Science.gov

Sample records for acid ra regulates

  1. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells.

    PubMed

    Marzinke, Mark A; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.

  2. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  3. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation.

    PubMed

    Busada, Jonathan T; Geyer, Christopher B

    2016-01-01

    Retinoic acid (RA) directs the sequential, but distinct, programs of spermatogonial differentiation and meiotic differentiation that are both essential for the generation of functional spermatozoa. These processes are functionally and temporally decoupled, as they occur in distinct cell types that arise over a week apart, both in the neonatal and adult testis. However, our understanding is limited in terms of what cellular and molecular changes occur downstream of RA exposure that prepare differentiating spermatogonia for meiotic initiation. In this review, we describe the process of spermatogonial differentiation and summarize the current state of knowledge regarding RA signaling in spermatogonia.

  4. Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish.

    PubMed

    Song, Jianbo; Kim, Hyon J; Gong, Zhiyuan; Liu, Ning-Ai; Lin, Shuo

    2007-03-15

    Bmp, Fgf, and retinoic acid (RA) signals have been implicated as regulators of pancreas development. However, the integration of these signaling pathways in vivo is not fully understood. Variant hnf1 (Vhnf1) is a transcription factor involved in pancreas, liver, and kidney development and its mutation in zebrafish causes underdeveloped pancreas and liver. We investigated the signaling pathways that regulate vhnf1 expression during pancreas development. First, we showed that Bmp activity is required for vhnf1 expression in the endoderm. In chordin (a Bmp antagonist) morpholino (MO)-injected embryos, vhnf1 expression in endoderm and in endocrine beta cells is expanded. On the other hand, in alk8 (a type I TGFbeta receptor) MO-injected embryos, vhnf1 expression in the endoderm is significantly reduced. Second, we showed that Fgf signaling participates in regulation of pancreas development through the vhnf1 pathway. Third, we demonstrated that RA fails to rescue reduction of insulin expression in vhnf1 mutants, whereas overexpression of vhnf1 restores insulin expression that is repressed by treatment with a RA receptor inhibitor. And finally, we revealed that both Bmp and Fgf signals act genetically upstream of RA in directing pancreas development. Taken together, our data establish that vhnf1 acts downstream of the signaling pathways of RA, Bmp, and Fgf to regulate pancreas development in zebrafish.

  5. Altered expression of retinoic acid (RA) receptor mRNAs in the fetal mouse secondary palate by all-trans and 13-cis RAs: implications for RA-induced teratogenesis.

    PubMed

    Naitoh, H; Mori, C; Nishimura, Y; Shiota, K

    1998-01-01

    Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.

  6. 13cRA regulates the differentiation of antler chondrocytes through targeting Runx3.

    PubMed

    Zhang, Hong-Liang; Cao, Hang; Yang, Zhan-Qing; Geng, Shuang; Wang, Kai; Yu, Hai-Fan; Guo, Bin; Yue, Zhan-Peng

    2017-03-01

    Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.

  7. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes.

    PubMed

    Mercader, N; Leonardo, E; Piedra, M E; Martínez-A, C; Ros, M A; Torres, M

    2000-09-01

    Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.

  8. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence.

    PubMed

    Goodfriend, L; Choudhury, A M; Klapper, D G; Coulter, K M; Dorval, G; Del Carpio, J; Osterland, C K

    1985-08-01

    Recent studies [Marsh et al. (1982) J. exp. Med. 155, 1439-1451; Coulter (1983) M.Sc. thesis, McGill University, Montreal, Canada; Coulter et al. (1983) in Genetic and Environmental Factors in Clinical Allergy (Edited by Marsh D.G., Blumenthal M.N. and Santilli J., Jr), University of Minnesota Press, Minneapolis, MN] have shown a highly significant association between HLA-Dw2/DR2 and host sensitivity to the 5000-D, 4-disulfide bonded protein Ra5S of short ragweed pollen. To extend these findings, we isolated Ra5G, an Ra5S-like protein, from giant ragweed pollen by gel and ion-exchange chromatography. The protein was homogeneous by polyacrylamide gel electrophoresis (pH 4.3), reverse-phase high-performance liquid chromatography, and antigenic assays. Its mol. wt and amino acid composition (including 8 half-cystine residues) were closely similar to Ra5S, but the two proteins had little or no antigenic or allergenic cross-reactivity. In a study of 200 ragweed-sensitive individuals, host sensitivity simultaneously to Ra5G and Ra5S was significantly associated with the DR2 allele. The amino acid sequence of Ra5G was determined and showed close homology with Ra5S. The potential function of a highly homologous decapeptidyl sequence stretch is discussed in relation to Ir gene control of immune response to the 2 proteins.

  9. Effects of tiaprofenic acid on plasminogen activators and inhibitors in human OA and RA synovium.

    PubMed

    Pelletier, J P; McCollum, R; Cloutier, J M; Martel-Pelletier, J

    1992-01-01

    The effect of therapeutic and pharmacological concentrations of tiaprofenic acid, a non-steroidal anti-inflammatory drug (NSAID), on the synthesis of the plasminogen activators, urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA), and the plasminogen activator inhibitors 1 and 2 (PAI-1 and PAI-2), by human synovial membranes isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) sufferers was evaluated. Both forms of plasminogen activator (PA) and PA inhibitor (PAI) were synthesized by the arthritic synovium. PAI-1 and PAI-2 were both synthesized in greater amounts than the plasminogen activators. Tiaprofenic acid induced a dose-dependent decrease in uPA synthesis in both OA and RA, particularly in OA synovium, but had no true effect on tPA. Tiaprofenic acid also exerted a suppressive effect on the synthesis of PAI-1 in both OA and RA synovial membranes, and on the release of PAI-2 in RA synovium. The results of this study indicate that a decrease in uPA synthesis may be one of the mechanisms by which tiaprofenic acid could exert its effects on the arthritic process. The suppressive action of tiaprofenic acid on PAI is not likely to have a significant impact on the balance of plasminogen activators and plasminogen activator inhibitors, as plasminogen activator inhibitors are synthesized in greater amounts than plasminogen activators.

  10. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  11. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    PubMed

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  12. RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells

    PubMed Central

    Bunaciu, Rodica P.; Yen, Andrew

    2016-01-01

    All-trans-retinoic acid (RA) is known to induce terminal granulocytic differentiation and cell cycle arrest of HL-60 cells. Responding to an RA-induced cytosolic signaling machine, c-Raf translocates to the nucleus, providing propulsion for RA-induced differentiation. This novel mechanism is not understood, but presumably reflects c-Raf binding with nuclear gene regulatory proteins. RRD-251 is a small molecule that prevents the interaction of c-Raf and RB, the retinoblastoma tumor suppressor protein. The involvement of c-Raf and RB in RA-induced differentiation motivates interest in the effects of combined RA and RRD-251 treatment on leukemic cell differentiation. We demonstrate that RRD-251 enhances RA-induced differentiation. Mechanistically, we find that nuclear translocated c-Raf associates with pS608 RB. RA causes loss of pS608 RB, where cells with hypophosphorylated S608 RB are G0/G1 restricted. Corroborating the pS608 RB hypophosphorylation, RB sequestration of E2F increased with concomitant loss of cdc6 expression, which is known to be driven by E2F. Hypophosphorylation of S608 RB releases c-Raf from RB sequestration to bind other nuclear targets. Release of c-Raf from RB sequestration results in enhanced association with GSK-3 which is phosphorylated at its S21/9 inhibitory sites. c-Raf binding to GSK-3 is associated with dissociation of GSK-3 and RARα, thereby relieving RARα of GSK-3 inhibition. RRD-251 amplifies each of these RA-induced events. Consistent with the posited enhancement of RARα transcriptional activity by RRD-251, RRD-251 increases the RARE-driven CD38 expression per cell. The RA/c-Raf/GSK-3/RARα axis emerges as a novel differentiation regulatory mechanism susceptible to RRD-251, suggesting enhancing RA-effects with RRD-251 in therapy. PMID:27331409

  13. Epigenetic regulation of Dpp6 expression by Dnmt3b and its novel role in the inhibition of RA induced neuronal differentiation of P19 cells.

    PubMed

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Yu, Huali; Lai, Mingming; Wang, Xingzhi; Zhu, Xiaojuan

    2013-01-01

    DNA methylation is an important mechanism of gene silencing in mammals catalyzed by a group of DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b which are required for the establishment of genomic methylation patterns during development and differentiation. In this report, we studied the role of DNA methyltransferases during retinoic acid induced neuronal differentiation of P19 cells. We observed an increase in the mRNA and protein level of Dnmt3b, whereas the expression of Dnmt1 and Dnmt3a was decreased after RA treatment of P19 cells which indicated that Dnmt3b is more important during neuronal differentiation of P19 cells. Dnmt3b enriched chromatin library from RA treated P19 cells identified dipeptidyl peptidase 6 (Dpp6) gene as a novel target of Dnmt3b. Further, quantitative ChIP analysis showed that the amount of Dnmt3b recruited on Dpp6 promoter was equal in both RA treated as well as untreated p19 cells. Bisulfite genomic sequencing, COBRA, and methylation specific PCR analysis revealed that Dpp6 promoter was heavily methylated in both RA treated and untreated P19 cells. Dnmt3b was responsible for transcriptional silencing of Dpp6 gene as depletion of Dnmt3b resulted in increased mRNA and protein expression of Dpp6. Consequently, the average methylation of Dpp6 gene promoter was reduced to half in Dnmt3b knockdown cells. In the absence of Dnmt3b, Dnmt3a was associated with Dpp6 gene promoter and regulated its expression and methylation in P19 cells. RA induced neuronal differentiation was inhibited upon ectopic expression of Dpp6 in P19 cells. Taken together, the present study described epigenetic silencing of Dpp6 expression by DNA methylation and established that its ectopic expression can act as negative signal during RA induced neuronal differentiation of P19 cells.

  14. Neuroendocrine factors regulate retinoic acid receptors in normal and hypoplastic lung development

    PubMed Central

    Pereira-Terra, Patrícia; Moura, Rute S; Nogueira-Silva, Cristina; Correia-Pinto, Jorge

    2015-01-01

    Congenital diaphragmatic hernia (CDH) is characterised by a spectrum of lung hypoplasia and consequent pulmonary hypertension, leading to high morbidity and mortality rates. Moreover, CDH has been associated with an increase in the levels of pulmonary neuroendocrine factors, such as bombesin and ghrelin, and a decrease in the action of retinoic acid (RA). The present study aimed to elucidate the interaction between neuroendocrine factors and RA. In vitro analyses were performed on Sprague–Dawley rat embryos. Normal lung explants were treated with bombesin, ghrelin, a bombesin antagonist, a ghrelin antagonist, dimethylsulfoxide (DMSO), RA dissolved in DMSO, bombesin plus RA and ghrelin plus RA. Hypoplastic lung explants (nitrofen model) were cultured with bombesin, ghrelin, bombesin antagonist or ghrelin antagonist. The lung explants were analysed morphometrically, and retinoic acid receptor (RAR) α, β and γ expression levels were assessed via Western blotting. Immunohistochemistry analysis of RAR was performed in normal and hypoplastic lungs 17.5 days post-conception (dpc). Compared with the controls, hypoplastic lungs exhibited significantly higher RARα/γ expression levels. Furthermore considering hypoplastic lungs, bombesin and ghrelin antagonists decreased RARα/γ expression. Normal lung explants (13.5 dpc) treated with RA, bombesin plus RA, ghrelin plus RA, bombesin or ghrelin exhibited increased lung growth. Moreover, bombesin and ghrelin increased RARα/γ expression levels, whereas the bombesin and ghrelin antagonists decreased RARα/γ expression. This study demonstrates for the first time that neuroendocrine factors function as lung growth regulators, sensitising the lung to the action of RA through up-regulation of RARα and RARγ. Key points Retinoic acid (RA) and ghrelin levels are altered in human hypoplastic lungs when compared to healthy lungs. Although considerable data have been obtained about RA, ghrelin and bombesin in the congenital

  15. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    PubMed Central

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  16. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation

    PubMed Central

    Pillay, Laura M.; Mackowetzky, Kacey J.; Widen, Sonya A.; Waskiewicz, Andrew Jan

    2016-01-01

    Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation. PMID:27861498

  17. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects

    PubMed Central

    Franzosa, Jill A.; Bugel, Sean M.; Tal, Tamara L.; La Du, Jane K.; Tilton, Susan C.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Retinoic acid (RA) is involved in multifarious and complex functions necessary for vertebrate development. RA signaling is reliant on strict enzymatic regulation of RA synthesis and metabolism. Improper spatiotemporal expression of RA during development can result in vertebrate axis defects. microRNAs (miRNAs) are also pivotal in orchestrating developmental processes. While mechanistic links between miRNAs and axial development are established, the role of miRNAs in regulating metabolic enzymes responsible for RA abundance during axis formation has yet to be elucidated. Our results uncovered a role of miR-19 family members in controlling RA metabolism through the regulation of CYP26A1 during vertebrate axis formation. Global miRNA expression profiling showed that developmental RA exposure suppressed the expression of miR-19 family members during zebrafish somitogenesis. A reporter assay confirmed that cyp26a1 is a bona fide target of miR-19 in vivo. Transient knockdown of miR-19 phenocopied axis defects caused by RA exposure. Exogenous miR-19 rescued the axis defects induced by RA exposure. Taken together, these results indicate that the teratogenic effects of RA exposure result, in part, from repression of miR-19 expression and subsequent misregulation of cyp26a1. This highlights a previously unidentified role of miR-19 in facilitating vertebrate axis development via regulation of RA signaling.—Franzosa, J. A., Bugel, S. M., Tal, T. L., La Du, J. K., Tilton, S. C., Waters, K. M., Tanguay, R. L. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects. PMID:23975936

  18. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  19. Retinoic Acid Regulates Calcium Signaling to Promote Mouse Ovarian Granulosa Cell Proliferation.

    PubMed

    Demczuk, Michael; Huang, Huiya; White, Carl; Kipp, Jingjing L

    2016-09-01

    Normal development of ovarian follicles is critical for female reproduction and endocrine function. We have identified retinoic acid (RA) and the RA-degrading enzyme CYP26B1 as regulators of ovarian follicle development and showed that RA and a CYP26 inhibitor stimulated ovarian granulosa cell proliferation. The mechanism underpinning RA-dependent proliferation, however, is not known. The current study was designed to examine the role of intracellular calcium (Ca(2+)) signaling in mediating the effects of RA on primary mouse granulosa cell proliferation. In single-cell Ca(2+) imaging experiments, treatment of cultured granulosa cells with RA increased the steady-state Ca(2+) content of the endoplasmic reticulum (ER) stores. This correlated with increased store-operated Ca(2+) entry (SOCE) and enhanced inositol 1,4,5-trisphosphate receptor (IP3R)-dependent Ca(2+) release. In proliferation assays, RA treatment or Cyp26b1 knockdown stimulated proliferation, whereas Cyp26b1 overexpression inhibited proliferation. When RA was given together with 2-aminoethoxydiphenylborane (2-APB), a blocker of IP3R-dependent ER Ca(2+) release and SOCE, with xestospongin C, a selective IP3R- receptor antagonist, or with 3,5-bis (trifluoromethyl)pyrazole (BTP-2), a specific SOCE blocker, the stimulatory effect of RA on cell proliferation was abolished. Further investigation showed that treatment with 2-APB or BTP-2 inhibited RA induction of RA response element (RARE) activation in granulosa cells, confirming an important role for Ca(2+) signaling in mediating RA actions. Overall, these data support a model in which RA regulates ovarian follicle development by stimulating granulosa cell proliferation and that this stimulatory effect is at least in part driven by the modulation of Ca(2+) signaling.

  20. Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain.

    PubMed

    Lee, Jong Seok; Krause, Roland; Schreiber, Jörg; Mollenkopf, Hans-Joachim; Kowall, Jane; Stein, Robert; Jeon, Bo-Young; Kwak, Jeong-Yeon; Song, Min-Kyong; Patron, Juan Pablo; Jorg, Sabine; Roh, Kyoungmin; Cho, Sang-Nae; Kaufmann, Stefan H E

    2008-02-14

    Attenuated strains of mycobacteria can be exploited to determine genes essential for their pathogenesis and persistence. To this goal, we sequenced the genome of H37Ra, an attenuated variant of Mycobacterium tuberculosis H37Rv strain. Comparison with H37Rv revealed three unique coding region polymorphisms. One polymorphism was located in the DNA-binding domain of the transcriptional regulator PhoP, causing the protein's diminished DNA-binding capacity. Temporal gene expression profiles showed that several genes with reduced expression in H37Ra were also repressed in an H37Rv phoP knockout strain. At later time points, genes of the dormancy regulon, typically expressed in a state of nonreplicating persistence, were upregulated in H37Ra. Complementation of H37Ra with H37Rv phoP partially restored its persistence in a murine macrophage infection model. Our approach demonstrates the feasibility of identifying minute but distinct differences between isogenic strains and illustrates the consequences of single point mutations on the survival stratagem of M. tuberculosis.

  1. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  2. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  3. Cyclopeptide RA-V inhibits angiogenesis by down-regulating ERK1/2 phosphorylation in HUVEC and HMEC-1 endothelial cells

    PubMed Central

    Yue, Grace GL; Fan, Jun-Ting; Lee, Julia KM; Zeng, Guang-Zhi; Ho, Tina WF; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara BS

    2011-01-01

    BACKGROUND AND PURPOSE Anti-angiogenic agents have recently become one of the major adjuvants for cancer therapy. A cyclopeptide, RA-V, has been shown to have anti-tumour activities. Its in vitro anti-angiogenic activities were evaluated in the present study, and the underlying mechanisms were also assessed. EXPERIMENTAL APPROACH Two endothelial cell lines, human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1), were used. The effects of RA-V on the proliferation, cell cycle phase distribution, migration, tube formation and adhesion were assessed. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant molecules. KEY RESULTS RA-V inhibited HUVEC and HMEC-1 proliferation dose-dependently with IC50 values of 1.42 and 4.0 nM respectively. RA-V inhibited migration and tube formation of endothelial cells as well as adhesion to extracellular matrix proteins. RA-V treatment down-regulated the protein and mRNA expression of matrix metalloproteinase-2. Regarding intracellular signal transduction, RA-V interfered with the activation of ERK1/2 in both cell lines. Furthermore, RA-V significantly decreased the phosphorylation of JNK in HUVEC whereas, in HMEC-1, p38 MAPK was decreased. CONCLUSIONS AND IMPLICATIONS RA-V exhibited anti-angiogenic activities in HUVEC and HMEC-1 cell lines with changes in function of these endothelial cells. The underlying mechanisms of action involved the ERK1/2 signalling pathway. However, RA-V may regulate different signalling pathways in different endothelial cells. These findings suggest that RA-V has the potential to be further developed as an anti-angiogenic agent. PMID:21518338

  4. Inference of gene regulation via miRNAs during ES cell differentiation using MiRaGE method.

    PubMed

    Yoshizawa, Masato; Taguchi, Y-H; Yasuda, Jun

    2011-01-01

    MicroRNA (miRNA) is a critical regulator of cell growth, differentiation, and development. To identify important miRNAs in a biological process, many bioinformatical tools have been developed. We have developed MiRaGE (MiRNA Ranking by Gene Expression) method to infer the regulation of gene expression by miRNAs from changes of gene expression profiles. The method does not require precedent array normalization. We applied the method to elucidate possibly important miRNAs during embryonic stem (ES) cell differentiation to neuronal cells and we infer that certain miRNAs, including miR-200 family, miR-429, miR-302 family, and miR-17-92 cluster members may be important to the maintenance of undifferentiated status in ES cells.

  5. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  6. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  7. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  8. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  9. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  10. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun-exposed sites responds in an identical manner to RA while neonatal foreskin responds differently.

    PubMed Central

    Varani, J; Perone, P; Griffiths, C E; Inman, D R; Fligiel, S E; Voorhees, J J

    1994-01-01

    Adult human skin from a sun-protected site (hip) and from a sun-exposed site (forearm) was maintained in organ culture for 12 d in the presence of a serum-free, growth factor-free basal medium. Cultures were incubated under conditions optimized for keratinocyte growth (i.e., in 0.15 mM extracellular Ca2+) or for fibroblast growth (i.e., in 1.4 mM extracellular Ca2+). Treatment with all-trans retinoic acid (RA) induced histological changes in the organ-cultured skin under both conditions which were similar to the changes seen in intact skin after topical application. These included expansion of the viable portion of the epidermis and activation of cells in the dermis. In sun-damaged skin samples, which were characterized by destruction of normal connective tissue elements and presence of thick, dark-staining elastotic fibers, a zone of healthy connective tissue could be seen immediately below the dermo-epidermal junction. This zone was more prominent in RA-treated organ cultures than in matched controls. Associated with these histological changes was an increase in overall protein and extracellular matrix synthesis. In concomitant studies, it was found that RA treatment enhanced survival and proliferation of adult keratinocytes and adult dermal fibroblasts under both low- and high-Ca2+ conditions. In all of these assays, responses of sun-protected and sun-exposed skin were identical. In contrast, responses of neonatal foreskin to RA were similar to those of adult skin in the presence of low-Ca2+ culture medium, but under conditions of high extracellular Ca2+ RA provided little or no additional stimulus. Together these studies suggest that the ability of RA to enhance repair of sun-damaged skin (documented in previous studies) may reflect its ability to influence the behavior of skin in a manner that is age dependent but independent of sun-exposure status. Images PMID:7962521

  11. Inference of Target Gene Regulation via miRNAs during Cell Senescence by Using the MiRaGE Server.

    PubMed

    Taguchi, Y-H

    2012-08-01

    miRNAs have recently been shown to play a key role in cell senescence, by downregulating target genes. Thus, inference of those miRNAs that critically downregulate target genes is important. However, inference of target gene regulation by miRNAs is difficult and is often achieved simply by investigating significant upregulation during cell senescence. Here, we inferred the regulation of target genes by miRNAs, using the recently developed MiRaGE server, together with the change in miRNA expression during fibroblast IMR90 cell senescence. We revealed that the simultaneous consideration of 2 criteria, the up(down)regulation and the down(up) regulatiion of target genes, yields more feasible miRNA, i.e., those that are most frequently reported to be down/upregulated and/or to possess biological backgrounds that induce cell senescence. Thus, when analyzing miRNAs that critically contribute to cell senescence, it is important to consider the level of target gene regulation, simultaneously with the change in miRNA expression.

  12. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish

    PubMed Central

    Frey, Ruth A.; Hunter, Samuel S.; Ashino, Ryuichi; Kawamura, Shoji; Stenkamp, Deborah L.

    2015-01-01

    The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array. PMID:26296154

  13. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    PubMed Central

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  14. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells.

    PubMed

    Lee, Youra; Lee, Ji-Yeon; Kim, Myoung Hee

    2014-09-01

    Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA-induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA-induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA-induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time-course gene expression profiles for all 39 Hox genes located in four different clusters-Hoxa, Hoxb, Hoxc, and Hoxd-were analyzed. Collinear expression of Hoxa and -b cluster genes was initiated earlier than that of the -c and -d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA-induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.

  15. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

    PubMed

    Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi

    2009-06-01

    The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.

  16. Regulation of TAK1 activation by epigallocatechin-3-gallate in RA synovial fibroblasts: suppression of K63-linked autoubiquitination of TRAF6

    PubMed Central

    Singh, Anil K.; Umar, Sadiq; Riegsecker, Sharayah; Chourasia, Mukesh; Ahmed, Salahuddin

    2017-01-01

    Background/Purpose Transforming growth factor β activated kinase 1 (TAK1) is a key MAPKKK family protein in interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), or toll-like receptor signaling. We examined the posttranslational modification of TAK1 and its therapeutic regulation in rheumatoid arthritis (RA). Methods The effect of TAK1, IRAK-1, or TRAF6 inhibition was evaluated in IL-1β-induced human RA synovial fibroblasts (RA-FLS). Western blotting, immunoprecipitation, and 20S proteasome assay were used to study the ubiquitination process in RA-FLS. The efficacy of epigallocatechin-3-gallate (EGCG), a potent anti-inflammatory molecule, in regulating these processes in RA-FLS was evaluated. Molecular docking was performed to examine the interaction of EGCG with human TAK1, IRAK-1, and TRAF6. These findings were validated using a rat adjuvant-induced arthritis (AIA) model. Results Inhibition of TAK1, not IRAK-1 or TRAF6, completely abrogates IL-1β-induced IL-6 and IL-8 synthesis in RA-FLS. EGCG inhibits TAK1 phosphorylation at Thr184/187 and occupies the C174 position, an ATP-binding site, to inhibit its kinase activity. EGCG pretreatment also inhibits K63-autoubiquitination of TRAF6, a post-translational modification essential for TAK1 autophosphorylation, by forming stable hydrogen-bond at the K124 position on TRAF6. Furthermore, EGCG enhances associated deubiquitinase expression to rescue proteins from proteasomal degradation. Western blot analyses on the joint homogenates from rat AIA show a significant increase in K48-linked polyubiquitination, TAK1 phosphorylation, and TRAF6 expression when compared to the naïve group. Administration of EGCG (50 mg/kg/day) for 10 days ameliorates AIA by reducing TAK1 phosphorylation and K48 polyubiquitination. Conclusions This study provides rationale for targeting TAK1 for RA treatment by EGCG. PMID:26473505

  17. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation.

    PubMed

    Jeong, Jee-Yeong; Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi; Song, Kyoung Seob

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca(2+) signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.

  18. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  19. Retinoic acid regulates the development of oligodendrocyte precursor cells in vitro.

    PubMed

    Laeng, P; Décimo, D; Pettmann, B; Janet, T; Labourdette, G

    1994-12-15

    Cultures of oligodendrocyte precursor cells can be grown from brain hemispheres of newborn rats. These cells, also called O-2A progenitor cells, can differentiate in vitro into oligodendrocytes or type 2 astrocytes. Basic FGF and PDGF are known to stimulate their proliferation and delay their differentiation. Lack or excess of retinoic acid (RA) has been known for a long time to alter brain development suggesting that this compound is involved in normal brain development. Here we report that RA partially inhibits both the proliferation and the differentiation of oligodendrocyte precursor cells. It also down-regulates the mitogenic effect of bFGF on these cells while keeping them in an immature stage. RA is more effective than bFGF in inhibiting myelin basic protein mRNA expression in these cells, and like bFGF, it preserves their bipotential character. RA nuclear receptors RAR-alpha and their transcripts are expressed in oligodendrocyte precursor cells as seen by Western blot, Northern blot and in situ hybridization. The expression of RAR-alpha transcripts is stimulated transiently by RA alone or associated to bFGF. The expression of RAR-beta transcripts is not constitutive and is induced by RA alone or associated to bFGF and to a lesser extent by bFGF alone. These results suggest that retinoids participate in the control of the development of glial cells of the oligodendrocyte lineage.

  20. Nuclear Raf-1 kinase regulates the CXCR5 promoter by associating with NFATc3 to drive retinoic acid-induced leukemic cell differentiation.

    PubMed

    Geil, Wendy M; Yen, Andrew

    2014-02-01

    Novel functions of signaling molecules have been revealed in studies of cancer stem cells. Retinoic acid (RA) is an embryonic morphogen and stem cell regulator that controls the differentiation of a patient-derived leukemic cell line, HL-60, which is composed of progenitor cells with bipotent myelo-monocytic differentiation capability. RA treatment of HL-60 cells causes unusually long-lasting mitogen-activated protein kinase signaling, with the cells exhibiting the beginning of G0 cell cycle arrest and functional differentiation by 48 h after treatment with RA. This event coincides with the nuclear translocation of Raf-1, phosphorylated at serine 621. The present study shows how the novel localization of Raf-1 to the nucleus results in transcriptional changes that contribute to the differentiation of HL-60 cells induced by RA. We find that nuclear pS621 Raf-1 associates with NFATc3 near its cognate binding site in the promoter of CXCR5, a gene that must be up-regulated to drive RA-induced differentiation. NFATc3 becomes immunoprecipitable with anti-phosphoserine serum, and CXCR5 is transcriptionally up-regulated upon RA-induced differentiation. Inhibiting the pS621 Raf-1/NFATc3 association with PD98059 inhibits these processes and cripples RA-induced differentiation. In this novel paradigm for Raf-1 and RA function, Raf-1 has a role in driving the nuclear signaling of RA-induced differentiation of leukemic progenitor cells.

  1. Effect of low molecular weight organic acids on the uptake of (226)Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran.

    PubMed

    Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad

    2016-11-01

    To study the benefit of including citric and oxalic acid treatments for phytoremediation of (226)Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural (226)Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure (226)Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of (226)Ra among geochemical extraction. Results showed that the maximum uptake of (226)Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. (226)Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of (226)Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of (226)Ra for phytoremediation by corn in this condition.

  2. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  3. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-11-23

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.

  4. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  5. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  6. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  7. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  8. Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae).

    PubMed

    Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K

    2009-03-01

    The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.

  9. Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling

    PubMed Central

    2010-01-01

    Background Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In

  10. Haemophilus ducreyi RpoE and CpxRA appear to play distinct yet complementary roles in regulation of envelope-related functions.

    PubMed

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Liu, Yunlong; Munson, Robert S; Spinola, Stanley M

    2014-12-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi, does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi.

  11. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut

    PubMed Central

    Kim, Myung H.; Taparowsky, Elizabeth J.; Kim, Chang H.

    2015-01-01

    Summary Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2 and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a `switch' in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term population and effector function of ILCs in the intestine. Only ILC1 and ILC3, but not ILC2, undergo the RA-dependent homing receptor switch in gut-associated lymphoid tissues. In contrast, ILC2 acquire gut homing receptors in a largely RA-independent manner during their development in the bone marrow and can migrate directly to the intestine. Thus, distinct programs regulate the migration of ILC subsets to the intestine for regulation of innate immunity. PMID:26141583

  12. The down-regulation of IL-6-stimulated fibrinogen steady state mRNA and protein levels by human recombinant IL-1 is not PGE2-dependent: effects of IL-1 receptor antagonist (IL-1RA).

    PubMed

    Conti, P; Bartle, L; Barbacane, R C; Reale, M; Sipe, J D

    1995-01-26

    Infections, trauma and inflammatory processes induce a host response with increases in a large group of structurally and functionally diverse plasma proteins. Parental administration of foreign proteins also induce an increase in plasma fibrinogen. Interleukin-6 (IL-6) is a monocyte-derived mediator and has regulatory effects on acute phase protein genes which result in the induction of fibrinogen synthesis in primary hepatocytes, while the addition of interleukin-1 (IL-1) exerts a negative modulating influence on the IL-6-stimulated fibrinogen. In order to understand the mechanisms by which IL-1 inhibits IL-6-stimulated fibrinogen transcription and translation, and since IL-1 is believed to act through PGE2 stimulation, we have studied the influence of PGE2 in IL-6 or IL-1, alone and in combination, on Fg mRNA expression (by Northern blot analysis) and the influence of PGE2, indomethacin, and arachidonic acid on Fg secretion. Moreover, since human recombinant interleukin-1 receptor antagonist (hrIL-1ra) is a strong inhibitor of IL-1 induced IL-1 transcription and translation and has an inhibitory effect on PGE2, we have studied the effects of IL-1ra on the down-regulation of IL-6 stimulated fibrinogen by IL-1, using an Fg ELISA method.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells

    PubMed Central

    Berge, T; Leikfoss, I S; Brorson, I S; Bos, S D; Page, C M; Gustavsen, M W; Bjølgerud, A; Holmøy, T; Celius, E G; Damoiseaux, J; Smolders, J; Harbo, H F; Spurkland, A

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system that develops in genetically susceptible individuals. The majority of the MS-associated gene variants are located in genetic regions with importance for T-cell differentiation. Vitamin D is a potent immunomodulator, and vitamin D deficiency has been suggested to be associated with increased MS disease susceptibility and activity. In CD4+ T cells, we have analyzed in vitro vitamin D responsiveness of genes that contain an MS-associated single-nucleotide polymorphism (SNP) and with one or more vitamin D response elements in their regulatory regions. We identify IL2RA and TAGAP as novel vitamin D target genes. The vitamin D response is observed in samples from both MS patients and controls, and is not dependent on the genotype of MS-associated SNPs in the respective genes. PMID:26765264

  14. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    PubMed Central

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-01-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated. Images PMID:1438194

  15. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    PubMed

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-11-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated.

  16. Climatic regulation of the neurotoxin domoic acid.

    PubMed

    McKibben, S Morgaine; Peterson, William; Wood, A Michelle; Trainer, Vera L; Hunter, Matthew; White, Angelicque E

    2017-01-10

    Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions.

  17. Climatic regulation of the neurotoxin domoic acid

    NASA Astrophysics Data System (ADS)

    Morgaine McKibben, S.; Peterson, William; Wood, A. Michelle; Trainer, Vera L.; Hunter, Matthew; White, Angelicque E.

    2017-01-01

    Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions.

  18. Climatic regulation of the neurotoxin domoic acid

    PubMed Central

    McKibben, S. Morgaine; Peterson, William; Wood, A. Michelle; Trainer, Vera L.; Hunter, Matthew; White, Angelicque E.

    2017-01-01

    Domoic acid is a potent neurotoxin produced by certain marine microalgae that can accumulate in the foodweb, posing a health threat to human seafood consumers and wildlife in coastal regions worldwide. Evidence of climatic regulation of domoic acid in shellfish over the past 20 y in the Northern California Current regime is shown. The timing of elevated domoic acid is strongly related to warm phases of the Pacific Decadal Oscillation and the Oceanic Niño Index, an indicator of El Niño events. Ocean conditions in the northeast Pacific that are associated with warm phases of these indices, including changes in prevailing currents and advection of anomalously warm water masses onto the continental shelf, are hypothesized to contribute to increases in this toxin. We present an applied domoic acid risk assessment model for the US West Coast based on combined climatic and local variables. Evidence of regional- to basin-scale controls on domoic acid has not previously been presented. Our findings have implications in coastal zones worldwide that are affected by this toxin and are particularly relevant given the increased frequency of anomalously warm ocean conditions. PMID:28069959

  19. Retinoic acid-induced down-regulation of the interleukin-2 promoter via cis-regulatory sequences containing an octamer motif.

    PubMed Central

    Felli, M P; Vacca, A; Meco, D; Screpanti, I; Farina, A R; Maroder, M; Martinotti, S; Petrangeli, E; Frati, L; Gulino, A

    1991-01-01

    Retinoic acid (RA) is known to influence the proliferation and differentiation of a wide variety of transformed and developing cells. We found that RA and the specific RA receptor (RAR) ligand Ch55 inhibited the phorbol ester and calcium ionophore-induced expression of the T-cell growth factor interleukin-2 (IL-2) gene. Expression of transiently transfected chloramphenicol acetyltransferase vectors containing the 5'-flanking region of the IL-2 gene was also inhibited by RA. RA-induced down-regulation of the IL-2 enhancer is mediated by RAR, since overexpression of transfected RARs increased RA sensitivity of the IL-2 promoter. Functional analysis of chloramphenicol acetyltransferase vectors containing either internal deletion mutants of the region from -317 to +47 bp of the IL-2 enhancer or multimerized cis-regulatory elements showed that the RA-responsive element in the IL-2 promoter mapped to sequences containing an octamer motif. RAR also inhibited the transcriptional activity of the octamer motif of the immunoglobulin heavy chain enhancer. In spite of the transcriptional inhibition of the IL-2 octamer motif, RA did not decrease the in vitro DNA-binding capability of octamer-1 protein. These results identify a regulatory pathway within the IL-2 promoter which involves the octamer motif and RAR. Images PMID:1652063

  20. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis.

    PubMed

    Endo, Tsutomu; Romer, Katherine A; Anderson, Ericka L; Baltus, Andrew E; de Rooij, Dirk G; Page, David C

    2015-05-05

    Mammalian spermatogenesis--the transformation of stem cells into millions of haploid spermatozoa--is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA-STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.

  1. Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System.

    PubMed

    Tanner, Jennifer R; Patel, Palak G; Hellinga, Jacqueline R; Donald, Lynda J; Jimenez, Celine; LeBlanc, Jason J; Brassinga, Ann Karen C

    2017-03-01

    Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute

  2. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  3. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl.

    PubMed

    Nguyen, Matthew; Singhal, Pankhuri; Piet, Judith W; Shefelbine, Sandra J; Maden, Malcolm; Voss, S Randal; Monaghan, James R

    2017-02-15

    Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.

  4. Retinoic acid remodels extracellular matrix (ECM) of cultured human fetal palate mesenchymal cells (hFPMCs) through down-regulation of TGF-β/Smad signaling.

    PubMed

    Li, Xing; Zhang, Lin; Yin, Xinjuan; Gao, Zhan; Zhang, Huanhuan; Liu, Xiaozhuan; Pan, Xinjuan; Li, Ning; Yu, Zengli

    2014-03-03

    The regulation of extracellular matrix (ECM) by retinoic acid (RA) is interesting in light of the fact that the ECM plays an essential role in morphogenesis and palatal shelf elevation. In the current study, we explored the effect of RA overexposure on ECM and the probable mechanisms in cultured human fetal palate mesenchymal cells (hFPMCs). RA dose-dependently inhibited cell proliferation and mRNA and protein levels of ECM components fibronectin, tenascin C and fibrillin-2. Zymography revealed that MMP-2 activity was suppressed by RA. Further analysis revealed that mRNA levels of MMP2 and TIMP2 were decreased, while the MMP2/TIMP2 mRNA ratio was increased, which might facilitate the ECM degradation. Because of the pivotal role of TGF-β/Smad pathway in palatogenesis we therefore checked the effect of RA on TGF-β/Smad signaling. The results indicated RA treatment increased Smad7 expression and decreased the levels of TGF-β1, TGF-β3, TGF-β type II receptor (TβRII) and phosphorylated Smad2 and Smad3. Activation of the Smad pathways by either exogenous TGF-β3 or recombinant adenoviruses for Smad3 attenuated RA-induced inhibition of cell proliferation and ECM components and rescued the RA-altered MMP2/TIMP2 mRNA ratio. In conclusion, these findings suggested that RA overexposure inhibited cell proliferation and disrupted the ECM network through down-regulation of TGF-β/Smad pathway.

  5. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts.

    PubMed

    Mok, Gi Fay; Cardenas, Ryan; Anderton, Helen; Campbell, Keith H S; Sweetman, Dylan

    2014-12-15

    During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.

  6. Valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  7. Retinoic acid receptors inhibit AP1 activation by regulating extracellular signal-regulated kinase and CBP recruitment to an AP1-responsive promoter.

    PubMed

    Benkoussa, Madjid; Brand, Céline; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2002-07-01

    Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPK(ERK)) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters.

  8. Retinoic Acid Receptors Inhibit AP1 Activation by Regulating Extracellular Signal-Regulated Kinase and CBP Recruitment to an AP1-Responsive Promoter

    PubMed Central

    Benkoussa, Madjid; Brand, Céline; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2002-01-01

    Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPKERK) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters. PMID:12052862

  9. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ32 and Lon protease

    PubMed Central

    De la Cruz, Miguel A.; Morgan, Jason K.; Ares, Miguel A.; Yáñez-Santos, Jorge A.; Riordan, James T.; Girón, Jorge A.

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators. PMID:26904510

  10. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ(32) and Lon protease.

    PubMed

    De la Cruz, Miguel A; Morgan, Jason K; Ares, Miguel A; Yáñez-Santos, Jorge A; Riordan, James T; Girón, Jorge A

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system-associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.

  11. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins

    PubMed Central

    Rego, Eduardo M.; He, Li-Zhen; Warrell, Raymond P.; Wang, Zhu-Gang; Pandolfi, Pier Paolo

    2000-01-01

    Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL. PMID:10954752

  12. Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid.

    PubMed

    Hernández-Martínez, Rocío; Castro-Obregón, Susana; Covarrubias, Luis

    2009-11-01

    The complete cohort of molecules involved in interdigital cell death (ICD) and their interactions are yet to be defined. Bmp proteins, retinoic acid (RA) and Fgf8 have been previously identified as relevant factors in the control of ICD. Here we determined that downregulation of Fgf8 expression in the ectoderm overlying the interdigital areas is the event that triggers ICD, whereas RA is the persistent cell death-inducing molecule that acts on the distal mesenchyme by a mechanism involving the induction of Bax expression. Inhibition of the mitogen-activated protein kinase (Mapk) pathway prevents the survival effect of Fgf8 on interdigital cells and the accompanying Erk1/2 phosphorylation and induction of Mkp3 expression. Fgf8 regulates the levels of RA by both decreasing the expression of Raldh2 and increasing the expression of Cyp26b1, whereas RA reduces Fgfr1 expression and Erk1/2 phosphorylation. In the mouse limb, inhibition of Bmp signaling in the mesenchyme does not affect ICD. However, noggin in the distal ectoderm induces Fgf8 expression and reduces interdigit regression. In the chick limb, exogenous noggin reduces ICD, but, when applied to the distal mesenchyme, this reduction is associated with an increase in Fgf8 expression. In agreement with the critical decline in Fgf8 expression for the activation of ICD, distal interdigital cells acquire a proximal position as interdigit regression occurs. We identified proliferating distal mesenchymal cells as those that give rise to the interdigital cells fated to die. Thus, ICD is determined by the antagonistic regulation of cell death by Fgf8 and RA and occurs through a progressive, rather than massive, cell death mechanism.

  13. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    PubMed Central

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  14. The Vibrio cholerae trh Gene Is Coordinately Regulated In Vitro with Type III Secretion System Genes by VttRA/VttRB but Does Not Contribute to Caco2-BBE Cell Cytotoxicity

    PubMed Central

    Miller, Kelly A.; Hamilton, Elaine

    2012-01-01

    Numerous virulence factors have been associated with pathogenic non-O1/non-O139 serogroup strains of Vibrio cholerae. Among them are the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH), which share amino acid similarities to the TDH and TRH proteins of Vibrio parahaemolyticus, where they have been shown to contribute to pathogenesis. Although TDH and TRH homologs can be encoded on extrachromosomal elements in V. cholerae, type III secretion system (T3SS)-positive strains, such as AM-19226, carry a copy of trh within the T3SS genomic island. Transcriptional fusion analysis showed that in strain AM-19226, trh expression is regulated in a bile-dependent manner by a family of transmembrane transcriptional regulators that includes VttRA, VttRB, and ToxR. Genes encoding T3SS structural components are expressed under similar conditions, suggesting that within the T3SS genomic island, genes encoding proteins unrelated to the T3SS and loci involved in T3SS synthesis are coregulated. Despite similar in vitro expression patterns, however, TRH is not required for AM-19226 to colonize the infant mouse intestine, nor does it contribute to bile-mediated cytotoxicity when strain AM-19226 is cocultured with the mammalian cell line Caco2-BBE. Instead, we found that a functional T3SS is essential for AM-19226 to induce bile-mediated cytotoxicity in vitro. Collectively, the results are consistent with a more minor role for the V. cholerae TRH in T3SS-positive strains compared to the functions attributed to the V. parahaemolyticus TDH and TRH proteins. PMID:23045478

  15. Lysophosphatidic Acid Regulation and Roles in Human Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    be generated by other pathways. LPA is produced from phosphatidic acid 4 ") (PA) in activated platelets and ovarian and prostate cancer cells by...material. Appendix 1 JCB in revision 2 ABSTRACT The bioactive phospholipids, lysophosphatidic acid (LPA) and phosphatidic acid (PA), regulate pivotal...glycerolipid synthesis, abundant evidence now indicates that bioactive LPA can also be generated by other pathways. LPA is produced from phosphatidic acid (PA

  16. "Redefining RA": The RA Tool Kit

    ERIC Educational Resources Information Center

    Wyatt, Neal

    2008-01-01

    No one likes being two steps behind, and the fastest way to fall off the pace is by not keeping up with major titles and hot authors. Fortunately, there are numerous resources, both prepublication and postpublication, that can help. It is best when readers' advisory (RA) librarians know what is coming out months ahead of time--in order to think…

  17. Martin RA-30 Baltimore

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Martin RA-30 Baltimore: The Martin RA-30 Baltimore was a light bomber ordered by the Royal Air Force. Some examples were retained in the United States as part of a 'Reverse Lend-Lease.' This example was flown by the NACA from June 1943 until March 1944.

  18. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    PubMed

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.

  19. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.

    PubMed

    Seo, Mitsunori; Hanada, Atsushi; Kuwahara, Ayuko; Endo, Akira; Okamoto, Masanori; Yamauchi, Yukika; North, Helen; Marion-Poll, Annie; Sun, Tai-Ping; Koshiba, Tomokazu; Kamiya, Yuji; Yamaguchi, Shinjiro; Nambara, Eiji

    2006-11-01

    In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.

  20. TLRs, future potential therapeutic targets for RA.

    PubMed

    Elshabrawy, Hatem A; Essani, Abdul E; Szekanecz, Zoltán; Fox, David A; Shahrara, Shiva

    2017-02-01

    Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.

  1. Novel regulator of enterohepatic bile acid signaling protects against hypercholesterolemia.

    PubMed

    Dawson, Paul A

    2013-06-04

    Hypercholesterolemia is a major cause of cardiovascular disease and can be treated by targeting bile acid and cholesterol metabolism. Vergnes et al. (2013) now identify Diet1 as a novel regulator of fibroblast growth factor 15/19 production and bile acid biosynthesis.

  2. SOHLH1 and SOHLH2 directly down-regulate STIMULATED BY RETINOIC ACID 8 (STRA8) expression.

    PubMed

    Desimio, M G; Campolo, F; Dolci, S; De Felici, M; Farini, D

    2015-01-01

    As the name implies, Stimulated by Retinoic Acid 8 is an early retinoic acid (RA) responsive gene pivotal for the beginning of meiosis in female and male germ cells. Its expression is strictly time-dependent and cell-specific (pre-meiotic germ cells) and likely requires a complex mechanism of regulation. In this study, we demonstrate a direct negative control of SOHLH1 and SOHLH2, 2 germ cell specific bHLH transcription factors, on Stra8 expression. We observed a negative correlation between STRA8 and SOHLH1 expression in prepuberal differentiating mouse KIT(+) spermatogonia and found that SOHLH1 and SOHLH2 were able to directly and cooperatively repress STRA8 expression in cell lines in vitro through binding to its promoter. We also identified 2 canonical E-Box motives in the Stra8 promoter that mediated the negative regulation of SOHLH1 and SOHLH2 on these gene both in the cell lines and KIT(+) spermatogonia. We hypothesize that this novel negative activity of SOHLH1 and SOHLH2 in male cooperates with that of other transcription factors to coordinate spermatogonia differentiation and the RA-induced meiosis and in female ensures STRA8 down-regulation at mid-end stages of meiotic prophase I.

  3. Initiating meiosis: the case for retinoic acid.

    PubMed

    Griswold, Michael D; Hogarth, Cathryn A; Bowles, Josephine; Koopman, Peter

    2012-02-01

    The requirement for vitamin A in reproduction and development was first determined from studies of nutritional deficiencies. Subsequent research has shown that embryonic development and both male and female reproduction are modulated by retinoic acid (RA), the active form of vitamin A. Because RA is active in multiple developmental systems, its synthesis, transport, and degradation are tightly regulated in different tissues. A growing body of evidence implicates RA as a requirement for the initiation of meiosis in both male and female mammals, resulting in a mechanistic model involving the interplay of RA, RA synthesis enzymes, RA receptors, and degradative cytochrome P450 enzymes in this system. Recently, that model has been challenged, prompting a review of the established paradigm. While it remains possible that additional molecules may be involved in regulating entry into meiosis, the weight of evidence supporting a key role for RA is incontrovertible.

  4. Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family)

    PubMed Central

    Godziszewska, Jolanta; Wojciechowska, Anna; Ludwiczak, Marta; Jagura-Burdzy, Grazyna

    2016-01-01

    The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nic operon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in trans negatively interferes with mini-RA3 replication and stable maintenance of RA3. PMID:26850301

  5. Regulation of amino acid metabolic enzymes and transporters in plants.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2014-10-01

    Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.

  6. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

    PubMed

    Le May, Nicolas; Iltis, Izarn; Amé, Jean-Christophe; Zhovmer, Alexander; Biard, Denis; Egly, Jean-Marc; Schreiber, Valérie; Coin, Frédéric

    2012-12-14

    Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription. Silencing of PARG or knockout of its enzymatic activity maintains the H3K9me2 mark at the promoter of the RAR-dependent genes, leading to the absence of preinitiation complex formation. In the absence of PARG, we found that the H3K9 demethylase KDM4D/JMJD2D became PARsylated. Mutation of two glutamic acids located in the Jumonji N domain of KDM4D inhibited PARsylation. PARG becomes dispensable for ligand-dependent transcription when either a PARP inhibitor or a non-PARsylable KDM4D/JMJD2D mutant is used. Our results define PARG as a coactivator regulating chromatin remodeling during RA-dependent gene expression.

  7. Mechanisms of retinoic acid signalling and its roles in organ and limb development

    PubMed Central

    Cunningham, Thomas J.; Duester, Gregg

    2015-01-01

    Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis. PMID:25560970

  8. Selective regulation of cardiomyocyte gene expression and cardiac morphogenesis by retinoic acid.

    PubMed

    Dickman, E D; Smith, S M

    1996-05-01

    Early heart development is known to be sensitive to retinoid concentrations; a specific pattern of malformations is observed in both vitamin A-deficiency and retinoid-toxicity states. While the influence of retinoids on early cardiac morphogenesis has been described previously, the effect of retinoids upon cardiomyocyte differentiation and gene expression is largely uncharacterized. We have established an in ovo chick embryo model in which slow-release retinoic acid (RA) induces four distinct cardiac malformations in a dose-dependent fashion. Late primitive streak-stage chick embryos were treated with all-trans-retinoic acid released from anion exchange beads placed on the embryo's left side and then allowed to develop further for 20-24 hr. At low doses (10 and 25 micrograms/ml RA) an abnormal loop structure was observed. At higher doses (50 and 100 micrograms/ml RA) cardia bifida and clustered heart tissue were noted. Situs inversus only occurred after treatment with 100 micrograms/ml RA. RA-treated embryos were subsequently analyzed for appropriate cardiac myocyte differentiation using antibody staining and ELISA analysis to detect sarcomeric myosin heavy chain, tropomyosin, titin, and alpha-actinin protein expression. Alpha-actinin expression was significantly decreased in RA-treated embryos, as compared to DMSO-treated controls. Also, heart contraction rate was depressed after RA exposure. RA exposure did not alter the protein expression levels of sarcomeric myosin heavy chain or tropomyosin. The observed alterations are consistent with suggestions that retinoids may affect both morphogenesis and myofibril formation in the developing heart.

  9. ZNF536, a Novel Zinc Finger Protein Specifically Expressed in the Brain, Negatively Regulates Neuron Differentiation by Repressing Retinoic Acid-Induced Gene Transcription▿

    PubMed Central

    Qin, Zhen; Ren, Fangli; Xu, Xialian; Ren, Yongming; Li, Hongge; Wang, Yinyin; Zhai, Yonggong; Chang, Zhijie

    2009-01-01

    Neuronal differentiation is tightly regulated by a variety of factors. In a search for neuron-specific genes, we identified a highly conserved novel zinc finger protein, ZNF536. We observed that ZNF536 is most abundant in the brain and, in particular, is expressed in the developing central nervous system and dorsal root ganglia and localized in the cerebral cortex, hippocampus, and hypothalamic area. During neuronal differentiation of P19 cells induced by retinoic acid (RA), ZNF536 expression is increased at an early stage, and it is maintained at a constant level in later stages. Overexpression of ZNF536 results in an inhibition of RA-induced neuronal differentiation, while depletion or mutation of the ZNF536 gene results in an enhancement of differentiation. We further demonstrated that ZNF536 inhibits expression of neuron-specific marker genes, possibly through the inhibition of RA response element-mediated transcriptional activity, as overexpression of RA receptor α can rescue the inhibitory role of ZNF536 in neuronal differentiation and neuron-specific gene expression. Our studies have identified a novel zinc finger protein that negatively regulates neuron differentiation. PMID:19398580

  10. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest

    NASA Technical Reports Server (NTRS)

    Escriva, Hector; Holland, Nicholas D.; Gronemeyer, Hinrich; Laudet, Vincent; Holland, Linda Z.

    2002-01-01

    Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA

  11. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer

    PubMed Central

    Zhang, Guodong; Kodani, Sean; Hammock, Bruce D.

    2014-01-01

    Epoxygenated fatty acids (EpFAs), which are lipid mediators produced by cytochrome P450 epoxygenases from polyunsaturated fatty acids, are important signaling molecules known to regulate various biological processes including inflammation, pain and angiogenesis. The EpFAs are further metabolized by soluble epoxide hydrolase (sEH) to form fatty acid diols which are usually less-active. Pharmacological inhibitors of sEH that stabilize endogenous EpFAs are being considered for human clinical uses. Here we review the biology of ω-3 and ω-6 EpFAs on inflammation, pain, angiogenesis and tumorigenesis. PMID:24345640

  12. Mesodermal retinoic acid signaling regulates endothelial cell coalescence in caudal pharyngeal arch artery vasculogenesis

    PubMed Central

    Li, Peng; Pashmforoush, Mohammad; Sucov, Henry M.

    2011-01-01

    Disruption of retinoic acid signaling causes a variety of pharyngeal arch artery and great vessel defects, as well as malformations in many other tissues, including those derived from the pharyngeal endoderm. Previous studies implied that arch artery defects in the context of defective RA signaling occur secondary to pharyngeal pouch segmentation defects, although this model has never been experimentally verified. In this study, we examined arch artery morphogenesis during mouse development, and the role of RA in this process. We show in normal embryos that the arch arteries form by vasculogenic differentiation of pharyngeal mesoderm. Using various genetic backgrounds and tissue-specific mutation approaches, we segregate pharyngeal arch artery and pharyngeal pouch defects in RA receptor mutants, and show that RA signal transduction only in pharyngeal mesoderm is required for arch artery formation. RA does not control pharyngeal mesodermal differentiation to endothelium, but instead promotes the aggregation of endothelial cells into nascent vessels. Expression of VE-cadherin was substantially reduced in RAR mutants, and this deficiency may underlie the arch artery defects. The consequences of disrupted mesodermal and endodermal RA signaling were restricted to the 4th and 6th arch arteries and to the 4th pharyngeal pouch, respectively, suggesting that different regulatory mechanisms control the formation of the more anterior arch arteries and pouches. PMID:22040871

  13. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus.

  14. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  15. Regulation of the laminin beta 1 (LAMB1), retinoic acid receptor beta, and bone morphogenetic protein 2 genes in mutant F9 teratocarcinoma cell lines partially deficient in cyclic AMP-dependent protein kinase activity.

    PubMed

    Shen, J; Li, C; Gudas, L J

    1997-12-01

    We stably transfected a gene encoding a dominant negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA) into F9 cells and generated cell lines partially deficient in PKA activity (DN16 and DN19). In these cell lines, the retinoic acid (RA) receptor beta and laminin beta(1) chain (LAMB1) genes were regulated normally by RA alone, indicating that in the absence of exogenous modulation of cAMP levels, the PKA signaling pathway does not seem to play a major role in the RA-associated regulation of these genes. However, alterations in gene regulation were observed when the mutant cell lines were treated with a combination of RA and cAMP analogues. Moreover, in the DN16 cell line, which exhibits the lowest PKA activity among the mutant cell lines [22% of wild type (WT) at 1 microM cAMP], there was a significant decrease in the cAMP-associated activation of the LAMB1 gene DNase I hypersensitivity site 2 enhancer, as measured by chloramphenicol acetyl transferase assays. Using electrophoretic mobility shift assays, less protein binding was observed at one of the motifs (C2) within this enhancer region in the DN16 cells as compared to the F9 WT cells after treatment of the cells with RA and cAMP analogues for 24 h. Furthermore, no increase in C2 binding was observed when extracts from RA-treated F9 ST or DN16 cells were subjected to in vitro phosphorylation, suggesting that PKA is involved in the induction of the C2-binding protein in RA-treated cells. In contrast to the results with RA receptor beta and LAMB1, the effects of cAMP analogues on the RA-associated regulation of the bone morphogenetic protein 2 gene were not altered in the cell lines that exhibited reduced PKA activity. These results suggest that a partial reduction in PKA activity is not sufficient to abrogate the effects of cAMP analogues on all of the genes regulated by RA.

  16. Regulation of hepatic gene expression by saturated fatty acids.

    PubMed

    Vallim, T; Salter, A M

    2010-01-01

    Diets rich in saturated fatty acids have long been associated with increased plasma cholesterol concentrations and hence increased risk of cardiovascular disease. More recently, they have also been suggested to promote the development of non-alcoholic fatty liver disease. While there is now considerable evidence to suggest that polyunsaturated fatty acids exert many of their effects through regulating the activity of transcription factors, including peroxisome proliferator activated receptors, sterol regulatory binding proteins (SREBPs) and liver X receptor, our understanding of how saturated fatty acids act is still limited. Here we review the potential mechanisms whereby saturated fatty acids modulate hepatic lipid metabolism thereby impacting on the synthesis, storage and secretion of lipids. Evidence is presented that their effects are, at least partly, mediated through modulation of the activity of the SREBP family of transcription factors.

  17. Fatty acids are potential endogenous regulators of aldosterone secretion.

    PubMed

    Goodfriend, T L; Ball, D L; Elliott, M E; Morrison, A R; Evenson, M A

    1991-05-01

    Adrenal glomerulosa cells washed with delipidated albumin produced increased amounts of aldosterone in response to angiotensin-II (AII) or (Bu)2cAMP. Albumin treatment also increased binding of 125I-labeled AII to high affinity binding sites on adrenal cells. Lipid extracts of albumin solutions that were used to wash cells inhibited AII binding and aldosterone responses by washed glomerulosa cells. Chromatographic fractionation and mass spectroscopic analysis indicated that the inhibitors removed from cells by albumin were long chain fatty acids. Exogenous fatty acids not only inhibited AII binding, but they inhibited basal aldosterone production and increments in aldosterone caused by AII or dbcAMP, suggesting an effect on postreceptor steps in aldosteronogenesis. The most potent and most abundant fatty acids removed from adrenal cells were oleic, linoleic, and arachidonic. These fatty acids inhibited at micromolar concentrations in the absence of albumin and at somewhat higher concentrations in its presence. Cells that had been washed, then inhibited by exogenous oleic acid in vitro, were restored to their enhanced responsiveness by a second albumin wash, making it unlikely that cell damage is the mechanism of inhibition by fatty acids. Responses of fasciculata cells were not potentiated by albumin washes, and cortisol production was less sensitive than aldosterone production to exogenous fatty acids. Binding of ANP to glomerulosa cells was not affected by albumin or fatty acids. These results combined with clinical correlations make it plausible that unesterified fatty acids are naturally occurring regulators of the adrenal glomerulosa. Insulin's ability to lower plasma levels of fatty acids may be one way that it causes sodium retention.

  18. Cholestenoic acids regulate motor neuron survival via liver X receptors

    PubMed Central

    Theofilopoulos, Spyridon; Griffiths, William J.; Crick, Peter J.; Yang, Shanzheng; Meljon, Anna; Ogundare, Michael; Kitambi, Satish Srinivas; Lockhart, Andrew; Tuschl, Karin; Clayton, Peter T.; Morris, Andrew A.; Martinez, Adelaida; Reddy, M. Ashwin; Martinuzzi, Andrea; Bassi, Maria T.; Honda, Akira; Mizuochi, Tatsuki; Kimura, Akihiko; Nittono, Hiroshi; De Michele, Giuseppe; Carbone, Rosa; Criscuolo, Chiara; Yau, Joyce L.; Seckl, Jonathan R.; Schüle, Rebecca; Schöls, Ludger; Sailer, Andreas W.; Kuhle, Jens; Fraidakis, Matthew J.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Björkhem, Ingemar; Ernfors, Patrik; Sjövall, Jan; Arenas, Ernest; Wang, Yuqin

    2014-01-01

    Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3β,7α-diHCA and 3βH,7O-CA, 3β-hydroxycholest-5-en-26-oic acid (3β-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3β-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3β,7α-diHCA. Moreover, 3β,7α-diHCA prevented the loss of motor neurons induced by 3β-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death. PMID:25271621

  19. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    NASA Astrophysics Data System (ADS)

    Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

    1999-01-01

    A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

  20. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.

    PubMed

    Chen, Esther J; Kaiser, Chris A

    2002-11-12

    The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.

  1. Rapid Method for Ra-226 and Ra-228 in Water Samples

    SciTech Connect

    Maxwell, Sherrod, L. III

    2006-02-10

    The measurement of radium isotopes in natural waters is important for oceanographic studies and for public health reasons. Ra-226 (1620 year half-life) is one of the most toxic of the long-lived alpha emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The analysis of radium-226 and radium-228 in natural waters can be tedious and time-consuming. Different sample preparation methods are often required to prepare Ra-226 and Ra-228 for separate analyses. A rapid method has been developed at the Savannah River Environmental Laboratory that effectively separates both Ra-226 and Ra-228 (via Ac-228) for assay. This method uses MnO{sub 2} Resin from Eichrom Technologies (Darien, IL, USA) to preconcentrate Ra-226 and Ra-228 rapidly from water samples, along with Ba-133 tracer. DGA Resin{reg_sign} (Eichrom) and Ln-Resin{reg_sign} (Eichrom) are employed in tandem to prepare Ra-226 for assay by alpha spectrometry and to determine Ra-228 via the measurement of Ac-228 by gas proportional counting. After preconcentration, the manganese dioxide is dissolved from the resin and passed through stacked Ln-Resin-DGA Resin cartridges that remove uranium and thorium interferences and retain Ac-228 on DGA Resin. The eluate that passed through this column is evaporated, redissolved in a lower acidity and passed through Ln-Resin again to further remove interferences before performing a barium sulfate microprecipitation. The Ac-228 is stripped from the resin, collected using cerium fluoride microprecipitation and counted by gas proportional counting. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  2. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid

    PubMed Central

    Kim, Mijeong; Habiba, Ayman; Doherty, Jason M.; Mills, Jason C.; Mercer, Robert W.; Huettner, James E.

    2009-01-01

    Pluripotent mouse embryonic stem cells (ESCs) derived from the early blastocyst can differentiate in vitro into a variety of somatic cell types including lineages from all three embryonic germ layers. Protocols for ES cell neural differentiation typically involve induction by retinoic acid (RA), or by exposure to growth factors or medium conditioned by other cell types. A serum-free differentiation (SFD) medium completely lacking exogenous retinoids was devised that allows for efficient conversion of aggregated mouse ESCs into neural precursors and immature neurons. Neural cells produced in this medium express neuronal ion channels, establish polarity, and form functional excitatory and inhibitory synapses. Brief exposure to RA during the period of cell aggregation speeds neuronal maturation and suppresses cell proliferation. Differentiation without RA yields neurons and neural progenitors with apparent telencephalic identity, whereas cells differentiated with exposure to RA express markers of hindbrain and spinal cord. Transcriptional profiling indicates a substantial representation of transit amplifying neuroblasts in SFD cultures not exposed to RA. PMID:19217899

  3. The role of CYP26 enzymes in retinoic acid clearance

    PubMed Central

    Thatcher, Jayne E.; Isoherranen, Nina

    2009-01-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26’s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed. PMID:19519282

  4. Nucleic acid modifications in regulation of gene expression

    PubMed Central

    Chen, Kai; Zhao, Boxuan Simen; He, Chuan

    2016-01-01

    Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N6 -methyladenine (6mA) in DNA; N6 -methyladenosine (m6A), pseudouridine (), and 5-methylcytosine (m5C) in messenger RNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones. PMID:26933737

  5. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  6. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  7. 226Ra and 228Ra in Iowa drinking water.

    PubMed

    Kriege, L B; Hahne, R M

    1982-10-01

    The University Hygienic Laboratory has been performing radiochemical analyses on drinking water in the state of Iowa for over 20 yr. Approximately one half of the 1250 community water supplies that exist in Iowa have been sampled roughly once every 3 yr for the past decade. Originally, raw and finished waters that showed a gross alpha activity of greater than or equal to 3.0 pCi/L were analyzed for 226Ra, but starting in July 1976, finished waters were analyzed for both 226Ra and 228Ra if the gross alpha activity was greater than or equal to 2.0 pCi/L. As of 10 June 1981, 604 community water supplies had submitted composited samples that have been analyzed for gross alpha, 226Ra, and 228Ra concentrations in compliance with the federal Safe Drinking Water Act (Public Law 93-523). Approximately 10% of these supplies were found to exceed the EPA-established maximum contaminant level (MCL) for 226Ra plus 228Ra of 5 pCi/L. The results revealed, consistent with several other investigators (Mc81; Mi80; Mic80), that some supplies had higher concentrations of 228Ra than of 226Ra. It was also concluded, in agreement with McCurdy and Mellor (Mc81), that some ground water samples cannot be accurately measured for gross alpha activity due to their high dissolved solids content.

  8. [Signaling pathway of meiosis induced by retinoic acid during spermatogenesis].

    PubMed

    Wang, Ke; Wu, Ying-Ji

    2013-02-01

    Retinoic acid (RA) is an oxidative metabolite of vitamin A (retinol, ROH) and plays an important role in the spermatogenesis (as in meiosis) of mammals. In mammalian testes, RA, in combination with its retinoic acid receptor (RAR), regulates the expressions of related target genes in various types of cells at different times. It activates meiosis by up-regulating the expressions of the genes that promote meiosis and down-regulate those that inhibit it during spermatogenesis in a specific stage. The results of researches on mammalian spermatogenesis have a great application value in reproductive biology, developmental biology, and reproductive engineering. Therefore, it is of considerable significance to study the signaling pathway of RA-induced meiosis during mammalian spermatogenesis. This article presents an introduction of the RA signal transduction system and its action mechanisms, as well as an overview on the signaling pathway of RA-activated meiosis during spermatogenesis.

  9. Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka

    PubMed Central

    Adolfi, Mateus C.; Herpin, Amaury; Regensburger, Martina; Sacquegno, Jacopo; Waxman, Joshua S.; Schartl, Manfred

    2016-01-01

    In vertebrates, one of the first recognizable sex differences in embryos is the onset of meiosis, known to be regulated by retinoic acid (RA) in mammals. We investigated in medaka a possible meiotic function of RA during the embryonic sex determination (SD) period and in mature gonads. We found RA mediated transcriptional activation in germ cells of both sexes much earlier than the SD stage, however, no such activity during the critical stages of SD. In adults, expression of the RA metabolizing enzymes indicates sexually dimorphic RA levels. In testis, RA acts directly in Sertoli, Leydig and pre-meiotic germ cells. In ovaries, RA transcriptional activity is highest in meiotic oocytes. Our results show that RA plays an important role in meiosis induction and gametogenesis in adult medaka but contrary to common expectations, not for initiating the first meiosis in female germ cells at the SD stage. PMID:27677591

  10. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    PubMed

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.

  11. Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling.

    PubMed

    Li, Yue; Cheng, Christina N; Verdun, Valerie A; Wingert, Rebecca A

    2014-02-01

    The zebrafish pronephros provides a conserved model to study kidney development, in particular to delineate the poorly understood processes of how nephron segment pattern and cell type choice are established. Zebrafish nephrons are divided into distinct epithelial regions that include a series of proximal and distal tubule segments, which are comprised of intercalated transporting epithelial cells and multiciliated cells (MCC). Previous studies have shown that retinoic acid (RA) regionalizes the renal progenitor field into proximal and distal domains and that Notch signaling later represses MCC differentiation, but further understanding of these pathways has remained unknown. The transcription factor mecom (mds1/evi1 complex) is broadly expressed in renal progenitors, and then subsequently marks the distal tubule. Here, we show that mecom is necessary to form the distal tubule and to restrict both proximal tubule formation and MCC fate choice. We found that mecom and RA have opposing roles in patterning discrete proximal and distal segments. Further, we discovered that RA is required for MCC formation, and that one mechanism by which RA promotes MCC fate choice is to inhibit mecom. Next, we determined the epistatic relationship between mecom and Notch signaling, which limits MCC fate choice by lateral inhibition. Abrogation of Notch signaling with the γ-secretase inhibitor DAPT revealed that Notch and mecom did not have additive effects in blocking MCC formation, suggesting that they function in the same pathway. Ectopic expression of the Notch signaling effector, Notch intracellular domain (NICD), rescued the expansion of MCCs in mecom morphants, indicating that mecom acts upstream to induce Notch signaling. These findings suggest a model in which mecom and RA arbitrate proximodistal segment domains, while MCC fate is modulated by a complex interplay in which RA inhibition of mecom, and mecom promotion of Notch, titrates MCC number. Taken together, our studies

  12. Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling

    PubMed Central

    Li, Yue; Cheng, Christina N.; Verdun, Valerie A.; Wingert, Rebecca A.

    2014-01-01

    The zebrafish pronephros provides a conserved model to study kidney development, in particular to delineate the poorly understood processes of how nephron segment pattern and cell type choice are established. Zebrafish nephrons are divided into distinct epithelial regions that include a series of proximal and distal tubule segments, which are comprised of intercalated transporting epithelial cells and multiciliated cells (MCC). Previous studies have shown that retinoic acid (RA) regionalizes the renal progenitor field into proximal and distal domains and that Notch signaling later represses MCC differentiation, but further understanding of these pathways has remained unknown. The transcription factor mecom (mds1/evi1 complex) is broadly expressed in renal progenitors, and then subsequently marks the distal tubule. Here, we show that mecom is necessary to form the distal tubule and to restrict both proximal tubule formation and MCC fate choice. We found that mecom and RA have opposing roles in patterning discrete proximal and distal segments. Further, we discovered that RA is required for MCC formation, and that one mechanism by which RA promotes MCC fate choice is to inhibit mecom. Next, we determined the epistatic relationship between mecom and Notch signaling, which limits MCC fate choice by lateral inhibition. Abrogation of Notch signaling with the y-secretase inhibitor DAPT revealed that Notch and mecom did not have additive effects in blocking MCC formation, suggesting that they function in the same pathway. Ectopic expression of the Notch signaling effector, Notch intracellular domain (NICD), rescued the expansion of MCCs in mecom morphants, indicating that mecom acts upstream to induce Notch signaling. These findings suggest a model in which mecom and RA arbitrate proximodistal segment domains, while MCC fate is modulated by a complex interplay in which RA inhibition of mecom, and mecom promotion of Notch, titrates MCC number. Taken together, our studies

  13. Leaching of 226Ra from components of uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1991-01-01

    A sequential extraction procedure was used to characterize the geochemical forms of 226Ra retained by mixtures of quartz sand and a variety of fine-grained rock and mineral species. These mixtures had previously been exposed to the sulfuric acid milling liquor of a simulated acid-leach uranium milling circuit. For most test cases, the major fraction of the 226Ra was extracted with 1 mol/1 NH4Cl and was deemed to be exchangeable. However, 226Ra retained by the barite-containing mixture was resistant to both 1 mol/1 NH4Cl and 1 mol/HCHCl extraction. ?? 1991.

  14. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration

    PubMed Central

    Liu, Hui-Xin; Hu, Ying; Wan, Yu-Jui Yvonne

    2016-01-01

    Background & Aims All-trans Retinoic acid (RA) regulates hepatic lipid and bile acid homeostasis. Similar to bile acid (BA), RA accelerates partial hepatectomy (PHx)-induced liver regeneration. Because there is a bidirectional regulatory relationship between gut microbiota and BA synthesis, we examined the effect of RA in altering the gut microbial population and BA composition and established their relationship with hepatic biological processes during the active phases of liver regeneration. Methods C57BL/6 mice were treated with RA orally followed by 2/3 PHx. The roles of RA in shifting gut microbiota and BA profiles as well as hepatocyte metabolism and proliferation were studied. Results RA-primed mice exhibited accelerated hepatocyte proliferation revealed by higher numbers of Ki67-positive cells compared to untreated mice. Firmicutes and Bacteroidetes phyla dominated the gut microbial community (>85%) in both control and RA-primed mice after PHx. RA reduced the ratio of Firmicutes to Bacteroidetes, which was associated with a lean phenotype. Consistently, RA-primed mice lacked transient lipid accumulation normally found in regenerating livers. In addition, RA altered BA homeostasis and shifted BA profiles by increasing the ratio of hydrophilic to hydrophobic BAs in regenerating livers. Accordingly, metabolic regulators fibroblast growth factor 21, Sirtuin1, and their downstream targets AMPK and ERK1/2 were more robustly activated in RA-primed than unprimed regenerating livers. Conclusions Priming mice with RA resulted in a lean microbiota composition and hydrophilic BA profiles, which were associated with facilitated metabolism and enhanced cell proliferation. PMID:26701854

  15. Biotin and Lipoic Acid: Synthesis, Attachment and Regulation

    PubMed Central

    Cronan, John E.

    2014-01-01

    Summary Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as “swinging arms” that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well-described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like “arm” of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized and thus there is no transcriptional control of the synthetic genes. In contrast transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA a dual function protein that both represses

  16. Metabolic regulation of amino acid uptake in marine waters

    SciTech Connect

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  17. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  18. Irx1 and Irx2 Are Coordinately Expressed and Regulated by Retinoic Acid, TGFβ and FGF Signaling during Chick Hindlimb Development

    PubMed Central

    Díaz-Hernández, Martha Elena; Bustamante, Marcia; Galván-Hernández, Claudio Iván; Chimal-Monroy, Jesús

    2013-01-01

    The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates. PMID:23505533

  19. Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFβ and FGF signaling during chick hindlimb development.

    PubMed

    Díaz-Hernández, Martha Elena; Bustamante, Marcia; Galván-Hernández, Claudio Iván; Chimal-Monroy, Jesús

    2013-01-01

    The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates.

  20. 24 CFR 599.505 - Coordinating responsible authority (CoRA).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CoRA). 599.505 Section 599.505 Housing and Urban Development Regulations Relating to Housing and... Requirements § 599.505 Coordinating responsible authority (CoRA). Within 30 days of the Renewal Community... identifying the coordinating responsible authority (CoRA), which is the entity, organization or persons...

  1. 24 CFR 599.505 - Coordinating responsible authority (CoRA).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CoRA). 599.505 Section 599.505 Housing and Urban Development Regulations Relating to Housing and... Requirements § 599.505 Coordinating responsible authority (CoRA). Within 30 days of the Renewal Community... identifying the coordinating responsible authority (CoRA), which is the entity, organization or persons...

  2. 24 CFR 599.505 - Coordinating responsible authority (CoRA).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CoRA). 599.505 Section 599.505 Housing and Urban Development Regulations Relating to Housing and... Requirements § 599.505 Coordinating responsible authority (CoRA). Within 30 days of the Renewal Community... identifying the coordinating responsible authority (CoRA), which is the entity, organization or persons...

  3. 24 CFR 599.505 - Coordinating responsible authority (CoRA).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CoRA). 599.505 Section 599.505 Housing and Urban Development Regulations Relating to Housing and... Requirements § 599.505 Coordinating responsible authority (CoRA). Within 30 days of the Renewal Community... identifying the coordinating responsible authority (CoRA), which is the entity, organization or persons...

  4. 24 CFR 599.505 - Coordinating responsible authority (CoRA).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CoRA). 599.505 Section 599.505 Housing and Urban Development Regulations Relating to Housing and... Requirements § 599.505 Coordinating responsible authority (CoRA). Within 30 days of the Renewal Community... identifying the coordinating responsible authority (CoRA), which is the entity, organization or persons...

  5. Structural insights into the regulation of aromatic amino acid hydroxylation.

    PubMed

    Fitzpatrick, Paul F

    2015-12-01

    The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are homotetramers, with each subunit containing a homologous catalytic domain and a divergent regulatory domain. The solution structure of the regulatory domain of tyrosine hydroxylase establishes that it contains a core ACT domain similar to that in phenylalanine hydroxylase. The isolated regulatory domain of tyrosine hydroxylase forms a stable dimer, while that of phenylalanine hydroxylase undergoes a monomer-dimer equilibrium, with phenylalanine stabilizing the dimer. These solution properties are consistent with the regulatory mechanisms of the two enzymes, in that phenylalanine hydroxylase is activated by phenylalanine binding to an allosteric site, while tyrosine hydroxylase is regulated by binding of catecholamines in the active site.

  6. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer.

    PubMed

    Centuori, Sara M; Martinez, Jesse D

    2014-10-01

    A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.

  7. Whole-Exome Sequencing in a South American Cohort Links ALDH1A3, FOXN1 and Retinoic Acid Regulation Pathways to Autism Spectrum Disorders

    PubMed Central

    Moreno-Ramos, Oscar A.; Olivares, Ana María; Haider, Neena B.; de Autismo, Liga Colombiana; Lattig, María Claudia

    2015-01-01

    Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian—South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding. PMID:26352270

  8. Whole-Exome Sequencing in a South American Cohort Links ALDH1A3, FOXN1 and Retinoic Acid Regulation Pathways to Autism Spectrum Disorders.

    PubMed

    Moreno-Ramos, Oscar A; Olivares, Ana María; Haider, Neena B; de Autismo, Liga Colombiana; Lattig, María Claudia

    2015-01-01

    Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian-South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding.

  9. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  10. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  11. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-03

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  12. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    SciTech Connect

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  13. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation.

    PubMed

    Wang, Yanping; Wang, Ya; Ji, Kai; Dai, Shengjie; Hu, Ying; Sun, Liang; Li, Qian; Chen, Pei; Sun, Yufei; Duan, Chaorui; Wu, Yan; Luo, Hao; Zhang, Dian; Guo, Yangdong; Leng, Ping

    2013-03-01

    Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism.

  14. Retinoic acid induces TGFbeta-dependent autocrine fibroblast growth.

    PubMed

    Fadloun, A; Kobi, D; Delacroix, L; Dembélé, D; Michel, I; Lardenois, A; Tisserand, J; Losson, R; Mengus, G; Davidson, I

    2008-01-17

    To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4(lox/-) and taf4(-/-) embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4(lox/-) cells, but less than 300 in taf4(-/-) cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4(lox/-) cells exhibit transforming growth factor (TGF)beta-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFbeta signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFbeta pathways that leads to deregulated cell growth.

  15. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    EPA Science Inventory

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  16. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  17. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  18. Hypochlorous acid regulates neutrophil extracellular trap release in humans.

    PubMed

    Palmer, L J; Cooper, P R; Ling, M R; Wright, H J; Huissoon, A; Chapple, I L C

    2012-02-01

    Neutrophil extracellular traps (NETs) comprise extracellular chromatin and granule protein complexes that immobilize and kill bacteria. NET release represents a recently discovered, novel anti-microbial strategy regulated non-exclusively by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generation of reactive oxygen intermediates (ROIs), particularly hydrogen peroxide. This study aimed to characterize the role of ROIs in the process of NET release and to identify the dominant ROI trigger. We employed various enzymes, inhibitors and ROIs to record their effect fluorometrically on in vitro NET release by human peripheral blood neutrophils. Treatment with exogenous superoxide dismutase (SOD) supported the established link between hydrogen peroxide and NET production. However, treatment with myeloperoxidase inhibitors and direct addition of hypochlorous acid (HOCl; generated in situ from sodium hypochlorite) established that HOCl was a necessary and sufficient ROI for NET release. This was confirmed by the ability of HOCl to stimulate NET release in chronic granulomatous disease (CGD) patient neutrophils which, due to the lack of a functional NADPH oxidase, also lack the capacity for NET release in response to classical stimuli. Moreover, the exogenous addition of taurine, abundantly present within the neutrophil cytosol, abrogated NET production stimulated by phorbol myristate acetate (PMA) and HOCl, providing a novel mode of cytoprotection by taurine against oxidative stress by taurine.

  19. Determination of gross alpha, 224Ra, 226Ra, and 228Ra activities in drinking water using a single sample preparation procedure.

    PubMed

    Parsa, Bahman; Obed, Reynaldo N; Nemeth, William K; Suozzo, Gail P

    2005-12-01

    The current federal and New Jersey State regulations have greatly increased the number of gross alpha and radium tests for public and private drinking water supplies. The determination of radium isotopes in water generally involves lengthy and complicated processes. In this study, a new approach is presented for the determination of gross alpha, 224Ra, 226Ra, and 228Ra activities in water samples. The method includes a single sample preparation procedure followed by alpha counting and gamma-ray spectroscopy. The sample preparation technique incorporates an EPA-approved co-precipitation methodology for gross alpha determination with a few alterations and improvements. Using 3-L aliquots of sample, spiked with 133Ba tracer, the alpha-emitting radionuclides are isolated by a BaSO4 and Fe(OH)3 co-precipitation scheme. First the gross alpha-particle activity of the sample is measured with a low-background gas-flow proportional counter, followed by radium isotopes assay by gamma-ray spectroscopy, using the same prepared sample. Gamma-ray determination of 133Ba tracer is used to assess the radium chemical recovery. The 224Ra, 226Ra, and 228Ra activities in the sample are measured through their gamma-ray-emitting decay products, 212Pb, 214Pb/214Bi, and 228Ac, respectively. In cases where 224Ra determination is required, the gamma-ray counting should be performed within 2-4 d from sample collection. To measure 226Ra activity in the sample, the gamma-ray spectroscopy can be repeated 21 d after sample preparation to ensure that 226Ra and its progeny have reached the equilibrium state. At this point, the 228Ac equilibration with parent 228Ra is already established. Analysis of aliquots of de-ionized water spiked with NIST-traceable 230Th, 224Ra, 226Ra, and 228Ra standards demonstrated the accuracy and precision of this method. Various performance evaluation samples were also assayed for gross alpha as well as radium isotope activity determination using this procedure and the

  20. Cortisol Regulates Acid Secretion of H+-ATPase-rich Ionocytes in Zebrafish (Danio rerio) Embryos

    PubMed Central

    Lin, Chia-Hao; Shih, Tin-Han; Liu, Sian-Tai; Hsu, Hao-Hsuan; Hwang, Pung-Pung

    2015-01-01

    Systemic acid-base regulation is vital for physiological processes in vertebrates. Freshwater (FW) fish live in an inconstant environment, and thus frequently face ambient acid stress. FW fish have to efficiently modulate their acid secretion processes for body fluid acid-base homeostasis during ambient acid challenge; hormonal control plays an important role in such physiological regulation. The hormone cortisol was previously proposed to be associated with acid base regulation in FW fish; however, the underlying mechanism has not been fully described. In the present study, mRNA expression of acid-secreting related transporters and cyp11b (encoding an enzyme involved in cortisol synthesis) in zebrafish embryos was stimulated by treatment with acidic FW (AFW, pH 4.0) for 3 d. Exogenous cortisol treatment (20 mg/L, 3 d) resulted in upregulated expression of transporters related to acid secretion and increased acid secretion function at the organism level in zebrafish embryos. Moreover, cortisol treatment also significantly increased the acid secretion capacity of H+-ATPase-rich cells (HRCs) at the cellular level. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR) morpholino (MO) suppressed the expression of acid-secreting related transporters, and decreased acid secretion function at both the organism and cellular levels; on the other hand, mineralocorticoid receptor (MR) MO did not induce any effects. Such evidence supports the hypothesized role of cortisol in fish acid-base regulation, and provides new insights into the roles of cortisol; cortisol-GR signaling stimulates zebrafish acid secretion function through transcriptional/translational regulation of the transporters and upregulation of acid secretion capacity in each acid-secreting ionocyte. PMID:26635615

  1. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid.

    PubMed

    Langton, Simne; Gudas, Lorraine J

    2008-03-15

    CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.

  2. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  3. Regulation of Connexin-Based Channels by Fatty Acids.

    PubMed

    Puebla, Carlos; Retamal, Mauricio A; Acuña, Rodrigo; Sáez, Juan C

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.

  4. Regulation of Connexin-Based Channels by Fatty Acids

    PubMed Central

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  5. [Regulating acid stress resistance of lactic acid bacteria--a review].

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  6. Role of retinoic acid metabolizing cytochrome P450s, CYP26, in inflammation and cancer

    PubMed Central

    Stevison, Faith; Jing, Jing; Tripathy, Sasmita; Isoherranen, Nina

    2016-01-01

    Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer and what roles atRA metabolizing enzymes have in immune responses and cancers. PMID:26233912

  7. Regulation of collagen biosynthesis by ascorbic acid: a review.

    PubMed Central

    Pinnell, S. R.

    1985-01-01

    L-ascorbic acid is an essential cofactor for lysyl hydroxylase and prolyl hydroxylase, enzymes essential for collagen biosynthesis. In addition, L-ascorbic acid preferentially stimulates collagen synthesis in a manner which appears unrelated to the effect of L-ascorbic acid on hydroxylation reactions. This reaction is stereospecific and unrelated to intracellular degradation of collagen. The effect apparently occurs at a transcriptional or translational level, since L-ascorbic acid preferentially stimulates collagen-specific mRNA. In addition, it stimulates lysyl hydroxylase activity but inhibits prolyl hydroxylase activity in human skin fibroblasts in culture. PMID:3008449

  8. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    PubMed

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2016-11-10

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  9. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  10. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    PubMed

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  11. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  12. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes

    PubMed Central

    Ruyter, Bente; Berge, Gerd Marit; Sun, Yajing; Østbye, Tone-Kari Knutsdatter

    2016-01-01

    Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids. PMID:27973547

  13. Regulation of myocardial amino acid balance in the conscious dog.

    PubMed Central

    Schwartz, R G; Barrett, E J; Francis, C K; Jacob, R; Zaret, B L

    1985-01-01

    The effects in vivo of physiologic increases in insulin and amino acids on myocardial amino acid balance were evaluated in conscious dogs. Arterial and coronary sinus concentrations of amino acids and coronary blood flow were measured during a 30-min basal and a 100-min experimental period employing three protocols: euglycemic insulin clamp (plasma insulin equaled 70 +/- 11 microU/ml, n = 6); euglycemic insulin clamp during amino acid infusion (plasma insulin equaled 89 +/- 12 microU/ml, n = 6); and suppression of insulin with somatostatin during amino acid infusion (plasma insulin equaled 15 +/- 4 microU/ml, n = 6). Basally, only leucine and isoleucine were removed significantly by myocardium (net branched chain amino acid [BCAA] uptake equaled 0.5 +/- 0.2 mumol/min), while glycine, alanine, and glutamine were released. Glutamine demonstrated the highest net myocardial production (1.6 +/- 0.2 mumol/min). No net exchange was seen for valine, phenylalanine, tyrosine, cysteine, methionine, glutamate, asparagine, serine, threonine, taurine, and aspartate. In group I, hyperinsulinemia caused a decline of all plasma amino acids except alanine; alanine balance switched from release to an uptake of 0.6 +/- 0.4 mumol/min (P less than 0.05), while the myocardial balance of other amino acids was unchanged. In group II, amino acid concentrations rose, and were accompanied by a marked rise in myocardial BCAA uptake (0.4 +/- 0.1-2.6 +/- 0.3 mumol/min, P less than 0.001). Uptake of alanine was again stimulated (0.9 +/- 0.3 mumol/min, P less than 0.01), while glutamine production was unchanged (1.3 +/- 0.4 vs. 1.6 +/- 0.3 mumol/min). In group III, there was a 4-5-fold increase in the plasma concentration of the infused amino acids, accompanied by marked stimulation in uptake of only BCAA (6.8 +/- 0.7 mumol/min). Myocardial glutamine production was unchanged (1.9 +/- 0.4-1.3 +/- 0.7 mumol/min). Within the three experimental groups there were highly significant linear correlations

  14. Simultaneous detection of gastric acid and histamine release to unravel the regulation of acid secretion from the guinea pig stomach.

    PubMed

    Bitziou, Eleni; Patel, Bhavik Anil

    2012-08-01

    Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.

  15. Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis.

    PubMed

    Werther, Tobias; Spinka, Michael; Tittmann, Kai; Schütz, Anja; Golbik, Ralph; Mrestani-Klaus, Carmen; Hübner, Gerhard; König, Stephan

    2008-02-29

    The gene rv0853c from Mycobacterium tuberculosis strain H37Rv codes for a thiamine diphosphate-dependent alpha-keto acid decarboxylase (MtKDC), an enzyme involved in the amino acid degradation via the Ehrlich pathway. Steady state kinetic experiments were performed to determine the substrate specificity of MtKDC. The mycobacterial enzyme was found to convert a broad spectrum of branched-chain and aromatic alpha-keto acids. Stopped-flow kinetics showed that MtKDC is allosterically activated by alpha-keto acids. Even more, we demonstrate that also amino acids are potent activators of this thiamine diphosphate-dependent enzyme. Thus, metabolic flow through the Ehrlich pathway can be directly regulated at the decarboxylation step. The influence of amino acids on MtKDC catalysis was investigated, and implications for other thiamine diphosphate-dependent enzymes are discussed.

  16. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  17. The LysR-type regulator LeuO regulates the acid tolerance response in Vibrio cholerae

    PubMed Central

    Ante, Vanessa M.; Bina, X. Renee

    2015-01-01

    Vibrio cholerae is a neutrophilic enteric pathogen that is extremely sensitive to acid. As V. cholerae passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the V. cholerae acid tolerance response. A key component of the acid tolerance response is the cad system, which is encoded by cadC and the cadBA operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates cadBA expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the V. cholerae acid tolerance response. Transcriptional reporter assays revealed that leuO expression repressed cadC transcription, indicating that LeuO was a cadC repressor. Consistent with this, leuO expression was inversely linked to lysine decarboxylase production and leuO overexpression resulted in increased sensitivity to organic acids. Overexpression of leuO in a cadA mutant potentiated killing by organic acids, suggesting that the function of leuO in the acid tolerance response extended beyond its regulation of the cad system. Collectively, these studies have identified a new physiological role for LeuO in V. cholerae acid tolerance. PMID:26424466

  18. Retinoic Acid Attenuates Ileitis by Restoring the Balance between T-Helper 17 and T

    PubMed Central

    Collins, Colm B.; Aherne, Carol M.; Kominsky, Douglas; McNamee, Eóin N.; Lebsack, Matthew D.P.; Eltzschig, Holger; Jedlicka, Paul; Rivera-Nieves, Jesús

    2013-01-01

    Background & Aims Retinoic acid (RA), produced by intestinal epithelial cells (IECs) and dendritic cells (DCs) and regulated by transforming growth factor (TGF)-β, controls the enteric immune response by activating regulatory T (Treg) cells and preventing activation of T-helper (Th)17 cells Methods We studied the roles of RA in mice that overproduce tumor necrosis factor (TNF) and develop chronic ileitis (TNFΔARE mice). We assessed the frequency and function of CD103+ DCs and Th17 and Treg cells by flow cytometry; we measured expression of cytokines and retinaldehyde dehydrogenase (RALDH) enzymes in ileum samples, DCs, and IECs by real-time PCR. We quantified RA by electrochemical analysis and examined the effect of RA supplementation on TNF-induced ileitis using histologic, co-culture, and suppression assays and flow cytometry Results Numbers of CD103+ DCs decreased in the inflamed ilea of mice with chronic disease; RA synthetic machinery (RALDH1,2) was downregulated. Nevertheless, the proportion of CD4+, CD25+, FoxP3+ Treg cells increased, indicating an alternate source for RA. IECs responded to reduced levels of RA by upregulating RALDH3 in vivo and in vitro. Net tissue levels of RA levels remained lower in TNFΔARE than wild-type mice, indicating that epithelial up-regulation of RALDH3 could not maintain adequate concentrations of RA, probably because of loss of IEC mass. RA supplementation significantly attenuated disease by increasing the number and function of CD103+ DCs and Treg cells and reducing Th17 cells Conclusions Reduced levels of RA appear to induce IEC to upregulate synthesis of RA. RA supplementation attenuates ileitis through its effects on CD103+ DCs and Treg and Th17 cells. RA supplementation might used to treat patients with Crohn's disease PMID:22027263

  19. Uncoupling of retinoic acid signaling from tailbud development before termination of body axis extension.

    PubMed

    Cunningham, Thomas J; Zhao, Xianling; Duester, Gregg

    2011-10-01

    During the early stages of body axis extension, retinoic acid (RA) synthesized in somites by Raldh2 represses caudal fibroblast growth factor (FGF) signaling to limit the tailbud progenitor zone. Excessive RA down-regulates Fgf8 and triggers premature termination of body axis extension, suggesting that endogenous RA may function in normal termination of body axis extension. Here, we demonstrate that Raldh2-/- mouse embryos undergo normal down-regulation of tailbud Fgf8 expression and termination of body axis extension in the absence of RA. Interestingly, Raldh2 expression in wild-type tail somites and tailbud from E10.5 onwards does not result in RA activity monitored by retinoic acid response element (RARE)-lacZ. Treatment of wild-type tailbuds with physiological levels of RA or retinaldehyde induces RARE-lacZ activity, validating the sensitivity of RARE-lacZ and demonstrating that deficient RA synthesis in wild-type tail somites and tailbud is due to a lack of retinaldehyde synthesis. These studies demonstrate an early uncoupling of RA signaling from mouse tailbud development and show that termination of body axis extension occurs in the absence of RA signaling.

  20. Regulation of uterine and umbilical amino acid uptakes by maternal amino acid concentrations.

    PubMed

    Thureen, P J; Anderson, S M; Hay, W W

    2000-09-01

    We tested the hypothesis that decreased fetal amino acid (AA) supply, produced by maternal hypoaminoacidemia (low AA) during hyperglycemia (HG), is reversible with maternal AA infusion and regulates fetal insulin concentration ([I]). We measured net uterine and umbilical AA uptakes during maternal HG/low AA concentration ([AA]) and after maternal intravenous infusion of a mixed AA solution. After 5 days HG, all maternal [AA] except glycine were decreased >50%, particularly essential [AA] (P < 0.00005). Most fetal [AA] also were decreased, especially branched-chain AA (P < 0.001). Maternal AA infusion increased net uterine uptakes of Val, Leu, Ile, Met, and Ser and net umbilical uptakes of Val, Leu, Ile, Met, Phe, and Arg but did not change net uteroplacental uptake of any AA. Fetal [I] increased 55 +/- 14%, P < 0.001, with correction of fetal [AA], despite the lack of change in fetal glucose concentration. Thus generalized maternal hypoaminoacidemia decreases uterine and umbilical uptakes of primarily the essential AA and decreases fetal branched-chain [AA]. These changes are reversed with correction of maternal [AA], which also increases fetal [I].

  1. Transcriptome profiling and genome-wide DNA binding define the differential role of fenretinide and all-trans RA in regulating the death and survival of human hepatocellular carcinoma Huh7 cells.

    PubMed

    Hu, Ying; Liu, Hui-Xin; He, Yuqi; Fang, Yaping; Fang, Jianwen; Wan, Yu-Jui Yvonne

    2013-04-01

    Fenretinide is significantly more effective in inducing apoptosis in cancer cells than all-trans retinoic acid (ATRA). The current study uses a genome-wide approach to understand the differential role fenretinide and ATRA have in inducing apoptosis in Huh7 cells. Fenretinide and ATRA-induced gene expressions and DNA bindings were profiled using microarray and chromatin immunoprecipitation with anti-RXRα antibody. The data showed that fenretinide was not a strong transcription regulator. Fenretinide only changed the expressions of 1 093 genes, approximately three times less than the number of genes regulated by ATRA (2 811). Biological function annotation demonstrated that both fenretinide and ATRA participated in pathways that determine cell fate and metabolic processes. However, fenretinide specifically induced Fas/TNFα-mediated apoptosis by increasing the expression of pro-apoptotic genes i.e., DEDD2, CASP8, CASP4, and HSPA1A/B; whereas, ATRA induced the expression of BIRC3 and TNFAIP3, which inhibit apoptosis by interacting with TRAF2. In addition, fenretinide inhibited the expression of the genes involved in RAS/RAF/ERK-mediated survival pathway. In contrast, ATRA increased the expression of SOSC2, BRAF, MEK, and ERK genes. Most genes regulated by fenretinide and ATRA were bound by RXRα, suggesting a direct effect. This study revealed that by regulating fewer genes, the effects of fenretinide become more specific and thus has fewer side effects than ATRA. The data also suggested that fenretinide induces apoptosis via death receptor effector and by inhibiting the RAS/RAF/ERK pathway. It provides insight on how retinoid efficacy can be improved and how side effects in cancer therapy can be reduced.

  2. Regulating the Skin Permeation Rate of Escitalopram by Ion-pair Formation with Organic Acids.

    PubMed

    Song, Tian; Quan, Peng; Xiang, Rongwu; Fang, Liang

    2016-12-01

    In order to regulate the skin permeation rate (flux) of escitalopram (ESP), ion-pair strategy was used in our work. Five organic acids with different physicochemical properties, benzoic acid (BA), ibuprofen (IB), salicylic acid (SA), benzenesulfonic acid (BSA), and p-aminobenzoic acid (PABA), were employed as counter-ions to regulate the permeation rate of ESP across the rabbit abdominal skin in vitro. The interaction between ESP and organic acids was characterized by FTIR and (13)C NMR spectroscopy. Results showed that all organic acids investigated in this study performed a controlling effect on ESP flux. To further analyze the factors concerned with the permeation capability of ESP-acid complex, a multiple linear regression model was used. It is concluded that the steady-state flux (J) of ESP-acid complexes had a positive correlation with log K o/w (the n-octanol/water partition coefficient of ion-pair complex) and pK a (the acidity of organic acid counter-ion), but a negative correlation with MW (the molecular weight of ion-pair complex). The logK o/w of ion-pair complex is the primary one in all the factors that influence the skin permeation rate of ESP. The results demonstrated that organic acid with appropriate physicochemical properties can be considered as suitable candidate for the transdermal drug delivery of escitalopram.

  3. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  4. The Ski protein can inhibit ligand induced RARα and HDAC3 degradation in the Retinoic acid signaling pathway

    PubMed Central

    Zhao, Hongling; Ueki, Nobuhide; Marcelain, Katherine; Hayman, Michael J.

    2009-01-01

    Recent data has implicated the Ski protein as being a physiologically relevant negative regulator of signaling by Retinoic Acid (RA). The mechanism by which Ski represses RA signaling is unknown. Co-immunoprecipitation and immunofluorescence assay showed that Ski and RARα are in the same complex in both the absence and presence of RA, which makes Ski different from other corepressors. We determined that Ski can stabilize RARα and HDAC3. These results suggest that Ski represses RA signaling by stabilizing corepressor complex. PMID:19341714

  5. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.

    PubMed

    Dave, Anuja; Vaistij, Fabián E; Gilday, Alison D; Penfield, Steven D; Graham, Ian A

    2016-04-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.

  6. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid

    PubMed Central

    Dave, Anuja; Vaistij, Fabián E.; Gilday, Alison D.; Penfield, Steven D.; Graham, Ian A.

    2016-01-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT. PMID:26873978

  7. Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation

    PubMed Central

    Xu, Xiaojun; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Ruskeepää, Anna-Liisa; Aye, Cho Cho; Carson, Brian P.; Mora, Silvia; Orešič, Matej; Teleman, Aurelio A.

    2012-01-01

    The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis. PMID:22275878

  8. Concurrent determination of 224Ra, 226Ra, 228Ra, and unsupported 212Pb in a single analysis for drinking water and wastewater: dissolved and suspended fractions.

    PubMed

    Parsa, Bahman; Obed, Reynaldo N; Nemeth, William K; Suozzo, Gail

    2004-02-01

    A technique has been developed for the measurement of 224Ra, 226Ra, 228Ra, and unsupported 2t2Pb concurrently in a single analysis. The procedure can be applied to both drinking water and wastewater, including the dissolved and suspended fractions of a sample. For drinking water samples, using 3-L aliquots, the radium isotopes are isolated by a fast PbSO4 co-precipitation and then quantified by gamma-ray spectroscopy. The radium isotopes 224Ra, 226Ra, and 228Ra are measured through their gamma-ray-emitting decay products, 212Pb, 214Pb (and/or 214Bi), and 228Ac, respectively. Because of the short half-life of 224Ra (T1/2 = 3.66 d), the precipitate should be counted within 4 d of the sample collection date. In case the measurement of unsupported 212Pb (T1/2 = 10.64 h) is required, the gamma-ray analysis should be initiated as soon as possible, preferably on the same day of collection. The counting is repeated after about 21 d to ensure the 226Ra progeny are in equilibrium with their parent. At this point, the 228Ac equilibration with its 228Ra parent is already established. In the case of samples containing suspended materials, an aliquot of sample is filtered and then the filtrate is treated as described above for drinking water samples. The suspended fraction of sample, collected on the filter, is directly analyzed by gamma-ray spectroscopy with no further chemical separation. Aliquots of de-ionized water spiked with various radium standards were analyzed to check the accuracy and precision of the method. In addition, analysis results of actual samples using this method were compared with the ones performed using U.S. Environmental Protection Agency-approved procedures, and the measured values were in close agreement. This method simplifies the analytical procedures and reduces the labor while achieving the precision, accuracy, and minimum detection concentration requirements of EPA's Regulations.

  9. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors

    PubMed Central

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G.; Jurecic, Roland

    2008-01-01

    Objective FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3, and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. Methods FLRF was over-expressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF over-expression on EML cell differentiation into myelo-erythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells over-expressing FLRF were examined with Western and immunoprecipitation. Results Remarkably, over-expression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines Epo and IL-3, and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, Epo and RA receptor RARα in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, Epo and RARα receptors in EML and BaF3 cells, and that FLRF-mediated down-regulation of these receptors is ligand binding-independent. Conclusions The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myelo-erythroid lineages. PMID:18495327

  10. Regulatory impact analysis of the proposed acid-rain implementation regulations

    SciTech Connect

    Not Available

    1991-09-16

    This regulatory impact analysis (RIA) was developed in response to Executive Order (EO) 12291, which requires Federal Agencies to assess the costs, benefits, and impacts of all 'major' regulations. In compliance with EO 12291, this RIA assesses costs, benefits and impacts for the important provisions of Title IV. EPA divided its analysis of the Acid Rain Program into two parts. First, EPA analyzed the effects of the statute in the absence of any implementation regulations. In the second part of the analysis, EPA examined a 'regulatory' case that included both the SO2 reductions and the implementation regulations. By comparing costs under the regulatory case to those under the absent regulations case, EPA was able to isolate the incremental savings provided by the regulations. At the same time, by combining the two parts of the analysis, EPA was able to show the total costs imposed by the Acid Rain Program (the statute and the regulations) as a whole.

  11. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    PubMed

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  12. Regulating fatty acids in infant formula: critical assessment of U.S. policies and practices

    PubMed Central

    2014-01-01

    Background Fatty acids in breast-milk such as docosahexaenoic acid and arachidonic acid, commonly known as DHA and ARA, contribute to the healthy development of children in various ways. However, the manufactured versions that are added to infant formula might not have the same health benefits as those in breast-milk. There is evidence that the manufactured additives might cause harm to infants’ health, and they might lead to unwarranted increases in the cost of infant formula. The addition of such fatty acids to infant formula needs to be regulated. In the U.S., the Food and Drug Administration has primary responsibility for regulating the composition of infant formula. The central purpose of this study is to assess the FDA’s efforts with regard to the regulation of fatty acids in infant formula. Methods This study is based on critical analysis of policies and practices described in publicly available documents of the FDA, the manufacturers of fatty acids, and other relevant organizations. The broad framework for this work was set out by the author in his book on Regulating Infant Formula, published in 2011. Results The FDA does not assess the safety or the health impacts of fatty acid additives to infant formula before they are marketed, and there is no systematic assessment after marketing is underway. Rather than making its own independent assessments, the FDA accepts the manufacturers’ claims regarding their products’ safety and effectiveness. Conclusions The FDA is not adequately regulating the use of fatty acid additives to infant formula. This results in exposure of infants to potential risks. Adverse reactions are already on record. Also, the additives have led to increasing costs of infant formula despite the lack of proven benefits to normal, full term infants. There is a need for more effective regulation of DHA and ARA additives to infant formula. PMID:24433303

  13. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy

    NASA Astrophysics Data System (ADS)

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-11-01

    The 223Ra, 224Ra, and 225Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. 224Ra and 225Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. 224,225Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  14. Functionalized NaA nanozeolites labeled with (224,225)Ra for targeted alpha therapy.

    PubMed

    Piotrowska, Agata; Leszczuk, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2013-01-01

    The (223)Ra, (224)Ra, and (225)Ra radioisotopes exhibit very attractive nuclear properties for application in radionuclide therapy. Unfortunately the lack of appropriate bifunctional ligand for radium is the reason why these radionuclides have not found application in receptor-targeted therapy. In the present work, the potential usefulness of the NaA nanozeolite as a carrier for radium radionuclides has been studied. (224)Ra and (225)Ra, α-particle emitting radionuclides, have been absorbed in the nanometer-sized NaA zeolite (30-70 nm) through simple ion exchange. (224,225)Ra-nanozeolites exhibited very high stability in solutions containing physiological salt, EDTA, amino acids, and human serum. To make NaA nanozeolite particles dispersed in water their surface was modified with a silane coupling agent containing poly(ethylene glycol) molecules. This functionalization approach let us covalently attach a biomolecule to the NaA nanozeolite surface.

  15. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  16. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress

    PubMed Central

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François

    2016-01-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  17. Signalling of abscisic acid to regulate plant growth.

    PubMed Central

    Himmelbach, A; Iten, M; Grill, E

    1998-01-01

    Abscisic acid (ABA) mediated growth control is a fundamental response of plants to adverse environmental cues. The linkage between ABA perception and growth control is currently being unravelled by using different experimental approaches such as mutant analysis and microinjection experiments. So far, two protein phosphatases, ABI1 and ABI2, cADPR, pH, and Ca2+ have been identified as main components of the ABA signalling pathway. Here, the ABA signal transduction pathway is compared to signalling cascades from yeast and mammalian cells. A model for a bifurcated ABA signal transduction pathway exerting a positive and negative control mechanism is proposed. PMID:9800207

  18. Regulation of indole-3-acetic acid biosynthesis by branched-chain amino acids in Enterobacter cloacae UW5.

    PubMed

    Parsons, Cassandra V; Harris, Danielle M M; Patten, Cheryl L

    2015-09-01

    The soil bacterium Enterobacter cloacae UW5 produces the rhizosphere signaling molecule indole-3-acetic acid (IAA) via the indolepyruvate pathway. Expression of indolepyruvate decarboxylase, a key pathway enzyme encoded by ipdC, is upregulated by the transcription factor TyrR in response to aromatic amino acids. Some members of the TyrR regulon may also be controlled by branched-chain amino acids and here we show that expression from the ipdC promoter and production of IAA are downregulated by valine, leucine and isoleucine. Regulation of the IAA synthesis pathway by both aromatic and branched-chain amino acids suggests a broader role for this pathway in bacterial physiology, beyond plant interactions.

  19. IL2RA — EDRN Public Portal

    Cancer.gov

    The interleukin 2 receptor exists in three forms which differ in their ability to bind interleukin 2. The low affinity form of the receptor is a monomer of IL2RA, the alpha subunit. The alpha/beta subunit heterodimer, formed by IL2RA and IL2RB, is an intermediate affinity form. The alpha/beta/gamma heterotrimer formed by IL2RA, IL2RB, and IL2RG is the high affinity form. IL2RA is normally an integral membrane protein, although soluble IL2RA has been isolated. There are known alternately-spliced versions of IL2RA mRNAs, but their functions are unknown. Mutations in the IL2RA gene are associated with diabetes mellitus insulin-dependent type 10 (IDDM10). Complications of IDDM10 can adversely affect the eyes, kidneys, nerves, and blood vessels.

  20. Peatlands and green frogs: A relationship regulated by acidity?

    USGS Publications Warehouse

    Mazerolle, M.J.

    2005-01-01

    The effects of site acidification on amphibian populations have been thoroughly addressed in the last decades. However, amphibians in naturally acidic environments, such as peatlands facing pressure from the peat mining industry, have received little attention. Through two field studies and an experiment, I assessed the use of bog habitats by the green frog (Rana clamitans melanota), a species sensitive to various forestry and peat mining disturbances. First, I compared the occurrence and breeding patterns of frogs in bog and upland ponds. I then evaluated frog movements between forest and bog habitats to determine whether they corresponded to breeding or postbreeding movements. Finally, I investigated, through a field experiment, the value of bogs as rehydrating areas for amphibians by offering living Sphagnum moss and two media associated with uplands (i.e., water with pH ca 6.5 and water-saturated soil) to acutely dehydrated frogs. Green frog reproduction at bog ponds was a rare event, and no net movements occurred between forest and bog habitats. However, acutely dehydrated frogs did not avoid Sphagnum. Results show that although green frogs rarely breed in bogs and do not move en masse between forest and bog habitats, they do not avoid bog substrates for rehydrating, despite their acidity. Thus, bogs offer viable summering habitat to amphibians, which highlights the value of these threatened environments in terrestrial amphibian ecology.

  1. Regulation of hematogenous tumor metastasis by acid sphingomyelinase

    PubMed Central

    Carpinteiro, Alexander; Becker, Katrin Anne; Japtok, Lukasz; Hessler, Gabriele; Keitsch, Simone; Požgajovà, Miroslava; Schmid, Kurt W; Adams, Constantin; Müller, Stefan; Kleuser, Burkhard; Edwards, Michael J; Grassmé, Heike; Helfrich, Iris; Gulbins, Erich

    2015-01-01

    Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis. PMID:25851537

  2. Amino acid regulation of mammalian gene expression in the intestine.

    PubMed

    Brasse-Lagnel, Carole G; Lavoinne, Alain M; Husson, Annie S

    2010-07-01

    Some amino acids exert a wide range of regulatory effects on gene expression via the activation of different signalling pathways and transcription factors, and a number of cis elements were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine and arginine, which modulate a number of cell functions through the activation of various pathways in different tissues. In the intestine, appropriate concentrations of both arginine and/or glutamine contribute to facilitate cell proliferation, to limit the inflammatory response and apoptosis, and to modulate intermediary metabolism through specific transcription factors. Particularly, besides its role as a major fuel for enterocytes, the regulatory effects of glutamine have been extensively studied and the molecular mechanisms involved appear diversified and complex. Indeed, in addition to a major role of NF-kappaB in its anti-inflammatory action and a stimulatory role of AP-1 in its growth-promoting action and cell survival, the involvement of some other transcription factors, such as PPAR-gamma or HSF-1, was shown to maintain intestinal cell integrity. The signalling pathways leading to the activation of transcription factors imply several kinases, particularly MAP kinases in the effect of glutamine and p70 S6 kinase for those of arginine, but in most cases the precise pathways from the entrance of the aminoacid into the cell to the activation of gene transcription has remained elusive.

  3. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  4. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    PubMed Central

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. elegans, bcmo-1 was expressed in the intestine and was cadmium inducible. Similarly, in Hepa 1–6 cells, Bcmo1 was induced by cadmium. Retinoic acid-mediated signaling increased after 24-h exposures to 5 and 10 μm cadmium in Hepa 1–6 cells. Examination of gene expression demonstrated that the induction of retinoic acid signaling by cadmium may be mediated by overexpression of Bcmo1. Furthermore, cadmium inhibited the expression of Cyp26a1 and Cyp26b1, which are involved in retinoic acid degradation. These results indicate that cadmium-induced teratogenicity may be due to the ability of the metal to increase the levels of retinoic acid by disrupting the expression of retinoic acid-metabolizing genes. PMID:19556237

  5. Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2013-02-01

    Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signalling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells. Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of ellagic acid on these genes in Dalton's lymphoma bearing (DL). The role of ellagic acid was also tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation. Ellagic acid also down regulates the expression of classical isozymes of PKC i.e. PKCα, PKCβ, and PKCγ as well as activity of total PKC and NF-kB, indicating its antitumor action. The anticarcinogenic action of ellagic acid was also confirmed by up regulation of TGF-β1 and down regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down regulation of PKC signaling pathway leading to cell proliferation.

  6. MRA_1571 is required for isoleucine biosynthesis and improves Mycobacterium tuberculosis H37Ra survival under stress

    PubMed Central

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Yadav, Shailendra; Singh, Sudheer Kumar

    2016-01-01

    Threonine dehydratase is a pyridoxal 5-phosphate dependent enzyme required for isoleucine biosynthesis. Threonine dehydratase (IlvA) participates in conversion of threonine to 2-oxobutanoate and ammonia is released as a by-product. MRA_1571 is annotated to be coding for IlvA in Mycobacterium tuberculosis H37Ra (Mtb-Ra). We developed a recombinant (KD) Mtb-Ra strain by down-regulating IlvA. The growth studies on different carbon sources suggested reduced growth of KD compared to wild-type (WT), also, isoleucine concentration dependent KD growth restoration was observed. The expression profiling of IlvA suggested increased expression of IlvA during oxygen, acid and oxidative stress. In addition, KD showed reduced survival under pH, starvation, nitric oxide and peroxide stresses. KD was more susceptible to antimycobacterial agents such as streptomycin (STR), rifampicin (RIF) and levofloxacin (LVF), while, no such effect was noticeable when exposed to isoniazid. Also, an increase in expression of IlvA was observed when exposed to STR, RIF and LVF. The dye accumulation studies suggested increased permeability of KD to ethidium bromide and Nile Red as compared to WT. TLC and Mass studies confirmed altered lipid profile of KD. In summary down-regulation of IlvA affects Mtb growth, increases its susceptibility to stress and leads to altered cell wall lipid profile. PMID:27353854

  7. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio.

  8. Essential amino acids: master regulators of nutrition and environmental footprint?

    PubMed Central

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients’ environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  9. Zoledronic acid and geranylgeraniol regulate cellular behaviour and angiogenic gene expression in human gingival fibroblasts.

    PubMed

    Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J

    2014-10-01

    The mevalonate pathway (MVP) and the anti-angiogenic effect of bisphosphonates have been shown to play a role in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). This study determined the effect of the bisphosphonate, zoledronic acid and the replenishment of the MVP by geranylgeraniol on human gingival fibroblasts. Cell viability, apoptosis, morphological analysis using transmission electron microscopy, and gene expression for vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B, epiregulin and interferon-alpha were conducted. Results showed cellular viability was decreased in the presence of zoledronic acid and the co-addition of zoledronic acid with geranylgeraniol restored cell viability to control levels. Caspase 3/7 was detected in zoledronic-acid-treated cells indicating apoptosis. Transmission electron microscopy revealed dilation of the rough endoplasmic reticulum with zoledronic acid and the appearance of multiple lipid-like vesicles following the addition of geranylgeraniol. Zoledronic acid significantly (P < 0.05, FR > ± 2) up-regulated vascular endothelial growth factor A, bone morphogenic protein 2, ras homologue gene family member B and epiregulin at one or more time points but not interferon-alpha. Addition of geranylgeraniol resulted in a reduction in the expression of all five genes compared with zoledronic-acid-treated human gingival fibroblasts. The study concluded geranylgeraniol partially reversed the effects of zoledronic acid in human gingival fibroblasts both at the cellular and genetic levels, suggesting the regulation of these genes is mediated via the mevalonate pathway.

  10. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  11. Regulation of L-ascorbic acid content in strawberry fruits

    PubMed Central

    Cruz-Rus, Eduardo; Amaya, Iraida; Sánchez-Sevilla, José F.; Botella, Miguel A.; Valpuesta, Victoriano

    2011-01-01

    Plants have several L-ascorbic acid (AsA) biosynthetic pathways, but the contribution of each one to the synthesis of AsA varyies between different species, organs, and developmental stages. Strawberry (Fragaria×ananassa) fruits are rich in AsA. The pathway that uses D-galacturonate as the initial substrate is functional in ripe fruits, but the contribution of other pathways to AsA biosynthesis has not been studied. The transcription of genes encoding biosynthetic enzymes such as D-galacturonate reductase (FaGalUR) and myo-inositol oxygenase (FaMIOX), and the AsA recycling enzyme monodehydroascorbate reductase (FaMDHAR) were positively correlated with the increase in AsA during fruit ripening. Fruit storage for 72 h in a cold room reduced the AsA content by 30%. Under an ozone atmosphere, this reduction was 15%. Ozone treatment increased the expression of the FaGalUR, FaMIOX, and L-galactose-1-phosphate phosphatase (FaGIPP) genes, and transcription of the L-galactono-1,4-lactone dehydrogenase (FaGLDH) and FAMDHAR genes was higher in the ozone-stored than in the air-stored fruits. Analysis of AsA content in a segregating population from two strawberry cultivars showed high variability, which did not correlate with the transcription of any of the genes studied. Study of GalUR protein in diverse cultivars of strawberry and different Fragaria species showed that a correlation between GalUR and AsA content was apparent in most cases, but it was not general. Three alleles were identified in strawberry, but any sequence effect on the AsA variability was eliminated by analysis of the allele-specific expression. Taken together, these results indicate that FaGalUR shares the control of AsA levels with other enzymes and regulatory elements in strawberry fruit. PMID:21561953

  12. Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass.

    PubMed

    Pasiakos, Stefan M

    2012-07-01

    A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  13. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    PubMed

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  14. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid.

    PubMed

    Barman, Shrabani; Mukhopadhyay, Sourav K; Behara, Krishna Kalyani; Dey, Satyahari; Singh, N D Pradeep

    2014-05-28

    Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.

  15. Rosmarinic acid and its derivatives: biotechnology and applications.

    PubMed

    Bulgakov, Victor P; Inyushkina, Yuliya V; Fedoreyev, Sergey A

    2012-09-01

    Rosmarinic acid (RA) is one of the first secondary metabolites produced in plant cell cultures in extremely high yields, up to 19% of the cell dry weight. More complex derivatives of RA, such as rabdosiin and lithospermic acid B, later were also obtained in cell cultures at high yields. RA and its derivatives possess promising biological activities, such as improvement of cognitive performance, prevention of the development of Alzheimer's disease, cardioprotective effects, reduction of the severity of kidney diseases and cancer chemoprevention. The TNF-α-induced NF-κB signaling pathway has emerged as a central target for RA. Despite these impressive activities and high yields, the biotechnological production of these metabolites on an industrial scale has not progressed. We summarized data suggesting that external stimuli, the Ca(2+)-dependent NADPH oxidase pathway and processes of protein phosphorylation/dephosphorylation are involved in the regulation of biosynthesis of these substances in cultured plant cells. In spite of growing information about pathways regulating biosynthesis of RA and its derivatives in cultured plant cells, the exact mechanism of regulation remains unknown. We suggest that further progress in the biotechnology of RA and its derivatives can be achieved by using new high-throughput techniques.

  16. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development

    PubMed Central

    Lenti, Elisa; Farinello, Diego; Penkov, Dmitry; Castagnaro, Laura; Lavorgna, Giovanni; Wuputra, Kenly; Tjaden, Naomi E. Butler; Bernassola, Francesca; Caridi, Nicoletta; Wagner, Michael; Kozinc, Katja; Niederreither, Karen; Blasi, Francesco; Pasini, Diego; Trainor, Paul A.

    2016-01-01

    The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia. PMID:27214556

  17. Retinoid regulation of the zebrafish cyp26a1 promoter.

    PubMed

    Hu, Ping; Tian, Miao; Bao, Jie; Xing, Guangdong; Gu, Xingxing; Gao, Xiang; Linney, Elwood; Zhao, Qingshun

    2008-12-01

    Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA.

  18. PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane.

    PubMed

    Dalebroux, Zachary D; Matamouros, Susana; Whittington, Dale; Bishop, Russell E; Miller, Samuel I

    2014-02-04

    Gram-negative bacteria have two lipid membranes separated by a periplasmic space containing peptidoglycan. The surface bilayer, or outer membrane (OM), provides a barrier to toxic molecules, including host cationic antimicrobial peptides (CAMPs). The OM comprises an outer leaflet of lipid A, the bioactive component of lipopolysaccharide (LPS), and an inner leaflet of glycerophospholipids (GPLs). The structure of lipid A is environmentally regulated in a manner that can promote bacterial infection by increasing bacterial resistance to CAMP and reducing LPS recognition by the innate immune system. The gastrointestinal pathogen, Salmonella Typhimurium, responds to acidic pH and CAMP through the PhoPQ two-component regulatory system, which stimulates lipid A remodeling, CAMP resistance, and intracellular survival within acidified phagosomes. Work here demonstrates that, in addition to regulating lipid A structure, the S. Typhimurium PhoPQ virulence regulators also regulate acidic GPL by increasing the levels of cardiolipins and palmitoylated acylphosphatidylglycerols within the OM. Triacylated palmitoyl-PG species were diminished in strains deleted for the PhoPQ-regulated OM lipid A palmitoyltransferase enzyme, PagP. Purified PagP transferred palmitate to PG consistent with PagP acylation of both lipid A and PG within the OM. Therefore, PhoPQ coordinately regulates OM acidic GPL with lipid A structure, suggesting that GPLs cooperate with lipid A to form an OM barrier critical for CAMP resistance and intracellular survival of S. Typhimurium.

  19. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  20. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    PubMed

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.

  1. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  2. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  3. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure

    PubMed Central

    2011-01-01

    Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor

  4. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  5. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid.

    PubMed

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-02-06

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA(+) cells. Also, increases in haematocrit and CD71(-)/Ter119(+) erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34(+)/CD117(-) cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.

  6. The Regulation of Acid-Base Balance--A Microprocessor Simulation.

    ERIC Educational Resources Information Center

    Rasch, Robert W.

    1983-01-01

    Describes a computer program designed to simulate the regulation of acid-base balance, emphasizing regulatory compensations involved in the total process. Includes discussion of equations involved, a sample run of the program, and program listing (MicroSoft Basic). (JN)

  7. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT silenced lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucros...

  8. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress acclimating plants respond to abiotic and biotic stress by remodeling membrane fluidity and the release of a-linolenic from membrane lipid. The adjustment of membrane lipid fluidity occurs through changes in unsaturated fatty acid levels, a function provided by the regulated activity of...

  9. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  10. Acid rain compliance and coordination of state and federal utility regulation

    SciTech Connect

    Nordhaus, R.R.

    1993-07-01

    The Clean Air Act Amendments of 1990 (CAAA) impose new controls on emissions by electric utilities of the two major precursors of acid rain: sulfur dioxide and oxides of nitrogen. Utilities, and the utility holding company systems and power pools of which they are members, will be subject to extensive and costly compliance obligations under the new stature. Most of these utilities, utility systems, and power pools are regulated by more than one utility regulatory authority. Utility regulators will need to coordinate their policies for ratemaking and for review of acid rain compliance strategies if least-cost solutions are to be implemented without imposing on rate payers and utility shareholders the costs and risks of inconsistent regulatory determinations. This article outlines the scope of the coordination problem and spells out possible approaches that utility regulators may take in dealing with it. Topics covered include the following: the 1990 Clean Air Act Amendments; acid rain (SO2); acid rain (NOx); costs of compliance; implications for utility regulation - federal and state utility regulatory framework; potential jurisdictional conflicts under existing state/federal utility regulatory scheme - single utility, holding companies, power pools; Utility regulatory issues under the 1990 amendments - planning conflicts, operational conflicts; methods for dealing with potential jurisdictional conflicts; coordination mechanisms - informal consultation, rulemaking,coordination of adjudicatory proceedings, FERC rate filings.

  11. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

    PubMed Central

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070

  12. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods.

    PubMed

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4 (+)) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems.

  13. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  14. IGF-I and retinoic acid regulate the distribution pattern of IGFBPs synthesized by the canine mammary tumor cell line CMT-U335.

    PubMed

    Oosterlaken-Dijksterhuis, M A; Kwant, M M; Slob, A; Hellmén, E; Mol, J A

    1999-03-01

    Stromal-epithelial interactions modulate growth and development in normal and neoplastic mammary gland. The release of IGF binding proteins (IGFBPs) by the stromal compartment of the mammary gland may play a modulating role in the IGF-mediated proliferation of mammary epithelium. Therefore, the IGFBP-expression pattern of the canine mammary tumor cell line U335 (CMT-U335), which has a mesenchymal phenotype, was determined. In addition, the effects of IGFs and all trans retinoic acid (RA) on DNA synthesis, and IGFBP secretion and distribution were examined. The IGFBPs secreted by CMT-U335 were characterized as IGFBP-2, -4, -5, and -6. Moreover, CMT-U335 appeared to be a suitable mammary mesenchymal cell line for study of the regulatory factors of IGFBP expression and the mechanism(s) involved. IGFs and RA enhanced IGFBP concentrations in cell-conditioned medium with IGF-I and RA having an additive effect. The IGF-I-stimulated DNA synthesis, however, was inhibited by RA. The difference between IGF-I and RA was an enhanced IGFBP-5 binding to the extracellular matrix (ECM) by RA, whereas IGF-I reduced binding to the ECM. Because high doses of insulin had no significant effects on IGFBP concentrations in the medium, it is concluded that IGF-I-induced changes in IGFBP concentrations are not mediated by type-IIGF receptors and may be the consequence of IGFBP redistribution.

  15. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  16. Topoisomerase IIβ Negatively Modulates Retinoic Acid Receptor α Function: a Novel Mechanism of Retinoic Acid Resistance▿

    PubMed Central

    McNamara, Suzan; Wang, Hongling; Hanna, Nessrine; Miller, Wilson H.

    2008-01-01

    Interactions between retinoic acid (RA) receptor α (RARα) and coregulators play a key role in coordinating gene transcription and myeloid differentiation. In patients with acute promyelocytic leukemia (APL), the RARα gene is fused with the promyelocytic leukemia (PML) gene via the t(15;17) translocation, resulting in the expression of a PML/RARα fusion protein. Here, we report that topoisomerase II beta (TopoIIβ) associates with and negatively modulates RARα transcriptional activity and that increased levels of and association with TopoIIβ cause resistance to RA in APL cell lines. Knockdown of TopoIIβ was able to overcome resistance by permitting RA-induced differentiation and increased RA gene expression. Overexpression of TopoIIβ in clones from an RA-sensitive cell line conferred resistance by a reduction in RA-induced expression of target genes and differentiation. Chromatin immunoprecipitation assays indicated that TopoIIβ is bound to an RA response element and that inhibition of TopoIIβ causes hyperacetylation of histone 3 at lysine 9 and activation of transcription. Our results identify a novel mechanism of resistance in APL and provide further insight to the role of TopoIIβ in gene regulation and differentiation. PMID:18212063

  17. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin

    PubMed Central

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-01-01

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1. PMID:28251987

  18. The role of Zic transcription factors in regulating hindbrain retinoic acid signaling

    PubMed Central

    2013-01-01

    Background The reiterated architecture of cranial motor neurons aligns with the segmented structure of the embryonic vertebrate hindbrain. Anterior-posterior identity of cranial motor neurons depends, in part, on retinoic acid signaling levels. The early vertebrate embryo maintains a balance between retinoic acid synthetic and degradative zones on the basis of reciprocal expression domains of the retinoic acid synthesis gene aldhehyde dehydrogenase 1a2 (aldh1a2) posteriorly and the oxidative gene cytochrome p450 type 26a1 (cyp26a1) in the forebrain, midbrain, and anterior hindbrain. Results This manuscript investigates the role of zinc finger of the cerebellum (zic) transcription factors in regulating levels of retinoic acid and differentiation of cranial motor neurons. Depletion of zebrafish Zic2a and Zic2b results in a strong downregulation of aldh1a2 expression and a concomitant reduction in activity of a retinoid-dependent transgene. The vagal motor neuron phenotype caused by loss of Zic2a/2b mimics a depletion of Aldh1a2 and is rescued by exogenously supplied retinoic acid. Conclusion Zic transcription factors function in patterning hindbrain motor neurons through their regulation of embryonic retinoic acid signaling. PMID:23937294

  19. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.

    PubMed

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits.

  20. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    PubMed

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  1. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin.

    PubMed

    Liu, Yunxia; Hu, Yingying; E, Qiukai; Zuo, Ji; Yang, Ling; Liu, Wen

    2017-03-02

    Salvianolic acid B is an antioxidative ingredient derived from Radix Salviae miltiorrhizae that has been widely used to treat liver diseases. However, the therapeutic mechanism underlying Salvianolic acid B has remained largely unknown. Our studies verified that Salvianolic acid B efficiently blocked mitochondrial deformation and dysfunction induced by H2O2 in the human hepatocyte cell line HL7702. Mortalin, a mitochondrial molecular chaperone, maintains mitochondrial morphology stabilization and function integrity. Previous results showed that mortalin overexpression has been observed in hematoma carcinoma cells and that mortalin maintains mitochondrial homeostasis and antagonizes oxidative stress damage. We found that Salvianolic acid B significantly up-regulated mortalin protein expression levels. In addition, Salvianolic acid B lost the function of preventing mitochondrial deformation and dysfunction induced by oxidative stress under mortalin knockdown conditions. We further found that mortalin overexpression increases the mRNA expression of mitofusin-related factor Mfn1 and mitofission-related factor hFis1. In conclusion, Salvianolic acid B maintains the mitochondrial structure stabilization and functional integrity by up-regulating mortalin, which may be associated with increased mitofusin factor Mfn1 and reduced mitofission factor hFis1.

  2. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism

    PubMed Central

    Zhang, Qingzhu; Li, Yanqiang; Xu, Tao; Srivastava, Ashish Kumar; Wang, Dong; Zeng, Liang; Yang, Lan; He, Li; Zhang, Heng; Zheng, Zhimin; Yang, Dong-Lei; Zhao, Cheng; Dong, Juan; Gong, Zhizhong; Liu, Renyi; Zhu, Jian-Kang

    2016-01-01

    In plants, hybrid vigor is influenced by genetic and epigenetic mechanisms; however, the molecular pathways are poorly understood. We investigated the potential contributions of epigenetic regulators to heterosis in Arabidposis and found that the chromatin remodeler DECREASED DNA METHYLATION 1 (DDM1) affects early seedling growth heterosis in Col/C24 hybrids. ddm1 mutants showed impaired heterosis and increased expression of non-additively expressed genes related to salicylic acid metabolism. Interestingly, our data suggest that salicylic acid is a hormetic regulator of seedling growth heterosis, and that hybrid vigor arises from crosses that produce optimal salicylic acid levels. Although DNA methylation failed to correlate with differential non-additively expressed gene expression, we uncovered DDM1 as an epigenetic link between salicylic acid metabolism and heterosis, and propose that the endogenous salicylic acid levels of parental plants can be used to predict the heterotic outcome. Salicylic acid protects plants from pathogens and abiotic stress. Thus, our findings suggest that stress-induced hormesis, which has been associated with increased longevity in other organisms, may underlie specific hybrid vigor traits. PMID:27551435

  3. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  4. Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling.

    PubMed

    Wilde, Jonathan J; Siegenthaler, Julie A; Dent, Sharon Y R; Niswander, Lee A

    2017-03-08

    Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5(hat/hat) )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5(hat/hat) ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5(hat/hat) ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric

  5. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism.

    PubMed

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N; Cobb, Melanie H; Ross, Elliott M

    2016-10-21

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation.

  6. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    PubMed Central

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  7. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.

    PubMed

    Reichau, Sebastian; Blackmore, Nicola J; Jiao, Wanting; Parker, Emily J

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal.

  8. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells.

    PubMed Central

    Suva, L J; Ernst, M; Rodan, G A

    1991-01-01

    In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation. Images PMID:1708092

  9. The effects of trans-fatty acids on TAG regulation in mice depend on dietary unsaturated fatty acids.

    PubMed

    Saín, Juliana; González, Marcela Aída; Lavandera, Jimena Verónica; Scalerandi, María Victoria; Bernal, Claudio Adrián

    2016-08-01

    The aim of this study was to investigate the effects of trans-fatty acids (TFA) on liver and serum TAG regulation in mice fed diets containing different proportions of n-3, n-6 and n-9 unsaturated fatty acids (UFA) from olive (O), maize (C) or rapeseed (R) oils partially substituted or not with TFA (Ot, Ct and Rt, respectively). Male CF1 mice were fed (30 d) one of these diets. The effects of the partial substitution (1 %, w/w) of different UFA with TFA on the activity and expression of hepatic enzymes involved in lipogenesis and fatty acids oxidation were evaluated, as well as their transcription factor expressions. Some of the mechanisms involved in the serum TAG regulation, hepatic VLDL rich in TAG (VLDL-TAG) secretion rate and lipoprotein lipase (LPL) activity were assessed. In liver, TFA induced an increase in TAG content in the Ot and Rt groups, and this effect was associated with an imbalance between lipogenesis and β-oxidation. In the Ot group, exacerbated lipogenesis may be one of the mechanisms responsible for the liver steatosis induced by TFA, whereas in Rt it has been related to a decreased β-oxidation, compared with their respective controls. The enhanced hepatic VLDL-TAG secretion in the Ot and Rt groups was compensated with a differential removal of TAG by LPL enzyme in extrahepatic tissues, leading to unchanged serum TAG levels. In brief, the effects of low levels of TFA on liver and serum TAG regulation in mice depend on the dietary proportions of n-3, n-6 and n-9 UFA.

  10. Effect of retinoic acid on midkine gene expression in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2017-04-07

    Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10(-6) M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.

  11. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants.

    PubMed

    Pazmiño, D M; Rodríguez-Serrano, M; Sanz, M; Romero-Puertas, M C; Sandalio, L M

    2014-07-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D.

  12. A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms.

    PubMed

    Thomas-Chollier, Morgane; Watson, Lisa C; Cooper, Samantha B; Pufall, Miles A; Liu, Jennifer S; Borzym, Katja; Vingron, Martin; Yamamoto, Keith R; Meijsing, Sebastiaan H

    2013-10-29

    In addition to guiding proteins to defined genomic loci, DNA can act as an allosteric ligand that influences protein structure and activity. Here we compared genome-wide binding, transcriptional regulation, and, using NMR, the conformation of two glucocorticoid receptor (GR) isoforms that differ by a single amino acid insertion in the lever arm, a domain that adopts DNA sequence-specific conformations. We show that these isoforms differentially regulate gene expression levels through two mechanisms: differential DNA binding and altered communication between GR domains. Our studies suggest a versatile role for DNA in both modulating GR activity and also in directing the use of GR isoforms. We propose that the lever arm is a "fulcrum" for bidirectional allosteric signaling, conferring conformational changes in the DNA reading head that influence DNA sequence selectivity, as well as conferring changes in the dimerization domain that connect functionally with remote regulatory surfaces, thereby influencing which genes are regulated and the magnitude of their regulation.

  13. Hyaluronic acid as capacitation inductor: metabolic changes and membrane-associated adenylate cyclase regulation.

    PubMed

    Fernández, S; Córdoba, M

    2014-12-01

    The aim of this research was to study the effect of hyaluronic acid on bovine cryopreserved spermatozoa compared with heparin as regards the variation of capacitation induction, cellular oxidative metabolism and intracellular signal induced by membrane-associated adenylate cyclase to propose hyaluronic acid as a capacitation inductor. Heparin or hyaluronic acid and lysophosphatidylcholine were used to induce sperm capacitation and acrosome reaction, respectively. 2',5'-dideoxyadenosine was used as a membrane-associated adenylate cyclase inhibitor. The highest percentages of capacitated spermatozoa and live spermatozoa with acrosome integrity were obtained by incubating sperm for 60 min using 1000 μg/ml hyaluronic acid. In these conditions, capacitation induced by hyaluronic acid was lower compared with heparin; nonetheless both glycosaminoglycans promote intracellular changes that allow true acrosome reaction in vitro induced by lysophosphatidylcholine in bovine spermatozoa. Oxygen consumption in heparin-capacitated spermatozoa was significantly higher than in hyaluronic acid-treated spermatozoa. With all treatments, mitochondrial coupling was observed when a specific uncoupler of the respiratory chain was added. The inhibition of membrane-associated adenylate cyclase significantly blocked capacitation induction produced by hyaluronic acid, maintaining a basal sperm oxygen uptake in contrast to heparin effect in which both sperm parameters were inhibited, suggesting that the membrane-associated adenylate cyclase activation is involved in the intracellular signal mechanisms induced by both capacitation inductors, but only regulates mitochondrial oxidative phosphorylation in heparin-capacitated spermatozoa.

  14. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.

  15. A correlation between soil descriptions and {sup 226}Ra concentrations in Florida soils

    SciTech Connect

    Harrison, D.P.

    1992-12-31

    The soil radium content in Florida is highly variable. The range in radium concentrations, where the samples involved in this study are concerned, is from 0.1 pCi/g to 18.5 pCi/g. Low {sup 226}Ra concentrations (0.1 to 5 pCi/g) are evidenced in sands, moderate concentrations (5 to 11 pCi/g) are found in silt and gravel, and high {sup 226}Ra concentrations (>11 pCi/g) are found in soil horizons with shell, clay, and strata with phosphate. Strata containing phosphate yields a high concentration of {sup 226}Ra. The information obtained in this study, soil descriptions with their corresponding {sup 226}Ra concentrations, comes from geological cores drilled by geotechnical consultants with gamma spectrometry analysis performed by high resolution gamma spectroscopy. Concentration; of {sup 226}Ra generally increase with depth. These cores are usually terminated at 20 feet deep, with some cores being shallower than this due to hitting bedrock or encountering the water table. These frequency distributions give the core-logging geologist an approximate concentration of {sup 226}Ra based on the description of the soil. Since the correlation of {sup 226}Ra and soil descriptions can be used as a tool in assigning indoor radon potential, this study is of importance to land managers, contractors, developers, and regulating agencies who are attempting to place standards on tracts of land with {sup 226}Ra concentration used as a criterion.

  16. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    PubMed

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  17. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  18. SIGNALLING THROUGH RETINOIC ACID RECEPTORS IN CARDIAC DEVELOPMENT: DOING THE RIGHT THINGS AT THE RIGHT TIMES

    PubMed Central

    Xavier-Neto, José; Costa, Ângela M. Sousa; Figueira, Ana Carolina M.; Caiaffa, Carlo Donato; do Amaral, Fabio Neves; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R.; Castillo, Hozana Andrade

    2015-01-01

    Retinoic acid (RA) is a terpenoid that is synthesized from Vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinic and experimental data provide uncontested evidence for the pleiotropic roles of RA signalling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signalling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signalling is exquisitely regulated according to specific phases of cardiac development and that RA signalling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signalling by RA receptors (RARs) in early phases of heart development. PMID:25134739

  19. Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times.

    PubMed

    Xavier-Neto, José; Sousa Costa, Ângela M; Figueira, Ana Carolina M; Caiaffa, Carlo Donato; Amaral, Fabio Neves do; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R; Castillo, Hozana Andrade

    2015-02-01

    Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  20. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli.

    PubMed

    Lease, Richard A; Smith, Dorie; McDonough, Kathleen; Belfort, Marlene

    2004-09-01

    DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (sigmas), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.

  1. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  2. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  3. Characterization of the human MSX-1 promoter and an enhancer responsible for retinoic acid induction.

    PubMed

    Shen, R; Chen, Y; Huang, L; Vitale, E; Solursh, M

    1994-01-01

    Previous studies have shown that the expression of some human HOX genes can be induced by retinoic acid (RA) in cultured embryonal carcinoma (EC) cells. However, the mechanisms for the regulation of HOX gene expression by RA are still unclear. We have examined the effects of RA on the human MSX-1 (formerly named HOX-7) gene expression in cultured EC cells (NT2/D1). Furthermore, we have cloned and characterized the human MSX-1 promoter and analyzed the activities of the promoter in response to RA. Our results demonstrate that transcription of human MSX-1 is activated by RA in cultured EC cells. This activation is dose and time responsive. The MSX-1 promoter was shown to be TATA-box independent and able to promote transcription in RA-treated EC cells. DNase-I footprinting studies revealed protection of several GAGA factor binding sites and an NF-kappa B site upstream to the transcription start site by nuclear extracts prepared from EC cells. A downstream sequence was differentially protected by the nuclear extract from RA treated cells. This differential binding of the sequence with the nuclear extract was further confirmed by gel shift assays. This sequence confers to a heterologous promoter with the ability to respond to RA induction. Point mutation within this DNA fragment abolished the binding of the fragment to the nuclear extract and the response of this element in a heterologous promoter to RA induction. Deletion of this enhancer element together with the adjacent NF-kappa B and GAGA sites abolished the ability of the promoter to direct transcription in RA-treated EC cells. However, removal of a downstream DNA fragment from the promoter endowed the promoter with the ability to direct transcription in RA-untreated cells. Taken together, both positive and negative regulatory cis-elements are involved in the regulation of the MSX-1 promoter and coordinate to control the gene expression.

  4. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse.

    PubMed

    Snyder, Elizabeth M; Small, Christopher; Griswold, Michael D

    2010-11-01

    Throughout the reproductive lifespan of most male mammals, sperm production is constant because of the regulated differentiation of spermatogonia. Retinoic acid (RA) and a downstream target, Stra8, are required for complete spermatogenesis. To examine the role of RA in initiating spermatogonial differentiation, a transgenic mouse model expressing beta-galactosidase under the control of an RA response element was used. Cells in the neonatal testis undergoing active RA signaling were visualized by beta-galactosidase activity, the relationship between RA and differentiation determined, and the role of RA-degrading enzymes in regulating RA demonstrated. Beta-galactosidase activity was found to be predominantly associated with differentiating, premeiotic germ cells and to be distributed nonuniformly throughout the seminiferous tubules. Additionally, beta-galactosidase activity in premeiotic germ cells colocalized with STRA8 protein and was induced in germ cells with exogenous RA treatment. The RA-degrading enzyme, CYP26B1, was found to have germ cell localization and nonuniform distribution between tubules via immunohistochemistry. Treatment with a CYP26 enzyme inhibitor resulted in an increased number of germ cells with both beta-galactosidase activity and STRA8 protein and an increase in the expression of genes associated with differentiation and reduced expression of a gene associated with undifferentiated germ cells. These results show the action of RA in a subset of spermatogonia leads to nonuniform initiation of differentiation throughout the neonatal testis, potentially mediated through the action of CYP26 enzymes. Thus, the presence of RA is a likely driving factor in the initiation of spermatogonial differentiation and may result in asynchronous spermatogenesis.

  5. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    PubMed Central

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  6. Nuclear Structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L.M.; Borge, M.J.G.; Aas, A.J.; Fogelberg, B.; Garcia-Raffi, L.M.; Grant, I.S.; Gulda, K.; Hagebo, E.; Kurcewicz, W.; Lopez-Jimenez, M.J.; Lovhoiden, G.; Mach, H.; Martinez, T.; Rubio, B.; Tain, J.L.; Teijeiro, A.G.; Tengblad, O.; Thorsteinsen, T.F.

    1999-12-31

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr - Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  7. Nuclear structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L. M.; Borge, M. J. G.; Lopez-Jimenez, M. J.; Teijeiro, A. G.; Aas, A. J.; Hageboe, E.; Fogelberg, B.; Mach, H.; Garcia-Raffi, L. M.; Martinez, T.; Rubio, B.; Tain, J. L.; Grant, I. S.; Gulda, K.; Kurcewicz, W.; Loevhoeiden, G.; Tengblad, O.; Thorsteinsen, T. F.

    1999-11-16

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr-Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  8. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.

  9. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.

    PubMed

    Scott-Ward, T S; Li, H; Schmidt, A; Cai, Z; Sheppard, D N

    2004-01-01

    Niflumic acid is widely used to inhibit Ca(2+) -activated Cl(-) channels. However, the chemical structure of niflumic acid resembles that of diphenylamine-2-carboxylate, a drug that inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. To investigate how niflumic acid inhibits CFTR Cl(-) channel, we studied recombinant wild-type human CFTR in excised inside-out membrane patches. When added to the intracellular solution, niflumic acid caused a concentration- and voltage-dependent decrease of CFTR Cl(-) current with half-maximal inhibitory concentration (K(i)) of 253 microM and Hill co-efficient of approximately 1, at -50 mV. Niflumic acid inhibition of single CFTR Cl(-) channels was characterized by a very fast, flickery block that decreased dramatically current amplitude without altering open-probability. Consistent with these data, spectral analysis of CFTR Cl(-) currents suggested that channel block by niflumic acid was described by the closed <--> open <--> blocked kinetic scheme with blocker on rate (k(on)) = 13.9 x 10(6) M(-1)s(-1), off rate (k(off))=3348 s(-1) and dissociation constant (K(d)) = 241 microM, at -50 mV. Based on these data, we tested the effects of niflumic acid on transepithelial Cl(-) secretion and cyst growth using type I MDCK epithelial cells. Niflumic acid (200 microM) inhibited cAMP-stimulated, bumetanide-sensitive short-circuit current by 55%. Moreover, the drug potently retarded cyst growth. We conclude that niflumic acid is an open-channel blocker of CFTR that inhibits Cl(-) permeation by plugging the channel pore. It or related agents might be of value in the development of new therapies for autosomal dominant polycystic kidney disease.

  10. Metabolic regulation of fatty acid esterification and effects of conjugated linoleic acid on glucose homeostasis in pig hepatocytes.

    PubMed

    Conde-Aguilera, J A; Lachica, M; Nieto, R; Fernández-Fígares, I

    2012-02-01

    Conjugated linoleic acids (CLAs) are geometric and positional isomers of linoleic acid (LA) that promote growth, alter glucose metabolism and decrease body fat in growing animals, although the mechanisms are poorly understood. A study was conducted to elucidate the effects of CLA on glucose metabolism, triglyceride (TG) synthesis and IGF-1 synthesis in primary culture of porcine hepatocytes. In addition, hormonal regulation of TG and IGF-1 synthesis was addressed. Hepatocytes were isolated from piglets (n = 5, 16.0 ± 1.98 kg average body weight) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Hepatocytes were cultured in William's E containing dexamethasone (10-8 and 10-7 M), insulin (10 and 100 ng/ml), glucagon (0 and 100 ng/ml) and CLA (1 : 1 mixture of cis-9, trans-11 and trans-10, cis-12 CLA, 0.05 and 0.10 mM) or LA (0.05 and 0.10 mM). Addition of CLA decreased gluconeogenesis (P < 0.05), whereas glycogen synthesis and degradation, TG synthesis and IGF-1 synthesis were not affected compared with LA. Increased concentration of fatty acids in the media decreased IGF-1 production (P < 0.001) and glycogen synthesis (P < 0.01), and increased gluconeogenesis (P < 0.001) and TG synthesis (P < 0.001). IGF-1 synthesis increased (P < 0.001) and TG synthesis decreased (P < 0.001) as dexamethasone concentration in the media rose. High insulin/glucagon increased TG synthesis. These results indicate that TG synthesis in porcine hepatocytes is hormonally regulated so that dexamethasone decreases and insulin/glucagon increases it. In addition, CLA decreases hepatic glucose production through decreased gluconeogenesis.

  11. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism.

    PubMed

    Kunisawa, Jun; Hashimoto, Eri; Inoue, Asuka; Nagasawa, Risa; Suzuki, Yuji; Ishikawa, Izumi; Shikata, Shiori; Arita, Makoto; Aoki, Junken; Kiyono, Hiroshi

    2014-08-15

    Enhancement of intestinal IgA responses is a primary strategy in the development of oral vaccine. Dietary fatty acids are known to regulate host immune responses. In this study, we show that dietary palmitic acid (PA) and its metabolites enhance intestinal IgA responses. Intestinal IgA production was increased in mice maintained on a PA-enriched diet. These mice also showed increased intestinal IgA responses against orally immunized Ag, without any effect on serum Ab responses. We found that PA directly stimulates plasma cells to produce Ab. In addition, mice receiving a PA-enriched diet had increased numbers of IgA-producing plasma cells in the large intestine; this effect was abolished when serine palmitoyltransferase was inhibited. These findings suggest that dietary PA regulates intestinal IgA responses and has the potential to be a diet-derived mucosal adjuvant.

  12. Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells

    PubMed Central

    Cai, Ming; He, Jingquan; Xiong, Jian; Tay, Li Wei Rachel; Wang, Ziqing; Rog, Colin; Wang, Jingshu; Xie, Yizhao; Wang, Guobin; Banno, Yoshiko; Li, Feng; Zhu, Michael; Du, Guangwei

    2016-01-01

    Cancer cells utilize flexible metabolic programs to maintain viability and proliferation under stress conditions including nutrient deprivation. Here we report that phospholipase D1 (PLD1) participates in the regulation of metabolic plasticity in cancer cells. PLD1 activity is required for cancer cell survival during prolonged glucose deprivation. Blocking PLD1 sensitizes cancer cells to glycolysis inhibition by 2-deoxy-D-glucose (2-DG) and results in decreased autophagic flux, enlarged lysosomes, and increased lysosomal pH. Mechanistically, PLD1-regulated autophagy hydrolyzes bulk membrane phospholipids to supply fatty acids (FAs) for oxidation in mitochondria. In low glucose cultures, the blockade of fatty acid oxidation (FAO) by PLD1 inhibition suppresses adenosine triphosphate (ATP) production and increases reactive oxygen species (ROS), leading to cancer cell death. In summary, our findings reveal a novel role of PLD1 in sustaining cancer cell survival during metabolic stress, and suggest PLD1 as a potential target for anticancer metabolism therapy. PMID:27809301

  13. Antiepileptic potential of matrine via regulation the levels of gamma-aminobutyric acid and glutamic acid in the brain.

    PubMed

    Xiang, Jun; Jiang, Yugang

    2013-12-05

    Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug.

  14. Operational testing of valve regulated lead acid batteries in commercial aircraft

    SciTech Connect

    Timmons, J.B.; Koss, E.F.

    1997-12-01

    Valve regulated lead acid (VRLA) batteries provide electrical performance that is virtually identical to sintered plate nickel-cadmium battery systems. In addition, the VRLA batteries offer the user a no maintenance battery and other enhanced features that make this a very desirable battery for aircraft applications. In field trials, where VRLA batteries were substituted for nickel-cadmium batteries, the VRLA provided the user with a high reliability turbine engine starting battery under a wide variety of climatic conditions.

  15. The LIM Protein Ajuba Restricts the Second Heart Field Progenitor Pool by Regulating Isl1 Activity

    PubMed Central

    Witzel, Hagen R.; Jungblut, Benno; Choe, Chong Pyo; Crump, J. Gage; Braun, Thomas; Dobreva, Gergana

    2013-01-01

    SUMMARY Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebra-fish embryos show an increased pool of Isl1+ cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1+ cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells. PMID:22771034

  16. A high-fat diet regulates gastrin and acid secretion through primary cilia.

    PubMed

    Saqui-Salces, Milena; Dowdle, William E; Reiter, Jeremy F; Merchant, Juanita L

    2012-08-01

    The role of primary cilia in the gastrointestinal tract has not been examined. Here we report the presence of primary cilia on gastric endocrine cells producing gastrin, ghrelin, and somatostatin (Sst), hormones regulated by food intake. During eating, cilia in the gastric antrum decreased, whereas gastric acid and circulating gastrin increased. Mice fed high-fat chow showed a delayed decrease in antral cilia, increased plasma gastrin, and gastric acidity. Mice fed high-fat chow for 3 wk showed lower cilia numbers and acid but higher gastrin levels than mice fed a standard diet, suggesting that fat affects gastric physiology. Ex vivo experiments showed that cilia in the corpus responded to acid and distension, whereas cilia in the antrum responded to food. To analyze the role of gastric cilia, we conditionally deleted the intraflagellar transport protein Ift88 (Ift88(-/fl)). In fed Ift88(-/fl) mice, gastrin levels were higher, and gastric acidity was lower. Moreover, gastrin and Sst gene expression did not change in response to food as in controls. At 8 mo, Ift88(-/fl) mice developed foveolar hyperplasia, hypergastrinemia, and hypochlorhydria associated with endocrine dysfunction. Our results show that components of food (fat) are sensed by antral cilia on endocrine cells, which modulates gastrin secretion and gastric acidity.

  17. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    PubMed Central

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Pasqualini, Renata; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases. PMID:27468426

  18. Low-maintenance, valve-regulated, lead/acid batteries in utility applications

    NASA Astrophysics Data System (ADS)

    Cook, G. M.; Spindler, W. C.

    Electric power utility companies have various needs for lead/acid batteries, and also are beginning to promote customer-side-of-the meter applications for mutual benefits. Increasing use of lead/acid batteries in the future will depend heavily on improving performance and reliability of sealed, recombination designs, and on their versatility for many applications. Classifying various utility uses could be by cycling requirements, depth-of-discharge, power or energy (ratio of watts to hours), or by site (utility or customer). Deep-cycling examples are energy storage, peak-shaving and electric vehicles. Shallow-cycling examples are frequency regulation and reactive power control. Infrequent discharge examples are stationary service and spinning reserve. (Float service for telecommunications and uninterruptible power sources (UPS) applications are not addressed.) Some present and planned installations of valve-regulated lead/acid batteries are surveyed. Performance characteristics will be discussed, including recent results of testing both gel and absorptive glass mat (AGM) types of deep-cycling batteries. Recommendations for future research and development of valve-regulated cell technology are outlined, based on a recent conference organized by the United States Department of Energy (USDOE) and the Electric Power Research Institute (EPRI).

  19. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo

    PubMed Central

    Melchionda, Manuela; Pittman, Jon K.

    2016-01-01

    Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function. PMID:27002171

  20. Hepatocyte nuclear factor 4α regulation of bile acid and drug metabolism

    PubMed Central

    Chiang, John YL

    2013-01-01

    The hepatocyte nuclear factor 4α (HNF4α) is a liver-enriched nuclear receptor that plays a critical role in early morphogenesis, fetal liver development, liver differentiation and metabolism. Human HNF4α gene mutations cause maturity on-set diabetes of the young type 1, an autosomal dominant non-insulin-dependent diabetes mellitus. HNF4α is an orphan nuclear receptor because of which the endogenous ligand has not been firmly identified. The trans-activating activity of HNF4α is enhanced by interacting with co-activators and inhibited by corepressors. Recent studies have revealed that HNF4α plays a central role in regulation of bile acid metabolism in the liver. Bile acids are required for biliary excretion of cholesterol and metabolites, and intestinal absorption of fat, nutrients, drug and xenobiotics for transport and distribution to liver and other tissues. Bile acids are signaling molecules that activate nuclear receptors to control lipids and drug metabolism in the liver and intestine. Therefore, HNF4α plays a central role in coordinated regulation of bile acid and xenobiotics metabolism. Drugs that specifically activate HNF4α could be developed for treating metabolic diseases such as diabetes, dyslipidemia and cholestasis, as well as drug metabolism and detoxification. PMID:19239393

  1. Regulation by organic acids of polysaccharide-mediated microbe-plant interactions.

    PubMed

    Nakata, K; Kobayashi, T; Takiguchi, Y; Yamaguchi, T

    2000-10-01

    A polysaccharide flocculant of Klebsiella pneumoniae H12 has been suggested to mediate microbe-plant interactions with the aid of Ca2+ [K. Nakata et al., Biosci. Biotechnol. Biochem., 64, 459-465, 2000]. Here, two-way regulation of polysaccharide-mediated interactions between K. pneumoniae and Raphanus sativus was studied using organic acids. Namely, 10 mM equivalents of organic acids promoted production of the polysaccharide by the bacterium, but inhibited flocculation of bacterial cells by the polysaccharide. These phenomena were counterbalanced by equi-molar equivalents of Ca2+, suggesting competition for Ca2+ between the carboxylic residues of the polysaccharide and those of the aliphatic acids. By electron microscopy observations, bacterial cell aggregates were sparsely distributed over the main roots and root hairs, had various sizes, and seemed to tightly adhere to root tissues. Their shapes seemed to be distorted and abundant in cavities. In brief, these microscopical observations may be explained by a two-way regulation system of bacterial adhesion to a plant by organic acids.

  2. Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect.

    PubMed Central

    Carlstedt-Duke, J; Brönnegård, M; Strandvik, B

    1986-01-01

    The regulation of arachidonic acid release from membrane phospholipids was investigated in lymphocytes from patients with cystic fibrosis as well as control patients. No effect of either dexamethasone or fetal calf serum was seen on arachidonic acid release from cystic fibrosis lymphocytes, in contrast to control lymphocytes. In the latter cells, arachidonic acid release was inhibited by dexamethasone, fetal calf serum, or both. There were no differences in glucocorticoid receptor in lymphocytes from the two groups with regard to Kd and number of binding sites per cell. Furthermore, dexamethasone inhibited the incorporation of thymidine into lymphocytes from either group, indicating a normal functional glucocorticoid receptor. The defective regulation of arachidonic acid, resulting in an increased turnover, can explain many of the findings in cystic fibrosis, and we hypothesize that it is the basic defect causing the disease. The defect occurs at a level after the glucocorticoid receptor, which is functionally normal, and involves either the glucocorticoid-dependent phospholipase-inhibitory protein lipomodulin (lipocortin) or phospholipase A2. PMID:3097647

  3. Understanding Rheumatoid Arthritis (RA): Treatment and Causes

    MedlinePlus

    ... this page please turn JavaScript on. Feature: Understanding Rheumatoid Arthritis (RA) Treatment and Causes Past Issues / Summer 2014 Table of Contents How Is Rheumatoid Arthritis Treated? Doctors have many ways to treat this ...

  4. SoRa first flight. Summer 2009

    NASA Astrophysics Data System (ADS)

    Pirrotta, S.; Flamini, E.

    The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.

  5. RA Construction KC, LLC Information Sheet

    EPA Pesticide Factsheets

    RA Construction KC, LLC (the Company) is located in Gladstone, Missouri. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Kansas City, Missouri.

  6. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Ljungdahl, Per O.; Daignan-Fornier, Bertrand

    2012-01-01

    Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear. PMID:22419079

  7. Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.

    PubMed

    Laor, Dana; Cohen, Adiel; Pasmanik-Chor, Metsada; Oron-Karni, Varda; Kupiec, Martin; Weisman, Ronit

    2014-03-01

    TOR proteins reside in two distinct complexes, TOR complexes 1 and 2 (TORC1 and TORC2), that are central for the regulation of cellular growth, proliferation, and survival. TOR is also the target for the immunosuppressive and anticancer drug rapamycin. In Schizosaccharomyces pombe, disruption of the TSC complex, mutations in which can lead to the tuberous sclerosis syndrome in humans, results in a rapamycin-sensitive phenotype under poor nitrogen conditions. We show here that the sensitivity to rapamycin is mediated via inhibition of TORC1 and suppressed by overexpression of isp7(+), a member of the family of 2-oxoglutarate-Fe(II)-dependent oxygenase genes. The transcript level of isp7(+) is negatively regulated by TORC1 but positively regulated by TORC2. Yet we find extensive similarity between the transcriptome of cells disrupted for isp7(+) and cells mutated in the catalytic subunit of TORC1. Moreover, Isp7 regulates amino acid permease expression in a fashion similar to that of TORC1 and opposite that of TORC2. Overexpression of isp7(+) induces TORC1-dependent phosphorylation of ribosomal protein Rps6 while inhibiting TORC2-dependent phosphorylation and activation of the AGC-like kinase Gad8. Taken together, our findings suggest a central role for Isp7 in amino acid homeostasis and the presence of isp7(+)-dependent regulatory loops that affect both TORC1 and TORC2.

  8. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation.

    PubMed

    Kasubuchi, Mayu; Hasegawa, Sae; Hiramatsu, Takero; Ichimura, Atsuhiko; Kimura, Ikuo

    2015-04-14

    During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions.

  9. Bile acids in regulation of inflammation and immunity: friend or foe?

    PubMed

    Zhu, Ci; Fuchs, Claudia D; Halilbasic, Emina; Trauner, Michael

    2016-01-01

    Apart from their pivotal role in dietary lipid absorption and cholesterol homeostasis, bile acids (BAs) are increasingly recognised as important signalling molecules in the regulation of systemic endocrine functions. As such BAs are natural ligands for several nuclear hormone receptors and G-protein-coupled receptors. Through activating various signalling pathways, BAs not only regulate their own synthesis, enterohepatic recirculation and metabolism, but also immune homeostasis. This makes BAs attractive therapeutic agents for managing metabolic and inflammatory liver disorders. Recent experimental and clinical evidence indicates that BAs exert beneficial effects in cholestatic and metabolically driven inflammatory diseases. This review elucidates how different BAs function as pathogenetic factors and potential therapeutic agents for inflammation-driven liver diseases, focusing on their role in regulation of inflammation and immunity.

  10. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium.

    PubMed

    Sugimoto, Ryo; Nabeshima, Yo-ichi; Yoshida, Shosei

    2012-01-01

    Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.

  11. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism

    PubMed Central

    Giudetti, Anna M.; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V.; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  12. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  13. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  14. Historical perspective on the role of the kidney in acid-base regulation.

    PubMed

    Smogorzewski, Miroslaw J

    2009-01-01

    Early observations on the acidity of normal urine by J. B. von Helmont (1527-1644) and on urine content of sulfate, phosphate and carbonate by J. J. Berzelius (1779-1848), followed by the studies of Bence Jones (1813-1878) on the connection between food, nutrition and urine acidity, pointed to the role of the kidney in regulation of acid-base status in humans and animals. The next important steps in this field of science were studies by F. Walter (1877) on decreased "alkali" in blood and increased ammonia in the urine of dogs after infusion into their blood of hydrochloric acid, and the observations of B. Naunyn (1939-1925) and O. Minkowski (1853-1931) on the presence of beta-hydroxybutyric acid in urine and on increased ammonia excretion in urine from patients with diabetic coma. Also it was found that patients with uremia had decreased titratable "alkali' in blood (R. von Jaksch 1855-1947) and reduced ability to excrete ammonia (W. W. Palmer and L. J. Henderson 1915). Finally, studies by R. F. Pitts (1908-1977) defined the role of the kidney in reabsorption of bicarbonate in the tubules and linked hydrogen secretion to sodium excretion in the urine.

  15. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors.

    PubMed

    Fuchs, Stefan; Tischer, Stefanie V; Wunschel, Christian; Christmann, Alexander; Grill, Erwin

    2014-04-15

    The plant hormone abscisic acid (ABA) acts both as a developmental signal and as an integrator of environmental cues such as drought and cold. ABA perception recruits an ABA-binding regulatory component [regulatory component of ABA receptor (RCAR)/PYR1/PYL] and an associated protein phosphatase 2C (PP2C). Phytohormone binding inactivates the phosphatase activity of the coreceptor, permitting phosphorelay of the ABA signal via downstream protein kinases. RCARs and PP2C coreceptors are represented by small protein families comprising 14 and 9 members in Arabidopsis, respectively. The specificity of the RCAR-PP2C interaction and the constraints contributing to specific combinations are poorly understood. In this contribution, we analyzed RCAR7/PYL13, which is characterized by three variant amino acid residues in the conserved ABA-binding pocket. RCAR7 regulated the phosphatase activity of the PP2Cs ABI1, ABI2, and PP2CA in vitro at nanomolar ABA levels; however, it was unable to regulate the structurally related hypersensitive to ABA 1 (HAB1). Site-directed mutagenesis of HAB1 established ABA-dependent regulation by RCAR7. Conversion of the noncanonical amino acid residues of RCAR7 into the consensus ABA-binding pocket did not perceptibly change receptor function. Ectopic expression of RCAR7 in Arabidopsis resulted in ABA hypersensitivity affecting gene regulation, seed germination, and stomatal closure. The RCAR7 loss-of-function mutant revealed no changes in ABA responses, similar to the RCAR9 knockout line, whereas the combined deficiency of RCAR7 and RCAR9 resulted in ABA-insensitive seed germination. The study shows a role of RCAR7 in early plant development, proves its ABA receptor function, and identifies structural constraints of RCAR7-PP2C interaction.

  16. Estuarine geochemistry of /sup 224/Ra, /sup 226/Ra, and /sup 222/Rn

    SciTech Connect

    Elsinger, R.J.

    1982-01-01

    Desorption from river borne sediments is the most likely source of the excess /sup 226/Ra. Laboratory mixing experiments on Pee Dee River sediments show an increase in /sup 226/Ra desorption with increasing salinities with maximum desorption occurring at or above 20/sup 0//oo salinity. Desorption and diffusion are the sources for /sup 226/Ra in the estuarine systems. In Winyah Bay the /sup 228/Ra//sup 226/Ra activity ratio does not change significantly with salinity, averaging around 1.4, indicating desorption as the major source of /sup 228/Ra. In the Yangtze River the /sup 228/Ra//sup 226/Ra activity ratio is constant (approx.1.90) until increasing linearly above 16/sup 0//oo. A diffusive flux from regeneration by /sup 232/Th decay in shelf sediments is the source of the increase. In Delaware Bay /sup 228/Ra increases faster than /sup 226/Ra in the less than or equal to22/sup 0//oo water, indicating a source in addition to desorption. The increase can be balanced by a 0.33 dpm/cm/sup 2/-year flux over the upper part of the Bay where fine grained sediments predominate. /sup 224/Ra behavior is controlled by its 3.64 day half-life. In Winyah Bay a flux of around 0.4 dpm/cm/sup 2/-day is necessary to support the standing crop of non-desorbed /sup 224/Ra in the water column. In Delaware Bay the nearly constant /sup 224/Ra in concentration over the 2.5/sup 0//oo to 12/sup 0//oo salinity range are maintained by regeneration from /sup 228/Th in the turbidity maximum zones and diffusion from bottom sediments. Water leaving on ebb tide from a salt marsh on Delaware Bay had increases in all three radium isotopes (/sup 224/Ra > /sup 228/Ra > /sup 226/Ra) compared to water coming in on the flood tide. Excess /sup 222/Rn concentrations in a fresh water section of the Pee Dee River show a decreasing downstream gradient. Using these gradients to determine evasion rates, stagnant film thicknesses range from 21..mu.. to 62..mu...

  17. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos.

    PubMed Central

    Papalopulu, N; Lovell-Badge, R; Krumlauf, R

    1991-01-01

    In this paper we describe experiments that detail the response of murine Hox-2 genes to cellular differentiation and retinoic acid in cell culture. Hox-2 genes are transiently activated in differentiating ES cells even in the absence of retinoic acid (RA), indicating that their induction is a normal aspect of differentiation. Furthermore, in the continuous presence of RA F9 teratocarcinoma cells show a differential ability to maintain Hox-2 expression depending upon whether the cells follow a visceral or parietal endoderm pathway. These data suggest a clear dependence of Hox-2 expression on the degree and type of differentiation in different cells. However, RA also has dramatic differentiation independent effects on Hox-2 regulation. In ES cells the levels of Hox expression are greatly enhanced by exposure to RA, and in F9 cells of the visceral or parietal phenotype the continuous presence of RA is required to maintain these high levels. Nuclear run-on experiments illustrate that Hox-2 genes are active in F9 stem cells and that a large portion of the RA induction is mediated by post-transcriptional mechanisms. Therefore RA exerts its effects on Hox-2 expression by upregulating or modulating genes which are already active, rather than by turning-on silent genes. All nine Hox-2 genes are induced in F9 cells by RA and there is a direct correlation (collinearity) between gene order and the relative dose response of each gene to RA. In Xenopus embryos treated with RA, homologues of the Hox-2 genes also displayed a temporal and dose response collinearity with gene organisation. Together these findings suggest that the collinear response to RA is highly conserved in vertebrates and combined with the ability of RA to modify expression during cellular differentiation could be an important feature of the Hox-2 cluster itself used to generate the spatially-restricted patterns of gene expression in embryogenesis. Images PMID:1682879

  18. Cyp26b1 within the growth plate regulates bone growth in juvenile mice.

    PubMed

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-11-07

    Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1(Δchon) cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  19. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    PubMed

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

  20. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  1. Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1

    PubMed Central

    Zheng, Liufeng; Zhang, Wei; Zhou, Yuanfei; Li, Fengna; Wei, Hongkui; Peng, Jian

    2016-01-01

    The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity. PMID:27690010

  2. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers

    PubMed Central

    Brian, R. C.

    1967-01-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential. Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed. The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour. PMID:16656642

  3. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers.

    PubMed

    Brian, R C

    1967-09-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential.Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed.The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour.

  4. White sturgeon (Acipenser transmontanus) acid-base regulation differs in response to different types of acidoses.

    PubMed

    Shartau, Ryan B; Baker, Dan W; Brauner, Colin J

    2017-03-11

    White sturgeon (Acipenser transmontanus) completely protect intracellular tissue pH (pHi) despite large reductions in extracellular (blood) pH (pHe), termed preferential pHi regulation, in response to elevated environmental PCO2 (hypercarbia) and in general appear to be relatively resilient to stressors. Preferential pHi regulation is thought to be associated with hypercarbia tolerance in general, but has also recently been observed to protect pHi against metabolic acidoses induced by exhaustive exercise and anoxia in a tropical air breathing catfish. We hypothesized that preferential pHi regulation may also be a general strategy of acid-base regulation in sturgeon. To address this hypothesis, severe acidoses were imposed to reduce pHe, and the presence or absence of preferential pHi regulation was assessed in red blood cells (RBC), heart, brain, liver and white muscle. A respiratory acidosis was imposed using hyperoxia, while metabolic acidoses were induced by exhaustive exercise, anoxia or air exposure. Reductions in pHe occurred following hyperoxia (0.15 units), exhaustive exercise (0.30 units), anoxia (0.10 units) and air exposure (0.35 units); all acidoses reduced RBC pHi. Following hyperoxia, heart, brain and liver pHi were preferentially regulated against the reduction in pHe, similar to hypercarbia exposure. Following all metabolic acidoses heart pHi was protected and brain pHi remained unchanged following exhaustive exercise and air exposure, however, brain pHi was reduced following anoxia. Liver and white muscle pHi were reduced following all metabolic acidoses. These results suggest preferential pHi regulation may be a general strategy during respiratory acidoses but during metabolic acidoses, the response differs between source of acidoses and tissues.

  5. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs

    PubMed Central

    Guo, Jing; Kim, Nam-Hyung; Cui, Xiang-Shun

    2017-01-01

    Fatty acid synthase (FASN) is an enzyme responsible for the de novo synthesis of long-chain fatty acids. During oncogenesis, FASN plays a role in growth and survival rather than acting within the energy storage pathways. Here, the function of FASN during early embryonic development was studied using its specific inhibitor, C75. We found that the presence of the inhibitor reduced blastocyst hatching. FASN inhibition decreased Cpt1 expression, leading to a reduction in mitochondria numbers and ATP content. This inhibition of FASN resulted in the down-regulation of the AKT pathway, thereby triggering apoptosis through the activation of the p53 pathway. Activation of the apoptotic pathway also leads to increased accumulation of reactive oxygen species and autophagy. In addition, the FASN inhibitor impaired cell proliferation, a parameter of blastocyst quality for outgrowth. The level of OCT4, an important factor in embryonic development, decreased after treatment with the FASN inhibitor. These results show that FASN exerts an effect on early embryonic development by regulating both fatty acid oxidation and the AKT pathway in pigs. PMID:28107461

  6. Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition.

    PubMed

    Fan, Wei; Lam, Sin Man; Xin, Jingxue; Yang, Xiao; Liu, Zhonghua; Liu, Yuan; Wang, Yong; Shui, Guanghou; Huang, Xun

    2017-03-01

    The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis.

  7. Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition

    PubMed Central

    Fan, Wei; Lam, Sin Man; Xin, Jingxue; Yang, Xiao; Liu, Zhonghua; Liu, Yuan; Wang, Yong; Shui, Guanghou

    2017-01-01

    The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis. PMID:28273089

  8. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    PubMed

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  9. A C-Terminal Acidic Domain Regulates Degradation of the Transcriptional Coactivator Bob1

    PubMed Central

    Wong, Christina S. F.; Möller, Andreas

    2013-01-01

    Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation. PMID:24061476

  10. Glucocorticoid regulation of amino acid transport in anucleate rat hepatoma (HTC) cells

    PubMed Central

    1981-01-01

    The transport of alpha-aminoisobutyric acid (AIB) by rat hepatoma tissue culture (HTC) cells is rapidly and reversibly inhibited by dexamethasone and other glucocorticoids. To investigate the role of the nucleus in the regulation of transport and to determine whether steroid hormones or steroid-receptor complexes may have direct effects on cytoplasmic or membrane functions, we have examined the regulation of transport by dexamethasone in anucleate HTC cells. Cytoplasts prepared from suspension cultures of HTC cells fully retain active transport of AIB with the same kinetic properties as intact cells. However, the uptake of AIB is not inhibited by dexamethasone or other corticosteroids. Neither is the inhibited rate of transport, manifested by cytoplasts prepared from dexamethasone-treated cells, restored to normal upon removal of the hormone. Anucleate cells exhibit specific, saturable binding of [3H]dexamethasone; however, the binding is reduced compared with that of intact cells. The nucleus is thus required for the glucocorticoid regulation of amino acid transport in HTC cells. PMID:7217203

  11. Retinoic acid influences the development of the inferior olivary nucleus in the rodent.

    PubMed

    Yamamoto, Miyuki; Fujinuma, Masahiro; Hirano, Shinji; Hayakawa, Yoshika; Clagett-Dame, Margaret; Zhang, Jinghua; McCaffery, Peter

    2005-04-15

    All-trans retinoic acid (atRA) is an endogenous morphogen that regulates gene transcription. Maternal exposure to atRA results in severe developmental abnormalities by disrupting normal patterns of atRA distribution. Previously, we have shown that the pontine nucleus, which originates from the rhombic lip, is severely atrophied in the mouse on exposure to atRA at gestational days 9 and 10. In this study, we show that this same period of atRA exposure has the contrary effect on the inferior olive and this rhombic lip derivative is expanded in volume and probably contains an increased number of cells. The posterior region of the inferior olive maintains a relatively normal shape but is significantly expanded in size. In contrast, the organization of the anterior inferior olive is severely disrupted. Because endogenous atRA levels are known to be higher in the region of the posterior inferior olive at the time of birth of inferior olivary neurons, these results suggest that endogenous atRA may promote the generation, or select the fate, of posterior neurons of the inferior olive. In support of this concept, a reduction in atRA resulting from vitamin A deficiency results in loss of cells of the posterior inferior olive.

  12. Characterization of the CpxRA regulon in Haemophilus ducreyi.

    PubMed

    Labandeira-Rey, Maria; Brautigam, Chad A; Hansen, Eric J

    2010-11-01

    The Haemophilus ducreyi 35000HP genome encodes a homolog of the CpxRA two-component cell envelope stress response system originally characterized in Escherichia coli. CpxR, the cytoplasmic response regulator, was shown previously to be involved in repression of the expression of the lspB-lspA2 operon (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, the H. ducreyi CpxR and CpxA proteins were shown to closely resemble those of other well-studied bacterial species. A cpxA deletion mutant and a CpxR-overexpressing strain were used to explore the extent of the CpxRA regulon. DNA microarray and real-time reverse transcriptase (RT) PCR analyses indicated several potential regulatory targets for the H. ducreyi CpxRA two-component regulatory system. Electrophoretic mobility shift assays (EMSAs) were used to prove that H. ducreyi CpxR interacted with the promoter regions of genes encoding both known and putative virulence factors of H. ducreyi, including the lspB-lspA2 operon, the flp operon, and dsrA. Interestingly, the use of EMSAs also indicated that H. ducreyi CpxR did not bind to the promoter regions of several genes predicted to encode factors involved in the cell envelope stress response. Taken together, these data suggest that the CpxRA system in H. ducreyi, in contrast to that in E. coli, may be involved primarily in controlling expression of genes not involved in the cell envelope stress response.

  13. Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids.

    PubMed

    Jump, D B; Clarke, S D; Thelen, A; Liimatta, M

    1994-06-01

    Using a combination of in vivo and in vitro studies, we have investigated the impact of polyunsaturated fatty acids (PUFA) on the expression of several genes encoding proteins involved in hepatic glycolysis and lipogenesis. Meal-training rats to a high glucose diet containing 10% triolein led to a significant induction of hepatic mRNAs encoding glucokinase (GK), pyruvate kinase (PK), fatty acid synthase (FAS), malic enzyme (ME), and the S14 protein (S14), but had no effect on thyroid hormone receptor-beta 1 (TR beta 1) and c/EBP alpha gene expression. Replacing triolein with menhaden oil attenuated (by 50-90%) the induction of mRNA encoding GK, ME, PK, FAS, and S14. This effect was rapid (within hours) and for FAS and S14, directed at the transcriptional level. The mRNAs encoding TR beta 1, c/EBP alpha and beta-actin were unaffected by menhaden oil. Studies with cultured primary hepatocytes showed that C18:3,omega 3 (n-3), C18:3,omega 6 (n-6), C20:4, omega 6 (n-6), and C20:5,omega 3 (n-3) were all equally effective at suppressing the level of mRNAs encoding FAS, S14, and PK. This effect was specific for glycolytic and lipogenic enzymes, as expression of beta-actin was not affected by these fatty acids. Moreover, the fatty acids had only marginal effects on cell viability as judged by lactate dehydrogenase release. These data indicate that polyunsaturated fatty acids coordinately regulate the expression of several enzymes involved in carbohydrate and lipid metabolism. The mechanism of control does not require extrahepatic factors or fatty acid metabolism.

  14. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  15. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test

    PubMed Central

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum

    2016-01-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. PMID:27037280

  16. Spiral wound valve-regulated lead-acid batteries for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Valenciano, J.; Arce, G.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. This paper updates work carried out to develop spiral wound valve-regulated lead-acid (VRLA) batteries for vehicles with different hybridisation degrees, ranging from stop-start to mild hybrid applications. Former work on design optimisation and active material formulations has been implemented in two spiral wound VRLA batteries, rated 12 V 50 Ah and 6 V 24 Ah, and these two products are currently being tested both in benches and in vehicles with different hybridisation degrees within a demonstration project funded by the Advanced Lead Acid Battery Consortium and in collaboration with several European vehicle and electrical component manufacturers.

  17. NERP-2 regulates gastric acid secretion and gastric emptying via the orexin pathway.

    PubMed

    Namkoong, Cherl; Toshinai, Koji; Waise, T M Zaved; Sakoda, Hideyuki; Sasaki, Kazuki; Ueta, Yoichi; Kim, Min-Seon; Minamino, Naoto; Nakazato, Masamitsu

    2017-02-16

    Neuroendocrine regulatory peptide (NERP)-2 is derived from a distinct region of VGF, a neurosecretory protein originally identified as a product of a nerve growth factor-responsive gene in rat PC12 cells. Colocalization of NERP-2 with orexin-A in the lateral hypothalamus increases orexin-A-induced feeding and energy expenditure in both rats and mice. Orexigenic and anorectic peptides in the hypothalamus modulate gastric function. In this study, we investigated the effect of NERP-2 on gastric function in rats. Intracerebroventricular administration of NERP-2 to rats increased gastric acid secretion and gastric emptying, whereas peripheral administration did not affect gastric function. NERP-2-induced gastric acid secretion and gastric emptying were blocked by an orexin 1 receptor antagonist, SB334867. NERP-2 also induced Fos expression in the lateral hypothalamus and the dorsomotor nucleus of the vagus X, which are key sites in the central nervous system for regulation of gastric function. Atropine, a blocker of vagal efferent signal transduction, completely blocked NERP-2-induced gastric acid secretion. These results demonstrate that central administration of NERP-2 activates the orexin pathway, resulting in elevated gastric acid secretion and gastric emptying.

  18. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    PubMed

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  19. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2[S

    PubMed Central

    Oninla, Vincent O.; Breiden, Bernadette; Babalola, Jonathan O.; Sandhoff, Konrad

    2014-01-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747–1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. PMID:25339683

  20. The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Wu, Xiao-Lin; Pan, Zengxiang; MacNeil, Michael D

    2011-01-01

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  1. Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth.

    PubMed

    Nieves, Diana; Moreno, Juan José

    2006-12-01

    Eicosanoids participate in the regulation of cellular proliferation. Thus, we observed that prostaglandin E(2) interaction with membrane receptors is involved in the control of 3T6 fibroblast growth induced by serum. However, our results suggested that another arachidonic acid pathway might be implicated in these events. Our results show that 3T6 fibroblasts synthesized hydroxyeicosatetraenoic acids (HETEs) such as 12-HETE through the cytochrome P-450 (CYP450) pathway. However, 3T6 fibroblasts did not produce leukotriene B(4) (LTB(4)), and lipoxygenase inhibitors and LT antagonists failed to inhibit 3T6 fibroblast growth induced by FBS. In contrast, we observed that CYP450 inhibitors such as SKF-525A, 17-octadecynoic acid, 1-aminobenzotriazole, and 6-(2-propargyloxyphenyl)hexanoic acid reduced 12(S)-HETE levels, 3T6 fibroblast growth, and DNA synthesis induced by FBS. The impairment of DNA synthesis and 3T6 fibroblast growth induced by SKF-525A were reversed by exogenous addition of HETEs. Moreover, we report that 5-HETE, 12(S)-HETE, and 15(S)-HETE are mitogenic on 3T6 fibroblast in the absence of another growth factor, and this effect was dependent on the activation of the phosphatidylinositol-3-kinase pathway. In conclusion, our results show that HETEs, probably produced by CYP450, are involved in the control of 3T6 fibroblast growth.

  2. The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver.

    PubMed

    Scholz, R; Olson, M S; Schwab, A J; Schwabe, U; Noell, C; Braun, W

    1978-05-16

    The effect of fatty acids on the rate of pyruvate decarboxylation was studied in perfused livers from fed rats. The production of 14CO2 from infused [1-14C]pyruvate was employed as a monitor of the flux through the pyruvate dehydrogenase reaction. A correction for other decarboxylation reactions was made using kinetic analyses. Fatty acid (octanoate or oleate) infusion caused a stimulation of pyruvate decarboxylation at pyruvate concentrations in the perfusate below 1 mM (up to 3-fold at 0.05 mM pyruvate) but decreased the rate to one-third of control rates at pyruvate concentrations near 5 mM. These effects were half-maximal at fatty acid concentrations below 0.1 mM. Infusion of 3-hydroxybutyrate also caused a marked stimulation of pyruvate decarboxylation at low pyruvate concentrations. The data suggest that the mechanism by which fatty acids stimulate the flux through the pyruvate dehydrogenase reaction in perfused liver at low (limiting) pyruvate concentrations involves an acceleration of pyruvate transport into the mitochondrial compartment due to an exchange with acetoacetate. Furthermore, it is proposed that a relationship exists between ketogenesis and the regulation of pyruvate oxidation at pyruvate concentrations approximating conditions in vivo.

  3. Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors

    PubMed Central

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia

    2012-01-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864

  4. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  5. The role of membrane fatty-acid transporters in regulating skeletal muscle substrate use during exercise.

    PubMed

    Pelsers, Maurice M A L; Stellingwerff, Trent; van Loon, Luc J C

    2008-01-01

    While endogenous carbohydrates form the main substrate source during high-intensity exercise, long-chain fatty acids (LCFA) represent the main substrate source during more prolonged low- to moderate-intensity exercise. Adipose tissue lipolysis is responsible for the supply of LCFA to the contracting muscle. Once taken up by skeletal muscle tissue, LCFA can either serve as a substrate for oxidative phosphorylation or can be directed towards esterification into triacylglycerol. Myocellular uptake of LCFA comprises a complex and incompletely understood process. Although LCFA can enter the cell via passive diffusion, more recent reports indicate that LCFA uptake is tightly regulated by plasma membrane-located transport proteins (fatty acid translocase [FAT/CD36], plasmalemmal-located fatty acid binding protein [FABPpm] and fatty acid transport protein [FATP]). Depending on cardiac and skeletal muscle energy demands, some of these LCFA transporters can translocate rapidly from intracellular pools to the plasma membrane to allow greater LCFA uptake. This translocation process can be induced by insulin and/or muscle contraction. However, the precise signalling pathways responsible for activating the translocation machinery remain to be elucidated. This article will provide an overview on the effects of diet, acute exercise and exercise training on the expression and/or translocation of the various LCFA transporters in skeletal muscle tissue (FAT/CD36, FABPpm, FATP).

  6. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism

    PubMed Central

    Tokonami, Natsuko; Morla, Luciana; Centeno, Gabriel; Mordasini, David; Ramakrishnan, Suresh Krishna; Nikolaeva, Svetlana; Wagner, Carsten A.; Bonny, Olivier; Houillier, Pascal; Doucet, Alain; Firsov, Dmitri

    2013-01-01

    Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A–non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl–-dependent HCO3– secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1–/– mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1–/– mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3– secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule. PMID:23934124

  7. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling

    PubMed Central

    Powis, Katie; De Virgilio, Claudio

    2016-01-01

    The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1. PMID:27462445

  8. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  9. Regulation of water, salinity, and cold stress responses by salicylic acid.

    PubMed

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  10. Regulators of PP2C phosphatase activity function as abscisic acid sensors.

    PubMed

    Ma, Yue; Szostkiewicz, Izabela; Korte, Arthur; Moes, Danièle; Yang, Yi; Christmann, Alexander; Grill, Erwin

    2009-05-22

    The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.

  11. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.

    PubMed

    Goodman, Craig A; Hornberger, Troy A

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mass. Fortunately, our knowledge is rapidly advancing, and in this review, we will summarize recent studies that have expanded our understanding of the roles that Smad signaling and the synthesis of phosphatidic acid play in the regulation of skeletal muscle mass.

  12. Techniques for precise mapping of 226Ra and 228Ra in the ocean

    NASA Astrophysics Data System (ADS)

    Moore, Willard S.; Key, Robert M.; Sarmiento, Jorge L.

    1985-01-01

    Improvements in the analyses of 226Ra and 228Ra in seawater made possible by better extraction and processing techniques reduce significantly the errors associated with these measurements. These improvements and the extensive sampling for Ra isotopes conducted on the TTO North Atlantic Study should enable us to use the distribution of 228Ra to study mixing processes on a 3-15 year time scale in both the upper and deep North Atlantic. The 228Ra profiles already analyzed show a closer resemblance to GEOSECS tritium data than to TTO tritium data in the upper ocean. This is because the transient tracer tritium was responding on a 10-year time scale during GEOSECS and a 20-year time scale during TTO. The steady state tracer 228Ra should always respond on a time scale of 8 years. Thus the 228Ra data obtained on TTO should provide a means to extend the features of the GEOSECS tritium field to the regions of the TTO study. The 226Ra data are of high enough quality to identify features associated with different water masses. Changes in the positions of the deep-water masses since the GEOSECS cruise are revealed by the 226Radata.

  13. Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation.

    PubMed Central

    Thiele, C J; Cohen, P S; Israel, M A

    1988-01-01

    We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription. Images PMID:3380093

  14. Development of 36-V valve-regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Ohmae, T.; Hayashi, T.; Inoue, N.

    A 36-V valve-regulated lead-acid (VRLA) battery used in a 42-V power system has been developed for the Toyota Hybrid System-Mild (THS-M) vehicle to meet the large electrical power requirements of hybrid electric vehicles (HEVs) and the increasing power demands on modern automobile electrical systems. The battery has a longer cycle-life in HEV use through the application of ultra high-density active-material and an anti-corrosive grid alloy for the positive plates, special additives for the negative plates, and absorbent glass mat with less contraction for the separators.

  15. Reliability of valve-regulated lead-acid batteries for stationary applications.

    SciTech Connect

    De Anda, Mindi Farber; Butler, Paul Charles; Miller, Jennifer L; Moseley, Patrick T.

    2004-03-01

    A survey has been carried out to quantify the performance and life of over 700,000 valve-regulated lead-acid (VRLA) cells, which have been or are being used in stationary applications across the United States. The findings derived from this study have not identified any fundamental flaws of VRLA battery technology. There is evidence that some cell designs are more successful in float duty than others. A significant number of the VRLA cells covered by the survey were found to have provided satisfactory performance.

  16. Role of bile acids in the regulation of the metabolic pathways

    PubMed Central

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-01-01

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  17. Characterization and Regulation of the Amino Acid Transporter SNAT2 in the Small Intestine of Piglets

    PubMed Central

    Tan, Bie; Wang, Jing; Kong, Xiangfeng; Guan, Guiping; Li, Fengna; Yin, Yulong

    2015-01-01

    The sodium-dependent neutral amino acid transporter 2 (SNAT2), which has dual transport/receptor functions, is well documented in eukaryotes and some mammalian systems, but has not yet been verified in piglets. The objective of this study was to investigate the characteristics and regulation of SNAT2 in the small intestine of piglets. The 1,521-bp porcine full cDNA sequence of SNAT2 (KC769999) from the small intestine of piglets was cloned. The open reading frame of cDNA encodes 506 deduced amino acid residues with a calculated molecular mass of 56.08 kDa and an isoelectric point (pI) of 7.16. Sequence alignment and phylogenetic analysis revealed that SNAT2 is highly evolutionarily conserved in mammals. SNAT2 mRNA can be detected in the duodenum, jejunum and ileum by real-time quantitative PCR. During the suckling period from days 1 to 21, the duodenum had the highest abundance of SNAT2 mRNA among the three segments of the small intestine. There was a significant decrease in the expression of SNAT2 mRNA in the duodenal and jejunal mucosa and in the expression of SNAT2 protein in the jejunal and ileal mucosa on day 1 after weaning (P < 0.05). Studies with enterocytes in vitro showed that amino acid starvation and supplementation with glutamate, arginine or leucine enhanced, while supplementation with glutamine reduced, SNAT2 mRNA expression (P < 0.05). These results regarding the characteristics and regulation of SNAT2 should help to provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine. PMID:26107628

  18. ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells

    PubMed Central

    Leonhardt, N; Vavasseur, A; Forestier, C

    1999-01-01

    In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells. PMID:10368184

  19. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    PubMed

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  20. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport

    PubMed Central

    Huang, Hsiao-Yun; Hopper, Anita K.

    2014-01-01

    The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm. PMID:25057022

  1. A Nuclear Factor Regulates Abscisic Acid Responses in Arabidopsis1[W][OA

    PubMed Central

    Kim, Min Jung; Shin, Ryoung; Schachtman, Daniel P.

    2009-01-01

    Abscisic acid (ABA) is a plant hormone that regulates plant growth as well as stress responses. In this study, we identified and characterized a new Arabidopsis (Arabidopsis thaliana) protein, Nuclear Protein X1 (NPX1), which was up-regulated by stress and treatment with exogenous ABA. Stomatal closure, seed germination, and primary root growth are well-known ABA responses that were less sensitive to ABA in NPX1-overexpressing plants. NPX1-overexpressing plants were more drought sensitive, and the changes in response to drought were due to the altered guard cell sensitivity to ABA in transgenic plants and not to a lack of ABA production. The nuclear localization of NPX1 correlated with changes in the expression of genes involved in ABA biosynthesis and ABA signal transduction. To understand the function of NPX1, we searched for interacting proteins and found that an ABA-inducible NAC transcription factor, TIP, interacted with NPX1. Based on the whole plant phenotypes, we hypothesized that NPX1 acts as a transcriptional repressor, and this was demonstrated in yeast, where we showed that TIP was repressed by NPX1. Our results indicate that the previously unknown protein NPX1 acts as a negative regulator in plant response to changes in environmental conditions through the control of ABA-regulated gene expression. The characterization of this factor enhances our understanding of guard cell function and the mechanisms that plants use to modulate water loss from leaves under drought conditions. PMID:19759343

  2. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    SciTech Connect

    Li Ang . E-mail: liang3829@sina.com.cn; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-05

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-{alpha}, IFN-{gamma}), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-{kappa}B pathways related with immune response. Our results demonstrated that ATRA suppressed NF-{kappa}B activity and prevented I{kappa}B{alpha} degradation in a dose-dependent way, inhibited IFN-{gamma} production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo.

  3. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  4. Teaching the Role of Secretin in the Regulation of Gastric Acid Secretion Using a Classic Paper by Johnson and Grossman

    ERIC Educational Resources Information Center

    Walton, Kristen L. W.

    2009-01-01

    The regulation of gastric acid secretion has been the subject of investigation for over a century. Inhibition of gastrin-induced acid secretion by the intestine-derived hormone secretin provides a classic physiological example of negative feedback in the gastrointestinal tract. A classic paper by Leonard R. Johnson and Morton I. Grossman clearly…

  5. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  6. Expression and regulation of retinoic acid receptors in human breast cancer cells.

    PubMed

    Roman, S D; Clarke, C L; Hall, R E; Alexander, I E; Sutherland, R L

    1992-04-15

    Retinoic acid is known to inhibit mammary carcinogenesis in rodents and to inhibit proliferation and steroid hormone receptor gene expression in human breast cancer cells. Since these effects are likely to be mediated by nuclear retinoic acid receptors (RARs) the present study was initiated to determine the expression and regulation of RARs in human breast cancer cell lines. Differential cellular gene expression of the RARs was determined by Northern blot analysis of total RNA prepared from 5 ER+ and 6 ER- cell lines. RAR alpha was detected as mRNA species of 2.7 and 3.4 kilobases in all cell lines and the level of gene expression was greater in ER+ cell lines (P less than 0.001). RAR beta mRNA (3.7 kilobases) was detected in seven of the eleven lines tested and was expressed most commonly in ER- cell lines. RAR gamma mRNA was expressed in all cell lines as a transcript of 3.4 kilobases at levels that were similar in both ER+ and ER- cell lines. Retinoic acid failed to regulate the expression of the RAR alpha and RAR gamma genes. The effect of steroid hormones on RAR alpha and RAR gamma mRNA levels was also examined. In four PR+ cell lines (T-47D, BT 474, MCF-7M, and MDA-MB-361), progestins markedly decreased RAR alpha mRNA levels. The progestin effect on RAR alpha levels in T-47D cells was detectable at concentrations of 0.05 nM and was maximal at 1 nM 16 alpha-ethyl-21-hydroxy-19-nor-4-pregnene-3,20-dione ORG 2058, whereas dihydrotestosterone and dexamethasone were without effect. RAR alpha and RAR gamma mRNA levels were rapidly decreased by progestin, and the effect was maximal 3-6 h after ORG 2058 treatment. However, the mRNA loss was transient, and recovery of RAR alpha and RAR gamma mRNA levels was noted 12-24 h after retinoic acid treatment. Although RAR gamma mRNA returned to control levels by 24 h, the decrease in RAR alpha mRNA was maintained at around 50% control until at least 48 h. In summary, RAR alpha and RAR gamma were expressed in all human breast

  7. Combinational Treatment with Retinoic Acid Derivatives in Non-small Cell Lung Carcinoma In Vitro

    PubMed Central

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin

    2007-01-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 µM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor β (RARβ) expression was up-regulated on H460 and H1299 cells treated with 1 µM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 µM ATRA and 0.1 µM 4-HPR. In particular, sequential treatment with 1 µM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RARβ expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RARβ, the expressional levels of RARβ were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression. PMID:17923756

  8. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  9. Up-regulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids.

    PubMed Central

    Meunier-Durmort, C; Poirier, H; Niot, I; Forest, C; Besnard, P

    1996-01-01

    The role of fatty acids in the expression of the gene for liver fatty acid-binding protein (L-FABP) was investigated in the well-differentiated FAO rat hepatoma cell line. Cells were maintained in serum-free medium containing 40 microM BSA/320 microM oleate. Western blot analysis showed that oleate triggered an approx. 4-fold increase in the cytosolic L-FABP level in 16 h. Oleate specifically stimulated L-FABP mRNA in time-dependent and dose-dependent manners with a maximum 7-fold increase at 16 h in FAO cells. Preincubation of FAO cells with cycloheximide prevented the oleate-mediated induction of L-FABP mRNA, showing that protein synthesis was required for the action of fatty acids. Run-on transcription assays demonstrated that the control of L-FABP gene expression by oleate was, at least in part, transcriptional. Palmitic acid, oleic acid, linoleic acid, linolenic acid and arachidonic acid were similarly potent whereas octanoic acid was inefficient. This regulation was also found in normal hepatocytes. Therefore long-chain fatty acids are strong inducers of L-FABP gene expression. FAO cells constitute a useful tool for studying the underlying mechanism of fatty acid action. PMID:8912685

  10. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.

    PubMed

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-15

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with (14)C-glucose and (3)H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD(+)] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD(+)] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation.

  11. Temperature-dependent Regulation of Mycolic Acid Cyclopropanation in Saprophytic Mycobacteria

    PubMed Central

    Alibaud, Laeticia; Alahari, Anuradha; Trivelli, Xavier; Ojha, Anil K.; Hatfull, Graham F.; Guerardel, Yann; Kremer, Laurent

    2010-01-01

    The cell envelope is a crucial determinant of virulence and drug resistance in Mycobacterium tuberculosis. Several features of pathogenesis and immunomodulation of host responses are attributable to the structural diversity in cell wall lipids, particularly in the mycolic acids. Structural modification of the α-mycolic acid by introduction of cyclopropane rings as catalyzed by the methyltransferase, PcaA, is essential for a lethal, persistent infection and the cording phenotype in M. tuberculosis. Here, we demonstrate the presence of cyclopropanated cell wall mycolates in the nonpathogenic strain Mycobacterium smegmatis and identify MSMEG_1351 as a gene encoding a PcaA homologue. Interestingly, α-mycolic acid cyclopropanation was inducible in cultures grown at 25 °C. The growth temperature modulation of the cyclopropanating activity was determined by high resolution magic angle spinning NMR analyses on whole cells. In parallel, quantitative reverse transcription-PCR analysis showed that MSMEG_1351 gene expression is up-regulated at 25 °C compared with 37 °C. An MSMEG_1351 knock-out strain of M. smegmatis, generated by recombineering, exhibited a deficiency in cyclopropanation of α-mycolates. The functional equivalence of PcaA and MSMEG_1351 was established by cross-complementation in the MSMEG_1351 knock-out mutant and also in a ΔpcaA strain of Mycobacterium bovis BCG. Overexpression of MSMEG_1351 restored the wild-type mycolic acid profile and the cording phenotype in BCG. Although the biological significance of mycolic acid cyclopropanation in nonpathogenic mycobacteria remains unclear, it likely represents a mechanism of adaptation of cell wall structure and composition to cope with environmental factors. PMID:20457615

  12. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    PubMed Central

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  13. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-07

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  14. Hepatic fatty acid uptake is regulated by the sphingolipid acyl chain length

    PubMed Central

    Park, Woo-Jae; Park, Joo-Won; Merrill, Alfred H.; Storch, Judith; Pewzner-Jung, Yael; Futerman, Anthony H.

    2015-01-01

    Ceramide synthase 2 (CerS2) null mice cannot synthesize very-long acyl chain (C22-C24) ceramides resulting in significant alterations in the acyl chain composition of sphingolipids. We now demonstrate that hepatic triacylglycerol (TG) levels are reduced in liver but not in adipose tissue or skeletal muscle in the CerS2 null mouse, both before and after feeding with a high fat diet (HFD), where no weight gain was observed and large hepatic nodules appeared. Uptake of both BODIPY-palmitate and [3H]-palmitate were also abrogated in hepatocytes and liver. The role of a number of key proteins involved in fatty acid uptake was examined, including FATP5, CD36/FAT, FABPpm and cytoplasmic FABP1. Levels of FATP5 and FABP1 were decreased in CerS2 null mouse liver, whereas CD36/FAT levels were significantly elevated and CD36/FAT was also mislocalized upon insulin treatment. Moreover, treatment of hepatocytes with C22-C24-ceramides down-regulated CD36/FAT levels. Infection of CerS2 null mice with recombinant adeno-associated virus (rAAV)-CerS2 restored normal TG levels and corrected the mislocalization of CD36/FAT, but had no effect on the intracellular localization or levels of FATP5 or FABP1. Together, these results demonstrate that hepatic fatty acid uptake via CD36/FAT can be regulated by altering the acyl chain composition of sphingolipids. PMID:25241943

  15. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling

    PubMed Central

    Lee, Bomi; Wu, Cheng-Ying; Lin, Yi-Wei; Park, Sung Wook; Wei, Li-Na

    2016-01-01

    All-trans Retinoic acid (RA) and its derivatives are potent therapeutics for immunological functions including wound repair. However, the molecular mechanism of RA modulation in innate immunity is poorly understood, especially in macrophages. We found that topical application of RA significantly improves wound healing and that RA and IL-4 synergistically activate Arg1, a critical gene for tissue repair, in M2 polarized macrophages. This involves feed forward regulation of Raldh2, a rate-limiting enzyme for RA biosynthesis, and requires Med25 to coordinate RAR, STAT6 and chromatin remodeler, Brg1 to remodel the +1 nucleosome of Arg1 for transcription initiation. By recruiting elongation factor TFIIS, Med25 also facilitates transcriptional initiation-elongation coupling. This study uncovers synergistic activation of Arg1 by RA and IL-4 in M2 macrophages that involves feed forward regulation of RA synthesis and dual functions of Med25 in nucleosome remodeling and transcription initiation-elongation coupling that underlies robust modulatory activity of RA in innate immunity. PMID:27166374

  16. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway.

    PubMed Central

    Braus, G H

    1991-01-01

    This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed. PMID:1943992

  17. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    PubMed Central

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  18. An alternative method for Ra determinations in water

    SciTech Connect

    Loyd, D.H.; Drake, E.N. 2d.

    1989-07-01

    Concentrations of /sup 226/Ra and /sup 224/Ra in 13 wells distributed throughout McCulloch and Mason counties in the Hickory Aquifer of the Llano Uplift Region of West-Central Texas are reported. Measurable alpha-particle activity is present in all wells, with seven wells having /sup 226/Ra radioactivity concentrations greater than 185 Bq m-3 (5 pCi L-1). An alternative methodology for measuring /sup 226/Ra, /sup 224/Ra and /sup 228/Ra is described. The EPA-approved methodology for estimating total Ra is shown to be invalid for aquifers containing significant levels of /sup 224/Ra. Alpha-particle activity measurements made in the interval of 12 to 300 h after Ra isolation lead to self-consistent solutions for radioactivity concentrations of /sup 226/Ra and /sup 224/Ra, with negligible contributions from /sup 228/Ra. Radioactivity concentrations of /sup 228/Ra can be calculated from grow-in terms for this isotope used with alpha-particle activity measurements at post-isolation times significantly longer than 800 h. Comparison of the /sup 226/Ra radioactivity concentration with that reported previously by the Texas Department of Health for a single well indicates acceptable agreement. However, the radioactivity concentration attributable to /sup 228/Ra for the same well was found to be in significant disagreement with the Texas Department of Health value.

  19. Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion.

    PubMed

    Lambrecht, Nils W G; Yakubov, Iskandar; Zer, Cindy; Sachs, George

    2006-03-13

    The gastric entero-chromaffin-like (ECL) cell plays a key regulatory role in peripheral regulation of acid secretion due to the release of histamine that stimulates acid secretion by the parietal cell. Studies in intact animals, gastric glands, and isolated cells after short-term culture have shown expression of stimulatory CCK2 and PAC1 and inhibitory SST2 and Gal1 receptors as well as histidine decarboxylase. However, the pattern of its gene expression as a neuroendocrine cell has not been explored. Comparison of gene expression by 95% pure ECL cells obtained by density gradient, elutriation, and fluorescence-assisted cell sorting with isolates of the intact fundic gastric epithelium (i.e., "subtractive hybridization") identified a variety of additional expressed gene families characteristic of this neuroendocrine cell. These include genes 1) involved in neuropeptide synthesis and secretory vesicle exocytosis, 2) involved in control of inflammation, 3) implicated in healing of the epithelium, 4) encoding inhibitory Gi protein-coupled receptors, 5) playing a role in neuroendocrine regulation of food intake, and 6) encoding proteins likely involved in maintenance of circadian rhythm, in addition to the ECL cell-specific genes histidine decarboxylase and monoamine transporter. Particularly, the inhibitory apelin receptor gene, APJ, was highly expressed in the ECL cell preparation. Because parietal cells express apelin, immunohistochemical and functional studies showed that there is an inhibitory feed back loop between the parietal and ECL cell during gastrin stimulation, providing evidence for a novel pathway of downregulation of acid secretion due to interaction between these two cell types.

  20. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation.

    PubMed

    Duffy, Cayla M; Xu, Hongliang; Nixon, Joshua P; Bernlohr, David A; Butterick, Tammy A

    2017-02-16

    Hypothalamic inflammation contributes to metabolic dysregulation and the onset of obesity. Dietary saturated fats activate microglia via a nuclear factor-kappa B (NFκB) mediated pathway to release pro-inflammatory cytokines resulting in dysfunction or death of surrounding neurons. Fatty acid binding proteins (FABPs) are lipid chaperones regulating metabolic and inflammatory pathways in response to fatty acids. Loss of FABP4 in peripheral macrophages via either molecular or pharmacologic mechanisms results in reduced obesity-induced inflammation via a UCP2-redox based mechanism. Despite the widespread appreciation for the role of FABP4 in mediating peripheral inflammation, the expression of FABP4 and a potential FABP4-UCP2 axis regulating microglial inflammatory capacity is largely uncharacterized. To that end, we hypothesized that microglial cells express FABP4 and that inhibition would upregulate UCP2 and attenuate palmitic acid (PA)-induced pro-inflammatory response. Gene expression confirmed expression of FABP4 in brain tissue lysate from C57Bl/6J mice and BV2 microglia. Treatment of microglial cells with an FABP inhibitor (HTS01037) increased expression of Ucp2 and arginase in the presence or absence of PA. Moreover, cells exposed to HTS01037 exhibited attenuated expression of inducible nitric oxide synthase (iNOS) compared to PA alone indicating reduced NFκB signaling. Hypothalamic tissue from mice lacking FABP4 exhibit increased UCP2 expression and reduced iNOS, tumor necrosis factor-alpha (TNF-α), and ionized calcium-binding adapter molecule 1 (Iba1; microglial activation marker) expression compared to wild type mice. Further, this effect is negated in microglia lacking UCP2, indicating the FABP4-UCP2 axis is pivotal in obesity induced neuroinflammation. To our knowledge, this is the first report demonstrating a FABP4-UCP2 axis with the potential to modulate the microglial inflammatory response.

  1. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels

    PubMed Central

    Shen, Meng-Chieh; Quinlivan, Vanessa; Anderson, Jennifer L.; Farber, Steven A.

    2017-01-01

    ABSTRACT Caveolae and their structural protein caveolin 1 (CAV1) have roles in cellular lipid processing and systemic lipid metabolism. Global deletion of CAV1 in mice results in insulin resistance and increases in atherogenic plasma lipids and cholesterol, but protects from diet-induced obesity and atherosclerosis. Despite the fundamental role of the intestinal epithelia in the regulation of dietary lipid processing and metabolism, the contributions of CAV1 to lipid metabolism in this tissue have never been directly investigated. In this study the cellular dynamics of intestinal Cav1 were visualized in zebrafish and the metabolic contributions of CAV1 were determined with mice lacking CAV1 in intestinal epithelial cells (CAV1IEC-KO). Live imaging of Cav1–GFP and fluorescently labeled caveolae cargos shows localization to the basolateral and lateral enterocyte plasma membrane (PM), suggesting Cav1 mediates transport between enterocytes and the submucosa. CAV1IEC-KO mice are protected from the elevation in circulating fasted low-density lipoprotein (LDL) cholesterol associated with a high-fat diet (HFD), but have increased postprandial LDL cholesterol, total free fatty acids (FFAs), palmitoleic acid, and palmitic acid. The increase in circulating FAs in HFD CAV1IEC-KO mice is mirrored by decreased hepatic FAs, suggesting a non-cell-autonomous role for intestinal epithelial cell CAV1 in promoting hepatic FA storage. In conclusion, CAV1 regulates circulating LDL cholesterol and several FA species via the basolateral PM of enterocytes. These results point to intestinal epithelial cell CAV1 as a potential therapeutic target to lower circulating FFAs and LDL cholesterol, as high levels are associated with development of type II diabetes and cardiovascular disease. PMID:28130355

  2. Discovery of radioactive decay of /sup 222/Ra and /sup 224/Ra by /sup 14/C emission

    SciTech Connect

    Price, P.B.; Stevenson, J.D.; Barwick, S.W.; Ravn, H.L.

    1985-01-28

    Using the ISOLDE on-line isotope separator at CERN to produce sources of /sup 221/Fr, /sup 221/Ra, /sup 222/Ra, /sup 223/Ra, and /sup 224/Ra, and using polycarbonate track-recording films sensitive to energetic carbon nuclei but not to alpha particles, we have discovered two new cases of the rare /sup 14/C decay mode: in /sup 222/Ra and /sup 224/Ra. Our results for branching ratios, B, relative to alpha decay are for /sup 221/Fr and /sup 221/Ra, B<4.4 x 10/sup -12/; for /sup 222/Ra, B = (3.7 +- 0.6) x 10/sup -10/; for /sup 223/Ra, B = (6.1 +- 1.0) x 10/sup -10/; for /sup 224/Ra, B = (4.3 +- 1.2) x 10/sup -11/. .AE

  3. Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion.

    PubMed

    Clark, D

    1981-11-01

    Fusion of the lacZ gene coding for beta-galactosidase to the fadA,B and fadE operons was accomplished by using the phage Mu d (Apr lac). In such fusion strains, beta-galactosidase was induced by long-chain fatty acids and repressed by glucose, as is the normal pattern of control for the enzymes of the fad regulon. The level of induction seen was approximately 10-fold for both the fadA and fadE operons. These results demonstrate that the previously observed regulation of both the fadA and fadE operons is at the transcriptional level. When an insertion mutation in the fadR (repressor) gene was introduced into the fusion strains, beta-galactosidase was produced constitutively. A series of fatty acids of different chain lengths were tested as inducers. Acids of chain lengths of 10 carbon atoms or less failed to induce, those of 12 carbon atoms induced partly, and those of 14 or more carbon atoms induced fully. Imidazole was found to counteract the glucose repression of the fadA operon as recently demonstrated for the ara operon.

  4. Retinoic acid is a negative regulator of AP-1-responsive genes.

    PubMed Central

    Schüle, R; Rangarajan, P; Yang, N; Kliewer, S; Ransone, L J; Bolado, J; Verma, I M; Evans, R M

    1991-01-01

    We present evidence that retinoic acid can down-regulate transcriptional activation by the nuclear protooncogene c-jun. All three members of the retinoic acid receptor (RAR) subfamily (RAR alpha, RAR beta, and RAR gamma) can repress transcriptional induction of the human collagenase gene or a heterologous promoter that contains the collagenase promoter AP-1-binding site. In contrast, the retinoid X receptor fails to repress Jun/AP-1 activity, demonstrating a significant difference between the two regulatory systems through which retinoids exert their transcriptional control. Analysis of RAR alpha mutants in transfection studies reveals that the DNA-binding domain is important for the inhibition of Jun/AP-1 activity, even though the RAR does not bind the collagenase AP-1 site. Rather, gel-retardation assays reveal that bacterially expressed full-length RAR alpha inhibits binding of Jun protein to target DNA. These data suggest that the RAR alpha may form a nonproductive complex with c-Jun and provides a simple mechanisms by which retinoic acid may limit cell growth and possibly malignant progression. Images PMID:1648728

  5. Sugar regulation of plastid reversion in citrus epicarp is mediated through organic acid metabolism.

    PubMed

    Ahmed, Omer Khidir

    2009-02-01

    The inhibition by sucrose of chromoplast reversion to chloroplast in citrus epicarp was studied by observing the effects of several sugars, sugar metabolites and 1-iodoacetate on chlorophyll reaccumulation in cultured Citrus paradisi Macf. pericarp segments. Pericarp segments of 1 cm in diameter were cut from yellow fruits and cultured on modified medium plus the indicated metabolites and kept under continuous fluorescent light. Accumulation of chlorophyll in the segments was measured with a spectrophotometer fitted with sphere reflectometer. Respiration was determined via., an infrared gas analyzer. Inhibition of regreening was not specific to a particular sugar. The organic acids malate, citrate, succinate, 2-oxoglutarate and especially malonate elicited effects similar to sucrose, but at much lower concentrations. However, malonate inhibition of chlorophyll accumulation was overcome by increased concentrations of glutamine. At concentrations that usually inhibited chlorophyll, malonate did not reduce CO2 production in the presence of glutamine or KNO3. Sucrose effects on regreening were reduced by 1-iodoacetate. These results indicate that sugar regulation of plastid reversion during regreening in citrus epicarp is not directly due to sugars, but is instead mediated through metabolism of sugars to organic acids, especially malonic acid.

  6. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    SciTech Connect

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  7. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.

    PubMed

    Lv, Jing; Qiao, Weihong; Li, Zongshi

    2016-10-01

    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level.

  8. Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-Oxidation.

    PubMed

    Ma, Huimin; Wang, Shui

    2016-10-01

    The storage compounds are deposited into plant seeds during maturation. As the model oilseed species, Arabidopsis (Arabidopsis thaliana) has long been studied for seed oil deposition. However, the regulation of this process remains unclear. Through genetic screen with a seed oil body-specific reporter, we isolated low oil1 (loo1) mutant. LOO1 was mapped to HISTIDINE BIOSYNTHESIS NUMBER 1A (HISN1A). HISN1A catalyzes the first step of His biosynthesis. Oil significantly decreased, and conversely proteins markedly increased in hisn1a mutants, indicating that HISN1A regulates both oil accumulation and the oil-protein balance. HISN1A was predominantly expressed in embryos and root tips. Accordingly, the hisn1a mutants exhibited developmental phenotype especially of seeds and roots. Transcriptional profiling displayed that β-oxidation was the major metabolic pathway downstream of HISN1A β-Oxidation was induced in hisn1a mutants, whereas it was reduced in 35S:HISN1A-transgenic plants. In plants, seed storage oil is broken-down by β-oxidation, which is controlled by abscisic acid (ABA). We found that His activated genes of ABA biosynthesis and correspondingly advanced ABA accumulation. Exogenous ABA rescued the defects of hisn1a mutants, whereas mutation of ABA DEFICIENT2, a key enzyme in ABA biosynthesis, blocked the effect of His on β-oxidation, indicating that ABA mediates His regulation in β-oxidation. Intriguingly, structural analysis showed that a potential His-binding domain was present in the general amino acid sensors GENERAL CONTROL NON-DEREPRESSIBLE2 and PII, suggesting that His may serve as a signal molecule. Taken together, our study reveals that His promotes plant seed oil deposition through ABA biosynthesis and β-oxidation.

  9. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    EPA Science Inventory

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  10. Gemini amphiphiles regulated photopolymerization of diacetylene acid in organized molecular films.

    PubMed

    Zhong, Ling; Jiao, Tifeng; Liu, Minghua

    2009-07-02

    In this paper, we have investigated the photopolymerization of an amphiphilic diacetylene, 10,12-pentacosadiynoic acid (PCDA), in organized molecular films in the presence of a series of gemini amphiphiles with different spacer lengths. It has been found that, when gemini amphiphiles were mixed with the diacetylene, the film-forming properties were greatly improved and the photopolymerization could be regulated by the gemini amphiphiles. Miscibility and Fourier transform infrared spectroscopy (FT-IR) investigations revealed that the polymerization of PCDA in a mixed film was regulated by the mixing ratio and spacer length of the gemini amphiphiles. Although a slight amount of gemini amphiphile did not make the PCDA polymerize into blue films, the increment of the gemini amphiphile with the short spacer length in the mixed film caused the formation of a red film, and the intensity of red phase to blue phase can be modulated by changing the mixing ratios. When gemini amphiphiles with longer spacer lengths were mixed, blue films were predominantly obtained in all mixing ratios. A mechanism including the interaction between the headgroup of the gemini amphiphiles and the diacetylene and the regulation of the spacer was proposed.

  11. Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells

    SciTech Connect

    Park, Won Il; Park, Min Jung; An, Jin Kwang; Choi, Yung Hyun; Kim, Hye Young; Cheong, JaeHun Yang, Ung Suk

    2008-05-02

    Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}. These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.

  12. Leaching of 226Ra from U mill tailings by sulfate-reducing bacteria.

    PubMed

    Landa, E R; Miller, C L; Updegraff, D M

    1986-10-01

    Relatively insoluble sulfate precipitates appear to be a major host for Ra in sulfuric acid-treated, U mill tailings. The dissolution of such precipitates by natural processes, such as metabolism by sulfate-reducing bacteria (SRB), creates the potential for release of Ra to contacting waters. Significant leaching of Ra by SRB was achieved in the laboratory during the anaerobic incubation (1 to 119 days) of U mill tailings with pure cultures of Desulfovibrio desulfuricans and mixed cultures containing SRB isolated from the tailings, all grown on a lactate medium at room temperature. While the maximum 226Ra concentration reached in a sterile media control was 0.44 Bq/L (12 pCi/L), that in the SRB systems was 61 Bq/L (1640 pCi/L) or about 20% of the total Ra inventory in the original tailings sample. The leaching of Ra in SRB systems was accompanied by a decrease in soluble sulfate concentration, an increase in total sulfide concentration, and an increase in the number of SRB. The observed leaching effect does not appear to be due to the action of microbial chelates or to binding to cell walls. Potential implications of these findings to the management of U mill tailings and other radioactive wastes are discussed.

  13. In vivo regulation of intestinal absorption of amino acids by leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; De Pablo-Maiso, Lorena; Lostao, María Pilar

    2015-01-01

    Leptin is secreted by the gastric mucosa and is able to reach the intestinal lumen and bind to its receptors located in the apical membranes of enterocytes. We have previously demonstrated that apical leptin inhibits uptake of amino acids in rat intestine in vitro and in Caco-2 cells. The aim of the present work was to investigate the effect of leptin on absorption of amino acids using in vivo techniques, which generate situations closer to physiological conditions. In vivo intestinal absorption of amino acids in rats was measured by isolating a jejunal loop and using the single-pass perfusion system. Disappearance of glutamine (Gln), proline (Pro), and β-alanine (β-Ala) from the perfusate, in the absence or presence of leptin, was measured using a radioactivity method. Luminal leptin (25 nM) inhibited the absorption of 2 mM Pro, 5 mM β-Ala, and 5 mM Gln by approximately 45% after 5-15 min; the effect remained constant until the end of the experiment (80 min) and was rapidly and completely reversed when leptin was removed from the perfusion medium. Moreover, leptin was able to regulate the absorption of galactose and Gln in the same animal, indicating a direct action of the hormone on the specific transporters implicated in the uptake of each nutrient. The results of the present work indicate that luminal leptin decreases absorption of amino acids in vivo in a short-term manner and in a reversible way. These results, together with our previous findings, make it evident that leptin can be considered as a hormone which provides the intestine with a control mechanism to handle absorption of nutrients.

  14. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  15. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  16. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity.

    PubMed

    Li, Xiang; Chen, Yinguang; Zhao, Shu; Chen, Hong; Zheng, Xiong; Luo, Jinyang; Liu, Yanan

    2015-03-01

    Bio-production of optically pure L-lactic acid from food waste has attracted much interest as it can treat organic wastes with simultaneous recovery of valuable by-products. However, the yield of L-lactic acid was very low and no optically pure L-lactic acid was produced in the literature due to (1) the lower activity of enzymes involved in hydrolysis and L-lactic acid generation, and (2) the participation of other enzymes related to D-lactic acid and acetic and propionic acids production. In this paper, a new strategy was reported for effective production of optically pure L-lactic acid from food waste at ambient temperature, i.e. via regulating key enzyme activity by sewage sludge supplement and intermittent alkaline fermentation. It was found that not only optically pure L-lactic acid was produced, but the yield was enhanced by 2.89-fold. The mechanism study showed that the activities of enzymes relevant to food waste hydrolysis and lactic acid production were enhanced, and the key enzymes related to volatile fatty acids and D-lactic acid generations were severally decreased or inhibited. Also, the microbes responsible for L-lactic acid production were selectively proliferated. Finally, the pilot-scale continuous experiment was conducted to testify the feasibility of this new technique.

  17. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling

    PubMed Central

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants. PMID:27446121

  18. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants.

  19. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges

    PubMed Central

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na+], and [Cl−] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na+, K+-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  20. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    PubMed

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  1. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.

    PubMed

    Daloso, Danilo M; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B; Reichheld, Jean-Philippe; Araújo, Wagner L; Fernie, Alisdair R

    2015-03-17

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.

  2. Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway.

    PubMed

    Rong, Duoyan; Luo, Nan; Mollet, Jean Claude; Liu, Xuanming; Yang, Zhenbiao

    2016-11-07

    Tip growth is a common strategy for the rapid elongation of cells to forage the environment and/or to target to long-distance destinations. In the model tip growth system of Arabidopsis pollen tubes, several small-molecule hormones regulate their elongation, but how these rapidly diffusing molecules control extremely localized growth remains mysterious. Here we show that the interconvertible salicylic acid (SA) and methylated SA (MeSA), well characterized for their roles in plant defense, oppositely regulate Arabidopsis pollen tip growth with SA being inhibitory and MeSA stimulatory. The effect of SA and MeSA was independent of known NPR3/NPR4 SA receptor-mediated signaling pathways. SA inhibited clathrin-mediated endocytosis in pollen tubes associated with an increased accumulation of less stretchable demethylated pectin in the apical wall, whereas MeSA did the opposite. Furthermore, SA and MeSA alter the apical activation of ROP1 GTPase, a key regulator of tip growth in pollen tubes, in an opposite manner. Interestingly, both MeSA methylesterase and SA methyltransferase, which catalyze the interconversion between SA and MeSA, are localized at the apical region of pollen tubes, indicating of the tip-localized production of SA and MeSA and consistent with their effects on the apical cellular activities. These findings suggest that local generation of a highly diffusible signal can regulate polarized cell growth, providing a novel mechanism of cell polarity control apart from the one involving protein and mRNA polarization.

  3. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides.

    PubMed

    Ment, Dana; Alkan, Noam; Luria, Neta; Bi, Fang-Cheng; Reuveni, Eli; Fluhr, Robert; Prusky, Dov

    2015-02-01

    Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity.

  4. Promoter Analysis of the Human Ascorbic Acid Transporters SVCT1 & 2: Mechanisms of Adaptive Regulation in Liver Epithelial Cells

    PubMed Central

    Reidling, Jack C.; Rubin, Stanley A.

    2010-01-01

    Ascorbic acid, the active form of vitamin C, is a vital antioxidant in the human liver, yet the molecular mechanisms involved in the regulation of ascorbic acid transporters (hSVCT1 and hSVCT2) in liver cells are poorly understood. Therefore, we characterized the minimal promoter regions of hSVCT1 & 2 in cultured human liver epithelial cells (HepG2) and examined the effects of ascorbic acid deprivation and supplementation on activity and regulation of the transport systems. Identified minimal promoters required for basal activity were found to include multiple cis-regulatory elements, whereas mutational analysis demonstrated that HNF-1 sites in the hSVCT1 promoter and KLF/Sp1 sites in the hSVCT2 promoter were essential for activities. When cultured in ascorbic acid deficient or supplemented media, HepG2 cells demonstrated significant (P < 0.01) and specific reciprocal changes in [14C]-Ascorbic acid uptake, and in hSVCT1 mRNA and protein levels as well as hSVCT1 promoter activity. However, no significant changes in hSVCT2 expression or promoter activity were observed during ascorbic acid deficient or supplemented conditions. We mapped the ascorbic acid responsive region in the hSVCT1 promoter and determined that HNF-1 sites are important for the adaptive regulation response. The results of these studies further characterize the hSVCT1 and 2 promoters, establish that ascorbic acid uptake by human liver epithelial cells is adaptively regulated, and show that transcriptional mechanisms via HNF-1 in the hSVCT1 promoter may, in part, be involved in this regulation. PMID:20471816

  5. RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens.

    PubMed

    Yu, Minli; Yu, Ping; Leghari, Imdad H; Ge, Chutian; Mi, Yuling; Zhang, Caiqiao

    2013-02-01

    Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells. Meiotic germ cells were first detected at day 15.5 in chicken embryo ovary when the expression of synaptonemal complex protein 3 (Scp3) and disrupted meiotic cDNA 1 homologue (Dmc1) became elevated, while Stra8 expression was specifically up-regulated at day 12.5 before meiosis onset. It was observed from the increase in Raldh2 mRNA expression levels and decreases in Cyp26b1 (the enzyme for RA catabolism) expression levels during meiosis that requirement for RA accumulation is essential to sustain meiosis. This was also revealed by RA stimulation of the cultured ovaries with the initiation of meiosis response, and the knocking down of the Raldh2 expression during meiosis, leading to abolishment of RA-dependent action. Altogether, these studies indicate that RA synthesis by the enzyme RALDH2 and signaling through its receptor is crucial for meiosis initiation in chicken embryonic ovary.

  6. Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells

    PubMed Central

    Angrisano, T.; Sacchetti, S.; Natale, F.; Cerrato, A.; Pero, R.; Keller, S.; Peluso, S.; Perillo, B.; Avvedimento, V. E.; Fusco, A.; Bruni, C. B.; Lembo, F.; Santoro, M.; Chiariotti, L.

    2011-01-01

    Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci. PMID:20952403

  7. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

    PubMed Central

    Hashidate-Yoshida, Tomomi; Harayama, Takeshi; Hishikawa, Daisuke; Morimoto, Ryo; Hamano, Fumie; Tokuoka, Suzumi M; Eto, Miki; Tamura-Nakano, Miwa; Yanobu-Takanashi, Rieko; Mukumoto, Yoshiko; Kiyonari, Hiroshi; Okamura, Tadashi; Kita, Yoshihiro; Shindou, Hideo; Shimizu, Takao

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. DOI: http://dx.doi.org/10.7554/eLife.06328.001 PMID:25898003

  8. Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism.

    PubMed

    Lang, Eric J M; Cross, Penelope J; Mittelstädt, Gerd; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    Allosteric regulation of enzyme activity plays important metabolic roles. Here we review the allostery of enzymes of amino-acid metabolism conferred by a discrete domain known as the ACT domain. This domain of 60-70 residues has a βαββαβ topology leading to a four-stranded β4β1β3β2 antiparallel sheet with two antiparallel helices on one face. Extensive sequence variation requires a combined sequence/structure/function analysis for identification of the ACT domain. Common features include highly varied modes of self-association of ACT domains, ligand binding at domain interfaces, and transmittal of allosteric signals through conformational changes and/or the manipulation of quaternary equilibria. A recent example illustrates the relatively facile adoption of this versatile module of allostery by gene fusion.

  9. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation.

    PubMed

    Zeidan, Y H; Hannun, Y A

    2010-07-01

    One of the most intriguing enzymes of sphingolipid biology is acid sphingomyelinase (ASMase). In a phospholipase C reaction, ASMase catalyzes the cleavage of the phosphocholine head group of sphingomyelin to generate ceramide. Cumulative efforts of various laboratories over the past 40 years have placed ASMase and its product ceramide at the forefront of lipid research. Activation of the ASMase/ceramide pathway is a shared response to an ever-growing list of receptor and non-receptor mediated forms of cellular stress including: death ligands (TNFalpha, TRAIL, Fas ligand), cytokines (IL-1, IFNgamma), radiation, pathogenic infections, cytotoxic agents and others. The strategic role of ASMase in lipid metabolism and cellular stress response has sparked interest in investigatig the molecular mechanisms underlying ASMase activation. In this article, we review the translational role of the ASMase/ceramide pathway and recent advances on its mechanisms of regulation.

  10. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance.

    PubMed

    Peti-Peterdi, János

    2013-07-01

    Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitochondrial the citric acid(TCA) cycle intermediate α-ketoglutarate (αKG), which via its OXGR1 receptor plays an unexpected, nontraditional role in the adaptive regulation of renal HCO(3⁻) secretion and salt reabsorption.

  11. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance

    PubMed Central

    Peti-Peterdi, János

    2013-01-01

    Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitochondrial the citric acid (TCA) cycle intermediate α-ketoglutarate (αKG), which via its OXGR1 receptor plays an unexpected, nontraditional role in the adaptive regulation of renal HCO3– secretion and salt reabsorption. PMID:23926603

  12. Retinoic acid cross-talk with calcitriol activity in Atlantic salmon (Salmo salar).

    PubMed

    Ørnsrud, R; Lock, E J; Glover, C N; Flik, G

    2009-09-01

    Vitamins A (VA) and D (VD) are metabolised by vertebrates to bioactive retinoic acid (RA) and calcitriol (CTR). RA and CTR involvement in bone metabolism requires fine-tuned regulation of their synthesis and breakdown. In mammals antagonism of VA and VD is observed, but the mechanism of interaction is unknown. We investigated VA-VD interactions in Atlantic salmon (Salmo salar L.) following i.p. injection of RA and/or CTR. VA metabolites, CTR, calcium (Ca), magnesium (Mg) and phosphorus (P) were determined in plasma. Expression of bone matrix Gla protein (mgp), collagen 1 alpha2 chain (col1a2) and alkaline phosphatase (alp) mRNA was quantified to reflect osteogenesis. Branchial epithelial Ca channel (ecac listed as trpv6 in ZFIN Database) mRNA levels and intestinal Ca and P influx were determined to study Ca/P handling targets of RA and CTR. RA-injection (with or without CTR) decreased plasma CTR-levels three- to sixfold. CTR injection did not affect RA metabolites, but lowered CTR in plasma 3 and 5 days after injection. Lowered plasma CTR correlated with decreased mgp and col1a2 expression in all groups and with decreased alp in CTR-injected fish. RA-treated salmon had enhanced alp expression, irrespective of reduced plasma CTR. Expression of ecac and unidirectional intestinal influx of Ca were stimulated following RA-CTR treatment. Plasma Ca, Mg and P were not affected by any treatment. The results suggest cross-talk of RA with the VD endocrine system in Atlantic salmon. Enhanced Ca flux and osteogenesis (alp transcription) in RA-treated fish and inhibition of mgp expression revealed unprecedented disturbance of Ca physiology in hypervitaminosis A.

  13. Direct inhibition of retinoic acid catabolism by fluoxetine.

    PubMed

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  14. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells

    PubMed Central

    Menendez, J A; Lupu, R

    2017-01-01

    Fatty acid synthase (FASN), the key enzyme for endogenous synthesis of fatty acids, is overexpressed and hyperactivated in a biologically aggressive subset of sex steroid-related tumors, including breast carcinomas. Using pharmacological and genetic approaches, we assessed the molecular relationship between FASN signaling and estrogen receptor alpha (ERα) signaling in breast cancer. The small compound C75, a synthetic slow-binding inhibitor of FASN activity, induced a dramatic augmentation of estradiol (E2)-stimulated, ERα-driven transcription. FASN and ERα were both necessary for the synergistic activation of ERα transcriptional activity that occurred following co-exposure to C75 and E2: first, knockdown of FASN expression using RNAi (RNA interference) drastically lowered (>100 fold) the amount of E2 required for optimal activation of ERα-mediated transcriptional activity; second, FASN blockade synergistically increased E2-stimulated ERα-mediated transcriptional activity in ERα-negative breast cancer cells stably transfected with ERα, but not in ERα-negative parental cells. Non-genomic, E2-regulated cross-talk between the ERα and MAPK pathways participated in these phenomena. Thus, treatment with the pure antiestrogen ICI 182 780 or the potent and specific inhibitor of MEK/ERK, U0126, was sufficient to abolish the synergistic nature of the interaction between FASN blockade and E2-stimulated ERα transactivation. FASN inhibition suppressed E2-stimulated breast cancer cell proliferation and anchorage-independent colony formation while promoting the reduction of ERα protein. FASN blockade resulted in the increased expression and nuclear accumulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27Kip1, two critical mediators of the therapeutic effects of antiestrogen in breast cancer, while inactivating AKT, a key mediator of E2-promoted anchorage-independent growth. The ability of FASN to regulate E2/ERα signaling may represent a

  15. Deoxycholic acid differentially regulates focal adhesion kinase phosphorylation: role of tyrosine phosphatase ShP2.

    PubMed

    Khare, Sharad; Holgren, Cory; Samarel, Allen M

    2006-12-01

    Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling.

  16. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids

    PubMed Central

    Valanejad, Leila; Nadolny, Christina; Shiffka, Stephanie; Chen, Yuan; You, Sangmin; Deng, Ruitang

    2017-01-01

    Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism. PMID:28125709

  17. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  18. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus).

    PubMed

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-05-15

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts.

  19. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    PubMed

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.

  20. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  1. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  2. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation

    PubMed Central

    Arora, Amit; Beilstein, Mark A.; Shippen, Dorothy E.

    2016-01-01

    Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activity. Here, we show that OB1 of POT1a, but not POT1b, has an intrinsic affinity for telomeric DNA. DNA binding was dependent upon a highly conserved Phe residue (F65) that in human POT1 directly contacts telomeric DNA. F65A mutation of POT1aOB1 abolished DNA binding and diminished telomerase repeat addition processivity. Conversely, AtPOT1b and other POT1b homologs from Brassicaceae and its sister family, Cleomaceae, naturally bear a non-aromatic amino acid at this position. By swapping Val (V63) with Phe, AtPOT1bOB1 gained the capacity to bind telomeric DNA and to stimulate telomerase repeat addition processivity. We conclude that, in the context of DNA binding, variation at a single amino acid position promotes divergence of the AtPOT1b paralog from the ancestral POT1 protein. PMID:27651456

  3. Valve-regulated lead-acid batteries for stop-and-go applications

    NASA Astrophysics Data System (ADS)

    May, G. J.

    Increasing levels of demand for electrical power for vehicles have prompted a considerable level of research into higher voltage systems. This has resulted in the definition of preliminary standards for 36/42 V systems. The implementation costs for these systems are high and this has led to improvements in 12/14 V power architectures. In particular, alternator power outputs at 14 V have increased and the need for lower emission levels and fuel economy is stimulating a demand for stop-and-go systems. In this type of application, the engine is stopped each time the vehicle comes to a halt, and is restarted when the accelerator is pressed again. The duty cycle that this applies to the battery is quite onerous with many shallow discharge cycles. Flooded lead-acid batteries are unable to meet the requirements and valve-regulated lead-acid (VRLA) batteries are essential to meet the demands applied. The background to stop-and-go battery applications is considered and test results on practical batteries are presented to show that under a simulated duty cycle, good performance can be achieved. There is also a need for a higher level of battery management for stop-and-go systems. A practical approach to battery condition monitoring to assess the state-of-charge and state-of-health of the battery is described.

  4. Unsaturated fatty acid regulation of cytochrome P450 expression via a CAR-dependent pathway

    PubMed Central

    Finn, Robert D.; Henderson, Colin J.; Scott, Claire L.; Wolf, C. Roland

    2008-01-01

    The liver is responsible for key metabolic functions, including control of normal homoeostasis in response to diet and xenobiotic metabolism/detoxification. We have shown previously that inactivation of the hepatic cytochrome P450 system through conditional deletion of POR (P450 oxidoreductase) induces hepatic steatosis, liver growth and P450 expression. We have exploited a new conditional model of POR deletion to investigate the mechanism underlying these changes. We demonstrate that P450 induction, liver growth and hepatic triacylglycerol (triglyceride) homoeostasis are intimately linked and provide evidence that the observed phenotypes result from hepatic accumulation of unsaturated fatty acids, which mediate these phenotypes by activation of the nuclear receptor CAR (constitutive androstane receptor) and, to a lesser degree, PXR (pregnane X receptor). To our knowledge this is the first direct evidence that P450s play a major role in controlling unsaturated fatty acid homoeostasis via CAR. The regulation of P450s involved in xenobiotic metabolism by this mechanism has potentially significant implications for individual responses to drugs and environmental chemicals. PMID:18778245

  5. [Catabolism of methylphosphonic acid and its physiological regulation in Escherichia coli].

    PubMed

    Matys, S V; Laurinavichius, K S; Nesmeianova, M A

    1996-01-01

    It was found that methyl phosphonic acid (Pn) was degraded by different Escherichia coli strains, which utilized it as the sole phosphorus source with resulting methane formation. This ability was influenced by mutations in the regulatory genes of the pho regulon. Thus, Pn was not degraded by an E. coli mutant defective in the regulatory phoB gene, responsible for the induction of pho-regulon proteins during phosphorus starvation. The intensity of Pn degradation depended on the age and concentration of the inoculum. Preincubation of bacteria in the presence of Pn accelerated subsequent degradation of both methyl phosphonic acid and its esters. Cultures developing from a small amount of inoculum degraded Pn more efficiently than heavily inoculated cultures that underwent only one cell division. However, cultures heavily inoculated with adapted cells degraded Pn as efficiently as cultures developing from a small amount of inoculum. Aeration was an important factor regulating Pn degradation: Pn was degraded more efficiently under anaerobic conditions regardless of the amount of inoculum.

  6. Acid-base regulation during heating and cooling in the lizard, Varanus exanthematicus.

    PubMed

    Wood, S C; Johansen, K; Glass, M L; Hoyt, R W

    1981-04-01

    Current concepts of acid-base balance in ectothermic animals require that arterial pH vary inversely with body temperature in order to maintain a constant OH-/H+ and constant net charge on proteins. The present study evaluates acid-base regulation in Varanus exanthematicus under various regimes of heating and cooling between 15 and 38 degrees C. Arterial blood was sampled during heating and cooling at various rates, using restrained and unrestrained animals with and without face masks. Arterial pH was found to have a small temperature dependence, i.e., pH = 7.66--0.005 (T). The slope (dpH/dT = -0.005), while significantly greater than zero (P less than 0.05), is much less than that required for a constant OH-/H+ or a constant imidazole alphastat (dpH/dT congruent to 0.018). The physiological mechanism that distinguishes this species from most other ectotherms is the presence of a ventilatory response to temperature-induced changes in CO2 production and O2 uptake, i.e., VE/VO2 is constant. This results in a constant O2 extraction and arterial saturation (approx. 90%), which is adaptive to the high aerobic requirements of this species.

  7. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid.

    PubMed Central

    Lin, L L; Lin, A Y; Knopf, J L

    1992-01-01

    Cytosolic phospholipase A2 (cPLA2) binds to natural membrane vesicles in a Ca(2+)-dependent fashion, resulting in the selective release of arachidonic acid, thus implicating cPLA2 in the hormonally regulated production of eicosanoids. Here we report that the treatment of Chinese hamster ovary (CHO) cells overexpressing cPLA2 with ATP or thrombin resulted in an increased release of arachidonic acid as compared with parental CHO cells, demonstrating the hormonal coupling of cPLA2. In contrast, CHO cells overexpressing a secreted form of mammalian PLA2 (sPLA2-II) failed to show any increased hormonal responsiveness. Interestingly, we have noted that the activation of cPLA2 with a wide variety of agents stimulates the phosphorylation of cPLA2 on serine residues. Pretreatment of cells with staurosporin blocked the ATP-mediated phosphorylation of cPLA2 and strongly inhibited the activation of the enzyme. Increased cPLA2 activity was also observed in lysates prepared from ATP-treated cells and was sensitive to phosphatase treatment. These results suggest that in addition to Ca2+, the phosphorylation of cPLA2 plays an important role in the agonist-induced activation of cPLA2. Images PMID:1631101

  8. Characterisation of separator papers for use in valve regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Ball, R. J.; Evans, R.; Stevens, R.

    Separator papers are an essential component of a valve regulated lead/acid (VRLA) battery. In addition to separating the positive and negative electrodes, they provide a constant pressure on the active materials thereby reducing the rate of degradation during cycling. Dendrites formed from the negative active material are also less likely to cause short circuits in batteries where a separator is employed. The level to which a separator will influence the performance of a VRLA battery it strongly dependent on its properties. This paper describes the results from a series of tests used to characterise the properties of separators most influential to battery performance. These properties include, the macroscopic structure, permittivity and wicking rates. During the operational life of a VRLA battery the volume of electrolyte will decrease, due mainly to the electrolysis of water during overcharging. The consequence of this process is a variation of acid saturation during the life of the battery, which will have a direct influence on the compressive and diffusive properties of the separator. Compressive and diffusive characteristics were therefore measured over a range of saturation levels. Characterisation was conducted on three separator types. Types A and B were 100% glass but had slightly different structures and type C contained 8% polyester fibres mixed with glass.

  9. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein

    PubMed Central

    Yoon, Yeo Min; Lee, Jun Hee; Yun, Seung Pil; Han, Yong-Seok; Yun, Chul Won; Lee, Hyun Jik; Noh, Hyunjin; Lee, Sei-Jung; Han, Ho Jae; Lee, Sang Hun

    2016-01-01

    Although mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine, ischemia-induced endoplasmic reticulum (ER) stress induces low MSC engraftment and limits their therapeutic efficacy. To overcome this, we investigated the protective effect of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs in vitro and in vivo. In ER stress conditions, TUDCA treatment of MSCs reduced the activation of ER stress-associated proteins, including GRP78, PERK, eIF2α, ATF4, IRE1α, JNK, p38, and CHOP. In particular, TUDCA inhibited the dissociation between GRP78 and PERK, resulting in reduced ER stress-mediated cell death. Next, to explore the ER stress protective mechanism induced by TUDCA treatment, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. TUDCA treatment increased PrPC expression, which was regulated by Akt phosphorylation. Manganese-dependent superoxide dismutase (MnSOD) expression also increased significantly in response to signaling through the TUDCA-Akt axis. In a murine hindlimb ischemia model, TUDCA-treated MSC transplantation augmented the blood perfusion ratio, vessel formation, and transplanted cell survival more than untreated MSC transplantation did. Augmented functional recovery following MSC transplantation was blocked by PrPC downregulation. This study is the first to demonstrate that TUDCA protects MSCs against ER stress via Akt-dependent PrPC and Akt-MnSOD pathway. PMID:28004805

  10. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    PubMed Central

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  11. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing

    PubMed Central

    Mansfeld, Johannes; Urban, Nadine; Priebe, Steffen; Groth, Marco; Frahm, Christiane; Hartmann, Nils; Gebauer, Juliane; Ravichandran, Meenakshi; Dommaschk, Anne; Schmeisser, Sebastian; Kuhlow, Doreen; Monajembashi, Shamci; Bremer-Streck, Sibylle; Hemmerich, Peter; Kiehntopf, Michael; Zamboni, Nicola; Englert, Christoph; Guthke, Reinhard; Kaleta, Christoph; Platzer, Matthias; Sühnel, Jürgen; Witte, Otto W.; Zarse, Kim; Ristow, Michael

    2015-01-01

    Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFβ, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan. PMID:26620638

  12. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.

    PubMed

    Graciano, Maria Fernanda Rodrigues; Valle, Maíra M R; Kowluru, Anjan; Curi, Rui; Carpinelli, Angelo R

    2011-01-01

    Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.

  13. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing.

    PubMed

    Mansfeld, Johannes; Urban, Nadine; Priebe, Steffen; Groth, Marco; Frahm, Christiane; Hartmann, Nils; Gebauer, Juliane; Ravichandran, Meenakshi; Dommaschk, Anne; Schmeisser, Sebastian; Kuhlow, Doreen; Monajembashi, Shamci; Bremer-Streck, Sibylle; Hemmerich, Peter; Kiehntopf, Michael; Zamboni, Nicola; Englert, Christoph; Guthke, Reinhard; Kaleta, Christoph; Platzer, Matthias; Sühnel, Jürgen; Witte, Otto W; Zarse, Kim; Ristow, Michael

    2015-12-01

    Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFβ, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan.

  14. Chicoric acid regulates behavioral and biochemical alterations induced by chronic stress in experimental Swiss albino mice.

    PubMed

    Kour, Kiranjeet; Bani, Sarang

    2011-09-01

    The present study was taken up to see the effect of chicoric acid (CA) on behavioral and biochemical alterations induced by chronic restraint stress in experimental Swiss albino mice. CA at 1mg/kg dose level exhibited considerable antidepressant activity as shown by significant decrease in immobility period in the Porsolt's swim stress-induced behavioral despair test and escape failures in Learned "helplessness test". The antidepressant activity shown by CA can be attributed to its modulating effect on nor-adrenaline (NA), dopamine (DA) and 5- hydroxy tryptamine (5-HT) as shown by their quantification in CA treated chronically stressed mice. Further, a significant antioxidant effect was exhibited by CA as shown by estimation of lipid peroxidation, glutathione (GSH) and glycogen in liver of chronically stressed mice. It also normalized altered values of serum glucose, triglycerides, aspartate aminotransferase (AST) alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in a dose dependent manner. The stress busting potential of CA was further confirmed by its regulating effect on raised plasma corticosterone levels and significant attenuation of the depleted ascorbic acid, cholesterol and corticosterone levels in adrenal glands. Thus, our results suggest that CA possesses considerable stress busting potential, and that anti-oxidation may be one of the mechanisms underlying its antistress action.

  15. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12.

    PubMed Central

    Ely, B; Pittard, J

    1979-01-01

    Starvation of cells of Escherichia coli K-12 for the aromatic amino acids results in an increased rate of synthesis of shikimate kinase activity. The two controlling amino acids are tyrosine and tryptophan, and starvation for both results in derepression. The product of the regulator gene tyrR also participates in this control, and shikimate kinase synthesis was depressed in tyrR mutants. Chromatography of cell extracts on diethylaminoethyl-Sephadex allowed partial separation of two shikimate kinase enzymes and demonstrated that only one of these subject to specific repression control involving tyrR. By contrast, chromatography of cell extracts with G-75 or G-200 columns revealed a singl-molecular-weight species of shikimate kinase activity with an apparent molecular weight of 20,000. The levels of shikimate kinase in a series of partial diploid strains indicated that aroL, the structural gene for the tyrR-controlled shikimate kinase enzyme, is located on the E. coli chromosome between the structural genes proC and purE. By means of localized mutagenesis, an aroL mutant of E. coli was isolated. The mutant was an aromatic prototroph and, by the criterion of column chromatography, appeared to have only a single functional species of shikimate kinase enzyme. PMID:222728

  16. Bile acid-FXRα pathways regulate male sexual maturation in mice

    PubMed Central

    Vega, Aurélie; Sédes, Lauriane; Rouaisnel, Betty; de Haze, Angélique; Baron, Silvère; Schoonjans, Kristina; Caira, Françoise; Volle, David H.

    2016-01-01

    The bile acid receptor Farnesol-X-Receptor alpha (FRXα) is a member of the nuclear receptor superfamily. FRXα is expressed in the interstitial compartment of the adult testes, which contain the Leydig cells. In adult, short term treatment (12 hours) with FRXα agonist inhibits the expression of steroidogenic genes via the induction of the Small heterodimer partner (SHP). However the consequences of FRXα activation on testicular pathophysiology have never been evaluated. We demonstrate here that mice fed a diet supplemented with bile acid during pubertal age show increased incidence of infertility. This is associated with altered differentiation and increase apoptosis of germ cells due to lower testosterone levels. At the molecular level, next to the repression of basal steroidogenesis via the induction expression of Shp and Dax-1, two repressors of steroidogenesis, the main action of the BA-FRXα signaling is through lowering the Leydig cell sensitivity to the hypothalamo-pituitary axis, the main regulator of testicular endocrine function. In conclusion, BA-FRXα signaling is a critical actor during sexual maturation. PMID:26848619

  17. Expression Analysis of Phenylalanine Ammonia Lyase Gene and Rosmarinic Acid Production in Salvia officinalis and Salvia virgata Shoots Under Salicylic Acid Elicitation.

    PubMed

    Ejtahed, Roghayeh Sadat; Radjabian, Tayebeh; Hoseini Tafreshi, Sayed Ali

    2015-08-01

    Partial fragments of phenylalanine ammonia lyase (PAL) genes were cloned and characterized from Salvia officinalis (SoPAL) and Salvia virgata (SvPAL). Different concentrations (250 and 500 μM) of exogenous salicylic acid (SA) were used when correlation between PAL expression and rosmarinic acid (RA) accumulation was compared. The results showed that the deduced cDNA sequences of the partial genes had high similarities with those of known PAL gene from other plant species. Semi-quantitative reverse transcription PCR (RT-PCR) analysis revealed that exogenous application of SA led to up-regulating of the PAL expression. Further analysis showed that in S. virgata, at higher concentration of SA, higher accumulation of RA was achieved, while in S. officinalis, the higher RA accumulation was observed at lower concentration of SA. It was concluded that there was no positive correlation between the intensity of PAL transcription and the RA accumulation in the studied species. Therefore, despite of the increase in transcription rate of the PAL at the higher concentration of SA, the lower amounts of RA were accumulated in the case of S. officinalis. Consequently, the hypothesis that PAL is the rate-determining step in RA biosynthesis is not always valid and probably some other unknown factors participate in the synthesis of phenolics.

  18. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin.

    PubMed

    Tippmann, Frank; Hundt, Jana; Schneider, Anja; Endres, Kristina; Fahrenholz, Falk

    2009-06-01

    Late-onset Alzheimer's disease is often connected with nutritional misbalance, such as enhanced cholesterol intake, deficiency in polyunsaturated fatty acids, or hypovitaminosis. The alpha-secretase ADAM10 has been found to be regulated by retinoic acid, the bioreactive metabolite of vitamin A. Here we show that retinoids induce gene expression of ADAM10 and alpha-secretase activity by nonpermissive retinoid acid receptor/retinoid X receptor (RAR/RXR) heterodimers, whereby alpha- and beta-isotypes of RAR play a major role. However, ligands of other RXR binding partners, such as the vitamin D receptor, do not stimulate alpha-secretase activity. On the basis of these findings, we examined the effect of synthetic retinoids and found a strong enhancement of nonamyloidogenic processing of the amyloid precursor protein by the vitamin A analog acitretin: it stimulated ADAM10 promoter activity with an EC(50) of 1.5 microM and led to an increase of mature ADAM10 protein that resulted in a two- to three-fold increase of the ratio between alpha- and beta-secretase activity in neuroblastoma cells. The alpha-secretase stimulation by acitretin was completely inhibited by the ADAM10-specific inhibitor GI254023X. Intracerebral injection of acitretin in APP/PS1-21 transgenic mice led to a reduction of Abeta(40) and Abeta(42). The results of this study may have clinical relevance because acitretin has been approved for the treatment of psoriasis since 1997 and found generally safe for long-term use in humans.

  19. Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism

    PubMed Central

    Li, Chun; Wang, Jing; Wang, Qiyan; Zhang, Yi; Zhang, Na; Lu, Linghui; Wu, Yan; Zhang, Qian; Wang, Wei; Wang, Yong; Tu, Pengfei

    2016-01-01

    Qishen granules (QSG), a traditional Chinese medicine, have been prescribed widely in the treatment of coronary heart diseases. Previous studies demonstrated that QSG had anti-inflammatory and cardio-protective effects in mice with acute myocardial infarction (AMI). However, the mechanisms by which QSG attenuate inflammation and prevent post-AMI heart failure (HF) are still unclear. In this study, we explored the anti-inflammatory mechanisms of QSG by in vitro and in vivo experiments. A novel inflammatory injury model of H9C2 cells was induced by lipopolysaccharide (LPS)-stimulated macrophage-conditioned media (CM). An animal model of AMI was conducted by ligation of left anterior descending (LAD) coronary artery in mice. We found that QSG inhibited release of cytokines from LPS-stimulated RAW 264.7 macrophages and protected H9C2 cardiac cells against CM-induced injury. In vivo results showed that QSG administration could improve cardiac functions and alter pathological changes in model of AMI. QSG regulated multiple key molecules, including phospholipases A2 (PLA2), cyclooxygenases (COXs) and lipoxygenases (LOXs), in arachidonic acid metabolism pathway. Interestingly, QSG also targeted TNF-α-NF-κB and IL-6-JAK2-STAT3 signaling pathways. Taken together, QSG achieve synergistic effects in mitigating post-AMI HF by regulating multiple targets in inflammatory pathways. This study provides insights into anti-inflammatory therapeutics in managing HF after AMI. PMID:27833128

  20. Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid.

    PubMed

    Saumonneau, Amélie; Laloi, Maryse; Lallemand, Magali; Rabot, Amélie; Atanassova, Rossitza

    2012-02-01

    Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism.

  1. Abscisic acid regulation of DC8, a carrot embryonic gene. [Daucus carota

    SciTech Connect

    Hatzopoulos, P.; Fong, F.; Sung, Z.R. Texas A M Univ., College Station )

    1990-10-01

    DC8 encodes a hydrophylic 66 kilodalton protein located in the cytoplasm and cell walls of carrot (Daucus carota) embryo and endosperm. During somatic embryogenesis, the levels of DC8 mRNA and protein begin to increase 5 days after removal of auxin. To study the role of abscisic acid (ABA) in the regulation of DC8 gene, fluridone, 1-methyl-3-phenyl,-5(3-trifluoro-methyl-phenyl)-4(1H)-pyridinone, was used to inhibit the endogenous ABA content of the embryos. Fluridone, 50 micrograms per milliliter, effectively inhibits the accumulation of ABA in globular-tage embryos. Western and Northern analysis show that when fluridone is added to the culture medium DC8 protein and mRNA decrease to very low levels. ABA added to fluridone supplemented culture media restores the DC8 protein and mRNA to control levels. Globular-stage embryos contain 0.9 to 1.4 {times} 10{sup {minus}7} molar ABA while 10{sup {minus}6} molar exogenously supplied ABA is the optimal concentration for restoration of DC8 protein accumulation in fluridone-treated embryos. The mRNA level is increased after 15 minutes of ABA addition and reaches maximal levels by 60 minutes. Evidence is presented that, unlike other ABA-regulated genes, DC8 is not induced in nonembryonic tissues via desiccation nor addition of ABA.

  2. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).

    PubMed

    Wang, Guang-Long; Xu, Zhi-Sheng; Wang, Feng; Li, Meng-Yao; Tan, Guo-Fei; Xiong, Ai-Sheng

    2015-09-01

    Ascorbic acid (AsA), also known as vitamin C, is an essential nutrient in fruits and vegetables. The fleshy root of carrot (Daucus carota L.) is a good source of AsA for humans. However, the metabolic pathways and molecular mechanisms involved in the control of AsA content during root development in carrot have not been elucidated. To gain insights into the regulation of AsA accumulation and to identify the key genes involved in the AsA metabolism, we cloned and analyzed the expression of 21 related genes during carrot root development. The results indicate that AsA accumulation in the carrot root is regulated by intricate pathways, of which the l-galactose pathway may be the major pathway for AsA biosynthesis. Transcript levels of the genes encoding l-galactose-1-phosphate phosphatase and l-galactono-1,4-lactone dehydrogenase were strongly correlated with AsA levels during root development. Data from this research may be used to assist breeding for improved nutrition, quality, and stress tolerance in carrots.

  3. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice.

    PubMed

    Qi, Jinfeng; Li, Jiancai; Han, Xiu; Li, Ran; Wu, Jianqiang; Yu, Haixin; Hu, Lingfei; Xiao, Yutao; Lu, Jing; Lou, Yonggen

    2016-06-01

    Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.

  4. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation.

    PubMed

    Kweon, Hae-Jin; Suh, Byung-Chang

    2013-06-01

    Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn(2+), and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel's large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated.

  5. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  6. The role of short chain fatty acids in appetite regulation and energy homeostasis.

    PubMed

    Byrne, C S; Chambers, E S; Morrison, D J; Frost, G

    2015-09-01

    Over the last 20 years there has been an increasing interest in the influence of the gastrointestinal tract on appetite regulation. Much of the focus has been on the neuronal and hormonal relationship between the gastrointestinal tract and the brain. There is now mounting evidence that the colonic microbiota and their metabolic activity have a significant role in energy homeostasis. The supply of substrate to the colonic microbiota has a major impact on the microbial population and the metabolites they produce, particularly short chain fatty acids (SCFAs). SCFAs are produced when non-digestible carbohydrates, namely dietary fibres and resistant starch, undergo fermentation by the colonic microbiota. Both the consumption of fermentable carbohydrates and the administration of SCFAs have been reported to result in a wide range of health benefits including improvements in body composition, glucose homeostasis, blood lipid profiles and reduced body weight and colon cancer risk. However, published studies tend to report the effects that fermentable carbohydrates and SCFAs have on specific tissues and metabolic processes, and fail to explain how these local effects translate into systemic effects and the mitigation of disease risk. Moreover, studies tend to investigate SCFAs collectively and neglect to report the effects associated with individual SCFAs. Here, we bring together the recent evidence and suggest an overarching model for the effects of SCFAs on one of their beneficial aspects: appetite regulation and energy homeostasis.

  7. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs.

    PubMed

    Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya

    2015-04-01

    In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties.

  8. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.

    PubMed

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-09-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.

  9. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.

    PubMed

    Less, Hadar; Angelovici, Ruthie; Tzin, Vered; Galili, Gad

    2010-10-01

    Amino acid metabolism is among the most important and best recognized networks within biological systems. In plants, amino acids serve multiple functions associated with growth. Besides their function in protein synthesis, the amino acids are also catabolized into energy-associated metabolites as well we into numerous secondary metabolites, which are essential for plant growth and response to various stresses. Despite the central importance of amino acids in plants growth, elucidation of the regulation of amino acid metabolism within the context of the entire system, particularly transcriptional regulation, is still in its infancy. The different amino acids are synthesized by a number of distinct metabolic networks, which are expected to possess regulatory cross interactions between them for proper coordination of their interactive functions, such as incorporation into proteins. Yet, individual amino acid metabolic networks are also expected to differentially cross interact with various genome-wide gene expression programs and metabolic networks, in respect to their functions as precursors for various metabolites with distinct functions. In the present review, we discuss our recent genomics, metabolic and bioinformatics studies, which were aimed at addressing these questions, focusing mainly on the Asp-family metabolic network as the main example and also comparing it to the aromatic amino acids metabolic network as a second example (Angelovici et al. in Plant Physiol 151:2058-2072, 2009; Less and Galili in BMC Syst Biol 3:14, 2009; Tzin et al. in Plant J 60:156-167, 2009). Our focus on these two networks is because of the followings: (i) both networks are central to plant metabolism and growth and are also precursors for a wide range of primary and secondary metabolites that are indispensable to plant growth; (ii) the amino acids produced by these two networks are also essential to the nutrition and health of human and farm animals; and (iii) both networks contain

  10. Regulation of alpha-1 acid glycoprotein synthesis by porcine hepatocytes in monolayer culture.

    PubMed

    Caperna, T J; Shannon, A E; Stoll, M; Blomberg, L A; Ramsay, T G

    2015-07-01

    Alpha-1 acid glycoprotein (AGP, orosomucoid, ORM-1) is a highly glycosylated mammalian acute-phase protein, which is synthesized primarily in the liver and represents the major serum protein in newborn pigs. Recent data have suggested that the pig is unique in that AGP is a negative acute-phase protein in this species, and its circulating concentration appears to be associated with growth rate. The purpose of the present study was to investigate the regulation of AGP synthesis in hepatocytes prepared from suckling piglets and to provide a framework to compare its regulation with that of haptoglobin (HP), a positive acute-phase protein. Hepatocytes were isolated from preweaned piglets and maintained in serum-free monolayer culture for up to 72 h. The influences of hormones, cytokines, and redox modifiers on the expression and secretion of AGP and HP were determined by relative polymerase chain reaction and by measuring the concentration of each protein secreted into culture medium. The messenger RNA abundance and/or secretion of AGP protein was enhanced by interleukin (IL)-17a, IL-1, and resveratrol and inhibited by tumor necrosis factor-α (TNF), oncostatin M, and thyroid hormone (P < 0.05). HP expression and synthesis were upregulated by oncostatin M, IL-6, and dexamethasone and downregulated by TNF (P < 0.01). The overall messenger RNA expression at 24 h was in agreement with the secreted protein patterns confirming that control of these proteins in hepatocytes is largely transcriptional. Moreover, these data support the consideration that AGP is a negative acute-phase reactant and appears to be regulated by cytokines (with the exception of TNF) and hormones primarily in a manner opposite to that of the positive acute-phase protein, HP.

  11. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia

    PubMed Central

    Hunsberger, Joshua G; Fessler, Emily B; Wang, Zhifei; Elkahloun, Abdel G; Chuang, De-Maw

    2012-01-01

    Stroke is a devastating brain injury that is a leading cause of adult disability with limited treatment options. Using a rat model of middle cerebral artery occlusion (MCAO) to induce cerebral ischemia, we profiled microRNAs (miRNAs), small non-protein coding RNAs, in the ischemic cortex. Many miRNAs were confirmed by qPCR to be robustly upregulated 24 hours following MCAO surgery including miR-155, miR-297a, miR-466f, miR-466h, and miR-1224. In addition, we treated MCAO rats with valproic acid (VPA), a mood stabilizer and histone deacetylase inhibitor. This post-insult treatment was shown to improve neurological deficits and motor performance following MCAO. To provide mechanistic insight into the potential targets and pathways that may underlie these benefits, we profiled miRNAs regulated following this VPA treatment. Two promising post-insult VPA-regulated candidates were miR-331 and miR-885-3p. miR-331 was also regulated by VPA pre-treatment in rat cortical neuronal cultures subjected to oxygen-glucose deprivation, an in vitro ischemic model. The predicted targets of these miRNAs analyzed by Ingenuity Pathway Analysis (IPA) identified networks involved in hematological system development, cell death, and nervous system development. These predicted networks were further filtered using IPA and showed significant associations with neurological diseases including movement disorders, neurodegenerative disorders, damage to cerebral cortex, and seizure disorders among others. Collectively, these data support common disease mechanisms that may be under miRNA control and provide exciting directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new therapies for neurological disorders. PMID:22937209

  12. Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product.

    PubMed

    Muellner, Mark G; Attene-Ramos, Matias S; Hudson, Matthew E; Wagner, Elizabeth D; Plewa, Michael J

    2010-04-01

    The disinfection of drinking water is a major achievement in protecting the public health. However, current disinfection methods also generate disinfection by-products (DBPs). Many DBPs are cytotoxic, genotoxic, teratogenic, and carcinogenic and represent an important class of environmentally hazardous chemicals that may carry long-term human health implications. The objective of this research was to integrate in vitro toxicology with focused toxicogenomic analysis of the regulated DBP, bromoacetic acid (BAA) and to evaluate modulation of gene expression involved in DNA damage/repair and toxic responses, with nontransformed human cells. We generated transcriptome profiles for 168 genes with 30 min and 4 hr exposure times that did not induce acute cytotoxicity. Using qRT-PCR gene arrays, the levels of 25 transcripts were modulated to a statistically significant degree in response to a 30 min treatment with BAA (16 transcripts upregulated and nine downregulated). The largest changes were observed for RAD9A and BRCA1. The majority of the altered transcript profiles are genes involved in DNA repair, especially the repair of double strand DNA breaks, and in cell cycle regulation. With 4 hr of treatment the expression of 28 genes was modulated (12 upregulated and 16 downregulated); the largest fold changes were in HMOX1 and FMO1. This work represents the first nontransformed human cell toxicogenomic study with a regulated drinking water disinfection by-product. These data implicate double strand DNA breaks as a feature of BAA exposure. Future toxicogenomic studies of DBPs will further strengthen our limited knowledge in this growing area of drinking water research.

  13. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing

    PubMed Central

    Comptour, Aurélie; Rouzaire, Marion; Belville, Corinne; Bonnin, Nicolas; Daniel, Estelle; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent

    2016-01-01

    Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics. PMID:27597564

  14. Dual transcriptional activities underlie opposing effects of retinoic acid on cell survival

    PubMed Central

    Schug, Thaddeus T; Berry, Daniel C.; Shaw, Natacha S.; Travis, Skylar N.; Noy, Noa

    2007-01-01

    Summary Transcriptional activation of the nuclear receptor RAR by retinoic acid (RA) often leads to inhibition of cell growth. However, in some tissues, RA promotes cell survival and hyperplasia, activities that are unlikely to be mediated by RAR. Here we show that, in addition to functioning through RAR, RA activates the ‘orphan’ nuclear receptor PPARβ/δ, which, in turn, induces the expression of pro-survival genes. Partitioning of RA between the two receptors is regulated by the intracellular lipid-binding proteins CRABP-II and FABP5. These proteins specifically deliver RA from the cytosol to nuclear RAR and PPARβ/δ, respectively, thereby selectively enhancing the transcriptional activity of their cognate receptors. Consequently, RA functions through RAR and is a pro-apoptotic agent in cells with high CRABP-II/FABP5 ratio, but it signals through PPARβ/δ and promotes survival in cells that highly express FABP5. Opposing effects of RA on cell growth thus emanate from alternate activation of two different nuclear receptors. PMID:17512406

  15. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  16. Diverse Functions of Retinoic Acid in Brain Vascular Development

    PubMed Central

    Bonney, Stephanie; Harrison-Uy, Susan; Mishra, Swati; MacPherson, Amber M.; Choe, Youngshik; Li, Dan; Jaminet, Shou-Ching; Fruttiger, Marcus; Pleasure, Samuel J.

    2016-01-01

    As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood–brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via

  17. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    SciTech Connect

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  18. Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells.

    PubMed

    Shahhoseini, Maryam; Taghizadeh, Zeinab; Hatami, Maryam; Baharvand, Hossein

    2013-04-01

    Gene activation of HOX clusters is an early event in embryonic development. These genes are highly expressed and active in the vertebrate nervous system. Based on the presence of retinoic acid response elements (RAREs) in the regulatory region of many of the HOX genes, it is deduced that retinoic acid (RA) can influence epigenetic regulation and consequently the expression pattern of HOX during RA-induced differentiation of embryonic model systems. In this investigation, the expression level as well as the epigenetic regulation of several HOX genes of the 4 A-D clusters was analyzed in human embryonic stem cells, and also through their neural induction, in the presence and absence of RA. Expression analysis data significantly showed increased mRNA levels of all examined HOX genes in the presence of RA. Epigenetic analysis of the HOX gene regulatory regions also showed a significant decrease in methylation of histone H3K27 parallel to an absolute preferential incorporation of the demethylase UTX rather than JMJD3 in RA-induced neural differentiated cells. This finding clearly showed the functional role of UTX in epigenetic alteration of HOX clusters during RA-induced neural differentiation; the activity could not be detectable for the demethylase JMJD3 during this developmental process.

  19. Regulation of germ cell meiosis in the fetal ovary.

    PubMed

    Spiller, Cassy M; Bowles, Josephine; Koopman, Peter

    2012-01-01

    Fertility depends on correct regulation of meiosis, the special form of cell division that gives rise to haploid gametes. In female mammals, germ cells enter meiosis during fetal ovarian development, while germ cells in males avoid entering meiosis until puberty. Decades of research have shown that meiotic entry, and germ cell sex determination, are not initiated intrinsically within the germ cells. Instead, meiosis is induced by signals produced by the surrounding somatic cells. More recently, retinoic acid (RA), the active derivative of vitamin A, has been implicated in meiotic induction during fetal XX and postnatal XY germ cell development. Evidence for an intricate system of RA synthesis and degradation in the fetal ovary and testis has emerged, explaining past observations of infertility in vitamin A-deficient rodents. Here we review how meiosis is triggered in fetal ovarian germ cells, paying special attention to the role of RA in this process.

  20. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle.

    PubMed

    Båvenholm, P N; Pigon, J; Saha, A K; Ruderman, N B; Efendic, S

    2000-07-01

    Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic clamp. Insulin was infused at rates of 0.25 and 1.0 mU x kg(-1) x min(-1), and glucose was infused at rates of 2.0 +/- 0.2 and 8.1 +/- 0.7 mg x kg(-1) x min(-1), respectively. During the low-dose insulin infusion, whole-body fatty acid oxidation, as determined by indirect calorimetry, decreased by 22% from a basal rate of 0.94 +/- 0.06 to 0.74 +/- 0.07 mg x kg(-1) x min(-1) (P = 0.005), but no increase in malonyl-CoA was observed. In contrast, during the high-dose insulin infusion, malonyl-CoA increased from 0.20 +/- 0.01 to 0.24 +/- 0.01 nmol/g (P < 0.001), and whole-body fatty acid oxidation decreased by an additional 41% to 0.44 +/- 0.06 mg x kg(-1) x min(-1) (P < 0.001). The increase in malonyl-CoA was associated with 30-50% increases in the concentrations of citrate (102 +/- 6 vs. 137 +/- 7 nmol/g, P < 0.001), an allosteric activator of the rate-limiting enzyme in the malonyl-CoA formation, acetyl-CoA carboxylase, and malate (80 +/- 6 vs. 126 +/- 9 nmol/g, P = 0.002), an antiporter for citrate efflux from the mitochondria. Significant correlations were observed between the concentration of malonyl-CoA and both glucose utilization (r = 0.53, P = 0.002) and the sum of the concentrations of citrate and malate (r = 0.52, P < 0.001), a proposed index of the cytosolic concentration of citrate. In addition, an inverse correlation between malonyl-CoA concentration and fatty acid oxidation was observed (r = -0.32, P = 0.03). The results indicate that an infusion of insulin and glucose at a high rate leads to increases in the concentration of malonyl-CoA in skeletal muscle and to

  1. Uncovering co-expression gene network regulating fruit acidity in diverse apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidity is a major contributor to fruit quality. Several organic acids are present in apple fruit, but malic acid is predominant and determines fruit acidity. The trait is largely controlled by the Malic acid (Ma) locus, underpinning which Ma1 that encodes an Aluminum-activated Malate Transporter1 (...

  2. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    SciTech Connect

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J.

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  3. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity.

    PubMed

    DuBois, Rebecca M; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J; White, Stephen W; Russell, Charles J

    2011-12-01

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  4. Differential Amino Acid, Carbohydrate and Lipid Metabolism Perpetuations Involved in a Subtype of Rheumatoid Arthritis with Chinese Medicine Cold Pattern

    PubMed Central

    Guo, Hongtao; Niu, Xuyan; Gu, Yan; Lu, Cheng; Xiao, Cheng; Yue, Kevin; Zhang, Ge; Pan, Xiaohua; Jiang, Miao; Tan, Yong; Kong, Hongwei; Liu, Zhenli; Xu, Guowang; Lu, Aiping

    2016-01-01

    Pattern classification is a key approach in Traditional Chinese Medicine (TCM), and it is used to classify the patients for intervention selection accordingly. TCM cold and heat patterns, two main patterns of rheumatoid arthritis (RA) had been explored with systems biology approaches. Different regulations of apoptosis were found to be involved in cold and heat classification in our previous works. For this study, the metabolic profiling of plasma was explored in RA patients with typical TCM cold or heat patterns by integrating liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) platforms in conjunction with the Ingenuity Pathway Analysis (IPA) software. Three main processes of metabolism, including amino acid, carbohydrate and lipid were focused on for function analysis. The results showed that 29 and 19 differential metabolites were found in cold and heat patterns respectively, compared with healthy controls. The perturbation of amino acid metabolism (increased essential amino acids), carbohydrate metabolism (galactose metabolism) and lipid metabolism, were found to be involved in both cold and heat pattern RA. In particular, more metabolic perturbations in protein and collagen breakdown, decreased glycolytic activity and aerobic oxidation, and increased energy utilization associated with RA cold pattern patients. These findings may be useful for obtaining a better understanding of RA pathogenesis and for achieving a better efficacy in RA clinical practice. PMID:27775663

  5. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  6. Leukocyte Homing, Fate, and Function Are Controlled by Retinoic Acid

    PubMed Central

    Guo, Yanxia; Brown, Chrysothemis; Ortiz, Carla; Noelle, Randolph J.

    2015-01-01

    Although vitamin A was recognized as an “anti-infective vitamin” over 90 years ago, the mechanism of how vitamin A regulates immunity is only beginning to be understood. Early studies which focused on the immune responses in vitamin A-deficient (VAD) animals clearly demonstrated compromised immunity and consequently increased susceptibility to infectious disease. The active form of vitamin A, retinoic acid (RA), has been shown to have a profound impact on the homing and differentiation of leukocytes. Both pharmacological and genetic approaches have been applied to the understanding of how RA regulates the development and differentiation of various immune cell subsets, and how RA influences the development of immunity versus tolerance. These studies clearly show that RA profoundly impacts on cell- and humoral-mediated immunity. In this review, the early findings on the complex relationship between VAD and immunity are discussed as well as vitamin A metabolism and signaling within hematopoietic cells. Particular attention is focused on how RA impacts on T-cell lineage commitment and plasticity in various diseases. PMID:25540140

  7. Retinoic acid deficiency alters second heart field formation

    PubMed Central

    Ryckebusch, Lucile; Wang, Zengxin; Bertrand, Nicolas; Lin, Song-Chang; Chi, Xuan; Schwartz, Robert; Zaffran, Stéphane; Niederreither, Karen

    2008-01-01

    Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2−/− knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2−/− embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2−/− embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2−/− mutant heart, in a gene dosage-dependent manner. PMID:18287057

  8. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis.

    PubMed

    Pathak, Preeti; Li, Tiangang; Chiang, John Y L

    2013-12-27

    Sterol 12α-hydroxylase (CYP8B1) is required for cholic acid synthesis and plays a critical role in intestinal cholesterol absorption and pathogenesis of cholesterol gallstone, dyslipidemia, and diabetes. In this study we investigated the underlying mechanism of fasting induction and circadian rhythm of CYP8B1 by a cholesterol-activated nuclear receptor and core clock gene retinoic acid-related orphan receptor α (RORα). Fasting stimulated, whereas restricted-feeding reduced expression of CYP8B1 mRNA and protein. However, fasting and feeding had little effect on the diurnal rhythm of RORα mRNA expression, but fasting increased RORα protein levels by cAMP-activated protein kinase A-mediated phosphorylation and stabilization of the protein. Adenovirus-mediated gene transduction of RORα to mice strongly induced CYP8B1 expression, and increased liver cholesterol and 12α-hydroxylated bile acids in the bile acid pool and serum. A reporter assay identified a functional RORα response element in the CYP8B1 promoter. RORα recruited cAMP response element-binding protein-binding protein (CBP) to stimulate histone acetylation on the CYP8B1 gene promoter. In conclusion, RORα is a key regulator of diurnal rhythm and fasting induction of CYP8B1, which regulates bile acid composition and serum and liver cholesterol levels. Antagonizing RORα activity may be a therapeutic strategy for treating inflammatory diseases such as non-alcoholic fatty liver disease and type 2 diabetes.

  9. Dietary fatty acids regulate cholesterol induction of liver CYP7alpha1 expression and bile acid production.

    PubMed

    Li, Yan; Hou, Meng Jun; Ma, Jing; Tang, Zhi Hong; Zhu, Hui Lian; Ling, Wen Hua

    2005-05-01

    In the present study we investigated the effects of dietary fats containing predominantly PUFA, monounsaturated FA (MUFA), or saturated FA (SFA) on lipid profile and liver cholesterol 7alpha-hydroxylase (CYP7alpha1) mRNA expression and bile acid production in C57BL/6J mice. The animals (n = 75) were randomly divided into five groups and fed a basic chow diet (AIN-93G) (BC diet), a chow diet with 1 g/100 g of cholesterol (Chol diet), a chow diet with 1 g/100 g of cholesterol and 14 g/100 g of safflower oil (Chol + PUFA diet), a chow diet with 1 g/100 g of cholesterol and olive oil (Chol + MUFA diet), or a chow diet with 1 g/100 g of cholesterol and myristic acid (Chol + SFA diet) for 6 wk. The results showed that the Chol + SFA diet decreased CYP7alpha1 gene expression and bile acid pool size, resulting in increased blood and liver cholesterol levels. Addition of PUFA and MUFA to a 1% cholesterol diet increased the bile acid pool production or bile acid excretion and simultaneously decreased liver cholesterol accumulation despite decreased CYP7alpha1 mRNA expression. The results indicate that the decreased bile acid pool size induced by the SFA diet is related to inhibition of the liver CYP7alpha1 gene expression, but an increased bile acid pool size and improved cholesterol homeostasis are disassociated from the liver CYP7alpha1 gene expression.

  10. Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats.

    PubMed

    Gregory, Elaine K; Webb, Antonio R; Vercammen, Janet M; Flynn, Megan E; Ameer, Guillermo A; Kibbe, Melina R

    2014-11-15

    Oral all-trans retinoic acid (atRA) has been shown to reduce the formation of neointimal hyperplasia; however, the dose required was 30 times the chemotherapeutic dose, which already has reported side effects. As neointimal formation is a localized process, new approaches to localized delivery are required. This study assessed whether atRA within a citrate-based polyester, poly(1,8 octanediolcitrate) (POC), perivascular membrane would prevent neointimal hyperplasia following arterial injury. atRA-POC membranes were prepared and characterized for atRA release via high-performance liquid chromatography with mass spectrometry detection. Rat adventitial fibroblasts (AF) and vascular smooth muscle cells (VSMC) were exposed to various concentrations of atRA; proliferation, apoptosis, and necrosis were assessed in vitro. The rat carotid artery balloon injury model was used to evaluate the impact of the atRA-POC membranes on neointimal formation, cell proliferation, apoptosis, macrophage infiltration, and vascular cell adhesion molecule 1 (VCAM-1) expression in vivo. atRA-POC membranes released 12 μg of atRA over 2 wk, with 92% of the release occurring in the first week. At 24 h, atRA (200 μmol/l) inhibited [(3)H]-thymidine incorporation into AF and VSMC by 78% and 72%, respectively (*P = 0.001), with negligible apoptosis or necrosis. Histomorphometry analysis showed that atRA-POC membranes inhibited neointimal formation after balloon injury, with a 56%, 57%, and 50% decrease in the intimal area, intima-to-media area ratio, and percent stenosis, respectively (P = 0.001). atRA-POC membranes had no appreciable effect on apoptosis or proliferation at 2 wk. Regarding biocompatibility, we found a 76% decrease in macrophage infiltration in the intima layer (P < 0.003) in animals treated with atRA-POC membranes, with a coinciding 53% reduction in VCAM-1 staining (P < 0.001). In conclusion, perivascular delivery of atRA inhibited neointimal formation and restenosis. These data

  11. Gallic acid regulates body weight and glucose homeostasis through AMPK activation.

    PubMed

    Doan, Khanh V; Ko, Chang Mann; Kinyua, Ann W; Yang, Dong Joo; Choi, Yun-Hee; Oh, In Young; Nguyen, Nguyen Minh; Ko, Ara; Choi, Jae Won; Jeong, Yangsik; Jung, Min Ho; Cho, Won Gil; Xu, Shanhua; Park, Kyu Sang; Park, Woo Jin; Choi, Soo Yong; Kim, Hyoung Shik; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Gallic acid [3,4,5-trihydroxybenzoic acid (GA)], a natural phytochemical, is known to have a variety of cellular functions including beneficial effects on metabolic syndromes. However, the molecular mechanism by which GA exerts its beneficial effects is not known. Here we report that GA plays its role through the activation of AMP-activated protein kinase (AMPK) and by regulating mitochondrial function via the activation of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Sirtuin 1 (Sirt1) knockdown significantly blunted GA's effect on PGC1α activation and downstream genes, suggesting a critical role of the AMPK/Sirt1/PGC1α pathway in GA's action. Moreover, diet-induced obese mice treated with GA showed significantly improved glucose and insulin homeostasis. In addition, the administration of GA protected diet-induced body weight gain without a change in food intake. Biochemical analyses revealed a marked activation of AMPK in the liver, muscle, and interscapular brown adipose tissue of the GA-treated mice. Moreover, uncoupling protein 1 together with other genes related to energy expenditure was significantly elevated in the interscapular brown adipose tissue. Taken together, these results indicate that GA plays its beneficial metabolic roles by activating the AMPK/Sirt1/PGC1α pathway and by changing the interscapular brown adipose tissue genes related to thermogenesis. Our study points out that targeting the activation of the AMPK/Sirt1/PGC1α pathway by GA or its derivatives might be a potential therapeutic intervention for insulin resistance in metabolic diseases.

  12. Amino Acid Availability Regulates the Effect of Hyperinsulinemia on Skin Protein Metabolism in Pigs*

    PubMed Central

    Tuvdendorj, Demidmaa; Børsheim, Elisabet; Sharp, Carwyn P.; Zhang, Xiaojun; Barone, Carrie M.; Chinkes, David L.; Wolfe, Robert R.

    2015-01-01

    The effects of amino acid supply and insulin infusion on skin protein kinetics (fractional synthesis rate (FSR), fractional breakdown rate (FBR), and net balance (NB)) in pigs were investigated. Four-month-old pigs were divided into four groups as follows: control, insulin (INS), amino acid (AA), and INS + AA groups based on the nutritional and hormonal conditions. l-[ring-13C6]Phenylalanine was infused. FBR was estimated from the enrichment ratio of arterial phenylalanine to intracellular free phenylalanine. Plasma INS was increased (p < 0.05) in the INS and INS + AA groups. Plasma glucose was maintained by infusion of glucose in the groups receiving INS. The interventions did not change the NB of skin protein. However, the interventions affected the FSR and FBR differently. An infusion of INS significantly increased both FSR and FBR, although AA infusion did not. When an AA infusion was added to the infusion of insulin (INS + AA group), FSR and FBR were both lower when compared with the INS group. Our data demonstrate that in anesthetized pigs INS infusion did not exert an anabolic effect, but rather it increased AA cycling into and out of skin protein. Because co-infusion of AAs with INS ameliorated this effect, it is likely that the increased AA cycling during INS infusion was related to AA supply. Although protein kinetics were affected by both INS and AAs, none of the interventions affected the skin protein deposition. Thus, skin protein content is closely regulated under normal circumstances and is not subject to transient changes in AAs or hormonal concentrations. PMID:26032410

  13. Role and Regulation of Fatty Acid Biosynthesis in the Response of Shewanella piezotolerans WP3 to Different Temperatures and Pressures▿

    PubMed Central

    Wang, Feng; Xiao, Xiang; Ou, Hong-Yu; Gai, Yingbao; Wang, Fengping

    2009-01-01

    Members of the genus Shewanella inhabit various environments; they are capable of synthesizing various types of low-melting-point fatty acids, including monounsaturated fatty acids (MUFA) and branched-chain fatty acids (BCFA) with and without eicosapentanoic acid (EPA). The genes involved in fatty acid synthesis in 15 whole-genome-sequenced Shewanella strains were identified and compared. A typical type II fatty acid synthesis pathway in Shewanella was constructed. A complete EPA synthesis gene cluster was found in all of the Shewanella genomes, although only a few of them were found to produce EPA. The roles and regulation of fatty acids synthesis in Shewanella were further elucidated in the Shewanella piezotolerans WP3 response to different temperatures and pressures. The EPA and BCFA contents of WP3 significantly increased when it was grown at low temperature and/or under high pressure. EPA, but not MUFA, was determined to be crucial for its growth at low temperature and high pressure. A gene cluster for a branched-chain amino acid ABC transporter (LIV-I) was found to be upregulated at low temperature. Combined approaches, including mutagenesis and an isotopic-tracer method, revealed that the LIV-I transporter played an important role in the regulation of BCFA synthesis in WP3. The LIV-I transporter was identified only in the cold-adapted Shewanella species and was assumed to supply an important strategy for Shewanella cold adaptation. This is the first time the molecular mechanism of BCFA regulation in bacteria has been elucidated. PMID:19201790

  14. Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures.

    PubMed

    Wang, Feng; Xiao, Xiang; Ou, Hong-Yu; Gai, Yingbao; Wang, Fengping

    2009-04-01

    Members of the genus Shewanella inhabit various environments; they are capable of synthesizing various types of low-melting-point fatty acids, including monounsaturated fatty acids (MUFA) and branched-chain fatty acids (BCFA) with and without eicosapentanoic acid (EPA). The genes involved in fatty acid synthesis in 15 whole-genome-sequenced Shewanella strains were identified and compared. A typical type II fatty acid synthesis pathway in Shewanella was constructed. A complete EPA synthesis gene cluster was found in all of the Shewanella genomes, although only a few of them were found to produce EPA. The roles and regulation of fatty acids synthesis in Shewanella were further elucidated in the Shewanella piezotolerans WP3 response to different temperatures and pressures. The EPA and BCFA contents of WP3 significantly increased when it was grown at low temperature and/or under high pressure. EPA, but not MUFA, was determined to be crucial for its growth at low temperature and high pressure. A gene cluster for a branched-chain amino acid ABC transporter (LIV-I) was found to be upregulated at low temperature. Combined approaches, including mutagenesis and an isotopic-tracer method, revealed that the LIV-I transporter played an important role in the regulation of BCFA synthesis in WP3. The LIV-I transporter was identified only in the cold-adapted Shewanella species and was assumed to supply an important strategy for Shewanella cold adaptation. This is the first time the molecular mechanism of BCFA regulation in bacteria has been elucidated.

  15. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  16. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria.

    PubMed

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V; Kreikemeyer, Bernd; Wade, Rebecca C; Fiedler, Tomas

    2013-07-19

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.

  17. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise.

    PubMed

    van Hall, Gerrit

    2015-11-01

    Energy substrates that are important to the working muscle at moderate intensities are the non-esterified fatty acids (NEFAs) taken up from the circulation and NEFAs originating from lipolysis of the intramuscular triacylglycerol (IMTAG). Moreover, NEFA from lipolysis via lipoprotein lipase (LPL) in the muscle of the very-low-density lipoproteins and in the (semi) post-prandial state chylomicrons may also contribute. In this review, the NEFA fluxes and oxidation by skeletal muscle during prolonged moderate-intensity exercise are described in terms of the integration of physiological systems. Steps involved in the regulation of the active muscle NEFA uptake include (1) increased energy demand; (2) delivery of NEFA to the muscle; (3) transport of NEFA into the muscle by NEFA transporters; and (4) activation of the NEFAs and either oxidation or re-esterification into IMTAG. The increased metabolic demand of the exercising muscle is the main driving force for all physiological regulatory processes. It elicits functional hyperemia, increasing the recruitment of capillaries and muscle blood flow resulting in increased NEFA delivery and accessibility to NEFA transporters and LPL. It also releases epinephrine that augments adipose tissue NEFA release and thereby NEFA delivery to the active muscle. Moreover, NEFA transporters translocate to the plasma membrane, further increasing the NEFA uptake. The majority of the NEFAs taken up by the active muscle is oxidized and a minor portion is re-esterified to IMTAG. Net IMTAG lipolysis occurs; however, the IMTAG contribution to total fat oxidation is rather limited compared to plasma-derived NEFA oxidation, suggesting a complex role and regulation of IMTAG utilization.

  18. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling

    PubMed Central

    Dávalos, Alberto; Goedeke, Leigh; Smibert, Peter; Ramírez, Cristina M.; Warrier, Nikhil P.; Andreo, Ursula; Cirera-Salinas, Daniel; Rayner, Katey; Suresh, Uthra; Pastor-Pareja, José Carlos; Esplugues, Enric; Fisher, Edward A.; Penalva, Luiz O. F.; Moore, Kathryn J.; Suárez, Yajaira; Lai, Eric C.; Fernández-Hernando, Carlos

    2011-01-01

    Cellular imbalances of cholesterol and fatty acid metabolism result in pathological processes, including atherosclerosis and metabolic syndrome. Recent work from our group and others has shown that the intronic microRNAs hsa-miR-33a and hsa-miR-33b are located within the sterol regulatory element-binding protein-2 and -1 genes, respectively, and regulate cholesterol homeostasis in concert with their host genes. Here, we show that miR-33a and -b also regulate genes involved in fatty acid metabolism and insulin signaling. miR-33a and -b target key enzymes involved in the regulation of fatty acid oxidation, including carnitine O-octaniltransferase, carnitine palmitoyltransferase 1A, hydroxyacyl-CoA-dehydrogenase, Sirtuin 6 (SIRT6), and AMP kinase subunit-α. Moreover, miR-33a and -b also target the insulin receptor substrate 2, an essential component of the insulin-signaling pathway in the liver. Overexpression of miR-33a and -b reduces both fatty acid oxidation and insulin signaling in hepatic cell lines, whereas inhibition of endogenous miR-33a and -b increases these two metabolic pathways. Together, these data establish that miR-33a and -b regulate pathways controlling three of the risk factors of metabolic syndrome, namely levels of HDL, triglycerides, and insulin signaling, and suggest that inhibitors of miR-33a and -b may be useful in the treatment of this growing health concern. PMID:21576456

  19. Environmentally Realistic Mixtures of the Five Regulated Haloacetic Acids Exhibit Concentration-Dependent Departures from Dose Additivity

    EPA Science Inventory

    Disinfection of water decreases waterborne disease. Disinfection byproducts (DBPs) are formed by the reaction of oxidizing disinfectants with inorganic and organic materials in the source water. The U.S. EPA regulates five haloacetic acid (HAA) DBPs as a mixture. The objective ...

  20. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.

    PubMed

    Liu, Di; Xiao, Yi; Evans, Bradley S; Zhang, Fuzhong

    2015-02-20

    Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. Synthetic regulatory circuits have been shown to be able to balance engineered pathways, improving titers and productivities. Here we developed a negative feedback regulatory circuit based on a malonyl-CoA-based sensor-actuator. Malonyl-CoA is biosynthesized from acetyl-CoA by the acetyl-CoA carboxylase, which is the rate-limiting step for fatty acid biosynthesis. Overexpression of acetyl-CoA carboxylase improves fatty acid production, but slows down cell growth. We have devised a malonyl-CoA sensor-actuator that controls gene expression levels based on intracellular malonyl-CoA concentrations. This sensor-actuator is used to construct a negative feedback circuit to regulate the expression of acetyl-CoA carboxylase. The negative feedback circuit is able to up-regulate acetyl-CoA carboxylase expression when the malonyl-CoA concentration is low and down-regulate acetyl-CoA carboxylase expression when excess amounts of malonyl-CoA have accumulated. We show that the regulatory circuit effectively alleviates the toxicity associated with acetyl-CoA carboxylase overexpression. When used to regulate the fatty acid pathway, the feedback circuit increases fatty acid titer and productivity by 34% and 33%, respectively.

  1. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events.

    PubMed Central

    Schmidt, C; Schelle, I; Liao, Y J; Schroeder, J I

    1995-01-01

    Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing