal neurons from adult rat. We have previously reported LINC-RBE as an intergenic, simple repeat sequence containing lncRNA highly expressed in the rat brain. This is a first-time report of involvement of atRA in transcriptional upregulation of lncRNA expression in rat hippocampal neurons. Therefore, it may be involved in regulation of brain function and disease. PMID:26572536

  8. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

    PubMed

    Ton, Jurriaan; Jakab, Gabor; Toquin, Valérie; Flors, Victor; Iavicoli, Annalisa; Maeder, Muriel N; Métraux, Jean-Pierre; Mauch-Mani, Brigitte

    2005-03-01

    Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA-tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase-like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses. PMID:15722464

  9. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  10. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered. PMID:25363781

  11. Nitrosyl induces phosphorous-acid dissociation in ruthenium(II).

    PubMed

    Truzzi, Daniela Ramos; Ferreira, Antonio Gilberto; da Silva, Sebastião Claudino; Castellano, Eduardo Ernesto; Lima, Francisco das Chagas Alves; Franco, Douglas Wagner

    2011-12-28

    The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ⇌ trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C). PMID:22027926

  12. Effect of Retinoic Acid on Gene Expression in Human Conjunctival Epithelium: Secretory phospholipase A2 mediates retinoic acid induction of MUC16.

    PubMed Central

    Hori, Yuichi; Spurr-Michaud, Sandra J.; Russo, Cindy Leigh; Argüeso, Pablo; Gipson, Ilene K.

    2005-01-01

    Purpose. How vitamin A contributes to the maintenance of the wet-surfaced phenotype at the ocular surface is not well understood. We sought to identify vitamin A responsive genes in ocular surface epithelia using gene microarray analysis of cultures of a human conjunctival epithelial cell line (HCjE) grown with all-trans-retinoic acid (RA). The analysis showed that secretory phospholipase A2 Group IIA (sPLA2-IIA) was the gene most upregulated by RA, followed by the membrane-associated mucin MUC16 at a later time point. Since eicosanoids, the product of arachidonic acid generated by the phospholipase A2 family, have been shown to increase mucin production, we sought to determine if sPLA2 mediates the RA induction of MUC16. Methods. HCjE cells were cultured with or without RA for 3, 6, 24 and 48 hours. Complementary RNA prepared from RNA of the HCjE cells was hybridized to human gene chips (HG-U133A; Affymetrix) and analyzed using Rosetta Resolver software. Microarray data on mucin expression were validated by real-time PCR. To investigate whether sPLA2 is associated with RA-induced MUC16 upregulation, HCjE cells were incubated with RA and the broad spectrum PLA2 inhibitor, aristolochic acid (ArA) or the specific sPLA2-IIA inhibitor LY315920, followed by analysis of MUC16 mRNA and protein by real-time PCR and Western blot analysis. Results. After RA addition, 28 transcripts were upregulated and 6 downregulated by over 2.0-fold (p < 0.01) at both 3 and 6 hours (early phase). Eighty gene transcripts were upregulated and 45 downregulated at both 24 and 48 hours (late phase). Group IIA sPLA2, significantly upregulated by 24 hours, and MUC16 were the most upregulated RNAs by RA at 48 hours. sPLA2 upregulation by RA was confirmed by Western blot analysis. When HCjE cells were incubated with RA plus ArA or specific inhibitor of sPLA2-IIA, LY315920, the RA-induced MUC16 mRNA was significantly reduced (p < 0.01). Conclusion. The retinoic acid-associated upregulation of

  13. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. PMID:23279078

  14. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    PubMed Central

    Hao, Wenfang; Zhang, Jingyi; Hu, Gege; Yao, Yaqin; Dong, Juane

    2014-01-01

    Salicylic acid (SA) is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2) plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA) production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL) activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD) or scavenged by quencher (DMTU), RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation. PMID:24995364

  15. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  16. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    PubMed

    Sin, Yuan Yan; Ballantyne, Laurel L; Mukherjee, Kamalika; St Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  17. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    SciTech Connect

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young . E-mail: dyryu@snu.ac.kr

    2007-01-15

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3{beta}-hydroxysteroid dehydrogenase (HSD) and 17{beta}-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress.

  18. STRUCTURAL REMODELING OF PROTEOGLYCANS UPON RETINOIC ACID-INDUCED DIFFERENTIATION OF NCCIT CELLS*

    PubMed Central

    Gasimli, Leyla; Stansfield, Hope E.; Nairn, Alison V.; Liu, Haiying; Paluh, Janet L.; Yang, Bo; Dordick, Jonathan S.; Moremen, Kelley W.; Linhardt, Robert J.

    2012-01-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1500-fold and 2800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  19. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells.

    PubMed

    Gasimli, Leyla; Stansfield, Hope E; Nairn, Alison V; Liu, Haiying; Paluh, Janet L; Yang, Bo; Dordick, Jonathan S; Moremen, Kelley W; Linhardt, Robert J

    2013-07-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  20. Ulcer healing activity of Mumijo aqueous extract against acetic acid induced gastric ulcer in rats

    PubMed Central

    Shahrokhi, Nader; Keshavarzi, Zakieh; Khaksari, Mohammad

    2015-01-01

    Objective: Gastric ulcer is an important clinical problem, chiefly due to extensive use of some drugs. The aim was to assess the activity of Mumijo extract (which is used in traditional medicine) against acetic acid induced gastric ulcer in rats. Materials and Methods: The aqueous extract of Mumijo was prepared. Animals were randomly (n = 10) divided into four groups: Control, sham-operated group (received 0.2 ml of acetic acid to induce gastric ulcer), Mumijo (100 mg/kg/daily) were given for 4 days postacetic acid administration, and ranitidine group (20 mg/kg). The assessed parameters were pH and pepsin levels (by Anson method) of gastric contents and gastric histopathology. Ranitidine was used as reference anti-ulcer drug. Results: The extract (100 mg/kg/daily, p.o.) inhibited acid acetic-induced gastric ulceration by elevating its pH versus sham group (P < 0.01) and decreasing the pepsin levels compared to standard drug, ranitidine (P < 0.05). The histopathology data showed that the treatment with Mumijo extract had a significant protection against all mucosal damages. Conclusion: Mumijo extract has potent antiulcer activity. Its anti-ulcer property probably acts via a reduction in gastric acid secretion and pepsin levels. The obtained results support the use of this herbal material in folk medicine. PMID:25709338

  1. Hepatoprotective effect of vitamin C on lithocholic acid-induced cholestatic liver injury in Gulo(-/-) mice.

    PubMed

    Yu, Su Jong; Bae, Seyeon; Kang, Jae Seung; Yoon, Jung-Hwan; Cho, Eun Ju; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Wang Jae; Kim, Chung Yong; Lee, Hyo-Suk

    2015-09-01

    Prevention and restoration of hepatic fibrosis from chronic liver injury is essential for the treatment of patients with chronic liver diseases. Vitamin C is known to have hepatoprotective effects, but their underlying mechanisms are unclear, especially those associated with hepatic fibrosis. Here, we analyzed the impact of vitamin C on bile acid induced hepatocyte apoptosis in vitro and lithocholic acid (LCA)-induced liver injury in vitamin C-insufficient Gulo(-/-) mice, which cannot synthesize vitamin C similarly to humans. When Huh-BAT cells were treated with bile acid, apoptosis was induced by endoplasmic reticulum stress-related JNK activation but vitamin C attenuated bile acid-induced hepatocyte apoptosis in vitro. In our in vivo experiments, LCA feeding increased plasma marker of cholestasis and resulted in more extensive liver damage and hepatic fibrosis by more prominent apoptotic cell death and recruiting more intrahepatic inflammatory CD11b(+) cells in the liver of vitamin C-insufficient Gulo(-/-) mice compared to wild type mice which have minimal hepatic fibrosis. However, when vitamin C was supplemented to vitamin C-insufficient Gulo(-/-) mice, hepatic fibrosis was significantly attenuated in the liver of vitamin C-sufficient Gulo(-/-) mice like in wild type mice and this hepatoprotective effect of vitamin C was thought to be associated with both decreased hepatic apoptosis and necrosis. These results suggested that vitamin C had hepatoprotective effect against cholestatic liver injury. PMID:26057690

  2. The role of gastric mucosal histamine in acid secretion and experimentally induced lesions in the rat.

    PubMed

    Andersson, K; Mattsson, H; Larsson, H

    1990-01-01

    The role played by histamine from enterochromaffin-like (ECL) cells and mast cells in gastric acid secretion and in the development of ethanol-induced gastric lesions was studied in the rat. This was done by examining the effects of inhibition of the histamine-producing enzyme histidine decarboxylase (HDC) with alpha-fluoromethylhistidine (alpha-FMH) and the effects of degranulation of the mucosal mast cells with dexamethasone. A single dose of alpha-FMH (50 mg/kg p.o.) inhibited the HDC activity by 94% but did not affect histamine levels in the gastric mucosa 2 h after dose. Repeated treatment resulted in an almost complete inhibition of HDC activity and in a reduction of histamine levels by 75%. Pentagastrin failed to stimulate acid secretion after 4 days treatment with alpha-FMH, whereas the acid response to histamine was unaffected in chronic gastric fistula rats. Ethanol failed to induce gastric lesions in rats pretreated for 4 days with dexamethasone whereas 4 days pretreatment with alpha-FMH did not influence ethanol-induced lesion formation. The present results show that histamine synthesis is required for pentagastrin-stimulated gastric acid secretion and that mucosal mast-cell histamine plays a role in the development of ethanol-induced gastric lesions. PMID:2210091

  3. APOPTOSIS AND PROLIFERATION DURING DICHLOROACETIC ACID (DCA) INDUCED HEPTACELLULAR CARCINOGENESIS IN THE F344 MALE RAT

    EPA Science Inventory

    Apoptosis and Proliferation During DicWoroacetic Acid (DCA) Induced Hepatocellular
    Carcinogenesis in the F344 Male Rat

    Chlorine, introduced into public drinking \\\\'ater supplies for disinfection, can react with organic compounds in surface waters to form toxic by-prod...

  4. Lipophilic modification enhances anti-colitic properties of rosmarinic acid by potentiating its HIF-prolyl hydroxylases inhibitory activity.

    PubMed

    Jeong, Seongkeun; Park, Huijeong; Hong, Sungchae; Yum, Soohwan; Kim, Wooseong; Jung, Yunjin

    2015-01-15

    Inhibition of hypoxia inducible factor-prolyl hydroxylase-2 (HPH), leading to activation of hypoxia inducible factor (HIF)-1 is a potential therapeutic strategy for the treatment of colitis. Rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid is a naturally occurring polyphenolic compound with two catechols, a or inhibition of HPH. To improve accessibility of highly hydrophilic RA to HPH, an intracellular target, RA was chemically modified to decrease hydrophilicity. Of the less-hydrophilic derivatives, rosmarinic acid methyl ester (RAME) most potently inhibited HPH. Accordingly, RAME prevented hydroxylation of HIF-1α and consequently stabilized HIF-1α protein in cells. RAME inhibition of HPH and induction of HIF-1α were diminished by elevated doses of the required factors of HPH, 2-ketoglutarate and ascorbate. RAME induction of HIF-1α led to activation of an ulcer healing pathway, HIF-1-vascular endothelial growth factor (VEGF), in human colon carcinoma cells. RAME administered rectally ameliorated TNBS-induced rat colitis and substantially decreased the levels of pro-inflammatory mediators in the inflamed colonic tissue. In parallel with the cellular effects of RAME, RAME up-regulated HIF-1α and VEGF in the inflamed colonic tissue. Thus, lipophilic modification of RA improves its ability to inhibit HPH, leading to activation of the HIF-1-VEGF pathway. RAME, a lipophilic RA derivative, may exert anti-colitic effects via activation of the ulcer healing pathway. PMID:25483211

  5. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  6. Excessive versus physiologically relevant levels of retinoic acid in embryonic stem cell differentiation.

    PubMed

    Sheikh, Bilal N; Downer, Natalie L; Kueh, Andrew J; Thomas, Tim; Voss, Anne K

    2014-06-01

    Over the past two decades, embryonic stem cells (ESCs) have been established as a valuable system to study the complex molecular events that underlie the collinear activation of Hox genes during development. When ESCs are induced to differentiate in response to retinoic acid (RA), Hox genes are transcriptionally activated in their chromosomal order, with the most 3' Hox genes activated first, sequentially followed by more 5' Hox genes. In contrast to the low levels of RA detected during gastrulation (∼33 nM), a time when Hox genes are induced during embryonic development, high levels of RA are used to study Hox gene activation in ESCs in vitro (1-10 µM). This compelled us to compare RA-induced ESC differentiation in vitro with Hox gene activation in vivo. In this study, we show that treatment of ESCs for 2 days with RA best mimics activation of Hox genes during embryonic development. Furthermore, we show that defects in Hox gene expression known to occur in embryos lacking the histone acetyltransferase MOZ (also called MYST3 or KAT6A) were masked in Moz-deficient ESCs when excessive RA (0.5-5 µM) was used. The role of MOZ in Hox gene activation was only evident when ESCs were differentiated at low concentrations of RA, namely 20 nM, which is similar to RA levels in vivo. Our results demonstrate that using RA at physiologically relevant levels to study the activation of Hox genes, more accurately reflects the molecular events during the early phase of Hox gene activation in vivo. PMID:25099890

  7. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway. PMID:26559024

  8. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  9. Evaluation of docosahexaenoic acid in a dog model of hypertension induced left ventricular hypertrophy.

    PubMed

    Stanley, William C; Cox, James W; Asemu, Girma; O'Connell, Kelly A; Dabkowski, Erinne R; Xu, Wenhong; Ribeiro, Rogerio F; Shekar, Kadambari C; Hoag, Stephen W; Rastogi, Sharad; Sabbah, Hani N; Daneault, Caroline; des Rosiers, Christine

    2013-12-01

    Marine n-3 polyunsaturated fatty acids alter cardiac phospholipids and prevent cardiac pathology in rodents subjected to pressure overload. This approach has not been evaluated in humans or large animals with hypertension-induced pathological hypertrophy. We evaluated docosahexaenoic acid (DHA) in old female dogs with hypertension caused by 16 weeks of aldosterone infusion. Aldosterone-induced hypertension resulted in concentric left ventricular (LV) hypertrophy and impaired diastolic function in placebo-treated dogs. DHA supplementation increased DHA and depleted arachidonic acid in cardiac phospholipids, but did not improve LV parameters compared to placebo. Surprisingly, DHA significantly increased serum aldosterone concentration and blood pressure compared to placebo. Cardiac mitochondrial yield was decreased in placebo-treated hypertensive dogs compared to normal animals, which was prevented by DHA. Extensive analysis of mitochondrial function found no differences between DHA and placebo groups. In conclusion, DHA did not favorably impact mitochondrial or LV function in aldosterone hypertensive dogs. PMID:24065618

  10. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  11. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid.

    PubMed

    Wang, Jinbo; Qi, Lili; Mei, Lehe; Wu, Zhige; Wang, Hengzheng

    2016-07-01

    Lipoteichoic acid (LTA) is one of microbe-associated molecular pattern (MAMP) molecules of gram-positive bacteria. In this study, we demonstrated that Clostridium butyricum LTA (bLTA) significantly inhibited the inflammatory response and apoptosis induced by Staphylococcus aureus LTA (aLTA) in HT-29 cells. aLTA stimulated the inflammatory responses by activating a strong signal transduction cascade through NF-κB and ERK, but bLTA did not activate the signaling pathway. bLTA pretreatment inhibited the activation of the NF-κB and ERK signaling pathway induced by aLTA. The expression and release of cytokines such as IL-8 and TNF-α were also suppressed by bLTA pretreatment. aLTA treatment induced apoptosis in HT-29 cells, but bLTA did not affect the viability of the cells. Further study indicated that bLTA inhibited apoptosis in HT-29 cells induced by aLTA. These results suggest that bLTA may act as an aLTA antagonist and that an antagonistic bLTA may be a useful agent for suppressing the pro-inflammatory activities of gram-positive pathogenic bacteria. PMID:27020942

  12. Ascorbic Acid Ameliorates Nicotine Exposure Induced Impaired Spatial Memory Performance in Rats

    PubMed Central

    Sirasanagandla, SR; Rooben, RK; Rajkumar; Narayanan, SN; Jetti, R

    2014-01-01

    Introduction: The long lasting behavioural and cognitive impairments in offspring prenatally exposed to nicotine have been confirmed in animal models. In the present study, we investigated the effect of ascorbic acid on prenatal nicotine exposure induced behavioural deficits in male offspring of rats. Methods: The pregnant Wistar dams were divided into four groups of six rats: control, vehicle control, nicotine and nicotine+ascorbic acid groups. The nicotine group received daily dose of subcutaneous injections of 0.96 mg/kg body weight (bw) nicotine free base throughout gestation. Pregnant dams in nicotine+ascorbic acid group were first given nicotine free base (0.96 mg/kg bw/day; subcutaneous route) followed by ascorbic acid (50 mg/kg bw/day, orally) daily throughout gestation. The cognitive function of male offspring of all the experimental groups was studied using Morris water maze test at postnatal day 40. Results: Prenatal nicotine exposure altered spatial learning and memory in male offspring. However, treatment with ascorbic acid ameliorated these changes in rats. Conclusion: Ascorbic acid supplementation was found to be effective in preventing the prenatal nicotine exposure induced cognitive deficits in rat offspring to some extent. PMID:25429474

  13. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy.

    PubMed

    Roncal-Jimenez, Carlos; García-Trabanino, Ramón; Barregard, Lars; Lanaspa, Miguel A; Wesseling, Catharina; Harra, Tamara; Aragón, Aurora; Grases, Felix; Jarquin, Emmanuel R; González, Marvin A; Weiss, Ilana; Glaser, Jason; Sánchez-Lozada, Laura G; Johnson, Richard J

    2016-01-01

    Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention. PMID:26455995

  14. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    PubMed Central

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  15. Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips.

    PubMed

    Skrzypek, Edyta; Miyamoto, Kensuke; Saniewski, Marian; Ueda, Junichi

    2005-02-01

    The purpose of this study was to identify endogenous factors that induce gummosis and to show their role in gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) stems. Using procedures to detect endogenous factors that induce gum in the stem of tulips, jasmonic acid (JA) and methyl jasmonate (JA-Me) were successfully identified using gas-liquid chromatography-mass spectrometry. Total amounts of JA and JA-Me designated as jasmonates in tulip stems were also estimated at about 70-80 ng/g fresh weight, using deuterium-labeled jasmonates as internal standards. The application of JA and JA-Me as lanolin pastes substantially induced gums in tulip stems with ethylene production. The application of ethephon, an ethylene-generating compound, however, induced no gummosis although it slightly affected jasmonate content in tulip stems. These results strongly suggest that JA and JA-Me are endogenous factors that induce gummosis in tulip stems. PMID:15654503

  16. EGFR Inhibition Blocks Palmitic Acid-induced inflammation in cardiomyocytes and Prevents Hyperlipidemia-induced Cardiac Injury in Mice.

    PubMed

    Li, Weixin; Fang, Qilu; Zhong, Peng; Chen, Lingfeng; Wang, Lintao; Zhang, Yali; Wang, Jun; Li, Xiaokun; Wang, Yi; Wang, Jingying; Liang, Guang

    2016-01-01

    Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases. PMID:27087279

  17. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  18. Human renal mesangial cells are a target for the anti-inflammatory action of 9-cis retinoic acid

    PubMed Central

    Manzano, V Moreno; Muñoz, J C Sepúlveda; Jiménez, J Rodriguez; Puyol, M Rodriguez; Puyol, D Rodriguez; Kitamura, M; Cazaña, F J Lucio

    2000-01-01

    Mesangial cells play an active role in the inflammatory response to glomerular injury. We have studied in cultured human mesangial cells (CHMC) several effects of 9-cis retinoic acid (9-cRA), an activator of both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). 9-cRA inhibited foetal calf serum-induced CHMC proliferation. It also prevented CHMC death induced by the inflammatory mediator H2O2. This preventive effect was not due to any increase in H2O2 catabolism and it persisted even when both catalase and glutathione synthesis were inhibited. Finally, 9-cRA diminished monocyte adhesion to FCS-stimulated CHMC. Interestingly, the retinoid also inhibited in FCS-stimulated cells the protein expression of two mesangial adhesion molecules, fibronectin and osteopontin, but it did not modify the protein expression of intercellular adhesion molecule-1 and vascular adhesion molecule-1. All major RARs and RXRs isotypes were expressed in CHMC regardless of the presence or absence of 9-cRA. Transcripts to RAR-α, RAR-β and RXR-α increased after incubation with 9-cRA whereas RXR-γ was inhibited, suggesting a major role for RARs and RXRs in 9-cRA-anti-inflammatory effects. 9-cRA was toxic only at 50 μM (a concentration 50–5000 times higher than required for the effects above). Cell death occurred by apoptosis, whose onset was associated with a pronounced increase in catalase activity and reduced glutathione content, being more effectively induced by all-trans retinoic acid. Modulation of the oxidant/antioxidant balance failed to inhibit apoptosis. We conclude that mesangial cells might be a target for the treatment of inflammatory glomerulopathies with 9-cRA. PMID:11139446

  19. Improved limit on the 225Ra electric dipole moment

    NASA Astrophysics Data System (ADS)

    Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.; Greene, John P.; Holt, Roy J.; Kalita, Mukut R.; Korsch, Wolfgang; Lemke, Nathan D.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Singh, Jaideep T.; Dietrich, Matthew R.

    2016-08-01

    Background: Octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first "proof-of-principle" measurement of the 225Ra atomic EDM. Purpose: This work reports on the first of several experimental upgrades to improve the statistical sensitivity of our 225Ra EDM measurements by orders of magnitude and evaluates systematic effects that contribute to current and future levels of experimental sensitivity. Method: Laser-cooled and trapped 225Ra atoms are held between two high-voltage electrodes in an ultrahigh-vacuum chamber at the center of a magnetically-shielded environment. We observe Larmor precession in a uniform magnetic field using nuclear-spin-dependent laser light scattering and look for a phase shift proportional to the applied electric field, which indicates the existence of an EDM. The main improvement to our measurement technique is an order-of-magnitude increase in spin-precession time, which is enabled by an improved vacuum system and a reduction in trap-induced heating. Results: We have measured the 225Ra atomic EDM to be less than 1.4 ×10-23e cm (95 % confidence upper limit), which is a factor of 36 improvement over our previous result. Conclusions: Our evaluation of systematic effects shows that this measurement is completely limited by statistical uncertainty. Combining this measurement technique with planned experimental upgrades, we project a statistical sensitivity at the 1 ×10-28e cm level and a total systematic uncertainty at the 4 ×10-29e cm level.

  20. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    PubMed

    Obata, Toshio; Nakashima, Michiko

    2016-03-01

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *p<0.05). To examine the effect of phytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation. PMID:26724394

  1. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity. PMID:24325390

  2. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRα in human umbilical vein endothelial cells.

    PubMed

    Li, Yong; Zhang, Xiao-Shi; Yu, Jin-Long

    2016-03-01

    Acanthoic acid, a pimaradiene diterpene isolated from Acanthopanax koreanum, has been reported to have anti-inflammatory activities. However, the effect of acanthoic acid on vascular inflammation has not been investigated. The aim of this study was to investigate the anti-inflammatory effects of acanthoic acid on lipopolysaccharide (LPS)-induced inflammatory response in human umbilical vein endothelial cells (HUVECs). The production of cytokines TNF-α and IL-8 was detected by ELISA. The expression of VCAM-1, ICAM-1, E-selectin, NF-κB and LXRα were detected by Western blotting. Adhesion of monocytes to HUVECs was detected by monocytic cell adhesion assay. The results showed that acanthoic acid dose-dependently inhibited LPS-induced TNF-α and IL-8 production. Acanthoic acid also inhibited TNF-α-induced IL-8 and IL-6 production. LPS-induced endothelial cell adhesion molecules, VCAM-1 and ICAM-1 were also inhibited by acanthoic acid. Acanthoic acid inhibited LPS-induced NF-κB activation. Furthermore, acanthoic acid dose-dependently up-regulated the expression of LXRα. In addition, our results showed that the anti-inflammatory effect of acanthoic acid was attenuated by transfection with LXRα siRNA. In conclusion, the anti-inflammatory effect of acanthoic acid is due to its ability to activate LXRα. Acanthoic acid may be a therapeutic agent for inflammatory cardiovascular disease. PMID:26803523

  3. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    PubMed

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  4. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2

    PubMed Central

    Ye, Jiangbin; Palm, Wilhelm; Peng, Min; King, Bryan; Lindsten, Tullia; Li, Ming O.; Koumenis, Constantinos; Thompson, Craig B.

    2015-01-01

    Mammalian cells possess two amino acid-sensing kinases: general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). Their combined effects orchestrate cellular adaptation to amino acid levels, but how their activities are coordinated remains poorly understood. Here, we demonstrate an important link between GCN2 and mTORC1 signaling. Upon deprivation of various amino acids, activated GCN2 up-regulates ATF4 to induce expression of the stress response protein Sestrin2, which is required to sustain repression of mTORC1 by blocking its lysosomal localization. Moreover, Sestrin2 induction is necessary for cell survival during glutamine deprivation, indicating that Sestrin2 is a critical effector of GCN2 signaling that regulates amino acid homeostasis through mTORC1 suppression. PMID:26543160

  5. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.

    PubMed

    Ye, Jiangbin; Palm, Wilhelm; Peng, Min; King, Bryan; Lindsten, Tullia; Li, Ming O; Koumenis, Constantinos; Thompson, Craig B

    2015-11-15

    Mammalian cells possess two amino acid-sensing kinases: general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). Their combined effects orchestrate cellular adaptation to amino acid levels, but how their activities are coordinated remains poorly understood. Here, we demonstrate an important link between GCN2 and mTORC1 signaling. Upon deprivation of various amino acids, activated GCN2 up-regulates ATF4 to induce expression of the stress response protein Sestrin2, which is required to sustain repression of mTORC1 by blocking its lysosomal localization. Moreover, Sestrin2 induction is necessary for cell survival during glutamine deprivation, indicating that Sestrin2 is a critical effector of GCN2 signaling that regulates amino acid homeostasis through mTORC1 suppression. PMID:26543160

  6. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  7. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  8. Profile of capsaicin-induced mouse ear oedema as neurogenic inflammatory model: comparison with arachidonic acid-induced ear oedema.

    PubMed Central

    Inoue, H.; Nagata, N.; Koshihara, Y.

    1993-01-01

    1. We have investigated the mechanism of capsaicin-induced mouse ear oedema compared with that of arachidonic acid (AA)-induced ear oedema, and evaluated the possible involvement of neuropeptides in the development of capsaicin-induced oedema. 2. Topical application of capsaicin (0.1-1.0 mg per ear) to the ear of mice produced immediate vasodilatation and erythema followed by the development of oedema which was maximal at 30 min after the treatment. This oedema was of shorter duration with less swelling than AA-induced oedema (2.0 mg per ear). 3. Capsaicin-induced ear oedema was unaffected when inhibitors of arachidonate metabolites including platelet activating factor (PAF) were administered before capsaicin (250 micrograms per ear) application, while these agents significantly prevented AA-induced oedema. Dexamethasone, histamine H1 and/or 5-hydroxytryptamine (5-HT) antagonists, and substance P (SP) antagonists were effective in inhibiting both models. Furthermore, a Ca(2+)-channel blocker and the capsaicin inhibitor, ruthenium red, were effective inhibitors of capsaicin oedema but had no effect on AA-induced oedema. 4. Phosphoramidon (50 micrograms kg-1, i.v.), an endopeptidase inhibitor, markedly (P < 0.001) enhanced only capsaicin-induced ear oedema, but bestatin (0.5 mg kg-1, i.v.), an aminopeptidase, failed to enhance oedema formation. 5. Neuropeptides (1-100 pmol per site) such as rat calcitonin gene-related peptide (CGRP), SP, neurokinin A (NKA), and vasoactive intestinal peptide (VIP), which are released from capsaicin-sensitive neurones, caused ear oedema by intradermal injection. Furthermore, a synergistic effect of CGRP (10 fmol per site) and SP (10pmol per site) on oedema formation was observed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7508328

  9. Effects of L-glutamine on acetylsalycylic acid induced gastric lesions and acid back diffusion in dogs.

    PubMed

    Hung, C R; Takeuchi, K; Okabe, S; Murata, T; Takagi, K

    1976-12-01

    Effects of L-glutamine on acetylsalicylic acid (ASA)-induced gastric mucosal lesions were studied in mongrel dogs. It was confirmed that when oral ASA at 1.0 or 2.0 g per dog is given in two divided doses, there is severe and consistent dose-dependent mucosal damage in the glandular portion of the stomach in fasted dogs. However, when L-glutamine 2.0 or 4.0 g per dog in two divided doses is given concomitantly with ASA 2.0 g per dog orally, the gastric irritation is significantly inhibited. Instillation of 20 mM of ASA in 100 mM HCl solution into the Heidenhain pouch of Beagle dogs produced a significant loss of H+ from the pouch and a gain of Na+ in the lumen compared with ASA-free controls. When L-glutamine (100 mM) was given concomitantly with ASA (20 mM) into the pouch, changes of electrolyte fluxes in response to ASA alone were significantly suppressed. However, 50 mM of L-glutamine had no appreciable effect on acid back diffusion caused by ASA 20 mM. The amino acid itself had little effect on the ionic movement in the pouch. Gross bleeding from the pouch treated with ASA was never observed with the concomitant dosing of ASA and L-glutamine 50 or 100 mM. PMID:15154

  10. Glycodeoxycholic Acid Levels as Prognostic Biomarker in Acetaminophen-Induced Acute Liver Failure Patients

    PubMed Central

    Woolbright, Benjamin L.; McGill, Mitchell R.; Staggs, Vincent S.; Winefield, Robert D.; Gholami, Parviz; Olyaee, Mojtaba; Sharpe, Matthew R.; Curry, Steven C.; Lee, William M.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) remains a major clinical problem. Although a majority of patients recovers after severe liver injury, a subpopulation of patients proceeds to ALF. Bile acids are generated in the liver and accumulate in blood during liver injury, and as such, have been proposed as biomarkers for liver injury and dysfunction. The goal of this study was to determine whether individual bile acid levels could determine outcome in patients with APAP-induced ALF (AALF). Serum bile acid levels were measured in AALF patients using mass spectrometry. Bile acid levels were elevated 5–80-fold above control values in injured patients on day 1 after the overdose and decreased over the course of hospital stay. Interestingly, glycodeoxycholic acid (GDCA) was significantly increased in non-surviving AALF patients compared with survivors. GDCA values obtained at peak alanine aminotransferase (ALT) and from day 1 of admission indicated GDCA could predict survival in these patients by receiver-operating characteristic analysis (AUC = 0.70 for day 1, AUC = 0.68 for peak ALT). Of note, AALF patients also had significantly higher levels of serum bile acids than patients with active cholestatic liver injury. These data suggest measurements of GDCA in this patient cohort modestly predicted outcome and may serve as a prognostic biomarker. Furthermore, accumulation of bile acids in serum or plasma may be a result of liver cell dysfunction and not cholestasis, suggesting elevation of circulating bile acid levels may be a consequence and not a cause of liver injury. PMID:25239633

  11. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  12. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage.

    PubMed

    Wang, Ying-Jan; Yang, Ming-Chen; Pan, Ming-Hsiung

    2008-12-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has seldom been studied. Tetrachlorohydroquinone (TCHQ) is a toxic metabolite of pentachlorophenol (PCP) that was proven to be a tumor promoter in our previous study. We recently reported that DHLA can inhibit DMBA/TPA-induced skin tumor formation through its anti-inflammatory and anti-oxidizing functions. In the present study, we further examined the effects of DHLA on DMBA/TCHQ-induced skin tumor formation and the possible mechanisms. We found that DHLA significantly inhibited tumor incidence and tumor multiplicity in DMBA/TCHQ-induced skin tumor formation. Administration of DHLA prevented ROS generation, cytotoxicity, genotoxicity and apoptotic cell death in cells treated with TCHQ. In addition, activation of JNK and p38 MAPK may be involved in TCHQ-mediated apoptosis. Nonetheless, the detailed mechanisms of DHLA in attenuating TCHQ-induced skin tumor promotion are still unclear and need to be further investigated. We conclude that DHLA may be a useful protective agent against TCHQ-induced toxicity in epithelial cells, and for reversing TCHQ-induced damage in mouse skin. PMID:18951944

  13. Acetylsalicylic Acid Inhibits IL-18-Induced Cardiac Fibroblast Migration Through the Induction of RECK

    PubMed Central

    SIDDESHA, JALAHALLI M.; VALENTE, ANTHONY J.; SAKAMURI, SIVA S.V.P.; GARDNER, JASON D.; DELAFONTAINE, PATRICE; NODA, MAKOTO; CHANDRASEKAR, BYSANI

    2015-01-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18 induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18 induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Spl-mediated RECK suppression, mechanisms that required Nox4-dependent H2O2 generation. Notably, forced expression of RECK attenuated IL-18 induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18 induced H2O2 generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18 induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. PMID:24265116

  14. Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice.

    PubMed

    Palencia, Guadalupe; Hernández-Pedro, Norma; Saavedra-Perez, David; Peña-Curiel, Omar; Ortiz-Plata, Alma; Ordoñez, Graciela; Flores-Estrada, Diana; Sotelo, Julio; Arrieta, Oscar

    2014-08-01

    In humans, exposure to organic solvents (OS) is frequent in work activities or as a recreational inhalant, inducing severe neuropathy (secondary to demyelization of peripheral nerves). We have previously shown that all-trans retinoic acid (ATRA) increases local content of neural growth factor (NGF), improving peripheral neuropathy of diverse origins. In this study, we evaluated the effect of ATRA on OS-induced peripheral neuropathy in experimental mice. Two simultaneous experiments were performed. The first one aimed to evaluate ATRA for the prevention of damage induced by OS, the second to test ATRA as an OS-induced neuropathy treatment. Nociceptive threshold latency and NGF concentration in serum and in peripheral nerves were determined. Morphological changes and evidence of sciatic nerve regeneration were evaluated. Mice exposed to OS developed neuropathy and axonal degeneration. ATRA diminished the effects of OS inhalation on sensorial changes and nerve morphology. Treatment with ATRA reversed sensorial and nerve morphological changes of OS-induced neuropathy, and this was associated with increased contents of NGF. Similar to previous experiences on diabetic and toxic neuropathy, ATRA reduced and partially reversed the peripheral neuropathy caused by OS exposure. These favorable effects apparently are due to local production of NGF induced by neural regeneration in response to the administration of retinoic acid. PMID:24647975

  15. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK.

    PubMed

    Siddesha, Jalahalli M; Valente, Anthony J; Sakamuri, Siva S V P; Gardner, Jason D; Delafontaine, Patrice; Noda, Makoto; Chandrasekar, Bysani

    2014-07-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. PMID:24265116

  16. Cardiovascular risk factor management in patients with RA compared to matched non-RA patients

    PubMed Central

    Cawston, Helene; Bourhis, Francois; Al, Maiwenn; Rutten-van Mölken, Maureen P. M. H.; Liao, Katherine P.; Solomon, Daniel H.

    2016-01-01

    Objective. RA is associated with a 50–60% increase in risk of cardiovascular (CV) death. This study aimed to compare management of CV risk factors in RA and matched non-RA patients. Methods. A retrospective cohort study was conducted using UK clinical practice data. Patients presenting with an incident RA diagnosis were matched 1:4 to non-RA patients based on a propensity score for RA, entry year, CV risk category and treatment received at index date (date of RA diagnosis). Patients tested and treated for CV risk factors as well as those attaining CV risk factor management goals were evaluated in both groups. Results. Between 1987 and 2010, 24 859 RA patients were identified and matched to 87 304 non-RA patients. At index date, groups had similar baseline characteristics. Annual blood pressure, lipids and diabetes-related testing were similar in both groups, although CRP and ESR were higher in RA patients at diagnosis and decreased over time. RA patients prescribed antihypertensives increased from 38.2% at diagnosis to 45.7% at 5 years, from 14.0 to 20.6% for lipid-lowering treatments and from 5.1 to 6.4% for antidiabetics. Similar treatment percentages were observed in non-RA patients, although slightly lower for antihypertensives. Modest (2%) but significantly lower attainment of lipid and diabetes goals at 1 year was observed in RA patients. Conclusion. There were no differences between groups in the frequency of testing and treatment of CV risk factors. Higher CV risk in RA patients seems unlikely to be driven by differences in traditional CV risk factor management. PMID:26705329

  17. Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts.

    PubMed

    Kim, Hyeon Ho; Shin, Chung Min; Park, Chi-Hyun; Kim, Kyu Han; Cho, Kwang Hyun; Eun, Hee Chul; Chung, Jin Ho

    2005-08-01

    Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging. PMID:15930517

  18. All-trans retinoic acid mitigates methotrexate-induced liver injury in rats; relevance of retinoic acid signaling pathway.

    PubMed

    Ewees, Mohamed G; Abdelghany, Tamer M; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2015-09-01

    Methotrexate (MTX) is a widely used drug for treatment of rheumatic and autoimmune diseases as well as different types of cancer. One of the major side effects of MTX is hepatotoxicity. Retinoid receptors, including retinoid X receptor (RXR), and retinoic acid receptor (RAR) are vitamin A receptors that are highly expressed in the liver and regulate important physiological processes through regulation of different genes. In this study, we investigated the effect of MTX on RXR-α and RAR-α expression in the liver and the potential protective effects of all-trans retinoic acid (ATRA) in MTX-induced hepatotoxicity. Rats were randomly divided into five groups: The rates were treated with saline, DMSO, MTX (20 mg/kg/IP; single dose), ATRA (7.5 mg/kg/day, I.P), or MTX and ATRA. Rats were killed 24 h after the last ATRA injection. The liver tissues were dissected out, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Our results demonstrated that treatment with MTX resulted in significant decrease in reduced glutathione (GSH) content and superoxide dismutase (SOD) activity, with concomitant increase in ALT, AST, and MDA levels. In addition, MTX markedly downregulated the expression of both RXR-α and RAR-α, and changed the appearance of RXR-α to be very small speckled droplets. Treatment with ATRA significantly ameliorated MTX-induced effects on GSH, ALT, and MDA. Moreover, ATRA administration increased the expression and nuclear translocation of RXR-α in rat hepatocytes. In conclusion, our study revealed, for the first time, that retinoid receptors may play an important role in the MTX-induced hepatotoxicity. PMID:25971792

  19. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety. PMID:26791830

  20. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.

    PubMed

    Zong, Nan; Li, Fei; Deng, Yuanyuan; Shi, Jingshan; Jin, Feng; Gong, Qihai

    2016-10-15

    Excitotoxicity is one of the most extensively studied causes of neuronal death and plays an important role in Alzheimer's disease (AD). Icariin is a flavonoid component of a traditional Chinese medicine reported to possess a broad spectrum of pharmacological effects. The present study was designed to investigate the effects of icariin against learning and memory impairment induced by excitotoxicity. Here, we demonstrated that rats receiving intracerebroventricular injection of excitatory neurotoxin ibotenic acid exhibited impaired learning and memory. Oral administration of icariin at doses of 20 and 40mg/kg rescued behavioral performance and protected against neurotoxicity in rat hippocampus by suppressing ibotenic acid induced pro-apoptosis. Furthermore, Western blott of hippocampal specimens revealed that icariin up-regulated the expression of calbindin-D28k protein following ibotenic acid administration. Additionally, icariin inhibited mitogen-activated protein kinase (MAPK) family phosphorylation and nuclear factor kappa B (NF-κB) signaling, implicating the MAPK signaling and NF-κB signaling pathways were involved in the mechanism underlying icariin-mediated neuroprotection against ibotenic acid-induced excitotoxicity. These data suggested that icariin could be a potential agent for treatment of excitotoxicity-related diseases, including AD. PMID:27368415

  1. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  2. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells.

    PubMed

    Gao, Rui-wei; Kong, Xiang-yong; Zhu, Xiao-xi; Zhu, Guo-qing; Ma, Jin-shuai; Liu, Xiu-xiang

    2015-05-01

    Retinoic acid (RA) plays an important role in lung development and maturation. Many stimuli can induce alveolar epithelial cell damage which will result in the injury of lung parenchyma. The aim of this study was to observe the effect of RA on the proliferation and differentiation of primary fetal alveolar epithelial type II cells (fAECIIs). Primary fAECIIs were isolated from fetal rats at 19 d of gestation and purified by a differential centrifugation and adhesion method. The cells were randomly divided into control (dimethyl sulfoxide, DMSO) and RA groups. Cell proliferation, viability, apoptosis, cycle, and expression of target protein were examined at 24, 48, and 72 h. We found that the proliferation and viability of cells in the RA-exposed group significantly increased compared with the DMSO control group. The proportion (%) of cells in the G2 and S phases in the RA group was significantly higher than that in control group cells. The proportion (%) of both early apoptotic cells and late apoptotic cells decreased significantly in cells exposed to RA compared with cells exposed to DMSO. RA significantly enhanced the expression of aquaporin 5 (AQP5). The expression level of pulmonary surfactant C (SPC) was elevated after cells were exposed to RA for 24 and 72 h but was inhibited when cells were exposed to RA for 48 h. These results suggest that RA promotes fAECII proliferation by improving cell viability, promoting S phase entry and inhibiting apoptosis and RA promotes fAECIIs differentiation to alveolar epithelial type I cells (AECIs). PMID:25515249

  3. Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product.

    PubMed

    Hylemon, P B; Melone, P D; Franklund, C V; Lund, E; Björkhem, I

    1991-01-01

    We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium. PMID:2010697

  4. SIRT1-mediated deacetylation of CRABPII regulates cellular retinoic acid signaling and modulates embryonic stem cell differentiation

    PubMed Central

    Tang, Shuang; Huang, Gang; Fan, Wei; Chen, Yue; Ward, James M.; Xu, Xiaojiang; Xu, Qing; Kang, Ashley; McBurney, Michael W.; Fargo, David C.; Hu, Guang; Baumgart-Vogt, Eveline; Zhao, Yingming; Li, Xiaoling

    2014-01-01

    Summary Retinoid homeostasis is critical for normal embryonic development. Both the deficiency and excess of these compounds are associated with congenital malformations. Here we demonstrate that SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, contributes to homeostatic retinoic acid (RA) signaling and modulates mouse embryonic stem cell (mESC) differentiation in part through deacetylation of cellular retinoic acid binding protein II (CRABPII). We show that RA-mediated acetylation of CRABPII at K102 is essential for its nuclear accumulation and subsequent activation of RA signaling. SIRT1 interacts with and deacetylates CRABPII, regulating its subcellular localization. Consequently, SIRT1 deficiency induces hyper-acetylation and nuclear accumulation of CRABPII, enhancing RA signaling and accelerating mESC differentiation in response to RA. Consistently, SIRT1 deficiency is associated with elevated RA signaling and development defects in mice. Our findings reveal a novel molecular mechanism that regulates RA signaling, and highlight the importance of SIRT1 in regulation of ESC pluripotency and embryogenesis. PMID:25155613

  5. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    PubMed Central

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials. PMID:24009840

  6. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  7. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxy