Science.gov

Sample records for acid ra induces

  1. RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells

    PubMed Central

    Bunaciu, Rodica P.; Yen, Andrew

    2016-01-01

    All-trans-retinoic acid (RA) is known to induce terminal granulocytic differentiation and cell cycle arrest of HL-60 cells. Responding to an RA-induced cytosolic signaling machine, c-Raf translocates to the nucleus, providing propulsion for RA-induced differentiation. This novel mechanism is not understood, but presumably reflects c-Raf binding with nuclear gene regulatory proteins. RRD-251 is a small molecule that prevents the interaction of c-Raf and RB, the retinoblastoma tumor suppressor protein. The involvement of c-Raf and RB in RA-induced differentiation motivates interest in the effects of combined RA and RRD-251 treatment on leukemic cell differentiation. We demonstrate that RRD-251 enhances RA-induced differentiation. Mechanistically, we find that nuclear translocated c-Raf associates with pS608 RB. RA causes loss of pS608 RB, where cells with hypophosphorylated S608 RB are G0/G1 restricted. Corroborating the pS608 RB hypophosphorylation, RB sequestration of E2F increased with concomitant loss of cdc6 expression, which is known to be driven by E2F. Hypophosphorylation of S608 RB releases c-Raf from RB sequestration to bind other nuclear targets. Release of c-Raf from RB sequestration results in enhanced association with GSK-3 which is phosphorylated at its S21/9 inhibitory sites. c-Raf binding to GSK-3 is associated with dissociation of GSK-3 and RARα, thereby relieving RARα of GSK-3 inhibition. RRD-251 amplifies each of these RA-induced events. Consistent with the posited enhancement of RARα transcriptional activity by RRD-251, RRD-251 increases the RARE-driven CD38 expression per cell. The RA/c-Raf/GSK-3/RARα axis emerges as a novel differentiation regulatory mechanism susceptible to RRD-251, suggesting enhancing RA-effects with RRD-251 in therapy. PMID:27331409

  2. Altered expression of retinoic acid (RA) receptor mRNAs in the fetal mouse secondary palate by all-trans and 13-cis RAs: implications for RA-induced teratogenesis.

    PubMed

    Naitoh, H; Mori, C; Nishimura, Y; Shiota, K

    1998-01-01

    Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.

  3. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins

    PubMed Central

    Rego, Eduardo M.; He, Li-Zhen; Warrell, Raymond P.; Wang, Zhu-Gang; Pandolfi, Pier Paolo

    2000-01-01

    Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL. PMID:10954752

  4. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation.

    PubMed

    Busada, Jonathan T; Geyer, Christopher B

    2016-01-01

    Retinoic acid (RA) directs the sequential, but distinct, programs of spermatogonial differentiation and meiotic differentiation that are both essential for the generation of functional spermatozoa. These processes are functionally and temporally decoupled, as they occur in distinct cell types that arise over a week apart, both in the neonatal and adult testis. However, our understanding is limited in terms of what cellular and molecular changes occur downstream of RA exposure that prepare differentiating spermatogonia for meiotic initiation. In this review, we describe the process of spermatogonial differentiation and summarize the current state of knowledge regarding RA signaling in spermatogonia.

  5. Effects of tiaprofenic acid on plasminogen activators and inhibitors in human OA and RA synovium.

    PubMed

    Pelletier, J P; McCollum, R; Cloutier, J M; Martel-Pelletier, J

    1992-01-01

    The effect of therapeutic and pharmacological concentrations of tiaprofenic acid, a non-steroidal anti-inflammatory drug (NSAID), on the synthesis of the plasminogen activators, urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA), and the plasminogen activator inhibitors 1 and 2 (PAI-1 and PAI-2), by human synovial membranes isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) sufferers was evaluated. Both forms of plasminogen activator (PA) and PA inhibitor (PAI) were synthesized by the arthritic synovium. PAI-1 and PAI-2 were both synthesized in greater amounts than the plasminogen activators. Tiaprofenic acid induced a dose-dependent decrease in uPA synthesis in both OA and RA, particularly in OA synovium, but had no true effect on tPA. Tiaprofenic acid also exerted a suppressive effect on the synthesis of PAI-1 in both OA and RA synovial membranes, and on the release of PAI-2 in RA synovium. The results of this study indicate that a decrease in uPA synthesis may be one of the mechanisms by which tiaprofenic acid could exert its effects on the arthritic process. The suppressive action of tiaprofenic acid on PAI is not likely to have a significant impact on the balance of plasminogen activators and plasminogen activator inhibitors, as plasminogen activator inhibitors are synthesized in greater amounts than plasminogen activators.

  6. Exogenous IL-1Ra attenuates intestinal mucositis induced by oxaliplatin and 5-fluorouracil through suppression of p53-dependent apoptosis.

    PubMed

    Wang, Xia; Gao, Jin; Qian, Lan; Gao, Jing; Zhu, Shunying; Wu, Mingyuan; Zhang, Yang; Guan, Wen; Ye, Hao; Yu, Yan; Han, Wei

    2015-01-01

    Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of many chemoagents, resulting in weight loss, diarrhea, and even death. The current treatments for CIM are palliative and have limited benefit. Interleukin-1 receptor antagonist is a natural antagonist of interleukin-1. Our previous studies showed the protective effect of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) on the intestine in mice after 5-fluorouracil chemotherapy. In this study, we further evaluated rhIL-1Ra in the treatment of CIM induced by different chemoagents and their combination. Normal as well as tumor-bearing mice were administered oxaliplatin (L-OHP), 5-fluorouracil, or their combination to induce intestinal mucositis and mortality. rhIL-1Ra administered after the chemotherapy, but not after the onset of diarrhea, significantly improved mouse survival, attenuated body weight loss, and reduced the incidence, severity, and duration of diarrhea. Histological examination showed that rhIL-1Ra-treated mice had a relatively intact mucosa structure, more proliferating crypt cells, and higher acid mucin content than the vehicle-treated mice. rhIL-1Ra suppressed crypt apoptosis by reducing the levels of proapoptotic proteins in wild-type, but not in IL-1RI or p53 mice. In addition, rhIL-1Ra was as effective as octreotide acetate in the treatment of chemotherapy-induced diarrhea, but with the advantage of reducing the epithelial apoptosis, the major cause of CIM. Importantly, the tumor sensitivity to chemotherapy was not affected by rhIL-1Ra. Thus, our data strongly suggest that rhIL-1Ra may be useful for the treatment of intestinal mucositis and improving the quality of life for cancer patients on chemotherapy.

  7. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence.

    PubMed

    Goodfriend, L; Choudhury, A M; Klapper, D G; Coulter, K M; Dorval, G; Del Carpio, J; Osterland, C K

    1985-08-01

    Recent studies [Marsh et al. (1982) J. exp. Med. 155, 1439-1451; Coulter (1983) M.Sc. thesis, McGill University, Montreal, Canada; Coulter et al. (1983) in Genetic and Environmental Factors in Clinical Allergy (Edited by Marsh D.G., Blumenthal M.N. and Santilli J., Jr), University of Minnesota Press, Minneapolis, MN] have shown a highly significant association between HLA-Dw2/DR2 and host sensitivity to the 5000-D, 4-disulfide bonded protein Ra5S of short ragweed pollen. To extend these findings, we isolated Ra5G, an Ra5S-like protein, from giant ragweed pollen by gel and ion-exchange chromatography. The protein was homogeneous by polyacrylamide gel electrophoresis (pH 4.3), reverse-phase high-performance liquid chromatography, and antigenic assays. Its mol. wt and amino acid composition (including 8 half-cystine residues) were closely similar to Ra5S, but the two proteins had little or no antigenic or allergenic cross-reactivity. In a study of 200 ragweed-sensitive individuals, host sensitivity simultaneously to Ra5G and Ra5S was significantly associated with the DR2 allele. The amino acid sequence of Ra5G was determined and showed close homology with Ra5S. The potential function of a highly homologous decapeptidyl sequence stretch is discussed in relation to Ir gene control of immune response to the 2 proteins.

  8. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells.

    PubMed

    Marzinke, Mark A; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.

  9. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  10. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  11. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  12. [Signaling pathway of meiosis induced by retinoic acid during spermatogenesis].

    PubMed

    Wang, Ke; Wu, Ying-Ji

    2013-02-01

    Retinoic acid (RA) is an oxidative metabolite of vitamin A (retinol, ROH) and plays an important role in the spermatogenesis (as in meiosis) of mammals. In mammalian testes, RA, in combination with its retinoic acid receptor (RAR), regulates the expressions of related target genes in various types of cells at different times. It activates meiosis by up-regulating the expressions of the genes that promote meiosis and down-regulate those that inhibit it during spermatogenesis in a specific stage. The results of researches on mammalian spermatogenesis have a great application value in reproductive biology, developmental biology, and reproductive engineering. Therefore, it is of considerable significance to study the signaling pathway of RA-induced meiosis during mammalian spermatogenesis. This article presents an introduction of the RA signal transduction system and its action mechanisms, as well as an overview on the signaling pathway of RA-activated meiosis during spermatogenesis.

  13. Retinoic acid induces TGFbeta-dependent autocrine fibroblast growth.

    PubMed

    Fadloun, A; Kobi, D; Delacroix, L; Dembélé, D; Michel, I; Lardenois, A; Tisserand, J; Losson, R; Mengus, G; Davidson, I

    2008-01-17

    To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4(lox/-) and taf4(-/-) embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4(lox/-) cells, but less than 300 in taf4(-/-) cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4(lox/-) cells exhibit transforming growth factor (TGF)beta-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFbeta signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFbeta pathways that leads to deregulated cell growth.

  14. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  15. Epigenetic regulation of Dpp6 expression by Dnmt3b and its novel role in the inhibition of RA induced neuronal differentiation of P19 cells.

    PubMed

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Yu, Huali; Lai, Mingming; Wang, Xingzhi; Zhu, Xiaojuan

    2013-01-01

    DNA methylation is an important mechanism of gene silencing in mammals catalyzed by a group of DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b which are required for the establishment of genomic methylation patterns during development and differentiation. In this report, we studied the role of DNA methyltransferases during retinoic acid induced neuronal differentiation of P19 cells. We observed an increase in the mRNA and protein level of Dnmt3b, whereas the expression of Dnmt1 and Dnmt3a was decreased after RA treatment of P19 cells which indicated that Dnmt3b is more important during neuronal differentiation of P19 cells. Dnmt3b enriched chromatin library from RA treated P19 cells identified dipeptidyl peptidase 6 (Dpp6) gene as a novel target of Dnmt3b. Further, quantitative ChIP analysis showed that the amount of Dnmt3b recruited on Dpp6 promoter was equal in both RA treated as well as untreated p19 cells. Bisulfite genomic sequencing, COBRA, and methylation specific PCR analysis revealed that Dpp6 promoter was heavily methylated in both RA treated and untreated P19 cells. Dnmt3b was responsible for transcriptional silencing of Dpp6 gene as depletion of Dnmt3b resulted in increased mRNA and protein expression of Dpp6. Consequently, the average methylation of Dpp6 gene promoter was reduced to half in Dnmt3b knockdown cells. In the absence of Dnmt3b, Dnmt3a was associated with Dpp6 gene promoter and regulated its expression and methylation in P19 cells. RA induced neuronal differentiation was inhibited upon ectopic expression of Dpp6 in P19 cells. Taken together, the present study described epigenetic silencing of Dpp6 expression by DNA methylation and established that its ectopic expression can act as negative signal during RA induced neuronal differentiation of P19 cells.

  16. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  17. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  18. A novel, nongenomic mechanism underlies retinoic acid-induced growth cone turning.

    PubMed

    Farrar, Nathan R; Dmetrichuk, Jennifer M; Carlone, Robert L; Spencer, Gaynor E

    2009-11-11

    The vitamin A metabolite, retinoic acid (RA), is well known for its roles in neural development and regeneration. We have previously shown that RA can induce positive growth cone turning in regenerating neurons in vitro. In this study, we address the subcellular mechanisms underlying this chemo-attractive response, using identified central neurons from the adult mollusc, Lymnaea stagnalis. We show that the RA-induced positive growth cone turning was maintained in the presence of the transcriptional inhibitor, actinomycin D. We also physically transected the neurites from the cell body and showed that isolated growth cones retain the capacity to turn toward a gradient of RA. Moreover, this attractive turning is dependent on de novo local protein synthesis and Ca(2+) influx. Most of RA's actions during neurite outgrowth and regeneration require gene transcription, although these data show for the first time in any species, that the chemotropic action of RA in guiding neurite outgrowth, involves a novel, nongenomic mechanism.

  19. Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons.

    PubMed

    Dmetrichuk, Jennifer M; Carlone, Robert L; Spencer, Gaynor E

    2006-06-01

    Identification of molecules involved in neurite outgrowth during development and/or regeneration is a major goal in the field of neuroscience. Retinoic acid (RA) is a biologically important metabolite of vitamin A that acts as a trophic factor and has been implicated in neurite outgrowth and regeneration in many vertebrate species. Although abundant in the CNS of many vertebrates, the precise role of RA in neural regeneration has yet to be determined. Moreover, very little information is available regarding the role of RA in invertebrate nervous systems. Here, we demonstrate for the first time that RA induces neurite outgrowth from invertebrate neurons. Using individually identified neurons isolated from the CNS of Lymnaea stagnalis, we demonstrated that a significantly greater proportion of cells produced neurite outgrowth in RA. RA also extended the duration of time that cells remained electrically excitable in vitro, and we showed that exogenously applied RA acted as a chemoattractive factor and induced growth cone turning toward the source of RA. This is the first demonstration that RA can induce turning of an individual growth cone. These data strongly suggest that the actions of RA on neurite outgrowth and cell survival are highly conserved across species.

  20. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons

    PubMed Central

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  1. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.

  2. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis.

    PubMed

    Raverdeau, Mathilde; Gely-Pernot, Aurore; Féret, Betty; Dennefeld, Christine; Benoit, Gérard; Davidson, Irwin; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2012-10-09

    Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male.

  3. Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Koo, Bon-Sun; Kang, Mi-Kyung; Rho, Hye-Won; Sohn, Hee-Sook; Jhee, Eun-Chung; Park, Jin-Woo

    2002-11-30

    The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF-induced LPL suppression is not the result of NO overproduction.

  4. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J

    2007-09-01

    The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.

  5. Sinomenine Suppresses Osteoclast Formation and Mycobacterium tuberculosis H37Ra-Induced Bone Loss by Modulating RANKL Signaling Pathways

    PubMed Central

    Li, Xiaojuan; He, Longgang; Hu, Yiping; Duan, Heng; Li, Xianglian; Tan, Suiyi; Zou, Min; Gu, Chunping; Zeng, Xiangzhou; Yu, Le; Xu, Jiake; Liu, Shuwen

    2013-01-01

    Receptor activator of NF-κB ligand (RANKL) is essential for osteoclastogenesis. Targeting RANKL signaling pathways has been an encouraging strategy for treating lytic bone diseases such as osteoporosis and rheumatoid arthritis (RA). Sinomenine (SIN), derived from Chinese medicinal plant Sinomenioumacutum, is an active compound to treat RA, but its effect on osteoclasts has been hitherto unknown. In the present study, SIN was found to ameliorate M. tuberculosis H37Ra (Mt)-induced bone loss in rats with a decreased serum level of TRACP5b and RANKL, and an increased level of osteoprotegerin (OPG). In vitro study also showed that SIN could inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, MMP-9, TRACP were inhibited by SIN in a dose dependent manner. Signal transduction studies showed that SIN could obviously reduce the expression of RANK adaptor molecule TRAF6 and down-regulate RANKL-induced NF-κB activation. It decreased the RANKL-induced p38, JNK posphorylation but not ERK1/2 posphorylation. SIN could also reduce RANKL-mediated calcium influx which is associated with TRAF6/c-Src complex. Finally, SIN suppressed RANKL induced AP-1 and NFAT transcription, as well as the gene expression of NFATc1 and AP-1 components (Fra-1, Fra-2, c-Fos). The protein expression of c-Fos and TRAF6 were also inhibited by SIN after RANKL stimulation. Taken together, SIN could attenuate osteoclast formation and Mt-induced bone loss by mediating RANKL signaling pathways. PMID:24066131

  6. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  7. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  8. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  9. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  10. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  11. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    SciTech Connect

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  12. Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human skin keratinocytes.

    PubMed

    Song, Xiuzu; Xu, Aie; Pan, Wei; Wallin, Brittany; Kivlin, Rebecca; Lu, Shan; Cao, Cong; Bi, Zhigang; Wan, Yinsheng

    2008-08-01

    The most common adverse effects that are related to all-trans retinoic acid (atRA) treatment are irritation and dryness of the skin. atRA therapy is reported to impair barrier function as achieved by trans-epidermal water loss (TEWL). Treatment with nicotinamide prior to initiation of atRA therapy provides additional barrier protection and thus reduces susceptibility of retinoic acid. Our previous studies showed that atRA upregulates aquaporin 3 (AQP3) in cultured human skin keratinocytes and fibroblasts. Others have demonstrated that in atopic dermatitis, overexpression of AQP3 is linked to elevated TEWL and that nicotinamide treatment reduces skin TEWL. In this study, we observed that while atRA upregulates AQP3 expression in cultured human skin keratinocytes (HaCaT cells), nicotinamide attenuates the effect of atRA in a concentration-dependent manner. atRA treatment induces EGFR and ERK activation. PD153035, an EGFR inhibitor, and U0126, an ERK inhibitor, inhibit atRA-induced upregulation of AQP3. Nicotinamide also inhibits atRA-induced activation of EGFR/ERK signal transduction and decreases water permeability by downregulating AQP3 expression. Collectively, our results indicate that the effect of atRA on AQP3 expression is at least partly mediated by EGFR/ERK signaling in cultured human skin keratinocytes. Nicotinamide attenuates atRA-induced AQP3 expression through inhibition of EGFR/ERK signal transduction and eventually decreases water permeability and water loss. Our study provides insights into the molecular mechanism through which nicotinamide reverses the side effects of dryness in human skin after treatment with atRA.

  13. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    PubMed

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects.

  14. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells.

    PubMed

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Yoon, Dong-Joon; Jo, Jae-Cheol; Koh, SuJin; Baek, Jin Ho; Park, Jae-Hoo; Min, Young Joo; Kim, Hawk

    2015-01-15

    Rosmarinic acid (RA, an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid) has a number of biological activities, but little is known about anti-leukemic activities of RA combined with all-trans retinoic acid (ATRA) against acute promyelocytic leukemia (APL) cells. We examined the differentiation marker, CD11b, in bone marrow cells (BMC) of an APL patient, in NB4 cells (APL cell line), and in normal BMC and peripheral blood mononuclear cells (PBMC) of healthy subjects by flow cytometric analysis. ATRA/RA induced expression of CD11b in the BMC of the APL patient and in NB4 cells, but not in normal BMC or PBMC. Therefore, we realized that RA potentiated ATRA-induced macrophage differentiation in APL cells. Further characterization of the induced macrophages showed that they exhibited morphological changes and were able to phagocytose and generate reactive oxygen species. Th also had typical expression of C-C chemokine receptor type 1 (CCR1), CCR2, and intercellular adhesion molecule-1 (ICAM-1). Moreover, the expression of CD11b(+) and CD14(+) cells depended on ERK-NF-κB axis activation. Together, these results indicate that RA potentiates ATRA-induced macrophage differentiation in APL cells. Thus, RA may play an important role as an appurtenant differentiation agent for functional macrophage differentiation in APL. Additionally, the differentiated macrophages might have a normal life span and, they could die. These data indicate that co-treatment with RA and ATRA has potential as an anti-leukemic therapy in APL.

  15. Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    PubMed Central

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C.; Kaur, Gurcharan

    2012-01-01

    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty. PMID:22606332

  16. A molecular basis for retinoic acid-induced axial truncation.

    PubMed

    Iulianella, A; Beckett, B; Petkovich, M; Lohnes, D

    1999-01-01

    Dietary deprivation and gene disruption studies clearly demonstrate that biologically active retinoids, such as retinoic acid (RA), are essential for numerous developmental programs. Similar ontogenic processes are also affected by retinoic acid excess, suggesting that the effects of retinoid administration reflect normal retinoid-dependent events. In the mouse, exogenous retinoic acid can induce both anterior (anencephaly, exencephaly) and posterior (spina bifida) neural tube defects depending on the developmental stage of treatment. Retinoic acid receptor gamma (RARgamma) mediates these effects on the caudal neural tube at 8.5 days postcoitum, as RARgamma-/- mice are completely resistant to spina bifida induced by retinoic acid at this stage. We therefore used this null mouse as a model to examine the molecular nature of retinoid-induced caudal neural tube defects by using a panel of informative markers and comparing their expression between retinoic acid-treated wild-type and RARgamma-/- embryos. Our findings indicate that treatment of wild-type embryos led to a rapid and significant decrease in the caudal expression of all mesodermal markers examined (e.g., brachyury, wnt-3a, cdx-4), whereas somite, neuroepithelial, notochord, floorplate, and hindgut markers were unaffected. RARgamma-/- mutants exhibited normal expression patterns for all markers examined, consistent with the notion that mesodermal defects underlie the etiology of retinoid-induced spina bifida. We also found that posterior somitic, but not caudal presomitic, embryonic tissues contained detectable bioactive retinoids, an observation which correlated with the ability of caudal explants to rapidly clear exogenous RA. Interestingly, transcripts encoding mP450RAI, a cytochrome P450, the product of which is believed to catabolize retinoic acid, were abundant in the retinoid-poor region of the caudal embryo. mP450RAI was rapidly induced by retinoic acid treatment in vivo, consistent with previous

  17. Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse.

    PubMed

    Busada, Jonathan T; Kaye, Evelyn P; Renegar, Randall H; Geyer, Christopher B

    2014-03-01

    In mammals, most neonatal male germ cells (prospermatogonia) are quiescent and located in the center of the testis cords. In response to an unknown signal, prospermatogonia transition into spermatogonia, reenter the cell cycle, divide, and move to the periphery of the testis cords. In mice, these events occur by 3-4 days postpartum (dpp), which temporally coincides with the onset of retinoic acid (RA) signaling in the neonatal testis. RA has a pivotal role in initiating germ cell entry into meiosis in both sexes, yet little is known about the mechanisms and about cellular changes downstream of RA signaling. We examined the role of RA in mediating the prospermatogonia-to-spermatogonia transition in vivo and found 24 h of precocious RA exposure-induced germ cell changes mimicking those that occur during the endogenous transition at 3-4 dpp. These changes included: 1) spermatogonia proliferation; 2) maturation of cellular organelles; and 3), expression of markers characteristic of differentiating spermatogonia. We found that germ cell exposure to RA did not lead to cellular loss from apoptosis but rather resulted in a delay of ∼2 days in their entry into meiosis. Taken together, our results indicate that exogenous RA induces multiple hallmarks of the transition of prospermatogonia to spermatogonia prior to their entry into meiosis.

  18. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.

  19. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts.

    PubMed

    Zdarilová, A; Svobodová, A; Simánek, V; Ulrichová, J

    2009-04-01

    Periodontitis is a chronic disease associated with inflammation of the tooth-supporting tissues. The inflammation is initiated by a group of gram-negative anaerobic bacteria. These express a number of irritating factors including a lipopolysaccharide (LPS), which plays a key role in periodontal disease development. Plant extracts with anti-inflammatory and anti-microbial properties have been shown to inhibit bacterial plaque formation and thus prevent chronic gingivitis. In this study we tested effects of Prunella vulgaris L. extract (PVE; 5, 10, 25microg/ml) and its component rosmarinic acid (RA; 1microg/ml) on LPS-induced oxidative damage and inflammation in human gingival fibroblasts. PVE and RA reduced reactive oxygen species (ROS) production, intracellular glutathione (GSH) depletion as well as lipid peroxidation in LPS-treated cells. Treatment with PVE and RA also inhibited LPS-induced up-regulation of interleukin 1beta (IL-1beta), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and suppressed expression of inducible nitric oxide synthase (iNOS). The results indicate that PVE and RA are able to suppress LPS-induced biological changes in gingival fibroblasts. The effects of PVE and RA are presumably linked to their anti-inflammatory activities and thus use of PVE and RA may be relevant in modulating the inflammation process, including periodontal disease.

  20. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  1. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.

  2. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells.

    PubMed

    Lee, Youra; Lee, Ji-Yeon; Kim, Myoung Hee

    2014-09-01

    Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA-induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA-induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA-induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time-course gene expression profiles for all 39 Hox genes located in four different clusters-Hoxa, Hoxb, Hoxc, and Hoxd-were analyzed. Collinear expression of Hoxa and -b cluster genes was initiated earlier than that of the -c and -d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA-induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.

  3. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation.

    PubMed

    Jeong, Jee-Yeong; Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi; Song, Kyoung Seob

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca(2+) signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.

  4. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    PubMed

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  5. Effect of low molecular weight organic acids on the uptake of (226)Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran.

    PubMed

    Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad

    2016-11-01

    To study the benefit of including citric and oxalic acid treatments for phytoremediation of (226)Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural (226)Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure (226)Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of (226)Ra among geochemical extraction. Results showed that the maximum uptake of (226)Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. (226)Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of (226)Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of (226)Ra for phytoremediation by corn in this condition.

  6. Nuclear Raf-1 kinase regulates the CXCR5 promoter by associating with NFATc3 to drive retinoic acid-induced leukemic cell differentiation.

    PubMed

    Geil, Wendy M; Yen, Andrew

    2014-02-01

    Novel functions of signaling molecules have been revealed in studies of cancer stem cells. Retinoic acid (RA) is an embryonic morphogen and stem cell regulator that controls the differentiation of a patient-derived leukemic cell line, HL-60, which is composed of progenitor cells with bipotent myelo-monocytic differentiation capability. RA treatment of HL-60 cells causes unusually long-lasting mitogen-activated protein kinase signaling, with the cells exhibiting the beginning of G0 cell cycle arrest and functional differentiation by 48 h after treatment with RA. This event coincides with the nuclear translocation of Raf-1, phosphorylated at serine 621. The present study shows how the novel localization of Raf-1 to the nucleus results in transcriptional changes that contribute to the differentiation of HL-60 cells induced by RA. We find that nuclear pS621 Raf-1 associates with NFATc3 near its cognate binding site in the promoter of CXCR5, a gene that must be up-regulated to drive RA-induced differentiation. NFATc3 becomes immunoprecipitable with anti-phosphoserine serum, and CXCR5 is transcriptionally up-regulated upon RA-induced differentiation. Inhibiting the pS621 Raf-1/NFATc3 association with PD98059 inhibits these processes and cripples RA-induced differentiation. In this novel paradigm for Raf-1 and RA function, Raf-1 has a role in driving the nuclear signaling of RA-induced differentiation of leukemic progenitor cells.

  7. Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development

    PubMed Central

    Jeradi, Shirine; Hammerschmidt, Matthias

    2016-01-01

    We have previously shown that, in human and zebrafish, hypomorphic mutations of the gene encoding the retinoic acid (RA)-metabolizing enzyme Cyp26b1 result in coronal craniosynostosis, caused by an RA-induced premature transitioning of suture osteoblasts to preosteocytes, inducing ectopic mineralization of the suture's osteoid matrix. In addition, we showed that human CYP26B1 null patients have more severe and seemingly opposite skull defects, characterized by smaller and fragmented calvaria, but the cellular basis of these defects remained largely unclear. Here, by treating juvenile zebrafish with exogenous RA or a chemical Cyp26 inhibitor in the presence or absence of osteogenic cells or bone-resorbing osteoclasts, we demonstrate that both reduced calvarial size and calvarial fragmentation are also caused by RA-induced premature osteoblast-to-preosteocyte transitioning. During calvarial growth, the resulting osteoblast deprival leads to decreased osteoid production and thereby smaller and thinner calvaria, whereas calvarial fragmentation is caused by increased osteoclast stimulation through the gained preosteocytes. Together, our data demonstrate that RA-induced osteoblast-to-preosteocyte transitioning has multiple effects on developing bone in Cyp26b1 mutants, ranging from gain to loss of bone, depending on the allelic strength, the developmental stage and the cellular context. PMID:26903503

  8. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

    PubMed Central

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Hewage, Susara Ruwan Kumara Madduma; Chae, Sung Wook; Hyun, Jin Won

    2016-01-01

    This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases. PMID:26759705

  9. Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells.

    PubMed

    Jung, Eun Uk; Yoon, Jung-Hwan; Lee, Youn-Jae; Lee, Jeong-Hoon; Kim, Bo Hyun; Yu, Su Jong; Myung, Sun Jung; Kim, Yoon Jun; Lee, Hyo-Suk

    2010-12-01

    Hypoxia may activate survival signals in cancer cells. Moreover, hypoxic cells are less sensitive than normoxic cells to doxorubicin cytotoxicity, a potent activator of the p53 tumor suppressor gene. N-myc downstream-regulated gene-1 (NDRG1) is a hypoxia- and retinoic acid-inducible protein, and has been previously implicated in carcinogenesis. As this protein is also a downstream target of p53 and hepatocellular carcinoma (HCC) cells frequently evidence resistance to retinoic acid (RA) cytotoxicity, we attempted to determine whether the suppression of NDRG1 expression may sensitize HCC cells to doxorubicin and/or RA cytotoxicity. HCC cells expressed NDRG1 protein, and the expression of this protein was hypoxia- and RA-inducible. Doxorubicin treatment induced HCC cell cytotoxicity via the activation of mitochondrial apoptotic signals, including caspase-9 activation. Hypoxic HCC cells are less sensitive to doxorubicin-induced apoptosis. The suppression of NDRG1 expression either by siRNA or flavopiridol sensitized hypoxic HCC cells to doxorubicin cytotoxicity, and this was attributed to more profound augmentation of JNK and caspase-9 activation. The suppression of NDRG1 expression also sensitized RA-resistant HCC cells to RA-induced apoptosis, and this sensitization was more apparent in hypoxic HCC cells than in normoxic cells. Glutaredoxin2 expression was down-regulated in NDRG1-suppressed HCC cells. These results show that hypoxia- and RA-inducible NDRG1 expression is responsible for doxorubicin and RA resistance in HCC cells. Thus, the selective interruption of NDRG1 signaling may prove to be therapeutically useful in HCCs, particularly in the advanced infiltrative type of tumors exposed to hypoxic environments.

  10. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  11. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  12. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    SciTech Connect

    Okano, Junko . E-mail: okajun@anat1.med.kyoto-u.ac.jp; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.

  13. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development.

    PubMed

    Alonso, M I; Martín, C; Carnicero, E; Bueno, D; Gato, A

    2011-07-01

    Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells.

  14. A theoretical model for the production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Fan Liu, Sau; Allen, B J

    2006-09-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226.

  15. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization

    PubMed Central

    Romero, L; Zamanillo, D; Nadal, X; Sánchez-Arroyos, R; Rivera-Arconada, I; Dordal, A; Montero, A; Muro, A; Bura, A; Segalés, C; Laloya, M; Hernández, E; Portillo-Salido, E; Escriche, M; Codony, X; Encina, G; Burgueño, J; Merlos, M; Baeyens, JM; Giraldo, J; López-García, JA; Maldonado, R; Plata-Salamán, CR; Vela, JM

    2012-01-01

    BACKGROUND AND PURPOSE The sigma-1 (σ1) receptor is a ligand-regulated molecular chaperone that has been involved in pain, but there is limited understanding of the actions associated with its pharmacological modulation. Indeed, the selectivity and pharmacological properties of σ1 receptor ligands used as pharmacological tools are unclear and the demonstration that σ1 receptor antagonists have efficacy in reversing central sensitization-related pain sensitivity is still missing. EXPERIMENTAL APPROACH The pharmacological properties of a novel σ1 receptor antagonist (S1RA) were first characterized. S1RA was then used to investigate the effect of pharmacological antagonism of σ1 receptors on in vivo nociception in sensitizing conditions and on in vitro spinal cord sensitization in mice. Drug levels and autoradiographic, ex vivo binding for σ1 receptor occupancy were measured to substantiate behavioural data. KEY RESULTS Formalin-induced nociception (both phases), capsaicin-induced mechanical hypersensitivity and sciatic nerve injury-induced mechanical and thermal hypersensitivity were dose-dependently inhibited by systemic administration of S1RA. Occupancy of σ1 receptors in the CNS was significantly correlated with the antinociceptive effects. No pharmacodynamic tolerance to the antiallodynic and antihyperalgesic effect developed following repeated administration of S1RA to nerve-injured mice. As a mechanistic correlate, electrophysiological recordings demonstrated that pharmacological antagonism of σ1 receptors attenuated the wind-up responses in spinal cords sensitized by repetitive nociceptive stimulation. CONCLUSIONS AND IMPLICATIONS These findings contribute to evidence identifying the σ1 receptor as a modulator of activity-induced spinal sensitization and pain hypersensitivity, and suggest σ1 receptor antagonists as potential novel treatments for neuropathic pain. PMID:22404321

  16. Phenylacetate synergizes with retinoic acid in inducing the differentiation of human neuroblastoma cells.

    PubMed

    Sidell, N; Wada, R; Han, G; Chang, B; Shack, S; Moore, T; Samid, D

    1995-02-08

    Phenylacetate, a natural metabolite of phenylalanine which was originally described as a plant growth hormone, has recently gained attention as a possible differentiation inducer for a variety of human tumor cell types. This interest prompted us to assess the ability of sodium phenylacetate (NaPA) to promote the differentiation of human neuroblastoma cells, both alone and in combination with retinoic acid (RA), a known inducer of neuroblastoma differentiation and maturation. Using the LA-N-5 cell line, we have determined that NaPA can stimulate the differentiation of neuroblastoma cells, as evidenced by dose-dependent inhibition of cell proliferation, neurite outgrowth, increased acetylcholinesterase activity and reduction of N-myc expression. Furthermore, NaPA and RA synergized in inducing differentiation, in that combination treatment resulted in cessation of cell growth along with morphologic and biochemical changes indicative of the loss of malignant properties. We have determined that NaPA can markedly enhance mRNA levels of the nuclear RA receptor-beta (RAR beta) in LA-N-5 cells prior to morphologic or other phenotypic changes induced by this compound. This effect appeared to be distinct from the ability of NaPA to alter tumor cell lipid metabolism via inhibition of protein isoprenylation. Thus among its varied effects on LA-N-5 cells, NaPA appears to interact with the RA pathway at the nuclear level by up-regulating RAR beta expression.

  17. Tranexamic Acid-Induced Fixed Drug Eruption

    PubMed Central

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary. PMID:26288438

  18. Tranexamic Acid-Induced Fixed Drug Eruption.

    PubMed

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  19. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat.

    PubMed

    Eltony, Sohair A; Elmottaleb, Nashwa A; Gomaa, Asmaa M; Anwar, Mamdouh M; El-Metwally, Tarek H

    2016-03-01

    All-trans Retinoic acid (atRA) is instructive for the development of endocrine pancreas and is an integral component of β-cell induction protocols. We showed that atRA induces glucose-responsive endocrine transdifferentiation of pleomorphic pancreatic ductal adenocarcinoma cells in vitro. This study aimed to detect the role of atRA in improving the histological changes of the pancreas in diabetic rats. Forty young male Wistar rats were used and divided into three groups. Group I: normal vehicle control (N = 5). Group II: streptozotocin-induced diabetic rats (N = 20) were followed up at 0.0, 1, 2, and 4 weeks. Group III: streptozotocin-induced diabetic rats (N = 15) treated with atRA (2.5 mg/kg/day), were followed up at 1, 2, and 4 weeks. Specimens from the pancreas were processed for light, electron microscopy and pancreatic insulin mRNA expression. Blood samples were assayed for the levels of glucose, insulin, and total peroxides. In the atRA-treated group, the number of the islets and the islet area significantly increased. Strong insulin-immunoreactive endocrine-like cells were observed nearby the pancreatic acini and the interlobular ducts. Interestingly, insulin-positive cells seemed to arise from pancreatic acinar and ductal epithelium. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. Pancreatic insulin mRNA and blood indices were almost normalized. AtRA improved the histological changes of the pancreas and the blood indices in diabetic rats.

  20. IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344xBN F1 rats.

    PubMed

    Frank, Matthew G; Barrientos, Ruth M; Hein, Amy M; Biedenkapp, Joseph C; Watkins, Linda R; Maier, Steven F

    2010-02-01

    In normal aging, a peripheral immune challenge induces a sensitized and protracted neuroinflammatory response in parallel with long-term memory (LTM) impairments. Pro-inflammatory mediators of neuroinflammation impair LTM, synaptic plasticity and LTP. The immediate early gene Arc is considered a critical protein regulating LTM and synaptic plasticity. The present investigation examined whether (1) a peripheral Escherichia coli infection suppresses hippocampal Arc expression, and (2) central pro-inflammatory cytokines (IL-1beta and IL-6) mediate the effects of peripheral E. coli infection on Arc and LTM. In 24 months F344xBN F1 rats, E. coli infection suppressed basal Arc gene expression as well as contextual fear conditioning-induced Arc expression. E. coli treatment failed to alter either basal or conditioning-induced c-Fos expression. At 24h post-infection, intra-cisterna magna (ICM) treatment with the anti-inflammatory cytokine IL-1RA blocked the E. coli-induced suppression of hippocampal Arc and increases in IL-6 protein. At 4-day post-infection, IL-1RA blocked the E. coli-induced LTM impairments and increases in IL-6 protein. The present results suggest that central pro-inflammatory cytokines play a salient role in the suppression of Arc and impairments of LTM by a peripheral immune challenge in older animals.

  1. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation

    PubMed Central

    Jin, Bo-Ram; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Minho; Hwang, Soonjae; Noh Hwang, Sam; Rhee, Ki-Jong; An, Hyo-Jin

    2017-01-01

    Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic inflammatory disorder of the colon. Although UC is generally treated with anti-inflammatory drugs or immunosuppressants, most of these treatments often prove to be inadequate. Rosmarinic acid (RA) is a phenolic ester included in various medicinal herbs such as Salvia miltiorrhiz and Perilla frutescens. Although RA has many biological and pharmacological activities, the anti-inflammatory effect of RA in colonic tissue remains unclear. In this study, we investigated the anti-inflammatory effects and underlying molecular mechanism of RA in mice with dextran sulphate sodium (DSS)-induced colitis. In the DSS-induced colitis model, RA significantly reduced the severity of colitis, as assessed by disease activity index (DAI) scores, colonic damage, and colon length. In addition, RA resulted in the reduction of the inflammatory-related cytokines, such as IL-6, IL-1β, and IL-22, and protein levels of COX-2 and iNOS in mice with DSS-induced colitis. Furthermore, RA effectively and pleiotropically inhibited nuclear factor-kappa B and signal transducer and activator of transcription 3 activation, and subsequently reduced the activity of pro-survival genes that depend on these transcription factors. These results demonstrate that RA has an ameliorative effect on colonic inflammation and thus a potential therapeutic role in colitis. PMID:28383063

  2. Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells

    PubMed Central

    Angrisano, T.; Sacchetti, S.; Natale, F.; Cerrato, A.; Pero, R.; Keller, S.; Peluso, S.; Perillo, B.; Avvedimento, V. E.; Fusco, A.; Bruni, C. B.; Lembo, F.; Santoro, M.; Chiariotti, L.

    2011-01-01

    Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci. PMID:20952403

  3. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries.

    PubMed

    Bowles, Josephine; Feng, Chun-Wei; Miles, Kim; Ineson, Jessica; Spiller, Cassy; Koopman, Peter

    2016-02-19

    Substantial evidence exists that during fetal ovarian development in mammals, retinoic acid (RA) induces germ cells to express the pre-meiotic marker Stra8 and enter meiosis, and that these effects are prevented in the fetal testis by the RA-degrading P450 enzyme CYP26B1. Nonetheless, the role of RA has been disputed principally because germ cells in embryos lacking two major RA-synthesizing enzymes, ALDH1A2 and ALDH1A3, remain able to enter meiosis. Here we show that a third RA-synthesizing enzyme, ALDH1A1, is expressed in fetal ovaries, providing a likely source of RA in the absence of ALDH1A2 and ALDH1A3. In ovaries lacking ALDH1A1, the onset of germ cell meiosis is delayed. Our data resolve the conundrum posed by conflicting published data sets and reconfirm the model that meiosis is triggered by endogenous RA in the developing ovary.

  4. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro.

    PubMed

    Zhou, Qing; Li, Ying; Nie, Rong; Friel, Patrick; Mitchell, Debra; Evanoff, Ryan M; Pouchnik, Derek; Banasik, Brent; McCarrey, John R; Small, Christopher; Griswold, Michael D

    2008-03-01

    Vitamin A deficiency in the mouse results in an arrest in the progression of undifferentiated spermatogonia to differentiating spermatogonia. The supplement of retinol to vitamin-A-deficient mice reinitiates spermatogenesis in a synchronous manner throughout the testes. It is unclear whether the effects of retinoids are the result of a direct action on germ cells or are indirectly mediated through Sertoli cells. The expression of Stimulated by retinoic acid gene 8 (Stra8), which is required for spermatogenesis, is directly related to the availability of retinoic acid (RA). Analysis of gene expression by microarrays revealed moderate levels of Stra8 transcript in gonocytes and high levels in A and B spermatogonia. Stra8 mRNA levels were greatly reduced or absent in germ cells once they entered meiosis. This study examined the effect of retinoic acid on cultured neonatal testes and isolated gonocytes/spermatogonia in vitro. THY1(+) and KIT(+) germ cells were isolated by magnetic-activated cell sorting from the testes of mice of different ages. Isolated germ cells were cultured and treated with either vehicle (ethanol) or RA without feeder cells. We found that 1) Stra8 is predominantly expressed in premeiotic germ cells, 2) RA stimulates gonocyte DNA replication and differentiation in cultured neonatal testes, 3) in the absence of feeder cells, RA directly induces the transition of undifferentiated spermatogonia to differentiating spermatogonia by stimulating Stra8 and Kit gene expression, 4) RA dramatically stimulates Stra8 expression in undifferentiated spermatogonia but has a lesser impact in differentiating spermatogonia, 5) endogenous Stra8 gene expression is higher in differentiating spermatogonia than in undifferentiated spermatogonia and could mediate the RA effects on spermatogonial maturation, and 6) RA stimulates a group of genes involved in the metabolism, storage, transport, and signaling of retinoids.

  5. Rosmarinic Acid Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep through the Activation of GABAA-ergic Systems

    PubMed Central

    Kwon, Yeong Ok; Hong, Jin Tae; Oh, Ki-Wan

    2017-01-01

    It has been known that RA, one of major constituents of Perilla frutescens which has been used as a traditional folk remedy for sedation in oriental countries, shows the anxiolytic-like and sedative effects. This study was performed to know whether RA may enhance pentobarbital-induced sleep through γ-aminobutyric acid (GABA)A-ergic systems in rodents. RA (0.5, 1.0 and 2.0 mg/kg, p.o.) reduced the locomotor activity in mice. RA decreased sleep latency and increased the total sleep time in pentobarbital (42 mg/kg, i.p.)-induced sleeping mice. RA also increased sleeping time and number of falling sleep mice after treatment with sub-hypnotic pentobarbital (28 mg/kg, i.p.). In electroencephalogram (EEG) recording, RA (2.0 mg/kg) not only decreased the counts of sleep/wake cycles and REM sleep, but also increased the total and NREM sleep in rats. The power density of NREM sleep showed the increase in δ-waves and the decrease in α-waves. On the other hand, RA (0.1, 1.0 and 10 μg/ml) increased intracellular Cl− influx in the primary cultured hypothalamic cells of rats. RA (p.o.) increased the protein expression of glutamic acid decarboxylase (GAD65/67) and GABAA receptors subunits except β1 subunit. In conclusion, RA augmented pentobarbital-induced sleeping behaviors through GABAA-ergic transmission. Thus, it is suggested that RA may be useful for the treatment of insomnia. PMID:27469144

  6. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells.

    PubMed

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S; Lu, Liming; Liu, Pentao

    2015-05-01

    We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog-1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration-free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose-sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant-negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell-like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β-catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390-1404.

  7. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors

    PubMed Central

    Cunningham, Thomas J.; Colas, Alexandre

    2016-01-01

    ABSTRACT Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2−/− embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages. PMID:27793834

  8. Retinoic acid-induced down-regulation of the interleukin-2 promoter via cis-regulatory sequences containing an octamer motif.

    PubMed Central

    Felli, M P; Vacca, A; Meco, D; Screpanti, I; Farina, A R; Maroder, M; Martinotti, S; Petrangeli, E; Frati, L; Gulino, A

    1991-01-01

    Retinoic acid (RA) is known to influence the proliferation and differentiation of a wide variety of transformed and developing cells. We found that RA and the specific RA receptor (RAR) ligand Ch55 inhibited the phorbol ester and calcium ionophore-induced expression of the T-cell growth factor interleukin-2 (IL-2) gene. Expression of transiently transfected chloramphenicol acetyltransferase vectors containing the 5'-flanking region of the IL-2 gene was also inhibited by RA. RA-induced down-regulation of the IL-2 enhancer is mediated by RAR, since overexpression of transfected RARs increased RA sensitivity of the IL-2 promoter. Functional analysis of chloramphenicol acetyltransferase vectors containing either internal deletion mutants of the region from -317 to +47 bp of the IL-2 enhancer or multimerized cis-regulatory elements showed that the RA-responsive element in the IL-2 promoter mapped to sequences containing an octamer motif. RAR also inhibited the transcriptional activity of the octamer motif of the immunoglobulin heavy chain enhancer. In spite of the transcriptional inhibition of the IL-2 octamer motif, RA did not decrease the in vitro DNA-binding capability of octamer-1 protein. These results identify a regulatory pathway within the IL-2 promoter which involves the octamer motif and RAR. Images PMID:1652063

  9. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  10. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    PubMed Central

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  11. The viable Mycobacterium tuberculosis H37Ra strain induces a stronger mouse macrophage response compared to the heat-inactivated H37Rv strain.

    PubMed

    He, Zong-Lin; Du, Fa-Wang; Du, Xian-Zhi

    2013-05-01

    Macrophages are the target cells for Mycobacterium tuberculosis (M. tuberculosis) as well as key effector cells for clearance of this pathogen. The aim of the present study was to measure and compare the responses of mouse peritoneal macrophages following exposure to the live M. tuberculosis H37Ra and heat-inactivated H37Rv strains. In vitro phagocytosis assays indicated that the macrophages had a higher capacity to engulf the live H37Ra strain compared to the inactivated H37Rv strain. Enzyme-linked immunosorbent assay (ELISA) demonstrated that H37Ra‑stimulated macrophages produced significantly increased concentrations of interleukin‑12p40 (IL‑12p40), tumor necrosis factor-α (TNF‑α) and interferon‑γ (IFN‑γ) compared to the untreated control cells. However, H37Rv exposure induced little to no increase in the levels of the cytokines examined. The results from ELISA were confirmed by reverse transcription-polymerase chain reaction (RT‑PCR) at the mRNA level. There was a dose-dependent increase in nitric oxide (NO) and hydrogen peroxide (H2O2) production from the H37Ra‑stimulated macrophages compared to the H37Rv‑stimulated ones. Confocal microscopy and flow cytometric analysis indicated that the IFN‑γ‑stimulated macrophages from viable H37Ra‑immunized mice had an enhanced surface expression of CD40 ligand (CD40L) compared to those from inactivated H37Rv‑immunized mice. Our data collectively indicate that exposure to the viable H37Ra strain induces a stronger macrophage response compared to exposure to the heat-inactivated H37Rv strain, which may be associated with the increased surface expression of CD40L in activated macrophages.

  12. Characterization, anticancer drug susceptibility and atRA-induced growth inhibition of a novel cell line (HUMEMS) established from pleural effusion of alveolar rhabdomyosarcoma of breast tissue.

    PubMed

    Ohi, Satoshi

    2007-05-01

    We recently established a cell line derived from pleural effusion from a 13-year-old girl with primary alveolar rhabdomyosarcoma (RMS with a chromosomal translocation t[2;13]) in the breast tissue. The cell line was designated as HUMEMS. Cases of primary alveolar RMS swelling in the breast are extremely rare (about 0.2% of all RMSs). Therefore, the HUMEMS cell line is an important material for studying therapeutics for malignant tumors in children. The HUMEMS cell line we isolated consisted of two morphological subtypes. One type (SSN cells) is small in size and has a single nucleus. Another (LMN cells) is large in size and has two or more nuclei. Both SSN cells and LMN cells were immunohistochemically positive for desmin and slightly positive for myoglobin. Our data suggested LMN cells are well-differentiated SSN cells. Moreover, in some of the LMN cells, rapid cell contractions (1-5 times/10 sec) were observed. We investigated the anticancer drug susceptibility of the HUMEMS cell line with an oxygen electrode apparatus (Daikin, DOX-10, JPN) and effect of all-trans-retinoic acid (atRA) to the cell line. The atRA-treatment inhibited proliferation of the HUMEMS cells.

  13. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    PubMed Central

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  14. Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1β-Induced Inflammation and Apoptosis in Chondrocytes

    PubMed Central

    Qiu, Bo; Gong, Ming; He, Qi-Ting

    2016-01-01

    This paper investigates the protective effect of interleukin-1 receptor antagonist (IL-1Ra) released from hyaluronic acid chitosan (HA-CS) microspheres in a controlled manner on IL-1β-induced inflammation and apoptosis in chondrocytes. The IL-1Ra release kinetics was characterized by an initial burst release, which was reduced to a linear release over eight days. Chondrocytes were stimulated with 10 ng/ml IL-1β and subsequently incubated with HA-CS-IL-1Ra microspheres. The cell viability was decreased by IL-1β, which was attenuated by HA-CS-IL-1Ra microspheres as indicated by an MTT assay. ELISA showed that HA-CS-IL-1Ra microspheres inhibited IL-1β-induced inflammation by attenuating increases in NO2− and prostaglandin E2 levels as well as increase in glycosaminoglycan release. A terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay revealed that the IL-1β-induced chondrocyte apoptosis was decreased by HA-CS-IL-1Ra microspheres. Moreover, HA-CS-IL-1Ra microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2) and decreasing Bcl-2-associated X protein and caspase-3 expressions at mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study indicated that HA-CS-IL-1Ra microspheres as a controlled release system of IL-1Ra possess potential anti-inflammatory and antiapoptotic properties in rat chondrocytes due to their ability to regulate inflammatory factors and apoptosis associated genes. PMID:27872853

  15. Sp1 Upregulates cAMP Response Element-Binding Protein Expression During Retinoic Acid-Induced Mucous Differentiation of Normal Human Bronchial Epithelial Cells

    PubMed Central

    Hong, Jeong Soo; Kim, Seung-Wook; Koo, Ja Seok

    2010-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) response-element (CRE) binding protein (CREB) is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA rapidly activates CREB without using retinoic acid (RA) receptors RAR and RXR in normal human tracheobronchial epithelial (NHTBE) cells. However, little is known about RA’s role in the physiologic regulation of CREB expression in the early mucous differentiation of NHTBE cells. Here, we report that RA upregulated CREB gene expression and that using 5′-serial deletion promoter analysis and mutagenesis analyses, two Sp1-binding sites located at nucleotides −217 and −150, which flank the transcription initiation site, were essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nucleotides −119 and −98 contributed to basal promoter activity. Interestingly, RA also upregulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using small interfering RNA (siRNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA upregulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in upregulating human CREB gene expression. This result implies that cooperation of these two transcription factors play a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells. PMID:17937658

  16. Impaired neural differentiation potency by retinoic acid receptor-α pathway defect in induced pluripotent stem cells.

    PubMed

    Hou, Pei-Shan; Huang, Wen-Chin; Chiang, Wei; Lin, Wei-Che; Chien, Chung-Liang

    2014-12-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells via ectopic gene expression and, similarly to embryonic stem cells (ESCs), possess powerful abilities to self-renew and differentiate into cells of various lineages. However, the neural differentiation potency of iPSCs remains unknown. In this study, we demonstrated the neural differentiation ability of iPSCs compared with ESCs using an retinoic acid (RA) induction system. The neural differentiation efficiency of iPSCs was obviously lower than that of ESCs. Retinoic acid receptor-α (RARα) was critical in the RA-induced neural differentiation of iPSCs, and the effect of RARα was confirmed by applying a specific RARα antagonist ER50891 to ESCs. These findings indicate that iPSCs do not possess the complete properties that ESCs have.

  17. Association of adiponectin, interleukin (IL)-1ra, inducible protein 10, IL-6 and number of islet autoantibodies with progression patterns of type 1 diabetes the first year after diagnosis

    PubMed Central

    Kaas, A; Pfleger, C; Hansen, L; Buschard, K; Schloot, N C; Roep, B O; Mortensen, H B

    2010-01-01

    The progression of type 1 diabetes after diagnosis is poorly understood. Our aim was to assess the relation of disease progression of juvenile-onset type 1 diabetes, determined by preserved beta cell function the first year after diagnosis, with systemic cytokine concentrations and number of autoantibodies. Juvenile patients (n = 227) had a meal-stimulated C-peptide test 1 and 6 months after diagnosis. On the basis of the C-peptide course for the duration of 1–6 months, four progression groups were defined: patients with persistently low beta cell function (‘stable-low’), rapid progressers, slow progressers and remitters. Serum concentrations of adiponectin, interleukin (IL)-1ra, inducible protein 10 (IP-10), IL-6 and glutamic acid decarboxylase (GAD), IA-2A and islet-cell antibodies (ICA) were measured at 1, 6 and 12 months. We found that adiponectin concentrations at 1 month predicted disease progression at 6 months (P = 0·04). Patients with low adiponectin had a higher probability of becoming remitters than rapid progressers, odds ratio 3·1 (1·3–7·6). At 6 and 12 months, adiponectin differed significantly between the groups, with highest concentrations among stable-low and rapid progressers patients (P = 0·03 and P = 0·006). IL-1ra, IP-10 and IL-6 did not differ between the groups at any time-point. The number of autoantibodies differed significantly between the groups at 1 month (P = 0·04), where rapid progressers had the largest number. There was no difference between the groups in human leucocyte antigen-associated risk. We define progression patterns distinguishing patients diagnosed with low beta cell function from those with rapid decline, slow decline or actual increase in beta cell function, pointing to different mechanisms of disease progression. We find that adiponectin concentration at 1 month predicts, and at 6 and 12 months associates with, distinct progression patterns. PMID:20529086

  18. "Redefining RA": The RA Tool Kit

    ERIC Educational Resources Information Center

    Wyatt, Neal

    2008-01-01

    No one likes being two steps behind, and the fastest way to fall off the pace is by not keeping up with major titles and hot authors. Fortunately, there are numerous resources, both prepublication and postpublication, that can help. It is best when readers' advisory (RA) librarians know what is coming out months ahead of time--in order to think…

  19. AXIAL SKELETAL AND HOX EXPRESSION DOMAIN ALTERATIONS INDUCED BY RETINOIC ACID, VALPROIC ACID AND BROMOXYNIL DURING MURINE DEVELOPMENT

    EPA Science Inventory

    ABSTRACT

    Retinoic acid (RA) alters the developmental fate of the axial skeletal anlage. "Anteriorizations" or "posteriorizations", the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered emb...

  20. Martin RA-30 Baltimore

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Martin RA-30 Baltimore: The Martin RA-30 Baltimore was a light bomber ordered by the Royal Air Force. Some examples were retained in the United States as part of a 'Reverse Lend-Lease.' This example was flown by the NACA from June 1943 until March 1944.

  1. Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments

    DTIC Science & Technology

    2011-09-30

    special instrument, an Underwater Porcupine Radiometer System, which provides a capability to measure wave-induced fluctuations in downward irradiance...fluctuations with the Porcupine system at various depths within the near-surface ocean, typically at depths from about 0.5 or 1 m to 10 m under sunny...conditions. Typical 10-min time-series obtained with the Porcupine system using the sampling frequency of 1 kHz includes 600,000 data points for each of

  2. Retinoic acid antagonizes basal as well as coal tar and glucocorticoid-induced cytochrome P4501A1 expression in human skin.

    PubMed

    Li, X Y; Aström, A; Duell, E A; Qin, L; Griffiths, C E; Voorhees, J J

    1995-03-01

    Cytochrome P4501A1 is known to be expressed in skin and thus has been implicated in the pathogenesis of skin cancer due to certain environmental carcinogens. Retinoic acid (RA) has been used in chemoprevention of certain skin and other epithelial cancers. Therefore, we used Northern and Western analysis to determine the effect of externally applied RA on basal P4501A1 expression. RA reduced basal levels of P4501A1 mRNA and protein by 68 (n = 14, P = 0.005) and 75% (n = 7, P = 0.04) respectively. RA application also reduced basal levels of P4501A2 (another P4501A1 subfamily member) mRNA by 93% (n = 7, P = 0.001) as determined by reverse transcription-polymerase chain reaction. Interestingly, P4501A1 mRNA expression induced by coal tar or glucocorticoid (clobetasol) was reduced 46 (n = 10, P = 0.003) and 69% (n = 5, P < 0.05) respectively by RA co-application. Downregulation of basal P4501A1 expression and antagonism of coal tar mediated P4501A1 induction by RA may be a mechanism involved in chemo-prevention of skin and other epithelial cancer by RA.

  3. All-trans retinoic acid prevents oxidative stress-induced loss of renal tight junction proteins in type-1 diabetic model.

    PubMed

    Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Namorado, María del Carmen; Bautista-García, Pablo; Medina-Campos, Omar Noel; Pedraza-Chaverri, José; Reyes, José L

    2015-05-01

    We previously reported that diabetes decreased the expression of renal tight junction (TJ) proteins claudin-5 in glomerulus, and claudin-2 and occludin in proximal tubule through an oxidative stress dependent way. Now we investigated whether all-trans retinoic acid (atRA), a compound that plays a relevant role in kidney maintenance and that possesses antioxidant properties, prevents loss of TJ proteins in streptozotocin (STZ)-treated rats. atRA was administered daily by gavage (1mg/kg) from Days 3-21 after STZ administration. atRA attenuated loss of body weight, proteinuria and natriuresis but it did not prevent hyperglucemia. Other metabolic alterations, such as: increased kidney injury molecule (KIM)-1, oxidative stress, protein kinase C (PKC) beta 2, NADPH oxidase subunits (p47(phox) and gp91(phox)) expressions and endothelial nitric oxide synthase (eNOS) uncoupling, and decreased nitric oxide synthesis, nuclear factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions were also attenuated by atRA. In vitro scavenging capacity assays showed that atRA scavenged peroxyl radicals (ROO•), singlet oxygen ((1)O2) and hypochlorous acid (HOCl) in a concentration-dependent manner. Decreased expressions of occludin, claudins-2 and -5 induced by diabetes were ameliorated by atRA. We also found that diabetes induced tyrosine nitration (3-NT), SUMOylation and phosphorylation in serine residues of claudin-2 and atRA prevented these changes. In conclusion, atRA exerted nephroprotective effects by attenuating oxidative stress and preventing loss of renal TJ proteins.

  4. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy.

    PubMed

    Eriksen, Agnete Bratsberg; Torgersen, Maria Lyngaas; Holm, Kristine Lillebø; Abrahamsen, Greger; Spurkland, Anne; Moskaug, Jan Øivind; Simonsen, Anne; Blomhoff, Heidi Kiil

    2015-01-01

    In the present study we have established a vital role of autophagy in retinoic acid (RA)-induced differentiation of toll-like receptor (TLR)-stimulated human B cells into Ig-secreting cells. Thus, RA enhanced autophagy in TLR9- and CD180-stimulated peripheral blood B cells, as revealed by increased levels of the autophagosomal marker LC3B-II, enhanced colocalization between LC3B and the lysosomal marker Lyso-ID, by a larger percentage of cells with more than 5 characteristic LC3B puncta, and by the concomitant reduction in the level of SQSTM1/p62. Furthermore, RA induced expression of the autophagy-inducing protein ULK1 at the transcriptional level, in a process that required the retinoic acid receptor RAR. By inhibiting autophagy with specific inhibitors or by knocking down ULK1 by siRNA, the RA-stimulated IgG production in TLR9- and CD180-mediated cells was markedly reduced. We propose that the identified prominent role of autophagy in RA-mediated IgG-production in normal human B cells provides a novel mechanism whereby vitamin A exerts its important functions in the immune system.

  5. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model

    PubMed Central

    Wang, Gensheng; Evans, Christopher H; Benson, Janet M; Hutt, Julie A; Seagrave, JeanClare; Wilder, Julie A; Grieger, Joshua C; Samulski, R Jude; Terse, Pramod S

    2016-01-01

    Interleukin-1 (IL-1) plays an important role in the pathophysiology of osteoarthritis (OA), and gene transfer of IL-1 receptor antagonist (IL-1Ra) holds promise for OA treatment. A preclinical safety and biodistribution study evaluated a self-complementary adeno-associated viral vector carrying rat IL-1Ra transgene (sc-rAAV2.5rIL-1Ra) at 5 × 108, 5 × 109, or 5 × 1010 vg/knee, or human IL-1Ra transgene (sc-rAAV2.5hIL-1Ra) at 5 × 1010 vg/knee, in Wistar rats with mono-iodoacetate (MIA)–induced OA at days 7, 26, 91, 180, and 364 following intra-articular injection. The MIA-induced OA lesions were consistent with the published data on this model. The vector genomes persisted in the injected knees for up to a year with only limited vector leakage to systemic circulation and uptake in tissues outside the knee. Low levels of IL-1Ra expression and mitigation of OA lesions were observed in the vector-injected knees, albeit inconsistently. Neutralizing antibodies against the vector capsid developed in a dose-dependent manner, but only the human vector induced a small splenic T-cell immune response to the vector capsid. No local or systemic toxicity attributable to vector administration was identified in the rats as indicated by clinical signs, body weight, feed consumption, clinical pathology, and gross and microscopic pathology through day 364. Taken together, the gene therapy vector demonstrated a favorable safety profile. PMID:26817025

  6. A comparison of gene expression responses in rat whole embryo culture and in vivo: time-dependent retinoic acid-induced teratogenic response.

    PubMed

    Robinson, Joshua F; Verhoef, Aart; Pennings, Jeroen L A; Pronk, Tessa E; Piersma, Aldert H

    2012-03-01

    The whole embryo culture (WEC) model serves as a potential alternative for classical in vivo developmental toxicity testing. In the WEC, cultured rat embryos are exposed during neurulation and early organogenesis and evaluated for morphological effects. Toxicogenomic-based approaches may improve the predictive ability of WEC by providing molecular-based markers associated with chemical exposure, which can be compared across multiple parameters (e.g., exposure duration, developmental time, experimental model). Additionally, comparisons between in vitro and in vivo models may identify objective relevant molecular responses linked with developmental toxicity endpoints in vivo. In this study, using a transcriptomic approach, we compared all-trans retinoic acid (RA)-exposed and nonexposed Wistar rat embryos derived using WEC (RA, 0.5 μg/ml) or in vivo (RA, 50 mg/kg, oral gavage) to identify overlapping and nonoverlapping effects of RA on RNA expression in parallel with morphological changes. Across six time points (gestational day 10 + 2-48 h), we observed strong similarities in RA response at the gene (directionality, significance) and functional (e.g., embryonic development, cell differentiation) level which associated with RA-induced adverse morphological effects, including growth reduction as well as alterations in neural tube, limb, branchial, and mandible development. We observed differences between models in the timing of RA-induced effects on genes related to embryonic development and RA metabolism. These observations on the gene expression level were associated with specific differential morphological outcomes. This study supports the use of WEC to examine compound-induced molecular responses relative to in vivo and, furthermore, assists in defining the applicability domain of the WEC in determining complementary windows of sensitivity for developmental toxicological investigations.

  7. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex.

    PubMed

    Gruz-Gibelli, Emmanuelle; Chessel, Natacha; Allioux, Clélia; Marin, Pascale; Piotton, Françoise; Leuba, Geneviève; Herrmann, François R; Savioz, Armand

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  8. Postmenopausal loss of Ra acquired in adolescence or young adulthood: quantitative relationship to radiation-induced skeletal damage and dosimetric implications

    SciTech Connect

    Keane, A.T.; Rundo, J.; Essling, M.A.

    1988-05-01

    From the results of serial measurements of body /sup 226/Ra activity in 13 former luminous dial workers 30-60 y after relatively brief periods of intake of luminous compounds in adolescence or young adulthood, we determined the postmenopausal rate of elimination of Ra in percent of contemporary body Ra content per year. This rate was negatively correlated with the reduced x-ray score, a measure of radiation osteonecrosis observed radiographically in the 13 subjects (r = -0.85, P less than 0.001). The clearance rates of subjects retaining low Ra activity were greater than predicted by retention models. We conclude that for those members of the Ra-exposed population under study for health effects at our institution who sustained the lesser degrees of macroscopic skeletal damage, present estimates of skeletal absorbed dose are systematically low, by at most a factor of 2.

  9. Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid

    PubMed Central

    Akkuratov, Evgeny E.; Wu, Jian; Sowa, David; Shah, Zahoor A.; Liu, Lijun

    2015-01-01

    Ouabain stimulates activation of various signaling cascades such as protein kinase B (Akt) and Extracellular-signaling-regulated kinase 1/2 (ERK 1/2) in various cell lines. Retinoic acid (RA) is commonly used to induce neuroblastoma differentiation in cultures. Upon RA administration, human neuroblastoma cell line, SK-N-SH demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Here we report that ouabain-induced signaling is altered under the action of 1 μM RA in human neuroblastoma SK-N-SH cells. RA increased the expression of p110α subunit of phosphoinositide 3-kinase (PI3K), Akt and β1 subunit of Na+/K+-ATPase. Ouabain activated Akt and ERK 1/2 in differentiated SK-N-SH cells; this effect was not observed in non-differentiated SK-N-SH cells. Long-term incubation of non-differentiated SK-N-SH with 1 μM ouabain led to a decrease in the number of cells; this effect was reduced in differentiated SK-N-SH cells. Taken together, these results suggest that ouabain leads to cell death in neuroblastoma cells rather than neuronal cells due to the different response to ouabain manifested by activation of Akt and ERK 1/2. Highlights • RA increases the expression of p110α subunit of PI3K, Akt and β1 subunit of Na+/K+-ATPase • Ouabain induces activation of Akt and ERK 1/2 in differentiated SK-N-SH cells but not in non-differentiated cells • 1 μM ouabain leads to a decrease in the number of cells in non-differentiated SK-N-SH • Reduction of ouabain-induced cell death in differentiated SK-N-SH

  10. A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis

    PubMed Central

    Sevastou, Ioanna; Sirioti, Ivi; Samiotaki, Martina; Madan, Damian; Prestwich, Glenn D.; Aidinis, Vassilis

    2013-01-01

    Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA. PMID:23923032

  11. Retinoic acid can induce mouse embryonic stem cell R1/E to differentiate toward female germ cells while oleanolic acid can induce R1/E to differentiate toward both types of germ cells.

    PubMed

    Wan, Qian; Lu, Hua; Wu, Lin-Tao; Liu, Xia; Xiang, Jun-Bei

    2014-12-01

    Retinoic acid (RA) and oleanolic acid (OA) were studied about their potential to induce mouse embryonic stem cell R1/E (MESC-R1/E) to differentiate toward germ cells. Embryoid bodies (EBs) first formed from MESC-R1/E and EBs were allowed to attach to the bottoms of normal cell-culturing plate and grow. Then, different compounds including RA, OA and so on were respectively added to induce MESC-R1/E to differentiate. After 72 h, microscopy images were taken for all interventions, then total RNAs were extracted, cDNAs were synthesized and real-time fluorescence quantitative PCR (qPCR) was performed to detect the transcriptional expression patterns of 11 reproductive-differentiation-related genes for different compounds respectively. During the data analysis, it was found RA significantly up-regulated the expression levels of GDF-9, Stra8, SCP3, Mvh, ZP1, ZP2, and ZP3, while significantly down-regulated the levels of Itag6 and Itgb1, and the level of Oct-4 was down-regulated insignificantly, while the level of TP2 was up-regulated insignificantly; OA significantly up-regulated the expression levels of Stra8, SCP3, Mvh, ZP1, ZP2, Itgb1, and TP2, and the levels of Oct-4, GDF-9, ZP3, and Itga6 were up-regulated insignificantly. The data showed that RA can induce MESC-R1/E to differentiate toward female germ cells while OA can induce MESC-R1/E to differentiate toward male and female germ cells.

  12. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method.

  13. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  14. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  15. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

    PubMed Central

    Lee, Ah Young; Hwang, Bo Ra; Lee, Myoung Hee; Lee, Sanghyun

    2016-01-01

    BACKGROUND/OBJECTIVES The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ. PMID:27247723

  16. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia.

    PubMed

    Yang, Yongguang; Feng, Yanmin; Feng, Xue; Liao, Shangying; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen; Han, Chunsheng

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo.

  17. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  18. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus.

  19. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  20. Lysophosphatidic acid induces osteocyte dendrite outgrowth.

    PubMed

    Karagiosis, Sue A; Karin, Norman J

    2007-05-25

    Osteocytes elaborate an extensive mechanosensory network in bone matrix and communicate intercellularly via gap junctions established at dendrite termini. We developed a method to measure osteocyte dendritogenesis in vitro using a modified transwell assay and determined that the lipid growth factor lysophosphatidic acid (LPA) is a potent stimulator of dendrite outgrowth in MLO-Y4 osteocytes. The stimulatory effects were dose-dependent with maximal outgrowth observed within a physiological range of LPA. LPA-treated osteocytes exhibited distinct rearrangements of the actin cytoskeleton and a more stellate morphology than control cells. LPA also promoted osteocyte chemotaxis, suggesting a shared molecular mechanism between dendrite outgrowth and cell motility. The LPA-induced increase in dendrite formation was blocked by the specific LPA-receptor antagonist Ki16425 and by pertussis toxin. Bone cells in vivo encounter platelet-derived LPA in regions of bone damage, and we postulate that this lipid factor is important for re-establishing osteocyte connectivity during fracture repair.

  1. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation.

    PubMed

    Hernandez-Martinez, Juan-Manuel; Forrest, Caroline M; Darlington, L Gail; Smith, Robert A; Stone, Trevor W

    2017-03-01

    Glutamate and nicotinamide adenine dinucleotide (NAD(+) ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD(+) . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD(+) , independently of NMDA receptors.

  2. Lacosamide-induced valproic acid toxicity.

    PubMed

    Jones, Gina L; Popli, Gautam S; Silvia, Mary T

    2013-04-01

    Valproic acid is commonly used in the treatment of both focal and generalized epilepsies and is often well tolerated. There are many reported cases of hyperammonemic encephalopathy and other well-known side effects reported during use of valproic acid either alone or in combination with other antiepileptics. This case report demonstrates valproic acid toxicity in the presence of lacosamide, which has not previously been reported. Full recovery occurred after withdrawal of both valproic acid and lacosamide.

  3. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    NASA Astrophysics Data System (ADS)

    Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

    1999-01-01

    A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

  4. Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells.

    PubMed

    George, Kerri L; Saltman, Laura H; Stein, Gary S; Lian, Jane B; Zurier, Robert B

    2008-03-01

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, prevents joint tissue injury in rats with adjuvant induced arthritis. Because activation of osteoclasts is central to the pathogenesis of bone erosion in patients with rheumatoid arthritis (RA), we investigated the influence of AjA on osteoclast differentiation and survival. Osteoclast cultures were established by stimulation of RAW264.7 cells and primary mouse bone marrow cultures with receptor activator of NF-kappaB ligand (RANKL). Simultaneous addition of AjA (15 and 30 microM) and RANKL to both culture systems significantly suppressed development of multinucleated osteoclasts (osteoclastogenesis) in a dose dependent manner, as determined by quantification of multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive cells. AjA impaired growth of RAW264.7 monocytes and prevented further osteoclast formation in cultures in which osteoclastogenesis had already begun. Reduction by AjA of both monocyte growth and osteoclast formation was associated with apoptosis, assayed by annexin V and propidium iodide staining, and caspase activity. The anti-osteoclastogenic effects of AjA did not require the continuous presence of AjA in the cell cultures. Based on these findings, we propose that AjA or other nonpsychoactive synthetic analogs of Cannabis constituents may be useful therapy for diseases such as RA and osteoporosis in which bone resorption is a central feature.

  5. Rapid Method for Ra-226 and Ra-228 in Water Samples

    SciTech Connect

    Maxwell, Sherrod, L. III

    2006-02-10

    The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  6. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    PubMed

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  7. A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells.

    PubMed Central

    Eck, K. M.; Yuan, L.; Duffy, L.; Ram, P. T.; Ayettey, S.; Chen, I.; Cohn, C. S.; Reed, J. C.; Hill, S. M.

    1998-01-01

    Neoplastic events are marked by uncontrolled cell proliferation. One major focus of cancer research has been to identify treatments that reduce or inhibit cell growth. Over the years, various compounds, both naturally occurring and chemically synthesized, have been used to inhibit neoplastic cell proliferation. Two such oncostatic agents, melatonin and retinoic acid, have been shown to suppress the growth of hormone-responsive breast cancer. Currently, separate clinical protocols exist for the administration of retinoids and melatonin as adjuvant therapies for cancer. Using the oestrogen receptor (ER)-positive MCF-7 human breast tumour cell line, our laboratory has studied the effects of a sequential treatment regimen of melatonin followed by all-trans retinoic acid (atRA) on breast tumour cell proliferation in vitro. Incubation of hormonally responsive MCF-7 and T47D cells with melatonin (10(-9) M) followed 24 h later by atRA (10(-9) M) resulted in the complete cessation of cell growth as well as a reduction in the number of cells to below the initial plating density. This cytocidal effect is in contrast to the growth-suppressive effects seen with either hormone alone. This regimen of melatonin followed by atRA induced cytocidal effects on MCF-7 cells by activating pathways leading to apoptosis (programmed cell death) as evidenced by decreased ER and Bcl-2 and increased Bax and transforming growth factor beta 1 (TGF-beta1) expression. Apoptosis was reflected morphologically by an increase in the number of lysosomal bodies and perinuclear chromatin condensation, cytoplasmic blebbing and the presence of apoptotic bodies. The apoptotic effect of this sequential treatment with melatonin and atRA appears to be both cell and regimen specific as (a) ER-negative MDA-MB-231 and BT-20 breast tumour cells were unaffected, and (b) the simultaneous administration of melatonin and atRA was not associated with apoptosis in any of the breast cancer cell lines studied. Taken

  8. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  9. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Xu, Wenqing; Yang, Fujun; Zhang, Yujie; Shen, Xiu

    2016-01-01

    Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony–forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of 137Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice. PMID:27006381

  10. 226Ra and 228Ra in Iowa drinking water.

    PubMed

    Kriege, L B; Hahne, R M

    1982-10-01

    The University Hygienic Laboratory has been performing radiochemical analyses on drinking water in the state of Iowa for over 20 yr. Approximately one half of the 1250 community water supplies that exist in Iowa have been sampled roughly once every 3 yr for the past decade. Originally, raw and finished waters that showed a gross alpha activity of greater than or equal to 3.0 pCi/L were analyzed for 226Ra, but starting in July 1976, finished waters were analyzed for both 226Ra and 228Ra if the gross alpha activity was greater than or equal to 2.0 pCi/L. As of 10 June 1981, 604 community water supplies had submitted composited samples that have been analyzed for gross alpha, 226Ra, and 228Ra concentrations in compliance with the federal Safe Drinking Water Act (Public Law 93-523). Approximately 10% of these supplies were found to exceed the EPA-established maximum contaminant level (MCL) for 226Ra plus 228Ra of 5 pCi/L. The results revealed, consistent with several other investigators (Mc81; Mi80; Mic80), that some supplies had higher concentrations of 228Ra than of 226Ra. It was also concluded, in agreement with McCurdy and Mellor (Mc81), that some ground water samples cannot be accurately measured for gross alpha activity due to their high dissolved solids content.

  11. ZNF536, a Novel Zinc Finger Protein Specifically Expressed in the Brain, Negatively Regulates Neuron Differentiation by Repressing Retinoic Acid-Induced Gene Transcription▿

    PubMed Central

    Qin, Zhen; Ren, Fangli; Xu, Xialian; Ren, Yongming; Li, Hongge; Wang, Yinyin; Zhai, Yonggong; Chang, Zhijie

    2009-01-01

    Neuronal differentiation is tightly regulated by a variety of factors. In a search for neuron-specific genes, we identified a highly conserved novel zinc finger protein, ZNF536. We observed that ZNF536 is most abundant in the brain and, in particular, is expressed in the developing central nervous system and dorsal root ganglia and localized in the cerebral cortex, hippocampus, and hypothalamic area. During neuronal differentiation of P19 cells induced by retinoic acid (RA), ZNF536 expression is increased at an early stage, and it is maintained at a constant level in later stages. Overexpression of ZNF536 results in an inhibition of RA-induced neuronal differentiation, while depletion or mutation of the ZNF536 gene results in an enhancement of differentiation. We further demonstrated that ZNF536 inhibits expression of neuron-specific marker genes, possibly through the inhibition of RA response element-mediated transcriptional activity, as overexpression of RA receptor α can rescue the inhibitory role of ZNF536 in neuronal differentiation and neuron-specific gene expression. Our studies have identified a novel zinc finger protein that negatively regulates neuron differentiation. PMID:19398580

  12. Leaching of 226Ra from components of uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1991-01-01

    A sequential extraction procedure was used to characterize the geochemical forms of 226Ra retained by mixtures of quartz sand and a variety of fine-grained rock and mineral species. These mixtures had previously been exposed to the sulfuric acid milling liquor of a simulated acid-leach uranium milling circuit. For most test cases, the major fraction of the 226Ra was extracted with 1 mol/1 NH4Cl and was deemed to be exchangeable. However, 226Ra retained by the barite-containing mixture was resistant to both 1 mol/1 NH4Cl and 1 mol/HCHCl extraction. ?? 1991.

  13. The Ski protein can inhibit ligand induced RARα and HDAC3 degradation in the Retinoic acid signaling pathway

    PubMed Central

    Zhao, Hongling; Ueki, Nobuhide; Marcelain, Katherine; Hayman, Michael J.

    2009-01-01

    Recent data has implicated the Ski protein as being a physiologically relevant negative regulator of signaling by Retinoic Acid (RA). The mechanism by which Ski represses RA signaling is unknown. Co-immunoprecipitation and immunofluorescence assay showed that Ski and RARα are in the same complex in both the absence and presence of RA, which makes Ski different from other corepressors. We determined that Ski can stabilize RARα and HDAC3. These results suggest that Ski represses RA signaling by stabilizing corepressor complex. PMID:19341714

  14. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  15. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  16. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice.

    PubMed

    Dawson, Jennifer E; Raymond, Angela M; Winn, Louise M

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-kappaB, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-kappaB, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P<0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P<0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P<0.05). Folic acid also reduced VPA-induced alterations in p53, NF-kappaB, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-kappaB, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  17. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature.

  18. Investigation of Retinoic Acid Function During Embryonic Brain Development Using Retinaldehyde-Rescued Rdh10 Knockout Mice

    PubMed Central

    Chatzi, Christina; Cunningham, Thomas J.; Duester, Gregg

    2013-01-01

    Background Retinoic acid (RA) signaling controls patterning and neuronal differentiation within the hindbrain, but forebrain RA function remains controversial. RA is produced from metabolism of retinol to retinaldehyde by retinol dehydrogenase (RDH), followed by metabolism of retinaldehyde to RA by retinaldehyde dehydrogenase (RALDH). Previous studies on Raldh2−/− and Raldh3−/− mice demonstrated an RA requirement for γ-aminobutyric acid (GABA)ergic and dopaminergic differentiation in forebrain basal ganglia, but no RA requirement was observed during early forebrain patterning or subsequent fore-brain cortical expansion. However, other studies suggested that RA controls forebrain patterning, and analysis of ethylnitrosourea-induced Rdh10 mutants suggested that RA synthesized in the meninges stimulates forebrain cortical expansion. Results We generated Rdh10−/− mouse embryos that lack RA activity early in the head and later in the meninges. We observed defects in hindbrain patterning and eye RA signaling, but early forebrain patterning was unaffected. Retinaldehyde treatment of Rdh10−/− embryos from E7–E9 rescues a cranial skeletal defect, resulting in E14.5 embryos lacking meningeal RA activity but maintaining normal forebrain shape and cortical expansion. Conclusions Rdh10−/− embryos demonstrate that RA controls hindbrain but not early forebrain patterning, while studies on retinaldehyde-rescued Rdh10−/− embryos show that meningeal RA synthesis is unnecessary to stimulate forebrain cortical expansion. PMID:23765990

  19. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  20. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  1. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    PubMed

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  2. Uric acid protects membranes and linolenic acid from ozone-induced oxidation.

    PubMed

    Meadows, J; Smith, R C; Reeves, J

    1986-05-29

    Aqueous preparations of linolenic acid, bovine serum albumin, and bovine erythrocyte membrane fragments were bubbled with ozone in the presence or absence of uric acid. Ozonation of the membrane fragments or the bovine serum albumin did not result in protein degradation. After 15 min of ozonation, the absorbance of the thiobarbituric acid-reactive material increased by 0.34 in the linolenic acid preparation and by 0.08 in the suspension of membrane fragments. In the presence of uric acid, these changes in absorbance were reduced to 0.14 for the fatty acid and to 0.01 for the membrane fragments. This result indicates that uric acid protects lipids from ozone-induced oxidation.

  3. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    DTIC Science & Technology

    2004-01-01

    L., Hong, J.S. (1996) Expression of) FosB in the rat hippocampus and striatum after systemic administration of kainic acid. Neurosci. Abstr. 22...gene expression in the hippocampus . Immunohistochemical methods and electromobility gel shift assays (EMSAs) demonstrate the concerted activation of...acid-induced neurodegenerative diseases. The major focus will be on the pathophysiological changes in the hippocampus . Special attention will be given

  4. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  5. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl.

    PubMed

    Boonyarikpunchai, Wanvisa; Sukrong, Suchada; Towiwat, Pasarapa

    2014-09-01

    Rosmarinic acid (RA) was isolated from an ethanolic extract of Thunbergia laurifolia leaves. The antinociceptive activity of RA was assessed in mice using hot-plate, acetic acid-induced writhing, and formalin tests. The anti-inflammatory effects of RA were determined in two mouse models of carrageenan-induced paw edema and cotton pellet-induced granuloma formation. Orally administered RA (50, 100, and 150 mg/kg) showed significant (p<0.001) antinociceptive activity in the hot-plate test and this effect was reversed by naloxone. RA at doses of 50 and 100mg/kg significantly reduced acetic acid-induced writhing by 52% (p<0.01) and 85% (p<0.001), respectively, and RA at 100mg/kg also caused significant inhibition of formalin-induced pain in the early and late phases (p<0.01 and p<0.001, respectively). RA at 100mg/kg significantly suppressed carrageenan-induced paw edema at 3, 4, 5 and 6h after carrageenan injection (p<0.01, p<0.05 p<0.01, and p<0.05, respectively) and showed significant activity against PGE2-induced paw edema. RA at 100mg/kg also inhibited cotton pellet-induced granuloma formation in mice. Taken together, these results demonstrate that RA possesses both central and peripheral antinociceptive activities and has anti-inflammatory effects against acute and chronic inflammation. While further evaluation regarding the safety profile of RA is needed, these data may provide a basis for the rational use of RA and T. laurifolia for treatment of pain and inflammatory disorders.

  6. Oleic acid-induced mucosal injury in developing piglet intestine.

    PubMed

    Velasquez, O R; Henninger, K; Fowler, M; Tso, P; Crissinger, K D

    1993-03-01

    A role for luminal nutrients, in particular products of lipid digestion, in the pathogenesis of mucosal injury to developing intestine has been postulated. We evaluated changes in mucosal permeability and light and electron microscopic histology induced by luminal perfusion with the long-chain fatty acid oleate in developing piglet intestine as a function of age and concentration of the fatty acid. 51Cr-labeled EDTA plasma-to-lumen clearance was measured in jejunum and ileum of 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets during sequential perfusion with saline control (20 min); 0, 1, 5, and 10 mM oleic acid/10 mM taurocholate in saline (20 min); and normal saline (60 min). The jejunum of piglets < or = 2 wk showed significantly greater increases in mucosal permeability compared with 1-mo-old animals after perfusion with oleic acid. This effect was dependent on the luminal concentration of the fatty acid and was associated with mucosal injury evident under light and electron microscopy. In contrast, the overall response in ileum was more attenuated compared with jejunum. Thus oleic acid, a common dietary fatty acid, induces dose- and age-dependent injury in developing piglet intestine. Investigation of the mechanisms of this injury may provide the basis for dietary modifications directed at decreasing the risk of mucosal injury during enteral feeding in neonatal intestine.

  7. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration

    PubMed Central

    Liu, Hui-Xin; Hu, Ying; Wan, Yu-Jui Yvonne

    2016-01-01

    Background & Aims All-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration. Methods C57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied. Results RA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers. Conclusions Priming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation. PMID:26701854

  8. The role of CYP26 enzymes in retinoic acid clearance

    PubMed Central

    Thatcher, Jayne E.; Isoherranen, Nina

    2009-01-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26’s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed. PMID:19519282

  9. Retinoic acid expands the evolutionarily reduced dentition of zebrafish

    PubMed Central

    Seritrakul, Pawat; Samarut, Eric; Lama, Tenzing T. S.; Gibert, Yann; Laudet, Vincent; Jackman, William R.

    2012-01-01

    Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.—Seritrakul, P., Samarut, E., Lama, T. T. S., Gibert, Y., Laudet, V., Jackman, W. R. Retinoic acid expands the evolutionarily reduced dentition of zebrafish. PMID:22942074

  10. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  11. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  12. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  13. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  14. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  15. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate.

    PubMed

    Jiang, Wenge; Pacella, Michael S; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M; Gray, Jeffrey J; McKee, Marc D

    2017-04-13

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a 'right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas 'left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a 'mother' subunit nanoparticle spawns a slightly tilted, consequential 'daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  16. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene.

    PubMed

    Laursen, Kristian B; Mongan, Nigel P; Zhuang, Yong; Ng, Mary M; Benoit, Yannick D; Gudas, Lorraine J

    2013-07-01

    Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARβ2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation.

  17. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome

    PubMed Central

    Hölzel, Michael; Huang, Sidong; Koster, Jan; Øra, Ingrid; Lakeman, Arjan; Caron, Huib; Nijkamp, Wouter; Xie, Jing; Callens, Tom; Asgharzadeh, Shahab; Seeger, Robert C.; Messiaen, Ludwine; Versteeg, Rogier; Bernards, René

    2010-01-01

    Summary Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional co-activator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1 deficient neuroblastomas. PMID:20655465

  18. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  19. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  20. Unsaturated fatty acids induce non-canonical autophagy

    PubMed Central

    Niso-Santano, Mireia; Malik, Shoaib Ahmad; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Mariño, Guillermo; Cianfanelli, Valentina; Ben-Younès, Amena; Troncoso, Rodrigo; Markaki, Maria; Sica, Valentina; Izzo, Valentina; Chaba, Kariman; Bauvy, Chantal; Dupont, Nicolas; Kepp, Oliver; Rockenfeller, Patrick; Wolinski, Heimo; Madeo, Frank; Lavandero, Sergio; Codogno, Patrice; Harper, Francis; Pierron, Gérard; Tavernarakis, Nektarios; Cecconi, Francesco; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kroemer, Guido

    2015-01-01

    To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus. PMID:25586377

  1. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    PubMed

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  2. Pharmacognostical Analysis and Protective Effect of Standardized Extract and Rizonic Acid from Erythrina velutina against 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Silva, Aline H.; Fonseca, Francisco Noé; Pimenta, Antônia T. A.; Lima, MaryAnne S.; Silveira, Edilberto Rocha; Viana, Glauce S. B.; Vasconcelos, Silvânia M. M.; Leal, Luzia Kalyne A. M.

    2016-01-01

    Background: Erythrina velutina is a tree common in the northeast of Brazil extensively used by traditional medicine for the treatment of central nervous system disorders. Objective: To develop a standardized ethanol extract of E. velutina (EEEV) and to investigate the neuroprotective potential of the extract and rizonic acid (RA) from E. velutina on neuronal cells. Materials and methods: The plant drug of E. velutina previously characterized was used for the production of EEEV. Three methods were evaluated in order to obtain an extract with higher content of phenols. The neuroprotective effect of standardized EEEV (HPLC-PDA) and RA was investigated on SH-SY5Y cell exposure to the neurotoxin 6-hydroxydopamine (6-OHDA). Results: The powder of the plant drug was classified as moderately coarse and several quality control parameters were determined. EEEV produced by percolation gave the highest phenol content when related to others extractive methods, and its HPLC-PDA analysis allowed to identify four flavonoids and RA, some reported for the first time for the species. EEEV and RA reduced significantly the neurotoxicity induced by 6-OHDA in SH-SY5Y cells determined by the MTT assay and the nitrite concentration. EEEV also showed a free radical scavenging activity. Conclusion: This is the first pharmacological study about E. velutina which used a controlled standardized extract since the preparation of the herbal drug. This extract and RA, acting as an antioxidant, presents a neuroprotective effect suggesting that they have potential for future development as a therapeutic agent in neurodegenerative disease as Parkinson. SUMMARY The powder of Erythrina velutina was classified as moderately coarse and several quality-control parameters were determined.Ethanolic extract from E. velutina (EEEV) produced by percolation gave the highest phenol content when related to others extractive methods and its HPLC–PDA analysis of EEEV allowed to identify four flavonoids and rizonic

  3. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  4. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  5. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells.

    PubMed

    Wu, Pei-Yu; Lin, Yu-Chia; Chang, Chia-Ling; Lu, Hsing-Tsen; Chin, Chia-Hsuan; Hsu, Tsan-Ting; Chu, Dachen; Sun, Synthia H

    2009-06-01

    Neuro-2a (N2a) cells are derived from spontaneous neuroblastoma of mouse and capable to differentiate into neuronal-like cells. Recently, P2X7 receptor has been shown to sustain growth of human neuroblastoma cells but its role during neuronal differentiation remains unexamined.We characterized the role of P2X7 receptors in the retinoic acid (RA)-differentiated N2a cells. RA induced N2a cells differentiation into neurite bearing and neuronal specific proteins, microtubule-associated protein 2 (MAP2) and neuronal specific nuclear protein (NeuN), expressing neuronal-like cells. Interestingly, the RA-induced neuronal differentiation was associated with decreases in the expression and function of P2X7 receptors. Functional inhibition of P2X7 receptors by P2X7 receptor selective antagonists, 5'-triphosphate, periodate-oxidized 2',3'-dialdehyde ATP (oATP), brilliant blue G (BBG) or A438079 induced neurite outgrowth. In addition, RA and oATP treatment stimulated the expression of neuron-specific class III beta-tubulin (TuJ1), and knockdown of P2X7 receptor expression by siRNA induced neurite outgrowth. To elucidate the possible mechanism, we found the levels of basal intracellular Ca2+ concentrations ([Ca2+]i) were decreased in either RA- or oATP-differentiated or P2X7receptor knockdown N2a cells. Simply cultured N2a cells in low Ca2+ medium induced a 2-fold increase in neurite length. Treatment of N2a cells with ATP hydrolase apyrase and the P2X7 receptors selective antagonist oATP or BBG decreased cell viability and cell number. Nevertheless, oATP but not BBG decreased cell proliferation and cell cycle progression. These results suggest for the first time that decreases in expression/function of P2X7 receptors are involved in neuronal differentiation.We provide additional evidence shown that the ATP release-activated P2X7 receptor is important in maintaining cell survival of N2a neuroblastoma cells.

  6. Gababuline induces delta-aminolevulinic acid excretion by cyanobacteria

    SciTech Connect

    Freeman, L.; Guikema, J.A.

    1986-04-01

    Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) was examined as an inhibitor of Chl biosynthesis in the cyanobacterium, Anacystis nidulans. At 20 ..mu..M, it blocked the synthesis of both Chl and phycocyanin. Similar results were obtained using aminooxyacetic acid. Because gabaculine is well established as an inhibitor of aminotransferase activity, the authors expected it to cause an inhibition of ..delta..-aminolevulinic acid (ALA) synthesis. However, an excretion of ALA was observed instead. Concentrated cell cultures were incubated in the presence of gabaculine, and the spent media was examined for ALA excretion using modified Ehrlick's reagent. Gabaculine induced ALA excretion in normal cultures, and in those stressed by iron or phosphate deficiency. Nitrate deficiency depressed the extent of ALA excretion. These results suggest that, in cyanobacteria, gabaculine inhibits CHl biosynthesis at a site after ALA formation.

  7. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  8. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis.

    PubMed

    Kim, Yu-Jeong; Chae, Su Young; Jin, Cheng-Hao; Sivasubramanian, M; Son, Sohee; Choi, Ki Young; Jo, Dong-Gyu; Kim, Kwangmeyung; Chan Kwon, Ick; Lee, Kang Choon; Park, Jae Hyung

    2010-12-01

    The clinical applications of tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL), an emerging therapeutic protein for cancer and rheumatoid arthritis (RA), are limited by its instability and short biological half-life. In this study, efficient therapeutic modalities for RA treatment were developed in the form of nano-sized complexes (nanocomplexes) based on hyaluronic acid (HA) and polyethylene glycol (PEG)-derivatized TRAIL (PEG-TRAIL) formed by N-terminal specific PEGylation. The nanocomplexes were prepared by simply mixing the positively charged PEG-TRAIL and negatively charged HA, and showed negligible loss of bioactivity compared with the PEG-TRAIL. The in vivo biodistribution and diffusion kinetics of Cy5.5-labeled PEG-TRAIL in mice were observed using a near-infrared optical imaging system after subcutaneous injection of three different formulations: PEG-TRAIL in phosphate-buffered saline (PBS, pH 7.4), nanocomplex in PBS, or nanocomplex in 1% HA solution. The results suggested that PEG-TRAIL is released slowly in vivo from the nanocomplex in 1% HA. Experiments in a collagen-induced arthritis mouse model demonstrated that the magnitudes of therapeutic effects, as judged by clinical scores and histology, were significantly enhanced by the sustained delivery of PEG-TRAIL, with the order of nanocomplex in 1% HA>nanocomplex in PBS>PEG-TRAIL in PBS. In addition, sustained delivery of PEG-TRAIL from the nanocomplex in 1% HA resulted in significant reduction of serum inflammatory cytokines and collagen-specific antibodies that are responsible for the pathogenesis of RA. These results imply that HA/PEG-TRAIL nanocomplex formulations are promising therapeutic modalities for the treatment of RA.

  9. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage.

    PubMed

    Yang, Sung-Yong; Hong, Chung-Oui; Lee, Gung Pyo; Kim, Cheong-Tae; Lee, Kwang-Won

    2013-05-01

    Perilla frutescens leaves are often used in East Asian gourmet food. In this study, we investigated the hepatoprotective effects of caffeic acid (CA), rosmarinic acid (RA), and their combination. P. frutescens contains 1.32μg CA/mg dry material (DM) and 26.84μg RA/mg DM analyzed by HPLC-DAD and HPLC-MS. CA remarkably reduced the oxidative damage than rosmarinic acid in an in vitro study. Oral intubation with CA or RA alone for five days was conducted prior to treatment with a single dose of tert-butyl hydroperoxide (0.5mmol/kg b.w., i.p.), which led to a significant reduction of indicators of hepatic toxicity, such as aspartate aminotransferase, alanine aminotransferase, oxidized glutathione, lipid peroxidation and enzyme activities related to antioxidant such as catalase, glutathione peroxidase and superoxide dismutase. Interestingly, compared to treatment with CA or RA alone, a combination of both compounds more increased the endogenous antioxidant enzymes and glutathione (GSH) and decreased lipid peroxidation in livers. These results suggest that CA from perilla leaves plays a role in the increased hepatic GSH concentration, and shows an additive hepatic protection with RA against oxidative hepatic damage.

  10. Acid-induced unfolding mechanism of recombinant human endostatin.

    PubMed

    Li, Bing; Wu, Xiaoyu; Zhou, Hao; Chen, Qianjie; Luo, Yongzhang

    2004-03-09

    Endostatin is a potent angiogenesis inhibitor. The structure of endostatin is unique in that its secondary structure is mainly irregular loops and beta-sheets and contains only a small fraction of alpha-helices with two pairs of disulfide bonds in a nested pattern. We choose human endostatin as a model system to study the folding mechanism of this kind. Nuclear magnetic resonance (NMR), tryptophan emission fluorescence, and circular dichroism (CD) were used to monitor the unfolding process of endostatin upon acid titration. Urea-induced unfolding was used to measure the stability of endostatin under different conditions. Our results show that endostatin is very acid-resistant; some native structure still remains even at pH 2 as evidenced by (1)H NMR. Trifluoroethanol (TFE) destabilizes native endostatin, while it makes endostatin even more acid-resistant in the low pH region. Stability measurement of endostatin suggests that endostatin is still in native structure at pH 3.5 despite the decreased stability. Acid-induced unfolding of endostatin is reversible, although it requires a long time to reach equilibrium below pH 3. Surprisingly, the alpha-helical content of endostatin is increased when it is unfolded at pH 1.6, and the alpha-helical content of the polypeptide chain of unfolded endostatin increases linearly with TFE concentration in the range of 0-30%. This observation indicates that the polypeptide chain of unfolded endostatin has an intrinsic alpha-helical propensity. Our discoveries may provide clues for refolding endostatin more efficiently. The acid-resistance property of endostatin may have biological significance in that it cannot be easily digested by proteases in an acidic environment such as in a lysosome in the cell.

  11. Retinoic acid in alveolar development, maintenance and regeneration.

    PubMed Central

    Maden, Malcolm; Hind, Matthew

    2004-01-01

    Recent data suggest that exogenous retinoic acid (RA), the biologically active derivative of vitamin A, can induce alveolar regeneration in a rat model of experimental emphysema. Here, we describe a mouse model of disrupted alveolar development using dexamethasone administered postnatally. We show that the effects of dexamethasone are concentration dependent, dose dependent, long lasting and result in a severe loss of alveolar surface area. When RA is administered to these animals as adults, lung architecture and the surface area per unit of body weight are completely restored to normal. This remarkable effect may be because RA is required during normal alveolar development and administering RA re-awakens gene cascades used during development. We provide evidence that RA is required during alveologenesis in the mouse by showing that the levels of the retinoid binding proteins, the RA receptors and two RA synthesizing enzymes peak postnatally. Furthermore, an inhibitor of RA synthesis, disulphiram, disrupts alveologenesis. We also show that RA is required throughout life for the maintenance of lung alveoli because when rats are deprived of dietary retinol they lose alveoli and show the features of emphysema. Alveolar regeneration with RA may therefore be an important novel therapeutic approach to the treatment of respiratory diseases characterized by a reduced gas-exchanging surface area such as bronchopulmonary dysplasia and emphysema for which there are currently no treatments. PMID:15293808

  12. Dissolution of kaolinite induced by citric, oxalic, and malic acids.

    PubMed

    Wang, Xingxiang; Li, Qingman; Hu, Huafeng; Zhang, Taolin; Zhou, Yiyong

    2005-10-15

    Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .

  13. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    PubMed

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  14. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats.

    PubMed

    Akomolafe, Seun F; Akinyemi, Ayodele J; Anadozie, Scholarstical O

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity.

  15. Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

    PubMed Central

    Bak, Jia; Kim, Hee Jung; Kim, Seong Yun

    2016-01-01

    Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging eff ect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral defi cits on the rotarod test were signifi cantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant eff ect and can be used as a potential therapeutic agent against HD. PMID:27162482

  16. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  17. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  18. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear

    PubMed Central

    Bok, Jinwoong; Raft, Steven; Kong, Kyoung-Ah; Koo, Soo Kyung; Dräger, Ursula C.; Wu, Doris K.

    2011-01-01

    Vertebrate hearing and balance are based in complex asymmetries of inner ear structure. Here, we identify retinoic acid (RA) as an extrinsic signal that acts directly on the ear rudiment to affect its compartmentalization along the anterior-posterior axis. A rostrocaudal wave of RA activity, generated by tissues surrounding the nascent ear, induces distinct responses from anterior and posterior halves of the inner ear rudiment. Prolonged response to RA by posterior otic tissue correlates with Tbx1 transcription and formation of mostly nonsensory inner ear structures. By contrast, anterior otic tissue displays only a brief response to RA and forms neuronal elements and most sensory structures of the inner ear. PMID:21173260

  19. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  20. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway.

    PubMed

    Xavier, Cristina P R; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2009-01-01

    Epidemiological studies have shown that nutrition is a key factor in modulating sporadic colorectal carcinoma (CRC) risk. Aromatic plants of the genus Salvia (sage) have been attributed many medicinal properties, which include anticancer activity. In the present study, the antiproliferative and proapoptotic effects of water extracts of Salvia fruticosa (SF) and Salvia officinalis (SO) and of their main phenolic compound rosmarinic acid (RA) were evaluated in two human colon carcinoma-derived cell lines, HCT15 and CO115, which have different mutations in the MAPK/ERK and PI3K/Akt signalling pathways. These pathways are commonly altered in CRC, leading to increased proliferation and inhibition of apoptosis. Our results show that SF, SO, and RA induce apoptosis in both cell lines, whereas cell proliferation was inhibited by the two sage extracts only in HCT15. SO, SF, and RA inhibited ERK phosphorylation in HCT15 and had no effects on Akt phosphorylation in CO115 cells. The activity of sage extracts seems to be due, at least in part, to the inhibition of MAPK/ERK pathway.

  1. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.

    PubMed

    Rizzi, Massimo; Perego, Carlo; Aliprandi, Marisa; Richichi, Cristina; Ravizza, Teresa; Colella, Daniele; Velískŏvá, Jana; Moshé, Solomon L; De Simoni, M Grazia; Vezzani, Annamaria

    2003-12-01

    In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.

  2. Dimethylarsenic acid induces tetraploids in Chinese hamster cells

    SciTech Connect

    Endo, Ginji; Horiguchi, Shun'ichi ); Kuroda, Koichi; Okamoto, Akiyoshi )

    1992-01-01

    Arsenic has been documented as a human carcinogen of the skin and lungs. However, attempts to induce tumors in experimental animals with inorganoarsenic compounds have mostly failed except in a few studies in which animals were given arsenic trioxide by intratracheal instillation. Moreover, inorganoarsenics are either inactive or too weak to induce gene mutations in vitro. The mechanism of arsenic carcinogenicity has not yet been discovered. Most mammals including human are able to methylate inorganoarsenic compounds to methylarsonic acid and dimethylarsenic acid. However, the genotoxicity of organoarsenic compounds has hardly been examined. The authors therefore decided to study this genotoxicity, including the frequency of sister chromatid exchange (SCE) of nine organic and three inorganic arsenic compounds. Observation of the metaphases in the SCE test revealed that only DMA of the organo- and inorgano-arsenic compounds induces tetraploids and mitotic arrest. This indicates that the role of DMA may be important in arsenic genotoxicity and may give a clue to the carcinogenic mechanism of arsenic.

  3. Retinoic Acid Attenuates Ileitis by Restoring the Balance between T-Helper 17 and T

    PubMed Central

    Collins, Colm B.; Aherne, Carol M.; Kominsky, Douglas; McNamee, Eóin N.; Lebsack, Matthew D.P.; Eltzschig, Holger; Jedlicka, Paul; Rivera-Nieves, Jesús

    2013-01-01

    Background & Aims Retinoic acid (RA), produced by intestinal epithelial cells (IECs) and dendritic cells (DCs) and regulated by transforming growth factor (TGF)-β, controls the enteric immune response by activating regulatory T (Treg) cells and preventing activation of T-helper (Th)17 cells Methods We studied the roles of RA in mice that overproduce tumor necrosis factor (TNF) and develop chronic ileitis (TNFΔARE mice). We assessed the frequency and function of CD103+ DCs and Th17 and Treg cells by flow cytometry; we measured expression of cytokines and retinaldehyde dehydrogenase (RALDH) enzymes in ileum samples, DCs, and IECs by real-time PCR. We quantified RA by electrochemical analysis and examined the effect of RA supplementation on TNF-induced ileitis using histologic, co-culture, and suppression assays and flow cytometry Results Numbers of CD103+ DCs decreased in the inflamed ilea of mice with chronic disease; RA synthetic machinery (RALDH1,2) was downregulated. Nevertheless, the proportion of CD4+, CD25+, FoxP3+ Treg cells increased, indicating an alternate source for RA. IECs responded to reduced levels of RA by upregulating RALDH3 in vivo and in vitro. Net tissue levels of RA levels remained lower in TNFΔARE than wild-type mice, indicating that epithelial up-regulation of RALDH3 could not maintain adequate concentrations of RA, probably because of loss of IEC mass. RA supplementation significantly attenuated disease by increasing the number and function of CD103+ DCs and Treg cells and reducing Th17 cells Conclusions Reduced levels of RA appear to induce IEC to upregulate synthesis of RA. RA supplementation attenuates ileitis through its effects on CD103+ DCs and Treg and Th17 cells. RA supplementation might used to treat patients with Crohn's disease PMID:22027263

  4. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  5. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid.

    PubMed

    Langton, Simne; Gudas, Lorraine J

    2008-03-15

    CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.

  6. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  7. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  8. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  9. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  10. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  11. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    PubMed

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage.

  12. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  13. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  14. Effect of surfactants on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus

    NASA Astrophysics Data System (ADS)

    Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.

    2016-09-01

    Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) surfactant on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these surfactants, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic surfactant-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic surfactant at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar nature of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.

  15. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  16. Effects of cichoric acid extract from Echinacea purpurea on collagen-induced arthritis in rats.

    PubMed

    Jiang, Ling; Li, Weizu; Wang, Yuchan; Zhang, Xiaosu; Yu, Deqiang; Yin, Yanyan; Xie, Zhongwen; Yuan, Yi

    2014-01-01

    Cichoric acid extract (CAE) from Echinacea purpurea L. was used to investigate the anti-arthritic effect by using collagen-induced arthritis (CIA) rat model. The hind paw swelling volume and the body weight were measured and recorded. All the drug solutions were administered orally to rats for a total of 28 days. On day 28, the rats were anaesthetized and decapitated. The thymus and spleen were weighed for the determination of the organ index. The concentration of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β) and prostaglandin E2 (PGE-2) in the serum was measured using commercially available ELISA kits. Total and phosphor-NF-κB and Cox-2 protein expression in synovial tissues were determined by histological slides quantification and western blot analysis. Our data showed that administration of all doses of CAE (8, 16, and 32 mg/kg) significantly decreased the paw swelling, restored body weight gain and decreased the organ index of the thymus and spleen compared with that of the CIA group. CAE (8, 16, and 32 mg/kg) treatment significantly reduced the levels of TNFα, IL-1β and PGE-2 in serum compared with the CIA group. Histopathological analysis demonstrated that CAE has obvious anti-arthritic activity. In addition, CAE (32 mg/kg) significantly decreased the levels of nuclear factor-κB (NF-κB), TNFα and cyclooxygenase 2 (Cox-2) in synovium tissues of the ankle joint compared with the CIA group. Furthermore, CAE administration significantly decreased the protein expression of phosphor-NF-κB and Cox-2 in synovium tissues of the knee joint compared with the CIA group. The results suggest that the anti-inflammatory activity of CAE may account for its anti-arthritic effect, and CAE could be a potential therapeutic drug for the treatment of rheumatoid arthritis (RA).

  17. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  18. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: radiobiological studies at RA-1 Nuclear Reactor in a model of antigen-induced arthritis in rabbits.

    PubMed

    Trivillin, Verónica A; Bruno, Leandro J; Gatti, David A; Stur, Mariela; Garabalino, Marcela A; Hughes, Andrea Monti; Castillo, Jorge; Pozzi, Emiliano C C; Wentzeis, Luis; Scolari, Hugo; Schwint, Amanda E; Feldman, Sara

    2016-11-01

    Rheumatoid arthritis is a chronic autoimmune pathology characterized by the proliferation and inflammation of the synovium. Boron neutron capture synovectomy (BNCS), a binary treatment modality that combines the preferential incorporation of boron carriers to target tissue and neutron irradiation, was proposed to treat the pathological synovium in arthritis. In a previous biodistribution study, we showed the incorporation of therapeutically useful boron concentrations to the pathological synovium in a model of antigen-induced arthritis (AIA) in rabbits, employing two boron compounds approved for their use in humans, i.e., decahydrodecaborate (GB-10) and boronophenylalanine (BPA). The aim of the present study was to perform low-dose BNCS studies at the RA-1 Nuclear Reactor in the same model. Neutron irradiation was performed post intra-articular administration of BPA or GB-10 to deliver 2.4 or 3.9 Gy, respectively, to synovium (BNCS-AIA). AIA and healthy animals (no AIA) were used as controls. The animals were followed clinically for 2 months. At that time, biochemical, magnetic resonance imaging (MRI) and histological studies were performed. BNCS-AIA animals did not show any toxic effects, swelling or pain on palpation. In BNCS-AIA, the post-treatment levels of TNF-α decreased in four of six rabbits and IFN-γ levels decreased in five of six rabbits. In all cases, MRI images of the knee joint in BNCS-AIA resembled those of no AIA, with no necrosis or periarticular effusion. Synovial membranes of BNCS-AIA were histologically similar to no AIA. BPA-BNCS and GB-10-BNCS, even at low doses, would be therapeutically useful for the local treatment of rheumatoid arthritis.

  19. Separation of retinoid-induced epidermal and dermal thickening from skin irritation.

    PubMed

    Varani, James; Fligiel, Helene; Zhang, Jian; Aslam, Muhammad Nadeem; Lu, Yi; Dehne, Lindsay A; Keller, Evan T

    2003-11-01

    The ability of the synthetic retinoid MDI-301, in which the carboxylic acid of 9- cis-retinoic acid (9-cis-RA) is replaced with an ester linkage, to induce epidermal and dermal thickening and skin irritation (erythema and flaking) in hairless (rhino) mice following its topical application was investigated in comparison with that of 14-all- trans-retinoic acid (14-all-trans-RA) and 9-cis-RA. MDI-301 induced epidermal proliferation leading to a thickened epidermis. Treated animals also demonstrated a prominent band of organized connective tissue immediately below the epidermis. In its ability to induce epidermal thickening, MDI-301 was quantitatively similar to 14-all-trans-RA and 9-cis-RA. However, unlike 14-all-trans-RA and 9-cis-RA, which produced skin irritation associated with a perivascular influx of mononuclear leukocytes into the dermis, there was no evidence of irritation with MDI-301 and little leukocyte infiltration. Intraperitoneal injection of either 14-all-trans-RA or MDI-301 also resulted in epidermal and dermal thickening. Irritation of skin was not observed in these animals but splenomegaly was prominent in animals treated with either agent.

  20. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  1. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid.

    PubMed

    Zhang, C; Patel, R; Eiserich, J P; Zhou, F; Kelpke, S; Ma, W; Parks, D A; Darley-Usmar, V; White, C R

    2001-10-01

    The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.

  2. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy

    NASA Astrophysics Data System (ADS)

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-11-01

    The 223Ra, 224Ra, and 225Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. 224Ra and 225Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. 224,225Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  3. Functionalized NaA nanozeolites labeled with (224,225)Ra for targeted alpha therapy.

    PubMed

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-01-01

    The (223)Ra, (224)Ra, and (225)Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. (224)Ra and (225)Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. (224,225)Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  4. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  5. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    PubMed

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  6. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose and muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concomitant supplementation of 1.5% docosahexaenoic acid (22:6 n-3; DHA) with 0.5% t10, c12- conjugated linoleic acid (18:2 n-6; CLA) prevented the CLA-induced increase in expression of hepatic genes involved in fatty acid synthesis and the decrease in expression of genes involved in fat...

  7. IL2RA — EDRN Public Portal

    Cancer.gov

    The interleukin 2 receptor exists in three forms which differ in their ability to bind interleukin 2. The low affinity form of the receptor is a monomer of IL2RA, the alpha subunit. The alpha/beta subunit heterodimer, formed by IL2RA and IL2RB, is an intermediate affinity form. The alpha/beta/gamma heterotrimer formed by IL2RA, IL2RB, and IL2RG is the high affinity form. IL2RA is normally an integral membrane protein, although soluble IL2RA has been isolated. There are known alternately-spliced versions of IL2RA mRNAs, but their functions are unknown. Mutations in the IL2RA gene are associated with diabetes mellitus insulin-dependent type 10 (IDDM10). Complications of IDDM10 can adversely affect the eyes, kidneys, nerves, and blood vessels.

  8. Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Zhao, Mei; Chen, Yuan-Hua; Chen, Xue; Dong, Xu-Ting; Zhou, Jun; Wang, Hua; Wu, Shu-Xian; Zhang, Cheng; Xu, De-Xiang

    2014-01-13

    Folic acid is a water-soluble B-complex vitamin. Increasing evidence demonstrates that physiological supply of folic acid during pregnancy prevents folic acid deficiency-related neural tube defects (NTDs). Previous studies showed that maternal lipopolysaccharide (LPS) exposure caused NTDs in rodents. The aim of this study was to investigate the effects of high-dose folic acid supplementation during pregnancy on LPS-induced NTDs. Pregnant mice were intraperitoneally injected with LPS (20 μg/kg/d) from gestational day (GD) 8 to GD12. As expected, a five-day LPS injection resulted in 19.96% of fetuses with NTDs. Interestingly, supplementation with folic acid (3mg/kg/d) during pregnancy significantly alleviated LPS-induced NTDs. Additionally, folic acid significantly attenuated LPS-induced fetal growth restriction and skeletal malformations. Additional experiment showed that folic acid attenuated LPS-induced glutathione (GSH) depletion in maternal liver and placentas. Moreover, folic acid significantly attenuated LPS-induced expression of placental MyD88. Additionally, folic acid inhibited LPS-induced c-Jun NH2-terminal kinase (JNK) phosphorylation and nuclear factor kappa B (NF-κB) activation in placentas. Correspondingly, folic acid significantly attenuated LPS-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in placentas, maternal serum and amniotic fluid. In conclusion, supplementation with high-dose folic acid during pregnancy protects against LPS-induced NTDs through its anti-inflammatory and anti-oxidative effects.

  9. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  10. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    PubMed Central

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers. PMID:10890895

  11. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  12. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration.

    PubMed

    Jang, Holim; Ahn, Hong Ryul; Jo, Hyoung; Kim, Kyung-A; Lee, Eun Ha; Lee, Ki Won; Jung, Sang Hoon; Lee, Chang Y

    2014-01-08

    This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.

  13. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  14. Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina bifida aperta in rat.

    PubMed

    Wei, Xiaowei; Li, Hui; Miao, Jianing; Zhou, Fenghua; Liu, Bo; Wu, Di; Li, Shujing; Wang, Lili; Fan, Yang; Wang, Weilin; Yuan, Zhengwei

    2012-08-01

    Spina bifida is a complex congenital malformation resulting from failure of fusion in the spinal neural tube during embryogenesis. However, the cellular mechanism underlying spina bifida is not fully understood. Here, we investigated cell apoptosis in whole embryos and proliferation of neural progenitor cells in the spinal neural tube during neurulation in all-trans retinoic acid (atRA)-induced spina bifida in fetal rats. Cell apoptosis was assessed by TUNEL assay on whole-mount and serially sectioned samples of rat embryos with spina bifida. Cell proliferation of lumbo-sacral neural progenitor cells was assessed by staining for the mitotic marker Ki67 and pH3. We found an excess of apoptosis in the neuroepithelium of embryos with spina bifida, which became more marked as embryos progress from E11 to E13. Conversely, there was a reduction in cell proliferation in spina bifida embryos, with a progressively greater difference from controls with stage from E11 to 13. Thus, atRA-induced spina bifida in rat shows perturbed apoptosis and proliferation of neural progenitors in the lumbo-sacral spinal cord during embryonic development, which might contribute to the pathogenesis of spina bifida.

  15. Sanshool on The Fingertip Interferes with Vibration Detection in a Rapidly-Adapting (RA) Tactile Channel

    PubMed Central

    Kuroki, Scinob; Hagura, Nobuhiro; Nishida, Shin’ya; Haggard, Patrick; Watanabe, Junji

    2016-01-01

    An Asian spice, Szechuan pepper (sanshool), is well known for the tingling sensation it induces on the mouth and on the lips. Electrophysiological studies have revealed that its active ingredient can induce firing of mechanoreceptor fibres that typically respond to mechanical vibration. Moreover, a human behavioral study has reported that the perceived frequency of sanshool-induced tingling matches with the preferred frequency range of the tactile rapidly adapting (RA) channel, suggesting the contribution of sanshool-induced RA channel firing to its unique perceptual experience. However, since the RA channel may not be the only channel activated by sanshool, there could be a possibility that the sanshool tingling percept may be caused in whole or in part by other sensory channels. Here, by using a perceptual interference paradigm, we show that the sanshool-induced RA input indeed contributes to the human tactile processing. The absolute detection thresholds for vibrotactile input were measured with and without sanshool application on the fingertip. Sanshool significantly impaired detection of vibrations at 30 Hz (RA channel dominant frequency), but did not impair detection of higher frequency vibrations at 240 Hz (Pacinian-corpuscle (PC) channel dominant frequency) or lower frequency vibrations at 1 Hz (slowly adapting 1 (SA1) channel dominant frequency). These results show that the sanshool induces a peripheral RA channel activation that is relevant for tactile perception. This anomalous activation of RA channels may contribute to the unique tingling experience of sanshool. PMID:27935970

  16. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    PubMed

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2.

  17. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  18. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    PubMed Central

    Bertel, Doug; Peck, John; Quick, Thomas J.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  19. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  20. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  1. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  2. Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension.

    PubMed

    Cunningham, Thomas J; Zhao, Xianling; Duester, Gregg

    2011-10-01

    During the early stages of body axis extension, retinoic acid (RA) synthesized in somites by Raldh2 represses caudal fibroblast growth factor (FGF) signaling to limit the tailbud progenitor zone. Excessive RA down-regulates Fgf8 and triggers premature termination of body axis extension, suggesting that endogenous RA may function in normal termination of body axis extension. Here, we demonstrate that Raldh2-/- mouse embryos undergo normal down-regulation of tailbud Fgf8 expression and termination of body axis extension in the absence of RA. Interestingly, Raldh2 expression in wild-type tail somites and tailbud from E10.5 onwards does not result in RA activity monitored by retinoic acid response element (RARE)-lacZ. Treatment of wild-type tailbuds with physiological levels of RA or retinaldehyde induces RARE-lacZ activity, validating the sensitivity of RARE-lacZ and demonstrating that deficient RA synthesis in wild-type tail somites and tailbud is due to a lack of retinaldehyde synthesis. These studies demonstrate an early uncoupling of RA signaling from mouse tailbud development and show that termination of body axis extension occurs in the absence of RA signaling.

  3. Topoisomerase IIβ Negatively Modulates Retinoic Acid Receptor α Function: a Novel Mechanism of Retinoic Acid Resistance▿

    PubMed Central

    McNamara, Suzan; Wang, Hongling; Hanna, Nessrine; Miller, Wilson H.

    2008-01-01

    Interactions between retinoic acid (RA) receptor α (RARα) and coregulators play a key role in coordinating gene transcription and myeloid differentiation. In patients with acute promyelocytic leukemia (APL), the RARα gene is fused with the promyelocytic leukemia (PML) gene via the t(15;17) translocation, resulting in the expression of a PML/RARα fusion protein. Here, we report that topoisomerase II beta (TopoIIβ) associates with and negatively modulates RARα transcriptional activity and that increased levels of and association with TopoIIβ cause resistance to RA in APL cell lines. Knockdown of TopoIIβ was able to overcome resistance by permitting RA-induced differentiation and increased RA gene expression. Overexpression of TopoIIβ in clones from an RA-sensitive cell line conferred resistance by a reduction in RA-induced expression of target genes and differentiation. Chromatin immunoprecipitation assays indicated that TopoIIβ is bound to an RA response element and that inhibition of TopoIIβ causes hyperacetylation of histone 3 at lysine 9 and activation of transcription. Our results identify a novel mechanism of resistance in APL and provide further insight to the role of TopoIIβ in gene regulation and differentiation. PMID:18212063

  4. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    PubMed

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  5. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    PubMed Central

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. Conclusion Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity. PMID:18320034

  6. Monomethylarsonous acid induces transformation of human bladder cells

    SciTech Connect

    Bredfeldt, Tiffany G.; Jagadish, Bhumasamudram; Eblin, Kylee E.; Mash, Eugene A.; Gandolfi, A. Jay . E-mail: gandolfi@pharmacy.arizona.edu

    2006-10-01

    Arsenic is a human bladder carcinogen. Arsenic is methylated to both monomethyl and dimethyl metabolites which have been detected in human urine. The trivalent methylated arsenicals are more toxic than inorganic arsenic. It is unknown if these trivalent methylated metabolites can directly cause malignant transformation in human cells. The goal of this study is determine if monomethylarsonous acid (MMA{sup III}) can induce malignant transformation in a human bladder urothelial cell line. To address this goal, a non-tumorigenic human urothelial cell line (UROtsa) was continuously exposed to 0.05 {mu}M MMA{sup III} for 52 weeks. Hyperproliferation was the first phenotypic change observed in exposed UROtsa (URO-MSC). After 12 weeks of exposure, doubling time had decreased from 42 h in unexposed control cells to 27 h in URO-MSC. Hyperproliferation continued to be a quality possessed by the URO-MSC cells after both 24 and 52 weeks of exposure to MMA{sup III}, which had a 40-50% reduction in doubling time. Throughout the 52-week exposure, URO-MSC cells retained an epithelial morphology with subtle morphological differences from control cells. 24 weeks of MMA{sup III} exposure was required to induce anchorage-independent growth as detected by colony formation in soft agar, a characteristic not found in UROtsa cells. To further substantiate that malignant transformation had occurred, URO-MSC cells were tested after 24 and 52 weeks of exposure to MMA{sup III} for the ability to form tumors in SCID mice. Enhanced tumorigenicity in SCID mouse xenografts was observed after 52 weeks of treatment with MMA{sup III}. These observations are the first demonstration of MMA{sup III}-induced malignant transformation in a human bladder urothelial cell line and provide important evidence that MMA{sup III} may be carcinogenic in human tissues.

  7. Inhibition of retinoic acid-induced skin irritation in calorie-restricted mice.

    PubMed

    Varani, James; Bhagavathula, Narasimharao; Aslam, Muhammad Nadeem; Fay, Kevin; Warner, Roscoe L; Hanosh, Andrew; Barron, Adam G; Miller, Richard A

    2008-01-01

    Mice on a calorie-restricted (CR) diet (total calories restricted to 70% of ad libitum; AL) for periods of time ranging from 3 to 18 months were examined for response to topical treatment with all-trans retinoic acid (RA). Daily application of a 0.1% solution of RA to the shaved skin of UM-HET3 mice on an AL diet produced a severe irritation that was evident by day 4, maximal at day 7-8 and still detectable at day 14. Skin irritation was characterized by redness, dryness, flaking and failure of the hair to grow at the treated site. In CR mice, the same treatment produced little detectable irritation. Animals were sacrificed at the end of the retinoid-treatment period (day 7 or day 14) and skin from these animals was examined histologically. In both AL and CR mice, a similar degree of epidermal hyperplasia was observed. Numerous inflammatory cells (mononuclear cells and granulocytes) were present in the skin of both groups. Occasional S100-positive cells (presumably Langerhans cells) were also observed in the epidermis of skin from both groups. S100-positive cells were also observed in the dermis. When skin from CR and AL mice was incubated in organ culture for 3 days (on day 7 after initiation of RA treatment), similar levels of four different pro-inflammatory cytokines were found in the conditioned medium. Soluble type I collagen levels were also similar. In contrast, the level of matrix metalloproteinase-9 was lower in the conditioned medium of skin from CR mice than in conditioned medium from skin cultures of AL mice. Taken together, these studies suggest that CR may provide a way to mitigate the irritation that normally accompanies RA treatment without compromising the beneficial effects of retinoid use. CR appears to exert a protective effect at the target tissue level rather than by a reduction in pro-inflammatory events, per se.

  8. A combination of methotrexate and zoledronic acid prevents bone erosions and systemic bone mass loss in collagen induced arthritis

    PubMed Central

    2009-01-01

    Introduction Osteoclasts play a key role in the pathogenesis of bone erosion and systemic bone mass loss during rheumatoid arthritis (RA). In this study, we aimed to determine the effect of methotrexate (MTX) and zoledronic acid (ZA), used alone or in combination, on osteoclast-mediated bone erosions and systemic bone mass loss in a rat model of collagen induced arthritis (CIA). We hypothesized that MTX and ZA could have an additive effect to prevent both bone erosion and systemic bone loss. Methods Arthritis was induced in 64 female Sprague-Dawley rats. After the clinical onset of CIA, rats were assigned to treatment with MTX (1 mg/kg/week), ZA (100 μg/kg twice weekly), both treatments at the same regimens, or vehicle. Arthritis score and paw thickness were recorded twice weekly. The rats were sacrificed on D28 and hind paws were removed for radiographic, histological and immunohistochemical analysis. The effects of treatments on osteoclastogenesis were determined by Tartrate resistant acid phosphatase (TRAP) staining. Micro-CT of the tibia was carried out for histomorphometric analysis. Bone mass density was evaluated by densitometry. Results MTX significantly decreased the severity of CIA, whereas ZA slightly exacerbated it. When these two drugs were used in combination, MTX prevented the pro-inflammatory effect of ZA. The combination of ZA with MTX was more effective than MTX alone for reducing structural joint damage with a dramatic decrease of osteoclasts' number in the eroded joints. However, MTX alone also significantly reduced the number of osteoclasts and the number of CD68+ mononuclear cells. ZA alone, or ZA with MTX, significantly increased the systemic bone mass density measured by densitometry and bone volume on histomorphometric analysis. Conclusions A combination of MTX and ZA prevented both bone erosion and systemic bone loss in a rat model of arthritis. Both treatments independently decreased the number of osteoclasts in the eroded joint. However

  9. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  10. Uric acid protects erythrocytes from ozone-induced changes.

    PubMed

    Meadows, J; Smith, R C

    1987-08-01

    Uric acid effectively reduced hemolysis and methemoglobin formation in bovine and swine erythrocytes bubbled with ozone in vitro. In bovine erythrocytes, formation of thiobarbituric acid-reactive material was inhibited by uric acid, but there was little immediate protection for the swine cells. Antioxidant protection was due to preferential degradation of the uric acid by ozone. These results provide evidence to support the hypothesis that in plasma, uric acid can provide antioxidant protection for erythrocytes.

  11. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  12. Epigenetic modifications in valproic acid-induced teratogenesis.

    PubMed

    Tung, Emily W Y; Winn, Louise M

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  13. Viewpoints on Acid-Induced Inflammatory Mediators in Esophageal Mucosa

    PubMed Central

    Harnett, Karen M; Rieder, Florian; Behar, Jose

    2010-01-01

    We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity. PMID:21103419

  14. Protective Effects of Norursodeoxycholic Acid Versus Ursodeoxycholic Acid on Thioacetamide-induced Rat Liver Fibrosis

    PubMed Central

    Buko, Vyacheslav U.; Lukivskaya, Oxana Y.; Naruta, Elena E.; Belonovskaya, Elena B.; Tauschel, Horst-Dietmar

    2014-01-01

    Background/objectives Effects of norursodeoxycholic acid (norUDCA) and ursodeoxycholic acid (UDCA) on liver fibrosis progression and liver fibrosis reversal in thioacetamide (TAA)-treated rats were studied. Methods Advanced liver fibrosis was induced by TAA treatment (200 mg/kg, i.p.) for 12 weeks. In the second experiment resolution of liver fibrosis was assessed after 8 weeks of TAA withdrawal. During 8 last weeks of each trial, fibrotic rats were daily administered with UDCA (80 mg/kg) and norUDCA (equimolar to 80 mg/kg of UDCA) by oral gavage. Liver fibrosis was assessed by Sirius red staining, liver hydroxyproline and serum fibrosis markers determination. Results The TAA treatment resulted in advanced fibrosis and increase in liver hydroxyproline content and serum fibrosis markers. These signs of fibrosis were less pronounced in rats after TAA withdrawal. Treatment with of norUDCA significantly decreased the total and relative liver hydroxyproline contents in rats with fibrosis reversal, whereas UDCA did not change these parameters. Both compounds decreased serum TGFβ and type IV collagen contents, whereas other serum markers did not differ from the placebo group. In the fibrosis progression model the square of connective tissue was decreased by norUDCA. Serum type IV collagen and procollagen III-NT contents in these experiments were lowered by both UDCA and norUDCA, whereas rest of serum fibrosis markers were diminished only by norUDCA. Conclusions Both norUDCA and UDCA showed therapeutic and prophylactic antifibrotic effect in rats with TAA-induced liver fibrosis. For most of tested parameters norUDCA was more effective than UDCA, especially in the experiment with liver fibrosis regression. PMID:25755576

  15. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  16. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  17. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  18. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins.

    PubMed

    Eschen-Lippold, Lennart; Altmann, Simone; Rosahl, Sabine

    2010-05-01

    Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-beta-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid-derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.

  19. Ameliorative effects of phycocyanin against gibberellic acid induced hepatotoxicity.

    PubMed

    Hussein, Mohamed M A; Ali, Haytham A; Ahmed, Mona M

    2015-03-01

    Gibberellic acid (GA3) was used extensively unaware in agriculture in spite of its dangerous effects on human health. The current study was designed to investigate the ameliorative effects of the co-administration of phycocyanin with GA3 induced oxidative stress and histopathological changes in the liver. Forty male albino rats were randomly divided into four groups. Group I (control group) received normal saline for 6 weeks, Group II (GA3 treated group) received 3.85 mg/kg body weight GA3 once daily for 6 weeks, Group III (phycocyanin treated group) received Phycocyanin 200 mg/kg body weight/day for 6 weeks orally dissolved in distilled water and Group IV was treated with GA3 and phycocyanin at the same doses as groups 2 and 3. All treatments were given daily using intra-gastric intubation and continued for 6 weeks. Our results revealed significant downregulation of antioxidant enzyme activities and their mRNA levels (CAT, GPx and Cu-Zn, SOD) with marked elevation of liver enzymes and extensive fibrous connective tissue deposition with large biliary cells in hepatic tissue of GA3 treated rats, while treatment with phycocyanin improved the antioxidant defense system, liver enzymes and structural hepatocytes recovery in phycocyanin treated group with GA3. These data confirm the antioxidant potential of Phycocyanin and provide strong evidence to support the co-administration of Phycocyanin during using GA3.

  20. Lysophosphatidic acid induced red blood cell aggregation in vitro.

    PubMed

    Kaestner, Lars; Steffen, Patrick; Nguyen, Duc Bach; Wang, Jue; Wagner-Britz, Lisa; Jung, Achim; Wagner, Christian; Bernhardt, Ingolf

    2012-10-01

    Under physiological conditions healthy RBCs do not adhere to each other. There are indications that RBCs display an intercellular adhesion under certain (pathophysiological) conditions. Therefore we investigated signaling steps starting with transmembrane calcium transport by means of calcium imaging. We found a lysophosphatidic acid (LPA) concentration dependent calcium influx with an EC(50) of 5 μM LPA. Downstream signaling was investigated by flow cytometry as well as by video-imaging comparing LPA induced with "pure" calcium mediated phosphatidylserine exposure and concluded the coexistence of two branches of the signaling pathway. Finally we performed force measurements with holographic optical tweezers (HOT): The intercellular adhesion of RBCs (aggregation) exceeds a force of 25 pN. These results support (i) earlier data of a RBC associated component in thrombotic events under certain pathophysiological conditions and (ii) the concept to use RBCs in studies of cellular adhesion behavior, especially in combination with HOT. The latter paves the way to use RBCs as model cells to investigate molecular regulation of cellular adhesion processes.

  1. The Antiinflammatory Cytokine Interleukin-1 Receptor Antagonist Protects from High-Fat Diet-Induced Hyperglycemia

    PubMed Central

    Sauter, Nadine S.; Schulthess, Fabienne T.; Galasso, Ryan; Castellani, Lawrence W.; Maedler, Kathrin

    2008-01-01

    Subclinical inflammation is a recently discovered phenomenon in type 2 diabetes. Elevated cytokines impair β-cell function and survival. A recent clinical trial shows that blocking IL-1β signaling by IL-1 receptor antagonist (IL-1Ra) improves β-cell secretory function in patients with type 2 diabetes. In the present study, we provide further mechanisms of the protective role of IL-1Ra on the β-cell. IL-1Ra prevented diabetes in vivo in C57BL/6J mice fed a high-fat/high-sucrose diet (HFD) for 12 wk; it improved glucose tolerance and insulin secretion. High-fat diet treatment increased serum levels of free fatty acids and of the adipokines resistin and leptin, which were reduced by IL-1Ra treatment. In addition, IL-1Ra counteracted adiponectin levels, which were decreased by high-fat feeding. Studies on isolated islets revealed that IL-1Ra specifically acted on the β-cell. IL-1Ra protected islets from HFD treated animals from β-cell apoptosis, induced β-cell proliferation, and improved glucose-stimulated insulin secretion. Insulin mRNA was reduced in islets from mice fed a HFD but normalized in the IL-1Ra group. Our results show that IL-1Ra improves β-cell survival and function, and support the potential role for IL-1Ra in the treatment of diabetes. PMID:18239070

  2. TLRs, future potential therapeutic targets for RA.

    PubMed

    Elshabrawy, Hatem A; Essani, Abdul E; Szekanecz, Zoltán; Fox, David A; Shahrara, Shiva

    2017-02-01

    Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.

  3. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes.

    PubMed

    Mercader, N; Leonardo, E; Piedra, M E; Martínez-A, C; Ros, M A; Torres, M

    2000-09-01

    Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.

  4. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    PubMed

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics.

  5. Microbially induced organic acid underdeposit attack in a gas pipeline

    SciTech Connect

    Dias, O.C.; Bromel, M.C. )

    1990-04-01

    A leaking undersea carbon-steel gas pipeline was investigated, and attack was confined to low areas where water had accumulated.Analyses showed that pitting, which occurred under deposits, was caused by organic acids generated by bacteria. The metabolic activities of anaerobic sporeformers produce these acids. Alkyl amine carboxylic acid and metronidizole were effective deterrents at low concentrations.

  6. Molecular characterization of the acid-inducible asr gene of Escherichia coli and its role in acid stress response.

    PubMed

    Seputiene, Vaida; Motiejūnas, Domantas; Suziedelis, Kestutis; Tomenius, Henrik; Normark, Staffan; Melefors, Ojar; Suziedeliene, Edita

    2003-04-01

    Enterobacteria have developed numerous constitutive and inducible strategies to sense and adapt to an external acidity. These molecular responses require dozens of specific acid shock proteins (ASPs), as shown by genomic and proteomic analysis. Most of the ASPs remain poorly characterized, and their role in the acid response and survival is unknown. We recently identified an Escherichia coli gene, asr (acid shock RNA), encoding a protein of unknown function, which is strongly induced by high environmental acidity (pH < 5.0). We show here that Asr is required for growth at moderate acidity (pH 4.5) as well as for the induction of acid tolerance at moderate acidity, as shown by its ability to survive subsequent transfer to extreme acidity (pH 2.0). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of acid-shocked E. coli cells harboring a plasmid-borne asr gene demonstrated that the Asr protein is synthesized as a precursor with an apparent molecular mass of 18 kDa. Mutational studies of the asr gene also demonstrated the Asr preprotein contains 102 amino acids. This protein is subjected to an N-terminal cleavage of the signal peptide and a second processing event, yielding 15- and 8-kDa products, respectively. Only the 8-kDa polypeptide was detected in acid-shocked cells containing only the chromosomal copy of the asr gene. N-terminal sequencing and site-directed mutagenesis revealed the two processing sites in the Asr protein precursor. Deletion of amino acids encompassing the processing site required for release of the 8-kDa protein resulted in an acid-sensitive phenotype similar to that observed for the asr null mutant, suggesting that the 8-kDa product plays an important role in the adaptation to acid shock. Analysis of Asr:PhoA fusions demonstrated a periplasmic location for the Asr protein after removal of the signal peptide. Homologues of the asr gene from other Enterobacteriaceae were cloned and shown to be induced in E. coli

  7. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  8. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    PubMed

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  9. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.

    PubMed

    Kaur, Parvinder; Schulz, Kristina; Aschner, Michael; Syversen, Tore

    2007-12-01

    The effect of docosahexaenoic acid (DHA) in modulating methylmercury (MeHg)-induced neurotoxicity was investigated in C6-glial and B35-neuronal cell lines. Gas chromatography measurements indicated increased DHA content in both the cell lines after 24 h supplementation. Mitochondrial activity evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) reduction indicated that 10 microM MeHg treatment for 50 min led to a significant (p < 0.001) and similar decrease in MTT activity in both the cell lines. However, DHA pretreatment led to more pronounced depletion (p < 0.05) in the MTT activity in C6 cells as compared to B35 cells. The depletion of glutathione (GSH) content measured with the fluorescent indicator monochlorobimane was more apparent (p < 0.001) in C6 cells treated with DHA and MeHg. The amount of reactive oxygen species (ROS) detected with the fluorescent indicator -- chloromethyl derivative of dichloro dihydro fluorescein diacetate (CMH(2)DCFDA) -- indicated a fourfold increase in C6 cells (p < 0.001) as compared to twofold increase in B35 cells (p < 0.001) upon DHA and MeHg exposure. However, the cell-associated MeHg measurement using (14)C-labeled MeHg indicated a decrease (p < 0.05) in MeHg accumulation upon DHA exposure in both the cell lines. These findings provide experimental evidence that although pretreatment with DHA reduces cell-associated MeHg, it causes an increased ROS (p < 0.001) and GSH depletion (p < 0.05) in C6 cells.

  10. Neurotoxic effects induced by gammahydroxybutyric acid (GHB) in male rats.

    PubMed

    Pedraza, Carmen; García, Francisca Belén; Navarro, José Francisco

    2009-10-01

    Gammahydroxybutyric acid (GHB) is an endogenous constituent of the central nervous system that has acquired great social relevance for its use as a recreational 'club drug'. GHB, popularly known as 'liquid ecstasy', is addictive when used continuously. Although the symptoms associated with acute intoxication are well known, the effects of prolonged use remain uncertain. We examined in male rats the effect of repeated administration of GHB (10 and 100 mg/kg) on various parameters: neurological damage, working memory and spatial memory, using neurological tests, the Morris water maze and the hole-board test. The results showed that repeated administration of GHB, especially at doses of 10 mg/kg, causes neurological damage, affecting the 'grasping' reflex, as well as alteration in spatial and working memories. Stereological quantification showed that this drug produces a drastic neuronal loss in the CA1 hippocampal region and in the prefrontal cortex, two areas clearly involved in cognitive and neurological functions. No effects were noted after quantification in the periaqueductal grey matter (PAG), a region lacking GHB receptors. Moreover, NCS-382, a putative antagonist of GHB receptor, prevented both neurological damage and working- memory impairment induced by GHB. This suggests that the effects of administration of this compound may be mediated, at least partly, by specific receptors in the nervous system. The results show for the first time that the repeated administration of GHB, especially at very low doses, produces neurotoxic effects. This is very relevant because its abuse, especially by young persons, could produce considerable neurological alterations after prolonged abuse.

  11. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  12. Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells.

    PubMed

    Bianchi, M G; Franchi-Gazzola, R; Reia, L; Allegri, M; Uggeri, J; Chiu, M; Sala, R; Bussolati, O

    2012-12-27

    Glutamate transport in early, undifferentiated oligodendrocytic precursors has not been characterized thus far. Here we show that human oligodendroglioma Hs683 cells are not endowed with EAAT-dependent anionic amino acid transport. However, in these cells, but not in U373 human glioblastoma cells, valproic acid (VPA), an inhibitor of histone deacetylases, markedly induces SLC1A1 mRNA, which encodes for the glutamate transporter EAAT3. The effect is detectable after 8h and persists up to 120h of treatment. EAAT3 protein increase becomes detectable after 24h of treatment and reaches its maximum after 72-96h, when it is eightfold more abundant than control. The initial influx of d-aspartate increases in parallel, exhibiting the typical features of an EAAT3-mediated process. SLC1A1 mRNA induction is associated with the increased expression of PDGFRA mRNA (+150%), a marker of early oligodendrocyte precursor cells, while the expression of GFAP, CNP and TUBB3 remains unchanged. Short term experiments have indicated that the VPA effect is shared by trichostatin A, another inhibitor of histone deacetylases. On the contrary, EAAT3 induction is neither prevented by inhibitors of mitogen-activated protein kinases nor triggered by a prolonged incubation with lithium, thus excluding a role for the GSK3β/β-catenin pathway. Thus, the VPA-dependent induction of the glutamate transporter EAAT3 in human oligodendroglioma cells likely occurs through an epigenetic mechanism and may represent an early indicator of commitment to oligodendrocytic differentiation.

  13. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    PubMed

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways.

  14. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  15. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  16. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  17. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid.

  18. Hepatic mitochondrial dysfunction induced by fatty acids and ethanol.

    PubMed

    Gyamfi, Daniel; Everitt, Hannah E; Tewfik, Ihab; Clemens, Dahn L; Patel, Vinood B

    2012-12-01

    Understanding the key aspects of the pathogenesis of alcoholic fatty liver disease particularly alterations to mitochondrial function remains to be resolved. The role of fatty acids in this regard requires further investigation due to their involvement in fatty liver disease and obesity. This study aimed to characterize the early effects of saturated and unsaturated fatty acids alone on liver mitochondrial function and during concomitant ethanol exposure using isolated liver mitochondria and VA-13 cells (Hep G2 cells that efficiently express alcohol dehydrogenase). Liver mitochondria or VA-13 cells were treated with increasing concentrations of palmitic or arachidonic acid (1 to 160 μM) for 24 h with or without 100 mM ethanol. The results showed that in isolated liver mitochondria both palmitic and arachidonic acids significantly reduced state 3 respiration in a concentration-dependent manner (P<0.001), implicating their ionophoric activities. Increased ROS production occurred in a dose-dependent manner especially in the presence of rotenone (complex I inhibitor), which was significantly more prominent in arachidonic acid at 80 μM (+970%, P<0.001) than palmitic acid (+40%, P<0.01). In VA-13 cells, ethanol alone and both fatty acids (40 μM) were able to decrease the mitochondrial membrane potential and cellular ATP levels and increase lipid formation. ROS production was significantly increased with arachidonic acid (+110%, P<0.001) exhibiting a greater effect than palmitic acid (+39%, P<0.05). While in the presence of ethanol, the drop in the mitochondrial membrane potential, cellular ATP levels, and increased lipid formation were further enhanced by both fatty acids, but with greater effect in the case of arachidonic acid, which also correlated with significant cytotoxicity (P<0.001). This study confirms the ability of fatty acids to promote mitochondrial injury in the development of alcoholic fatty liver disease.

  19. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    PubMed Central

    Errico, Cesare; Gazzarri, Matteo; Chiellini, Federica

    2009-01-01

    The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA), which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41) loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes. PMID:19564952

  20. Ursolic acid induces neural regeneration after sciatic nerve injury

    PubMed Central

    Liu, Biao; Liu, Yan; Yang, Guang; Xu, Zemin; Chen, Jiajun

    2013-01-01

    In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1–4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4–6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury. PMID:25206561

  1. Nuclear Structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L.M.; Borge, M.J.G.; Aas, A.J.; Fogelberg, B.; Garcia-Raffi, L.M.; Grant, I.S.; Gulda, K.; Hagebo, E.; Kurcewicz, W.; Lopez-Jimenez, M.J.; Lovhoiden, G.; Mach, H.; Martinez, T.; Rubio, B.; Tain, J.L.; Teijeiro, A.G.; Tengblad, O.; Thorsteinsen, T.F.

    1999-12-31

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr - Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  2. Nuclear structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L. M.; Borge, M. J. G.; Lopez-Jimenez, M. J.; Teijeiro, A. G.; Aas, A. J.; Hageboe, E.; Fogelberg, B.; Mach, H.; Garcia-Raffi, L. M.; Martinez, T.; Rubio, B.; Tain, J. L.; Grant, I. S.; Gulda, K.; Kurcewicz, W.; Loevhoeiden, G.; Tengblad, O.; Thorsteinsen, T. F.

    1999-11-16

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr-Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  3. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  4. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    PubMed

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.

  5. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects

    PubMed Central

    Franzosa, Jill A.; Bugel, Sean M.; Tal, Tamara L.; La Du, Jane K.; Tilton, Susan C.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Retinoic acid (RA) is involved in multifarious and complex functions necessary for vertebrate development. RA signaling is reliant on strict enzymatic regulation of RA synthesis and metabolism. Improper spatiotemporal expression of RA during development can result in vertebrate axis defects. microRNAs (miRNAs) are also pivotal in orchestrating developmental processes. While mechanistic links between miRNAs and axial development are established, the role of miRNAs in regulating metabolic enzymes responsible for RA abundance during axis formation has yet to be elucidated. Our results uncovered a role of miR-19 family members in controlling RA metabolism through the regulation of CYP26A1 during vertebrate axis formation. Global miRNA expression profiling showed that developmental RA exposure suppressed the expression of miR-19 family members during zebrafish somitogenesis. A reporter assay confirmed that cyp26a1 is a bona fide target of miR-19 in vivo. Transient knockdown of miR-19 phenocopied axis defects caused by RA exposure. Exogenous miR-19 rescued the axis defects induced by RA exposure. Taken together, these results indicate that the teratogenic effects of RA exposure result, in part, from repression of miR-19 expression and subsequent misregulation of cyp26a1. This highlights a previously unidentified role of miR-19 in facilitating vertebrate axis development via regulation of RA signaling.—Franzosa, J. A., Bugel, S. M., Tal, T. L., La Du, J. K., Tilton, S. C., Waters, K. M., Tanguay, R. L. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects. PMID:23975936

  6. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  7. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat.

    PubMed

    Kumar, Anil; Prakash, Atish; Pahwa, Deeksha

    2011-05-30

    Role of neuroinflammatory mediators particularly cyclooxygenase (COX), lipoxygenase (LOX), have been well suggested in the pathophysiology of neurodegenerative disorders. Rofecoxib is a selective cyclooxygenase 2 enzymes belongs to non-steroidal anti-inflammatory drug, commonly called as coxibs. Whereas, caffeic acid (3,4-dihydroxycinnamic acid) is one of the natural phenolic compounds and reported to inhibit 5-lipoxygenase (5-LOX) activity as one of mechanisms. Present study has been designed to investigate the effects of rofecoxib, caffeic acid and its potentiation by galantamine against intrahippocampal kainic acid-induced cognitive impairment, oxidative damage and mitochondrial respiratory enzyme alterations in rats. Kainic acid (KA) was administrated in the hippocampus region of rat brain. Various behavioral (locomotor activity and memory performances were assessed by using actophotometer and Morris water maze respectively) followed by oxidative stress, mitochondrial enzyme complex were assessed. Intrahippocampal administration of KA significantly impaired locomotor activity, memory performance, mitochondrial enzyme complexes and caused oxidative stress as compared to sham treatment. Rofecoxib (5 and 10mg/kg), caffeic acid (5 and 10mg/kg), Gal (2.5 and 5mg/kg) treatment for 14 days significantly improved locomotor activity, memory retention and oxidative defense (as evidenced by decrease lipid peroxidation, nitrite, increased superoxide dismutase activity and redox ratio) in hippocampus. Besides, alterations in the levels of mitochondrial enzymes and acetylcholine esterase enzyme were significantly restored by rofecoxib and caffeic acid as compared to control. Further, combination of rofecoxib (5mg/kg) with caffeic acid (5mg/kg) and lower dose of gal (2.5mg/kg) with rofecoxib (5mg/kg) treatments significantly potentiated their protective effect which was significant as compared to their effect per se. The results of the present study suggest that galantamine

  8. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  9. Evidence for a significant role of gastrin in cysteamine-induced hypersecretion of gastric acid.

    PubMed

    Shiratori, K; Shimizu, K; Ikeda, M; Watanabe, S; Hayashi, N

    1997-01-01

    Cysteamine has been known to stimulate gastric acid secretion and to induce duodenal ulcers in rats. We investigated the role of gastrin in cysteamine-induced acid hypersecretion in the perfused rat stomach. Intravenous infusion of cysteamine (75 mg/kg/h) resulted in a significant increase in acid secretion, which was accompanied by a marked increase in the plasma gastrin concentration. The cysteamine-induced increase in gastric acid secretion was completely blocked by i.v. injection of anti-gastrin rabbit serum (500 microliters). In addition, i.v. infusion of a CCK-B/gastrin receptor antagonist (L-365,260) (1 mg/kg/h) also suppressed the cysteamine-induced increase in acid secretion. Atropine significantly, but only partially, inhibited the increase. The elevated plasma gastrin levels induced by cysteamine were unaffected by atropine and L-365,260. In conclusion, cysteamine-induced acid hypersecretion is mediated mainly by cysteamine-induced gastrin release and partially by cholinergic factors. Furthermore, gastrin release caused by cysteamine appears to be independent of cholinergic tone.

  10. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  11. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  12. Understanding Rheumatoid Arthritis (RA): Treatment and Causes

    MedlinePlus

    ... this page please turn JavaScript on. Feature: Understanding Rheumatoid Arthritis (RA) Treatment and Causes Past Issues / Summer 2014 Table of Contents How Is Rheumatoid Arthritis Treated? Doctors have many ways to treat this ...

  13. SoRa first flight. Summer 2009

    NASA Astrophysics Data System (ADS)

    Pirrotta, S.; Flamini, E.

    The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.

  14. RA Construction KC, LLC Information Sheet

    EPA Pesticide Factsheets

    RA Construction KC, LLC (the Company) is located in Gladstone, Missouri. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Kansas City, Missouri.

  15. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    PubMed

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  16. Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq.

    PubMed

    Chen, Xiaoyu; Yang, Ming; Hao, Wenjin; Han, Jichun; Ma, Jun; Wang, Caixia; Sun, Shiguo; Zheng, Qiusheng

    2016-10-30

    Melanoma is a cancer that arises from melanocytes, specialized pigmented cells that are found predominantly in the skin. The incidence of malignant melanoma has significantly increased over the last decade. With the development of therapy, the survival rate of some kind of cancer has been improved greatly. But the treatment of melanoma remains unsatisfactory. Much of melanoma's resistance to traditional chemotherapy is believed to arise intrinsically, by virtue of potent growth and cell survival-promoting genetic alteration. Therefore, significant attention has recently been focused on differentiation therapy, as well as differentiation inducer compounds. In previous study, we found isoliquiritigenin (ISL), a natural product extracted from licorice, could induce B16F0 melanoma cell differentiation. Here we investigated the transcriptional response of melanoma differentiation process induced by ISL and all-trans-retinoic acid (RA). Results showed that 390 genes involves in 201 biochemical pathways were differentially expressed in ISL treatment and 304 genes in 193 pathways in RA treatment. Differential expressed genes (DGEs, fold-change (FC)≥10) with the function of anti-proliferative and differentiation inducing indicated a loss of grade malignancy characteristic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated glutathione metabolism, glycolysis/gluconeogenesis and pentose phosphate pathway were the top three relative pathway perturbed by ISL, and mitogen-activated protein kinase (MAPK) signaling pathway was the most important pathway in RA treatment. In the analysis of hierarchical clustering of DEGs, we discovered 72 DEGs involved in the process of drug action. We thought Cited1, Tgm2, Xaf1, Cd59a, Fbxo2, Adh7 may have critical role in the differentiation of melanoma. The evidence displayed herein confirms the critical role of reactive oxygen species (ROS) in melanoma pathobiology and provides evidence for future targets in the

  17. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accumulation in HepG2 cells.

    PubMed

    Kim, Jeong-Hwan; Kang, Seong-Il; Shin, Hye-Sun; Yoon, Seon-A; Kang, Seung-Woo; Ko, Hee-Chul; Kim, Se-Jae

    2013-01-01

    In this study, we examined the effects of Jeju dwarf bamboo (Sasa quelpaertensis Nakai) extract (JBE) and p-coumaric acid (CA) on oleic acid (OA)-induced lipid accumulation in HepG2 cells. JBE and CA increased the phosphorylation of AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) and the expression of carnitine palmitoyl transferase 1a (CPT1a) in OA-treated HepG2 cells. Additionally, these compounds decreased sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and OA-induced lipid accumulation, suggesting that JBE and CA modulate lipid metabolism in HepG2 cells via the AMPK activation pathway.

  18. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  19. Chemical processes induced by OH attack on nucleic acids

    NASA Astrophysics Data System (ADS)

    Kuwabara, Mikinori

    Recent studies concerning the chemical processes in nucleic acids starting with OH attack to produce free radicals and ending with the formation of stable products were reviewed. Using nucleosides, nucleotides and homopolynucleotides as model compounds, and DNA itself, free radicals produced by OH attack on nucleic acids have been mainly studied by a method combining ESR, spin trapping and high-performance liquid chromatography. For identification of final products in both base and sugar moieties of nucleic acids, mass and NMR spectroscopies combined with gas chromatography or high-performance liquid chromatography are usually employed. Kinetic measurements of structural alterations in the polynucleotides and DNA after OH attack have been made by a method combining electron-pulse irradiation and laser-light scattering. From these studies, the chemical reaction processes from the generation of free radicals in nucleic acids by OH attack, through the formation of unstable intermediates, to the formation of final products can be described.

  20. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study.

    PubMed

    Kannan, M Mari; Quine, S Darlin

    2011-05-20

    The present study was designed to evaluate the cardioprotective effects of ellagic acid against isoproterenol induced myocardial infarction in rats by studying electrocardiography, blood pressure, cardiac markers, lipid peroxidation, antioxidant defense system and histological changes. Male Wistar rats were treated orally with ellagic acid (7.5 and 15mg/kg) daily for a period of 10 days. After 10 days of pretreatment, isoproterenol (100mg/kg) was injected subcutaneously to rats at an interval of 24h for 2 days to induce myocardial infarction. Isoproterenol administered rats showed significant changes in the electrocardiogram pattern, arterial pressure, and heart rate. Isoproterenol-induced rats also showed significant (P<0.05) increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, C-reactive protein, plasma homocysteine, heart tissue thiobarbituric acid reactive substances and lipid hydro peroxides. The activities/levels of antioxidant system were decreased in isoproterenol-induced rats. The histopathological findings of the myocardial tissue evidenced myocardial damage in isoproterenol induced rats. The oral pretreatment of ellagic acid restored the pathological electrocardiographic patterns, regulated the arterial blood pressures and heart rate in the isoproterenol induced myocardial infarcted rats. The ellagic acid pretreatment significantly reduced the levels of biochemical markers, lipid peroxidation and significantly increased the activities/levels of the antioxidant system in the isoproterenol induced rats. An inhibited myocardial necrosis was evidenced by the histopathological findings in ellagic acid pretreated isoproterenol induced rats. Our study shows that oral pretreatment of ellagic acid prevents isoproterenol induced oxidative stress in myocardial infarction.

  1. Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes.

    PubMed

    Miyamoto, S; Kuwata, G; Imai, M; Nagao, A; Terao, J

    2000-12-01

    Beneficial effects of dietary phytic acid (myo-inositol hexaphosphate; IP6) have often been explained by its strong iron ion-chelating ability, which possibly suppresses iron ion-induced oxidative damage in the gastrointestinal tract. Because phytic acid is hydrolyzed during digestion, this work aimed to know whether its hydrolysis products (IP2, IP3, IP4, and IP5) could still prevent iron ion-induced lipid peroxidation. Studies using liposomal membranes demonstrated that hydrolysis products containing three or more phosphate groups are able to inhibit iron ion-induced lipid peroxidation although their effectiveness decreased with dephosphorylation. Similarly, they also prevented iron ion-induced decomposition of phosphatidylcholine hydroperoxide. These results demonstrate that intermediate products of phytic acid hydrolysis still possess iron ion-chelating ability, and thus they can probably prevent iron ion-induced lipid peroxidation in biological systems.

  2. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  3. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    PubMed

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  4. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  5. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway.

    PubMed

    Yun, Ze; Zhu, Feng; Liu, Ping; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2015-04-20

    To clarify the mechanism of fruit disease resistance activated by sweating treatment, 'Guoqing NO.1' Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two-dimensional gel electrophoresis (2-DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC-MS) and high-performance liquid chromatography/electrospray ionization-time of flight-mass spectrometry (HPLC-qTOF-MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2 O2 ) and salicylic acid (SA) were significantly accumulated in the sweating-treated fruit. Thereafter, some stress-response proteins and metabolites [such as ascorbate peroxidase (APX), β-1,3-glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating-treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA-induced resistance pathway, which can induce the stress-response proteins and metabolites that can directly inhibit pathogen development.

  6. Estuarine geochemistry of /sup 224/Ra, /sup 226/Ra, and /sup 222/Rn

    SciTech Connect

    Elsinger, R.J.

    1982-01-01

    Desorption from river borne sediments is the most likely source of the excess /sup 226/Ra. Laboratory mixing experiments on Pee Dee River sediments show an increase in /sup 226/Ra desorption with increasing salinities with maximum desorption occurring at or above 20/sup 0//oo salinity. Desorption and diffusion are the sources for /sup 226/Ra in the estuarine systems. In Winyah Bay the /sup 228/Ra//sup 226/Ra activity ratio does not change significantly with salinity, averaging around 1.4, indicating desorption as the major source of /sup 228/Ra. In the Yangtze River the /sup 228/Ra//sup 226/Ra activity ratio is constant (approx.1.90) until increasing linearly above 16/sup 0//oo. A diffusive flux from regeneration by /sup 232/Th decay in shelf sediments is the source of the increase. In Delaware Bay /sup 228/Ra increases faster than /sup 226/Ra in the less than or equal to22/sup 0//oo water, indicating a source in addition to desorption. The increase can be balanced by a 0.33 dpm/cm/sup 2/-year flux over the upper part of the Bay where fine grained sediments predominate. /sup 224/Ra behavior is controlled by its 3.64 day half-life. In Winyah Bay a flux of around 0.4 dpm/cm/sup 2/-day is necessary to support the standing crop of non-desorbed /sup 224/Ra in the water column. In Delaware Bay the nearly constant /sup 224/Ra in concentration over the 2.5/sup 0//oo to 12/sup 0//oo salinity range are maintained by regeneration from /sup 228/Th in the turbidity maximum zones and diffusion from bottom sediments. Water leaving on ebb tide from a salt marsh on Delaware Bay had increases in all three radium isotopes (/sup 224/Ra > /sup 228/Ra > /sup 226/Ra) compared to water coming in on the flood tide. Excess /sup 222/Rn concentrations in a fresh water section of the Pee Dee River show a decreasing downstream gradient. Using these gradients to determine evasion rates, stagnant film thicknesses range from 21..mu.. to 62..mu...

  7. Comparison of Hensen's node and retinoic acid in secondary axis induction in the early chick embryo.

    PubMed

    Chen, Y; Solursh, M

    1992-10-01

    Retinoic acid (RA) and Hensen's node, the organizer center in the chick embryo, have been shown to have polarizing activity when applied or grafted into the chick limb bud. Here we investigate and compare the effects of RA and grafted Hensen's node on the early chick embryo. Anion exchange beads soaked with RA at concentrations ranging from 5 to 100 ng/ml and implanted on the anterior side or on the left side of the host anteroposterior axis of a stage 4 chick embryo in ovo have the ability to induce secondary axis formation, while beads soaked with RA of the same concentration and implanted on the right side or on the posterior side of the host axis are unable to induce the secondary axis. All of the induced axes contain trunk-tail structures. Hensen's node from quail embryos implanted into the early chick blastoderm could also cause the formation of secondary axes in addition to self-differentiation of the graft into a secondary axis. Both RA and grafted Hensen's node caused the inhibition of forebrain development with an increase in hindbrain development and the host heart to loop in an abnormal direction. The results support the hypothesis that Hensen's node is a source of RA which is involved in early embryogenesis. Alternatively, RA might stimulate the formation of Hensen's nodal properties in adjacent tissue.

  8. Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp.

    PubMed

    He, Yu-Cai; Wu, Ya-Dong; Pan, Xue-He; Ma, Cui-Luan

    2014-02-01

    The nitrilase from Rhodococcus sp. CCZU10-1 catalyses the hydrolysis of dinitriles to acids without the formation of amides and cyanocarboxylic acids. It was induced by benzonitrile and its analogues (tetrachloroterephthalonitrile > ε-caprolactam > benzonitrile > phenylacetonitrile), and had activity towards aromatic nitriles (terephthalonitrile > tetrachloroterephthalonitrile > isophthalonitrile > tetrachloroisophthalonitrile > tetrafluoroterephthalonitrile > benzonitrile). After the optimization, the highest nitrilase induction [311 U/(g DCW)] was achieved with tetrachloroterephthalonitrile (1 mM) in the medium after 24 h at 30 °C after optimum enzyme activity was at pH 6.8 and at 30 °C. Efficient biocatalyst recycling was achieved by cell immobilization in calcium alginate, with a product-to-biocatalyst ratios of 776 g terephthalic acid/g DCW and 630 g isophthalic acid/g DCW.

  9. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  10. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  11. The acid-induced folded state of Sac7d is the native state.

    PubMed Central

    Bedell, J. L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W.

    2000-01-01

    Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid. PMID:11106160

  12. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  13. Relationships between fatty acids and psychophysiological parameters in depressive inpatients under experimentally induced stress.

    PubMed

    Irmisch, G; Schläfke, D; Richter, J

    2006-02-01

    Fatty acids can influence important cellular and hormonal processes in the human body. Non-adequate contents of fatty acids, e.g., in blood, can cause and/or result in various diseases. In depressive patients, changes in fatty acid concentrations were found (deficits in omega3-fatty acids, in particular). This paper poses the question whether there are any relations between psychophysiological parameters and changes in fatty acid compositions. The concentration of fatty acids in serum of 118 psychiatric inpatients measured directly before and after experimentally induced stress of about 1h were analysed in relation to psychophysiological parameters continuously registered during the experimental sessions at admission, discharge and at 3 months follow-up. Systolic and diastolic blood pressure, finger pulse amplitude, forehead temperature (FD) and the EMG activity of the musculus zygomaticus consistently correlated with concentrations of single unsaturated oleic (18:1n-9) and erucic acid (22:1) and saturated myristic (14:0) and lauric acid (12:0). Negative relations were found between FD and the concentration of arachidonic acid (20:4n-6) as well as of palmitoleic acid (16:1). Furthermore, the higher the concentration of the erucic acid at discharge the higher the depression score as assessed by the Beck depression inventory (BDI). High concentrations of palmitoleic acid and lauric acid were related to a low level of depression (BDI and Hamilton scores). The implications of these findings for add-on treatment regimens in depression are discussed.

  14. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness.

  15. Properties of an Inducible C4-Dicarboxylic Acid Transport System in Bacillus subtilis

    PubMed Central

    Ghei, Om. K.; Kay, William W.

    1973-01-01

    The transport of the tricarboxylic acid cycle C4-dicarboxylic acids was studied in both the wild-type strain and tricarboxylic acid cycle mutants of Bacillus subtilis. Active transport of malate, fumarate, and succinate was found to be inducible by these dicarboxylic acids or by precursors to them, whereas glucose or closely related metabolites catabolite-repressed their uptake. l-Malate was found to be the best dicarboxylic acid transport inducer in succinic dehydrogenase, fumarase, and malic dehydrogenase mutants. Succinate and fumarate are accumulated over 100-fold in succinic dehydrogenase and fumarase mutants, respectively, whereas mutants lacking malate dehydrogenase were unable to accumulate significant quantities of the C4-dicarboxylic acids. The stereospecificity of this transport system was studied from a comparison of the rates of competitive inhibition of both succinate uptake and efflux in a succinate dehydrogenase mutant by utilizing thirty dicarboxylic acid analogues. The system was specific for the C4-dicarboxylic acids of the tricarboxylic acid cycle, neither citrate nor α-ketoglutarate were effective competitive inhibitors. Of a wide variety of metabolic inhibitors tested, inhibiors of oxidative phosphorylation and of the formation of proton gradients were the most potent inhibitors of transport. From the kinetics of dicarboxylic acid transport (Km approximately 10−4 M for succinate or fumarate in succinic acid dehydrogenase and fumarase mutants) and from the competitive inhibition studies, it was concluded that an inducible dicarboxylic acid transport system mediates the entry of malate, fumarate, or succinate into B. subtilis. Mutants devoid of α-ketoglutarate dehydrogenase were shown to accumulate both α-ketoglutarate and glutamate, and these metabolites subsequently inhibited the transport of all the C4-dicarboxylic acids, suggesting a regulatory role. Images PMID:4633350

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  17. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  18. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  19. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  20. [Pseudothrombocytopenia induced by ethylenediaminetetraacetic acid in burned patients].

    PubMed

    Carrillo-Esper, Raúl; Contreras-Domínguez, Vladimir

    2004-01-01

    The EDTA-dependent pseudothrombocytopenia is a false decrease in the number of platelets below the normal value when analyzed with automated devices. There is an incidence of 0.09 to 0.21% in hospitalized patients. Pseudothrombocytopenia is secondary to platelet clumping induced by antibodies in the presence of EDTA and has been associated with sepsis, cancer, cardiac surgery and drugs. We report the first case of pseudothrombocytopenia induced by EDTA in a burn patient.

  1. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos.

    PubMed Central

    Papalopulu, N; Lovell-Badge, R; Krumlauf, R

    1991-01-01

    In this paper we describe experiments that detail the response of murine Hox-2 genes to cellular differentiation and retinoic acid in cell culture. Hox-2 genes are transiently activated in differentiating ES cells even in the absence of retinoic acid (RA), indicating that their induction is a normal aspect of differentiation. Furthermore, in the continuous presence of RA F9 teratocarcinoma cells show a differential ability to maintain Hox-2 expression depending upon whether the cells follow a visceral or parietal endoderm pathway. These data suggest a clear dependence of Hox-2 expression on the degree and type of differentiation in different cells. However, RA also has dramatic differentiation independent effects on Hox-2 regulation. In ES cells the levels of Hox expression are greatly enhanced by exposure to RA, and in F9 cells of the visceral or parietal phenotype the continuous presence of RA is required to maintain these high levels. Nuclear run-on experiments illustrate that Hox-2 genes are active in F9 stem cells and that a large portion of the RA induction is mediated by post-transcriptional mechanisms. Therefore RA exerts its effects on Hox-2 expression by upregulating or modulating genes which are already active, rather than by turning-on silent genes. All nine Hox-2 genes are induced in F9 cells by RA and there is a direct correlation (collinearity) between gene order and the relative dose response of each gene to RA. In Xenopus embryos treated with RA, homologues of the Hox-2 genes also displayed a temporal and dose response collinearity with gene organisation. Together these findings suggest that the collinear response to RA is highly conserved in vertebrates and combined with the ability of RA to modify expression during cellular differentiation could be an important feature of the Hox-2 cluster itself used to generate the spatially-restricted patterns of gene expression in embryogenesis. Images PMID:1682879

  2. Recombinant interleukin-1 receptor antagonist attenuates the severity of chronic pancreatitis induced by TNBS in rats.

    PubMed

    Xu, Chunfang; Shen, Jiaqing; Zhang, Jing; Jia, Zhenyu; He, Zhilong; Zhuang, Xiaohui; Xu, Ting; Shi, Yuqi; Zhu, Shunying; Wu, Mingyuan; Han, Wei

    2015-02-15

    Chronic pancreatitis (CP) is a common disease in the department of gastroenterology, with the main symptoms of exocrine and/or endocrine insufficiency and abdominal pain. The pathogenic mechanism of CP is still not fully clarified and the aims of treatment now are to relieve symptoms. In this study, we attempted to find a connection between interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) in trinitrobenzene sulfonic acid (TNBS)-induced chronic pancreatitis, and then the therapeutic effect of recombinant IL-1Ra was also detected in the CP model. Chronic pancreatitis was induced by intraductal infusion of TNBS in SD rats followed by a consecutive administration of rIL-1Ra, and the histological changes and collagen content in the pancreas were measured, as well as the abdominal hypersensitivity. We found that rhIL-1Ra could attenuate the severity of chronic pancreatic injury, modulate the extracellular matrix secretion, focal proliferation and apoptosis, and cellular immunity in TNBS-induced CP. Interestingly, rIL-1Ra could also block the pancreatitis-induced referred abdominal hypersensitivity. In conclusion, IL-1Ra may play a protective role in CP and rIL-1Ra would be a potential therapeutic target for the treatment of CP, while its possible mechanisms and clinical usage still need further investigation.

  3. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    PubMed

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  4. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  5. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production.

  6. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  7. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  8. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats.

    PubMed

    Holmes, Philip V; Reiss, Jenny I; Murray, Patrick S; Dishman, Rod K; Spradley, Jessica M

    2015-05-01

    Our laboratory has previously reported that chronic, voluntary exercise diminishes seizure-related behaviors induced by convulsant doses of kainic acid. The present experiments tested the hypothesis that exercise exerts this protective effect through a mechanism involving suppression of glutamate release in the hippocampal formation. Following three weeks of voluntary wheel running or sedentary conditions, rats were injected with 10 mg/kg of kainic acid, and hippocampal glutamate was measured in real time using a telemetric, in vivo voltammetry system. A separate experiment measured electroencephalographic (EEG) activity following kainic acid treatment. Results of the voltammetry experiment revealed that the rise in hippocampal glutamate induced by kainic acid is attenuated in exercising rats compared to sedentary controls, indicating that the exercise-induced protection against seizures involves regulation of hippocampal glutamate release. The findings reveal the potential benefit of regular exercise in the treatment and prevention of seizure disorders and suggest a possible neurobiological mechanism underlying this effect.

  9. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    PubMed

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  10. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    PubMed Central

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  11. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  12. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Shin, Dong-Su; Kim, Kung Wook; Chung, Hae Young; Yoon, Sik; Moon, Jeon-Ok

    2013-05-01

    Sinapic acid is a member of the phenylpropanoid family and is abundant in cereals, nuts, oil seeds, and berries. It exhibits a wide range of pharmacological properties. In this study, we investigated the hepatoprotective and antifibrotic effects of sinapic acid on dimethylnitrosamine (DMN)-induced chronic liver injury in rats. Sinapic acid remarkably prevented DMN-induced loss of body weight. This was accompanied by a significant increase in levels of serum alanine transaminase, aspartate transaminase, and liver malondialdehyde content. Furthermore, sinapic acid reduced hepatic hydroxyproline content, which correlated with a reduction in the expression of type I collagen mRNA and histological analysis of collagen in liver tissue. Additionally, the expression of hepatic fibrosis-related factors such as α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), were reduced in rats treated with sinapic acid. Sinapic acid exhibited strong scavenging activity. In conclusion, we find that sinapic acid exhibits hepatoprotective and antifibrotic effects against DMN-induced liver injury, most likely due to its antioxidant activities of scavenging radicals, its capacity to suppress TGF-β1 and its ability to attenuate activation of hepatic stellate cells. This suggests that sinapic acid is a potentially useful agent for the protection against liver fibrosis and cirrhosis.

  13. Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid.

    PubMed

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2003-02-01

    The vascular effect of a component of hydrolysable tannins, gallic acid, was examined in isolated rat thoracic aorta. Gallic acid exerted a contractile effect on the phenylephrine- or prostaglandin F(2/alpha)-precontracted endothelium-intact arteries. In endothelium-denuded arteries, the contractile response to-gallic acid was absent. Pretreatment with N(G)-nitro-L-arginine methyl ester (30 microM) abolished the gallic acid-induced contraction. Pretreatment with indomethacin (10 microM) or BQ610 (100 nM) had no observed effect. Pretreatment with gallic acid (1-10 microM) significantly attenuated the relaxation induced by acetylcholine, and that with 10 microM gallic acid also reduced the potency of sodium nitroprusside in the relaxation, without a reduction in efficacy, in endothelium-denuded arteries. These findings indicate that gallic acid induced endothelium-dependent contraction and strongly inhibited the endothelium-dependent relaxation rather than the endothelium-independent relaxation, probably through inhibition of endothelial nitric oxide (NO) production. Since NO plays an important role in vasodilative regulation and inflammatory disorders, these findings may also indicate that gallic acid interferes with the inflammatory responses.

  14. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  15. Techniques for precise mapping of 226Ra and 228Ra in the ocean

    NASA Astrophysics Data System (ADS)

    Moore, Willard S.; Key, Robert M.; Sarmiento, Jorge L.

    1985-01-01

    Improvements in the analyses of 226Ra and 228Ra in seawater made possible by better extraction and processing techniques reduce significantly the errors associated with these measurements. These improvements and the extensive sampling for Ra isotopes conducted on the TTO North Atlantic Study should enable us to use the distribution of 228Ra to study mixing processes on a 3-15 year time scale in both the upper and deep North Atlantic. The 228Ra profiles already analyzed show a closer resemblance to GEOSECS tritium data than to TTO tritium data in the upper ocean. This is because the transient tracer tritium was responding on a 10-year time scale during GEOSECS and a 20-year time scale during TTO. The steady state tracer 228Ra should always respond on a time scale of 8 years. Thus the 228Ra data obtained on TTO should provide a means to extend the features of the GEOSECS tritium field to the regions of the TTO study. The 226Ra data are of high enough quality to identify features associated with different water masses. Changes in the positions of the deep-water masses since the GEOSECS cruise are revealed by the 226Radata.

  16. Rosmarinic acid and its derivatives: biotechnology and applications.

    PubMed

    Bulgakov, Victor P; Inyushkina, Yuliya V; Fedoreyev, Sergey A

    2012-09-01

    Rosmarinic acid (RA) is one of the first secondary metabolites produced in plant cell cultures in extremely high yields, up to 19% of the cell dry weight. More complex derivatives of RA, such as rabdosiin and lithospermic acid B, later were also obtained in cell cultures at high yields. RA and its derivatives possess promising biological activities, such as improvement of cognitive performance, prevention of the development of Alzheimer's disease, cardioprotective effects, reduction of the severity of kidney diseases and cancer chemoprevention. The TNF-α-induced NF-κB signaling pathway has emerged as a central target for RA. Despite these impressive activities and high yields, the biotechnological production of these metabolites on an industrial scale has not progressed. We summarized data suggesting that external stimuli, the Ca(2+)-dependent NADPH oxidase pathway and processes of protein phosphorylation/dephosphorylation are involved in the regulation of biosynthesis of these substances in cultured plant cells. In spite of growing information about pathways regulating biosynthesis of RA and its derivatives in cultured plant cells, the exact mechanism of regulation remains unknown. We suggest that further progress in the biotechnology of RA and its derivatives can be achieved by using new high-throughput techniques.

  17. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    PubMed Central

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  18. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis.

    PubMed

    Hellmann-Regen, Julian; Heuser, Isabella; Regen, Francesca

    2013-12-01

    Worldwide bans on incandescent light bulbs (ILBs) drive the use of compact fluorescent light (CFL) bulbs, which emit ultraviolet (UV) radiation. Potential health issues of these light sources have already been discussed, including speculation about the putative biological effects on light exposed tissues, yet the underlying mechanisms remain unclear. We hypothesized photoisomerization of all-trans retinoic acid (at-RA), a highly light sensitive morphogen, into biologically less active isomers, as a mechanism mediating biological effects of CFLs. Local at-RA is anti-carcinogenic, entrains molecular rhythms and is crucial for skin homeostasis. Therefore, we quantified the impact of CFL irradiation on extra- and intracellular levels of RA isomers using an epidermal cell culture model. Moreover, a biologically relevant impact of CFL irradiation was assessed using highly at-RA-sensitive human neuroblastoma cells. Dose-dependent conversion of extra- and intracellular at-RA into the biologically less active 13-cis-isomer was significantly higher in CFL vs. ILB exposure and completely preventable by employing a UV-filter. Moreover, pre-irradiation of culture media by CFL attenuated at-RA-specific effects on cell viability in human at-RA-sensitive cells in a dose-dependent manner. These findings point towards a biological relevance of CFL-induced at-RA decomposition, providing a mechanism for CFL-mediated effects on environmental health.

  19. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  20. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

    PubMed

    Akyol, Sumeyya; Ginis, Zeynep; Armutcu, Ferah; Ozturk, Gulfer; Yigitoglu, M Ramazan; Akyol, Omer

    2012-07-01

    Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  1. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    PubMed

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  2. Characterization of the human MSX-1 promoter and an enhancer responsible for retinoic acid induction.

    PubMed

    Shen, R; Chen, Y; Huang, L; Vitale, E; Solursh, M

    1994-01-01

    Previous studies have shown that the expression of some human HOX genes can be induced by retinoic acid (RA) in cultured embryonal carcinoma (EC) cells. However, the mechanisms for the regulation of HOX gene expression by RA are still unclear. We have examined the effects of RA on the human MSX-1 (formerly named HOX-7) gene expression in cultured EC cells (NT2/D1). Furthermore, we have cloned and characterized the human MSX-1 promoter and analyzed the activities of the promoter in response to RA. Our results demonstrate that transcription of human MSX-1 is activated by RA in cultured EC cells. This activation is dose and time responsive. The MSX-1 promoter was shown to be TATA-box independent and able to promote transcription in RA-treated EC cells. DNase-I footprinting studies revealed protection of several GAGA factor binding sites and an NF-kappa B site upstream to the transcription start site by nuclear extracts prepared from EC cells. A downstream sequence was differentially protected by the nuclear extract from RA treated cells. This differential binding of the sequence with the nuclear extract was further confirmed by gel shift assays. This sequence confers to a heterologous promoter with the ability to respond to RA induction. Point mutation within this DNA fragment abolished the binding of the fragment to the nuclear extract and the response of this element in a heterologous promoter to RA induction. Deletion of this enhancer element together with the adjacent NF-kappa B and GAGA sites abolished the ability of the promoter to direct transcription in RA-treated EC cells. However, removal of a downstream DNA fragment from the promoter endowed the promoter with the ability to direct transcription in RA-untreated cells. Taken together, both positive and negative regulatory cis-elements are involved in the regulation of the MSX-1 promoter and coordinate to control the gene expression.

  3. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse.

    PubMed

    Snyder, Elizabeth M; Small, Christopher; Griswold, Michael D

    2010-11-01

    Throughout the reproductive lifespan of most male mammals, sperm production is constant because of the regulated differentiation of spermatogonia. Retinoic acid (RA) and a downstream target, Stra8, are required for complete spermatogenesis. To examine the role of RA in initiating spermatogonial differentiation, a transgenic mouse model expressing beta-galactosidase under the control of an RA response element was used. Cells in the neonatal testis undergoing active RA signaling were visualized by beta-galactosidase activity, the relationship between RA and differentiation determined, and the role of RA-degrading enzymes in regulating RA demonstrated. Beta-galactosidase activity was found to be predominantly associated with differentiating, premeiotic germ cells and to be distributed nonuniformly throughout the seminiferous tubules. Additionally, beta-galactosidase activity in premeiotic germ cells colocalized with STRA8 protein and was induced in germ cells with exogenous RA treatment. The RA-degrading enzyme, CYP26B1, was found to have germ cell localization and nonuniform distribution between tubules via immunohistochemistry. Treatment with a CYP26 enzyme inhibitor resulted in an increased number of germ cells with both beta-galactosidase activity and STRA8 protein and an increase in the expression of genes associated with differentiation and reduced expression of a gene associated with undifferentiated germ cells. These results show the action of RA in a subset of spermatogonia leads to nonuniform initiation of differentiation throughout the neonatal testis, potentially mediated through the action of CYP26 enzymes. Thus, the presence of RA is a likely driving factor in the initiation of spermatogonial differentiation and may result in asynchronous spermatogenesis.

  4. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  5. Folic acid improve developmental toxicity induced by aluminum sulphates.

    PubMed

    Yassa, Heba A; George, Safaa M; Mohamed, Heba K

    2017-03-01

    Aluminum sulphate has a significant toxic effects for humans. Aluminum is one of the most abundant metal on the Earth crust. The purpose of this study is to evaluate the effects of short term exposure to aluminum sulphate on the bone development of the fetuses in rats, and if folic acid has a protective role upon that effects or not. Forty female rats were used, ten per group, GI served as negative control (receive nothing except normal feeding and water), GII served as positive control (receive water by gastric gavage), GIII treated with aluminum sulphate orally by gastric gavage and GIV treated with aluminum sulphate with folic acid. Mating occurred and known by presence of vaginal plug in the female rats. Rats were killed on day 18 of gestation.

  6. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  7. Acidic pH environment induces autophagy in osteoblasts

    PubMed Central

    Zhang, Zhichao; Lai, Qingguo; Li, Yanan; Xu, Chao; Tang, Xiaopeng; Ci, Jiangbo; Sun, Shaolong; Xu, Bingbing; Li, Yan

    2017-01-01

    Osteoblasts (OBs) play an important role in bone fracture healing, yet the extreme adverse microenvironment in fracture sites has a negative impact on the survival of OBs. Therefore, it is important to study how OBs behave in the complex fracture microenvironment. Studies have shown that autophagy plays a pivotal role in maintaining cellular homeostasis and defending the cell against adverse microenvironments. In this study we found the induction of autophagy in OBs at femoral bone fracture sites, which may be a result of ischemia, oxidative stress and hypoxia within the local area. At fracture sites a low pH environment also developed. Until now it has been unclear whether the induction of autophagy in osteoblasts is triggered by the acidic pH environment. Therefore, we cultured OBs in vitro in media of different pH values, and found both autophagy and apoptosis increased in OBs in acidic conditions. However, when autophagy inhibitor chloroquine (CQ) was used, apoptosis increased significantly compared with that without CQ. Thus indicating that inhibition of autophagy may promote apoptosis in OBs in an acidic environment, which may provide a new therapeutic strategy to decrease cell apoptosis in OBs through the use of drugs that modulate the autophagic state. PMID:28382973

  8. Reversible phenotypic modulation induced by deprivation of exogenous essential fatty acids.

    PubMed

    Laposata, M; Minda, M; Capriotti, A M; Hartman, E J; Furth, E E; Iozzo, R V

    1988-12-01

    Essential fatty acid deficiency, produced by deprivation of omega-6 and omega-3 fatty acids, is a condition characterized by renal disease, dermatitis, and infertility. Although many of the biochemical aspects of this disorder have been investigated, little is known about the ultrastructural changes induced by essential fatty acid deficiency. Using a unique fatty acid-deficient cell line (EFD-1), which demonstrates the in vivo fatty acid changes of essential fatty acid deficiency, and the prostaglandin E2-producing mouse fibrosarcoma line from which it was derived (HSDM1C1), we correlated ultrastructural and biochemical changes induced by prolonged deprivation of all exogenous lipids and subsequent repletion of selected essential fatty acids. We found that in cells deprived of all exogenous lipids, there was dilation of rough endoplasmic reticulum and an associated defect in protein secretion; these changes were specifically reversed by arachidonate. There was also an accumulation of secondary lysosomes containing degraded membranes in these cells with an associated increase in phospholipids relative to parent HSDM1C1 cells. Cytoplasmic lipid bodies present in parent cells disappeared, with an associated decrease in triacylglycerol. After just 2 days in lipid-free medium, all these changes were apparent, and prostaglandin E2 production was markedly impaired despite normal amounts of cellular arachidonate. Incubation of EFD-1 cells with arachidonate, the major prostaglandin precursor fatty acid, induced a reversion to the HSDM1C1 phenotype, whereas other fatty acids were totally ineffective. These results indicate changes in fatty acid metabolism in essential fatty acid deficiency are associated with marked alterations in ultrastructure and secretion of protein from cells.

  9. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  10. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  11. Contribution of gastrin to cysteamine-induced gastric acid secretion in rats.

    PubMed

    van de Brug, F J; Jansen, J B; Kuijpers, I J; Lamers, C B

    1993-01-01

    The role of circulating gastrin in cysteamine induced gastric acid secretion was examined in conscious male Wistar rats, provided with a portal vein catheter, a jugular vein catheter and a pyloric drainage tube. Intravenous infusion of 0.3 nmol/kg.30 min of gastrin 17-l resulted in serum gastrin concentrations of 1138 +/- 151 pg/ml and gastric acid secretion of 104 +/- 36 mumol H+/kg.30 min. This acid response was abolished by intravenous injection of 60 microliters of a gastrin-antiserum, indicating the efficacy of immunoneutralization with this antiserum in vivo. Intravenous bolus administration of 125 mg/kg of cysteamine induced increases in serum gastrin concentration (864 +/- 96 pg/ml) and gastric acid outputs (107 +/- 27 mumol H+/kg.30 min) not significantly different from the gastrin 17-l infusion experiments. Gastrin antiserum abolished cysteamine-induced gastric acid secretion, indicating that gastric acid secretion induced by 125 mg/kg of cysteamine is largely mediated by circulating gastrin in rats.

  12. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  13. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    PubMed

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  14. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    PubMed Central

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50 mg/kg, respectively) for a period of 56 days. After the treatment period, ISO (85 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days. ISO-induced rats showed a significant decrease in the activity of Na+ /K+ ATPase and increase in the activities of Ca2+ and Mg2+ ATPase in the heart and a significant (P<0.05) increase in the levels of glycoproteins in serum and the heart were also observed in ISO-induced rats. Pretreatment with phytic acid for a period of 56 days exhibited a significant (P<0.05) effect and altered these biochemical parameters positively in ISO-induced rats. Thus, our study shows that phytic acid has cardioprotective role in ISO-induced MI in rats.

  15. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  16. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (< 5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1 > TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  17. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation.

    PubMed

    Saeki, Tohru; Yui, Satoko; Hirai, Tadashi; Fujii, Takami; Okada, Sawami; Kanamoto, Ryuhei

    2012-01-01

    We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.

  18. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass.

    PubMed

    Liu, Xinyao; Fallon, Sarah; Sheng, Jie; Curtiss, Roy

    2011-04-26

    Using genetically modified cyanobacterial strains, we engineered a Green Recovery strategy to convert membrane lipids into fatty acids for economical and environmentally sustainable biofuel production. The Green Recovery strategy utilizes lipolytic enzymes under the control of promoters induced by CO(2) limitation. Data indicate that strains of the cyanobacterium Synechocystis sp. PCC6803 engineered for Green Recovery underwent degradation of membrane diacylglycerols upon CO(2) limitation, leading to release of fatty acids into the culture medium. Recovered fatty acid yields of 36.1 × 10(-12) mg/cell were measured in one of the engineered strains (SD239). Green Recovery can be incorporated into previously constructed fatty-acid-secretion strains, enabling fatty acid recovery from the remaining cyanobacterial biomass that will be generated during fatty acid biofuel production in photobioreactors.

  19. Proline induces calcium-mediated oxidative burst and salicylic acid signaling.

    PubMed

    Chen, Jiugeng; Zhang, Yueqin; Wang, Cuiping; Lü, Weitao; Jin, Jing Bo; Hua, Xuejun

    2011-05-01

    Although free proline accumulation is a well-documented phenomenon in many plants in response to a variety of environmental stresses, and is proposed to play protective roles, high intracellular proline content, by either exogenous application or endogenous over-production, in the absence of stresses, is found to be inhibitory to plant growth. We have shown here that exogenous application of proline significantly induced intracellular Ca(2+) accumulation in tobacco and calcium-dependent ROS production in Arabidopsis seedlings, which subsequently enhanced salicylic acid (SA) synthesis and PR genes expression. This suggested that proline can promote a reaction similar to hypersensitive response during pathogen infection. Other amino acids, such as glutamate, but not arginine and phenylalanine, were also found to be capable of inducing PR gene expression. In addition, proline at concentration as low as 0.5 mM could induce PR gene expression. However, proline could not induce the expression of PDF1.2 gene, the marker gene for jasmonic acid signaling pathway. Furthermore, proline-induced SA production is mediated by NDR1-dependent signaling pathway, but not that mediated by PAD4. Our data provide evidences that exogenous proline, and probably some other amino acids can specifically induce SA signaling and defense response.

  20. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    PubMed

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  1. Impairment of spermatogenesis and enhancement of testicular germ cell apoptosis induced by exogenous all-trans-retinoic acid in adult lizard Podarcis sicula.

    PubMed

    Comitato, Raffaella; Esposito, Teresa; Cerbo, Giovanna; Angelini, Francesco; Varriale, Bruno; Cardone, Anna

    2006-03-01

    In mammals, retinoic acid is involved in the regulation of testicular function by interaction with two families of nuclear receptors, retinoic acid receptor (RAR) and retinoid X receptor (RXR). Among RAR isoforms, the testicular cells of the lizard were found to express only RARalpha (3.7 kb) and RARbeta (3.4 kb) mRNAs, as reported here. In this study, the effects of exogenous all-trans-retinoic acid (atRA) on spermatogenesis of a non-mammalian seasonal reproducer were investigated. Daily intraperitoneal injections of atRA or atRA plus testosterone (atRA+T) were given for 2 weeks to adult males of the lizard Podarcis sicula. In animals treated with atRA, the seminiferous tubules were markedly reduced in cross-area. The seminiferous epithelium collapse was responsible for a sensible reduction in the number of germ cells and disruption in normal epithelial organization. In comparison, in atRA+T-treated lizards the loss of germinal cells was significantly less. The loss of germ cells observed in both experimental groups results from an induction of apoptotic process, as revealed by TUNEL analysis. Although low in number, apoptotic germ cells were also observed in the control groups (saline- and T-treated lizard), where the main germ cells undergoing apoptosis are primary spermatocytes (most frequently) and some spermatogonia. In conclusion, it is shown here that retinoic acid has deleterious effects on lizard spermatogenesis, causing a severe depletion of seminiferous epithelium, probably via induction of apoptotic processes. These effects are not completely inhibited by simultaneous administration of testosterone, although this hormone, once injected, is able to stimulate spermatogenesis and protect germinal cells from apoptotic cell death.

  2. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    SciTech Connect

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu . E-mail: jfchiu@hkucc.hku.hk

    2007-01-15

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor {beta} (TGF{beta}) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGF{beta} treatment, or co-treatment with TGF{beta} inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGF{beta} signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGF{beta} signaling pathway in breast cancer cells.

  3. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  4. An alternative method for Ra determinations in water

    SciTech Connect

    Loyd, D.H.; Drake, E.N. 2d.

    1989-07-01

    Concentrations of /sup 226/Ra and /sup 224/Ra in 13 wells distributed throughout McCulloch and Mason counties in the Hickory Aquifer of the Llano Uplift Region of West-Central Texas are reported. Measurable alpha-particle activity is present in all wells, with seven wells having /sup 226/Ra radioactivity concentrations greater than 185 Bq m-3 (5 pCi L-1). An alternative methodology for measuring /sup 226/Ra, /sup 224/Ra and /sup 228/Ra is described. The EPA-approved methodology for estimating total Ra is shown to be invalid for aquifers containing significant levels of /sup 224/Ra. Alpha-particle activity measurements made in the interval of 12 to 300 h after Ra isolation lead to self-consistent solutions for radioactivity concentrations of /sup 226/Ra and /sup 224/Ra, with negligible contributions from /sup 228/Ra. Radioactivity concentrations of /sup 228/Ra can be calculated from grow-in terms for this isotope used with alpha-particle activity measurements at post-isolation times significantly longer than 800 h. Comparison of the /sup 226/Ra radioactivity concentration with that reported previously by the Texas Department of Health for a single well indicates acceptable agreement. However, the radioactivity concentration attributable to /sup 228/Ra for the same well was found to be in significant disagreement with the Texas Department of Health value.

  5. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  6. Discovery of radioactive decay of /sup 222/Ra and /sup 224/Ra by /sup 14/C emission

    SciTech Connect

    Price, P.B.; Stevenson, J.D.; Barwick, S.W.; Ravn, H.L.

    1985-01-28

    Using the ISOLDE on-line isotope separator at CERN to produce sources of /sup 221/Fr, /sup 221/Ra, /sup 222/Ra, /sup 223/Ra, and /sup 224/Ra, and using polycarbonate track-recording films sensitive to energetic carbon nuclei but not to alpha particles, we have discovered two new cases of the rare /sup 14/C decay mode: in /sup 222/Ra and /sup 224/Ra. Our results for branching ratios, B, relative to alpha decay are for /sup 221/Fr and /sup 221/Ra, B<4.4 x 10/sup -12/; for /sup 222/Ra, B = (3.7 +- 0.6) x 10/sup -10/; for /sup 223/Ra, B = (6.1 +- 1.0) x 10/sup -10/; for /sup 224/Ra, B = (4.3 +- 1.2) x 10/sup -11/. .AE

  7. CO 2 and CO utilization: radiation-induced carboxylation of aqueous chloroacetic acid to malonic acid

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2003-07-01

    CO 2 and CO in addition to HCOOH/HCOO - can be used to produce the carboxylating radical rad COOH/ rad COO - under the influence of ionizing radiation. The carboxylation of ClCH 2COOH/ClCH 2COO - to malonic acid/malonate was studied at the pH range 2-7. A maximum yield G(malonic acid)=85 at pH=3 was observed by using 5×10 -2 mol dm -3 ClCH 2COOH, 1×10 -2 mol dm -3 HCOOH and 1×10 -3 mol dm -3 CO at a dose of 4.8 kGy. Oxalic and succinic acids were found as byproducts. The yield of the formed Cl - ions passes two maxima, at pH=3 ( G=7.5) and 7 ( G=15). Reaction mechanisms for the carboxylation process are presented.

  8. The potential benefits and adverse effects of phytic Acid supplement in streptozotocin-induced diabetic rats.

    PubMed

    Omoruyi, F O; Budiaman, A; Eng, Y; Olumese, F E; Hoesel, J L; Ejilemele, A; Okorodudu, A O

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly (P < 0.05) increased by phytic acid supplementation. Systemic IL-1 β level was significantly (P < 0.05) elevated in the diabetic control and supplement treated groups. The liver lipogenic enzyme activities were not significantly altered among the groups. These results suggest that phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation.

  9. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    PubMed Central

    2012-01-01

    Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms. PMID:22360800

  10. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  11. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source.

    PubMed

    Lee, Jong Wha; Kim, Hugh I

    2015-01-21

    The effect of acids on the structure of lysozyme (Lyz) during electrospray ionization (ESI) was studied by comparing the solution and gas-phase structures of Lyz. Investigation using circular dichroism spectroscopy and small-angle X-ray scattering demonstrated that the folded conformation of Lyz was maintained in pH 2.2 solutions containing different acids. On the other hand, analysis of the charge state distributions and ion mobility (IM) distributions, combined with molecular dynamics simulations, demonstrated that the gas phase structures of Lyz depend on the pKa of the acid used to acidify the protein solution. Formic acid and acetic acid, which are weak acids (pKa > 3.5), induce unfolding of Lyz during ESI, presumably because the undissociated weak acids provide protons to maintain the acidic groups within Lyz protonated and prevent the formation of salt bridges. However, HCl suppressed the formation of the unfolded conformers because the acid is already dissociated in solution, and chloride anions within the ESI droplet can interact with Lyz to reduce the intramolecular electrostatic repulsion. These trends in the IM distributions are observed for all charge states, demonstrating the significance of the acid effect on the structure of Lyz during ESI.

  12. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    PubMed Central

    Czarnewski, Paulo; Das, Srustidhar; Parigi, Sara M.; Villablanca, Eduardo J.

    2017-01-01

    Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA) has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs) and innate lymphoid cells (ILCs). Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs. PMID:28098786

  13. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    NASA Astrophysics Data System (ADS)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  14. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  15. Indomethacin and retinoic acid modify mouse intestinal inflammation and fibrosis: a role for SPARC.

    PubMed

    Klopcic, Borut; Appelbee, Amber; Raye, Warren; Lloyd, Frances; Jooste, James C I; Forrest, Cynthia Heather; Lawrance, Ian Craig

    2008-06-01

    The mouse model of 2,4,6-Trinitrobenzene Sulfonic Acid (TNBS)-induced intestinal fibrosis allows for detailed study of the extracellular matrix changes that complicate Crohn's disease. Indomethacin induces intestinal fibrosis, while retinoic acid (RA) reduces liver fibrosis. Secreted protein acidic and rich in cysteine (SPARC), an extracellular matrix-modifying agent, may potentially link these opposing effects. Our aim was to determine the effects of indomethacin and RA and to evaluate their correlation to SPARC expression in the TNBS mouse model. CD-1 mice were randomised to TNBS enemas weekly for 2 or 8 weeks with or without indomethacin (0.2 mg/kg per day) or RA (100 microg/kg per day). At 2 weeks, indomethacin/TNBS enhanced and RA reduced inflammation, tissue destruction and fibrosis. The expression of SPARC was inversely related to fibrosis, but not to inflammation, in the TNBS-alone groups at 2 weeks; these differences were lost by 8 weeks. The results demonstrate that indomethacin increases TNBS-induced fibrosis in mice, while RA reduces it, and that SPARC may link these opposing effects.

  16. Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction.

    PubMed

    Brien, Marie-Eve; Duval, Cyntia; Palacios, Julia; Boufaied, Ines; Hudon-Thibeault, Andrée-Anne; Nadeau-Vallée, Mathieu; Vaillancourt, Cathy; Sibley, Colin P; Abrahams, Vikki M; Jones, Rebecca L; Girard, Sylvie

    2017-01-01

    Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins. One of these damage-associated molecular patterns, uric acid, is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However, its effects within the placenta and on pregnancy outcomes remain largely unknown. We found that uric acid (monosodium urate [MSU]) crystals induce a proinflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1β and IL-6, a result confirmed in human term placental explants. The proinflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The proinflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialization. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active proinflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of noninfectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.

  17. Effect of Retinoic Acid on Gene Expression in Human Conjunctival Epithelium: Secretory phospholipase A2 mediates retinoic acid induction of MUC16.

    PubMed Central

    Hori, Yuichi; Spurr-Michaud, Sandra J.; Russo, Cindy Leigh; Argüeso, Pablo; Gipson, Ilene K.

    2005-01-01

    Purpose. How vitamin A contributes to the maintenance of the wet-surfaced phenotype at the ocular surface is not well understood. We sought to identify vitamin A responsive genes in ocular surface epithelia using gene microarray analysis of cultures of a human conjunctival epithelial cell line (HCjE) grown with all-trans-retinoic acid (RA). The analysis showed that secretory phospholipase A2 Group IIA (sPLA2-IIA) was the gene most upregulated by RA, followed by the membrane-associated mucin MUC16 at a later time point. Since eicosanoids, the product of arachidonic acid generated by the phospholipase A2 family, have been shown to increase mucin production, we sought to determine if sPLA2 mediates the RA induction of MUC16. Methods. HCjE cells were cultured with or without RA for 3, 6, 24 and 48 hours. Complementary RNA prepared from RNA of the HCjE cells was hybridized to human gene chips (HG-U133A; Affymetrix) and analyzed using Rosetta Resolver software. Microarray data on mucin expression were validated by real-time PCR. To investigate whether sPLA2 is associated with RA-induced MUC16 upregulation, HCjE cells were incubated with RA and the broad spectrum PLA2 inhibitor, aristolochic acid (ArA) or the specific sPLA2-IIA inhibitor LY315920, followed by analysis of MUC16 mRNA and protein by real-time PCR and Western blot analysis. Results. After RA addition, 28 transcripts were upregulated and 6 downregulated by over 2.0-fold (p < 0.01) at both 3 and 6 hours (early phase). Eighty gene transcripts were upregulated and 45 downregulated at both 24 and 48 hours (late phase). Group IIA sPLA2, significantly upregulated by 24 hours, and MUC16 were the most upregulated RNAs by RA at 48 hours. sPLA2 upregulation by RA was confirmed by Western blot analysis. When HCjE cells were incubated with RA plus ArA or specific inhibitor of sPLA2-IIA, LY315920, the RA-induced MUC16 mRNA was significantly reduced (p < 0.01). Conclusion. The retinoic acid-associated upregulation of

  18. Leaching of 226Ra from U mill tailings by sulfate-reducing bacteria.

    PubMed

    Landa, E R; Miller, C L; Updegraff, D M

    1986-10-01

    Relatively insoluble sulfate precipitates appear to be a major host for Ra in sulfuric acid-treated, U mill tailings. The dissolution of such precipitates by natural processes, such as metabolism by sulfate-reducing bacteria (SRB), creates the potential for release of Ra to contacting waters. Significant leaching of Ra by SRB was achieved in the laboratory during the anaerobic incubation (1 to 119 days) of U mill tailings with pure cultures of Desulfovibrio desulfuricans and mixed cultures containing SRB isolated from the tailings, all grown on a lactate medium at room temperature. While the maximum 226Ra concentration reached in a sterile media control was 0.44 Bq/L (12 pCi/L), that in the SRB systems was 61 Bq/L (1640 pCi/L) or about 20% of the total Ra inventory in the original tailings sample. The leaching of Ra in SRB systems was accompanied by a decrease in soluble sulfate concentration, an increase in total sulfide concentration, and an increase in the number of SRB. The observed leaching effect does not appear to be due to the action of microbial chelates or to binding to cell walls. Potential implications of these findings to the management of U mill tailings and other radioactive wastes are discussed.

  19. The role of hyaluronic acid in SEB-induced acute lung inflammation.

    PubMed

    Uchakina, Olga N; Castillejo, Clara M; Bridges, Christy C; McKallip, Robert J

    2013-01-01

    We investigated the role of the extracellular matrix component, hyaluronic acid (HA) in SEB-induced ALI/ARDS. Intranasal exposure of mice to SEB led to a significant increase in the level of soluble hyaluronic acid in the lungs. Similarly, in an endothelial cell/spleen cell co-culture, SEB exposure led to significant increases in soluble levels of hyaluronic acid, cellular proliferation, and cytokine production compared with SEB-exposed spleen cells or endothelial cells alone. Exposure of SEB-activated spleen cells to hyaluronic acid led to increased cellular proliferation and increased cytokine production. SEB-induced cytokine production and proliferation in vitro were significantly reduced by the hyaluronic acid blocking peptide, Pep-1. Finally, treatment of SEB-exposed mice with Pep-1 significantly reduced SEB-induced ALI/ARDS, through reduction of cytokine production and numbers of lung inflammatory cells, compared to mice treated with a control peptide. Together, these results suggest the possibility of targeting HA for the treatment of SEB-induced ALI/ARDS.

  20. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-09-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  1. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  2. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  3. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species.

    PubMed

    Onaka, Hiroyasu; Mori, Yukiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2011-01-01

    Natural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from different Streptomyces species. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products in Streptomyces species. The production of red pigment by Streptomyces lividans TK23 was induced by coculture with Tsukamurella pulmonis TP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances. T. pulmonis could induce natural-product synthesis in other Streptomyces strains too: it altered natural-product biosynthesis in 88.4% of the Streptomyces strains isolated from soil. The other mycolic acid-containing bacteria, Rhodococcus erythropolis and Corynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of the Streptomyces strains, respectively. The coculture broth of T. pulmonis and Streptomyces endus S-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism in Streptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria and Streptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products.

  4. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  5. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  6. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  7. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    PubMed

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  8. Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Li, Shuo; Sun, Huichao

    2017-03-28

    Cardiac hypertrophy is a complex process involving highly coordinated but tight regulation of multiple elements, such as in epigenetics, which make an important contribution to myocardium remodeling and cardiac hypertrophy. Epigenetic regulations, particularly histone acetylation, have been implicated in cardiac hypertrophy, however, the exact mechanism is still largely unknown. In the present study, we explored the potential attenuating effects of Chinese herbal extract anacardic acid on phenylephrine-induced cardiac hypertrophy and the underlying mechanism. The mouse cardiac hypertrophy model was established and the hearts were collected from C57BL/6 mice for further analyses. The data showed that anacardic acid modulated the cardiac genes expression and attenuated the phenylephrine-induced cardiac hypertrophy via the suppression of histone acetylases activity and downstream cardiac genes. In addition, anacardic acid abrogated histone and MEF2A acetylation and DNA-binding activity by blocking p300-HAT and PCAF-HAT activities. In addition, anacardic acid normalized the cardiac hypertrophy-related genes expressions (ANP, BNP, cTnT, cTnI, β-MHC, and Cx43) induced by phenylephrine at the level of transcription and translation. In addition, anacardic acid did not affect the blood routine index, hepatic function, renal function, and myocardial enzymes. Therefore, anacardic acid may prove to be a candidate drug to cure hypertrophic cardiomyopathy.

  9. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4

    PubMed Central

    Runtuwene, Joshua; Cheng, Kai-Chun; Asakawa, Akihiro; Amitani, Haruka; Amitani, Marie; Morinaga, Akinori; Takimoto, Yoshiyuki; Kairupan, Bernabas Harold Ralph; Inui, Akio

    2016-01-01

    Background Rosmarinic acid (RA) is a natural substance that may be useful for treating diabetes mellitus. The present study investigated the effects of RA on glucose homeostasis and insulin regulation in rats with streptozocin (STZ)-induced type 1 diabetes or high-fat diet (HFD)-induced type 2 diabetes. Methods Glucose homeostasis was determined using oral glucose tolerance tests and postprandial glucose tests, and insulin activity was evaluated using insulin tolerance tests and the homeostatic model assessment for insulin resistance. Additionally, the protein expression levels of PEPCK and GLUT4 were determined using Western blot analysis. Results RA administration exerted a marked hypoglycemic effect on STZ-induced diabetic rats and enhanced glucose utilization and insulin sensitivity in HFD-fed diabetic rats. These effects of RA were dose-dependent. Meanwhile, RA administration reversed the STZ- and HFD-induced increase in PEPCK expression in the liver and the STZ- and HFD-induced decrease in GLUT4 expression in skeletal muscle. Conclusion RA reduces hyperglycemia and ameliorates insulin sensitivity by decreasing PEPCK expression and increasing GLUT4 expression. PMID:27462144

  10. Chemical and biological characterization of cinnamic acid derivatives from cell cultures of lavender (Lavandula officinalis) induced by stress and jasmonic acid.

    PubMed

    Nitzsche, Astrid; Tokalov, Sergey V; Gutzeit, Herwig O; Ludwig-Müller, Jutta

    2004-05-19

    Cell cultures of lavender (Lavandula officinalis) were analyzed for the metabolite profile under normal growth conditions and under stress as well as after jasmonic acid treatment. The main compound synthesized was rosmarinic acid, which was also secreted into the culture medium. Different solvent extraction methods at different pH values altered the profile slightly. Anoxic stress induced the synthesis of a cinnamic acid derivative, which was identified as caffeic acid by gas chromatography-mass spectrometry. Caffeic acid was also induced after treatment of the cell cultures with jasmonic acid. Although the antioxidative activity of both compounds, rosmarinic acid and caffeic acid, was confirmed in an assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it was demonstrated that both substances have a low cytotoxic potential in vitro using acute myeloid leukemia (HL-60) cells. The potential of the system for finding new bioactive compounds is discussed.

  11. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  12. Palmitoleic acid induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

    PubMed

    Oyanagi, Eri; Uchida, Masataka; Miyakawa, Takeshi; Miyachi, Motohiko; Yamaguchi, Hidetaka; Nagami, Kuniatsu; Utsumi, Kozo; Yano, Hiromi

    Although palmitoleic acid (C16:1) is associated with arrhythmias, and increases in an age-dependent matter, the effects of L-carnitine, which is essential for the transport of long-chain fatty acids into the mitochondria, are unclear. It has been postulated that L-carnitine may attenuate palmitate (C16:0)-induced mitochondrial dysfunction and the apoptosis of cardiomyocytes. The aim of this study was to elucidate the activity of L-carnitine in the prevention of the palmitoleic acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoleoyl-CoA-induced mitochondrial respiration was not accelerated by L-carnitine treatment, and this respiration was slightly inhibited by oligomycin, which is an inhibitor of ATP synthase. Despite pretreatment with L-carnitine, the mitochondrial membrane potential decreased and mitochondrial swelling was induced by palmitoleoyl-CoA. In the presence of a combination of L-carnitine and tiron, a free radical scavenger, there was attenuated mitochondrial swelling and cytochrome c release following palmitoleoyl-CoA treatment. We concluded that palmitoleic acid, but not palmitate, induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

  13. Protection of arsenic-induced testicular oxidative stress by arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2008-01-01

    Arsenic-induced tissue damage is a major concern to the human population. An impaired antioxidant defense mechanism followed by oxidative stress is the major cause of arsenic-induced toxicity, which can lead to reproductive failure. The present study was carried out to investigate the preventive role of arjunolic acid, a triterpenoid saponin isolated from the bark of Terminalia arjuna, against arsenic-induced testicular damage in mice. Administration of arsenic (in the form of sodium arsenite, NaAsO(2), at a dose of 10 mg/kg body weight) for 2 days significantly decreased the intracellular antioxidant power, the activities of the antioxidant enzymes, as well as the levels of cellular metabolites. In addition, arsenic intoxication enhanced testicular arsenic content, lipid peroxidation, protein carbonylation and the level of glutathione disulfide (GSSG). Exposure to arsenic also caused significant degeneration of the seminiferous tubules with necrosis and defoliation of spermatocytes. Pretreatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days could prevent the arsenic-induced testicular oxidative stress and injury to the histological structures of the testes. Arjunolic acid had free radical scavenging activity in a cell-free system and antioxidant power in vivo. In summary, the results suggest that the chemopreventive role of arjunolic acid against arsenic-induced testicular toxicity may be due to its intrinsic antioxidant property.

  14. Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia.

    PubMed

    Ma, Shuai; Li, Xin-Yan; Gong, Nian; Wang, Yong-Xiang

    2015-12-10

    Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

  15. Studies on the vascular and hematological changes induced by ellagic acid in rats.

    PubMed

    Damas, J; Adam, A; Remacle-Volon, G; Grek, V

    1987-12-01

    We compared the major changes induced by ellagic acid (EA), a Hageman factor activator, in normal rats and in kininogen-deficient Brown Norway rats. In normal rats, large doses of EA induced a congestion of lymph nodes, spleen and liver, a prolongation of activated partial thromboplastin time, the consumption of prekallikrein, high molecular weight kininogen and fibrinogen, as well as the stimulation of platelets with their accumulation in lungs, liver and spleen. A systemic hypotension of long duration was also observed. The fibrinogen consumption, the thrombocytopenia and the lengthening of activated partial thromboplastin time were dose-dependent. In kininogen-deficient rats, EA induced only a minimal congestion of lymphoid tissues, the accumulation of platelets in lungs, a decrease of plasma fibrinogen and a short-lasting hypotension. It is concluded that the vascular changes induced by blood coagulation with ellagic acid resulted mainly from kinin formation.

  16. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis

    PubMed Central

    2012-01-01

    The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis. PMID:22559721

  17. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  18. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    PubMed

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  19. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC.

  20. Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells.

    PubMed

    Shahhoseini, Maryam; Taghizadeh, Zeinab; Hatami, Maryam; Baharvand, Hossein

    2013-04-01

    Gene activation of HOX clusters is an early event in embryonic development. These genes are highly expressed and active in the vertebrate nervous system. Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retinoic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems. In this investigation, the expression level as well as the epigenetic regulation of several HOX genes of the 4 A-D clusters was analyzed in human embryonic stem cells, and also through their neural induction, in the presence and absence of RA. Expression analysis data significantly showed increased mRNA levels of all examined HOX genes in the presence of RA. Epigenetic analysis of the HOX gene regulatory regions also showed a significant decrease in methylation of histone H3K27 parallel to an absolute preferential incorporation of the demethylase UTX rather than JMJD3 in RA-induced neural differentiated cells. This finding clearly showed the functional role of UTX in epigenetic alteration of HOX clusters during RA-induced neural differentiation; the activity could not be detectable for the demethylase JMJD3 during this developmental process.

  1. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    PubMed

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  2. Fruit acids do not enhance sodium lauryl sulphate-induced cumulative irritant contact dermatitis in vivo.

    PubMed

    Schliemann-Willers, Sibylle; Fuchs, Silke; Kleesz, Peter; Grieshaber, Romano; Elsner, Peter

    2005-01-01

    Combined exposure to different irritants in the workplace may lead to irritant contact dermatitis, which is the main type of occupational dermatitis among bakers and confectioners. Following previous work on "tandem irritation", a panel of healthy volunteers was exposed twice daily for 4 days to the organic fruit acids: citric, malic, and lactic acid, either alone or in tandem application with 0.5% sodium lauryl sulphate (SLS) in a repetitive irritation test. Irritant cutaneous reactions were quantified by visual scoring and non-invasive measurement of transepidermal water loss and skin colour reflectance. Twice daily application of either citric or malic acid alone did not induce a significant irritant reaction. Combined exposure to one of the fruit acids and SLS caused marked barrier disturbance, but the latter irritant effect was smaller than that obtained by combined exposure to SLS and water. Thus, combined exposure to the above-mentioned fruit acids and SLS did not enhance cumulative skin irritation.

  3. Effect of retinoic acid on midkine gene expression in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2017-04-07

    Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10(-6) M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.

  4. Exacerbation of Alcohol-Induced Oxidative Stress in Rats by Polyunsaturated Fatty Acids and Iron Load

    PubMed Central

    Patere, S. N.; Majumdar, A. S.; Saraf, M. N.

    2011-01-01

    The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography), polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron. PMID:22303057

  5. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine.

    PubMed

    Koriem, Khaled M M; Soliman, Rowan E

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective.

  6. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  7. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes.

    PubMed

    Pawluczyk, Izabella Z A; Ghaderi Najafabadi, Maryam; Patel, Samita; Desai, Priyanka; Vashi, Dipti; Saleem, Moin A; Topham, Peter S

    2014-01-15

    Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity.

  8. Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids.

    PubMed

    Polizzi, Arnaud; Fouché, Edwin; Ducheix, Simon; Lasserre, Frédéric; Marmugi, Alice P; Mselli-Lakhal, Laila; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2016-09-24

    The liver plays a central role in the regulation of fatty acid metabolism, which is highly sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty acid catabolism during fasting. The present study compared the influence of dietary fatty acids and fasting on hepatic PPARα-dependent responses. Pparα(-/-) male mice and their wild-type controls were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic dietary fat consumption influenced liver damage during fasting. The changes were particularly marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent signalling involved in triggering PPARα activity during fasting does not rely on essential fatty acid-derived ligand.

  9. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.

    PubMed Central

    Moons, A; Prinsen, E; Bauw, G; Van Montagu, M

    1997-01-01

    Abscisic acid (ABA) and jasmonates have been implicated in responses to water deficit and wounding. We compared the molecular and physiological effects of jasmonic acid (JA) (< or = 10 microM), ABA, and salt stress in roots of rice. JA markedly induced a cationic peroxidase, two novel 32- and 28-kD proteins, acidic PR-1 and PR-10 pathogenesis-related proteins, and the salt stress-responsive SalT protein in roots. Most JA-responsive proteins (JIPs) from roots also accumulated when plants were subjected to salt stress. None of the JIPs accumulated when plants were treated with ABA. JA did not induce an ABA-responsive group 3 late-embryogenesis abundant (LEA) protein. Salt stress and ABA but not JA induced oslea3 transcript accumulation. By contrast, JA, ABA, and salt stress induced transcript accumulation of salT and osdrr, which encodes a rice PR-10 protein. However, ABA also negatively affected salT transcript accumulation, whereas JA negatively affected ABA-induced oslea3 transcript levels. Endogenous root ABA and methyl jasmonate levels showed a differential increase with the dose and the duration of salt stress. The results indicate that ABA and jasmonates antagonistically regulated the expression of salt stress-inducible proteins associated with water deficit or defense responses. PMID:9437865

  10. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  11. Temperature induced denaturation of collagen in acidic solution.

    PubMed

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  12. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  13. Alteration of cyclosporine (CsA)-induced nephrotoxicity by gamma linolenic acid (GLA) and eicosapentaenoic acid (EPA) in Wistar rats.

    PubMed

    Morphake, P; Bariety, J; Darlametsos, I; Tsipas, G; Gkikas, G; Hornysh, A; Papanikolaou, N

    1994-01-01

    Administration of cyclosporine (CsA), 37.4 microM (45 mg)/Kg, per day for 7 days, to Wistar rats, induced decreased creatinine clearance (Ccr) and body weight loss (BWL), but it did not induce proteinuria. These changes were associated with enhanced urinary thromboxane B2 (TXB2) and diminished 6-keto-PGF1 alpha (6kPGF1 alpha) and prostaglandin E2 (PGE2) excretions. The augmentation in TXB2 and the decrease in PGs highly diminished the ratios of 6kPGF1 alpha/TXB2 and PGE2/TXB2. In microscopic sections all of the kidneys were affected to variable degrees. When CsA was administered to animals fed for 70 days, prior to the experiment, on standard chow (SC) containing evening primrose oil (EPO) or fish oil (FO), 1% and 10% respectively (EPO contained 9% gamma-linolenic acid (GLA) and FO 5.6% eicosapentaenoic acid (EPA)), the nephrotoxic effect of CsA was partially prevented. These changes were accompanied by increased ratios of urinary 6kPGF1 alpha/TXB2 and PGE2/TXB2 excretions. Light microscopic (LM) studies showed that rats' kidneys fed on SC containing EPO or FO were not always affected and the lesions were of minor importance. In conclusion, these results suggest that EPO (GLA) and FO (EPA) could play a beneficial role in the development or the modulation of the renal syndrome induced by CsA.

  14. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either

  15. Effect of niflumic acid on noradrenaline-induced contractions of the rat aorta.

    PubMed

    Criddle, D N; de Moura, R S; Greenwood, I A; Large, W A

    1996-06-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride channels, were compared with the actions of the calcium channel antagonist nifedipine on noradrenaline-evoked contractions in isolated preparations of the rat aorta. 2. The cumulative concentration-effect curve to noradrenaline (NA) was depressed by both nifedipine and niflumic acid in a reversible and concentration-dependent manner. The degree of inhibition of the maximal contractile response to NA (1 microM) produced by 10 microM niflumic acid (38%) was similar to the effect of 1 microM nifedipine (39%). 3. Contractions to brief applications (30 s) of 1 microM NA were inhibited by 55% and 62% respectively by 10 microM niflumic acid and 1 microM nifedipine. 4. In the presence of 0.1 microM nifedipine, niflumic acid (10 microM) produced no further inhibition of the NA-evoked contractions. Thus, the actions of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contraction induced by 1 microM NA was not inhibited by niflumic acid (10 microM) and therefore this agent does not reduce the amount of calcium released from the intracellular store or reduce the sensitivity of the contractile apparatus to calcium. 6. Niflumic acid 10 microM did not inhibit the contractions produced by KCl (up to 120 mM) which were totally blocked by nifedipine. Contractions induced by 25 mM KCl were completely inhibited by 1 microM levcromakalim but were unaffected by niflumic acid. 7. It was concluded that niflumic acid produces selective inhibition of a component of NA-evoked contraction which is probably mediated by voltage-gated calcium channels. These data are consistent with a model in which NA stimulates a calcium-activated chloride conductance which leads to the opening of voltage-gated calcium channels to produce contraction.

  16. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    PubMed

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  17. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    PubMed

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  18. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  19. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  20. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

    PubMed

    Ton, Jurriaan; Jakab, Gabor; Toquin, Valérie; Flors, Victor; Iavicoli, Annalisa; Maeder, Muriel N; Métraux, Jean-Pierre; Mauch-Mani, Brigitte

    2005-03-01

    Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA-tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase-like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses.

  1. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  2. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  3. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  4. Ultrastructural Changes in Chick Cerebellum Induced by Polyinosinic Polycytidylic Acid

    PubMed Central

    Yu, Mang C.; Young, Paul A.; Yu, Wan-Hua Amy

    1971-01-01

    The ultrastructural changes in cerebellar encephalopathy induced by intravenous injection of poly I:C in young chickens were studied. The neuroglia and the small blood vessels showed the most severe injury. In the astroglia, initial alterations consisted of a mild cytoplasmic swelling whereas terminally, evagination of the outer nuclear membrane, formation of large vacuoles, and mitochondrial swelling occurred. In the cortex, oligodendroglial alterations consisted of dilatation of the nuclear membranes and of the endoplasmic reticulum, whereas in the white matter, the interfascicular oligodendroglia exhibited clumping and coagulation of the chromatin material. Some small blood vessels appeared normal, while others showed massive erosion of the endothelium resulting in aneurysm-like ballooning of the vascular wall. The granule cells displayed marked edema. The myelin of nerve fibers showed an accumulation of fluid initially, with splitting occurring in the terminal stages. These studies indicated a severe cytotoxic effect of poly I:C on the cerebella of young chickens. ImagesFig 16Fig 17Fig 13Fig 14Fig 15Fig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 12Fig 1Fig 2Fig 3Fig 4 PMID:5142269

  5. Folic acid and safflower oil supplementation interacts and protects embryos from maternal diabetes-induced damage.

    PubMed

    Higa, R; Kurtz, M; Mazzucco, M B; Musikant, D; White, V; Jawerbaum, A

    2012-05-01

    Maternal diabetes increases the risk of embryo malformations. Folic acid and safflower oil supplementations have been shown to reduce embryo malformations in experimental models of diabetes. In this study we here tested whether folic acid and safflower oil supplementations interact to prevent embryo malformations in diabetic rats, and analyzed whether they act through the regulation of matrix metalloproteinases (MMPs), their endogenous inhibitors (TIMPs), and nitric oxide (NO) and reactive oxygen species production. Diabetes was induced by streptozotocin administration prior to mating. From Day 0.5 of pregnancy, rats did or did not receive folic acid (15 mg/kg) and/or a 6% safflower oil-supplemented diet. Embryos and decidua were explanted on Day 10.5 of gestation for further analysis of embryo resorptions and malformations, MMP-2 and MMP-9 activities, TIMP-1 and TIMP-2 levels, NO production and lipid peroxidation. Maternal diabetes induced resorptions and malformations that were prevented by folic acid and safflower oil supplementation. MMP-2 and MMP-9 activities were increased in embryos and decidua from diabetic rats and decreased with safflower oil and folic acid supplementations. In diabetic animals, the embryonic and decidual TIMPs were increased mainly with safflower oil supplementation in decidua and with folic acid in embryos. NO overproduction was decreased in decidua from diabetic rats treated with folic acid alone and in combination with safflower oil. These treatments also prevented increases in embryonic and decidual lipid peroxidation. In conclusion, folic acid and safflower oil supplementations interact and protect the embryos from diabetes-induced damage through several pathways related to a decrease in pro-inflammatory mediators.

  6. Protective role of ascorbic acid against asbestos induced toxicity in rat lung: in vitro study.

    PubMed

    Khan, S G; Ali, S; Rahman, Q

    1990-01-01

    Asbestos fibers adsorb cytochrome P-450 and P-448 proteins from rat lung micosomal fractions and liberate heme from cytochrome P-448 on prolonged incubation in vitro. further, fibers, decrease the activities of benzo(a)pyrene hydroxylase and glutathione-S-transferase in microsomal and cytosolic fractions respectively. Mineral fibers also stimulate both the enzymatic (NADPH-induced) and non-enzymatic (Fe2(+)-induced) lipid peroxidation in microsomal fractions. Preincubation of microsomal and cytosolic fractions with a physiological concentration of ascorbic acid ameliorates, to a large extent, the changes induced by asbestos fibers.

  7. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  8. Synergistic protective effects of ceftriaxone and ascorbic acid against subacute deltamethrin-induced nephrotoxicity in rats.

    PubMed

    Abdel-Daim, Mohamed M; El-Ghoneimy, Ashraf

    2015-03-01

    Deltamethrin (DLM) is a synthetic class II pyrethroid acaricide and insecticide widely used for veterinary and agricultural purposes. However, its animal and human exposure leads to nephrotoxicity. Our experimental objective was to evaluate protective effects of ceftriaxone and/or ascorbic acid against DLM-induced renal injury in male Wistar albino rats. DLM-treated animals revealed significant alterations in serum biochemical parameters related to renal injury; urea, uric acid and creatinine. There was a significant increase in renal lipid peroxidation and a significant inhibition in antioxidant biomarkers. Moreover, DLM significantly reduced serum acetylcholinesterase (AChE) activity. In addition, It induced serum and kidney tumor necrosis factor-α (TNF-α). Both ceftriaxone and ascorbic acid protect against DLM-induced biochemical alterations in serum and renal tissue when used alone or in combination along with DLM-intoxication. Furthermore, both ceftriaxone and ascorbic acid produced synergetic nephroprotective and antioxidant effects. Therefore, it could be concluded that ceftriaxone and/or ascorbic acid administration able to minimize the toxic effects of DLM through their free radical-scavenging and potent antioxidant activity.

  9. Uric Acid Is a Mediator of the Plasmodium falciparum-Induced Inflammatory Response

    PubMed Central

    Orengo, Jamie Marie; Leliwa-Sytek, Aleksandra; Evans, James E.; Evans, Barbara; van de Hoef, Diana; Nyako, Marian; Day, Karen; Rodriguez, Ana

    2009-01-01

    Background Malaria triggers a high inflammatory response in the host that mediates most of the associated pathologies and contributes to death. The identification of pro-inflammatory molecules derived from Plasmodium is essential to understand the mechanisms of pathogenesis and to develop targeted interventions. Uric acid derived from hypoxanthine accumulated in infected erythrocytes has been recently proposed as a mediator of inflammation in rodent malaria. Methods and Findings We found that human erythrocytes infected with Plasmodium falciparum gradually accumulate hypoxanthine in their late stages of development. To analyze the role of hypoxanthine-derived uric acid induced by P. falciparum on the inflammatory cytokine response from human blood mononuclear cells, cultures were treated with allopurinol, to inhibit uric acid formation from hypoxanthine, or with uricase, to degrade uric acid. Both treatments significantly reduce the secretion of TNF, IL-6, IL-1β and IL-10 from human cells. Conclusions and Significance Uric acid is a major contributor of the inflammatory response triggered by P. falciparum in human peripheral blood mononuclear cells. Since the inflammatory reaction induced by P. falciparum is considered a major cause of malaria pathogenesis, identifying the mechanisms used by the parasite to induce the host inflammatory response is essential to develop urgently needed therapies against this disease. PMID:19381275

  10. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  11. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    SciTech Connect

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young . E-mail: dyryu@snu.ac.kr

    2007-01-15

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3{beta}-hydroxysteroid dehydrogenase (HSD) and 17{beta}-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress.

  12. Prevention of photocarcinogenesis and UV-induced immunosuppression in mice by topical tannic acid.

    PubMed

    Gensler, H L; Gerrish, K E; Williams, T; Rao, G; Kittelson, J

    1994-01-01

    Topical application of tannic acid, a phenolic antioxidant derived from plants, was found to inhibit the cutaneous carcinogenesis and the immunosuppression induced by ultraviolet B (UVB) irradiation with no visible toxicity. BALB/cAnNTacfBR mice were treated with 200 micrograms of tannic acid three times weekly for two weeks before UV treatments began and throughout the experiment. UVB irradiation consisted of five 30-minute exposures per week to banks of six FS40 Westinghouse sunlamps. In the photocarcinogenesis study, mice received a total dose of approximately 1.09 x 10(6) J/m2. Skin cancer incidence in UV-irradiated mice was 75% at 26 weeks after the first UV exposure; tannic acid reduced this to 42%. Immunosuppression induced by UVB irradiation normally prevents the host from rejecting antigenic syngeneic UV-induced tumors. Immunosuppression in these experiments was measured by a passive transfer assay. Tumor challenges grew to an average of 88 +/- 20, 36 +/- 11, and 20 +/- 8 mm2 in naive recipients of splenocytes from UVB-irradiated mice, nonirradiated control mice, and UVB-irradiated mice treated with tannic acid, respectively. Thus topical tannic acid treatment prevented the transfer of enhanced tumor susceptibility with splenocytes from UVB-irradiated mice.

  13. Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum.

    PubMed

    Obata, Toshio

    2003-07-18

    The present study examined the antioxidant effect of phytic acid on iron (II)-enhanced hydroxyl radical (*OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in the extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Phytic acid (100 microM) did not significantly decrease the levels of MPP(+)-induced *OH formation trapped as 2,3-DHBA. To confirm the generation of *OH by the Fenton-type reaction, iron (II) was infused through a microdialysis probe. Introduction of iron (II) (10 microM) enhanced MPP(+) induced *OH generation. However, phytic acid significantly suppressed iron (II)-enhanced *OH formation after MPP(+) treatment (n=6, P<0.05). These results suggest that the antiradical effect of phytic acid occurs by chelating iron required for the MPP(+)-enhanced *OH generation via the Fenton-type reaction.

  14. APOPTOSIS AND PROLIFERATION DURING DICHLOROACETIC ACID (DCA) INDUCED HEPTACELLULAR CARCINOGENESIS IN THE F344 MALE RAT

    EPA Science Inventory

    Apoptosis and Proliferation During DicWoroacetic Acid (DCA) Induced Hepatocellular
    Carcinogenesis in the F344 Male Rat

    Chlorine, introduced into public drinking \\\\'ater supplies for disinfection, can react with organic compounds in surface waters to form toxic by-prod...

  15. Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis.

    PubMed

    Merrouche, Rabiâa; Bouras, Noureddine; Coppel, Yannick; Mathieu, Florence; Monje, Marie-Carmen; Sabaou, Nasserdine; Lebrihi, Ahmed

    2010-06-25

    Three new antibiotics were isolated from the fermentation broth of Saccharothrix algeriensis NRRL B-24137 and characterized as the dithiolopyrrolone derivatives valerylpyrrothine (1), isovalerylpyrrothine (2), and formylpyrrothine (3) as well as the known antibiotic aureothricin. The production of the dithiolopyrrolone derivatives was induced by adding valeric acid to the culture medium. The compounds exhibited moderate antimicrobial activity in vitro.

  16. Breast Cancer Prevention by Fatty Acid Binding Protein MRG-Induced Pregnancy Like Mammary Gland Differentiation

    DTIC Science & Technology

    2005-08-01

    Annual Summary 3. DATES COVERED (From - To) 1 AUG 2004 - 31 JUL 2005 4. TITLE AND SUBTITLE Breast Cancer Prevention by Fatty Acid Binding Protein...differentiation. Overexpression of MRG in human breast cancer cells induced differentiation with changes in cellular morphology and a significant increase

  17. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  18. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid.

    PubMed Central

    Dixit, R; Gold, B

    1986-01-01

    Ellagic acid, a naturally occurring plant phenol, inhibits the activity of the direct-acting mutagen N-methyl-N-nitrosourea (MeNU) in Salmonella typhimurium TA100. Ellagic acid at 0.10, 0.25, 0.50, and 1.00 mM inhibited the mutagenicity of MeNU (0.40 mM) by 3%, 13%, 45%, and 60%, respectively. Ellagic acid (3 mM) also inhibited the mutagenic activity of N,N-dimethylnitrosamine (25-200 mM) in the presence of pyrazole-induced rat liver fraction S-9. The effect of ellagic acid on DNA methylation was studied by incubating 0, 0.72, 1.32, 2.64, and 6.60 mM ellagic acid with DNA (0.9 mM nucleotide) and [3H]MeNU (0.66 mM). HPLC analysis of DNA hydrolysates showed that ellagic acid caused a dose-dependent 36-84% decrease in O6-methylguanine but only a 20% decrease in the 7-methylguanine adduct. Under conditions where methylation at the O6 position of guanine in double-stranded DNA was inhibited 65% by ellagic acid, no significant inhibition of either O6- or 7-methylguanine formation was detected in single-stranded DNA. Affinity-binding studies revealed that [3H]ellagic acid binds equally to double-stranded or single-stranded DNA but that poly(dA X dT) binds 1.5 times as much ellagic acid as does poly(dG X dC). The binding of ellagic acid to DNA is dependent on the concentration of both ellagic acid and DNA. The specific inhibition of O6-methylguanine formation only in double-stranded DNA and the relatively low inhibition of 7-methylguanine formation rule out the possibility that ellagic acid prevents DNA alkylation by scavenging the electrophilic intermediate generated in the hydrolysis of MeNU. The results suggest that ellagic acid inhibition of MeNU-induced mutagenicity is due to specific inhibition of methylation at the O6 position of guanine through an ellagic acid-duplex DNA affinity-binding mechanism. PMID:3464940

  19. Taurocholic Acid Prevents Biliary Damage Induced by Hepatic Artery Ligation in Cholestatic Rats

    PubMed Central

    Glaser, Shannon; Onori, Paolo; Gaudio, Eugenio; Ueno, Yoshiyuki; Pannarale, Luigi; Franchitto, Antonio; Francis, Heather; Mancinelli, Romina; Carpino, Guido; Venter, Julie; White, Mellanie; Kopriva, Shelley; Vetuschi, Antonella; Sferra, Roberta; Alpini, Gianfranco

    2010-01-01

    Background Ischemic injury by hepatic artery ligation (HAL) during obstructive cholestasis induced by bile duct ligation (BDL) results in bile duct damage, which can be prevented by administration of VEGF-A. The potential regulation of VEGF and VEGF receptor expression and secretion by bile acids in BDL with HAL is unknown. Aims We evaluated whether taurocholic acid (TC) can prevent HAL-induced cholangiocyte damage via the alteration of VEGFR-2 and/or VEGF-A expression. Methods Utilizing BDL, BDL+TC, BDL+HAL, BDL+HAL+TC, and BDL+HAL+wortmannin+TC treated rats, we evaluated cholangiocyte apoptosis, proliferation, and secretion as well VEGF-A and VEGFR-2 expression by immunohistochemistry. In vitro, we evaluated the effects of TC on cholangiocyte secretion of VEGF-A and the dependence of TC-induced proliferation on the activity of VEGFR-2. Results In BDL rats with HAL, chronic feeding of TC prevented HAL-induced loss of bile ducts and HAL-induced decreased cholangiocyte secretion. TC also prevented HAL-inhibited VEGF-A and VEGFR-2 expression in liver sections and HAL-induced circulating VEGF-A levels, which were blocked by wortmannin administration. In vitro, TC stimulated increased VEGF-A secretion by cholangiocytes, which was blocked by wortmannin and stimulated cholangiocyte proliferation that was blocked by VEGFR-2 kinase inhibitor. Conclusion TC prevented HAL-induced biliary damage by upregulation of VEGF-A expression. PMID:20303838

  20. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis.

    PubMed

    Cao, Jianhua; Li, Guanghui; Wang, Meizhi; Li, Hui; Han, Zhiwu

    2015-10-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a naturally-occurring triterpenoid with various promising pharmacological properties. The present study was conducted to determine the protective effects of OA against oxidized low-density lipoprotein (ox-LDL) induced endothelial cell apoptosis and the possible underlying mechanisms. Our results showed that ox-LDL significantly decreased cell viability and induced apoptosis in human umbilical vein endothelial cells (HUVECs). OA in the co-treatment showed a protective effect against ox-LDL induced loss in cell viability and an increase in apoptosis, which was associated with the modulating effect of OA on ox-LDL induced hypoxia-inducible factor 1α(HIF-1α) expression. Moreover, our results showed that the modulating effect of OA against ox-LDL induced HIF-1α expression was obtained via inhibition of lipoprotein receptor 1 (LOX-1)/reactive oxygen species (ROS) signaling. Collectively, we suggested that the protective effect of OA against ox-LDL induced HUVEC apoptosis might, at least in part, be obtained via inhibition of the LOX-1/ROS/HIF-1α signaling pathway.

  1. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  2. SCH 58261 differentially influences quinolinic acid-induced effects in striatal and in hippocampal slices.

    PubMed

    Tebano, Maria Teresa; Domenici, Maria Rosaria; Popoli, Patrizia

    2002-08-30

    The influence of the adenosine A(2A) receptor antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine) (50, 200 nM, 1 microM) on quinolinic acid effects has been studied in rat striatal and hippocampal slices. Quinolinic acid induced disappearance of field potentials at concentrations of 500 microM and 2 mM in hippocampal and corticostriatal slices, respectively. We found that 1 microM SCH 58261 prevented quinolinic acid-induced field potential disappearance in corticostriatal but not in hippocampal slices. This finding demonstrates that the peculiar binding profile of SCH 58261 and the predominance in the hippocampus of "atypical" adenosine A(2A) receptor population (not recognized by SCH 58261) could have a functional relevance in the occurrence of region-specific neuroprotective effects.

  3. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells.

    PubMed

    Tran, Daniel; Kadono, Takashi; Molas, Maria Lia; Errakhi, Rafik; Briand, Joël; Biligui, Bernadette; Kawano, Tomonori; Bouteau, François

    2013-03-01

    Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.

  4. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  5. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.

  6. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  7. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  8. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms.

    PubMed

    Terruzzi, Ileana; Allibardi, Sonia; Bendinelli, Paola; Maroni, Paola; Piccoletti, Roberta; Vesco, Flavio; Samaja, Michele; Luzi, Livio

    2002-04-25

    Lipids compete with glucose for utilization by the myocardium. Amino acids are an important energetic substrate in the heart but it is unknown whether they reduce glucose disposal. The molecular mechanisms by which lipids and amino acids impair insulin-mediated glucose disposal in the myocardium are unknown. We evaluated the effect of lipids and amino acids on the insulin stimulated glucose uptake in the isolated rat heart and explored the involved target proteins. The hearts were perfused with 16 mM glucose alone or with 6% lipid or 10% amino acid solutions at the rate of 15 ml/min. After 1 h of perfusion (basal period), insulin (240 nmol/l) was added and maintained for an additional hour. Both lipids and amino acids blocked the insulin effect on glucose uptake (P<0.01) and reduced the activity of the IRSs/PI 3-kinase/Akt/GSK3 axis leading to the activation of glucose transport and glycogen synthesis. Amino acids, but not lipids, increased the activity of the p70 S6 kinase leading to the stimulation of protein synthesis. Amino acids induce myocardial insulin resistance recruiting the same molecular mechanisms as lipids. Amino acids retain an insulin-like stimulatory effect on p70 S6 kinase, which is independent from the PI 3-Kinase downstream effectors.

  9. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  10. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  11. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    PubMed

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  12. Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury

    PubMed Central

    Zhou, Xinhua; Zhu, Longjun; Wang, Liang; Guo, Baojian; Zhang, Gaoxiao; Sun, Yewei; Zhang, Zaijun; Lee, Simon Ming-Yuen; Yu, Pei; Wang, Yuqiang

    2015-01-01

    Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities. PMID:26557222

  13. Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips.

    PubMed

    Skrzypek, Edyta; Miyamoto, Kensuke; Saniewski, Marian; Ueda, Junichi

    2005-02-01

    The purpose of this study was to identify endogenous factors that induce gummosis and to show their role in gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) stems. Using procedures to detect endogenous factors that induce gum in the stem of tulips, jasmonic acid (JA) and methyl jasmonate (JA-Me) were successfully identified using gas-liquid chromatography-mass spectrometry. Total amounts of JA and JA-Me designated as jasmonates in tulip stems were also estimated at about 70-80 ng/g fresh weight, using deuterium-labeled jasmonates as internal standards. The application of JA and JA-Me as lanolin pastes substantially induced gums in tulip stems with ethylene production. The application of ethephon, an ethylene-generating compound, however, induced no gummosis although it slightly affected jasmonate content in tulip stems. These results strongly suggest that JA and JA-Me are endogenous factors that induce gummosis in tulip stems.

  14. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  15. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid.

    PubMed

    Gonugunta, Vijay K; Srivastava, Nupur; Puli, Mallikarjuna R; Raghavendra, Agepati S

    2008-11-01

    Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.

  16. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    PubMed

    Bell, E; Creelman, R A; Mullet, J E

    1995-09-12

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  17. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  18. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  19. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47(phox), gp91(phox), cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E2. CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated.

  20. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence.

    PubMed

    Li, Yuan; Chang, Ying; Zhao, Chongchong; Yang, Hailian; Ren, Dongtao

    2016-08-01

    Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.

  1. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats

    PubMed Central

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Background: Hydrogen peroxide (H2O2) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H2O2-induced oxidative stress in male rats. Methods: After randomization, male Wistar rats were divided into four groups (n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H2O2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Results: Administration of H2O2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H2O2, geraniol, and geraniol+H2O2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H2O2-treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H2O2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H2O2 and control groups. Conclusions: H2O2-induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H2O2-induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H2O2-induced alterations. PMID:28163957

  2. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  3. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain.

    PubMed

    Marwaha, Lovish; Bansal, Yashika; Singh, Raghunath; Saroj, Priyanka; Sodhi, Rupinder Kaur; Kuhad, Anurag

    2016-12-01

    TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic

  4. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  5. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum.

    PubMed

    Thangarajan, Sumathi; Deivasigamani, Asha; Natarajan, Suganya Sarumani; Krishnan, Prasanna; Mohanan, Sandhya Koombankallil

    2014-09-01

    The present study has been designed to investigate the protective effect of L-theanine against 3-nitropropionic acid (3-NP)-induced Huntington's disease (HD)-like symptoms in rats. The present experimental protocol design includes systemic 3-NP acid (10 mg/kg intraperitonially) treatment for 14 d. L-theanine (100 and 200 mg/kg) was given orally, once a day, 1 h before 3-NP acid treatment for 14 d. Body weight and behavioral parameters (Morris water maze, open field test (OFT), forced swim test (FST) and rotarod activity) were assessed on 1st, 5th, 10th and 15th day post-3-NP acid administration. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels and mitochondrial enzyme complex. Succinate dehydrogenase (SDH) were measured on the 15th day in the striatum. Systemic 3-NP acid treatment significantly reduced body weight, locomotor activity and oxidative defense. The mitochondrial enzyme activity was also significantly impaired in the striatum region in 3-NP acid-treated animals. L-theanine (100 and 200 mg/kg b.wt.) treatment significantly attenuated the impairment in behavioral, biochemical and mitochondrial enzyme activities as compared to the 3-NP acid-treated group. The results of the present study suggest that pretreatment with L-theanine significantly attenuated 3-NP induced oxidative stress and restored the decreased SOD, GSH, CAT and SDH activity. It also decreased the neuronal damage as evidenced by histopathological analysis of striatum. Based on the above study, it has been proved that L-theanine has neuroprotective activity against 3-NP induced neurotoxicity.

  6. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    PubMed

    Obata, Toshio; Nakashima, Michiko

    2016-03-05

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *p<0.05). To examine the effect of phytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation.

  7. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  8. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  9. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  10. Folic acid supplementation attenuates hyperhomocysteinemia-induced preeclampsia-like symptoms in rats☆

    PubMed Central

    Wang, Jun; Cui, Yan; Ge, Jing; Ma, Meijing

    2012-01-01

    Folic acid participates in the metabolism of homocysteine and lowers plasma homocysteine levels directly or indirectly. To establish a hyperhomocysteinemic pregnant rat model, 2 mL of DL-homocysteine was administered daily by intraperitoneal injection at a dose of 200 mg/kg from day 10 to day 19 of gestation. Folic acid was administered by intragastric administration at a dose of 20 mg/kg during the period of preeclampsia induction. Results showed that systolic blood pressure, proteinuria/creatinine ratio, and plasma homocysteine levels in the hyperhomocysteinemic pregnant rats increased significantly, and that body weight and brain weight of rat pups significantly decreased. Folic acid supplementation markedly reversed the above-mentioned abnormal changes of hyperhomocysteinemic pregnant rats and rat pups. These findings suggest that folic acid can alleviate the symptoms of hyperhomocysteinemia- induced preeclampsia in pregnant rats without influencing brain development of rat pups. PMID:25624824

  11. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  12. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  13. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  14. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    SciTech Connect

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa . E-mail: tmampel@ub.edu

    2006-06-10

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.

  15. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing

    PubMed Central

    Comptour, Aurélie; Rouzaire, Marion; Belville, Corinne; Bonnin, Nicolas; Daniel, Estelle; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent

    2016-01-01

    Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics. PMID:27597564

  16. Dual transcriptional activities underlie opposing effects of retinoic acid on cell survival

    PubMed Central

    Schug, Thaddeus T; Berry, Daniel C.; Shaw, Natacha S.; Travis, Skylar N.; Noy, Noa

    2007-01-01

    Summary Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here we show that, in addition to functioning through RAR, RA activates the ‘orphan’ nuclear receptor PPARβ/δ, which, in turn, induces the expression of pro-survival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid-binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARβ/δ, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a pro-apoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARβ/δ and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors. PMID:17512406

  17. Craniofacial abnormalities induced by retinoic acid: a preliminary histological and scanning electron microscopic (SEM) study.

    PubMed

    Emmanouil-Nikoloussi, E N; Goret-Nicaise, M; Foroglou, C H; Katsarma, E; Dhem, A; Dourov, N; Persaud, T V; Thliveris, J A

    2000-10-01

    Exogenous retinoic acid has been found to be teratogenic in animals and man. Craniofacial defects induced by retinoic acid have stimulated considerable research interest. The present report deals with scanning electron microscopical observations of the craniofacial region concurrent with histological examination of craniofacial dysmorphism induced in rat embryos following maternal treatment treated with varying dosages of all-trans-retinoic acid (tretinoin). Two groups of pregnant rats were treated with rat embryos exposed to retinoic acid suspended in corn oil (100 mg/kg b.w. on gestational day 11.5 and 50 mg/kg b.w. on gestational day 10, 11 and 12 respectively). A third group was treated with corn oil (vehicle) while a fourth group remained untreated. A wide spectrum of congenital abnormalities, including exophthalmos, microphthalmia and anophthalmia, maxillo-mandibular dysostosis, micrognathia of both maxilla and mandible, cleft palate, subdevelopment of ear lobe, preauricular tags and macroglossia, were observed in the offspring of retinoic acid treated animals. The abnormalities were both time and dosage dependent, and characteristic of Treacher Collins syndrome when retinoic-acid was administered on gestational day 11.5. In contrast, when retinoic acid was administered were on gestational days 10-12, the defects were similar to those seen in the first and second pharyngeal arch syndrome, as well as in the oculo-auriculo-vertebral spectrum. Whereas our data support the hypothesis that all-trans retinoic-acid disturbs growth and differentiation of several embryonic cell types essential for normal craniofacial development, its mechanism of action remains unclear.

  18. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    PubMed

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications.

  19. Acetylsalicylic Acid Inhibits IL-18-Induced Cardiac Fibroblast Migration Through the Induction of RECK

    PubMed Central

    SIDDESHA, JALAHALLI M.; VALENTE, ANTHONY J.; SAKAMURI, SIVA S.V.P.; GARDNER, JASON D.; DELAFONTAINE, PATRICE; NODA, MAKOTO; CHANDRASEKAR, BYSANI

    2015-01-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18 induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18 induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Spl-mediated RECK suppression, mechanisms that required Nox4-dependent H2O2 generation. Notably, forced expression of RECK attenuated IL-18 induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18 induced H2O2 generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18 induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms. PMID:24265116