Science.gov

Sample records for acid receptor ampar

  1. Early Growth Response 1 (Egr-1) Regulates N-Methyl-d-aspartate Receptor (NMDAR)-dependent Transcription of PSD-95 and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor (AMPAR) Trafficking in Hippocampal Primary Neurons*

    PubMed Central

    Qin, Xike; Jiang, Yongjun; Tse, Yiu Chung; Wang, Yunling; Wong, Tak Pan; Paudel, Hemant K.

    2015-01-01

    The N-methyl-d-aspartate receptor (NMDAR) controls synaptic plasticity and memory function and is one of the major inducers of transcription factor Egr-1 in the hippocampus. However, how Egr-1 mediates the NMDAR signal in neurons has remained unclear. Here, we show that the hippocampus of mice lacking Egr-1 displays electrophysiology properties and ultrastructure that are similar to mice overexpressing PSD-95, a major scaffolding protein of postsynaptic density involved in synapse formation, synaptic plasticity, and synaptic targeting of AMPA receptors (AMPARs), which mediate the vast majority of excitatory transmission in the CNS. We demonstrate that Egr-1 is a transcription repressor of the PSD-95 gene and is recruited to the PSD-95 promoter in response to NMDAR activation. Knockdown of Egr-1 in rat hippocampal primary neurons blocks NMDAR-induced PSD-95 down-regulation and AMPAR endocytosis. Likewise, overexpression of Egr-1 in rat hippocampal primary neurons causes reduction in PSD-95 protein level and promotes AMPAR endocytosis. Our data indicate that Egr-1 is involved in NMDAR-mediated PSD-95 down-regulation and AMPAR endocytosis, a process important in the expression of long term depression. PMID:26475861

  2. Direct interaction between GluR2 and GAPDH regulates AMPAR-mediated excitotoxicity

    PubMed Central

    2012-01-01

    Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors) is implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal death remains poorly understood. Here we report the identification of a previously unrecognized molecular pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage induced by oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia. PMID:22537872

  3. Effects of AMPARs trafficking and glutamate-receptors binding probability on stochastic variability of EPSC.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2013-06-01

    Mathematical models of the excitatory synapse are providing valuable information about the synaptic response. The effects of several synaptic components on EPSC variability have been tested by computer simulation. Our model, based on Brownian diffusion of glutamate in the synaptic cleft, is basically the same we have used in previous papers but parameters have been upgraded according to the new experimental findings. The presence of filaments into the synaptic cleft and the number and the ratio of AMPA and NMDA receptors have been the main parameters upgraded. A different way of computing the binding probability of glutamate molecules to receptors by means of geometrical considerations has been also used. The obtained results were more precise and they suggested that the new elements can play a significant role in the stochastic variability of the synaptic response. Nevertheless, new problems arise concerning the value of the lower limit of the binding probability.

  4. Porcupine controls hippocampal AMPAR levels, composition and synaptic transmission

    PubMed Central

    Erlenhardt, Nadine; Yu, Hong; Abiraman, Kavitha; Yamasaki, Tokiwa; Wadiche, Jacques I.; Tomita, Susumu; Bredt, David S.

    2016-01-01

    SUMMARY AMPAR (AMPAR) complexes contain auxiliary subunits that modulate receptor trafficking and gating. In addition to the transmembrane AMPAR regulatory proteins (TARPs) and cornichons (CNIH-2/3), recent proteomic studies identified a diverse array of additional AMPAR-associated transmembrane and secreted partners. We systematically surveyed these and found that PORCN and ABHD6 increase GluA1 levels in transfected cells. Knockdown of PORCN in rat hippocampal neurons, which express it in high amounts, selectively reduces levels of all tested AMPAR complex components. Regulation of AMPARs is independent of PORCN’s membrane-associated O-acyl transferase activity. PORCN knockdown in hippocampal neurons decreases AMPAR currents and accelerates desensitization, and leads to depletion of TARP γ-8 from AMPAR complexes. Conditional PORCN knockout mice also exhibit specific changes in AMPAR expression and gating that reduce basal synaptic transmission, but leave long-term potentiation intact. These studies define additional roles for PORCN in controlling synaptic transmission by regulating the level and composition of hippocampal AMPAR complexes. PMID:26776514

  5. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs.

    PubMed

    Studniarczyk, Dorota; Coombs, Ian; Cull-Candy, Stuart G; Farrant, Mark

    2013-09-01

    Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2-lacking stargazer cerebellar granule cells--the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice.

  6. Chemical labelling for visualizing native AMPA receptors in live neurons.

    PubMed

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-07

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  7. Myosin IXa Binds AMPAR and Regulates Synaptic Structure, LTP, and Cognitive Function

    PubMed Central

    Folci, Alessandra; Murru, Luca; Vezzoli, Elena; Ponzoni, Luisa; Gerosa, Laura; Moretto, Edoardo; Longo, Fabiana; Zapata, Jonathan; Braida, Daniela; Pistillo, Francesco; Bähler, Martin; Francolini, Maura; Sala, Mariaelvina; Bassani, Silvia

    2016-01-01

    Myosin IXa (Myo9a) is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD) and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit. Myo9a+/- mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP) and cognitive functions were impaired in Myo9a+/- mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses. PMID:26834556

  8. GRIP1 is required for homeostatic regulation of AMPAR trafficking

    PubMed Central

    Tan, Han L.; Queenan, Bridget N.; Huganir, Richard L.

    2015-01-01

    Homeostatic plasticity is a negative feedback mechanism that stabilizes neurons during periods of perturbed activity. The best-studied form of homeostatic plasticity in the central nervous system is the scaling of excitatory synapses. Postsynaptic AMPA-type glutamate receptors (AMPARs) can be inserted into synapses to compensate for neuronal inactivity or removed to compensate for hyperactivity. However, the molecular mechanisms underlying the homeostatic regulation of AMPARs remain elusive. Here, we show that the expression of GRIP1, a multi-PDZ (postsynaptic density 95/discs large/zona occludens) domain AMPAR-binding protein, is bidirectionally altered by neuronal activity. Furthermore, we observe a subcellular redistribution of GRIP1 and a change in the binding of GRIP1 to GluA2 during synaptic scaling. Using a combination of biochemical, genetic, and electrophysiological methods, we find that loss of GRIP1 blocks the accumulation of surface AMPARs and the scaling up of synaptic strength that occur in response to chronic activity blockade. Collectively, our data point to an essential role of GRIP1-mediated AMPAR trafficking during inactivity-induced synaptic scaling. PMID:26216979

  9. Different AMPA receptor subtypes mediate the distinct kinetic components of a biphasic EPSC in hippocampal interneurons

    PubMed Central

    Stincic, Todd L.; Frerking, Matthew E.

    2015-01-01

    CA1 hippocampal interneurons at the border between stratum radiatum (SR) and stratum lacunosum-moleculare (SLM) have AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) that consist of two distinct phases: a typical fast component (FC), and a highly unusual slow component (SC) that persists for hundreds of milliseconds. To determine whether these kinetically distinct components of the EPSC are mediated by distinct AMPAR subpopulations, we examined the relative contributions of GluA2-containing and—lacking AMPARs to the SC. GluA2-containing AMPARs mediated the majority of the FC whereas GluA2-lacking AMPARs preferentially generated the SC. When glutamate uptake through the glial glutamate transporter excitatory amino acid transporter (EAAT1) was inhibited, spill over-mediated AMPAR activation recruited an even slower third kinetic component that persisted for several seconds; however, this spillover-mediated current was mediated predominantly by GluA2-containing AMPARs and therefore was clearly distinct from the SC when uptake is intact. Thus, different AMPAR subpopulations that vary in GluA2 content mediate the distinct components of the AMPAR EPSC. The SC is developmentally downregulated in mice, declining after the second postnatal week. This downregulation affects both GluA2-containing and GluA2-lacking AMPARs mediating the SC, and is not accompanied by developmental changes in the GluA2 content of AMPARs underlying the FC. Thus, the downregulation of the SC appears to be independent of synaptic GluA2 expression, suggesting the involvement of another AMPAR subunit or an auxiliary protein. Our results therefore identify GluA2-dependent and GluA2-independent determinants of the SC: GluA2-lacking AMPARs preferentially contribute to the SC, while the developmental downregulation of the SC is independent of GluA2 content. PMID:26042027

  10. Distance-dependent scaling of AMPARs is cell-autonomous and GluA2 dependent.

    PubMed

    Shipman, Seth L; Herring, Bruce E; Suh, Young Ho; Roche, Katherine W; Nicoll, Roger A

    2013-08-14

    The extensive dendritic arbor of a pyramidal cell introduces considerable complexity to the integration of synaptic potentials. Propagation of dendritic potentials is largely passive, in contrast to regenerative axonal potentials that are maintained by voltage-gated sodium channels, leading to a declination in amplitude as dendritic potentials travel toward the soma in a manner that disproportionally affects distal synaptic inputs. To counteract this amplitude filtering, Schaffer collateral synapses onto CA1 pyramidal cells contain a varying number of AMPA receptors (AMPARs) per synapse that increases with distance from the soma, a phenomenon known as distance-dependent scaling. Here, we undertake an investigation into the molecular mechanisms of distance-dependent scaling. Using dendritic recordings from rat pyramidal neurons, we confirm the basic scaling phenomenon and find that it is expressed and can be manipulated cell autonomously. Finally, we show that it depends on the presence of both a reserve pool of AMPARs and the AMPAR subunit GluA2.

  11. Calcium-permeable AMPA receptors in neonatal hypoxic-ischemic encephalopathy (Review)

    PubMed Central

    TANG, XIAO-JUAN; XING, FENG

    2013-01-01

    Hypoxic-ischemic encephalopathy (HIE) is an important cause of brain injury in the newborn and may result in long-term devastating consequences. Excessive stimulation of glutamate receptors (GluRs) is a pivotal mechanism underlying ischemia-induced selective and delayed neuronal death. Although initial studies focused on N-methyl-D-aspartic acid (NMDA) receptors as critical mediators in HIE, subsequent studies supported a more central role for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs), particularly Ca2+-permeable AMPARs, in brain damage associated with hypoxia-ischemia. This study reviewed the important role of Ca2+-permeable AMPARs in HIE and the future potential neuroprotective strategies associated with Ca2+-permeable AMPARs. PMID:24649036

  12. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  13. Excitotoxicity through Ca2+-permeable AMPA receptors requires Ca2+-dependent JNK activation

    PubMed Central

    Vieira, M.; Fernandes, J.; Burgeiro, A.; Thomas, G.M.; Huganir, R.L.; Duarte, C.B.; Carvalho, A.L.; Santos, A.E.

    2010-01-01

    The GluA4-containing Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (Ca-AMPARs) were previously shown to mediate excitotoxicity through mechanisms involving the activator protein-1 (AP-1), a c-Jun N-terminal kinase (JNK) substrate. To further investigate JNK involvement in excitotoxic pathways coupled to Ca-AMPARs we used HEK293 cells expressing GluA4-containing Ca-AMPARs (HEK-GluA4). Cell death induced by overstimulation of Ca-AMPARs was mediated, at least in part, by JNK. Importantly, JNK activation downstream of these receptors was dependent on the extracellular Ca2+ concentration. In our quest for a molecular link between Ca-AMPARs and the JNK pathway we found that the JNK interacting protein-1 (JIP-1) interacts with the GluA4 subunit of AMPARs through the N-terminal domain. In vivo, the excitotoxin kainate promoted the association between GluA4 and JIP-1 in the rat hippocampus. Taken together, our results show that the JNK pathway is activated by Ca-AMPARs upon excitotoxic stimulation and suggest that JIP-1 may contribute to the propagation of the excitotoxic signal. PMID:20708684

  14. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking and incubation of craving

    PubMed Central

    Jean, Terrier; Christian, Lüscher; Vincent, Pascoli

    2015-01-01

    SUMMARY Addiction is a behavioral disease, of which core components can be modeled in rodents. Much evidence implicates drug-evoked synaptic plasticity in cocaine-evoked locomotor sensitization, cue-induced cocaine seeking and incubation of cocaine craving. However the type of plasticity evoked by different modalities of cocaine administration (e.g. contingent versus non-contingent) and its role in reshaping circuit function remains largely elusive. Here we exposed mice to various regimens of cocaine and recorded excitatory transmission onto identified medium-sized spiny neurons (MSN, expressing fluorescent proteins under the control of either D1R or D2R dopamine receptor promotor) in the nucleus accumbens (NAc) at time points when behavioural adaptations are observed. In D1-MSN, we found the presence of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) after single or chronic non-contingent exposure to cocaine, as well as after cocaine self-administration. We also report an increase in the AMPA/NMDA ratio (A/N) in D1-MSN, which was observed only after repeated passive injections associated with locomotor sensitization as well as in a condition of self-administration (SA) leading to seeking behaviour. Remarkably, insertion of GluA2-lacking AMPARs was also detected in D2-MSN after self-administration of a high dose of cocaine but not regular dose (1.5 vs. 0.75 mg/kg), which was the only condition where incubation of cocaine craving was observed in this study. Moreover, synapses containing GluA2-lacking AMPARs belonged to amygdala inputs in D2-MSN and to medial prefrontal cortex (mPFC) inputs in D1-MSN. Taken together this study allows for a refinement of a circuit model of addiction based on specific synaptic changes induced by cocaine. PMID:26585289

  15. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    PubMed

    Gallimore, Andrew R; Aricescu, A Radu; Yuzaki, Michisuke; Calinescu, Radu

    2016-01-01

    The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.

  16. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression

    PubMed Central

    Gallimore, Andrew R.; Aricescu, A. Radu; Yuzaki, Michisuke; Calinescu, Radu

    2016-01-01

    The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins–glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)–regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process. PMID:26807999

  17. Differential roles for NSF and GRIP/ABP in AMPA receptor cycling.

    PubMed

    Braithwaite, Steven P; Xia, Houhui; Malenka, Robert C

    2002-05-14

    alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) stability and movement at synapses are important factors controlling synaptic strength. Here, we study the roles of proteins [N-ethylmaleimide-sensitive fusion protein (NSF), glutamate receptor AMPAR binding protein (ABP)-interacting protein (GRIP)/(ABP), and protein interacting with C-kinase-1 (PICK1) that interact with the GluR2 subunit in the control of the surface expression and cycling of AMPARs. Epitope-tagged GluR2 formed functional receptors that exhibited targeting to synaptic sites. Constructs in which binding to NSF, PDZ proteins (GRIP/ABP and PICK1), or GRIP/ABP alone was eliminated each exhibited normal surface targeting and constitutive cycling. The lack of NSF binding, however, resulted in receptors that were endocytosed to a greater extent than wild-type receptors in response to application of AMPA or N-methyl-d-aspartate (NMDA). Conversely, the behavior of the GluR2 mutants incapable of binding to GRIP/ABP suggests that these PDZ proteins play a role in the stabilization of an intracellular pool of AMPARs that have been internalized on stimulation, thus inhibiting their recycling to the synaptic membrane. These results provide further evidence for distinct functional roles of GluR2-interacting proteins in AMPAR trafficking.

  18. The Inhibitory Effect of α/β-Hydrolase Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors

    PubMed Central

    Wei, Mengping; Jia, Moye; Zhang, Jian; Yu, Lulu; Zhao, Yunzhi; Chen, Yingqi; Ma, Yimeng; Zhang, Wei; Shi, Yun S.; Zhang, Chen

    2017-01-01

    The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are major excitatory receptors that mediate fast neurotransmission in the mammalian brain. The surface expression of functional AMPARs is crucial for synaptic transmission and plasticity. AMPAR auxiliary subunits control the biosynthesis, membrane trafficking, and synaptic targeting of AMPARs. Our previous report showed that α/β-hydrolase domain-containing 6 (ABHD6), an auxiliary subunit for AMPARs, suppresses the membrane delivery and function of GluA1-containing receptors in both heterologous cells and neurons. However, it remained unclear whether ABHD6 affects the membrane trafficking of glutamate receptor subunits, GluA2 and GluA3. Here, we examine the effects of ABHD6 overexpression in HEK293T cells expressing GluA1, GluA2, GluA3, and stargazin, either alone or in combination. The results show that ABHD6 suppresses the glutamate-induced currents and the membrane expression of AMPARs when expressing GluA2 or GluA3 in the HEK293T cells. We generated a series of GluA2 and GluA3 C-terminal deletion constructs and confirm that the C-terminus of GluAs is required for ABHD6’s inhibitory effects on glutamate-induced currents and surface expression of GluAs. Meanwhile, our pull-down experiments reveal that ABHD6 binds to GluA1–3, and deletion of the C-terminal domain of GluAs abolishes this binding. These findings demonstrate that ABHD6 inhibits the AMPAR-mediated currents and its surface expression, independent of the type of AMPAR subunits, and this inhibitor’s effects are mediated through the binding with the GluAs C-terminal regions. PMID:28303090

  19. Early postnatal exposure to lithium in vitro induces changes in AMPAR mEPSCs and vesicular recycling at hippocampal glutamatergic synapses.

    PubMed

    Ankolekar, Shreya M; Sikdar, Sujit K

    2015-06-01

    Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4-10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+ -permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+ -permeable AMPAR modulation). Co-inhibiting PKA, GSK-3 beta and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.

  20. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating.

    PubMed

    Milstein, Aaron D; Zhou, Wei; Karimzadegan, Siavash; Bredt, David S; Nicoll, Roger A

    2007-09-20

    A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons. We report a striking heterogeneity in the effects of TARP subtypes on AMPAR deactivation and desensitization, which we demonstrate controls the time course of synaptic transmission. In addition, we find that some TARP subtypes dramatically slow AMPAR activation kinetics. Synaptic AMPAR kinetics also depend on TARP expression level, suggesting a variable TARP/AMPAR stoichiometry. Analysis of quantal synaptic transmission in a TARP gamma-4 knockout (KO) mouse corroborates our expression data and demonstrates that TARP subtype-specific gating of AMPARs contributes to the kinetics of native AMPARs at central synapses.

  1. Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via α6-containing nicotinic receptors.

    PubMed

    Engle, Staci E; McIntosh, J Michael; Drenan, Ryan M

    2015-04-01

    Nicotine + ethanol co-exposure results in additive and/or synergistic effects in the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine (DA) pathway, but the mechanisms supporting this are unclear. We tested the hypothesis that nAChRs containing α6 subunits (α6* nAChRs) are involved in the response to nicotine + ethanol co-exposure. Exposing VTA slices from C57BL/6 WT animals to drinking-relevant concentrations of ethanol causes a marked enhancement of α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptor (AMPAR) function in VTA neurons. This effect was sensitive to α-conotoxin MII (an α6β2* nAChR antagonist), suggesting that α6* nAChR function is required. In mice expressing hypersensitive α6* nAChRs (α6L9S mice), we found that lower concentrations (relative to C57BL/6 WT) of ethanol were sufficient to enhance AMPAR function in VTA neurons. Exposure of live C57BL/6 WT mice to ethanol also produced AMPAR functional enhancement in VTA neurons, and studies in α6L9S mice strongly suggest a role for α6* nAChRs in this response. We then asked whether nicotine and ethanol cooperate to enhance VTA AMPAR function. We identified low concentrations of nicotine and ethanol that were capable of strongly enhancing VTA AMPAR function when co-applied to slices, but that did not enhance AMPAR function when applied alone. This effect was sensitive to both varenicline (an α4β2* and α6β2* nAChR partial agonist) and α-conotoxin MII. Finally, nicotine + ethanol co-exposure also enhanced AMPAR function in VTA neurons from α6L9S mice. Together, these data identify α6* nAChRs as important players in the response to nicotine + ethanol co-exposure in VTA neurons.

  2. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate.

    PubMed

    Waung, Maggie W; Pfeiffer, Brad E; Nosyreva, Elena D; Ronesi, Jennifer A; Huber, Kimberly M

    2008-07-10

    Salient stimuli that modify behavior induce transcription of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and transport Arc mRNA into dendrites, suggesting that local Arc translation mediates synaptic plasticity that encodes such stimuli. Here, we demonstrate that long-term synaptic depression (LTD) in hippocampal neurons induced by group 1 metabotropic glutamate receptors (mGluRs) relies on rapid translation of Arc. mGluR-LTD induction causes long-term increases in AMPA receptor endocytosis rate and dendritic synthesis of Arc, a component of the AMPAR endocytosis machinery. Knockdown of Arc prevents mGluRs from triggering AMPAR endocytosis or LTD, and acute blockade of new Arc synthesis with antisense oligonucleotides blocks mGluR-LTD and AMPAR trafficking. In contrast, LTD induced by NMDA receptors does not persistently alter AMPAR endocytosis rate, induce Arc synthesis, or require Arc protein. These data demonstrate a role for local Arc synthesis specifically in mGluR-LTD and suggest that mGluR-LTD may be one consequence of Arc mRNA induction during experience.

  3. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  4. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role.

    PubMed

    Chen, Kuang-Ti; Tsai, Mang-Hung; Wu, Ching-Hsiang; Jou, Ming-Jia; Wei, I-Hua; Huang, Chih-Chia

    2015-01-01

    Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR-mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights-A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian

  5. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    PubMed

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  6. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells

    PubMed Central

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana

    2011-01-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca2+ and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca2+-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca2+-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca2+ entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca2+ entry in cerebellar stellate cells. PMID:21562198

  7. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  8. S-palmitoylation regulates AMPA receptors trafficking and function: a novel insight into synaptic regulation and therapeutics

    PubMed Central

    Han, Jun; Wu, Pengfei; Wang, Fang; Chen, Jianguo

    2014-01-01

    Glutamate acting on AMPA-type ionotropic glutamate receptor (AMPAR) mediates the majority of fast excitatory synaptic transmission in the mammalian central nervous system. Dynamic regulation of AMPAR by post-translational modifications is one of the key elements that allow the nervous system to adapt to environment stimulations. S-palmitoylation, an important lipid modification by post-translational addition of a long-chain fatty acid to a cysteine residue, regulates AMPA receptor trafficking, which dynamically affects multiple fundamental brain functions, such as learning and memory. In vivo, S-palmitoylation is controlled by palmitoyl acyl transferases and palmitoyl thioesterases. In this review, we highlight advances in the mechanisms for dynamic AMPA receptors palmitoylation, and discuss how palmitoylation affects AMPA receptors function at synapses in recent years. Pharmacological regulation of S-palmitoylation may serve as a novel therapeutic strategy for neurobiological diseases. PMID:26579419

  9. Characterization of the AMPA-activated receptors present on motoneurons.

    PubMed

    Greig, A; Donevan, S D; Mujtaba, T J; Parks, T N; Rao, M S

    2000-01-01

    Motoneurons have been shown to be particularly sensitive to Ca2+-dependent glutamate excitotoxicity, mediated via AMPA receptors (AMPARs). To determine the molecular basis for this susceptibility we have used immunocytochemistry, RT-PCR, and electrophysiology to profile AMPARs on embryonic day 14.5 rat motoneurons. Motoneurons show detectable AMPAR-mediated calcium permeability in vitro and in vivo as determined by cobalt uptake and electrophysiology. Motoneurons express all four AMPAR subunit mRNAs, with glutamate receptor (GluR) 2 being the most abundant (63.9+/-4.8%). GluR2 is present almost exclusively in the edited form, and electrophysiology confirms that most AMPARs present are calcium-impermeant. However, the kainate current in motoneurons was blocked an average of 32.0% by Joro spider toxin, indicating that a subset of the AM PARs is Ca2+-permeable. Therefore, heterogeneity of AMPARs, rather than the absence of GluR2 or the presence of unedited GluR2, explains AMPAR-mediated Ca2+ permeability. The relative levels of flip/flop isoforms of each subunit were also examined by semiquantitative PCR. Both isoforms were present, but the relative proportion varied for each subunit, and the flip isoform predominated. Thus, our data show that despite high levels of edited GluR2 mRNA, some AMPARs are Ca2+-permeable, and this subset of AMPARs can account for the AMPAR-mediated Ca2+ inflow inferred from cobalt uptake and electrophysiology studies.

  10. Benzoxazinones as potent positive allosteric AMPA receptor modulators: part I.

    PubMed

    Mueller, Rudolf; Li, Yong-Xin; Hampson, Aidan; Zhong, Sheng; Harris, Clayton; Marrs, Christopher; Rachwal, Stanislaw; Ulas, Jolanta; Nielsson, Lena; Rogers, Gary

    2011-07-01

    AMPA receptors (AMPARs) are an increasingly important therapeutic target in the CNS. Aniracetam, the first identified potentiator of AMPARs, led to the rigid and more potent CX614. This lead molecule was optimized in order to increase affinity towards the AMPA receptor. The substitution of the dioxine with a benzoxazinone ring system increased the activity and allowed further investigation of the sidechain SAR.

  11. Synaptic Consolidation Normalizes AMPAR Quantal Size following MAGUK Loss.

    PubMed

    Levy, Jonathan M; Chen, Xiaobing; Reese, Thomas S; Nicoll, Roger A

    2015-08-05

    The mechanisms controlling synapse growth and maintenance are of critical importance for learning and memory. The MAGUK family of synaptic scaffolding proteins is abundantly expressed at glutamatergic central synapses, but their importance in controlling the synaptic content of glutamate receptors is poorly understood. Here, we use a chained RNAi-mediated knockdown approach to simultaneously remove PSD-93, PSD-95, and SAP102, the MAGUKs previously shown to be responsible for synaptic localization of glutamate receptors. We find that MAGUKs are specifically responsible for creating functional synapses after initial spine formation by filling functionally silent spines with glutamate receptors. Removal of the MAGUKs causes a transient reduction in AMPA receptor quantal size followed by synaptic consolidation resulting in a normalization of quantal size at the few remaining functional synapses. Consolidation requires signaling through L-type calcium channels, CaM kinase kinase, and the GluA2 AMPA receptor subunit, akin to a homeostatic process.

  12. Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule.

    PubMed

    Zhang, H; Etherington, L-A; Hafner, A-S; Belelli, D; Coussen, F; Delagrange, P; Chaouloff, F; Spedding, M; Lambert, J J; Choquet, D; Groc, L

    2013-04-01

    The plasticity of excitatory synapses is an essential brain process involved in cognitive functions, and dysfunctions of such adaptations have been linked to psychiatric disorders such as depression. Although the intracellular cascades that are altered in models of depression and stress-related disorders have been under considerable scrutiny, the molecular interplay between antidepressants and glutamatergic signaling remains elusive. Using a combination of electrophysiological and single nanoparticle tracking approaches, we here report that the cognitive enhancer and antidepressant tianeptine (S 1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt) favors synaptic plasticity in hippocampal neurons both under basal conditions and after acute stress. Strikingly, tianeptine rapidly reduces the surface diffusion of AMPA receptor (AMPAR) through a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent mechanism that enhances the binding of AMPAR auxiliary subunit stargazin with PSD-95. This prevents corticosterone-induced AMPAR surface dispersal and restores long-term potentiation of acutely stressed mice. Collectively, these data provide the first evidence that a therapeutically used drug targets the surface diffusion of AMPAR through a CaMKII-stargazin-PSD-95 pathway, to promote long-term synaptic plasticity.

  13. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    PubMed

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  14. Structural rearrangement of the intracellular domains during AMPA receptor activation

    PubMed Central

    Zachariassen, Linda G.; Katchan, Ljudmila; Jensen, Anna G.; Pickering, Darryl S.; Plested, Andrew J. R.

    2016-01-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are ligand-gated ion channels that mediate the majority of fast excitatory neurotransmission in the central nervous system. Despite recent advances in structural studies of AMPARs, information about the specific conformational changes that underlie receptor function is lacking. Here, we used single and dual insertion of GFP variants at various positions in AMPAR subunits to enable measurements of conformational changes using fluorescence resonance energy transfer (FRET) in live cells. We produced dual CFP/YFP-tagged GluA2 subunit constructs that had normal activity and displayed intrareceptor FRET. We used fluorescence lifetime imaging microscopy (FLIM) in live HEK293 cells to determine distinct steady-state FRET efficiencies in the presence of different ligands, suggesting a dynamic picture of the resting state. Patch-clamp fluorometry of the double- and single-insert constructs showed that both the intracellular C-terminal domain (CTD) and the loop region between the M1 and M2 helices move during activation and the CTD is detached from the membrane. Our time-resolved measurements revealed unexpectedly complex fluorescence changes within these intracellular domains, providing clues as to how posttranslational modifications and receptor function interact. PMID:27313205

  15. Glutamate-AMPAR interaction in a model of synaptic transmission.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2013-11-06

    Over the last several years we have investigated the excitatory synaptic response by means of a mathematical model based on a detailed description of the synapse geometry, the Brownian motion of Glutamate molecules and their binding to postsynaptic receptors. Recently, the basic model has been modified for the numbers, the size and the 3D structure of receptors according to new data from the literature. Some results of simulations performed with the updated model are shown here. They were aimed to study the synaptic response in relation to the binding probability, to the probable height of the receptors in the synaptic cleft, and to the space-time distribution of Glutamate/Receptor collisions. A first series of simulations permitted to determine a possible range of values for the binding probability of Glutamate to receptors. Other simulations, investigating the changes induced on the synaptic response by the variations of the height of AMPA receptors in synaptic cleft, allowed to identify the height producing the higher amplitude peak of the mEPSCs. Finally, two new statistical descriptors for analyzing the synaptic response were presented. The first is based on the study of the space distribution of the number of Glutamate/Receptor collisions. Simulations investigating the effects of an increasing eccentricity of the releasing vesicle allowed assessing this method. The second one considers the inter-collision times between Glutamate molecules and binding sites. The results of some of the last simulations demonstrated its capacity to highlight the subtleties and the randomness underlying the activation of the receptors. This article is part of a Special Issue entitled Neural Coding 2012.

  16. Developmental Changes in Structural and Functional Properties of Hippocampal AMPARs Parallels the Emergence of Deliberative Spatial Navigation in Juvenile Rats

    PubMed Central

    Blair, Margaret G.; Nguyen, Nhu N.-Q.; Albani, Sarah H.; L'Etoile, Matthew M.; Andrawis, Marina M.; Owen, Leanna M.; Oliveira, Rodrigo F.; Johnson, Matthew W.; Purvis, Dianna L.; Sanders, Erin M.; Stoneham, Emily T.; Xu, Huaying

    2013-01-01

    The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely “turns on” the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation. PMID:23884930

  17. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus*

    PubMed Central

    Fadó, Rut; Soto, David; Miñano-Molina, Alfredo J.; Pozo, Macarena; Carrasco, Patricia; Yefimenko, Natalia; Rodríguez-Álvarez, José; Casals, Núria

    2015-01-01

    The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus. PMID:26338711

  18. Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells.

    PubMed

    Jackson, Alexander C; Nicoll, Roger A

    2011-03-16

    In the cerebellar cortex, parallel fiber-to-stellate cell (PF-SC) synapses exhibit a form of synaptic plasticity manifested as a switch in the subunit composition of synaptic AMPA receptors (AMPARs) from calcium-permeable, GluA2-lacking to calcium-impermeable, GluA2-containing receptors. Here, we examine the role of stargazin (γ-2), canonical member of the transmembrane AMPAR regulatory protein (TARP) family, in the regulation of GluA2-lacking AMPARs and synaptic plasticity in SCs from epileptic and ataxic stargazer mutant mice. We found that AMPAR-mediated synaptic transmission is severely diminished in stargazer SCs, and that the rectification index (RI) of AMPAR current is reduced. Activity-dependent plasticity in the rectification of synaptic AMPARs is also impaired in stargazer SCs. Despite the dramatic loss in synaptic AMPARs, extrasynaptic AMPARs are preserved. We then examined the role of stargazin in regulating the rectification of extrasynaptic AMPARs in nucleated patches and found, in contrast to previous reports, that wild-type extrasynaptic AMPARs have moderate RI values (average RI = 0.38), while those in stargazer SCs are low (average RI = 0.24). The GluA2-lacking AMPAR blocker, philanthotoxin-433 (PhTx-433), was used as an alternative measure of GluA2 content in wild-type and stargazer SCs. Despite the difference in RI, PhTx-433 sensitivity of both synaptic and extrasynaptic AMPARs remains unchanged, suggesting that the dramatic changes in RI and the impairment in synaptic plasticity observed in the stargazer mouse are not the result of a specific impairment in GluA2 trafficking. Together, these data suggest that stargazin regulates compartment-specific AMPAR trafficking, as well as activity-dependent plasticity in synaptic AMPAR rectification at cerebellar PF-SC synapses.

  19. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

    PubMed Central

    Gu, Xinglong; Mao, Xia; Lussier, Marc P.; Hutchison, Mary Anne; Zhou, Liang; Hamra, F. Kent; Roche, Katherine W.; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  20. AMPA Receptor–mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role

    PubMed Central

    Chen, Kuang-Ti; Tsai, Mang-Hung; Wu, Ching-Hsiang; Jou, Ming-Jia; Wei, I-Hua; Huang, Chih-Chia

    2015-01-01

    Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR–mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights – A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the

  1. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death

    PubMed Central

    Noh, Kyung-Min; Yokota, Hidenori; Mashiko, Toshihiro; Castillo, Pablo E.; Zukin, R. Suzanne; Bennett, Michael V. L.

    2005-01-01

    Transient global or forebrain ischemia induced experimentally in animals can cause selective, delayed neuronal death of hippocampal CA1 pyramidal neurons. A striking feature is a delayed rise in intracellular free Zn2+ in CA1 neurons just before the onset of histologically detectable cell death. Here we show that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at Schaffer collateral to CA1 synapses in postischemic hippocampus exhibit properties of Ca2+/Zn2+-permeable, Glu receptor 2 (GluR2)-lacking AMPARs before the rise in Zn2+ and cell death. At 42 h after ischemia, AMPA excitatory postsynaptic currents exhibited pronounced inward rectification and marked sensitivity to 1-naphthyl acetyl spermine (Naspm), a selective channel blocker of GluR2-lacking AMPARs. In control hippocampus, AMPA excitatory postsynaptic currents were electrically linear and relatively insensitive to Naspm. Naspm injected intrahippocampally at 9-40 h after insult greatly reduced the late rise in intracellular free Zn2+ in postischemic CA1 neurons and afforded partial protection against ischemia-induced cell death. These results implicate GluR2-lacking AMPA receptors in the ischemia-induced rise in free Zn2+ and death of CA1 neurons, although a direct action at the time of the rise in Zn2+ is unproven. This receptor subtype appears to be an important therapeutic target for intervention in ischemia-induced neuronal death in humans. PMID:16093311

  2. AMPARs and synaptic plasticity: the last 25 years.

    PubMed

    Huganir, Richard L; Nicoll, Roger A

    2013-10-30

    The study of synaptic plasticity and specifically LTP and LTD is one of the most active areas of research in neuroscience. In the last 25 years we have come a long way in our understanding of the mechanisms underlying synaptic plasticity. In 1988, AMPA and NMDA receptors were not even molecularly identified and we only had a simple model of the minimal requirements for the induction of plasticity. It is now clear that the modulation of the AMPA receptor function and membrane trafficking is critical for many forms of synaptic plasticity and a large number of proteins have been identified that regulate this complex process. Here we review the progress over the last two and a half decades and discuss the future challenges in the field.

  3. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single synaptic activation

    PubMed Central

    Hou, Qingming; Gilbert, James; Man, Heng-Ye

    2011-01-01

    During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up- or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remains unclear. In cultured hippocampal neurons, we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively down-regulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity. PMID:22153376

  4. Acid detection by taste receptor cells.

    PubMed

    DeSimone, J A; Lyall, V; Heck, G L; Feldman, G M

    2001-12-01

    Sourness is a primary taste quality that evokes an innate rejection response in humans and many other animals. Acidic stimuli are the unique sources of sour taste so a rejection response may serve to discourage ingestion of foods spoiled by acid producing microorganisms. The investigation of mechanisms by which acids excite taste receptor cells (TRCs) is complicated by wide species variability and within a species, apparently different mechanisms for strong and weak acids. The problem is further complicated by the fact that the receptor cells are polarized epithelial cells with different apical and basolateral membrane properties. The cellular mechanisms proposed for acid sensing in taste cells include, the direct blockage of apical K(+) channels by protons, an H(+)-gated Ca(2+) channel, proton conduction through apical amiloride-blockable Na(+) channels, a Cl(-) conductance blocked by NPPB, the activation of the proton-gated channel, BNC-1, a member of the Na(+) channel/degenerin super family, and by stimulus-evoked changes in intracellular pH. Acid-induced intracellular pH changes appear to be similar to those reported in other mammalian acid-sensing cells, such as type-I cells of the carotid body, and neurons found in the ventrolateral medulla, nucleus of the solitary tract, the medullary raphe, and the locus coceuleus. Like type-I carotid body cells and brainstem neurons, isolated TRCs demonstrate a linear relationship between intracellular pH (pH(i)) and extracellular pH (pH(o)) with slope, DeltapH(i)/DeltapH(o) near unity. Acid-sensing cells also appear to regulate pH(i) when intracellular pH changes occur under iso-extracellular pH conditions, but fail to regulate their pH when pH(i) changes are induced by decreasing extracellular pH. We shall discuss the current status of proposed acid-sensing taste mechanisms, emphasizing pH-tracking in receptor cells.

  5. Molecular Dissection of the Interaction between the AMPA Receptor and Cornichon Homolog-3

    PubMed Central

    Shanks, Natalie F.; Cais, Ondrej; Maruo, Tomohiko; Savas, Jeffrey N.; Zaika, Elena I.; Azumaya, Caleigh M.; Yates, John R.; Greger, Ingo

    2014-01-01

    Cornichon homologs (CNIHs) are AMPA-type glutamate receptor (AMPAR) auxiliary subunits that modulate AMPAR ion channel function and trafficking. Mechanisms underlying this interaction and functional modulation of the receptor complex are currently unclear. Here, using proteins expressed from mouse and rat cDNA, we show that CNIH-3 forms a stable complex with tetrameric AMPARs and contributes to the transmembrane density in single-particle electron microscopy structures. Peptide array-based screening and in vitro mutagenesis identified two clusters of conserved membrane-proximal residues in CNIHs that contribute to AMPAR binding. Because CNIH-1 binds to AMPARs but modulates gating at a significantly lower magnitude compared with CNIH-3, these conserved residues mediate a direct interaction between AMPARs and CNIHs. In addition, residues in the extracellular loop of CNIH-2/3 absent in CNIH-1/4 are critical for both AMPAR interaction and gating modulation. On the AMPAR extracellular domains, the ligand-binding domain and possibly a stretch of linker, connecting the ligand-binding domain to the fourth membrane-spanning segment, is the principal contact point with the CNIH-3 extracellular loop. In contrast, the membrane-distal N-terminal domain is less involved in AMPAR gating modulation by CNIH-3 and AMPAR binding to CNIH-3. Collectively, our results identify conserved residues in the membrane-proximal region of CNIHs that contribute to AMPAR binding and an additional unique segment in the CNIH-2/3 extracellular loop required for both physical interaction and gating modulation of the AMPAR. Consistent with the dissociable properties of binding and gating modulation, we identified a mutant CNIH-3 that preserves AMPAR binding capability but has attenuated activity of gating modulation. PMID:25186755

  6. Evolution of retinoic acid receptors and retinoic acid signaling.

    PubMed

    Gutierrez-Mazariegos, Juliana; Schubert, Michael; Laudet, Vincent

    2014-01-01

    Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs.

  7. Probing TARP modulation of AMPA receptor conductance with polyamine toxins.

    PubMed

    Jackson, Alexander C; Milstein, Aaron D; Soto, David; Farrant, Mark; Cull-Candy, Stuart G; Nicoll, Roger A

    2011-05-18

    The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.

  8. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  9. Nutritional Signaling via Free Fatty Acid Receptors

    PubMed Central

    Miyamoto, Junki; Hasegawa, Sae; Kasubuchi, Mayu; Ichimura, Atsuhiko; Nakajima, Akira; Kimura, Ikuo

    2016-01-01

    Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs’ carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism. PMID:27023530

  10. The AAA+ ATPase, Thorase Regulates AMPA Receptor-Dependent Synaptic Plasticity and Behavior

    PubMed Central

    Zhang, Jianmin; Wang, Yue; Chi, Zhikai; Keuss, Matthew J.; Pai, Ying-Min Emily; Kang, Ho Chul; Shin, Jooho; Bugayenko, Artem; Wang, Hong; Xiong, Yulan; Pletnikov, Mikhail V.; Mattson, Mark P.; Dawson, Ted M.; Dawson, Valina L.

    2011-01-01

    SUMMARY The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase, Thorase, that regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory. PMID:21496646

  11. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons.

    PubMed

    Cox, David J; Racca, Claudia

    2013-06-15

    In hippocampal neurons, AMPA receptors (AMPARs) mediate fast excitatory postsynaptic responses at glutamatergic synapses, and are involved in various forms of synaptic plasticity. Dendritic local protein synthesis of selected AMPAR subunit mRNAs is considered an additional mechanism to independently and rapidly control the strength of individual synapses. We have used fluorescent in situ hybridization and immunocytochemistry to analyze the localization of AMPAR subunit (GluA1-4) mRNAs and their relationship with the translation machinery in principal cells and interneurons of the adult rat hippocampus. The mRNAs encoding all four AMPAR subunits were detected in the somata and dendrites of CA3 and CA1 pyramidal cells and those of six classes of CA1 γ-aminobutyric acid (GABA)ergic interneurons. GluA1-4 subunit mRNAs were highly localized to the apical dendrites of pyramidal cells, whereas in interneurons they were present in multiple dendrites. In contrast, in the dentate gyrus, GluA1-4 subunit mRNAs were virtually restricted to the somata and were absent from the dendrites of granule cells. These different regional and cell type-specific labeling patterns also correlated with the localization of markers for components of the protein synthesis machinery. Our results support the local translation of GluA1-4 mRNAs in dendrites of hippocampal pyramidal cells and CA1 interneurons but not in granule cells of the dentate gyrus. Furthermore, the regional and cell type-specific differences we observed suggest that each cell type uses distinct ways of regulating the local translation of AMPAR subunits.

  12. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  13. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain.

    PubMed

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-03-14

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

  14. Age-Dependent Modifications of AMPA Receptor Subunit Expression Levels and Related Cognitive Effects in 3xTg-AD Mice

    PubMed Central

    Cantanelli, Pamela; Sperduti, Samantha; Ciavardelli, Domenico; Stuppia, Liborio; Gatta, Valentina; Sensi, Stefano Luca

    2014-01-01

    GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q–R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease (AD). With quantitative real-time PCR analysis, we assayed hippocampal mRNA expression levels of GluA1–4 subunits occurring in young [3 months of age (m.o.a.)] and old (12 m.o.a) Tg-AD mice and made comparisons with levels found in age-matched wild type (WT) mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for learning short- and long-term spatial memory with the Morris Water Maze (MWM) navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1–4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in

  15. AMPA Receptors Are Involved in Store-Operated Calcium Entry and Interact with STIM Proteins in Rat Primary Cortical Neurons

    PubMed Central

    Gruszczynska-Biegala, Joanna; Sladowska, Maria; Kuznicki, Jacek

    2016-01-01

    The process of store-operated calcium entry (SOCE) leads to refilling the endoplasmic reticulum (ER) with calcium ions (Ca2+) after their release into the cytoplasm. Interactions between (ER)-located Ca2+ sensors (stromal interaction molecule 1 [STIM1] and STIM2) and plasma membrane-located Ca2+ channel-forming protein (Orai1) underlie SOCE and are well described in non-excitable cells. In neurons, however, SOCE appears to be more complex because of the importance of Ca2+ influx via voltage-gated or ionotropic receptor-operated Ca2+ channels. We found that the SOCE inhibitors ML-9 and SKF96365 reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced [Ca2+]i amplitude by 80% and 53%, respectively. To assess the possible involvement of AMPA receptors (AMPARs) in SOCE, we used their specific inhibitors. As estimated by Fura-2 acetoxymethyl (AM) single-cell Ca2+ measurements in the presence of CNQX or NBQX, thapsigargin (TG)-induced Ca2+ influx decreased 2.2 or 3.7 times, respectively. These results suggest that under experimental conditions of SOCE when Ca2+ stores are depleted, Ca2+ can enter neurons also through AMPARs. Using specific antibodies against STIM proteins or GluA1/GluA2 AMPAR subunits, co-immunoprecipitation assays indicated that when Ca2+ levels are low in the neuronal ER, a physical association occurs between endogenous STIM proteins and endogenous AMPAR receptors. Altogether, our data suggest that STIM proteins in neurons can control AMPA-induced Ca2+ entry as a part of the mechanism of SOCE. PMID:27826230

  16. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  17. TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains.

    PubMed

    Milstein, Aaron D; Nicoll, Roger A

    2009-07-07

    Previous work has established stargazin and its related family of transmembrane AMPA receptor regulatory proteins (TARPs) as auxiliary subunits of AMPA receptors (AMPARs) that control synaptic strength both by targeting AMPARs to synapses through an intracellular PDZ-binding motif and by modulating their gating through an extracellular domain. However, TARPs gamma-2 and gamma-8 differentially regulate the synaptic targeting of AMPARs, despite having identical PDZ-binding motifs. Here, we investigate the structural elements that contribute to this functional difference between TARP subtypes by using domain transplantation and truncation. We identify a component of synaptic AMPAR trafficking that is independent of the TARP C-terminal PDZ-binding motif, and we establish previously uncharacterized roles for the TARP intracellular N terminus, loop, and C terminus in modulating both the trafficking and gating of synaptic AMPARs.

  18. Molecular Mechanism of AMPA Receptor Modulation by TARP/Stargazin.

    PubMed

    Ben-Yaacov, Anat; Gillor, Moshe; Haham, Tomer; Parsai, Alon; Qneibi, Mohammad; Stern-Bach, Yael

    2017-03-08

    AMPA receptors (AMPARs) mediate the majority of fast excitatory transmission in the brain and critically contribute to synaptic plasticity and pathology. AMPAR trafficking and gating are tightly controlled by auxiliary transmembrane AMPAR regulatory proteins (TARPs). Here, using systematic domain swaps with the TARP-insensitive kainate receptor GluK2, we show that AMPAR interaction with the prototypical TARP stargazin/γ2 primarily involves the AMPAR membrane domains M1 and M4 of neighboring subunits, initiated or stabilized by the AMPAR C-tail, and that these interactions are sufficient to enable full receptor modulation. Moreover, employing TARP chimeras disclosed a key role in this process also for the TARP transmembrane domains TM3 and TM4 and extracellular loop 2. Mechanistically, our data support a two-step action in which binding of TARP to the AMPAR membrane domains destabilizes the channel closed state, thereby enabling an efficient opening upon agonist binding, which then stabilizes the open state via subsequent interactions.

  19. Redefining the classification of AMPA-selective ionotropic glutamate receptors

    PubMed Central

    Bowie, Derek

    2012-01-01

    Abstract AMPA-type ionotropic glutamate receptors (iGluRs) represent the major excitatory neurotransmitter receptor in the developing and adult vertebrate CNS. They are crucial for the normal hardwiring of glutamatergic circuits but also fine tune synaptic strength by cycling into and out of synapses during periods of sustained patterned activity or altered homeostasis. AMPARs are grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 receptor subunit. GluA2-containing receptors are thought to be the most abundant AMPAR in the CNS, typified by their small unitary events, Ca2+ impermeability and insensitivity to polyamine block. In contrast, GluA2-lacking AMPARs exhibit large unitary conductance, marked divalent permeability and nano- to micromolar polyamine affinity. Here, I review evidence for the existence of a third class of AMPAR which, though similarly Ca2+ permeable, is characterized by its near-insensitivity to internal and external channel block by polyamines. This novel class of AMPAR is most notably found at multivesicular release synapses found in the avian auditory brainstem and mammalian retina. Curiously, these synapses lack NMDA-type iGluRs, which are conventionally associated with controlling AMPAR insertion. The lack of NMDARs suggests that a different set of rules may govern AMPAR cycling at these synapses. AMPARs with similar functional profiles are also found on some glial cells suggesting they may have a more widespread distribution in the mammalian CNS. I conclude by noting that modest changes to the ion-permeation pathway might be sufficient to retain divalent permeability whilst eliminating polyamine sensitivity. Consequently, this emerging AMPAR subclass need not be assembled from novel subunits, yet to be cloned, but could simply occur by varying the stoichiometry of existing proteins. PMID:22106175

  20. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  1. Pharmacophore model for bile acids recognition by the FPR receptor

    NASA Astrophysics Data System (ADS)

    Ferrari, Cristina; Macchiarulo, Antonio; Costantino, Gabriele; Pellicciari, Roberto

    2006-05-01

    Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.

  2. Cornichon proteins determine the subunit composition of synaptic AMPA receptors.

    PubMed

    Herring, Bruce E; Shi, Yun; Suh, Young Ho; Zheng, Chan-Ying; Blankenship, Sabine M; Roche, Katherine W; Nicoll, Roger A

    2013-03-20

    Cornichon-2 and cornichon-3 (CNIH-2/-3) are AMPA receptor (AMPAR) binding proteins that promote receptor trafficking and markedly slow AMPAR deactivation in heterologous cells, but their role in neurons is unclear. Using CNIH-2 and CNIH-3 conditional knockout mice, we find a profound reduction of AMPAR synaptic transmission in the hippocampus. This deficit is due to the selective loss of surface GluA1-containing AMPARs (GluA1A2 heteromers), leaving a small residual pool of synaptic GluA2A3 heteromers. The kinetics of AMPARs in neurons lacking CNIH-2/-3 are faster than those in WT neurons due to the fast kinetics of GluA2A3 heteromers. The remarkably selective effect of CNIHs on the GluA1 subunit is probably mediated by TARP γ-8, which prevents a functional association of CNIHs with non-GluA1 subunits. These results point to a sophisticated interplay between CNIHs and γ-8 that dictates subunit-specific AMPAR trafficking and the strength and kinetics of synaptic AMPAR-mediated transmission.

  3. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    PubMed

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-08-04

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons.

  4. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    PubMed Central

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  5. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242.

    PubMed

    Ranganathan, M; DeMartinis, N; Huguenel, B; Gaudreault, F; Bednar, M M; Shaffer, C L; Gupta, S; Cahill, J; Sherif, M A; Mancuso, J; Zumpano, L; D'Souza, D C

    2017-02-28

    There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the

  6. Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia.

    PubMed

    Mohd Adnan, Siti Nur Syahirah Binti; Yusoff, Sumiani; Piaw, Chua Yan

    2013-06-01

    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.

  7. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  8. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    PubMed Central

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  9. Molecular mechanisms underlying activity-dependent AMPA receptor cycling in retinal ganglion cells

    PubMed Central

    Casimiro, Tanya M.; Nawy, Scott; Carroll, Reed C.

    2013-01-01

    On retinal ganglion cells (RGCs) transmit light encoded information to the brain and receive excitatory input from On cone bipolar cells (CBPs). The synaptic CBP input onto On RGCs is mediated by AMPA-type glutamate receptors (AMPARs) that include both those lacking a GluA2 subunit, and are therefore permeable to Ca2+, and those that possess at least one GluA2 subunit and are Ca2+-impermeable. We have previously demonstrated in electrophysiological studies that periods of low synaptic activity, brought about by housing animals in darkness, enhances the proportion of GluA2-lacking AMPARs at the On CBP-On RGC synapse by mobilizing surface GluA2 containing receptors into a receptor pool that rapidly cycles in and out of the membrane. AMPAR cycling induction by reduced synaptic activity takes several hours. This delay suggests that changes in expression of proteins which regulate AMPAR trafficking may mediate the altered mobility of GluA2 AMPARs in RGCs. In this study, we test the hypothesis that AMPAR trafficking proteins couple synaptic activity to AMPAR cycling in RGCs. Immunocytochemical and biochemical analysis confirmed that darkness decreases surface GluA2 in RGCs and changed the expression levels of three proteins associated with GluA2 trafficking. GRIP was decreased, while PICK1 and Arc were increased. Knockdown of GRIP with siRNA elevated constitutive AMPAR cycling, mimicking effects of reduced synaptic activity, while knockdown of PICK1 and ARC blocked increases in constitutive GluA2 trafficking. Our results support a role for correlated, activity-driven changes in multiple AMPAR trafficking proteins that modulate GluA2 cycling which can in turn affect synaptic AMPAR composition in RGCs. PMID:23911793

  10. Activity Level-Dependent Synapse-Specific AMPA Receptor Trafficking Regulates Transmission Kinetics

    PubMed Central

    Zhu, J. Julius

    2009-01-01

    Central glutamatergic synapses may express AMPA-sensitive glutamate receptors (AMPA-Rs) with distinct gating properties and exhibit different transmission dynamics, which are important for computing various synaptic inputs received at different populations of synapses. However, how glutamatergic synapses acquire AMPA-Rs with distinct kinetics to influence synaptic integration remains poorly understood. Here I report synapse-specific trafficking of distinct AMPA-Rs in rat cortical layer 4 stellate and layer 5 pyramidal neurons. The analysis indicates that in single layer 4 stellate neurons thalamocortical synapses generate faster synaptic responses than intracortical synapses. Moreover, GluR1-containing AMPA-Rs traffic selectively into intracortical synapses, and this process requires sensory experience-dependent activity and slows down transmission kinetics. GluR4-containing AMPA-Rs traffic more heavily into thalamocortical synapses than intracortical synapses, and this process requires spontaneous synaptic activity and speeds up transmission kinetics. GluR2-containing AMPA-Rs traffic equally into both thalamocortical and intracortical synapses, and this process requires no synaptic activity and resets transmission kinetics. Notably, synaptic trafficking of distinct AMPA-Rs differentially regulates synaptic integration. Thus, synapse-specific AMPA-R trafficking coarsely sets and synaptic activity finely tunes transmission kinetics and integration properties at different synapses in central neurons. PMID:19439609

  11. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states.

    PubMed

    Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G

    2012-11-15

    Fast excitatory synaptic transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs), whose biophysical properties are dramatically modulated by the presence of transmembrane AMPAR regulatory proteins (TARPs). To help construct a kinetic model that will realistically describe native AMPAR/TARP function, we have examined the single-channel properties of homomeric GluA1 AMPARs in combination with the TARPs, γ-2, γ-4 and γ-5. In a saturating concentration of agonist, each of these AMPAR/TARP combinations gave rise to single-channel currents with multiple conductance levels that appeared intrinsic to the receptor-channel complex, and showed long-lived subconductance states. The open time and burst length distributions of the receptor complexes displayed multiple dwell-time components. In the case of γ-2- and γ-4-associated receptors, these distributions included a long-lived component lasting tens of milliseconds that was absent from both GluA1 alone and γ-5-associated receptors. The open time distributions for each conductance level required two dwell-time components, indicating that at each conductance level the channel occupies a minimum of two kinetically distinct open states. We have explored how these data place novel constraints on possible kinetic models of TARP-associated AMPARs that may be used to define AMPAR-mediated synaptic transmission.

  12. The extremely low-frequency magnetic field exposure differently affects the AMPAR and NMDAR subunit expressions in the hippocampus, entorhinal cortex and prefrontal cortex without effects on the rat spatial learning and memory.

    PubMed

    Li, Chao; Xie, Meilan; Luo, Fenlan; He, Chao; Wang, Jiali; Tan, Gang; Hu, Zhian

    2014-10-01

    In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 50 Hz, 0.5 mT extremely low-frequency magnetic field (ELF-MF) on the NMDAR and AMPAR subunit expressions and rat spatial learning and memory. Using the Western blotting method, we found ELF-MF exposure specifically decreased the expressions of GluA2 in the EC post 28 day exposure and GluA3 of AMPAR subunits in the PFC after 14 day exposure, while it did not affect the AMPAR subunit expression in the hippocampus at both time points. As for NMDAR subunits, 14 day ELF-MF exposure significantly increased the levels of GluN2A and GluN2B in the hippocampus. Moreover, the levels of GluN1 and GluN2A were enhanced in the EC and PFC after two weeks of ELF-MF exposure. Interestingly, 28 day ELF-MF exposure induced a different expression pattern for NMDAR subunits. The increased GluN2A expression observed at 14 day post ELF-MF exposure was recovered after prolonged exposure in the hippocampus and PFC. In the EC, the increased expression of GluN1 achieved to control level and, specifically, a decrease in GluN2A level was observed. Surprisingly, neither 14 nor 28 day ELF-MF did affect the rat spatial reference memory as assessed by water maze. These results indicate that the dynamic and brain-region specific changes in ionotropic glutamate receptor expression induced by ELF-MF are insufficient to influence the rat spatial learning ability.

  13. Bile acid receptors and nonalcoholic fatty liver disease

    PubMed Central

    Yuan, Liyun; Bambha, Kiran

    2015-01-01

    With the high prevalence of obesity, diabetes, and other features of the metabolic syndrome in United States, nonalcoholic fatty liver disease (NAFLD) has inevitably become a very prevalent chronic liver disease and is now emerging as one of the leading indications for liver transplantation. Insulin resistance and derangement of lipid metabolism, accompanied by activation of the pro-inflammatory response and fibrogenesis, are essential pathways in the development of the more clinically significant form of NAFLD, known as nonalcoholic steatohepatitis (NASH). Recent advances in the functional characterization of bile acid receptors, such as farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor (TGR) 5, have provided further insight in the pathophysiology of NASH and have led to the development of potential therapeutic targets for NAFLD and NASH. Beyond maintaining bile acid metabolism, FXR and TGR5 also regulate lipid metabolism, maintain glucose homeostasis, increase energy expenditure, and ameliorate hepatic inflammation. These intriguing features have been exploited to develop bile acid analogues to target pathways in NAFLD and NASH pathogenesis. This review provides a brief overview of the pathogenesis of NAFLD and NASH, and then delves into the biological functions of bile acid receptors, particularly with respect to NASH pathogenesis, with a description of the associated experimental data, and, finally, we discuss the prospects of bile acid analogues in the treatment of NAFLD and NASH. PMID:26668692

  14. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  15. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    SciTech Connect

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-04-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of /sup 125/I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain.

  16. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5.

    PubMed

    Soto, David; Coombs, Ian D; Renzi, Massimiliano; Zonouzi, Marzieh; Farrant, Mark; Cull-Candy, Stuart G

    2009-03-01

    Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (gamma-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein gamma-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. gamma-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, gamma-5 acts as a TARP and serves this role in Bergmann glia. Whereas gamma-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for gamma-5 in regulating the functional contribution of CP-AMPARs.

  17. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    PubMed

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.

  18. Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving

    PubMed Central

    Loweth, Jessica A.; Tseng, Kuei Y.; Wolf, Marina E.

    2013-01-01

    Cue-induced cocaine craving in rodents intensifies or “incubates” during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3–4 weeks) accumulation of Ca2+-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. PMID:23727437

  19. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  20. Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists

    PubMed Central

    Schmidt, Johannes; Smith, Nicola J.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Hudson, Brian D.; Ward, Richard J.; Drewke, Christel; Milligan, Graeme; Kostenis, Evi; Ulven, Trond

    2011-01-01

    Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [35S]guanosine 5′-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp3-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp2- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors. PMID:21220428

  1. Seizure control by decanoic acid through direct AMPA receptor inhibition

    PubMed Central

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A.; Hardege, Jörg D.; Chen, Philip E.

    2016-01-01

    See Rogawski (doi:10.1093/awv369) for a scientific commentary on this article.  The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  2. Ganglioside Regulation of AMPA Receptor Trafficking

    PubMed Central

    Prendergast, Jillian; Umanah, George K.E.; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G.; Cole, Robert N.; Huganir, Richard L.; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10−4), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans. PMID:25253868

  3. Ganglioside regulation of AMPA receptor trafficking.

    PubMed

    Prendergast, Jillian; Umanah, George K E; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G; Cole, Robert N; Huganir, Richard L; Dawson, Ted M; Dawson, Valina L; Schnaar, Ronald L

    2014-09-24

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10(-4)), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans.

  4. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum.

    PubMed

    Spadafora, Carmenza; Awandare, Gordon A; Kopydlowski, Karen M; Czege, Jozsef; Moch, J Kathleen; Finberg, Robert W; Tsokos, George C; Stoute, José A

    2010-06-17

    Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine.

  5. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors.

    PubMed

    Dennis, Siobhan H; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G; Henley, Jeremy M; Mellor, Jack R

    2011-08-17

    Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.

  6. Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors.

    PubMed

    Soto, David; Coombs, Ian D; Gratacòs-Batlle, Esther; Farrant, Mark; Cull-Candy, Stuart G

    2014-08-27

    Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD.

  7. Molecular Mechanisms Contributing to TARP Regulation of Channel Conductance and Polyamine Block of Calcium-Permeable AMPA Receptors

    PubMed Central

    Coombs, Ian D.; Gratacòs-Batlle, Esther

    2014-01-01

    Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD. PMID:25164663

  8. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    PubMed Central

    De Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; Di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-01-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders. PMID:28233865

  9. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  10. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  11. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors.

    PubMed

    Danielson, Eric; Metallo, Jacob; Lee, Sang H

    2012-01-01

    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM-TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs.

  12. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity

    PubMed Central

    Klaassen, Remco V.; Stroeder, Jasper; Coussen, Françoise; Hafner, Anne-Sophie; Petersen, Jennifer D.; Renancio, Cedric; Schmitz, Leanne J. M.; Normand, Elisabeth; Lodder, Johannes C.; Rotaru, Diana C.; Rao-Ruiz, Priyanka; Spijker, Sabine; Mansvelder, Huibert D.; Choquet, Daniel; Smit, August B.

    2016-01-01

    Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission. PMID:26931375

  13. Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells

    PubMed Central

    Lajeunesse, Francis; Kröger, Helmut

    2013-01-01

    Two main excitatory synapses are formed at the dendritic arbor of first-order nuclei thalamocortical (TC) neurons. Ascending sensory axons primarily establish contacts at large proximal dendrites, whereas descending corticothalamic fibers form synapses on thin distal dendrites. With the use of a multicomparment computational model based on fully reconstructed TC neurons from the ventroposterolateral nucleus of the cat, we compared local responses at the site of stimulation as well as somatic responses induced by both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and N-methyl-d-aspartate receptor (NMDAR)-mediated currents. We found that AMPAR-mediated responses, when synapses were located at proximal dendrites, induced a larger depolarization at the level of soma, whereas NMDAR-mediated responses were more efficient for synapses located at distal dendrites. The voltage transfer and transfer impedance were higher for NMDAR than for AMPAR activation at any location. For both types of synaptic current and for both input locations at the dendritic arbor, somatic responses were characterized by a low variability despite the large variability found in local responses in dendrites. The large neurons had overall smaller somatic responses than small neurons, but this relation was not found in local dendritic responses. We conclude that in TC cells, the dendritic location of small synaptic inputs does not play a major role in the amplitude of a somatic response, but the size of the neuron does. The variability of response amplitude between cells was much larger than the variability within cells. This suggests possible functional segregation of TC neurons of different size. PMID:23100131

  14. Cholestenoic acids regulate motor neuron survival via liver X receptors

    PubMed Central

    Theofilopoulos, Spyridon; Griffiths, William J.; Crick, Peter J.; Yang, Shanzheng; Meljon, Anna; Ogundare, Michael; Kitambi, Satish Srinivas; Lockhart, Andrew; Tuschl, Karin; Clayton, Peter T.; Morris, Andrew A.; Martinez, Adelaida; Reddy, M. Ashwin; Martinuzzi, Andrea; Bassi, Maria T.; Honda, Akira; Mizuochi, Tatsuki; Kimura, Akihiko; Nittono, Hiroshi; De Michele, Giuseppe; Carbone, Rosa; Criscuolo, Chiara; Yau, Joyce L.; Seckl, Jonathan R.; Schüle, Rebecca; Schöls, Ludger; Sailer, Andreas W.; Kuhle, Jens; Fraidakis, Matthew J.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Björkhem, Ingemar; Ernfors, Patrik; Sjövall, Jan; Arenas, Ernest; Wang, Yuqin

    2014-01-01

    Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3β,7α-diHCA and 3βH,7O-CA, 3β-hydroxycholest-5-en-26-oic acid (3β-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3β-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3β,7α-diHCA. Moreover, 3β,7α-diHCA prevented the loss of motor neurons induced by 3β-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death. PMID:25271621

  15. Oxygen/glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and A3 Receptors

    PubMed Central

    Dennis, Siobhan H.; Jaafari, Nadia; Cimarosti, Helena; Hanley, Jonathan G.; Henley, Jeremy M.; Mellor, Jack R.

    2011-01-01

    Summary Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighbouring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+ resulting in delayed cell death. However, it is unclear if the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 minute OGD protocol a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by mGluR1 or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalisation of AMPARs after OGD. We also show a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists indicating that AMPARs are degraded following internalisation. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection. PMID:21849555

  16. ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion.

    PubMed

    Song, Roy S; Massenburg, Ben; Wenderski, Wendy; Jayaraman, Vino; Thompson, Lauren; Neves, Susana R

    2013-09-17

    AMPA-type glutamate receptor (AMPAR) trafficking is essential for modulating synaptic transmission strength. Prior studies that have characterized signaling pathways underlying AMPAR trafficking have identified the cAMP/PKA-mediated phosphorylation of GluA1, an AMPAR subunit, as a key step in the membrane insertion of AMPAR. Inhibition of ERK impairs AMPAR membrane insertion, but the mechanism by which ERK exerts its effect is unknown. Dopamine, an activator of both PKA and ERK, induces AMPAR insertion, but the relationship between the two protein kinases in the process is not understood. We used a combination of computational modeling and live cell imaging to determine the relationship between ERK and PKA in AMPAR insertion. We developed a dynamical model to study the effects of phosphodiesterase 4 (PDE4), a cAMP phosphodiesterase that is phosphorylated and inhibited by ERK, on the membrane insertion of AMPAR. The model predicted that PKA could be a downstream effector of ERK in regulating AMPAR insertion. We experimentally tested the model predictions and found that dopamine-induced ERK phosphorylates and inhibits PDE4. This regulation results in increased cAMP levels and PKA-mediated phosphorylation of DARPP-32 and GluA1, leading to increased GluA1 trafficking to the membrane. These findings provide unique insight into an unanticipated network topology in which ERK uses PDE4 to regulate PKA output during dopamine signaling. The combination of dynamical models and experiments has helped us unravel the complex interactions between two protein kinase pathways in regulating a fundamental molecular process underlying synaptic plasticity.

  17. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish

    PubMed Central

    1984-01-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  18. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors

    PubMed Central

    Savas, Jeffrey N.; Ribeiro, Luís F.; Wierda, Keimpe D.; Wright, Rebecca; DeNardo, Laura A.; Rice, Heather C.; Chamma, Ingrid; Wang, Yi-Zhi; Zemla, Roland; Lavallée-Adam, Mathieu; Vennekens, Kristel M.; O'Sullivan, Matthew L.; Antonios, Joseph K.; Hall, Elizabeth A.; Thoumine, Olivier; Attie, Alan D.; Ghosh, Anirvan; Yates, John R.; de Wit, Joris

    2015-01-01

    The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1 knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1–deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer's disease, suggesting that perturbed receptor trafficking contributes to defects in synaptic composition and function underlying synaptopathies. PMID:26291160

  19. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  20. Protective effects of N-methyl-D-aspartate receptor antagonism on VX-induced neuronal cell death in cultured rat cortical neurons.

    PubMed

    Wang, Yushan; Weiss, M Tracy; Yin, Junfei; Tenn, Catherine C; Nelson, Peggy D; Mikler, John R

    2008-01-01

    Exposure of the central nervous system to organophosphorus (OP) nerve agents induces seizures and neuronal cell death. Here we report that the OP nerve agent, VX, induces apoptotic-like cell death in cultured rat cortical neurons. The VX effects on neurons were concentration-dependent, with an IC(50) of approximately 30 microM. Blockade of N-methyl-D-aspartate receptors (NMDAR) with 50 microM. D-2-amino-5-phosphonovalerate (APV) diminished 30 microM VX-induced total cell death, as assessed by alamarBlue assay and Hoechst staining. In contrast, neither antagonists of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) nor metabotropic glutamate receptors (mGluRs) had any effect on VX-induced neurotoxicity. VX-induced neuronal cell death could not be solely attributed to acetylcholinesterase (AChE) inhibition, since neither the reversible pharmacological cholinesterase inhibitor, physostigmine, nor the muscarinic receptor antagonist, atropine, affected VX-induced cell death. Importantly, APV was found to be therapeutically effective against VX-induced cell death up to 2 h post VX exposure. These results suggest that NMDARs, but not AMPARs or mGluRs, play important roles in VX-induced cell death in cultured rat cortical neurons. Based on their therapeutic effects, NMDAR antagonists may be beneficial in the treatment of VX-induced neurotoxicities.

  1. Gestational nicotine exposure regulates expression of AMPA and NMDA receptors and their signaling apparatus in developing and adult rat hippocampus

    PubMed Central

    Wang, Hong; Dávila-García, Martha I.; Yarl, Weonpo; Gondré-Lewis, Marjorie C.

    2011-01-01

    Untimely activation of nicotinic acetylcholine receptor (nAChR) by nicotine results in short- and long-term consequences on learning and behavior. In this study, the aim was to determine how prenatal nicotine exposure affects components of glutamatergic signaling in the hippocampus during postnatal development. We investigated regulation of both nAChRs and glutamate receptors for α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA), from postnatal day (P) 1 to P63 after a temporally restricted exposure to saline or nicotine for 14 days in utero. We analyzed postsynaptic density components associated with AMPAR and NMDAR signaling: Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), Calmodulin (CaM), and postsynaptic density-95 (PSD95), as well as presynaptically localized synaptosomal-associated protein 25 (SNAP25). At P1, there was significantly heightened expression of AMPAR subunit GluR1 but not GluR2, and of NMDAR subunits NR1, NR2a and NR2d but not NR2b. NR2c was not detectable. At P1, the postsynaptic proteins CaMKIIα, CaM, and PSD95 were also significantly upregulated, together with presynaptic SNAP25. This enhanced expression of glutamate receptors and signaling proteins was concomitant with elevated levels of [3H] Epibatidine (EB) binding in prenatal nicotine-exposed hippocampus, indicating that α4β2 nAChR may influence glutamatergic function in the hippocampus at P1. By P14, neither [3H]EB binding nor the expression levels of subunits GluR1, GluR2, NR1, NR2a, NR2b, NR2c, or NR2d seemed changed with prenatal nicotine. However, CaMKIIα was significantly upregulated with nicotine treatment while CaM showed downregulation at P14. The effects of nicotine persisted in young adult brains at P63. They exhibited significantly downregulated GluR2, NR1, and NR2c expression levels in hippocampal homogenates and a considerably muted overall distribution of [3H]AMPA binding in areas CA1, CA2, CA3, and the dentate

  2. Differences of AMPA and kainate receptor interactomes identify a novel AMPA receptor auxiliary subunit, GSG1L

    PubMed Central

    Shanks, Natalie F.; Savas, Jeffrey N.; Maruo, Tomohiko; Cais, Ondrej; Hirao, Atsushi; Oe, Souichi; Ghosh, Anirvan; Noda, Yasuko; Greger, Ingo H.; Yates, John R.; Nakagawa, Terunaga

    2012-01-01

    AMPA receptor (AMPA-R) complexes consist of channel forming subunits, GluA1–4 and auxiliary proteins including TARPs, CNIHs, synDIG1, and CKAMP44, which can modulate AMPA-R function in specific ways. Combinatorial effects of four GluA subunits binding to various auxiliary subunits amplify the functional diversity of AMPA-Rs. The significance and magnitude of molecular diversity, however, remain elusive. To gain insight into the molecular complexity of AMPA and kainate receptors (KA-Rs), we compared the proteins that co-purify with each receptor type in rat brain. This interactome study identified the majority of known interacting proteins and more importantly, provides novel candidates for further studies. We validate the claudin homologue GSG1L as a novel binding protein and unique modulator of AMPA-R gating, as determined by detailed molecular, cellular, electrophysiological, and biochemical experiments. GSG1L extends the functional variety of AMPA-R complexes and further investigation of other candidates may reveal additional complexity of ionotropic glutamate receptor function. PMID:22813734

  3. Encephalitis and AMPA receptor antibodies

    PubMed Central

    Höftberger, Romana; van Sonderen, Agnes; Leypoldt, Frank; Houghton, David; Geschwind, Michael; Gelfand, Jeffrey; Paredes, Mercedes; Sabater, Lidia; Saiz, Albert; Titulaer, Maarten J.; Graus, Francesc

    2015-01-01

    Objective: We report the clinical features, comorbidities, and outcome of 22 newly identified patients with antibodies to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Methods: This was a retrospective review of patients diagnosed between May 2009 and March 2014. Immunologic techniques have been reported previously. Results: Patients' median age was 62 years (range 23–81; 14 female). Four syndromes were identified: 12 (55%) patients presented with distinctive limbic encephalitis (LE), 8 (36%) with limbic dysfunction along with multifocal/diffuse encephalopathy, one with LE preceded by motor deficits, and one with psychosis with bipolar features. Fourteen patients (64%) had a tumor demonstrated pathologically (5 lung, 4 thymoma, 2 breast, 2 ovarian teratoma) or radiologically (1 lung). Additional antibodies occurred in 7 patients (3 onconeuronal, 1 tumor-related, 2 cell surface, and 1 tumor-related and cell surface), all with neurologic symptoms or tumor reflecting the concurrent autoimmunity. Treatment and outcome were available from 21 patients (median follow-up 72 weeks, range 5–266): 5 had good response to immunotherapy and tumor therapy, 10 partial response, and 6 did not improve. Eventually 5 patients died; all had a tumor or additional paraneoplastic symptoms related to onconeuronal antibodies. Coexistence of onconeuronal antibodies predicted a poor outcome (p = 0.009). Conclusion: Anti-AMPAR encephalitis usually manifests as LE, can present with other symptoms or psychosis, and is paraneoplastic in 64% of cases. Complete and impressive neurologic improvement can occur, but most patients have partial recovery. Screening for a tumor and onconeuronal antibodies is important because their detection influences outcome. PMID:25979696

  4. Pentagastrin gastroprotection against acid is related to H2 receptor activation but not acid secretion

    PubMed Central

    Tanaka, S; Akiba, Y; Kaunitz, J

    1998-01-01

    Background—Pentagastrin enhances gastric mucosal defence mechanisms against acid and protects the gastric mucosa from experimental injury. 
Aims—To investigate whether this gastroprotection is mediated by histamine receptors or occurs as a secondary effect of acid secretion stimulation. 
Methods—The effects of omeprazole (100 µmol/kg), ranitidine (20 mg/kg), and pyrilamine (10 mg/kg) on pentagastrin (80 µg/kg/h) induced gastroprotection against acidified aspirin injury were examined in a luminal pH controlled model. The effects of these compounds on pentagastrin enhanced gastroprotective mechanisms were investigated using intravital microscopy, in which intracellular pH of gastric surface cells (pHi), mucus gel thickness, gastric mucosal blood flow, and acid output were measured simultaneously. 
Results—Pentagastrin protected rat gastric mucosa from acidified aspirin injury. This gastroprotection was abolished by ranitidine, but not omeprazole or pyrilamine. Pentagastrin induced a hyperaemic response to luminal acid challenge, increased mucus gel thickness, and elevated pHi during acid challenge. Ranitidine reversed these enhanced defence mechanisms, whereas omeprazole and pyrilamine preserved these effects. 
Conclusions—These data indicate that pentagastrin associated gastroprotection and enhanced defence mechanisms against acid result mainly from activation of histamine H2 receptors, and not as an effect of the stimulation of acid secretion. 

 Keywords: gastric injury; gastric defence mechanisms; omeprazole; pyrilamine; ranitidine; intracellular pH PMID:9863477

  5. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  6. mTORC1 Inhibition in the Nucleus Accumbens ‘Protects' Against the Expression of Drug Seeking and ‘Relapse' and Is Associated with Reductions in GluA1 AMPAR and CAMKIIα Levels

    PubMed Central

    James, Morgan H; Quinn, Rikki K; Ong, Lin Kooi; Levi, Emily M; Charnley, Janine L; Smith, Doug W; Dickson, Phillip W; Dayas, Christopher V

    2014-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) is necessary for synaptic plasticity, as it is critically involved in the translation of synaptic transmission-related proteins, such as Ca2+/Calmodulin-dependent kinase II alpha (CAMKIIα) and AMPA receptor subunits (GluAs). Although recent studies have implicated mTORC1 signaling in drug-motivated behavior, the ineffectiveness of rapamycin, an mTORC1 inhibitor, in suppressing cocaine self-administration has raised questions regarding the specific role of mTORC1 in drug-related behaviors. Here, we examined mTORC1's role in three drug-related behaviors: cocaine taking, withdrawal, and reinstatement of cocaine seeking, by measuring indices of mTORC1 activity and assessing the effect of intra-cerebroventricular rapamycin on these behaviors in rats. We found that withdrawal from cocaine self-administration increased indices of mTORC1 activity in the nucleus accumbens (NAC). Intra-cerebroventricular rapamycin attenuated progressive ratio (PR) break points and reduced phospho-p70 ribosomal S6 kinase, GluA1 AMPAR, and CAMKIIα levels in the NAC shell (NACsh) and core (NACc). In a subsequent study, we treated rats with intra-NACsh infusions of rapamycin (2.5 μg/side/day for 5 days) during cocaine self-administration and then tracked the expression of addiction-relevant behaviors through to withdrawal and extinction. Rapamycin reduced drug seeking in signaled non-drug-available periods, PR responding, and cue-induced reinstatement, with these effects linked to reduced mTORC1 activity, total CAMKIIα, and GluA1 AMPAR levels in the NACsh. Together, these data highlight a role for mTORC1 in the neural processes that control the expression and maintenance of drug reward, including protracted relapse vulnerability. These effects appear to involve a role for mTORC1 in the regulation of GluA1 AMPARs and CAMKIIα in the NACsh. PMID:24469593

  7. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers.

    PubMed Central

    Keller, H; Dreyer, C; Medin, J; Mahfoudi, A; Ozato, K; Wahli, W

    1993-01-01

    The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids. Images Fig. 1 Fig. 2 PMID:8384714

  8. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  9. Disruption of glutamate receptor-interacting protein in nucleus accumbens enhances vulnerability to cocaine relapse.

    PubMed

    Briand, Lisa A; Kimmey, Blake A; Ortinski, Pavel I; Huganir, Richard L; Pierce, R Christopher

    2014-02-01

    Trafficking and stabilization of AMPA receptors at synapses in response to cocaine exposure is thought to be critical for expression of cocaine addiction and relapse. Glutamate receptor-interacting protein (GRIP) is a neuronal scaffolding protein that stabilizes GluA2 AMPARs at synapses but its role in cocaine addiction has not been examined. The current study demonstrates that conditional deletion of GRIP within the nucleus accumbens potentiates cue-induced reinstatement of cocaine seeking without affecting operant learning, locomotor activity, or reinstatement of natural reward seeking. This is the first study to demonstrate a role for accumbal GRIP in behavior. Electrophysiological recordings revealed increased rectification of AMPAR-mediated currents in the nucleus accumbens and increased AMPAR sensitivity to the GluA2-lacking AMPAR antagonist, 1-naphthylacetyl spermine, indicative of an increased contribution of GluA2-lacking calcium-permeable AMPARs. In addition, accumbal GRIP deletion was associated with blunted long-term depression, similar to what is seen following cocaine self-administration. Taken together, these results indicate that GRIP may modulate addictive phenotypes through its regulation of synaptic AMPARs by controlling their subunit composition and susceptibility to LTD. These effects are associated with changes in vulnerability to cocaine relapse and highlight GRIP as a novel target for the development of cocaine addiction therapeutics.

  10. Epilepsy-associated gene Nedd4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors

    PubMed Central

    Zhu, Jiuhe; Lee, Kwan Young; Man, Heng-Ye; Chung, Hee Jung

    2017-01-01

    The neural precursor cell expressed developmentally down-regulated gene 4–2, Nedd4-2, is an epilepsy-associated gene with at least three missense mutations identified in epileptic patients. Nedd4-2 encodes a ubiquitin E3 ligase that has high affinity toward binding and ubiquitinating membrane proteins. It is currently unknown how Nedd4-2 mediates neuronal circuit activity and how its dysfunction leads to seizures or epilepsies. In this study, we provide evidence to show that Nedd4-2 mediates neuronal activity and seizure susceptibility through ubiquitination of GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (AMPAR). Using a mouse model, termed Nedd4-2andi, in which one of the major forms of Nedd4-2 in the brain is selectively deficient, we found that the spontaneous neuronal activity in Nedd4-2andi cortical neuron cultures, measured by a multiunit extracellular electrophysiology system, was basally elevated, less responsive to AMPAR activation, and much more sensitive to AMPAR blockade when compared with wild-type cultures. When performing kainic acid-induced seizures in vivo, we showed that elevated seizure susceptibility in Nedd4-2andi mice was normalized when GluA1 is genetically reduced. Furthermore, when studying epilepsy-associated missense mutations of Nedd4-2, we found that all three mutations disrupt the ubiquitination of GluA1 and fail to reduce surface GluA1 and spontaneous neuronal activity when compared with wild-type Nedd4-2. Collectively, our data suggest that impaired GluA1 ubiquitination contributes to Nedd4-2-dependent neuronal hyperactivity and seizures. Our findings provide critical information to the future development of therapeutic strategies for patients who carry mutations of Nedd4-2. PMID:28212375

  11. Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action.

    PubMed

    Conboy, Lisa; Sandi, Carmen

    2010-02-01

    Stress and glucocorticoids (GCs) can facilitate memory formation. However, the molecular mechanisms mediating their effects are largely unknown. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) trafficking has been implicated in the changes in synaptic strength at central glutamatergic synapses associated with memory formation. In cell cultures, corticosterone has been shown to condition the synaptic trafficking of the AMPAR GluA2 subunit. In this study, we investigated the involvement of GluA2 trafficking in the facilitation of learning by stress. Using the water maze spatial task involving different stress levels, mice trained under more stressful conditions (water at 22 degrees C) showed better learning and memory, and higher post-training corticosterone levels, than mice trained under lower stress (water at 30 degrees C). Strikingly, this facilitated learning by stress was accompanied by enhanced synaptic expression of GluA2 AMPARs that was not observed in mice trained under less stressful conditions. Interfering with GC actions by injecting the GC synthesis inhibitor, metyrapone, blocked both the memory facilitation and the enhanced GluA2 trafficking induced by stressful learning. Intracerebroventricular infusion of the peptide, pep2m, that blocks GluA2 synaptic trafficking by interfering with the interaction between N-ethylmaleimide-sensitive factor and GluA2, impaired immediate performance at learning as well as long-term memory retrieval, supporting a causal role for GluA2 trafficking in stress-induced facilitation of spatial learning and memory. Evidence for the involvement of the neural cell adhesion molecule N-cadherin in interaction with GluA2 is also provided. These findings underscore a new mechanism whereby stress can improve memory function.

  12. Leveraging abscisic acid receptors for efficient water use in Arabidopsis

    PubMed Central

    Yang, Zhenyu; Liu, Jinghui; Tischer, Stefanie V.; Christmann, Alexander; Windisch, Wilhelm; Schnyder, Hans; Grill, Erwin

    2016-01-01

    Plant growth requires the influx of atmospheric CO2 through stomatal pores, and this carbon uptake for photosynthesis is inherently associated with a large efflux of water vapor. Under water deficit, plants reduce transpiration and are able to improve carbon for water exchange leading to higher water use efficiency (WUE). Whether increased WUE can be achieved without trade-offs in plant growth is debated. The signals mediating the WUE response under water deficit are not fully elucidated but involve the phytohormone abscisic acid (ABA). ABA is perceived by a family of related receptors known to mediate acclimation responses and to reduce transpiration. We now show that enhanced stimulation of ABA signaling via distinct ABA receptors can result in plants constitutively growing at high WUE in the model species Arabidopsis. WUE was assessed by three independent approaches involving gravimetric analyses, 13C discrimination studies of shoots and derived cellulose fractions, and by gas exchange measurements of whole plants and individual leaves. Plants expressing the ABA receptors RCAR6/PYL12 combined up to 40% increased WUE with high growth rates, i.e., are water productive. Water productivity was associated with maintenance of net carbon assimilation by compensatory increases of leaf CO2 gradients, thereby sustaining biomass acquisition. Leaf surface temperatures and growth potentials of plants growing under well-watered conditions were found to be reliable indicators for water productivity. The study shows that ABA receptors can be explored to generate more plant biomass per water transpired, which is a prime goal for a more sustainable water use in agriculture. PMID:27247417

  13. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells.

    PubMed

    Hopkins, Mandi M; Liu, Ze; Meier, Kathryn E

    2016-10-01

    Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor.

  14. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  15. Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership.

    PubMed

    Kollitz, Erin M; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G Kerr; Reif, David M; Kullman, Seth W

    2016-01-01

    The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a

  16. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-01-01

    The effects of fatty acids on cancer cells have been studied for decades. The roles of dietary long-chain n-3 polyunsaturated fatty acids, and of microbiome-generated short-chain butyric acid, have been of particular interest over the years. However, the roles of free fatty acid receptors (FFARs) in mediating effects of fatty acids in tumor cells have only recently been examined. In reviewing the literature, the data obtained to date indicate that the long-chain FFARs (FFA1 and FFA4) play different roles than the short-chain FFARs (FFA2 and FFA3). Moreover, FFA1 and FFA4 can in some cases mediate opposing actions in the same cell type. Another conclusion is that different types of cancer cells respond differently to FFAR activation. Currently, the best-studied models are prostate, breast, and colon cancer. FFA1 and FFA4 agonists can inhibit proliferation and migration of prostate and breast cancer cells, but enhance growth of colon cancer cells. In contrast, FFA2 activation can in some cases inhibit proliferation of colon cancer cells. Although the available data are sometimes contradictory, there are several examples in which FFAR agonists inhibit proliferation of cancer cells. This is a unique response to GPCR activation that will benefit from a mechanistic explanation as the field progresses. The development of more selective FFAR agonists and antagonists, combined with gene knockout approaches, will be important for unraveling FFAR-mediated inhibitory effects. These inhibitory actions, mediated by druggable GPCRs, hold promise for cancer prevention and/or therapy.

  17. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  18. Chromosomal Integration of Retinoic Acid Response Elements Prevents Cooperative Transcriptional Activation by Retinoic Acid Receptor and Retinoid X Receptor

    PubMed Central

    Lefebvre, Bruno; Brand, Céline; Lefebvre, Philippe; Ozato, Keiko

    2002-01-01

    All-trans-retinoic acid receptors (RAR) and 9-cis-retinoic acid receptors (RXR) are nuclear receptors known to cooperatively activate transcription from retinoid-regulated promoters. By comparing the transactivating properties of RAR and RXR in P19 cells using either plasmid or chromosomal reporter genes containing the mRARβ2 gene promoter, we found contrasting patterns of transcriptional regulation in each setting. Cooperativity between RXR and RAR occurred at all times with transiently introduced promoters, but was restricted to a very early stage (<3 h) for chromosomal promoters. This time-dependent loss of cooperativity was specific for chromosomal templates containing two copies of a retinoid-responsive element (RARE) and was not influenced by the spacing between the two RAREs. This loss of cooperativity suggested a delayed acquisition of RAR full transcriptional competence because (i) cooperativity was maintained at RAR ligand subsaturating concentrations, (ii) overexpression of SRC-1 led to loss of cooperativity and even to strong repression of chromosomal templates activity, and (iii) loss of cooperativity was observed when additional cis-acting response elements were activated. Surprisingly, histone deacetylase inhibitors counteracted this loss of cooperativity by repressing partially RAR-mediated activation of chromosomal promoters. Loss of cooperativity was not correlated to local histone hyperacetylation or to alteration of constitutive RNA polymerase II (RNAP) loading at the promoter region. Unexpectedly, RNAP binding to transcribed regions was correlated to the RAR activation state as well as to acetylation levels of histones H3 and H4, suggesting that RAR acts at the mRARβ promoter by triggering the switch from an RNA elongation-incompetent RNAP form towards an RNA elongation-competent RNAP. PMID:11839811

  19. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid.

    PubMed

    Powell, William S; Rokach, Joshua

    2015-04-01

    Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

  20. Unsaturated phosphinic analogues of gamma-aminobutyric acid as GABA(C) receptor antagonists.

    PubMed

    Chebib, M; Vandenberg, R J; Froestl, W; Johnston, G A

    1997-06-25

    The phosphinic and methylphosphinic analogues of gamma-aminobutyric acid (GABA) are potent GABA(C) receptor antagonists but are even more potent as GABA(B) receptor agonists. Conformationally restricted unsaturated phosphinic and methylphosphinic analogues of GABA and some potent GABA(B) receptor phosphonoamino acid antagonists were tested on GABA(C) receptors in Xenopus oocytes expressing human retinal rho1 mRNA. 3-Aminopropyl-n-butyl-phosphinic acid (CGP36742), an orally active GABA(B) receptor antagonist, was found to be a moderately potent GABA(C) receptor antagonist (IC50 = 62 microM). The unsaturated methylphosphinic and phosphinic analogues of GABA were competitive antagonists of the GABA(C) receptors, the order of potency being [(E)-3-aminopropen-1-yl]methylphosphinic acid (CGP44530, IC50 = 5.53 microM) > [(E)-3-aminopropen-1-yl]phosphinic acid (CGP38593, IC50 = 7.68 microM) > [(Z)-3-aminopropen-1-yl]methylphosphinic acid (CGP70523, IC50 = 38.94 microM) > [(Z)-3-aminopropen-1-yl]phosphinic acid (CGP70522, IC50 > 100 microM). This order of potency differs from that reported for these compounds as GABA(B) receptor agonists, where the phosphinic acids are more potent than the corresponding methylphosphinic acids.

  1. Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership

    PubMed Central

    Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G. Kerr; Reif, David M.; Kullman, Seth W.

    2016-01-01

    The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor’s affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as

  2. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors

    PubMed Central

    Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen

    2016-01-01

    AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the “hydrophobic box,” located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of i

  3. Screening for AMPA receptor auxiliary subunit specific modulators

    PubMed Central

    Azumaya, Caleigh M.; Days, Emily L.; Vinson, Paige N.; Stauffer, Shaun; Sulikowski, Gary; Weaver, C. David; Nakagawa, Terunaga

    2017-01-01

    AMPA receptors (AMPAR) are ligand gated ion channels critical for synaptic transmission and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological diseases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting to potentiate or depress AMPAR activity is an inherently difficult balancing act between effective treatments and debilitating side effects. A newly explored strategy to target subsets of AMPARs in the central nervous system is to identify compounds that affect specific AMPAR-auxiliary subunit complexes. This exploits diverse spatio-temporal expression patterns of known AMPAR auxiliary subunits, providing means for designing brain region-selective compounds. Here we report a high-throughput screening-based pipeline that can identify compounds that are selective for GluA2-CNIH3 and GluA2-stargazin complexes. These compounds will help us build upon the growing library of AMPAR-auxiliary subunit specific inhibitors, which have thus far all been targeted to TARP γ-8. We used a cell-based assay combined with a voltage-sensitive dye (VSD) to identify changes in glutamate-gated cation flow across the membranes of HEK cells co-expressing GluA2 and an auxiliary subunit. We then used a calcium flux assay to further validate hits picked from the VSD assay. VU0612951 and VU0627849 are candidate compounds from the initial screen that were identified as negative and positive allosteric modulators (NAM and PAM), respectively. They both have lower IC50/EC50s on complexes containing stargazin and CNIH3 than GSG1L or the AMPAR alone. We have also identified a candidate compound, VU0539491, that has NAM activity in GluA2(R)-CNIH3 and GluA2(Q) complexes and PAM activity in GluA2(Q)-GSG1L complexes. PMID:28358902

  4. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    SciTech Connect

    Cheng, Xiu-Li; Ding, Fan; Li, Hui; Tan, Xiao-Qiu; Liu, Xiao; Cao, Ji-Min; Gao, Xue

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  5. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A.

    PubMed

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W; Wines, Pamela G; Cryan, Ellen V; Demarest, Keith T

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  6. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    SciTech Connect

    Tang, Yuting . E-mail: ytang@prdus.jnj.com; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  7. AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.

    PubMed

    Hastie, Peter; Ulbrich, Maximilian H; Wang, Hui-Li; Arant, Ryan J; Lau, Anthony G; Zhang, Zhenjie; Isacoff, Ehud Y; Chen, Lu

    2013-03-26

    Members of the transmembrane AMPA receptor-regulatory protein (TARP) family modulate AMPA receptor (AMPA-R) trafficking and function. AMPA-Rs consist of four pore-forming subunits. Previous studies show that TARPs are an integral part of the AMPA-R complex, acting as accessory subunits for mature receptors in vivo. The TARP/AMPA-R stoichiometry was previously measured indirectly and found to be variable and dependent on TARP expression level, with at most four TARPs associated with each AMPA-R complex. Here, we use a single-molecule technique in live cells that selectively images proteins located in the plasma membrane to directly count the number of TARPs associated with each AMPA-R complex. Although individual GFP-tagged TARP subunits are observed as freely diffusing fluorescent spots on the surface of Xenopus laevis oocytes when expressed alone, coexpression with AMPA-R-mCherry immobilizes the stargazin-GFP spots at sites of AMPA-R-mCherry, consistent with complex formation. We determined the number of TARP molecules associated with each AMPA-R by counting bleaching steps for three different TARP family members: γ-2, γ-3, and γ-4. We confirm that the TARP/AMPA-R stoichiometry depends on TARP expression level and discover that the maximum number of TARPs per AMPA-R complex falls into two categories: up to four γ-2 or γ-3 subunits, but rarely above two for γ-4 subunit. This unexpected AMPA-R/TARP stoichiometry difference has important implications for the assembly and function of TARP/AMPA-R complexes.

  8. Lysophosphatidic Acid (LPA) Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response1

    PubMed Central

    Shotts, Kristin; Donovan, Erin E.; Strauch, Pamela; Pujanauski, Lindsey M.; Victorino, Francisco; Al-Shami, Amin; Fujiwara, Yuko; Tigyi, Gabor; Oravecz, Tamas; Pelanda, Roberta; Torres, Raul M.

    2014-01-01

    Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically and whose levels are elevated in certain pathological settings such as cancer and infections. Here, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13 – Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-trisphosphate receptor activity. We further show that LPA5 also limits antigen-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced antibody responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity. PMID:24890721

  9. The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders.

    PubMed

    Cullingford, Tim E

    2004-03-01

    This review outlines the molecular sensors that reprogram cellular metabolism in response to the ketogenic diet (KD). Special emphasis is placed on the fasting-, fatty acid- and drug-activated transcription factor, peroxisome proliferator-activated receptor alpha (PPARalpha). The KD causes a switch to ketogenesis that is coordinated with an array of changes in cellular lipid, amino acid, carbohydrate and inflammatory pathways. The role of both liver and brain PPARalpha in mediating such changes will be examined, with special reference to the anti-epileptic effects not only of the KD but a range of synthetic anti-epileptic drugs such as valproate. Finally, the implications of the KD and activated brain PPARalpha will be discussed in the context of their potential involvement in a range of disorders of neuro-degeneration and neuro-inflammation.

  10. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists.

    PubMed

    Woodward, R M; Polenzani, L; Miledi, R

    1993-04-01

    Poly(A)+ RNA from mammalian retina expresses bicuculline/baclofen-insensitive gamma-aminobutyric acid (GABA) receptors in Xenopus oocytes with properties similar to those of homooligomeric GABA rho 1 receptors. The pharmacological profile of these rho-like receptors was extended by measuring sensitivities to various GABAA and GABAB receptor ligands. For direct comparison the same compounds were also assayed with GABAA receptors expressed by rat brain RNA. The potency sequence for heterocyclic GABA analogues at the GABA rho-like receptors was GABA (1.3) > muscimol (2.3) > isoguvacine (100) (approximate EC50 in parentheses; all EC50 and Kb values given in microM). Both muscimol and isoguvacine were partial agonists at the rho-like receptors. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (Kb congruent to 32), piperidine-4-sulfonic acid (Kb congruent to 85), and isonipecotic acid (Kb congruent to 1000) acted primarily as competitive antagonists, showing little or no activity as agonists. The sulfonic acid GABA analogue 3-aminopropanesulfonic acid was also a competitive antagonist (Kb congruent to 20). Conformationally restricted GABA analogues trans- and cis-4-aminocrotonic acid (TACA and CACA) were agonists at the rho-like receptors. TACA (EC50 congruent to 0.6) had twice the potency of GABA and was 125 times more potent than CACA (EC50 congruent to 75). Z-3-(Amidinothio)propenoic acid, an isothiouronium analogue of GABA, had little activity as an agonist but instead acted as a competitive antagonist (Kb congruent to 20). At concentrations of > 100 microM, bicuculline did have some weak competitive inhibitory effects on the GABA rho-like receptors (Kb congruent to 6000), but it was at least 5000 times more potent at GABAA receptors. Strychnine (Kb congruent to 70) and SR-95531 (Kb congruent to 35) also were competitive inhibitors of the rho-like receptors but were, respectively, 20 and 240 times more potent at GABAA receptors. The GABAB receptor ligands baclofen

  11. Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA

    PubMed Central

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C.; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L.

    2011-01-01

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. PMID:21943600

  12. Regulation of AMPA receptor function by the human memory-associated gene KIBRA.

    PubMed

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L

    2011-09-22

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor-induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity.

  13. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism.

    PubMed

    McCutcheon, James E; Loweth, Jessica A; Ford, Kerstin A; Marinelli, Michela; Wolf, Marina E; Tseng, Kuei Y

    2011-10-12

    Following prolonged withdrawal from extended access cocaine self-administration in adult rats, high conductance Ca2+ -ermeable AMPA receptors (CP-AMPARs) accumulate in nucleus accumbens (NAc) synapses and mediate the expression of "incubated" cue-induced cocaine craving. Using patch-clamp recordings from NAc slices prepared after extended access cocaine self-administration and >45 d of withdrawal, we found that group I metabotropic glutamate receptor (mGluR) stimulation using 3,5-dihydroxyphenylglycine (DHPG; 50 μm) rapidly eliminates the postsynaptic CP-AMPAR contribution to NAc synaptic transmission. This is accompanied by facilitation of Ca2+ -impermeable AMPAR (CI-AMPAR)-mediated transmission, suggesting that DHPG may promote an exchange between CP-AMPARs and CI-AMPARs. In saline controls, DHPG also reduced excitatory transmission but this occurred through a CB1 receptor-dependent presynaptic mechanism rather than an effect on postsynaptic AMPARs. Blockade of CB1 receptors had no significant effect on the alterations in AMPAR transmission produced by DHPG in the cocaine group. Interestingly, the effect of DHPG in the cocaine group was mediated by mGluR1 whereas its effect in the saline group was mediated by mGluR5. These results indicate that regulation of synaptic transmission in the NAc is profoundly altered after extended access cocaine self-administration and prolonged withdrawal. Furthermore, they suggest that activation of mGluR1 may represent a potential strategy for reducing cue-induced cocaine craving in abstinent cocaine addicts.

  14. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds.

    PubMed

    Schmieden, V; Betz, H

    1995-11-01

    To define structure-activity relations for ligands binding to the inhibitory glycine receptor (GlyR), the agonistic and antagonistic properties of alpha- and beta-amino acids were analyzed at the recombinant human alpha 1 GlyR expressed in Xenopus oocytes. The agonistic activity of alpha-amino acids exhibited a marked stereoselectivity and was highly susceptible to substitutions at the C alpha-atom. In contrast, alpha-amino acid antagonism was not enantiomer dependent and was influenced little by C alpha-atom substitutions. The beta-amino acids taurine, beta-aminobutyric acid (beta-ABA), and beta-aminoisobutyric acid (beta-AIBA) are partial agonists at the GlyR. Low concentrations of these compounds competitively inhibited glycine responses, whereas higher concentrations elicited a significant membrane current. Nipecotic acid, which contains a trans-beta-amino acid configuration, behaved as purely competitive GlyR antagonist. Our data are consistent with the existence of a common binding site for all amino acid agonists and antagonists, at which the functional consequences of binding depend on the particular conformation a given ligand adopts within the binding pocket. In the case of beta-amino acids, the trans conformation appears to mediate antagonistic receptor binding, and the cis conformation appears to mediate agonistic receptor binding. This led us to propose that the partial agonist activity of a given beta-amino acid is determined by the relative mole fractions of the respective cis/trans conformers.

  15. Molecular identification of high and low affinity receptors for nicotinic acid.

    PubMed

    Wise, Alan; Foord, Steven M; Fraser, Neil J; Barnes, Ashley A; Elshourbagy, Nabil; Eilert, Michelle; Ignar, Diane M; Murdock, Paul R; Steplewski, Klaudia; Green, Andrew; Brown, Andrew J; Dowell, Simon J; Szekeres, Philip G; Hassall, David G; Marshall, Fiona H; Wilson, Shelagh; Pike, Nicholas B

    2003-03-14

    Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.

  16. Structural basis and functions of abscisic acid receptors PYLs

    PubMed Central

    Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.

    2015-01-01

    Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428

  17. Altered food consumption in mice lacking lysophosphatidic acid receptor-1.

    PubMed

    Dusaulcy, R; Daviaud, D; Pradère, J P; Grès, S; Valet, Ph; Saulnier-Blache, J S

    2009-12-01

    The release of lysophosphatidic acid (LPA) by adipocytes has previously been proposed to play a role in obesity and associated pathologies such as insulin resistance and diabetes. In the present work, the sensitivity to diet-induced obesity was studied in mice lacking one of the LPA receptor subtype (LPA1R). Conversely to what was observed in wild type (WT) mice, LPA1R-KO-mice fed a high fat diet (HFD) showed no significant increase in body weight or fat mass when compared to low fat diet (LFD). In addition, in contrast to what was observed in WT mice, LPA1R-KO mice did not exhibit over-consumption of food associated with HFD. Surprisingly, when fed a LFD, LPA1R-KO mice exhibited significant higher plasma leptin concentration and higher level of adipocyte leptin mRNA than WT mice. In conclusion, LPA1R-KO mice were found to be resistant to diet-induced obesity consecutive to a resistance to fat-induced over-consumption of food that may result at least in part from alterations in leptin expression and production.

  18. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    PubMed Central

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  19. In vivo blockade of thalamic GABA(B) receptors increases excitatory amino-acid levels.

    PubMed

    Nyitrai, G; Emri, Z; Crunelli, V; Kékesi, K A; Dobolyi, A; Juhász, G

    1996-12-30

    The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP 35348) produced an increase in the extracellular concentration of aspartate and (to a lesser extent) glutamate, but no change was observed in the level of taurine, the main amino acid involved in the regulation of brain osmolarity processes. In contrast, 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulphonic acid (2-hydroxy-saclofen), another GABA(B) receptor antagonist, failed to affect the extracellular concentration of aspartate, glutamate and taurine. Thus, the basal level of excitatory amino acids in the thalamus in vivo is under the control of CGP 35348-sensitive GABA(B) receptors.

  20. Small-Cell Lung Cancer with Positive Anti-NMDAR and Anti-AMPAR Antibodies Paraneoplastic Limbic Encephalitis

    PubMed Central

    2016-01-01

    We report the case of a 66-year-old woman, with paraneoplastic limbic encephalitis, treated 6 months earlier for bladder neoplasia. The patient presented to the emergency room with rapidly increasing symptoms, noninfectious cerebral spinal fluid associated with positive anti-NMDAR (as well as in serum) and positive AMPAR antibodies in the serum. Four months later, the patient was diagnosed with a small-cell lung cancer for which chemotherapy and radiotherapy was commenced. Simultaneously, endoscopic surgical treatment was undertaken for an in situ relapse of the bladder neoplasm. After the completion of 3 cycles of chemotherapy her neurological status temporarily worsened. The cerebral MRI did not show signs of encephalitis such as increased T2/FLAIR signal intensity in the mesial temporal lobes and limbic systems. No specific treatment was prescribed. Limbic encephalitis can be associated with malignant tumors such as lung carcinoma. Several cases reported in the literature have shown cognitive improvement after tumoral therapy. Regarding our experience, significant progress was achieved through immuno-modulatory treatment. A transitory deterioration of the cognitive process was perceived during the chemotherapy sessions. PMID:28070431

  1. mTOR Is Essential for Corticosteroid Effects on Hippocampal AMPA Receptor Function and Fear Memory

    ERIC Educational Resources Information Center

    Xiong, Hui; Casse, Frédéric; Zhou, Yang; Zhou, Ming; Xiong, Zhi-Qi; Joëls, Marian; Martin, Stéphane; Krugers, Harm J.

    2015-01-01

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptors (AMPARs), which are crucial for synaptic plasticity and memory formation. Combining a live imaging fluorescent recovery after photobleaching approach…

  2. AMPA receptor subunits are differentially expressed in parvalbumin- and calretinin-positive neurons of the rat hippocampus.

    PubMed

    Catania, M V; Bellomo, M; Giuffrida, R; Giuffrida, R; Stella, A M; Albanese, V

    1998-11-01

    Recent studies suggest a functional diversity of native alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor channels (AMPARs). In several types of interneurons, AMPARs are characterized by higher Ca2+ permeability and faster kinetics than AMPARs in principal cells. We studied the expression profile of AMPAR subunits in the hippocampal parvalbumin (PV)- and calretinin (CR)-positive cells, which represent different populations of non-principal cells. To this end, non-radioactive in situ hybridization with AMPAR subunit specific cRNAs was combined with immunocytochemistry for PV or CR. Double-immunolabelling using antibodies against AMPAR subunits and PV or CR was also performed. PV-containing neurons represent a fairly homogeneous population of cells expressing high levels of GluR-A and GluR-D mRNAs, moderate levels of GluR-C and low levels of GluR-B mRNAs in all the examined regions of hippocampus. The vast majority of CR-containing cells have a much lower expression of GluR-A, -C and -D mRNA than PV-positive neurons, although similarly featuring low levels of GluR-B mRNA. Only a subpopulation of CR-containing cells, the spiny neurons of the dentate gyrus and CA3 region of the hippocampus were characterized by a strong expression of GluR-A and -D subunit mRNAs. The differential pattern found for the AMPAR subunit mRNA expression was confirmed by immunocytochemistry at protein level. Despite the common feature of low GluR-B subunit expression, PV- and CR-containing interneurons differ with respect to the density and combination of their expressed AMPAR subunits. The different combination of subunits might subserve different properties of the AMPA channels featured by these cell types, with implications for the functioning of the hippocampal network.

  3. Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation

    PubMed Central

    Jeyifous, Okunola; Lin, Eric I.; Chen, Xiaobing; Antinone, Sarah E.; Mastro, Ryan; Drisdel, Renaldo; Reese, Thomas S.; Green, William N.

    2016-01-01

    Postsynaptic density protein 95 (PSD95) and synapse-associated protein 97 (SAP97) are homologous scaffold proteins with different N-terminal domains, possessing either a palmitoylation site (PSD95) or an L27 domain (SAP97). Here, we measured PSD95 and SAP97 conformation in vitro and in postsynaptic densities (PSDs) using FRET and EM, and examined how conformation regulated interactions with AMPA-type and NMDA-type glutamate receptors (AMPARs/NMDARs). Palmitoylation of PSD95 changed its conformation from a compact to an extended configuration. PSD95 associated with AMPARs (via transmembrane AMPAR regulatory protein subunits) or NMDARs [via glutamate ionotropic receptor NMDA-type subunit 2B (GluN2B) subunits] only in its palmitoylated and extended conformation. In contrast, in its extended conformation, SAP97 associates with NMDARs, but not with AMPARs. Within PSDs, PSD95 and SAP97 were largely in the extended conformation, but had different orientations. PSD95 oriented perpendicular to the PSD membrane, with its palmitoylated, N-terminal domain at the membrane. SAP97 oriented parallel to the PSD membrane, likely as a dimer through interactions of its N-terminal L27 domain. Changing PSD95 palmitoylation in PSDs altered PSD95 and AMPAR levels but did not affect NMDAR levels. These results indicate that in PSDs, PSD95 palmitoylation, conformation, and its interactions are dynamic when associated with AMPARs and more stable when associated with NMDARs. Altogether, our results are consistent with differential regulation of PSD95 palmitoylation in PSDs resulting from the clustering of palmitoylating and depalmitoylating enzymes into AMPAR nanodomains segregated away from NMDAR nanodomains. PMID:27956638

  4. Calcyon is necessary for activity-dependent AMPA receptor internalization and LTD in CA1 neurons of hippocampus.

    PubMed

    Davidson, Heather Trantham; Xiao, Jiping; Dai, Rujuan; Bergson, Clare

    2009-01-01

    Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin-mediated endocytosis in the brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist-stimulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), without altering basal surface levels of the GluR1 or GluR2 subunits. Whole-cell patch-clamp studies of hippocampal neurons in culture and CA1 synapses in slices revealed that knockout (KO) of calcyon abolishes long-term synaptic depression (LTD), whereas mini-analysis in slices indicated basal transmission in the hippocampus is unaffected by the deletion. Further, transfection of green fluorescent protein-tagged calcyon rescued the ability of KO cultures to undergo LTD. In contrast, intracellular dialysis of a fusion protein containing the clathrin light-chain-binding domain of calcyon blocked the induction of LTD in wild-type hippocampal slices. Taken together, the present studies involving biochemical, immunological and electrophysiological analyses raise the possibility that calcyon plays a specialized role in regulating activity-dependent removal of synaptic AMPARs.

  5. AMPA receptors in post-mortem brains of Cloninger type 1 and 2 alcoholics: a whole-hemisphere autoradiography study.

    PubMed

    Kärkkäinen, Olli; Kupila, Jukka; Häkkinen, Merja; Laukkanen, Virpi; Tupala, Erkki; Kautiainen, Hannu; Tiihonen, Jari; Storvik, Markus

    2013-12-30

    Dysfunction of the brain glutamate system has been associated with alcoholism. Ionotropic glutamatergic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) play an important role in both neurotransmission and post-synaptic plasticity. Alterations in AMPAR densities may also play a role in the neurobiological changes associated with alcoholism. In the present study, [(3)H] AMPA binding density was evaluated in the nucleus accumbens (NAc), frontal cortex, anterior cingulate cortex (ACC), dentate gyrus and hippocampus of Cloninger type 1 (n=9) and 2 (n=8) alcoholics, and compared with non-alcoholic control subjects (n=10) by post-mortem whole-hemisphere autoradiography. The [(3)H] AMPA binding density was significantly higher in the ACC of early onset type 2 alcoholics when compared with controls (p=0.011). There was also a significant negative correlation between [(3)H] AMPA binding and previously published results of dopamine transporter (DAT) density in the ACC in these same brain samples (R=-0.95, p=0.001). Although preliminary, and from a relatively small diagnostic group, the present results help to further explain the pathology of alcohol dependence and impulsive behaviour in type 2 alcoholics.

  6. Tannic acid, a potent inhibitor of epidermal growth factor receptor tyrosine kinase.

    PubMed

    Yang, Er Bin; Wei, Liu; Zhang, Kai; Chen, Yu Zong; Chen, Wei Ning

    2006-03-01

    Increasing evidence supports the hypothesis that tannic acid, a plant polyphenol, exerts anticarcinogenic activity in chemically induced cancers. In the present study, tannic acid was found to strongly inhibit tyrosine kinase activity of epidermal growth factor receptor (EGFr) in vitro (IC50 = 323 nM). In contrast, the inhibition by tannic acid of p60(c-src) tyrosine kinase (IC50 = 14 microM) and insulin receptor tyrosine kinase (IC50 = 5 microM) was much weaker. The inhibition of EGFr tyrosine kinase by tannic acid was competitive with respect to ATP and non-competitive with respect to peptide substrate. In cultured cells, growth factor-induced tyrosine phosphorylation of growth factor receptors, including EGFr, platelet-derived growth factor receptor, and basic fibroblast growth factor receptor, was inhibited by tannic acid. No inhibition of insulin-induced tyrosine phosphorylation of insulin receptor and insulin-receptor substrate-1 was observed. EGF-stimulated growth of HepG2 cells was inhibited in the presence of tannic acid. The inhibition of serine/threonine-specific protein kinases, including cAMP-dependent protein kinase, protein kinase C and mitogen-activated protein kinase, by tannic acid was only detected at relatively high concentration, IC50 being 3, 325 and 142 microM respectively. The molecular modeling study suggested that tannic acid could be docked into the ATP binding pockets of either EGFr or insulin receptor. These results demonstrate that tannic acid is an in vitro potent inhibitor of EGFr tyrosine kinase.

  7. Effects of beer and hop on ionotropic gamma-aminobutyric acid receptors.

    PubMed

    Aoshima, Hitoshi; Takeda, Katsuichi; Okita, Yoichi; Hossain, Sheikh Julfikar; Koda, Hirofumi; Kiso, Yoshinobu

    2006-04-05

    Beer induced the response of the ionotropic gamma-aminobutyric acid receptors (GABA(A) receptors) expressed in Xenopus oocytes, indicating the presence of gamma-aminobutyric acid (GABA)-like activity. Furthermore, the pentane extract of the beer, hop (Humulus lupulus L.) oil, and myrcenol potentiated the GABA(A) receptor response elicited by GABA. The GABA(A) receptor responses were also potentiated by the addition of aliphatic esters, most of which are reported to be present in beer flavor. Aliphatic esters showed the tendency to decrease in the potentiation of the GABA(A) receptor response with an increase in their carbon chain length. When myrcenol was injected to mice prior to intraperitoneal administration of pentobarbital, the pentobarbital-induced sleeping time of mice increased additionally. Therefore, the beer contained not only GABA-like activity but also the modulator(s) of the GABA(A) receptor response.

  8. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Toulme, Estelle; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2014-07-16

    P2X receptors (P2XRs) are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons or glia. Although purinergic signaling has multiple effects on synaptic transmission and plasticity, P2XR function at brain synapses remains to be established. Here, we show that activation of postsynaptic P2XRs by exogenous ATP or noradrenaline-dependent glial release of endogenous ATP decreases the amplitude of miniature excitatory postsynaptic currents and AMPA-evoked currents in cultured hippocampal neurons. We also observed a P2X-mediated depression of field potentials recorded in CA1 region from brain slices. P2X2Rs trigger dynamin-dependent internalization of AMPA receptors (AMPARs), leading to reduced surface AMPARs in dendrites and at synapses. AMPAR alteration required calcium influx through opened ATP-gated channels and phosphatase or CamKII activities. These findings indicate that postsynaptic P2XRs play a critical role in regulating the surface expression of AMPARs and thereby regulate the synaptic strength.

  9. OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor.

    PubMed Central

    Teboul, M; Enmark, E; Li, Q; Wikström, A C; Pelto-Huikko, M; Gustafsson, J A

    1995-01-01

    We have cloned a member of the nuclear receptor superfamily. The cDNA was isolated from a rat liver library and encodes a protein of 446 aa with a predicted mass of 50 kDa. This clone (OR-1) shows no striking homology to any known member of the steroid/thyroid hormone receptor superfamily. The most related receptor is the ecdysone receptor and the highest homologies represent < 10% in the amino-terminal domain, between 15-37% in the carboxyl-terminal domain and 50-62% in the DNA binding domain. The expression of OR-1 appears to be widespread in both fetal and adult rat tissues. Potential DNA response elements composed of a direct repeat of the hexameric motif AGGTCA spaced by 0-6 nt were tested in gel shift experiments. OR-1 was shown to interact with the 9-cis-retinoic acid receptor (retinoid X receptor, RXR) and the OR-1/RXR complex to bind to a direct repeat spaced by 4 nt (DR4). In transfection experiments, OR-1 appears to activate RXR-mediated function through the DR4. Therefore OR-1 might modulate 9-cis-retinoic acid signaling by interacting with RXR. Images Fig. 3 Fig. 4 PMID:7892230

  10. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor.

    PubMed

    Carazo, Alejandro; Hyrsova, Lucie; Dusek, Jan; Chodounska, Hana; Horvatova, Alzbeta; Berka, Karel; Bazgier, Vaclav; Gan-Schreier, Hongying; Chamulitrat, Waleé; Kudova, Eva; Pavek, Petr

    2017-01-04

    The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.

  11. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

    PubMed Central

    Förstera, Benjamin; Castro, Patricio A.; Moraga-Cid, Gustavo; Aguayo, Luis G.

    2016-01-01

    In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools. PMID:27199667

  12. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors.

    PubMed

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in "Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish" (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  13. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  14. NMDA Receptors of Gastric-Projecting Neurons in the Dorsal Motor Nucleus of the Vagus Mediate the Regulation of Gastric Emptying by EA at Weishu (BL21).

    PubMed

    Zhang, Xin; Cheng, Bin; Jing, Xianghong; Qiao, Yongfa; Gao, Xinyan; Yu, Huijuan; Zhu, Bing; Qiao, Haifa

    2012-01-01

    A large number of studies have been conducted to explore the efficacy of electroacupuncture (EA) for the treatment of gastrointestinal motility. While several lines of evidence addressed the basic mechanism of EA on gastrointestinal motility regarding effects of limb and abdomen points, the mechanism for effects of the back points on gastric motility still remains unclear. Here we report that the NMDA receptor (NMDAR) antagonist kynurenic acid inhibited the gastric emptying increase induced by high-intensity EA at BL21 and agonist NMDA enhanced the effect of the same treatment. EA at BL21 enhanced NMDAR, but not AMPA receptor (AMPAR) component of miniature excitatory postsynaptic current (mEPSC) in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). In sum, our data demonstrate an important role of NMDAR-mediated synaptic transmission of gastric-projecting DMV neurons in mediating EA at BL21-induced enhancement of gastric emptying.

  15. Unnatural agrochemical ligands for engineered abscisic acid receptors.

    PubMed

    Rodriguez, Pedro L; Lozano-Juste, Jorge

    2015-06-01

    Existing agrochemicals can be endowed with new applications through protein engineering of plant receptors. A recent study shows an engineered PYR1 ABA receptor can be activated by mandipropamid. Plants engineered with such PYR1 variant are responsive to this agrochemical, which confers protection against drought through activation of ABA signaling.

  16. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid.

  17. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  18. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.

    PubMed

    Henley, Jeremy M; Wilkinson, Kevin A

    2013-03-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease.

  19. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors.

    PubMed

    Bhattacharyya, Samarjit; Biou, Virginie; Xu, Weifeng; Schlüter, Oliver; Malenka, Robert C

    2009-02-01

    The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity, including NMDA receptor (NMDAR)-dependent long-term depression (LTD), but the molecular mechanisms responsible for this trafficking remain unknown. We found that PSD-95, a major postsynaptic density protein, is important for NMDAR-triggered endocytosis of synaptic AMPARs in rat neuron cultures because of its binding to A kinase-anchoring protein 150 (AKAP150), a scaffold for specific protein kinases and phosphatases. Knockdown of PSD-95 with shRNA blocked NMDAR-triggered, but not constitutive or mGluR-triggered, endocytosis of AMPARs. Deletion of PSD-95's Src homology 3 and guanylate kinase-like domains, as well as a point mutation (L460P), both of which inhibit binding of PSD-95 to AKAP150, also blocked NMDAR-triggered AMPAR endocytosis. Furthermore, expression of a mutant AKAP150 that does not bind calcineurin inhibited this NMDAR-triggered trafficking event. Our results suggest that PSD-95's interaction with AKAP150 is critical for NMDAR-triggered AMPAR endocytosis and LTD, possibly because these scaffolds position calcineurin in the appropriate subsynaptic domain.

  20. Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits.

    PubMed

    Ariano, M A; Larson, E R; Noblett, K L; Sibley, D R; Levine, M S

    1997-08-01

    The striatal cellular coexpression patterns for the D(1A) and D2 dopamine (DA) receptor subtypes and the ionotropic excitatory amino acid (EAA) subunits of the N-methyl-D-aspartate (NMDA-R1) and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) (GluR1 and GluR2/3) receptor subunits were examined morphologically. Their coincidence was assessed by visualization of mRNA transcripts, localization of encoded receptor proteins, and binding analysis using concurrently paired methods of fluorescence detection. The findings indicated that 1) mRNA transcripts for both receptor systems were detected in the medium-sized neuron population, and the distribution of receptor message closely reflected protein and binding patterns, with the exception of the GluR1 subunit; 2) both DA receptor mRNA transcripts were coexpressed with each ionotropic EAA receptor subunit examined and with each other, and NMDA and AMPA receptor subunits also showed coincident expression; 3) D(1A) DA receptor protein was detected in neurons which coexpressed EAA subunit proteins; and 4) GluR2/3 and NMDA-R1 subunit proteins were coexpressed in medium-sized neurons which also demonstrated D2 DA receptor binding sites. These findings suggest morphological receptor "promiscuity" since the coexpression patterns between DA and EAA receptors were found in all permutations. The results provide a spatial framework for physiological findings describing functional interactions between the two DA receptor types and between specific DA and EAA receptors in the striatum.

  1. Amino Acid- vs. Peptide-Odorants: Responses of Individual Olfactory Receptor Neurons in an Aquatic Species

    PubMed Central

    Hassenklöver, Thomas; Pallesen, Lars P.; Schild, Detlev; Manzini, Ivan

    2012-01-01

    Amino acids are widely used waterborne olfactory stimuli proposed to serve as cues in the search for food. In natural waters the main source of amino acids is the decomposition of proteins. But this process also produces a variety of small peptides as intermediate cleavage products. In the present study we tested whether amino acids actually are the natural and adequate stimuli for the olfactory receptors they bind to. Alternatively, these olfactory receptors could be peptide receptors which also bind amino acids though at lower affinity. Employing calcium imaging in acute slices of the main olfactory epithelium of the fully aquatic larvae of Xenopus laevis we show that amino acids, and not peptides, are more effective waterborne odorants. PMID:23300867

  2. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  3. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  4. Changes in Synaptic Plasticity and Glutamate Receptors in Type 2 Diabetic KK-Ay Mice.

    PubMed

    Yin, Huajing; Wang, Weiping; Yu, Wenwen; Li, Jiang; Feng, Nan; Wang, Ling; Wang, Xiaoliang

    2017-03-18

    In the present study, the progressive alteration of cognition and the mechanisms of reduction in long-term potentiation (LTP) in spontaneous obese KK-Ay type 2 diabetic mice were investigated. In the study, 3-, 5-, and 7-month-old KK-Ay mice were used. The results indicated that KK-Ay mice showed cognitive deficits in the Morris water maze test beginning at the age of 3 months. LTP was significantly impaired in KK-Ay mice during whole study period (3 to 7 months). The above deficits were reversible at an early stage (3 to 5 months old) by diet intervention. Moreover, we found the underlying mechanisms of LTP impairment in KK-Ay mice might be attributed to abnormal phosphorylation or expression of postsynaptic glutamate receptor subunits instead of alteration of basal synaptic transmission. The expression levels of NR1, NR2A, and NR2B subunits of N-methyl-d-aspartate receptors were unchanged while the Tyr-dependent phosphorylation of both NR2A and NR2B subunits were significantly reduced in KK-Ay mice. The level of p-Src expression mediating this process was decreased, and the level of αCaMKII autophosphorylation was also reduced. Meanwhile, the GluR1 of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) was decreased, and GluR2 was significantly increased. These data suggest that deficits in synaptic plasticity in KK-Ay mice may arise from the abnormal phosphorylation of the NR2 subunits and the alteration of subunit composition of AMPARs. Diet intervention at an early stage of diabetes might alleviate the cognitive deficits and LTP reduction in KK-Ay mice.

  5. G-protein-coupled receptors for free fatty acids: nutritional and therapeutic targets.

    PubMed

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah; Hudson, Brian D

    2014-06-01

    It is becoming evident that nutrients and metabolic intermediates derived from such nutrients regulate cellular function by activating a number of cell-surface G-protein coupled receptors (GPCRs). Until now, members of the GPCR family have largely been considered as the molecular targets that communicate cellular signals initiated by hormones and neurotransmitters. Recently, based on tissue expression patterns of these receptors and the concept that they may elicit the production of a range of appetite- and hunger-regulating peptides, such nutrient sensing GPCRs are attracting considerable attention due to their potential to modulate satiety, improve glucose homeostasis and supress the production of various pro-inflammatory mediators. Despite the developing interests in these nutrients sensing GPCR both as sensors of nutritional status, and targets for limiting the development of metabolic diseases, major challenges remain to exploit their potential for therapeutic purposes. Mostly, this is due to limited characterisation and validation of these receptors because of paucity of selective and high-potency/affinity pharmacological agents to define the detailed function and regulation of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid have been of particular interest, and some aspects of these are considered herein.

  6. Basal Levels of AMPA Receptor GluA1 Subunit Phosphorylation at Threonine 840 and Serine 845 in Hippocampal Neurons

    ERIC Educational Resources Information Center

    Babiec, Walter E.; Guglietta, Ryan; O'Dell, Thomas J.

    2016-01-01

    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are…

  7. Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist.

    PubMed

    Heise, C E; Santos, W L; Schreihofer, A M; Heasley, B H; Mukhin, Y V; Macdonald, T L; Lynch, K R

    2001-12-01

    The physiological implications of lysophosphatidic acid occupancy of individual receptors are largely unknown because selective agonists/antagonists are unavailable currently. The molecular cloning of three high-affinity lysophosphatidic acid receptors, LPA1, LPA2, and LPA3, provides a platform for developing receptor type-selective ligands. Starting with an N-acyl ethanolamide phosphate LPA analog, we made a series of substitutions at the second carbon to generate compounds with varying spatial, stereochemical, and electronic characteristics. Analysis of this series at each recombinant LPA receptor using a guanosine 5'-O-(3-[35S]thio)triphosphate (GTP[gamma35S]) binding assay revealed sharp differences in activity. Our results suggest that these receptors have one spatially restrictive binding pocket that interacts with the 2-substituted moieties and prefers small hydrophobic groups and hydrogen bonding functionalities. The agonist activity predicted by the GTP[gamma35S] binding assay was reflected in the activity of a subset of compounds in increasing arterial pressure in anesthetized rats. One compound with a bulky hydrophobic group (VPC12249) was a dual LPA1/LPA3 competitive antagonist. Several compounds that had smaller side chains were found to be LPA1-selective agonists.

  8. Betulin binds to gamma-aminobutyric acid receptors and exerts anticonvulsant action in mice.

    PubMed

    Muceniece, Ruta; Saleniece, Kristine; Rumaks, Juris; Krigere, Liga; Dzirkale, Zane; Mezhapuke, Rudolfs; Zharkova, Olga; Klusa, Vija

    2008-10-01

    The lupane type pentacyclic triterpenes: lupeol, betulin, and betulinic acid are widely distributed natural compounds. Recently, pharmaceutical compositions from plant extracts (family Marcgraviaceae) containing betulinic acid, have been patented as anxiolytic remedies. To extend our knowledge of the CNS effects of the triterpenes, we suggest here that the chemically related lupeol, betulin and betulinic acid may interact with the brain neurotransmitter gamma-aminobutyric acid (GABA) receptors in vitro and in vivo. Using radioligand receptor-binding assay, we showed that only betulin bound to the GABA(A)-receptor sites in mice brain in vitro and antagonised the GABA(A)-receptor antagonist bicuculline-induced seizures in mice after intracisternal and intraperitoneal administration. Neither betulinic acid nor lupeol bound to GABA(A) receptor nor did they inhibit bicuculline-induced seizures in vivo. These findings demonstrate for the first time the CNS effects of betulin in vivo, and they also show distinct GABA(A)-receptor-related properties of lupane type triterpenes. These findings may open new avenues in understanding the central effects of betulin, and they also indicate possibilities for novel drug design on the basis of betulin structure.

  9. Emerging structural insights into the function of ionotropic glutamate receptors

    PubMed Central

    Karakas, Erkan; Regan, Michael C.; Furukawa, Hiro

    2015-01-01

    Summary Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function including learning and memory formation. Recently a wealth of structural studies on iGluRs, including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available.. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, which illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. Here we review mechanistic insights into iGluR functions gained through structural studies of multiple groups. PMID:25941168

  10. γ-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors.

    PubMed

    Connelly, William M; Errington, Adam C; Crunelli, Vincenzo

    2013-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.

  11. Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

    PubMed Central

    Joo, Kayoung; Rhie, Duck-Joo

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, γ-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network. PMID:26557019

  12. AMPA receptor subunits expression and phosphorylation in cingulate cortex in rats following esophageal acid exposure

    PubMed Central

    BANERJEE, B.; MEDDA, B. K.; POCHIRAJU, S.; KANNAMPALLI, P.; LANG, I. M.; SENGUPTA, J. N.; SHAKER, R.

    2014-01-01

    Background We recently reported an increase in N-methyl-d-aspartate (NMDA) receptor subunit expression and CaMKII-dependent phosphorylation of NR2B in the rostral cingulate cortical (rCC) neurons following esophageal acid exposure in rats. As α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate the fast excitatory transmission and play a critical role in synaptic plasticity, in this study, we investigated the effect of esophageal acid exposure in rats on the expression of AMPA receptor subunits and the involvement of these molecular alterations in acid-induced sensitization of neurons in the anterior cingulate (ACC) and midcingulate (MCC) cortices. Methods In molecular study, we examined GluA1 and GluA2 expression and phosphorylation in membrane preparations and in the isolated postsynaptic densities (PSDs) from rats receiving acute esophageal exposure of either saline (control group) or 0.1 NHCl (experimental group). In electrophysiological study, the effect of selective AMPA receptor (Ca2+ permeable) antagonist IEM-1460 and CaMKII inhibitor KN-93 was tested on responses of cortical neurons during acid infusion to address the underlying molecular mechanism of acid-induced sensitization. Key Results The acid exposure significantly increased expression of GluA1, pGluA1Ser831, and phosphorylated CaMKIIThr286, in the cortical membrane preparations. In isolated PSDs, a significant increase in pGluA1Ser831 was observed in acid-treated rats compared with controls. Microinjection of IEM-1460 or KN-93 near the recording site significantly attenuated acid-induced sensitization of cortical neurons. Conclusions & Inferences The underlying mechanism of acid-induced cortical sensitization involves upregulation and CaMKII-mediated phosphorylation of GluA1. These molecular changes of AMPA receptors subunit GluA1 in the cortical neurons might play an important role in acid-induced esophageal hypersensitivity. PMID:24118589

  13. Concomitant Action of Structural Elements and Receptor Phosphorylation Determines Arrestin-3 Interaction with the Free Fatty Acid Receptor FFA4*

    PubMed Central

    Butcher, Adrian J.; Hudson, Brian D.; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B.

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. PMID:24817122

  14. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  15. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  16. Ethanol Acutely Inhibits Ionotropic Glutamate Receptor-mediated Responses and Long-Term Potentiation in the Developing CA1 Hippocampus

    PubMed Central

    Puglia, Michael P.; Valenzuela, C. Fernando

    2011-01-01

    Background Developmental ethanol (EtOH) exposure damages the hippocampus, causing long-lasting alterations in learning and memory. Alterations in glutamatergic synaptic transmission and plasticity may play a role in the mechanism of action of EtOH. This signaling is fundamental for synaptogenesis, which occurs during the third-trimester of human pregnancy (first 12 days of life in rats). Methods Acute coronal brain slices were prepared from 7–9 day-old rats. Extracellular and patch-clamp electrophysiological recording techniques were used to characterize the acute effects of EtOH on α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)- and N-methyl-D-aspartate receptor (NMDAR)-mediated responses and long-term potentiation (LTP) in the CA1 hippocampal region. Results EtOH (40 and 80 mM) inhibited AMPAR- and NMDAR-mediated field excitatory postsynaptic potentials (fEPSPs). EtOH (80 mM) also reduced AMPAR-mediated fEPSPs in presence of an inhibitor of Ca2+ permeable AMPARs. The effect of 80 mM EtOH on NMDAR-mediated fEPSPs was significantly greater in presence of Mg2+. EtOH (80 mM) neither affected the paired-pulse ratio of AMPAR-mediated fEPSPs nor the presynaptic volley. The paired-pulse ratio of AMPAR-mediated excitatory postsynaptic currents was not affected either, and the amplitude of these currents was inhibited to a lesser extent than that of fEPSPs. EtOH (80 mM) inhibited LTP of AMPAR-mediated fEPSPs. Conclusions Acute EtOH exposure during the third-trimester equivalent of human pregnancy inhibits hippocampal glutamatergic transmission and LTP induction, which could alter synapse refinement and ultimately contribute to the pathophysiology of fetal alcohol spectrum disorder. PMID:20102565

  17. The effects of avermectin on amino acid neurotransmitters and their receptors in the pigeon brain.

    PubMed

    Chen, Li-Jie; Sun, Bao-Hong; Cao, Ye; Yao, Hai-Dong; Qu, Jian-Ping; Liu, Ci; Xu, Shi-Wen; Li, Shu

    2014-03-01

    The objective of this study was to examine the effects of avermectin (AVM) on amino acid neurotransmitters and their receptors in the pigeon brain. Four groups two-month-old American king pigeons (n=20/group) were fed either a commercial diet or an AVM-supplemented diet (20mg/kg·diet, 40 mg/kg·diet, or 60 mg/kg·diet) for 30, 60, or 90 days. The contents of aspartic acid (ASP), glutamate (GLU), glycine (GLY), and γ-aminobutyric acid (GABA) in the brain tissues were determined using ultraviolet high-performance liquid chromatography (HPLC). The expression levels of the GLU and GABA receptor genes were analyzed using real-time quantitative polymerase chain reaction (qPCR). The results indicate that AVM exposure significantly enhances the contents of GABA, GLY, GLU, and ASP in the cerebrum, cerebellum, and optic lobe. In addition, AVM exposure increases the mRNA expression levels of γ-aminobutyric acid type A receptor (GABAAR), γ-aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A), and N-methyl-d-aspartate 2B receptor (NR2B) in a dose- and time-dependent manner. Moreover, we found that the most damaged organ was the cerebrum, followed by the cerebellum, and then the optic lobe. These results show that the AVM-induced neurotoxicity may be associated with its effects on amino acid neurotransmitters and their receptors. The information presented in this study will help supplement the available data for future AVM toxicity studies.

  18. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization.

    PubMed

    Villegas-Comonfort, S; Takei, Y; Tsujimoto, G; Hirasawa, A; García-Sáinz, J A

    2017-02-01

    Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.

  19. Classification of inhibitory amino acid receptors in the mammalian nervous system.

    PubMed

    Simmonds, M A

    1986-01-01

    Electrophysiological and pharmacological evidence is summarized for the existence of an inhibitory receptor system operated by glycine and another two separate systems operated by gamma-aminobutyric acid (GABA) through GABA-A and GABA-B receptors, respectively. Claims for subclasses of GABA-A receptor are critically reviewed and found not-proven. A quantitative pharmacological profile of the GABA-A receptor and associated regulatory sites for picrotoxin, barbiturates and benzodiazepines on the dorsal funiculus of the rat cuneate nucleus is described. When compared with this profile and the pharmacological properties of the glycine receptor complex, the effects of taurine cannot be entirely explained by actions on these two receptor systems.

  20. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    PubMed Central

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun; Chowdhury, Partha S.; Sims, Gary P.; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo. PMID:24081950

  1. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    PubMed

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid.

  2. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M sub 2 receptors

    SciTech Connect

    Pfeiffer, A.; Rochlitz, H.; Herz, A.; Paumgartner, G. )

    1988-04-01

    The muscarinic receptor system involved in hydrogen production by enriched rat gastric parietal cells was investigated. Muscarinic receptor density determined by (N-methyl-{sup 3}H)scopolamine binding was 8,100/cell. The receptor appeared to be of the M{sub 2} muscarinic receptor subtype, since it had a low affinity (K{sub d} 189 nM) for the M{sub 1} receptor antagonist pirenzepine compared with atropine. Receptor activation by carbachol rapidly augmented levels of polyphosphoinositides, indicating an activation of phospholipase C. The dose-response relations for the increase in inositol phosphates closely paralleled the binding of carbachol to muscarinic receptors. The inositol phosphate response was antagonized by pirenzepine with a K{sub i} of 177 nM. the stimulation of inositol phosphate levels by carbachol correlated well with the stimulation of ({sup 14}C)aminopyrine uptake, determine as an index of acid secretion. The muscarinic agonists oxotremorine, pilocarpine, and bethanechol elicited partial increases in inositol phosphates at maximal drug concentrations, and these partial increases correlated with their ability to stimulate ({sup 14}C)aminopyrine uptake. These data indicate that inositolpolyphosphates may be a second messenger of M{sub 2} receptors stimulating acid secretion.

  3. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications

    PubMed Central

    Vangaveti, Venkat; Shashidhar, Venkatesh; Jarrod, Ghassan; Baune, Bernhard T.; Kennedy, R. Lee

    2010-01-01

    Fatty acids (FAs) are important as metabolic substrates and as structural components of biological membranes. However, they also function as signalling molecules. Recently, a series of G protein-coupled receptors (GPRs) for FAs has been described and characterized. These receptors have differing specificities for FAs of differing chain length and degree of saturation, for FA derivatives such as oleoylethanolamide, and for oxidized FAs. They are a critical component of the body's nutrient sensing apparatus, and small molecule agonists and antagonists of these receptors show considerable promise in the management of diabetes and its complications. Agonists of the long-chain free fatty acid receptors FFAR1 and GPR119 act as insulin secretagogues, both directly and by increasing incretins. Although, drugs acting at short-chain FFA receptors (FFAR2 and FFAR3) have not yet been developed, they are attractive targets as they regulate nutrient balance through effects in the intestine and adipose tissue. These include regulation of the secretion of cholecystokinin, peptide YY and leptin. Finally, GPR132 is a receptor for oxidized FAs, which may be a sensor of lipid overload and oxidative stress, and which is involved in atherosclerosis. Regulation of its signalling pathways with drugs may decrease the macrovascular risk experienced by diabetic patients. In summary, FA receptors are emerging drug targets that are involved in the regulation of nutrient status and carbohydrate tolerance, and modulators of these receptors may well figure prominently in the next generation of antidiabetic drugs. PMID:23148161

  4. Topoisomerase IIβ Negatively Modulates Retinoic Acid Receptor α Function: a Novel Mechanism of Retinoic Acid Resistance▿

    PubMed Central

    McNamara, Suzan; Wang, Hongling; Hanna, Nessrine; Miller, Wilson H.

    2008-01-01

    Interactions between retinoic acid (RA) receptor α (RARα) and coregulators play a key role in coordinating gene transcription and myeloid differentiation. In patients with acute promyelocytic leukemia (APL), the RARα gene is fused with the promyelocytic leukemia (PML) gene via the t(15;17) translocation, resulting in the expression of a PML/RARα fusion protein. Here, we report that topoisomerase II beta (TopoIIβ) associates with and negatively modulates RARα transcriptional activity and that increased levels of and association with TopoIIβ cause resistance to RA in APL cell lines. Knockdown of TopoIIβ was able to overcome resistance by permitting RA-induced differentiation and increased RA gene expression. Overexpression of TopoIIβ in clones from an RA-sensitive cell line conferred resistance by a reduction in RA-induced expression of target genes and differentiation. Chromatin immunoprecipitation assays indicated that TopoIIβ is bound to an RA response element and that inhibition of TopoIIβ causes hyperacetylation of histone 3 at lysine 9 and activation of transcription. Our results identify a novel mechanism of resistance in APL and provide further insight to the role of TopoIIβ in gene regulation and differentiation. PMID:18212063

  5. Modulation of Retinoic Acid Receptor-related Orphan Receptor α and γ Activity by 7-Oxygenated Sterol Ligands*

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Solt, Laura A.; Richardson, Timothy I.; Helvering, Leah M.; Crumbley, Christine; Garcia-Ordonez, Ruben D.; Stayrook, Keith R.; Zhang, Xi; Novick, Scott; Chalmers, Michael J.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα (NR1F1) and RORγ (NR1F3)) are orphan nuclear receptors and perform critical roles in regulation of development, metabolism, and immune function. Cholesterol and cholesterol sulfate have been suggested to be RORα ligands, but the physiological significance is unclear. To date, no endogenous RORγ ligands have been described. Here, we demonstrate that 7-oxygenated sterols function as high affinity ligands for both RORα and RORγ by directly binding to their ligand-binding domains (Ki ∼20 nm), modulating coactivator binding, and suppressing the transcriptional activity of the receptors. One of the 7-oxygenated sterols, 7α-hydroxycholesterol (7α-OHC), serves as a key intermediate in bile acid metabolism, and we show that 7α-OHC modulates the expression of ROR target genes, including Glc-6-Pase and phosphoenolpyruvate carboxykinase, in an ROR-dependent manner. Furthermore, glucose output from hepatocytes is suppressed by 7α-OHC functioning as an RORα/γ ligand. Thus, RORα and RORγ are ligand-regulated members of the NR superfamily and may serve as sensors for 7-oxygenated sterols. PMID:19965867

  6. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses.

  7. Identification of the Orphan G Protein-coupled Receptor GPR31 as a Receptor for 12-(S)-Hydroxyeicosatetraenoic Acid*

    PubMed Central

    Guo, Yande; Zhang, Wenliang; Giroux, Craig; Cai, Yinlong; Ekambaram, Prasanna; Dilly, Ashok-kumar; Hsu, Andrew; Zhou, Senlin; Maddipati, Krishna Rao; Liu, Jingjing; Joshi, Sangeeta; Tucker, Stephanie C.; Lee, Menq-Jer; Honn, Kenneth V.

    2011-01-01

    Hydroxy fatty acids are critical lipid mediators involved in various pathophysiologic functions. We cloned and identified GPR31, a plasma membrane orphan G protein-coupled receptor that displays high affinity for the human 12-lipoxygenase-derived product 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Thus, GPR31 is named 12-(S)-HETE receptor (12-HETER) in this study. The cloned 12-HETER demonstrated high affinity binding for 12-(S)-[3H]HETE (Kd = 4.8 ± 0.12 nm). Also, 12-(S)-HETE efficiently and selectively stimulated GTPγS coupling in the membranes of 12-HETER-transfected cells (EC50 = 0.28 ± 1.26 nm). Activating GTPγS coupling with 12-(S)-HETE proved to be both regio- and stereospecific. Also, 12-(S)-HETE/12-HETER interactions lead to activation of ERK1/2, MEK, and NFκB. Moreover, knocking down 12-HRTER specifically inhibited 12-(S)-HETE-stimulated cell invasion. Thus, 12-HETER represents the first identified high affinity receptor for the 12-(S)-HETE hydroxyl fatty acids. PMID:21712392

  8. Erbin interacts with TARP γ-2 for surface expression of AMPA receptors in cortical interneurons.

    PubMed

    Tao, Yanmei; Chen, Yong-Jun; Shen, Chengyong; Luo, Zhengyi; Bates, C Ryan; Lee, Daehoon; Marchetto, Sylvie; Gao, Tian-Ming; Borg, Jean-Paul; Xiong, Wen-Cheng; Mei, Lin

    2013-03-01

    Inhibitory neurons control the firing of glutamatergic neurons and synchronize brain activity. However, little is known about mechanisms of excitatory synapse formation in inhibitory neurons. Here we demonstrate that Erbin is specifically expressed in cortical inhibitory neurons. It localizes at excitatory synapses and regulates AMPA receptor (AMPAR) surface expression. Erbin mutation reduced mEPSCs and AMPAR currents specifically in parvalbumin (PV)-positive interneurons but not in pyramidal neurons. We found that the AMPAR auxiliary protein TARP γ-2 was specifically expressed in cortical interneurons. Erbin interacts with TARP γ-2 and is crucial for its stability. Deletion of the γ-2-interacting domain in Erbin attenuated surface AMPAR and excitatory transmission in PV-positive interneurons. Furthermore, we observed behavioral deficits in Erbin-null mice and in mice expressing an Erbin truncation mutant that is unable to interact with TARP γ-2. These observations demonstrate a crucial function for Erbin in AMPAR surface expression in cortical PV-positive interneurons and may contribute to a better understanding of psychiatric disorders.

  9. Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit.

    PubMed

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-03-02

    gamma-Aminobutyric acid A (GABA(A)) receptors are heteromeric membrane proteins formed mainly by various combinations of alpha, beta, and gamma subunits; and it is commonly thought that the gamma 2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the gamma 2L subunit of the human GABA(A) receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a "run-up" of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl(-) ions. The homomeric gamma 2L receptors were also activated by beta-alanine > taurine > glycine, and, like some types of heteromeric GABA(A) receptors, the gamma 2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human gamma 2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABA(A) receptors in situ require further clarification.

  10. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  11. Optical control of trimeric P2X receptors and acid-sensing ion channels.

    PubMed

    Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan

    2014-01-07

    P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.

  12. Docking simulations suggest that all- trans retinoic acid could bind to retinoid X receptors

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2015-10-01

    Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9- cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All- trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.

  13. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats.

    PubMed

    Damgaard, Trine; Larsen, Dorrit Bjerg; Hansen, Suzanne L; Grayson, Ben; Neill, Jo C; Plath, Niels

    2010-02-11

    Cognitive deficits are a major clinical unmet need in schizophrenia. The psychotomimetic drug phencyclidine (PCP) is widely applied in rodents to mimic symptoms of schizophrenia, including cognitive deficits. Previous studies have shown that sub-chronic PCP induces an enduring episodic memory deficit in female Lister Hooded rats in the novel object recognition (NOR) task. Here we show that positive modulation of AMPA receptor (AMPAR) mediated glutamate transmission alleviates cognitive deficits induced by sub-chronic PCP treatment. Female Lister hooded rats were treated sub-chronically with either vehicle (0.9% saline) or PCP (2mg/kg two doses per day for 7 days), followed by a 7 days washout period. 30 min prior to the acquisition trial of the NOR task animals were dosed with either vehicle, CX546 (10, 40 or 80 mg/kg) or CX516 (0.5, 2.5, 10, 40 or 80 mg/kg). Our results show that sub-chronic PCP treatment induced a significant decrease in the discrimination index (DI) and both ampakines CX546 and CX516 were able to reverse this disruption of object memory in rats in the novel object recognition task. These data suggest that positive AMPAR modulation may represent a mechanism for treatment of cognitive deficits in schizophrenia.

  14. Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression.

    PubMed

    Lauterborn, J C; Pineda, E; Chen, L Y; Ramirez, E A; Lynch, G; Gall, C M

    2009-03-03

    Recent demonstrations that positive modulators of AMPA-type glutamate receptors (ampakines) increase neuronal brain-derived neurotrophic factor (BDNF) expression have suggested a novel strategy for treating neurodegenerative diseases. However, reports that AMPA and BDNF receptors are down-regulated by prolonged activation raise concerns about the extent to which activity-induced increases in BDNF levels can be sustained without compromising glutamate receptor function. The present study constitutes an initial test of whether ampakines can cause enduring increases in BDNF content and signaling without affecting AMPA receptor (AMPAR) expression. Prolonged (12-24 h) treatment with the ampakine CX614 reduced AMPAR subunit (glutamate receptor subunit (GluR) 1-3) mRNA and protein levels in cultured rat hippocampal slices whereas treatment with AMPAR antagonists had the opposite effects. The cholinergic agonist carbachol also depressed GluR1-3 mRNA levels, suggesting that AMPAR down-regulation is a global response to extended periods of elevated neuronal activity. Analyses of time courses and thresholds indicated that BDNF expression is influenced by lower doses of, and shorter treatments with, the ampakine than is AMPAR expression. Accordingly, daily 3 h infusions of CX614 chronically elevated BDNF content with no effect on GluR1-3 concentrations. Restorative deconvolution microscopy provided the first evidence that chronic up-regulation of BDNF is accompanied by increased activation of the neurotrophin's TrkB-Fc receptor at spine synapses. These results show that changes in BDNF and AMPAR expression are dissociable and that up-regulation of the former leads to enhanced trophic signaling at excitatory synapses. These findings are encouraging with regard to the feasibility of using ampakines to tonically enhance BDNF-dependent functions in adult brain.

  15. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.

  16. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence?

    PubMed Central

    Roberts, Michael R.

    2014-01-01

    Plant glutamate receptor-like genes (GLRs) are homologous to the genes for mammalian ionotropic glutamate receptors (iGluRs), after which they were named, but in the 16 years since their existence was first revealed, progress in elucidating their biological role has been disappointingly slow. Recently, however, studies from a number of laboratories focusing on the model plant species Arabidopsis thaliana (L.) have thrown new light on the functional properties of some members of the GLR gene family. One important finding has been that plant GLR receptors have a much broader ligand specificity than their mammalian iGluR counterparts, with evidence that some individual GLR receptors can be gated by as many as seven amino acids. These results, together with the ubiquity of their expression throughout the plant, open up the possibility that GLR receptors could have a pervasive role in plants as non-specific amino acid sensors in diverse biological processes. Addressing what one of these roles could be, recent studies examining the wound response and disease susceptibility in GLR knockout mutants have provided evidence that some members of clade 3 of the GLR gene family encode important components of the plant's defence response. Ways in which this family of amino acid receptors might contribute to the plant's ability to respond to an attack from pests and pathogens are discussed. PMID:24991414

  17. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  18. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  19. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    PubMed

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  20. Lysophosphatidic Acid Signaling through the Lysophosphatidic Acid-1 Receptor Is Required for Alveolarization.

    PubMed

    Funke, Manuela; Knudsen, Lars; Lagares, David; Ebener, Simone; Probst, Clemens K; Fontaine, Benjamin A; Franklin, Alicia; Kellner, Manuela; Kühnel, Mark; Matthieu, Stephanie; Grothausmann, Roman; Chun, Jerold; Roberts, Jesse D; Ochs, Matthias; Tager, Andrew M

    2016-07-01

    Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization.

  1. Boronic acids as probes for investigation of allosteric modulation of the chemokine receptor CXCR3.

    PubMed

    Bernat, Viachaslau; Admas, Tizita Haimanot; Brox, Regine; Heinemann, Frank W; Tschammer, Nuska

    2014-11-21

    The chemokine receptor CXCR3 is a G protein-coupled receptor, which conveys extracellular signals into cells by changing its conformation upon agonist binding. To facilitate the mechanistic understanding of allosteric modulation of CXCR3, we combined computational modeling with the synthesis of novel chemical tools containing boronic acid moiety, site-directed mutagenesis, and detailed functional characterization. The design of boronic acid derivatives was based on the predictions from homology modeling and docking. The choice of the boronic acid moiety was dictated by its unique ability to interact with proteins in a reversible covalent way, thereby influencing conformational dynamics of target biomolecules. During the synthesis of the library we have developed a novel approach for the purification of drug-like boronic acids. To validate the predicted binding mode and to identify amino acid residues responsible for the transduction of signal through CXCR3, we conducted a site-directed mutagenesis study. With the use of allosteric radioligand RAMX3 we were able to establish the existence of a second allosteric binding pocket in CXCR3, which enables different binding modes of structurally closely related allosteric modulators of CXCR3. We have also identified residues Trp109(2.60) and Lys300(7.35) inside the transmembrane bundle of the receptor as crucial for the regulation of the G protein activation. Furthermore, we report the boronic acid 14 as the first biased negative allosteric modulator of the receptor. Overall, our data demonstrate that boronic acid derivatives represent an outstanding tool for determination of key receptor-ligand interactions and induction of ligand-biased signaling.

  2. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  3. Dopamine D4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex.

    PubMed

    Yuen, Eunice Y; Yan, Zhen

    2009-01-14

    GABAergic interneurons in prefrontal cortex (PFC) play a critical role in cortical circuits by providing feedforward and feedback inhibition and synchronizing neuronal activity. Impairments in GABAergic inhibition to PFC pyramidal neurons have been implicated in the abnormal neural synchrony and working memory disturbances in schizophrenia. The dopamine D(4) receptor, which is strongly linked to neuropsychiatric disorders, such as attention deficit-hyperactivity disorder (ADHD) and schizophrenia, is highly expressed in PFC GABAergic interneurons, while the physiological role of D(4) in these interneurons is largely unknown. In this study, we found that D(4) activation caused a persistent suppression of AMPAR-mediated synaptic transmission in PFC interneurons. This effect of D(4) receptors on AMPAR-EPSC was via a mechanism dependent on actin/myosin V motor-based transport of AMPA receptors, which was regulated by cofilin, a major actin depolymerizing factor. Moreover, we demonstrated that the major cofilin-specific phosphatase Slingshot, which was activated by calcineurin downstream of D(4) signaling, was required for the D(4) regulation of glutamatergic transmission. Thus, D(4) receptors, by using the unique calcineurin/Slingshot/cofilin signaling mechanism, regulate actin dynamics and AMPAR trafficking in PFC GABAergic interneurons. It provides a potential mechanism for D(4) receptors to control the excitatory synaptic strength in local-circuit neurons and GABAergic inhibition in the PFC network, which may underlie the role of D(4) receptors in normal cognitive processes and mental disorders.

  4. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats

    PubMed Central

    Wu, Jing-xiang; Yuan, Xiao-min; Wang, Qiong; Wei, Wang

    2016-01-01

    Background Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. Results In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. Conclusions Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer. PMID:27094551

  5. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    SciTech Connect

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  6. Ligand specificities of recombinant retinoic acid receptors RAR alpha and RAR beta.

    PubMed Central

    Crettaz, M; Baron, A; Siegenthaler, G; Hunziker, W

    1990-01-01

    Binding of retinoic acid (RA) to specific RA receptors alpha and beta (RAR alpha and RAR beta) was studied. Receptors were obtained in two ways: (1) full-length receptors were produced by transient expression of the respective human cDNAs in COS 1 cells; and (2) the ligand-binding domains of RAR alpha and RAR beta were produced in Escherichia coli. RA binding to the wild-type and truncated forms of the receptor was identical for both RAR alpha and RAR beta, indicating that the ligand-binding domains have retained the binding characteristics of the intact receptors. Furthermore, RA bound with the same affinity to both RAR alpha and RAR beta. Only retinoid analogues with an acidic end-group were able to actively bind to both receptors. On measuring the binding of various retinoids, we have found that the properties of the ligand-binding sites of RAR alpha and RAR beta were rather similar. Two retinoid analogues were capable of binding preferentially to either RAR alpha or RAR beta, suggesting that it may be possible to synthesize specific ligands for RAR alpha and RAR beta. PMID:2176462

  7. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4.

    PubMed

    Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I; Jones, Helen N; Jansson, Thomas; Powell, Theresa L

    2013-03-01

    Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.

  8. Identification of dehydroabietc acid from Boswellia thurifera resin as a positive GABAA receptor modulator.

    PubMed

    Rueda, Diana C; Raith, Melanie; De Mieri, Maria; Schöffmann, Angela; Hering, Steffen; Hamburger, Matthias

    2014-12-01

    In a two-microelectrode voltage clamp assay with Xenopus laevis oocytes, a petroleum ether extract (100 μg/mL) of the resin of Boswellia thurifera (Burseraceae) potentiated GABA-induced chloride currents (IGABA) through receptors of the subtype α₁β₂γ₂s by 319.8% ± 79.8%. With the aid of HPLC-based activity profiling, three known terpenoids, dehydroabietic acid (1), incensole (2), and AKBA (3), were identified in the active fractions of the extract. Structure elucidation was achieved by means of HR-MS and microprobe 1D/2D NMR spectroscopy. Compound 1 induced significant receptor modulation in the oocyte assay, with a maximal potentiation of IGABA of 397.5% ± 34.0%, and EC₅₀ of 8.7 μM ± 1.3 μM. This is the first report of dehydroabietic acid as a positive GABAA receptor modulator.

  9. Retinoic acids up-regulate functional eosinophil-driving receptor CCR3.

    PubMed

    Ueki, S; Nishikawa, J; Yamauchi, Y; Konno, Y; Tamaki, M; Itoga, M; Kobayashi, Y; Takeda, M; Moritoki, Y; Ito, W; Chihara, J

    2013-07-01

    Eotaxins and their receptor CCR3 have a definitive role for tissue accumulation of eosinophils both under homeostatic and pathologic conditions. However, physiological stimuli that can up-regulate CCR3 in blood-derived human eosinophils have not been recognized. As a prior gene microarray study revealed up-regulation of CCR3 in eosinophils stimulated with retinoic acids (RAs), the expression of functional CCR3 was examined. We found that 9-cis RA and all-trans RA (ATRA) significantly induced surface CCR3 expression regardless of the presence of IL-3 or IL-5. Pharmacological manipulations with receptor-specific agonists and antagonists indicated that retinoic acid receptor-α activation is critical for CCR3 up-regulation. RA-induced CCR3 was associated with its functional capacity, in terms of the calcium mobilization and chemotactic response to eotaxin-1 (CCL11). Our study suggests an important role of vitamin A derivatives in the tissue accumulation of eosinophils.

  10. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  11. Binding of retinoic acid receptor heterodimers to DNA. A role for histones NH2 termini.

    PubMed

    Lefebvre, P; Mouchon, A; Lefebvre, B; Formstecher, P

    1998-05-15

    The retinoic acid signaling pathway is controlled essentially through two types of nuclear receptors, RARs and RXRs. Ligand dependent activation or repression of retinoid-regulated genes is dependent on the binding of retinoic acid receptor (RAR)/9-cis-retinoic acid receptor (RXR) heterodimers to retinoic acid response element (RARE). Although unliganded RXR/RAR heterodimers bind constitutively to DNA in vitro, a clear in vivo ligand-dependent occupancy of the RARE present in the RARbeta2 gene promoter has been reported (Dey, A., Minucci, S., and Ozato, K. (1994) Mol. Cell. Biol. 14, 8191-8201). Nucleosomes are viewed as general repressors of the transcriptional machinery, in part by preventing the access of transcription factors to DNA. The ability of hRXRalpha/hRARalpha heterodimers to bind to a nucleosomal template in vitro has therefore been examined. The assembly of a fragment from the RARbeta2 gene promoter, which contains a canonical DR5 RARE, into a nucleosome core prevented hRXRalpha/hRARalpha binding to this DNA, in conditions where a strong interaction is observed with a linear DNA template. However, histone tails removal by limited proteolysis and histone hyperacetylation yielded nucleosomal RAREs able to bind to hRXRalpha/hRARalpha heterodimers. These data establish therefore the role of histones NH2 termini as a major impediment to retinoid receptors access to DNA, and identify histone hyperacetylation as a potential physiological regulator of retinoid-induced transcription.

  12. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120).

    PubMed

    Sparks, Steven M; Chen, Grace; Collins, Jon L; Danger, Dana; Dock, Steven T; Jayawickreme, Channa; Jenkinson, Stephen; Laudeman, Christopher; Leesnitzer, M Anthony; Liang, Xi; Maloney, Patrick; McCoy, David C; Moncol, David; Rash, Vincent; Rimele, Thomas; Vulimiri, Padmaja; Way, James M; Ross, Sean

    2014-07-15

    The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.

  13. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning

    PubMed Central

    Kemenes, György

    2014-01-01

    The role of CaMKII in learning-induced activation and trafficking of AMPA receptors (AMPARs) is well established. However, the link between the phosphorylation state of CaMKII and the agonist-triggered proteasomal degradation of AMPARs during memory consolidation remains unknown. Here we describe a novel CaMKII-dependent mechanism by which a learning-induced increase in AMPAR levels is stabilized for consolidation of associative long-term memory. Six hours after classical conditioning the levels of both autophosphorylated pT305-CaMKII and GluA1 type AMPAR subunits are significantly elevated in the ganglia containing the learning circuits of the snail Lymnaea stagnalis. CaMKIINtide treatment significantly reduces the learning-induced elevation of both pT305-CaMKII and GluA1 levels and impairs associative long-term memory. Inhibition of proteasomal activity offsets the deleterious effects of CaMKIINtide on both GluA1 levels and long-term memory. These findings suggest that increased levels of pT305-CaMKII play a role in AMPAR dependent memory consolidation by reducing proteasomal degradation of GluA1 receptor subunits. PMID:24875483

  14. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration.

    PubMed

    Nan, Ling; Wei, Jianxin; Jacko, Anastasia M; Culley, Miranda K; Zhao, Jing; Natarajan, Viswanathan; Ma, Haichun; Zhao, Yutong

    2016-02-01

    Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration.

  15. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors.

    PubMed

    Hopf, Thomas A; Morinaga, Satoshi; Ihara, Sayoko; Touhara, Kazushige; Marks, Debora S; Benton, Richard

    2015-01-13

    Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.

  16. Calcium-permeable AMPA receptors provide a common mechanism for LTP in glutamatergic synapses of distinct hippocampal interneuron types.

    PubMed

    Szabo, Andras; Somogyi, Jozsef; Cauli, Bruno; Lambolez, Bertrand; Somogyi, Peter; Lamsa, Karri P

    2012-05-09

    Glutamatergic synapses on some hippocampal GABAergic interneurons exhibit activity-induced long-term potentiation (LTP). Interneuron types within the CA1 area expressing mutually exclusive molecular markers differ in LTP responses. Potentiation that depends on calcium-permeable (CP) AMPA receptors has been characterized in oriens-lacunosum moleculare (O-LM) interneurons, which express parvalbumin and somatostatin (SM). However, it is unknown how widely CP-AMPAR-dependent plasticity is expressed among different GABAergic interneuron types. Here we examine synaptic plasticity in rat hippocampal O-LM cells and two other interneuron types expressing either nitric oxide synthase (NOS) or cholecystokinin (CCK), which are known to be physiologically and developmentally distinct. We report similar CP-AMPAR-dependent LTP in NOS-immunopositive ivy cells and SM-expressing O-LM cells to afferent fiber theta burst stimulation. The potentiation in both cell types is induced at postsynaptic membrane potentials below firing threshold, and induction is blocked by intense spiking simultaneously with afferent stimulation. The strong inward rectification and calcium permeability of AMPARs is explained by a low level of GluA2 subunit mRNA expression. LTP is not elicited in CCK-expressing Schaffer collateral-associated cells, which lack CP-AMPARs and express high levels of the GluA2 subunit. The results show that CP-AMPAR-mediated synaptic potentiation is common in hippocampal interneuron types and occurs in interneurons of both feedforward and feedback inhibitory pathways.

  17. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus.

    PubMed

    Mitsushima, Dai; Ishihara, Kouji; Sano, Akane; Kessels, Helmut W; Takahashi, Takuya

    2011-07-26

    The hippocampus plays a central role in learning and memory. Although synaptic delivery of AMPA-type glutamate receptors (AMPARs) contributes to experience-dependent synaptic strengthening, its role in hippocampus-dependent learning remains elusive. By combining viral-mediated in vivo gene delivery with in vitro patch-clamp recordings, we found that the inhibitory avoidance task, a hippocampus-dependent contextual fear-learning paradigm, delivered GluR1-containing AMPARs into CA3-CA1 synapses of the dorsal hippocampus. To block the synaptic delivery of endogenous AMPARs, we expressed a fragment of the GluR1-cytoplasmic tail (the 14-aa GluR1 membrane-proximal region with two serines mutated to phospho-mimicking aspartates: MPR-DD). MPR-DD prevented learning-driven synaptic AMPAR delivery in CA1 neurons. Bilateral expression of MPR-DD in the CA1 region of the rat impaired inhibitory avoidance learning, indicating that synaptic GluR1 trafficking in the CA1 region of the hippocampus is required for encoding contextual fear memories. The fraction of CA1 neurons that underwent synaptic strengthening positively correlated with the performance in the inhibitory avoidance fear memory task. These data suggest that the robustness of a contextual memory depends on the number of hippocampal neurons that participate in the encoding of a memory trace.

  18. Insulin receptor aggregation and autophosphorylation in the presence of cationic polyamino acids

    SciTech Connect

    Kohanski, R.A. )

    1989-12-15

    Aggregation and autophosphorylation of the insulin receptor-protein kinase, from cultured 3T3-L1 adipocytes, were studied in the presence of cationic polyamino acids. Poly-L-lysine and poly-L-arginine produced the following effects with the purified receptor: first, the autophosphorylation rate was increased by polycations. Half-maximal stimulation was proportional to polymer length. The rate enhancement was greater at lower ATP concentrations. Second, near-endpoint (equilibrium) autophosphorylation was greater in the presence of the polycations. Polycations inhibited the reverse reaction: ADP + phosphoreceptor yielding ATP + aporeceptor. Third, the (32P)phosphopeptides generated by trypsin digestion of the 32P-beta-subunit, showed that no new autophosphorylation sites resulted from the presence of polycations. Fourth, the polycations, but not insulin, promoted receptor aggregation, and phosphoreceptor aggregated more readily than aporeceptor. Insulin receptor enriched through the wheat germ agglutinin eluate step was compared with purified receptor. Higher concentrations of poly-L-arginine were required to stimulate autophosphorylation and to promote aggregation. Finally, several polycation-dependent substrates present in the wheat germ agglutinin eluate co-aggregated with the insulin receptor. Polycation-stimulated receptor autophosphorylation is linked to a lower KM,app for ATP, but substrate phosphorylation may require the aggregation.

  19. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.

    PubMed

    Kim, J W; Closs, E I; Albritton, L M; Cunningham, J M

    1991-08-22

    Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.

  20. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    PubMed Central

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756

  1. Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae.

    PubMed

    Liu, L; Simon, S A

    2001-12-27

    A sour taste sensation may be produced when acidic stimuli interact with taste receptor cells (TRCs) on the dorsal surface of the tongue. We have searched for pathways in TRCs that may be activated by acidic stimuli using RT-PCR and changes in intracellular calcium (Ca(2+)(I)) induced by acidic stimuli in rat fungiform papillae. RT-PCR revealed the presence of proton-gated subunits ASIC-beta and VR1. Ca(2+) imaging measurements of the TRCs revealed two distinct responses to acidic stimuli: Ca(2+)(i) was increased in 9% (28/308; Type I) and was decreased in 39% (121/308; Type II). Neither of these responses was affected by the removal of extracellular Ca(2+), indicating that the changes arise from the release and sequestration of Ca(2+) from intracellular stores. These responses were also not inhibited by the vanilloid receptor antagonist, capsazepine, suggesting they do not arise from the activation of vanilloid receptors. The Type I, but not the Type II response was inhibited by amiloride. Dose-response measurements for Types I and II responses yielded pH(50%) of 4.8 and 4.9, respectively. Type II responses were inhibited by pertussis toxin, suggesting G-protein involvement. TRCs that exhibit Type II responses could also be activated by quinine (which increased Ca(2+)(I)) thus suggesting a mechanism by which the addition of acid may be suppressive to other chemical stimuli.

  2. Enhanced Long Term Potentiation and Decreased AMPA Receptor Desensitization in the Acute Period Following a Single Kainate Induced Early Life Seizure

    PubMed Central

    O'Leary, Heather; Bernard, Paul B.; Castano, Anna M.; Benke, Tim A.

    2016-01-01

    Neonatal seizures are associated with long term disabilities including epilepsy and cognitive deficits. Using a neonatal seizure rat model that does not develop epilepsy, but develops a phenotype consistent with other models of intellectual disability (ID) and autism spectrum disorders (ASD), we sought to isolate the acute effects of a single episode of early life seizure on hippocampal CA1 synaptic development and plasticity. We have previously shown chronic changes in glutamatergic synapses, loss of long term potentiation (LTP) and enhanced long term depression (LTD), in the adult male rat ~50 days following kainic acid (KA) induced early life seizure (KA-ELS) in post-natal (P) 7 day old male Sprague-Dawley rats. In the present work, we examined the electrophysiological properties and expression levels of glutamate receptors in the acute period, 2 and 7 days, post KA-ELS. Our results show for the first time enhanced LTP 7 days after KA-ELS, but no change 2 days post KA-ELS. Additionally, we report that ionotropic α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid type glutamate receptor (AMPAR) desensitization is decreased in the same time frame, with no changes in AMPAR expression, phosphorylation, or membrane insertion. Inappropriate enhancement of the synaptic connections in the acute period after the seizure could alter the normal patterning of synaptic development in the hippocampus during this critical period and contribute to learning deficits. Thus, this study demonstrates a novel mechanism by which KA-ELS alters early network properties that potentially lead to adverse outcomes. PMID:26706598

  3. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  4. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  5. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  6. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain.

    PubMed

    Morland, Cecilie; Lauritzen, Knut Husø; Puchades, Maja; Holm-Hansen, Signe; Andersson, Krister; Gjedde, Albert; Attramadal, Håvard; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-07-01

    We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the blood-brain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells.

  7. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons

    PubMed Central

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  8. Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-α in diabetic cardiomyopathy.

    PubMed

    Zhao, Yichao; Xu, Longwei; Ding, Song; Lin, Nan; Ji, Qingqi; Gao, Lingchen; Su, Yuanyuan; He, Ben; Pu, Jun

    2017-04-01

    Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.

  9. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer.

    PubMed Central

    Moghal, N; Neel, B G

    1995-01-01

    Retinoic acid (RA) is required for normal airway epithelial cell growth and differentiation both in vivo and in vitro. One of the earliest events following the exposure of bronchial epithelial cells to RA is the strong induction of RA receptor beta (RAR beta) mRNA. Previous work established that many lung cancer cell lines and primary tumors display abnormal RAR beta mRNA expression, most often absence or weak expression of the RAR beta 2 isoform, even after RA treatment. Restoration of RAR beta 2 into RAR beta-negative lung cancer cell lines has been reported to inhibit tumorigenicity. Since RAR beta 2 inactivation may contribute to lung cancer, we have investigated the molecular mechanism of defective RAR beta 2 expression. Nuclear run-on assays and transient transfections with RAR beta 2 promoter constructs indicate the presence of trans-acting transcriptional defects in most lung cancer cell lines, which map to the RA response element (RARE). These defects cannot be complemented by RAR-retinoid X receptor cotransfection and can be separated into two types: (i) one affecting transcription from direct repeat RAREs, but not palindromic RAREs, and (ii) another affecting transcription from both types of RARE. Studies using chimeras between RAR alpha, TR alpha, and other transcription factors suggest the existence of novel RAR-thyroid hormone receptor AF-2-specific cofactors, which are necessary for high levels of transcription. Furthermore, these factors may be frequently inactivated in human lung cancer. PMID:7791800

  10. (3-Aminocyclopentyl)methylphosphinic acids: novel GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Hanrahan, Jane R; Kumar, Rohan J; Mewett, Kenneth N; Morriss, Gwendolyn; Wooller, Soraya; Johnston, Graham A R

    2007-03-01

    Our understanding of the role GABA(C) receptors play in the central nervous system is limited due to a lack of specific ligands. Here we describe the pharmacological effects of (+/-)-cis-3- and (+/-)-trans-3-(aminocyclopentyl)methylphosphinic acids ((+/-)-cis- and (+/-)-trans-3-ACPMPA) as novel ligands for the GABA(C) receptor showing little activity at GABA(A) or GABA(B) receptors. (+/-)-cis-3-ACPMPA has similar potency to (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at human recombinant rho1 (K(B)=1.0+/-0.2microM) and rat rho3 (K(B)=5.4+/-0.8microM) but is 15 times more potent than TPMPA on human recombinant rho2 (K(B)=1.0+/-0.3microM) GABA(C) receptors expressed in Xenopus oocytes. (+/-)-cis- and (+/-)-trans-3-ACPMPA are novel lead compounds for developing into more potent and selective GABA(C) receptor antagonists with increased lipophilicity for in vivo studies.

  11. Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times.

    PubMed

    Xavier-Neto, José; Sousa Costa, Ângela M; Figueira, Ana Carolina M; Caiaffa, Carlo Donato; Amaral, Fabio Neves do; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R; Castillo, Hozana Andrade

    2015-02-01

    Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  12. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

    SciTech Connect

    Sharif, N.A.; Roberts, P.J.

    1984-01-01

    Specific binding of L-(/sup 3/H)glutamate ((/sup 3/H)Glu) and L(/sup 3/H)Asp) to cerebellar membranes represented a time-, temperature-, pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K/sub off//K/sub on/ . K/sub d/) for (/sup 3/H)Glu binding to this fraction indicated high-affinity (433 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for (/sup 3/H)Glu and (/sup 3/H)Asp as receptors with differential pharmacological specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37 degrees C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents and L-Glu (50-1000 microM) provided protection against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8-12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8-12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously.

  13. Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease

    PubMed Central

    Kim, Sun-Gi; Kim, Byung-Kwon; Kim, Kyumin

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver, occurring when fat is accumulated in the liver without alcohol consumption. NAFLD is the most common liver disorder in advanced countries. NAFLD is a spectrum of pathology involving hepatic steatosis with/without inflammation and nonalcoholic steatohepatitis with accumulation of hepatocyte damage and hepatic fibrosis. Recent studies have revealed that NAFLD results in the progression of cryptogenic cirrhosis that leads to hepatocarcinoma and cardiovascular diseases such as heart failure. The main causes of NAFLD have not been revealed yet, metabolic syndromes including obesity and insulin resistance are widely accepted for the critical risk factors for the pathogenesis of NAFLD. Nuclear receptors (NRs) are transcriptional factors that sense environmental or hormonal signals and regulate expression of genes, involved in cellular growth, development, and metabolism. Several NRs have been reported to regulate genes involved in energy and xenobiotic metabolism and inflammation. Among various NRs, farnesoid X receptor (FXR) is abundantly expressed in the liver and a key regulator to control various metabolic processes in the liver. Recent studies have shown that NAFLD is associated with inappropriate function of FXR. The impact of FXR transcriptional activity in NAFLD is likely to be potential therapeutic strategy, but still requires to elucidate underlying potent therapeutic mechanisms of FXR for the treatment of NAFLD. This article will focus the physiological roles of FXR and establish the correlation between FXR transcriptional activity and the pathogenesis of NAFLD. PMID:28029021

  14. Endocytosis of lysosomal acid phosphatase; involvement of mannose receptor and effect of lectins.

    PubMed

    Imai, K; Yoshimura, T

    1994-08-01

    Acid phosphatase and beta-glucosidase are unique among lysosomal enzymes in that they have both high mannose and complex type sugasr chains, whereas oligosaccharide chains of lysosomal enzymes in matrix are of high mannose type. We have previously shown that beta-glucosidase was endocytosed into macrophages via an unidentified receptor different from a mannose/fucose receptor (K. Imai, Cell Struct. Funct. 13, 325-332, 1988). Here, we show that uptake of acid phosphatase purified from rat liver lysosomes into rat macrophages was inhibited by ligands for a mannose/fucose receptor and was mediated via an apparently single binding site with Kuptake of 24.7 nM. These results indicate that acid phosphatase and beta-glucosidase recognize different types of receptors even if they have similar sugar chains. Polyvalent concanavalin A which binds both to the enzyme and to macrophages specifically stimulated the uptake in a dose dependent manner, whereas wheat germ agglutinin and phytohaemagglutinin did not.

  15. Guanidino acids act as rho1 GABA(C) receptor antagonists.

    PubMed

    Chebib, Mary; Gavande, Navnath; Wong, Kit Yee; Park, Anna; Premoli, Isabella; Mewett, Kenneth N; Allan, Robin D; Duke, Rujee K; Johnston, Graham A R; Hanrahan, Jane R

    2009-10-01

    GABA(C) receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective agents for this class of receptors. Guanidino analogs related to glycine, beta-alanine and taurine were evaluated at human rho(1)GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining were inactive. (S)-2-guanidinopropionic acid (IC(50) = 2.2 microM) and guanidinoacetic acid (IC(50) = 5.4 microM; K (B) = 7.75 microM [pK (B) = 5.11 +/- 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the beta-alanine and GABA guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced activity indicating that steric effects may impact on activity. The results of this study contribute to the structure-activity-relationship profile required in developing novel therapeutic agents.

  16. Computer-aided design of a novel ligand for retinoic acid receptor in cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Silva, Carlos H. T. P.; Leopoldino, Andreia M.; Silva, Eloiza H. T.; Espinoza, V. A. A.; Taft, C. A.

    The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor.

  17. Conformations, energies, and intramolecular hydrogen bonds in dicarboxylic acids: implications for the design of synthetic dicarboxylic acid receptors.

    PubMed

    Nguyen, Thanh Ha; Hibbs, David E; Howard, Siân T

    2005-09-01

    The various conformers of the dicarboxylic acids HO2C--(CH2)n--CO2H, n = 1-4, were obtained using density functional methods (DFT), both in the gas phase and in the aqueous phase using a polarized continuum model (PCM). Several new conformers were identified, particularly for the two larger molecules glutaric (n = 3) and adipic acid (n =4). The PCM results show that the stability of most conformers were affected, many becoming unstable in the aqueous phase; and the energy ordering of conformers is also different. The results suggest that conformational preferences could be important in determining the design and stability of appropriate synthetic receptors for glutaric and adipic acid. Geometry changes between gas and aqueous phases were most marked in those conformers containing an intramolecular hydrogen bond. Additional calculations have probed the strength of intramolecular hydrogen bonds in these dicarboxylic acids. In the cases of glutaric and adipic acid, the strength of the intramolecular hydrogen bond were estimated to be around 28-29 kJ/mol, without any vibrational energy correction. The intramolecular hydrogen bond energies in malonic and succinic acid were also estimated from the calculated H-bond distances using an empirical relationship. Intramolecular H-bond redshifts of 170-250 cm(-1) have been estimated from the results of the harmonic frequency analyses.

  18. PLZF is a negative regulator of retinoic acid receptor transcriptional activity.

    PubMed

    Martin, Perrine J; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2003-09-06

    BACKGROUND: Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in response to ligand treatment. Little is known however on how receptor activity is controlled by intermediary factors which interact with RARs in a ligand-independent manner. RESULTS: We have identified the promyelocytic leukemia zinc finger protein (PLZF), a transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar transcriptional interference could be observed with the estrogen receptor alpha and the glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR heterodimerization, both in-vitro and in intact cells. CONCLUSION: Thus RAR and PLZF interact physically and functionally. Intriguingly, these two transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain and may, upon chromosomal translocation, form fusion proteins. Our observations therefore define a novel mechanism by which RARs activity may be controlled.

  19. Involvement of ventral tegmental area ionotropic glutamate receptors in the expression of ethanol-induced conditioned place preference.

    PubMed

    Pina, Melanie M; Cunningham, Christopher L

    2016-10-15

    The ventral tegmental area (VTA) is a well-established neural substrate of reward-related processes. Activity within this structure is increased by the primary and conditioned rewarding effects of abused drugs and its engagement is heavily reliant on excitatory input from structures upstream. In the case of drug seeking, it is thought that exposure to drug-associated cues engages glutamatergic VTA afferents that signal directly to dopamine cells, thereby triggering this behavior. It is unclear, however, whether glutamate input to VTA is directly involved in ethanol-associated cue seeking. Here, the role of intra-VTA ionotropic glutamate receptor (iGluR) signaling in ethanol-cue seeking was evaluated in DBA/2J mice using an ethanol conditioned place preference (CPP) procedure. Intra-VTA iGluRs α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)/kainate and N-methyl-d-aspartate (NMDAR) were blocked during ethanol CPP expression by co-infusion of antagonist drugs 6,7-dinitroquinoxaline-2,3-dione (DNQX; AMPA/kainate) and d-(-)-2-Amino-5-phosphonopentanoic acid (AP5; NMDA). Compared to aCSF, bilateral infusion of low (1 DNQX+100 AP5ng/side) and high (5 DNQX+500 AP5ng/side) doses of the AMPAR and NMDAR antagonist cocktail into VTA blocked ethanol CPP expression. This effect was site specific, as DNQX/AP5 infusion proximal to VTA did not significantly impact CPP expression. An increase in activity was found at the high but not low dose of DNQX/AP5. These findings demonstrate that activation of iGluRs within the VTA is necessary for ethanol-associated cue seeking, as measured by CPP.

  20. Synthesis of C5-tetrazole derivatives of 2-amino-adipic acid displaying NMDA glutamate receptor antagonism.

    PubMed

    Lenda, Fatimazohra; Crouzin, Nadine; Cavalier, Mélanie; Guiramand, Janique; Lanté, Fabien; Barbanel, Gérard; Cohen-Solal, Catherine; Martinez, Jean; Guenoun, Farhate; Lamaty, Frédéric; Vignes, Michel

    2011-03-01

    Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-D: -aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.

  1. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  2. Hydroxycarboxylic acid receptors are essential for breast cancer cells to control their lipid/fatty acid metabolism.

    PubMed

    Stäubert, Claudia; Broom, Oliver Jay; Nordström, Anders

    2015-08-14

    Cancer cells exhibit characteristic changes in their metabolism with efforts being made to address them therapeutically. However, targeting metabolic enzymes as such is a major challenge due to their essentiality for normal proliferating cells. The most successful pharmaceutical targets are G protein-coupled receptors (GPCRs), with more than 40% of all currently available drugs acting through them.We show that, a family of metabolite-sensing GPCRs, the Hydroxycarboxylic acid receptor family (HCAs), is crucial for breast cancer cells to control their metabolism and proliferation.We found HCA1 and HCA3 mRNA expression were significantly increased in breast cancer patient samples and detectable in primary human breast cancer patient cells. Furthermore, siRNA mediated knock-down of HCA3 induced considerable breast cancer cell death as did knock-down of HCA1, although to a lesser extent. Liquid Chromatography Mass Spectrometry based analyses of breast cancer cell medium revealed a role for HCA3 in controlling intracellular lipid/fatty acid metabolism. The presence of etomoxir or perhexiline, both inhibitors of fatty acid β-oxidation rescues breast cancer cells with knocked-down HCA3 from cell death.Our data encourages the development of drugs acting on cancer-specific metabolite-sensing GPCRs as novel anti-proliferative agents for cancer therapy.

  3. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.

  4. Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons.

    PubMed

    Wu, Jun; Kohno, Tatsuro; Georgiev, Stefan K; Ikoma, Miho; Ishii, Hideaki; Petrenko, Andrey B; Baba, Hiroshi

    2008-02-12

    Taurine has been suggested to modulate nociceptive information at the spinal cord level. In this study, the pharmacological properties of taurine were investigated in adult rat substantia gelatinosa (SG) neurons using whole-cell patch-clamp method. We found that taurine seemed to have higher efficacy than glycine on glycine receptors in SG neurons. An increase in chloride conductance was responsible for taurine-induced currents. Taurine at 0.3 mM activated glycine receptors, whereas at 3 mM activated both glycine and gamma-aminobutyric acid A receptors. The currents activated by coapplication of taurine and glycine are cross inhibitive. Altogether these results show that taurine might represent another important neurotransmitter or modulator in SG neurons, which may be involved in antinociception.

  5. Effect of niflumic acid on electromechanical coupling by tachykinin NK1 receptor activation in rabbit colon.

    PubMed

    Patacchini, R; Santicioli, P; Maggi, C A

    1996-05-15

    We have investigated the effect of the Cl- channel blocker, niflumic acid, on the contractile response and electromechanical coupling activated by stimulation of the tachykinin NK1 receptor in the longitudinal muscle of rabbit proximal colon, in the presence of indomethacin (5 microM). The application of submaximal equieffective concentrations of the tachykinin NK1 receptor-selective agonist [Sar9]substance P sulfone (30 nM), of carbachol (300 nM) and KCl (40 mM), produced distinct phasic and tonic components of contraction. Niflumic acid (10-100 microM) preferentially and markedly inhibited the tonic component of the response to [Sar9]substance P sulfone and to carbachol, without affecting the response to KCl. Nifedipine (1 microM) abolished the response to KCl and greatly reduced the response to [Sar9]substance P sulfone and carbachol. The nifedipine-resistant response to [Sar9]substance P sulfone was attenuated by niflumic acid (100 microM), while that to carbachol was unaffected. In sucrose gap experiments, superfusion with niflumic acid (100 microM), in the presence of nifedipine (3 microM), produced membrane hyperpolarization, which was totally blocked by tetraethylammonium (10 mM). Niflumic acid inhibited both depolarization and contraction induced by [Sar9]substance P sulfone, both in the absence or in the presence of tetraethylammonium. The present findings support the idea that a niflumic acid-sensitive mechanism, probably an effect on Cl- channels, takes part in the post-receptorial events activated by tachykinin NK1 receptor stimulation in the longitudinal muscle of rabbit colon, and suggest that this mechanism would be more important for generating the sustained tonic than the phasic component of contraction.

  6. GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors

    PubMed Central

    Li, Yan-Jun; Kalyanaraman, Chakrapani; Qiu, Li-Li; Chen, Chen; Xiao, Qi; Liu, Wen-Xue; Zhang, Wei; Yang, Jian-Jun; Chen, Guiquan; Jacobson, Matthew P.; Shi, Yun Stone

    2016-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and predominantly assemble as heterotetramers in the brain. Recently, the crystal structures of homotetrameric GluA2 demonstrated that AMPARs are assembled with two pairs of conformationally distinct subunits, in a dimer of dimers formation. However, the structure of heteromeric AMPARs remains unclear. Guided by the GluA2 structure, we performed cysteine mutant cross-linking experiments in full-length GluA1/A2, aiming to draw the heteromeric AMPAR architecture. We found that the amino-terminal domains determine the first level of heterodimer formation. When the dimers further assemble into tetramers, GluA1 and GluA2 subunits have preferred positions, possessing a 1–2–1–2 spatial assembly. By swapping the critical sequences, we surprisingly found that the spatial assembly pattern is controlled by the excisable signal peptides. Replacements with an unrelated GluK2 signal peptide demonstrated that GluA1 signal peptide plays a critical role in determining the spatial priority. Our study thus uncovers the spatial assembly of an important type of glutamate receptors in the brain and reveals a novel function of signal peptides. PMID:27601647

  7. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    PubMed Central

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-01-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. PMID:16473946

  8. SIGNALLING THROUGH RETINOIC ACID RECEPTORS IN CARDIAC DEVELOPMENT: DOING THE RIGHT THINGS AT THE RIGHT TIMES

    PubMed Central

    Xavier-Neto, José; Costa, Ângela M. Sousa; Figueira, Ana Carolina M.; Caiaffa, Carlo Donato; do Amaral, Fabio Neves; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R.; Castillo, Hozana Andrade

    2015-01-01

    Retinoic acid (RA) is a terpenoid that is synthesized from Vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinic and experimental data provide uncontested evidence for the pleiotropic roles of RA signalling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signalling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signalling is exquisitely regulated according to specific phases of cardiac development and that RA signalling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signalling by RA receptors (RARs) in early phases of heart development. PMID:25134739

  9. The evolution of bat nucleic acid-sensing Toll-like receptors.

    PubMed

    Escalera-Zamudio, Marina; Zepeda-Mendoza, M Lisandra; Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; Méndez-Ojeda, Maria L; Arias, Carlos F; Greenwood, Alex D

    2015-12-01

    We characterized the nucleic acid-sensing Toll-like receptors (TLR) of a New World bat species, the common vampire bat (Desmodus rotundus), and through a comparative molecular evolutionary approach searched for general adaptation patterns among the nucleic acid-sensing TLRs of eight different bats species belonging to three families (Pteropodidae, Vespertilionidae and Phyllostomidae). We found that the bat TLRs are evolving slowly and mostly under purifying selection and that the divergence pattern of such receptors is overall congruent with the species tree, consistent with the evolution of many other mammalian nuclear genes. However, the chiropteran TLRs exhibited unique mutations fixed in ligand-binding sites, some of which involved nonconservative amino acid changes and/or targets of positive selection. Such changes could potentially modify protein function and ligand-binding properties, as some changes were predicted to alter nucleic acid binding motifs in TLR 9. Moreover, evidence for episodic diversifying selection acting specifically upon the bat lineage and sublineages was detected. Thus, the long-term adaptation of chiropterans to a wide variety of environments and ecological niches with different pathogen profiles is likely to have shaped the evolution of the bat TLRs in an order-specific manner. The observed evolutionary patterns provide evidence for potential functional differences between bat and other mammalian TLRs in terms of resistance to specific pathogens or recognition of nucleic acids in general.

  10. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors.

    PubMed

    He, Weihai; Miao, Frederick J-P; Lin, Daniel C-H; Schwandner, Ralf T; Wang, Zhulun; Gao, Jinhai; Chen, Jin-Long; Tian, Hui; Ling, Lei

    2004-05-13

    The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.

  11. Transcriptional upregulation of retinoic acid receptor beta (RAR beta) expression by phenylacetate in human neuroblastoma cells.

    PubMed

    Sidell, N; Chang, B; Yamashiro, J M; Wada, R K

    1998-02-25

    Sodium phenylacetate (NaPA) has been shown to synergize with retinoic acid (RA) in inducing the differentiation of human neuroblastoma cells. Our studies indicated that NaPA can impact on the RA differentiation program by upregulating nuclear retinoic acid receptor-beta (RAR beta) expression. We have found that NaPA does not alter the half-life of RAR beta mRNA; thus, increased stability of mRNA levels does not contribute to NaPA induction. In contrast, NaPA was able to specifically activate a reporter gene construct (delta SV beta RE-CAT) which contains a retinoic acid response element (RARE beta) that is located in the RAR beta promoter. Activation of delta SV beta RE-CAT by NaPA also occurred in neuroblastoma cells cotransfected with a nuclear retinoic acid receptor expression vector, demonstrating the independence of this activation on cellular RAR levels. Taken together, our findings suggest that induction of RAR beta by NaPA is regulated at the level of transcription and mediated through the retinoic acid response element, RARE beta. This effect may account, at least in part, for the strong synergy between NaPA and RA in promoting neuroblastoma differentiation.

  12. Arylpiperazines with N-acylated amino acids as 5-HT1A receptor ligands.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2006-07-01

    A library consisting of 60 arylpiperazines modified with N-acylated amino acids was prepared on BAL linker SynPhasetrade mark Lanterns and evaluated in vitro for 5-HT(1A) receptor affinity. Biological screening, followed by a simple Fujita-Ban analysis, enabled the description of structure-activity relationships and allowed the selection of some potent, high-affinity ligands for in vivo pharmacological investigations.

  13. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid.

    PubMed

    Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded.

  14. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  15. The Molecular Basis of Ligand Interaction at Free Fatty Acid Receptor 4 (FFA4/GPR120)*

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Milligan, Graeme; Ulven, Trond

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well validated model of the mode of ligand-FFA4 interaction that will be invaluable in the identification of novel ligands and the future development of this receptor as a therapeutic target. The model reliably predicted the effects of substituent variations on agonist potency, and it was also able to predict the qualitative effect of binding site mutations in the majority of cases. PMID:24860101

  16. Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors.

    PubMed

    Dias, Raquel B; Ribeiro, Joaquim A; Sebastião, Ana M

    2012-02-01

    Phosphorylation of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by Protein Kinase A (PKA) is known to regulate AMPA receptor (AMPAR) trafficking and stabilization at the postsynaptic membrane, which in turn is one of the key mechanisms by which synaptic transmission and plasticity are tuned. However, not much is known as to how Gs-coupled receptors contribute to endogenous PKA-mediated regulation of AMPA receptor function. Here we report that activation of the excitatory A(2A) adenosine receptor by 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) facilitates AMPA-evoked currents in CA1 pyramidal neurons, by a mechanism dependent on PKA activation, but not on protein synthesis. This modulation of AMPA currents was mimicked by forskolin (1 μM) and did not occur in stratum radiatum interneurons. Superfusion of the A(2A) receptor agonist also caused an increase in the amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as in the membrane levels of GluR1 subunits phosphorylated at the PKA site (Ser845). The impact of this increase on GluR1-containing AMPA receptor expression was evidenced by the potentiation of LTP at the CA3-CA1 synapse that followed brief activation of A(2A) receptors. We thus propose that in conditions of increased adenosine availability, A(2A) receptor activation is responsible for setting part of the endogenous GluR1 Ser-845 phosphorylation tonus and hence, the availability of the GluR1-containing AMPA receptor extrasynaptic pool for synaptic insertion and reinforcement of synaptic strength.

  17. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    PubMed Central

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  18. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    SciTech Connect

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  19. Characterization of gamma-aminobutyric acid receptors in the neurointermediate lobe of the amphibian Xenopus laevis.

    PubMed

    Verburg-van Kemenade, B M; Jenks, B G; Lenssen, F J; Vaudry, H

    1987-02-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is involved in the regulation of secretion of MSH from the intermediate lobe of Xenopus laevis. The purpose of this study was to identify the GABA receptor(s) involved by determination of the effect of specific receptor agonists and antagonists on the release of immunoreactive MSH from superfused neurointermediate lobes of Xenopus. Exogenous GABA induces a rapid inhibition of MSH secretion. There was no evidence for a transitory stimulatory effect of GABA as reported for the rat melanotropes. Both the GABA agonists (GABAa) homotaurine and isoguvacine and the GABA agonist (GABAb) baclofen inhibited MSH release in a dose-dependent manner. In vivo, homotaurine and baclofen caused aggregation of pigment in dermal melanophores. The MSH release-inhibiting effect of homotaurine and isoguvacine could be antagonized by the specific GABAa receptor antagonist bicuculline. However, bicuculline and picrotoxin failed to block the effect of exogenous GABA. We conclude that in the neurointermediate lobe of Xenopus laevis both GABAa and GABAb receptors are present, suggesting a dual inhibitory regulation.

  20. N-Methyl-d-aspartate Receptor Antagonists Have Variable Affect in 3-Nitropropionic Acid Toxicity

    PubMed Central

    Carbery, Timothy; Geddes, James W.

    2013-01-01

    There is accumulating evidence that excitotoxicity and oxidative stress resulting from excessive activation of glutamate (N-methyl-d-aspartate) NMDA receptors are major participants in striatal degeneration associated with 3-nitropropionic acid (3NP) administration. Although excitotoxic and oxidative mechanisms are implicated in 3NP toxicity, there are conflicting reports as to whether NMDA receptor antagonists attenuate or exacerbate the 3NP-induced neurodegeneration. In the present study, we investigated the involvement of NMDA receptors in striatal degeneration, protein oxidation and motor impairment following systemic 3NP administration. We examined whether NMDA receptor antagonists, memantine and ifenprodil, influence the neurotoxicity of 3NP. The development of striatal lesion and protein oxidation following 3NP administration is delayed by memantine but not affected by ifenprodil. However, in behavioral experiments, memantine failed to improve and ifenprodil exacerbated the motor deficits associated with 3NP toxicity. Together, these findings suggest caution in the application of NMDA receptor antagonists as a neuroprotective agent in neurodegenerative disorders associated with metabolic impairment. PMID:18688711

  1. N-methyl-D-aspartate receptor antagonists have variable affect in 3-nitropropionic acid toxicity.

    PubMed

    Nasr, Payman; Carbery, Timothy; Geddes, James W

    2009-03-01

    There is accumulating evidence that excitotoxicity and oxidative stress resulting from excessive activation of glutamate (N-methyl-D-aspartate) NMDA receptors are major participants in striatal degeneration associated with 3-nitropropionic acid (3NP) administration. Although excitotoxic and oxidative mechanisms are implicated in 3NP toxicity, there are conflicting reports as to whether NMDA receptor antagonists attenuate or exacerbate the 3NP-induced neurodegeneration. In the present study, we investigated the involvement of NMDA receptors in striatal degeneration, protein oxidation and motor impairment following systemic 3NP administration. We examined whether NMDA receptor antagonists, memantine and ifenprodil, influence the neurotoxicity of 3NP. The development of striatal lesion and protein oxidation following 3NP administration is delayed by memantine but not affected by ifenprodil. However, in behavioral experiments, memantine failed to improve and ifenprodil exacerbated the motor deficits associated with 3NP toxicity. Together, these findings suggest caution in the application of NMDA receptor antagonists as a neuroprotective agent in neurodegenerative disorders associated with metabolic impairment.

  2. Agrochemical control of plant water use using engineered abscisic acid receptors.

    PubMed

    Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R

    2015-04-23

    Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.

  3. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil.

    PubMed

    Seeman, Philip; Guan, Hong-Chang; Hirbec, Hélène

    2009-08-01

    Although it is commonly stated that phencyclidine is an antagonist at ionotropic glutamate receptors, there has been little measure of its potency on other receptors in brain tissue. Although we previously reported that phencyclidine stimulated cloned-dopamine D2Long and D2Short receptors, others reported that phencyclidine did not stimulate D2 receptors in homogenates of rat brain striatum. This study, therefore, examined whether phencyclidine and other hallucinogens and psychostimulants could stimulate the incorporation of [(35)S]GTP-gamma-S into D2 receptors in homogenates of rat brain striatum, using the same conditions as previously used to study the cloned D2 receptors. Using 10 microM dopamine to define 100% stimulation, phencyclidine elicited a maximum incorporation of 46% in rat striata, with a half-maximum concentration of 70 nM for phencyclidine, when compared with 80 nM for dopamine, 89 nM for salvinorin A (48 nM for D2Long), 105 nM for lysergic acid diethylamide (LSD), 120 nM for R-modafinil, 710 nM for dizocilpine, 1030 nM for ketamine, and >10,000 nM for S-modafinil. These compounds also inhibited the binding of the D2-selective ligand [(3)H]domperidone. The incorporation was inhibited by the presence of 200 microM guanylylimidodiphosphate and also by D2 blockade, using 10 microM S-sulpiride, but not by D1 blockade with 10 microM SCH23390. Hypertonic buffer containing 150 mM NaCl inhibited the stimulation by phencyclidine, which may explain negative results by others. It is concluded that phencyclidine and other psychostimulants and hallucinogens can stimulate dopamine D2 receptors at concentrations related to their behavioral actions.

  4. Ultraviolet irradiation selectively disrupts the gamma-aminobutyric acid/benzodiazepine receptor-linked chloride ionophore

    SciTech Connect

    Evoniuk, G.; Moody, E.J.; Skolnick, P. )

    1989-05-01

    The ability of UV light to affect radioligand binding and 36Cl-uptake at the gamma-aminobutyric acidA (GABAA) receptor-chloride channel complex was examined. Exposure to 302 nm UV light produced a rapid (t1/2 = 4 min) reduction in (35S)t-butylbicyclo-phosphorothionate binding (assayed in the presence of 200 mM chloride) to sites associated with the GABAA receptor-coupled chloride ionophore. Saturation analysis revealed that this effect could be attributed entirely to a decrease in the maximum number of binding sites. Exposure to UV irradiation at lower (254 nm) and higher (366 nm) wavelengths also inhibited (35S)t-butylbicy-clophosphorothionate binding, but the respective rates of inactivation were 8- and 27-fold slower, compared with 302 nm. Other anion-dependent interactions at the GABAA receptor complex were disrupted in a similar manner. In the absence of permeant anion, (3H)flunitrazepam binding to benzodiazepine receptors was unaffected by 302 nm UV irradiation, whereas chloride-enhanced (3H)flunitrazepam binding was inhibited markedly. In the presence of 250-500 mM chloride, (3H)methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate binding to benzodiazepine receptors was also inhibited after UV exposure. Basal 36Cl- uptake into synaptoneurosomes was nearly doubled after 15 min of exposure to 302 nm light, whereas pentobarbital- and muscimol-stimulated 36Cl- uptake were reduced significantly. UV irradiation at 302 nm appears to disrupt selectively the anion-dependent functional interactions at the GABAA receptor complex. The apparent wavelength specificity suggests that the gating structure (channel) may contain tryptophan and/or tyrosine residues vital to the regulation of anion movement through the ionophore portion of this supramolecular receptor-ion channel complex.

  5. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice

    PubMed Central

    Kritikou, Eva; van Puijvelde, Gijs H. M.; van der Heijden, Thomas; van Santbrink, Peter J.; Swart, Maarten; Schaftenaar, Frank H.; Kröner, Mara J.; Kuiper, Johan; Bot, Ilze

    2016-01-01

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6Clow monocytes and CD4+ CD25+ FoxP3+ T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development. PMID:27883026

  6. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6C(low) monocytes and CD4(+) CD25(+) FoxP3(+) T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  7. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    NASA Astrophysics Data System (ADS)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  8. Retinoic Acid Receptor β2 Agonists Restore Glycemic Control In Diabetes and Reduce Steatosis

    PubMed Central

    Trasino, Steven E.; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J.

    2016-01-01

    Aims Retinoids (vitamin A (retinol), and structurally related molecules) possess metabolic modulating properties, prompting new interest in their role in the treatment of diabetes and fatty liver disease, but little is known about the effects of specific retinoic acid receptor (RAR) agonists in these diseases. Materials and Methods Synthetic agonists for retinoic acid receptor RARβ2 were administered to wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). Results We demonstrate that administration of synthetic agonists for the retinoic acid receptor RARβ2 to either wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) or to ob/ob and db/db mice (genetic models of obesity-associated T2D) reduces hyperglycemia, peripheral insulin resistance, and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation, and oxidative stress in the liver, pancreas, and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as SREBP1 and FASN (fatty acid synthase), and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Conclusions Collectively, our data show that orally active, rapidly acting, high affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. PMID:26462866

  9. Positive modulation of the α9α10 nicotinic cholinergic receptor by ascorbic acid

    PubMed Central

    Boffi, JC; Wedemeyer, C; Lipovsek, M; Katz, E; Calvo, DJ; Elgoyhen, AB

    2013-01-01

    Background and Purpose The activation of α9α10 nicotinic cholinergic receptors (nAChRs) present at the synapse between efferent olivocochlear fibres and cochlear hair cells can prevent acoustic trauma. Hence, pharmacological potentiators of these receptors could be useful therapeutically. In this work, we characterize ascorbic acid as a positive modulator of recombinant α9α10 nAChRs. Experimental Approach ACh-evoked responses were analysed under two-electrode voltage-clamp recordings in Xenopus laevis oocytes injected with α9 and α10 cRNAs. Key Results Ascorbic acid potentiated ACh responses in X. laevis oocytes expressing α9α10 (but not α4β2 or α7) nAChRs, in a concentration-dependent manner, with an effective concentration range of 1–30 mM. The compound did not affect the receptor's current–voltage profile nor its apparent affinity for ACh, but it significantly enhanced the maximal evoked currents (percentage of ACh maximal response, 240 ± 20%). This effect was specific for the L form of reduced ascorbic acid. Substitution of the extracellular cysteine residues present in loop C of the ACh binding site did not affect the potentiation. Ascorbic acid turned into a partial agonist of α9α10 nAChRs bearing a point mutation at the pore domain of the channel (TM2 V13′T mutant). A positive allosteric mechanism of action rather than an antioxidant effect of ascorbic acid is proposed. Conclusions and Implications The present work describes one of the few agents that activates or potentiates α9α10 nAChRs and leads to new avenues for designing drugs with potential therapeutic use in inner ear disorders. PMID:22994414

  10. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells123

    PubMed Central

    Martinez-Monedero, Rodrigo

    2016-01-01

    Abstract Mechanosensory hair cells release glutamate at ribbon synapses to excite postsynaptic afferent neurons, via AMPA-type ionotropic glutamate receptors (AMPARs). However, type II afferent neurons contacting outer hair cells in the mammalian cochlea were thought to differ in this respect, failing to show GluA immunolabeling and with many “ribbonless” afferent contacts. Here it is shown that antibodies to the AMPAR subunit GluA2 labeled afferent contacts below inner and outer hair cells in the rat cochlea, and that synaptic currents in type II afferents had AMPAR-specific pharmacology. Only half the postsynaptic densities of type II afferents that labeled for PSD-95, Shank, or Homer were associated with GluA2 immunopuncta or presynaptic ribbons, the “empty slots” corresponding to ribbonless contacts described previously. These results extend the universality of AMPAergic transmission by hair cells, and support the existence of silent afferent contacts. PMID:27257620

  11. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons

    PubMed Central

    Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna; Ebner, Stephanie R; Kelly, Matthew; Fischer, Rachel A; Kourrich, Saïd; Thomas, Mark J

    2016-01-01

    Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10–14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed ‘challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs. PMID:26068728

  12. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons.

    PubMed

    Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna; Ebner, Stephanie R; Kelly, Matthew; Fischer, Rachel A; Kourrich, Saïd; Thomas, Mark J

    2016-01-01

    Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10-14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed 'challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs.

  13. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  14. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  15. Active transport of amino acids by a guanidiniocarbonyl-pyrrole receptor.

    PubMed

    Urban, Christian; Schmuck, Carsten

    2010-08-16

    Herein we report the synthesis and characterization of a transporter 9 for N-acetylated amino acids. Transporter 9 is a conjugate of a guanidiniocarbonyl pyrrole cation, one of the most efficient carboxylate binding motifs reported so far, and a hydrophobic tris(dodecylbenzyl) group, which ensures solubility in organic solvents. In its protonated form, 9 binds N-acetylated amino acid carboxylates in wet organic solvents with association constants in the range of 10(4) M(-1) as estimated by extraction experiments. Aromatic amino acids are preferred due to additional cation-pi-interactions of the amino acid side chain with the guanidiniocarbonyl pyrrole moiety. U-tube experiments established efficient transport across a bulk liquid chloroform phase with fluxes approaching 10(-6) mol m(-2) s(-1). In experiments with single substrates, the release rate of the amino acid from the receptor-substrate complex at the interface with the receiving phase is rate determining. In contrast to this, in competition experiments with several substrates, the thermodynamic affinity to 9 becomes decisive. As 9 can only transport anions in its protonated form and has a pK(a) value of approximately 7, pH-driven active transport of amino acids is also possible. Transport occurs as a symport of the amino acid carboxylate and a proton.

  16. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  17. Amino acids in the COOH-terminal region of the oxytocin receptor third intracellular domain are important for receptor function.

    PubMed

    Zhong, Miao; Parish, Bridgette; Murtazina, Dilyara A; Ku, Chun-Ying; Sanborn, Barbara M

    2007-04-01

    Previously, residue K6.30 in the COOH-terminal region of the third intracellular domain (3iC) of the oxytocin (OT) receptor (OTR) was identified as important for receptor function leading to phospholipase C activation in both OTR and the vasopressin V(2) receptor (V(2)R) chimera V(2)ROTR3iC. Substitution of either A6.28K or V6.30K in wild-type V(2)R did not recapitulate the increase in phosphatidylinositide (PI) turnover observed in V(2)ROTR3iC. Hence, the role of K6.30 may be context-specific. Deletion of two NH(2)-terminal OTR3iC segments in the V(2)ROTR3iC chimera did not diminish vasopressin-stimulated PI turnover, whereas deletion of RVSSVKL (residues 6.19-6.25) reduced receptor expression. Deletion of this sequence in wild-type OTR reduced expression by 50% without affecting affinity for [(3)H]OT. This OTR mutant was unable to activate PI turnover or extracellular signal-regulated kinase 1/2 phosphorylation. The effects of alanine substitution for individual residues in RVSSVKL indicated differential importance for OTR function. The R6.19A substitution lost high-affinity sites for [(3)H]OT and the ability to stimulate PI turnover. Affinity for [(3)H]OT and membrane expression was not affected by any other substitutions. OTR-V6.20A and OTR-K6.24A mutants functioned as well as wild-type OTR, whereas OTR S6.21A, S6.22A, and V6.23A mutants exhibited impaired abilities to activate PI turnover (20-40% of OTR), and the OTR-L6.25A mutant exhibited constitutive activity. In conclusion, specific amino acids in the RVSSVKL segment in the COOH-terminal region of the third intracellular domain of OTR influence the ability of OTR to activate G protein-mediated actions.

  18. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid.

    PubMed Central

    Bhushan, A; McNamee, M G

    1993-01-01

    Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy. PMID:8471723

  19. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36.

    PubMed

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127-279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127-279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions.

  20. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36

    PubMed Central

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A.; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127–279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127–279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions. PMID:24348024

  1. Identification of amino acids involved in histamine potentiation of GABAA receptors

    PubMed Central

    Thiel, Ulrike; Platt, Sarah J.; Wolf, Steffen; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    Histamine is a neurotransmitter involved in a number of physiological and neuronal functions. In mammals, such as humans, and rodents, the histaminergic neurons found in the tuberomamillary nucleus project widely throughout the central nervous system. Histamine acts as positive modulator of GABAA receptors (GABAARs) and, in high concentrations (10 mM), as negative modulator of the strychnine-sensitive glycine receptor. However, the exact molecular mechanisms by which histamine acts on GABAARs are unknown. In our study, we aimed to identify amino acids potentially involved in the modulatory effect of histamine on GABAARs. We expressed GABAARs with 12 different point mutations in Xenopus laevis oocytes and characterized the effect of histamine on GABA-induced currents using the two-electrode voltage clamp technique. Our data demonstrate that the amino acid residues β2(N265) and β2(M286), which are important for modulation by propofol, are not involved in the action of histamine. However, we found that histamine modulation is dependent on the amino acid residues α1(R120), β2(Y157), β2(D163), β3(V175), and β3(Q185). We showed that the amino acid residues β2(Y157) and β3(Q185) mediate the positive modulatory effect of histamine on GABA-induced currents, whereas α1(R120) and β2(D163) form a potential histamine interaction site in GABAARs. PMID:26074818

  2. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  3. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  4. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid.

    PubMed Central

    Weis, R M; Koshland, D E

    1988-01-01

    The chemotaxis of wild-type cells of Escherichia coli and double mutants lacking the methyltransferase and the methylesterase activities of the receptor modification system has been compared in spatial gradients of aspartic acid. Previous studies showing that a chemotactic response can be observed for the mutant raised questions about the role of methylation in the bacterial memory. To clarify the role of methylation, the redistribution of bacteria in stabilized defined gradients of aspartic acid was monitored by light scattering. There was no redistribution of the mutant cells in nonsaturating gradients of aspartic acid, but over the same range these mutant bacteria were observed to respond and to adapt during tethering experiments. In large saturating gradients of aspartate, slight movement of the mutant up the gradient was observed. These results show that dynamic receptor methylation is required for the chemotactic response to gentle gradients of aspartic acid and that methylation resets to zero and is part of the normal wild-type memory. There are certain gradients, however, in which the methylation-deficient mutants show chemotactic ability, thus explaining the apparent anomaly. Images PMID:2829179

  5. Molecular basis for designing selective modulators of retinoic acid receptor transcriptional activities.

    PubMed

    Lefebvre, P

    2001-08-01

    Retinoic acid receptors are ligand-regulated transcription factors belonging to the nuclear receptor superfamily, which comprises 49 members in the human genome. all-trans retinoic acid and 9-cis retinoic acid receptors (RARs and RXRs) are each encoded by three distinct genes and several isoforms arise from alternative splicing and the use of different promoters. While RXRs are promiscuous dimerization partners of several other nuclear receptors, RARs are active, in-vivo, when associated to RXRs. Retinoids are therefore regulators of multiple physiological processes, from embryogenesis to metabolism. Different combinations of RXR:RAR heterodimers occur as a function of their tissue-specific expression and their activity is mostly conditioned by the activation status of RAR. These heterodimers are defined as non permissive heterodimers, in opposition to permissive dimers whose transcriptional activity may be modulated through RXR and its dimerization partner. The transcriptional activity of these dimers also relies on their ability to recruit nuclear coactivators and corepressors, which function as multi proteic complexes harboring several enzymatic activities (acetylases, kinases). The structure of the ligand bound to the RAR moiety of the dimer, as well as the nature of the DNA sequence to which dimers are bound, dictate the relative affinity of dimers for coactivators and thus its overall transcriptional activity. RARs are also able to repress the activity of unrelated transcription factors such as AP1 and NF-kappa-B, and therefore have potent anti proliferative and anti inflammatory properties. This review summarizes our current view of molecular mechanisms governing these various activities and emphasizes the need for a detailed understanding of how retinoids may dictate transactivating and transrepressive properties of RARs and RXRs, which may be considered as highly valuable therapeutic targets in many diseases such as cancer, skin hyperproliferation and

  6. PLZF is a negative regulator of retinoic acid receptor transcriptional activity

    PubMed Central

    Martin, Perrine J; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    2003-01-01

    Background Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in response to ligand treatment. Little is known however on how receptor activity is controlled by intermediary factors which interact with RARs in a ligand-independent manner. Results We have identified the promyelocytic leukemia zinc finger protein (PLZF), a transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar transcriptional interference could be observed with the estrogen receptor alpha and the glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR heterodimerization, both in-vitro and in intact cells. Conclusion Thus RAR and PLZF interact physically and functionally. Intriguingly, these two transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain and may, upon chromosomal translocation, form fusion proteins. Our observations therefore define a novel mechanism by which RARs activity may be controlled. PMID:14521715

  7. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions

    PubMed Central

    Choi, Sun-Hye; Jung, Seok-Won; Lee, Byung-Hwan; Kim, Hyeon-Joong; Hwang, Sung-Hee; Kim, Ho-Kyoung; Nah, Seung-Yeol

    2015-01-01

    Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology. PMID:26578955

  8. Ligand Induction of Retinoic Acid Receptors Alters an Acute Infection by Murine Cytomegalovirus†

    PubMed Central

    Angulo, Ana; Chandraratna, Roshantha A. S.; LeBlanc, James F.; Ghazal, Peter

    1998-01-01

    Here we report that administration of retinoids can alter the outcome of an acute murine cytomegalovirus (MCMV) infection. We show that a crucial viral control element, the major immediate-early enhancer, can be activated by retinoic acid (RA) via multiple RA-responsive elements (DR2) that bind retinoid X receptor-retinoic acid receptor (RAR) heterodimers with apparent dissociation constants ranging from 15 to 33 nM. Viral growth is dramatically increased upon RA treatment of infected tissue culture cells. Using synthetic retinoid receptor-specific agonists and antagonists, we provide evidence that RAR activation in cells is required for mediating the response of MCMV to RA. Oral administration of RA to infected immunocompetent mice selectively exacerbates an infection by MCMV, while cotreatment with an RAR antagonist protects against the adverse effects of RA on MCMV infection. In conclusion, these chemical genetic experiments provide evidence that an RAR-mediated pathway can modulate in vitro and in vivo infections by MCMV. PMID:9573222

  9. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  10. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis.

    PubMed

    Konno, Yasunori; Ueki, Shigeharu; Takeda, Masahide; Kobayashi, Yoshiki; Tamaki, Mami; Moritoki, Yuki; Oyamada, Hajime; Itoga, Masamichi; Kayaba, Hiroyuki; Omokawa, Ayumi; Hirokawa, Makoto

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K) inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.

  11. Expression and distribution of sialic acid influenza virus receptors in wild birds.

    PubMed

    França, M; Stallknecht, D E; Howerth, E W

    2013-02-01

    Avian influenza (AI) viruses have been detected in more than 105 wild bird species from 12 different orders but species-related differences in susceptibility to AI viruses exist. Expression of α2,3-linked (avian-type) and α2,6-linked (human-type) sialic acid (SA) influenza virus receptors in tissues is considered one of the determinants of the host range and tissue tropism of influenza viruses. We investigated the expression of these SA receptors in 37 wild bird species from 11 different orders by lectin histochemistry. Two isoforms of Maackia amurensis (MAA) lectin, MAA1 and MAA2, were used to detect α2,3-linked SA, and Sambucus nigra lectin was used to detect α2,6-linked SA. All species evaluated expressed α2,3-linked and α2,6-linked SA receptors in endothelial cells and renal tubular epithelial cells. Both α2,3-linked and α-2,6-linked SA receptors were expressed in respiratory and intestinal tract tissues of aquatic and terrestrial wild bird species from different taxa, but differences in SA expression and in the predominant isoform of MAA lectin bound were observed. With a few possible exceptions, these observed differences were not generally predictive of reported species susceptibility to AI viruses based on published experimental and field data.

  12. Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block.

    PubMed

    Yanovsky, Yevgenij; Schubring, Stephan R; Yao, Quiaoling; Zhao, Yan; Li, Sha; May, Andrea; Haas, Helmut L; Lin, Jian-Sheng; Sergeeva, Olga A

    2012-01-01

    Since ancient times ursodeoxycholic acid (UDCA), a constituent of bile, is used against gallstone formation and cholestasis. A neuroprotective action of UDCA was demonstrated recently in models of Alzheimer's disease and retinal degeneration. The mechanisms of UDCA action in the nervous system are poorly understood. We show now that UDCA promotes wakefulness during the active period of the day, lacking this activity in histamine-deficient mice. In cultured hypothalamic neurons UDCA did not affect firing rate but synchronized the firing, an effect abolished by the GABA(A)R antagonist gabazine. In histaminergic neurons recorded in slices UDCA reduced amplitude and duration of spontaneous and evoked IPSCs. In acutely isolated histaminergic neurons UDCA inhibited GABA-evoked currents and sIPSCs starting at 10 µM (IC(50) = 70 µM) and did not affect NMDA- and AMPA-receptor mediated currents at 100 µM. Recombinant GABA(A) receptors composed of α1, β1-3 and γ2L subunits expressed in HEK293 cells displayed a sensitivity to UDCA similar to that of native GABA(A) receptors. The mutation α1V256S, known to reduce the inhibitory action of pregnenolone sulphate, reduced the potency of UDCA. The mutation α1Q241L, which abolishes GABA(A)R potentiation by several neurosteroids, had no effect on GABA(A)R inhibition by UDCA. In conclusion, UDCA enhances alertness through disinhibition, at least partially of the histaminergic system via GABA(A) receptors.

  13. Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds

    PubMed Central

    Englund, Ethan A.; Wang, Deyun; Fujigaki, Hidetsugu; Sakai, Hiroyasu; Micklitsch, Christopher M.; Ghirlando, Rodolfo; Martin-Manso, Gema; Pendrak, Michael L.; Roberts, David D.; Durell, Stewart R.; Appella, Daniel H.

    2012-01-01

    Multivalent effects dictate the binding affinity of multiple ligands on one molecular entity to receptors. Integrins are receptors that mediate cell attachment through multivalent binding to peptide sequences within the extracellular matrix, and overexpression promotes the metastasis of some cancers. Multivalent display of integrin antagonists enhances their efficacy, but current scaffolds have limited ranges and precision for the display of ligands. Here we present an approach to study multivalent effects across wide ranges of ligand number, density, and three-dimensional arrangement. Using L-lysine γ-substituted peptide nucleic acids, the multivalent effects of an integrin antagonist were examined over a range of 1 to 45 ligands. The optimal construct improves the inhibitory activity of the antagonist by two orders of magnitude against the binding of melanoma cells to the extracellular matrix in both in vitro and in vivo models. PMID:22233624

  14. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  15. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  16. Nipecotic acid ethyl ester: a cholinergic agonist that may differentiate muscarinic receptor subtypes

    SciTech Connect

    Zorn, S.H.; Duman, R.S.; Enna, S.J.; Krogsgaard-Larsen, P.; Micheletti, R.; Giraldo, E.; Giachetti, A.

    1986-03-05

    Reports indicate that nipecotic acid ethyl ester (NAEE) displays cholinomimetic properties in vivo. In the present study a series of physiological and biochemical tests were conducted to characterize this action. NAEE had a negative inotropic effect on the guinea pig atrium, and stimulated contraction of the guinea pig ileum and isolated mouse stomach strip at concentrations similar to bethanechol (BCH). The atrial and ilial effects were reversed by atropine. Unlike BCH, NAEE had no effect on basal acid secretion in the isolated mouse stomach at concentrations < 100 ..mu..M. NAEE was more potent than carbachol (CCH) in displacing /sup 3/H-ONB binding from rat brain membranes. The potency of NAEE to inhibit antagonist binding in rat heart membranes was enhanced by Mg/sup + +/ (Hill coefficient < 1.0) and reduced by Gpp(NH)p. Like CCH, NAEE inhibited GTP-stimulated adenylate cyclase in rat brain striatal membranes. As compared to CCH, NAEE had little effect (< 5%) as a stimulator of inositol phosphate (IP) production in rat brain slices. The results indicate that NAEE is a direct-acting muscarinic receptor agonist. Moreover, its differential effects on acid secretion, IP accumulation, and adenylate cyclase suggest that it may be useful for defining cholinergic receptor subclasses.

  17. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport.

    PubMed

    Kawano, Yuki; Nishiumi, Shin; Tanaka, Shinwa; Nobutani, Kentaro; Miki, Akira; Yano, Yoshihiko; Seo, Yasushi; Kutsumi, Hiromu; Ashida, Hitoshi; Azuma, Takeshi; Yoshida, Masaru

    2010-12-15

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.

  18. Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors.

    PubMed

    Gududuru, Veeresa; Zeng, Kui; Tsukahara, Ryoko; Makarova, Natalia; Fujiwara, Yuko; Pigg, Kathryn R; Baker, Daniel L; Tigyi, Gabor; Miller, Duane D

    2006-01-15

    Darmstoff describes a family of gut smooth muscle-stimulating acetal phosphatidic acids initially isolated and characterized from the bath fluid of stimulated gut over 50 years ago. Despite similar structural and biological profiles, Darmstoff analogs have not previously been examined as potential LPA mimetics. Here, we report a facile method for the synthesis of potassium salts of Darmstoff analogs. To understand the effect of stereochemistry on lysophosphatidic acid mimetic activity, synthesis of optically pure stereoisomers of selected Darmstoff analogs was achieved starting with chiral methyl glycerates. Each Darmstoff analog was evaluated for subtype-specific LPA receptor agonist/antagonist activity, PPARgamma activation, and autotaxin inhibition. From this study we identified compound 12 as a pan-antagonist and several pan-agonists for the LPA(1-3) receptors. Introduction of an aromatic ring in the lipid chain such as analog 22 produced a subtype-specific LPA(3) agonist with an EC(50) of 692 nM. Interestingly, regardless of their LPA(1/2/3) ligand properties all of the Darmstoff analogs tested activated PPARgamma. However, these compounds are weak inhibitors of autotaxin. The results indicate that Darmstoff analogs constitute a novel class of lysophosphatidic acid mimetics.

  19. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

    PubMed Central

    Villa, Stephanie R.; Priyadarshini, Medha; Fuller, Miles H.; Bhardwaj, Tanya; Brodsky, Michael R.; Angueira, Anthony R.; Mosser, Rockann E.; Carboneau, Bethany A.; Tersey, Sarah A.; Mancebo, Helena; Gilchrist, Annette; Mirmira, Raghavendra G.; Gannon, Maureen; Layden, Brian T.

    2016-01-01

    The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation. PMID:27324831

  20. Membrane bile acid receptor TGR5 predicts good prognosis in ampullary adenocarcinoma patients with hyperbilirubinemia

    PubMed Central

    Chen, Min-Chan; Chen, Yi-Ling; Wang, Tzu-Wen; Hsu, Hui-Ping; Lai, Ming-Derg

    2016-01-01

    Bile acids are potential carcinogens in gastrointestinal cancer, and interact with nuclear and membrane receptors to initiate downstream signaling. The effect of TGR5 [also known as G protein-coupled bile acid receptor 1 (GPBAR1)] on cancer progression is dependent on the tissue where it is activated. In this report, the function of TGR5 expression in cancer was studied using a bioinformatic approach. TGR5 expression in ampullary adenocarcinoma and normal duodenum was compared by western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry (IHC). High GPBAR1 gene expression was found to be an indicator of worse prognosis in gastric and breast cancer patients, and an indication of better prognosis in ovarian cancer patients. The level of GPBAR1 gene expression was higher in bile-acid exposed cancer than in other types of cancer, and was increased in well-differentiated ampullary adenocarcinoma. Negative, weak or mild expression of TGR5 was correlated with younger age, higher plasma level of total/direct bilirubin, higher plasma concentration of CA-125, advanced tumor stage and advanced AJCC TNM stage. The disease-specific survival rate was highest in ampullary adenocarcinoma patients with high TGR5 expression and high total bilirubin level. In summary, TGR5 functions as a tumor-suppressor in patients with ampullary adenocarcinoma and preoperative hyperbilirubinemia. Further study of the suppressive mechanism may provide a new therapeutic option for patients with ampullary adenocarcinoma. PMID:27510297

  1. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  2. GRIP1 interlinks N-cadherin and AMPA receptors at vesicles to promote combined cargo transport into dendrites

    PubMed Central

    Heisler, Frank F.; Lee, Han Kyu; Gromova, Kira V.; Pechmann, Yvonne; Schurek, Beate; Ruschkies, Laura; Schroeder, Markus; Schweizer, Michaela; Kneussel, Matthias

    2014-01-01

    The GluA2 subunit of AMPA-type glutamate receptors (AMPARs) regulates excitatory synaptic transmission in neurons. In addition, the transsynaptic cell adhesion molecule N-cadherin controls excitatory synapse function and stabilizes dendritic spine structures. At postsynaptic membranes, GluA2 physically binds N-cadherin, underlying spine growth and synaptic modulation. We report that N-cadherin binds to PSD-95/SAP90/DLG/ZO-1 (PDZ) domain 2 of the glutamate receptor interacting protein 1 (GRIP1) through its intracellular C terminus. N-cadherin and GluA2-containing AMPARs are presorted to identical transport vesicles for dendrite delivery, and live imaging reveals cotransport of both proteins. The kinesin KIF5 powers GluA2/N-cadherin codelivery by using GRIP1 as a multilink interface. Notably, GluA2 and N-cadherin use different PDZ domains on GRIP1 to simultaneously bind the transport complex, and interference with either binding motif impairs the turnover of both synaptic cargoes. Depolymerization of microtubules, deletion of the KIF5 motor domain, or specific blockade of AMPAR exocytosis affects delivery of GluA2/N-cadherin vesicles. At the functional level, interference with this cotransport reduces the number of spine protrusions and excitatory synapses. Our data suggest the concept that the multi-PDZ-domain adaptor protein GRIP1 can act as a scaffold at trafficking vesicles in the combined delivery of AMPARs and N-cadherin into dendrites. PMID:24639525

  3. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  4. Balanced Synaptic Impact via Distance-Dependent Synapse Distribution and Complementary Expression of AMPARs and NMDARs in Hippocampal Dendrites

    PubMed Central

    Menon, Vilas; Musial, Timothy F.; Liu, Annie; Katz, Yael; Kath, William L.; Spruston, Nelson; Nicholson, Daniel A.

    2013-01-01

    SUMMARY Neuronal computation involves the integration of synaptic inputs that are often distributed over expansive dendritic trees, suggesting the need for compensatory mechanisms that enable spatially disparate synapses to influence neuronal output. In hippocampal CA1 pyramidal neurons, such mechanisms have indeed been reported, which normalize either the ability of distributed synapses to drive action potential initiation in the axon or their ability to drive dendritic spiking locally. Here we report that these mechanisms can coexist, through an elegant combination of distance-dependent regulation of synapse number and synaptic expression of AMPA and NMDA receptors. Together, these complementary gradients allow individual dendrites in both the apical and basal dendritic trees of hippocampal neurons to operate as facile computational subunits capable of supporting both global integration in the soma/axon and local integration in the dendrite. PMID:24360547

  5. Dysregulation of AMPA receptor transmission in the nucleus accumbens in animal models of cocaine addiction

    PubMed Central

    Wolf, Marina E.

    2014-01-01

    Plasticity of glutamate transmission in neuronal circuits involving the nucleus accumbens (NAc) is now recognized to play a critical role in cocaine addiction. NAc neurons are excited primarily by AMPA-type glutamate receptors (AMPAR) and this is required for cocaine seeking. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of DA levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class receptors primes AMPAR for synaptic insertion, creating a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction. PMID:20361291

  6. Characterization of influenza virus sialic acid receptors in minor poultry species.

    PubMed

    Kimble, Brian; Nieto, Gloria Ramirez; Perez, Daniel R

    2010-12-09

    It is commonly accepted that avian influenza viruses (AIVs) bind to terminal α2,3 sialic acid (SA) residues whereas human influenza viruses bind to α2,6 SA residues. By a series of amino acid changes on the HA surface protein, AIVs can switch receptor specificity and recognize α2,6 SA positive cells, including human respiratory epithelial cells. Animal species, like pigs and Japanese quail, that contain both α2,3 and α2,6 SA become ideal environments for receptor switching. Here, we describe the SA patterns and distributions in 6 common minor domestic poultry species: Peking duck, Toulouse geese, Chinese ring-neck pheasant, white midget turkey, bobwhite quail, and pearl guinea fowl. Lectins specific to α2,3 and α2,6 SA (Maakia amurensis agglutinin and Sambuca nigra agglutinin, respectively) were used to detect SA by an alkaline phosphotase-based method and a fluorescent-based method. Differences in SA moieties and their ability to bind influenza viruses were visualized by fluorescent labeling of 4 different H3N2 influenza viruses known to be specific for one receptor or the other. The geese and ducks showed α2,3 SA throughout the respiratory tract and marginal α2,6 SA only in the colon. The four other avian species showed both α2,3 and α2,6 SA in the respiratory tract and the intestines. Furthermore, the turkey respiratory tract showed a positive correlation between age and α2,6 SA levels. The fact that these birds have both avian and human flu receptors, combined with their common presence in backyard farms and live bird markets worldwide, mark them as potential mixing bowl species and necessitates improved surveillance and additional research about the role of these birds in influenza host switching.

  7. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics.

    PubMed

    Yonezawa, Tomo; Kurata, Riho; Yoshida, Kaori; Murayama, Masanori A; Cui, Xiaofeng; Hasegawa, Akihiko

    2013-01-01

    G protein-coupled receptor (GPCR) (also known as seven-transmembrane domain receptor) superfamily represents the largest protein family in the human genome. These receptors respond to various physiological ligands such as photons, odors, pheromones, hormones, ions, and small molecules including amines, amino acids to large peptides and steroids. Thus, GPCRs are involved in many diseases and the target of around half of all conventional drugs. The physiological roles of free fatty acids (FFAs), in particular, long-chain FFAs, are important for the development of many metabolic disease including obesity, diabetes, and atherosclerosis. In the past half decade, deorphanization of several GPCRs has revealed that GPR40, GPR41, GPR43, GPR84 and GPR120 sense concentration of extracellular FFAs with various carbon chain lengths. GPR40 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium- chain, but not long-chain, FFAs. GPR41 and GPR43 are activated by short-chain FFAs. GPR40 is highly expressed in pancreatic beta cells and plays a crucial role in FFAs-induced insulin secretion. GPR120 is mainly expressed in enteroendocrine cells and plays an important role for FFAs-induced glucagon-like peptide-1. GPR43 is abundant in leukocytes and adipose tissue, whilst GPR41 is highly expressed in adipose tissue, the pancreas and leukocytes. GPR84 is expressed in leukocytes and monocyte/macrophage. This review aims to shed light on the physiological roles and development of drugs targeting these receptors.

  8. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  9. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes

    PubMed Central

    Dawe, G. Brent; Musgaard, Maria; Aurousseau, Mark R.P.; Nayeem, Naushaba; Green, Tim; Biggin, Philip C.; Bowie, Derek

    2016-01-01

    Summary Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits. PMID:26924438

  10. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, andMetSrisk and whether plasma fatty acids,...

  11. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.

    PubMed

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M; Angueira, Anthony R; Brodsky, Michael; Hayes, M Geoffrey; Kovatcheva-Datchary, Petia; Bäckhed, Fredrik; Gilbert, Jack A; Lowe, William L; Layden, Brian T

    2015-11-15

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  12. Human gestation-associated tissues express functional cytosolic nucleic acid sensing pattern recognition receptors.

    PubMed

    Bryant, Aled H; Menzies, Georgina E; Scott, Louis M; Spencer-Harty, Samantha; Davies, Lleucu B; Smith, Rachel A; Jones, Ruth H; Thornton, Catherine A

    2017-03-13

    The role of viral infections in adverse pregnancy outcomes has gained interest in recent years. Innate immune pattern recognition receptors (PRRs) and their signalling pathways that yield a cytokine output in response to pathogenic stimuli have been postulated to link infection at the maternal-fetal interface and adverse pregnancy outcomes. The objective of this study was to investigate the expression and functional response of nucleic acid ligand responsive Toll-like receptors (TLR3, 7, 8 and 9), and retinoic acid-inducible gene 1 (RIG-I)-like receptors (RIG-I, MDA5 and LGP2) in human term gestation-associated tissues (placenta, choriodecidua and amnion) using an explant model. Immunohistochemistry revealed that these PRRs were expressed by the term placenta, choriodecidua and amnion. A statistically significant increase in interleukin (IL)-6 and/or IL-8 production in response to specific agonists for TLR3 (Poly(I:C); low and high molecular weight), TLR7 (Imiquimod), TLR8 (ssRNA40) and RIG-I/MDA5 (Poly(I:C)LyoVec) was observed; there was no response to a TLR9 (ODN21798) agonist. A hierarchical clustering approach was used to compare the response of each tissue type to the ligands studied and revealed that the placenta and choriodecidua generate a more similar IL-8 response, while the choriodecidua and amnion generate a more similar IL-6 response to nucleic acid ligands. These findings demonstrate that responsiveness via TLR3, TLR7, TLR8 and RIG-1/MDA5 is a broad feature of human term gestation-associated tissues with differential responses by tissue that might underpin adverse obstetric outcomes. This article is protected by copyright. All rights reserved.

  13. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin.

    PubMed

    Tippmann, Frank; Hundt, Jana; Schneider, Anja; Endres, Kristina; Fahrenholz, Falk

    2009-06-01

    Late-onset Alzheimer's disease is often connected with nutritional misbalance, such as enhanced cholesterol intake, deficiency in polyunsaturated fatty acids, or hypovitaminosis. The alpha-secretase ADAM10 has been found to be regulated by retinoic acid, the bioreactive metabolite of vitamin A. Here we show that retinoids induce gene expression of ADAM10 and alpha-secretase activity by nonpermissive retinoid acid receptor/retinoid X receptor (RAR/RXR) heterodimers, whereby alpha- and beta-isotypes of RAR play a major role. However, ligands of other RXR binding partners, such as the vitamin D receptor, do not stimulate alpha-secretase activity. On the basis of these findings, we examined the effect of synthetic retinoids and found a strong enhancement of nonamyloidogenic processing of the amyloid precursor protein by the vitamin A analog acitretin: it stimulated ADAM10 promoter activity with an EC(50) of 1.5 microM and led to an increase of mature ADAM10 protein that resulted in a two- to three-fold increase of the ratio between alpha- and beta-secretase activity in neuroblastoma cells. The alpha-secretase stimulation by acitretin was completely inhibited by the ADAM10-specific inhibitor GI254023X. Intracerebral injection of acitretin in APP/PS1-21 transgenic mice led to a reduction of Abeta(40) and Abeta(42). The results of this study may have clinical relevance because acitretin has been approved for the treatment of psoriasis since 1997 and found generally safe for long-term use in humans.

  14. Felbamate displays in vitro antiepileptic effects as a broad spectrum excitatory amino acid receptor antagonist.

    PubMed

    Domenici, M R; Sagratella, S; Ongini, E; Longo, R; Scotti de Carolis, A

    1994-12-27

    The in vitro antiepileptic activity of the novel anticonvulsant drug felbamate was tested in rat hippocampal slices on the CA1 epileptiform bursting induced by different chemical epileptogenic agents. The effects of felbamate were compared with those of the anticonvulsant drugs diphenylhydantoin and pentobarbitone and with the effects of excitatory amino acid antagonists acting at both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Like the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), felbamate at a minimum effective concentration of 1 mM induced a significant (P < 0.01) reduction of the duration of the CA1 epileptiform bursting due to the K+ channel blocker, 4-aminopyridine, and the excitatory amino acids, kainate and quisqualate. Like the NMDA receptor antagonist ketamine, felbamate (1.6 mM) significantly (P < 0.01) decreased the duration of the CA1 epileptiform bursting caused by 'Mg(2+)-free' solutions. Conversely, felbamate (1.6 mM), CNQX (100 microM) and ketamine (100 microM) failed to affect the epileptiform bursting induced by the GABA antagonist penicillin. Pentobarbitone (100 microM) significantly (P < 0.01) decreased the duration of the CA1 epileptiform bursting caused by 'Mg(2+)-free' solutions, 4-aminopyridine or penicillin, while diphenylhydantoin (up to concentrations of 100 microM) failed to have an effect. The results indicate that felbamate displays a unique profile of in vitro antiepileptic effects as a broad spectrum antagonist of excitatory amino acid transmission.

  15. Recessive and Dominant Mutations in Retinoic Acid Receptor Beta in Cases with Microphthalmia and Diaphragmatic Hernia

    PubMed Central

    Srour, Myriam; Chitayat, David; Caron, Véronique; Chassaing, Nicolas; Bitoun, Pierre; Patry, Lysanne; Cordier, Marie-Pierre; Capo-Chichi, José-Mario; Francannet, Christine; Calvas, Patrick; Ragge, Nicola; Dobrzeniecka, Sylvia; Hamdan, Fadi F.; Rouleau, Guy A.; Tremblay, André; Michaud, Jacques L.

    2013-01-01

    Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119∗]) and frameshift (c.1201_1202insCT [p.Ile403Serfs∗15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119∗ and p.Ile403Serfs∗15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis. PMID:24075189

  16. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    DOE PAGES

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; ...

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression ismore » higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.« less

  17. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    SciTech Connect

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; Angueira, Anthony R.; Brodsky, Michael; Hayes, M. Geoffrey; Kovatcheva-Datchary, Petia; Backhed, Fredrik; Gilbert, Jack A.; Lowe, Jr., William L.; Layden, Brian T.

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  18. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    PubMed

    Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  19. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis

    PubMed Central

    Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants. PMID:27992471

  20. Bioorthogonal click chemistry to assay mu-opioid receptor palmitoylation using 15-hexadecynoic acid and immunoprecipitation

    PubMed Central

    Ebersole, Brittany; Petko, Jessica; Levenson, Robert

    2014-01-01

    We have developed a modification of bioorthogonal click chemistry to assay the palmitoylation of cellular proteins. This assay utilizes 15-hexadecynoic acid (15-HDYA) as a chemical probe in combination with protein immunoprecipitation using magnetic beads in order to detect S-palmitoylation of proteins of interest. Here we demonstrate the utility of this approach for the mu-opioid receptor (MOR), a GPCR responsible for mediating the analgesic and addictive properties of most clinically relevant opioid agonist drugs. This technique provides a rapid, non-isotopic, and efficient method to assay the palmitoylation status of a variety of cellular proteins including most GPCRs. PMID:24463015

  1. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  2. Aminosulfhydryl and Aminodisulfide Compounds Enhance Binding of the Glucocorticoid Receptor Complex to Deoxyribonucleic Acid-Coated Cellulose and to Chromatin

    DTIC Science & Technology

    1993-01-01

    glucocorticoid receptor [21]. Diaminosulfhydryl chloroacetic acid was obtained from the Fisher compounds are more active at enhancing GRC Scientific...phase consisting of 0. I M BASE containing 25mM KCI and 3 mM chloroacetic acid and 5mM d/-10-camphorsul- MgCI2, pH 7.6 at 0 0C) was added to each tube...Enhance Binding of the Glucocorticoid Receptor Complex to Deoxy- ribonucleic Acid -Coated Cellulose and to Chromatin 4. AUThOR(S)’ J.M. Karle, R. Olmeda and

  3. A Conserved Aspartic Acid Is Important for Agonist (VUAA1) and Odorant/Tuning Receptor-Dependent Activation of the Insect Odorant Co-Receptor (Orco)

    PubMed Central

    Kumar, Brijesh N.; Taylor, Robert W.; Pask, Gregory M.; Zwiebel, Laurence J.; Newcomb, Richard D.; Christie, David L.

    2013-01-01

    Insect odorant receptors function as heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor, and a conserved co-receptor (Orco). An Orco agonist, VUAA1, is able to activate both heteromeric and homomeric Orco-containing channels. Very little is known about specific residues in Orco that contribute to cation permeability and gating. We investigated the importance of two conserved Asp residues, one in each of transmembrane domains 5 and 7, for channel function by mutagenesis. Drosophila melanogaster Orco and its substitution mutants were expressed in HEK cells and VUAA1-stimulated channel activity was determined by Ca2+ influx and whole-cell patch clamp electrophysiology. Substitution of D466 in transmembrane 7 with amino acids other than glutamic acid resulted in a substantial reduction in channel activity. The D466E Orco substitution mutant was ∼2 times more sensitive to VUAA1. The permeability of the D466E Orco mutant to cations was unchanged relative to wild-type Orco. When D466E Orco is co-expressed with a conventional tuning odorant receptor, the heteromeric complex also shows increased sensitivity to an odorant. Thus, the effect of the D466E mutation is not specific to VUAA1 agonism or dependent on homomeric Orco assembly. We suggest the gain-of-activation characteristic of the D466E mutant identifies an amino acid that is likely to be important for activation of both heteromeric and homomeric insect odorant receptor channels. PMID:23894621

  4. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  5. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  6. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    PubMed

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-03-17

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  7. Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors.

    PubMed

    Yokoi, Hiroshi; Mizukami, Hajime; Nagatsu, Akito; Tanabe, Hiroki; Inoue, Makoto

    2010-01-01

    The physiological and pathological role of oxidized polyunsaturated fatty acids (PUFAs) has been extensively studied, whereas those of hydroxy monounsaturated fatty acids (MUFAs) are not well understood. This study demonstrated that 11-hydroxy-(9Z)-octadecenoic acid ((9Z)-11-HOE), which was isolated from adlay seeds (Coix lacryma-jobi L. var. ma-yuen STAF.), can activate peroxisome proliferator-activated receptor (PPAR)alpha, delta and gamma in luciferase reporter assays more efficiently than (9Z)-octadecenoic acid (oleic acid), and to the same degree as linoleic acid. (9Z)-11-HOE increased the mRNA levels of UCP2 and CD36 in C2C12 myotubes and THP- 1 cells, respectively, and these effects were blocked by the PPARdelta- and gamma-specific antagonists GSK0660 and T0070907, respectively. Evaluation of the structure.activity relationship between hydroxy MUFAs and PPAR activation revealed that (9E)-11-HOE, the geometrical isomer of (9Z)-11-HOE, activated PPARs more potently than (9Z)-11-HOE, and that PPAR activation by hydroxyl MUFAs was not markedly influenced by the position of the hydroxy group or the double bond, although PPARdelta seemed to possess ligand specificity different to that of PPARalpha or gamma . Additionally, the finding that 11-hydroxy octadecanoic acid, the hydrogenated product of (9E)-11- HOE, was also capable of activating PPARs to a similar extent as (9E)-11-HOE indicates that the double bond in hydroxy MUFAs is not essential for PPAR activation. In conclusion, (9Z)-11-HOE derived from alday seeds and hydroxy MUFAs with a chain length of 16 or 18 acted as PPAR agonists. Hydroxylation of MUFAs may change these compounds from silent PPAR ligands to active PPAR agonists.

  8. Synthesis and Activity of Dafachronic Acid Ligands for the C. elegans DAF-12 Nuclear Hormone Receptor

    PubMed Central

    Sharma, Kamalesh K.; Wang, Zhu; Motola, Daniel L.; Cummins, Carolyn L.; Mangelsdorf, David J.; Auchus, Richard J.

    2009-01-01

    The nuclear hormone receptor DAF-12 from Caenorhabditis elegans is activated by dafachronic acids, which derive from sterols upon oxidation by DAF-9, a cytochrome P450. DAF-12 activation is a critical checkpoint in C. elegans for acquisition of reproductive competence and for entry into adulthood rather than dauer diapause. Previous studies implicated the (25S)-Δ7-dafachronic acid isomer as the most potent compound, but the (25S)-Δ4-isomer was also identified as an activator of DAF-12. To explore the tolerance of DAF-12 for structural variations in the ligand and to enable further studies requiring large amounts of ligands for DAF-12 and homologs in other nematodes, we synthesized (25R)- and (25S)-isomers of five dafachronic acids differing in A/B-ring configurations. Both the (25S)- and (25R)-Δ7-dafachronic acids are potent transcriptional activators in a Gal4-transactivation assay using HEK-293 cells, with EC50 values of 23 and 33 nm, respectively, as are (25S)- and (25R)-Δ4-dafachronic acids, with EC50 values of 23 and 66 nm, respectively. The (25S)- and (25R)-Δ5-isomers were much less potent, with EC50 values approaching 1000 nm, and saturated 5α- and 5β-dafachronic acids showed mostly intermediate potencies. Rescue assays using daf- 9-null mutants confirmed the results from transactivation experiments, but this in vivo assay accentuated the greater potencies of the (25S)-epimers, particularly for the (25S)-Δ7-isomer. We conclude that DAF-12 accommodates a large range of structural variation in ligand geometry, but (25S)-Δ7-dafachronic acid is the most potent and probably biologically relevant isomer. Potency derives more from the A/B-ring configuration than from the stereochemistry at C-25. PMID:19196833

  9. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  10. LY404187, a potentiator of AMPARs, enhances both the amplitude and 1/CV2 of AMPA EPSCs but not NMDA EPSCs at CA3-CA1 synapses in the hippocampus of neonatal rats.

    PubMed

    Song, Beomjong; Lee, Sukwon; Choi, Sukwoo

    2012-12-07

    Cyclothiazide is a well-known AMPAR potentiator, but it has also been shown to enhance the probability of presynaptic release in some cases. Interestingly, cyclothiazide has been shown to reveal AMPA EPSCs at silent CA3-CA1 synapses (which exhibit NMDA EPSCs but not AMPA EPSCs) in the hippocampus of neonatal or developing rats, but this particular result has not been reproduced at other types of synapses. Although this discrepancy may be due to the different mechanisms underlying silent synapses in distinct brain subregions, it is also possible that cyclothiazide has pre- and postsynaptic molecular targets that are differentially expressed at the different types (or different developing stages) of synapses. In this study, we reexamined, using a new AMPAR potentiator, LY404187, whether AMPAR potentiation leads to the conversion of silent CA3-CA1 synapses into functional synapses (exhibiting both AMPA and NMDA EPSCs) in the hippocampus of neonatal rats. LY404187 did not appear to alter the probability of presynaptic release, as evidenced by the lack of significant changes in both the amplitude and the paired-pulse facilitation ratio (an index of release probability) of NMDA EPSCs. LY404187 enhanced both the amplitude and 1/CV(2) (CV: coefficient of variation) of AMPA EPSCs but not NMDA EPSCs. Because an increase in 1/CV(2) reflects an increased number of functional synapses and/or an enhanced release probability, the LY404187-induced increase in the 1/CV(2) value of AMPA EPSCs, but not NMDA EPSCs, likely indicates an increased number of synapses exhibiting AMPA EPSCs but not an increased number of synapses exhibiting NMDA EPSCs. Because AMPARs and NMDARs are co-localized at the same synapses, our findings are consistent with a scenario in which LY404187 enables silent synapses to acquire AMPA EPSCs.

  11. Abscisic acid (ABA) receptors: light at the end of the tunnel

    PubMed Central

    McCormick, Sheila

    2010-01-01

    The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different proteins that could receive the ABA signal and initiate the signaling cascade. The winner appears to be PYR/PYL/RCAR (PYrabactin Resistance/PYrabactin Resistance-Like/Regulatory Component of Abscisic acid Receptor) proteins, as crystal structures were recently published. The crystal structures support the idea that upon ABA binding to a PYR/PYL/RCAR protein, the activity of a phosphatase 2C, with known repressive activity on ABA signaling, is inhibited. PMID:20948817

  12. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Unoda, Kiichi; Doi, Yoshimitsu; Nakajima, Hideto; Yamane, Kazushi; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2013-03-15

    Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, is a neuroprotective lipid with anti-inflammatory properties. We investigated the possible therapeutic effect of EPA on experimental autoimmune encephalomyelitis (EAE). EAE mice were fed a diet with or without EPA. The clinical EAE scores of the EPA-fed mice were significantly lower than those of the non-EPA mice. In the EPA-treated mice, IFN-γ and IL-17 productions were remarkably inhibited and the expression levels of peroxisome proliferator-activated receptors were significantly enhanced in the CNS-infiltrating CD4T cells. Thus EPA shows promise as a potential new therapeutic agent against multiple sclerosis.

  13. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    PubMed Central

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gαs and caused an increase in intracellular cAMP and Ca2+. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gαs inhibitor) or U73122 (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, U73122 or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on Gs/cAMP/Ca2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analogue, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis. PMID:23022524

  14. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis

    PubMed Central

    Lee, Jung Hoon; Wada, Taira; Febbraio, Maria; He, Jinhan; Matsubara, Tsutomu; Lee, Min Jae; Gonzalez, Frank J.; Xie, Wen

    2010-01-01

    Background & Aims The aryl hydrocarbon receptor (AhR) is a PAS domain transcription factor previously known as the “dioxin receptor” or “xenobiotic receptor.” The goal of this study is to determine the endobiotic role of AhR in hepatic steatosis. Methods Wild type, constitutively activated AhR (CA-AhR) transgenic, AhR null (AhR-/-), and fatty acid translocase CD36/FAT null (CD36-/-) mice were used to investigate the role of AhR in steatosis and the involvement of CD36 in the steatotic effect of AhR. The promoters of the mouse and human CD36 genes were cloned and their regulation by AhR was analyzed. Results Activation of AhR induced spontaneous hepatic steatosis characterized by the accumulation of triglycerides. The steatotic effect of AhR is likely due to the combined upregulation of CD36 and fatty acid transport proteins (FATPs), suppression of fatty acid oxidation, inhibition of hepatic export of triglycerides, increase in peripheral fat mobilization, and increased hepatic oxidative stress. Promoter analysis established CD36 as a novel transcriptional target of AhR. Activation of AhR in liver cells induced CD36 gene expression and enhanced fatty acid uptake. The steatotic effect of an AhR agonist was inhibited in CD36-/- mice. Conclusions Our study reveals a novel link between AhR-induced steatosis and the expression of CD36. Industrial or military exposures to dioxin and related compounds have been linked to increased prevalence of fatty liver in humans. Results from this study may help to establish AhR and its target CD36 as novel therapeutic and preventive targets for fatty liver disease. PMID:20303349

  15. Human sweet taste receptor mediates acid-induced sweetness of miraculin.

    PubMed

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-10-04

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity.

  16. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    PubMed Central

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  17. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    PubMed

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies.

  18. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids

    PubMed Central

    Pitts, R. Jason; Derryberry, Stephen L.; Zhang, Zhiwei; Zwiebel, Laurence J.

    2017-01-01

    The principal Afrotropical human malaria vector mosquito, Anopheles gambiae, remains a significant threat to global health. A critical component in the transmission of malaria is the ability of An. gambiae females to detect and respond to human-derived chemical kairomones in their search for blood meal hosts. The basis for host odor responses resides in olfactory receptor neurons (ORNs) that express chemoreceptors encoded by large gene families, including the odorant receptors (ORs) and the variant ionotropic receptors (IRs). While ORs have been the focus of extensive investigation, functional IR complexes and the chemical compounds that activate them have not been identified in An. gambiae. Here we report the transcriptional profiles and functional characterization of three An. gambiae IR (AgIr) complexes that specifically respond to amines or carboxylic acids - two classes of semiochemicals that have been implicated in mediating host-seeking by adult females but are not known to activate An. gambiae ORs (AgOrs). Our results suggest that AgIrs play critical roles in the detection and behavioral responses to important classes of host odors that are underrepresented in the AgOr chemical space. PMID:28067294

  19. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir boosted atazanavir nanoformulations

    PubMed Central

    Puligujja, Pavan; Balkundi, Shantanu; Kendrick, Lindsey; Baldridge, Hannah; Hilaire, James; Bade, Aditya N.; Dash, Prasanta K.; Zhang, Gang; Poluektova, Larisa; Gorantla, Santhi; Liu, Xin-Ming; Ying, Tianlei; Feng, Yang; Wang, Yanping; Dimitrov, Dimiter S.; McMillan, JoEllyn M.; Gendelman, Howard E.

    2014-01-01

    Long-acting nanoformulated antiretroviral therapy (nanoART) that target monocyte-macrophage could improve the drug’s half-life and protein binding capacities while facilitating cell and tissue depots. To this end, ART nanoparticles that target the folic acid (FA) receptor and permit cell-based drug depots were examined using pharmacokinetic and pharmacodynamic (PD) tests. FA receptor-targeted poloxamer 407 nanocrystals, containing ritonavir-boosted atazanavir (ATV/r), significantly affected several therapeutic factors: drug bioavailability increased as much as 5 times and PD activity improved as much as 100 times. Drug particles administered to human peripheral blood lymphocyte reconstituted NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice and infected with HIV-1ADA at a tissue culture infective dose50 of 104 infectious viral particles/ml led to ATV/r drug concentrations that paralleled FA receptor beta staining in both the macrophage-rich parafollicular areas of spleen and lymph nodes. Drug levels were higher in these tissues than what could be achieved by either native drug or untargeted nanoART particles. The data also mirrored potent reductions in viral loads, tissue viral RNA and numbers of HIV-1p24+ cells in infected and treated animals. We conclude that FA-P407 coating of ART nanoparticles readily facilitate drug carriage and facilitate antiretroviral responses. PMID:25522973

  20. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations.

    PubMed

    Puligujja, Pavan; Balkundi, Shantanu S; Kendrick, Lindsey M; Baldridge, Hannah M; Hilaire, James R; Bade, Aditya N; Dash, Prasanta K; Zhang, Gang; Poluektova, Larisa Y; Gorantla, Santhi; Liu, Xin-Ming; Ying, Tianlei; Feng, Yang; Wang, Yanping; Dimitrov, Dimiter S; McMillan, JoEllyn M; Gendelman, Howard E

    2015-02-01

    Long-acting nanoformulated antiretroviral therapy (nanoART) that targets monocyte-macrophages could improve the drug's half-life and protein-binding capacities while facilitating cell and tissue depots. To this end, ART nanoparticles that target the folic acid (FA) receptor and permit cell-based drug depots were examined using pharmacokinetic and pharmacodynamic (PD) tests. FA receptor-targeted poloxamer 407 nanocrystals, containing ritonavir-boosted atazanavir (ATV/r), significantly increased drug bioavailability and PD by five and 100 times, respectively. Drug particles administered to human peripheral blood lymphocyte reconstituted NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice and infected with HIV-1ADA led to ATV/r drug concentrations that paralleled FA receptor beta staining in both the macrophage-rich parafollicular areas of spleen and lymph nodes. Drug levels were higher in these tissues than what could be achieved by either native drug or untargeted nanoART particles. The data also mirrored potent reductions in viral loads, tissue viral RNA and numbers of HIV-1p24+ cells in infected and treated animals. We conclude that FA-P407 coating of ART nanoparticles readily facilitates drug carriage and antiretroviral responses.

  1. Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro.

    PubMed

    Zhang, Qiao; Wang, Shifeng; Yu, Yangyang; Sun, Shengnan; Zhang, Yuxin; Zhang, Yanling; Yang, Wei; Li, Shiyou; Qiao, Yanjiang

    2016-08-02

    Endothelin-1 (ET-1) autocrine and paracrine signaling modulate cell proliferation of tumor cells by activating its receptors, endothelin A receptor (ETAR) and endothelin B receptor (ETBR). Dysregulation of ETAR activation promotes tumor development and progression. The potential of ETAR antagonists and the dual-ETAR and ETBR antagonists as therapeutic approaches are under preclinical and clinical studies. Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine. In this study, we demonstrate that Sal A inhibits ETAR activation induced by ET-1 in both recombinant and endogenous ETAR expression cell lines. The IC50 values were determined as 5.7 µM in the HEK293/ETAR cell line and 3.14 µM in HeLa cells, respectively. Furthermore, our results showed that Sal A suppressed cell proliferation and extended the doubling times of multiple cancer cells, including HeLa, DU145, H1975, and A549 cell lines. In addition, Sal A inhibited proliferation of DU145 cell lines stimulated by exogenous ET-1 treatment. Moreover, the cytotoxicity and cardio-toxicity of Sal A were assessed in human umbilical vein endothelial cells (HUVEC) and Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which proved that Sal A demonstrates no cytotoxicity or cardiotoxicity. Collectively, our findings indicate that Sal A is a novel anti-cancer candidate through targeting ETAR.

  2. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury

    PubMed Central

    Santos-Nogueira, Eva; López-Serrano, Clara; Hernández, Joaquim; Lago, Natalia; Astudillo, Alma M.; Balsinde, Jesús; Estivill-Torrús, Guillermo; de Fonseca, Fernando Rodriguez; Chun, Jerold

    2015-01-01

    Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1–LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA–LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury. PMID:26180199

  3. Neuroendocrine factors regulate retinoic acid receptors in normal and hypoplastic lung development

    PubMed Central

    Pereira-Terra, Patrícia; Moura, Rute S; Nogueira-Silva, Cristina; Correia-Pinto, Jorge

    2015-01-01

    Congenital diaphragmatic hernia (CDH) is characterised by a spectrum of lung hypoplasia and consequent pulmonary hypertension, leading to high morbidity and mortality rates. Moreover, CDH has been associated with an increase in the levels of pulmonary neuroendocrine factors, such as bombesin and ghrelin, and a decrease in the action of retinoic acid (RA). The present study aimed to elucidate the interaction between neuroendocrine factors and RA. In vitro analyses were performed on Sprague–Dawley rat embryos. Normal lung explants were treated with bombesin, ghrelin, a bombesin antagonist, a ghrelin antagonist, dimethylsulfoxide (DMSO), RA dissolved in DMSO, bombesin plus RA and ghrelin plus RA. Hypoplastic lung explants (nitrofen model) were cultured with bombesin, ghrelin, bombesin antagonist or ghrelin antagonist. The lung explants were analysed morphometrically, and retinoic acid receptor (RAR) α, β and γ expression levels were assessed via Western blotting. Immunohistochemistry analysis of RAR was performed in normal and hypoplastic lungs 17.5 days post-conception (dpc). Compared with the controls, hypoplastic lungs exhibited significantly higher RARα/γ expression levels. Furthermore considering hypoplastic lungs, bombesin and ghrelin antagonists decreased RARα/γ expression. Normal lung explants (13.5 dpc) treated with RA, bombesin plus RA, ghrelin plus RA, bombesin or ghrelin exhibited increased lung growth. Moreover, bombesin and ghrelin increased RARα/γ expression levels, whereas the bombesin and ghrelin antagonists decreased RARα/γ expression. This study demonstrates for the first time that neuroendocrine factors function as lung growth regulators, sensitising the lung to the action of RA through up-regulation of RARα and RARγ. Key points Retinoic acid (RA) and ghrelin levels are altered in human hypoplastic lungs when compared to healthy lungs. Although considerable data have been obtained about RA, ghrelin and bombesin in the congenital

  4. Mutations of lysophosphatidic acid receptor-1 gene during progression of lung tumors in rats

    SciTech Connect

    Yamada, Takanori; Obo, Yumi; Furukawa, Mami; Hotta, Mayuko; Yamasaki, Ayako; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2009-01-16

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. In this study, mutations of lysophosphatidic acid receptor-1 (LPA1) gene were investigated to clarify the possible molecular mechanisms underlying the development of lung tumors induced by N-nitrosobis(2-hydroxypropyl)amine (BHP) in rats. Male Wistar rats, 6 weeks of age, were given 2000 ppm BHP in their drinking water for 12 weeks and then maintained without further treatment until sacrifice at 25 weeks. Genomic DNAs were extracted from paraffin-embedded tissues and exons 2-4 were examined for mutations, using polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis. No LPA1 mutations were detected in 15 hyperplasias, but 2 out of 12 adenomas (16.7%) and 7 out of 17 adenocarcinomas (41.2%). These results suggest that mutations of LPA1 gene may be involved in the acquisition of growth advantage from adenomas to adenocarcinomas in lung carcinogenesis induced in rats by BHP.

  5. Kynurenic acid, an aryl hydrocarbon receptor ligand, is elevated in serum of Zucker fatty rats

    PubMed Central

    Oxenkrug, G; Cornicelli, J; van der Hart, M; Roeser, J; Summergrad, P

    2016-01-01

    Obesity is an increasingly urgent global problem and the molecular mechanisms of obesity are not fully understood. Dysregulation of the tryptophan (Trp) – kynurenine (Kyn) metabolic pathway (TKP) have been suggested as a mechanism of obesity and described in obese humans and in animal models of obesity. However, to the best of our knowledge, TKP metabolism has not been studied in leptin-receptor-deficient Zucker fatty rats (ZFR) (fa/fa), the best-known and most widely used rat model of obesity. We were interested to determine if there are any deviations of TKP in ZFR. Concentrations of major TKP metabolites were evaluated (HPLC- MS method) in serum of ZFR (fa/fa) and age-matched lean rats (FA/-). Concentrations of kynurenic acid (KYNA) were 50% higher in ZFR than in lean rats (p<0.004, Mann-Whitney two-tailed test). Anthranilic acid (AA) concentrations, while elevated by 33%, did not reach statistical significance (p<0.04, one-tailed test). Elevated KYNA serum concentrations might contribute to development of obesity via KYNA-induced activation of aryl hydrocarbon receptor. Present results warrant further studies of KYNA and AA in ZFR and other animal models of obesity. PMID:27738521

  6. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  7. Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery.

    PubMed

    Song, Huijuan; Zhang, Ju; Wang, Weiwei; Huang, Pingsheng; Zhang, Yumin; Liu, Jianfeng; Li, Chen; Kong, Deling

    2015-12-01

    Self-assembled prodrug nanoparticles have demonstrated great promise in cancer chemotherapy. In the present study, we developed a new kind of prodrug nanoparticles for targeted drug delivery. PEGylated doxorubicin conjugate with an acid-cleavable cis-aconityl spacer was prepared. Then it was functionalized with a tumor-penetrating peptide, Cys-Arg-Gly-Asp-Lys (CRGDK), providing the prodrug nanoparticles with the specific binding ability to neurophilin-1 receptor. In acid mediums, doxorubicin could be released from the prodrug nanoparticles with an accumulative release around 60% through the acid-triggered hydrolysis of cis-aconityl bond and nanoparticle disassembly. Whereas, drug release was slow under a neutral pH and the accumulative drug release was less than 16%. In the cell culture tests, our prodrug nanoparticles showed enhanced endocytosis and cytotoxicity in cancer cells including HepG2, MCF-7 and MDA-MB-231 cells, but lower cytotoxicity in human cardiomyocyte H2C9. In the animal experiments, the prodrug nanoparticles were intravenously injected into Balb/c nude mice bearing MDA-MB-231 tumors. Enhanced drug penetration and accumulation in tumors, accompanying with a rapid early tumor-binding behavior, was observed after intravenous injection of the peptide modified prodrug nanoparticles. These data suggests that the acid-sensitive and tumor-targeting PEGylated doxorubicin prodrug nanoparticle may be an efficient drug delivery system for cancer chemotherapy.

  8. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  9. A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias*

    PubMed Central

    Bolognini, Daniele; Moss, Catherine E.; Nilsson, Karolina; Petersson, Annika U.; Donnelly, Iona; Sergeev, Eugenia; König, Gabriele M.; Kostenis, Evi; Kurowska-Stolarska, Mariola; Miller, Ashley; Dekker, Niek; Tobin, Andrew B.

    2016-01-01

    The short chain fatty acid receptor FFA2 is able to stimulate signaling via both Gi- and Gq/G11-promoted pathways. These pathways are believed to control distinct physiological end points but FFA2 receptor ligands appropriate to test this hypothesis have been lacking. Herein, we characterize AZ1729, a novel FFA2 regulator that acts as a direct allosteric agonist and as a positive allosteric modulator, increasing the activity of the endogenously produced short chain fatty acid propionate in Gi-mediated pathways, but not at those transduced by Gq/G11. Using AZ1729 in combination with direct inhibitors of Gi and Gq/G11 family G proteins demonstrated that although both arms contribute to propionate-mediated regulation of phospho-ERK1/2 MAP kinase signaling in FFA2-expressing 293 cells, the Gq/G11-mediated pathway is predominant. We extend these studies by employing AZ1729 to dissect physiological FFA2 signaling pathways. The capacity of AZ1729 to act at FFA2 receptors to inhibit β-adrenoreceptor agonist-promoted lipolysis in primary mouse adipocytes and to promote chemotaxis of isolated human neutrophils confirmed these as FFA2 processes mediated by Gi signaling, whereas, in concert with blockade by the Gq/G11 inhibitor FR900359, the inability of AZ1729 to mimic or regulate propionate-mediated release of GLP-1 from mouse colonic preparations defined this physiological response as an end point transduced via activation of Gq/G11. PMID:27385588

  10. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  11. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    PubMed Central

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  12. Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord.

    PubMed

    Yano, Shunsuke; Kuroda, Satoshi; Shichinohe, Hideo; Seki, Toshitaka; Ohnishi, Takako; Tamagami, Hiroshi; Hida, Kazutoshi; Iwasaki, Yoshinobu

    2006-11-01

    A surprising shortage of information surrounds the mechanisms by which bone marrow stromal cells (BMSC) restore lost neurologic functions when transplanted into the damaged central nervous system. In the present study, we sought to elucidate whether BMSCs express the neuron-specific gamma-aminobutyric acid (GABA) receptor when transplanted into injured spinal cord. To examine this, we harvested and cultured rat femoral BMSCs. We then subjected Sprague-Dawley rats to thoracic spinal cord injury (SCI) with a pneumatic impact device. Fluorescence-labeled BMSCs (n = 7) were transplanted stereotactically or the vehicle in which these cells were cultured (n = 4) was introduced stereotactically into the rostral site of SCI at 7 days after injury. We evaluated GABA receptor function by measuring the binding potential for 125I-iomazenil (125I-IMZ) through in vitro autoradiography at 4 weeks after BMSC transplantation and simultaneously examined the fate of the transplanted BMSCs by immunocytochemistry. We found that the transplanted BMSC migrated toward the core of the injury and were densely distributed in the marginal region at 4 weeks after transplantation. BMSC transplantation significantly increased the binding potential for 125I-IMZ (p = 0.0376) and increased the number of GABA receptor-positive cells (p = 0.0077) in the marginal region of the injury site. Some of the transplanted BMSCs were positive for microtubule-associated protein-2 and the alpha1 subunit of GABA(A) receptor in the region of injury. These findings suggest that BMSCs have the potential to support the survival of neurons in the marginal region of SCI and can partly differentiate into neurons, regenerating spinal cord tissue at the site of injury.

  13. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

    PubMed Central

    Hohenegger, Martin; Suko, Josef; Gscheidlinger, Regina; Drobny, Helmut; Zidar, Andreas

    2002-01-01

    Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel. PMID:12102654

  14. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  15. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  16. γ-Aminobutyric Acid B Receptor Mediated Inhibition of Gonadotropin-Releasing Hormone Neurons Is Suppressed by Kisspeptin-G Protein-Coupled Receptor 54 Signaling

    PubMed Central

    Zhang, Chunguang; Bosch, Martha A.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2009-01-01

    γ-Aminobutyric acid (GABA) is one of the most important neurotransmitters that regulate the excitability of GnRH neurons. Numerous studies have shown that GABA activates Cl− currents in GnRH neurons, and these effects are antagonized by GABAA receptor antagonists. The GABAB receptor is a heterodimer composed of GABAB R1 and R2, and although both subunits have been localized in GnRH neurons, nothing is known about the cellular signaling of this Gαi,o-coupled receptor in GnRH neurons. Using whole-cell recordings from mouse enhanced green fluorescent protein-GnRH neurons, we found that the GABAB receptor agonist baclofen hyperpolarized GnRH neurons through activation of an inwardly rectifying K+ current in a concentration-dependent manner. The effects of baclofen were antagonized by the selective GABAB receptor antagonist CGP 52432 with a Ki (inhibitory constant) of 85 nm. Furthermore, in the presence of the GABAA receptor antagonist picrotoxin, GABA hyperpolarized GnRH neurons in a similar manner. Treatment with 17β-estradiol as compared with oil vehicle did not significantly alter either the EC50 for the baclofen-induced response (0.8 ± 0.1 vs. 1.0 ± 0.1 μm, respectively) or the maximal outward current (10.8 ± 1.7 pA vs. 11.4 ± 0.6 pA, respectively) in GnRH neurons. However, the outward current (and membrane hyperpolarization) was abrogated by submaximal concentrations of the G protein-coupled receptor 54 (GPR54) agonist kisspeptin-10 in both groups, indicating that Gαq-coupled (GPR54) can desensitize the GABAB receptor-mediated response. Therefore, the activation of GABAB receptors in GnRH neurons may provide increased inhibitory tone during estrogen-negative feedback states that is attenuated by kisspeptin during positive feedback. PMID:19164470

  17. Evidence for a bladder cell glycolipid receptor for Escherichia coli and the effect of neuraminic acid and colominic acid on adherence.

    PubMed Central

    Davis, C P; Avots-Avotins, A E; Fader, R C

    1981-01-01

    The rat bladder epithelial cell receptors involved in mannose-sensitive adherence of Escherichia coli strains were studied. Sodium metaperiodate and lipase pretreatment of epithelial cells significantly reduced bacterial adherence to cells whereas trypsin and phospholipase C had a marginal or insignificant effect on adherence. Neuraminidase and colominic acid significantly increased adherence, whereas N-acetylneuraminic acid significantly reduced adherence. These data suggest that the rat bladder epithelial cell receptors involved in mannose-sensitive adherence are glycolipids. In addition, the data suggested that sialic acid on bladder epithelial cells acts as a nonspecific inhibitor of adherence, whereas colominic acid, a component of some E. coli K1 capsules, may act as a promoter of adherence. PMID:6277793

  18. Discovery of novel dihydrobenzofuran cyclopropane carboxylic acid based calcium sensing receptor antagonists for the treatment of osteoporosis.

    PubMed

    Liang, Gui-Bai; Zhou, Changyou; Huo, Xianghong; Wang, Hank; Yang, Xuelin; Huang, Shaoqiang; Wang, Haisheng; Wilkinson, Hilary; Luo, Lusong; Tang, Wei; Sutton, David; Li, Hong; Zaller, Dennis; Meinke, Peter T

    2016-08-15

    In a search for novel small molecule calcium-sensing receptor (CaSR) antagonists as oral bone anabolic agents, we discovered dihydrobenzofuran cyclopropane carboxylic acid derivatives, such as 12f (IC50=27.6nM), are highly potent calcium-sensing receptor antagonists. Studies in rats established that compound 12f stimulates parathyroid hormone (PTH) release in a fast-acting, pulsatile manner.

  19. Postsynaptic clustering of γ-aminobutyric acid type A receptors by the γ3 subunit in vivo

    PubMed Central

    Baer, Kristin; Essrich, Christian; Benson, Jack A.; Benke, Dietmar; Bluethmann, Horst; Fritschy, Jean-Marc; Lüscher, Bernhard

    1999-01-01

    Synaptic localization of γ-aminobutyric acid type A (GABAA) receptors is a prerequisite for synaptic inhibitory function, but the mechanism by which different receptor subtypes are localized to postsynaptic sites is poorly understood. The γ2 subunit and the postsynaptic clustering protein gephyrin are required for synaptic localization and function of major GABAA receptor subtypes. We now show that transgenic overexpression of the γ3 subunit in γ2 subunit-deficient mice restores benzodiazepine binding sites, benzodiazepine-modulated whole cell currents, and postsynaptic miniature currents, suggesting the formation of functional, postsynaptic receptors. Moreover, the γ3 subunit can substitute for γ2 in the formation of GABAA receptors that are synaptically clustered and colocalized with gephyrin in vivo. These clusters were formed even in brain regions devoid of endogenous γ3 subunit, indicating that the factors present for clustering of γ2 subunit-containing receptors are sufficient to cluster γ3 subunit-containing receptors. The GABAA receptor and gephyrin-clustering properties of the ectopic γ3 subunit were also observed for the endogenous γ3 subunit, but only in the absence of the γ2 subunit, suggesting that the γ3 subunit is at a competitive disadvantage with the γ2 subunit for clustering of postsynaptic GABAA receptors in wild-type mice. PMID:10536013

  20. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  1. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    PubMed Central

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  2. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome.

    PubMed

    Meslin, Camille; Desert, Colette; Callebaut, Isabelle; Djari, Anis; Klopp, Christophe; Pitel, Frédérique; Leroux, Sophie; Martin, Pascal; Froment, Pascal; Guilbert, Edith; Gondret, Florence; Lagarrigue, Sandrine; Monget, Philippe

    2015-04-24

    Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species.

  3. Metabotropic glutamate receptors are involved in the detection of IMP and L-amino acids by mouse taste sensory cells.

    PubMed

    Pal Choudhuri, S; Delay, R J; Delay, E R

    2016-03-01

    G-protein-coupled receptors are thought to be involved in the detection of umami and L-amino acid taste. These include the heterodimer taste receptor type 1 member 1 (T1r1)+taste receptor type 1 member 3 (T1r3), taste and brain variants of mGluR4 and mGluR1, and calcium sensors. While several studies suggest T1r1+T1r3 is a broadly tuned lLamino acid receptor, little is known about the function of metabotropic glutamate receptors (mGluRs) in L-amino acid taste transduction. Calcium imaging of isolated taste sensory cells (TSCs) of T1r3-GFP and T1r3 knock-out (T1r3 KO) mice was performed using the ratiometric dye Fura 2 AM to investigate the role of different mGluRs in detecting various L-amino acids and inosine 5' monophosphate (IMP). Using agonists selective for various mGluRs such as (RS)-3,5-dihydroxyphenylglycine (DHPG) (an mGluR1 agonist) and L-(+)-2-amino-4-phosphonobutyric acid (l-AP4) (an mGluR4 agonist), we evaluated TSCs to determine if they might respond to these agonists, IMP, and three L-amino acids (monopotassium L-glutamate, L-serine and L-arginine). Additionally, we used selective antagonists against different mGluRs such as (RS)-L-aminoindan-1,5-dicarboxylic acid (AIDA) (an mGluR1 antagonist), and (RS)-α-methylserine-O-phosphate (MSOP) (an mGluR4 antagonist) to determine if they can block responses elicited by these L-amino acids and IMP. We found that L-amino acid- and IMP-responsive cells also responded to each agonist. Antagonists for mGluR4 and mGluR1 significantly blocked the responses elicited by IMP and each of the L-amino acids. Collectively, these data provide evidence for the involvement of taste and brain variants of mGluR1 and mGluR4 in L-amino acid and IMP taste responses in mice, and support the concept that multiple receptors contribute to IMP and L-amino acid taste.

  4. Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input

    PubMed Central

    Polgár, E.; Al Ghamdi, K.S.; Todd, A.J.

    2010-01-01

    Lamina I of the spinal cord contains many projection neurons that express the neurokinin 1 receptor (NK1r). It has been reported that these cells can undergo long-term potentiation (LTP), which may result from insertion of AMPA-type glutamate receptors (AMPArs) containing GluA1 or GluA4 subunits. We therefore investigated synaptic AMPAr expression on these cells with immunocytochemistry following antigen-retrieval. We also examined their density of glutamatergic input (by analysing AMPAr synaptic puncta and contacts from glutamatergic boutons), and phosphorylation of extracellular signal-regulated kinases (pERKs) following noxious stimulation. Our results indicate that there are two populations of NK1r-expressing projection neurons: large GluA4+/GluA1− cells with a high density of glutamatergic input and small GluA1+/GluA4− cells with a much lower input density. Results from pERK experiments suggested that the two groups may not differ in the types of noxious stimulus that activate them. Glutamatergic synapses on distal dendrites of the large cells were significantly longer than those on proximal dendrites, which presumably compensates for the greater attenuation of distally-generated excitatory postsynaptic currents (EPSCs). Both types of cell received contacts from peptidergic primary afferents, however, on the large cells these appeared to constitute over half of the glutamatergic synapses, and were often associated with elongated AMPAr puncta. This suggests that these afferents, which probably contain substance P, provide a powerful, secure synaptic input to large NK1r-expressing projection neurons. These results demonstrate the importance of GluA4-containing AMPArs in nociceptive transmission and raise the possibility that different forms of LTP in lamina I projection neurons may be related to differential expression of GluA1/GluA4. PMID:20303396

  5. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine.

    PubMed

    Xia, Yan; Portugal, George S; Fakira, Amanda K; Melyan, Zara; Neve, Rachael; Lee, H Thomas; Russo, Scott J; Liu, Jie; Morón, Jose A

    2011-11-09

    Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.

  6. [Relationship between the crystal lattice structure and the biological action of some agonists of amino acid receptors].

    PubMed

    Kertser, L S; Baev, K V

    1992-01-01

    The crystal structures of glycine, taurine, GABA, beta-alanine were compared. The quantity and the accuracy of distances coincidence between nitrogen and oxygen atoms were used as a criterion of similarity of the crystalline structures. The conclusion is made about a correlation between crystalline structure of agonists and their effect on amino acid receptors. It is assumed that in case of a cooperative effect of agonist on the receptor a mutual arrangement of molecules on the receptor surface is similar to their arrangement in the agonist crystal.

  7. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  8. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice.

    PubMed

    Donepudi, Ajay C; Boehme, Shannon; Li, Feng; Chiang, John Y L

    2017-03-01

    Bile acids are signaling molecules that play a critical role in regulation of hepatic metabolic homeostasis by activating nuclear farnesoid X receptor (Fxr) and membrane G-protein-coupled receptor (Takeda G-protein-coupled receptor 5; Tgr5). The role of FXR in regulation of bile acid synthesis and hepatic metabolism has been studied extensively. However, the role of TGR5 in hepatic metabolism has not been explored. The liver plays a central role in lipid metabolism, and impaired response to fasting and feeding contributes to steatosis and nonalcoholic fatty liver and obesity. We have performed a detailed analysis of gallbladder bile acid and lipid metabolism in Tgr5(-/-) mice in both free-fed and fasted conditions. Lipid profiles of serum, liver and adipose tissues, bile acid composition, energy metabolism, and messenger RNA and protein expression of the genes involved in lipid metabolism were analyzed. Results showed that deficiency of the Tgr5 gene in mice alleviated fasting-induced hepatic lipid accumulation. Expression of liver oxysterol 7α-hydroxylase in the alternative bile acid synthesis pathway was reduced. Analysis of gallbladder bile acid composition showed marked increase of taurocholic acid and decrease of tauro-α and β-muricholic acid in Tgr5(-/-) mice. Tgr5(-/-) mice had increased hepatic fatty acid oxidation rate and decreased hepatic fatty acid uptake. Interestingly, fasting induction of fibroblast growth factor 21 in liver was attenuated. In addition, fasted Tgr5(-/-) mice had increased activation of hepatic growth hormone-signal transducer and activator of transcription 5 (GH-Stat5) signaling compared to wild-type mice.

  9. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  10. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    SciTech Connect

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. )

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  11. Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors

    PubMed Central

    Zweifel, Larry S.; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D.

    2008-01-01

    Summary A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable from the increases associated with a single cocaine exposure, yet locomotor responses to multiple drugs of abuse were unaltered in the KO mice. The initial phase of locomotor sensitization to cocaine is intact; however, the delayed sensitization that occurs with prolonged cocaine withdrawal did not occur. Conditioned behavioral responses for cocaine-testing environment were also absent in the KO mice. These findings provide evidence for a role of NMDAR signaling in DA neurons for specific behavioral modifications associated with drug seeking behaviors. PMID:18701073

  12. Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2).

    PubMed

    Hughes, Craig E; Sinha, Uma; Pandey, Anjali; Eble, Johannes A; O'Callaghan, Christopher A; Watson, Steve P

    2013-02-15

    CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.

  13. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.

  14. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  15. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

    PubMed

    Le May, Nicolas; Iltis, Izarn; Amé, Jean-Christophe; Zhovmer, Alexander; Biard, Denis; Egly, Jean-Marc; Schreiber, Valérie; Coin, Frédéric

    2012-12-14

    Poly-(ADP-ribose) glycohydrolase (PARG) is a catabolic enzyme that cleaves ADP-ribose polymers synthesized by poly-(ADP-ribose) polymerases. Here, transcriptome profiling and differentiation assay revealed a requirement of PARG for retinoic acid receptor (RAR)-mediated transcription. Mechanistically, PARG accumulates early at promoters of RAR-responsive genes upon retinoic acid treatment to promote the formation of an appropriate chromatin environment suitable for transcription. Silencing of PARG or knockout of its enzymatic activity maintains the H3K9me2 mark at the promoter of the RAR-dependent genes, leading to the absence of preinitiation complex formation. In the absence of PARG, we found that the H3K9 demethylase KDM4D/JMJD2D became PARsylated. Mutation of two glutamic acids located in the Jumonji N domain of KDM4D inhibited PARsylation. PARG becomes dispensable for ligand-dependent transcription when either a PARP inhibitor or a non-PARsylable KDM4D/JMJD2D mutant is used. Our results define PARG as a coactivator regulating chromatin remodeling during RA-dependent gene expression.

  16. International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B).

    PubMed

    Offermanns, Stefan; Colletti, Steven L; Lovenberg, Timothy W; Semple, Graeme; Wise, Alan; IJzerman, Adriaan P

    2011-06-01

    The G-protein-coupled receptors GPR81, GPR109A, and GPR109B share significant sequence homology and form a small group of receptors, each of which is encoded by clustered genes. In recent years, endogenous ligands for all three receptors have been described. These endogenous ligands have in common that they are hydroxy-carboxylic acid metabolites, and we therefore have proposed that this receptor family be named hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by 2-hydroxy-propanoic acid (lactate), the HCA(2) receptor (GPR109A) is a receptor for the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is activated by the β-oxidation intermediate 3-hydroxy-octanoic acid. HCA(1) and HCA(2) receptors are found in most mammalian species, whereas the HCA(3) receptor is present only in higher primates. The three receptors have in common that they are expressed in adipocytes and are coupled to G(i)-type G-proteins mediating antilipolytic effects in fat cells. HCA(2) and HCA(3) receptors are also expressed in a variety of immune cells. HCA(2) is a receptor for the antidyslipidemic drug nicotinic acid (niacin) and related compounds, and there is an increasing number of synthetic ligands mainly targeted at HCA(2) and HCA(3) receptors. The aim of this article is to give an overview on the discovery and pharmacological characterization of HCAs, and to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature. We will also discuss open questions regarding this receptor family as well as their physiological role and therapeutic potential.

  17. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

     An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  18. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice

    PubMed Central

    Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin

    2015-01-01

    The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026

  19. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors.

    PubMed

    Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5' ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5' monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex.

  20. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    PubMed Central

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  1. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity.

    PubMed Central

    Durand, B; Saunders, M; Gaudon, C; Roy, B; Losson, R; Chambon, P

    1994-01-01

    A motif essential for the transcriptional activation function 2 (AF-2) present in the E region of retinoic acid receptor (RAR) alpha and 9-cis retinoic acid receptor (RXR) alpha has been characterized as an amphipathic alpha-helix whose main features are conserved between transcriptionally active members of the nuclear receptor superfamily. This conserved motif, which can activate autonomously in the absence of ligand in animal and yeast cells, can be swapped between nuclear receptors without affecting the ligand dependency for activation of transcription, thus indicating that a ligand-dependent conformational change is necessary to reveal the AF-2 activation potential within the E region of the nuclear receptor. Interestingly, we show that the precise nature of the direct repeat response element to which RAR/RXR heterodimers are bound can affect the activity of the AF-2s of the heterodimeric partners, as well as the relative efficiency with which all-trans and 9-cis retinoic acids activate the RAR partner. Images PMID:7957103

  2. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  3. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    PubMed Central

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  4. Gamma-Aminobutyric acid and benzodiazepine receptors in the kindling model of epilepsy: a quantitative radiohistochemical study

    SciTech Connect

    Shin, C.; Pedersen, H.B.; McNamara, J.O.

    1985-10-01

    Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were (TH) muscimol and (TH)flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hr but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. The authors suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.

  5. Amino acid residues 4425-4621 localized on the three-dimensional structure of the skeletal muscle ryanodine receptor.

    PubMed Central

    Benacquista, B L; Sharma, M R; Samsó, M; Zorzato, F; Treves, S; Wagenknecht, T

    2000-01-01

    We have localized a region contained within the sequence of amino acid residues 4425-4621 on the three-dimensional structure of the skeletal muscle ryanodine receptor (RyR). Mouse monoclonal antibodies raised against a peptide comprising these residues have been complexed with ryanodine receptors and imaged in the frozen-hydrated state by cryoelectron microscopy. These images, along with images of antibody-free ryanodine receptor, were used to compute two-dimensional averaged images and three-dimensional reconstructions. Two-dimensional averages of immunocomplexes in which the ryanodine receptor was in the fourfold symmetrical orientation disclosed four symmetrical regions of density located on the edges of the receptor's cytoplasmic assembly that were absent from control averages of receptor without added antibody. Three-dimensional reconstructions revealed the antibody-binding sites to be on the so-called handle domains of the ryanodine receptor's cytoplasmic assembly, near their junction with the transmembrane assembly. This study is the first to demonstrate epitope mapping on the three-dimensional structure of the ryanodine receptor. PMID:10692321

  6. Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro

    PubMed Central

    Zhang, Qiao; Wang, Shifeng; Yu, Yangyang; Sun, Shengnan; Zhang, Yuxin; Zhang, Yanling; Yang, Wei; Li, Shiyou; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 (ET-1) autocrine and paracrine signaling modulate cell proliferation of tumor cells by activating its receptors, endothelin A receptor (ETAR) and endothelin B receptor (ETBR). Dysregulation of ETAR activation promotes tumor development and progression. The potential of ETAR antagonists and the dual-ETAR and ETBR antagonists as therapeutic approaches are under preclinical and clinical studies. Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine. In this study, we demonstrate that Sal A inhibits ETAR activation induced by ET-1 in both recombinant and endogenous ETAR expression cell lines. The IC50 values were determined as 5.7 µM in the HEK293/ETAR cell line and 3.14 µM in HeLa cells, respectively. Furthermore, our results showed that Sal A suppressed cell proliferation and extended the doubling times of multiple cancer cells, including HeLa, DU145, H1975, and A549 cell lines. In addition, Sal A inhibited proliferation of DU145 cell lines stimulated by exogenous ET-1 treatment. Moreover, the cytotoxicity and cardio-toxicity of Sal A were assessed in human umbilical vein endothelial cells (HUVEC) and Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which proved that Sal A demonstrates no cytotoxicity or cardiotoxicity. Collectively, our findings indicate that Sal A is a novel anti-cancer candidate through targeting ETAR. PMID:27490540

  7. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  8. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands.

    PubMed

    Lacal, Jesús; Alfonso, Carlos; Liu, Xianxian; Parales, Rebecca E; Morel, Bertrand; Conejero-Lara, Francisco; Rivas, Germán; Duque, Estrella; Ramos, Juan L; Krell, Tino

    2010-07-23

    We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.

  9. Lysophosphatidic acid receptors (LPARs): Potential targets for the treatment of neuropathic pain.

    PubMed

    Velasco, María; O'Sullivan, Catherine; Sheridan, Graham K

    2017-02-01

    Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to play a central role in both triggering and maintaining neuropathic pain. In particular, following an acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to demyelination through several different mechanisms. Firstly, high levels of LPA are produced following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation of neuropathic pain and suggests potential targeted strategies for its treatment. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.

  10. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  11. A naturally occurring insertion of a single amino acid rewires transcriptional regulation by glucocorticoid receptor isoforms.

    PubMed

    Thomas-Chollier, Morgane; Watson, Lisa C; Cooper, Samantha B; Pufall, Miles A; Liu, Jennifer S; Borzym, Katja; Vingron, Martin; Yamamoto, Keith R; Meijsing, Sebastiaan H

    2013-10-29

    In addition to guiding proteins to defined genomic loci, DNA can act as an allosteric ligand that influences protein structure and activity. Here we compared genome-wide binding, transcriptional regulation, and, using NMR, the conformation of two glucocorticoid receptor (GR) isoforms that differ by a single amino acid insertion in the lever arm, a domain that adopts DNA sequence-specific conformations. We show that these isoforms differentially regulate gene expression levels through two mechanisms: differential DNA binding and altered communication between GR domains. Our studies suggest a versatile role for DNA in both modulating GR activity and also in directing the use of GR isoforms. We propose that the lever arm is a "fulcrum" for bidirectional allosteric signaling, conferring conformational changes in the DNA reading head that influence DNA sequence selectivity, as well as conferring changes in the dimerization domain that connect functionally with remote regulatory surfaces, thereby influencing which genes are regulated and the magnitude of their regulation.

  12. The N-terminal portion of domain E of retinoic acid receptors alpha and beta is essential for the recognition of retinoic acid and various analogs.

    PubMed

    Ostrowski, J; Hammer, L; Roalsvig, T; Pokornowski, K; Reczek, P R

    1995-03-14

    Utilizing a strategy involving domain exchange between retinoic acid receptors alpha and beta (RAR alpha and RAR beta) and monitoring the transcriptional activity of the resulting chimeric receptors with receptor-selective retinoids, we identified a 70-aa region within the N-terminal portion of the RAR alpha and -beta domain E which is important for an RAR alpha- or RAR beta-specific response. Two amino acid residues within this region, serine-232 (S232) and threonine-239 (T239) in RAR alpha and the corresponding alanine-225 (A225) and isoleucine-232 (I232) in RAR beta, were found to be essential for this effect. In addition, binding studies using the chimeric receptors expressed in Escherichia coli showed that the N-terminal portion of domain E was also important for the characteristic binding profile of t-RA and various retinoids with RAR alpha or RAR beta. Structural predictions of the primary amino acid sequence in this region indicate the presence of an amphipathic helix-turn-helix structure with five hydrophobic amino acids that resemble a leucine zipper motif. The amino acid residues identified by domain swapping, S232 and T239 in RAR alpha and A225 and I232 in RAR beta, were found within the hydrophobic face of an alpha-helix in close proximity to this zipper motif, suggesting that the ligand may interact with the receptor in the region adjacent to a surface involved in protein-protein interactions. This finding may link ligand binding to other processes important for transcriptional activation.

  13. The N-terminal portion of domain E of retinoic acid receptors alpha and beta is essential for the recognition of retinoic acid and various analogs.

    PubMed Central

    Ostrowski, J; Hammer, L; Roalsvig, T; Pokornowski, K; Reczek, P R

    1995-01-01

    Utilizing a strategy involving domain exchange between retinoic acid receptors alpha and beta (RAR alpha and RAR beta) and monitoring the transcriptional activity of the resulting chimeric receptors with receptor-selective retinoids, we identified a 70-aa region within the N-terminal portion of the RAR alpha and -beta domain E which is important for an RAR alpha- or RAR beta-specific response. Two amino acid residues within this region, serine-232 (S232) and threonine-239 (T239) in RAR alpha and the corresponding alanine-225 (A225) and isoleucine-232 (I232) in RAR beta, were found to be essential for this effect. In addition, binding studies using the chimeric receptors expressed in Escherichia coli showed that the N-terminal portion of domain E was also important for the characteristic binding profile of t-RA and various retinoids with RAR alpha or RAR beta. Structural predictions of the primary amino acid sequence in this region indicate the presence of an amphipathic helix-turn-helix structure with five hydrophobic amino acids that resemble a leucine zipper motif. The amino acid residues identified by domain swapping, S232 and T239 in RAR alpha and A225 and I232 in RAR beta, were found within the hydrophobic face of an alpha-helix in close proximity to this zipper motif, suggesting that the ligand may interact with the receptor in the region adjacent to a surface involved in protein-protein interactions. This finding may link ligand binding to other processes important for transcriptional activation. PMID:7892182

  14. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  15. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses.

    PubMed

    Park, Hoyong; Kim, Sungmin; Rhee, Jeehae; Kim, Hyeon-Joong; Han, Jung-Soo; Nah, Seung-Yeol; Chung, ChiHye

    2015-03-01

    Lysophosphatidic acid (LPA) is one of the well-characterized, ubiquitous phospholipid molecules. LPA exerts its effect by activating G protein-coupled receptors known as LPA receptors (LPARs). So far, LPAR signaling has been critically implicated during early development stages, including the regulation of synapse formation and the morphology of cortical and hippocampal neurons. In adult brains, LPARs seem to participate in cognitive as well as emotional learning and memory. Recent studies using LPAR1-deficient mice reported impaired performances in a number of behavioral tasks, including the hippocampus-dependent spatial memory and fear conditioning tests. Nevertheless, the effect of LPAR activation in the synaptic transmission of central synapses after the completion of embryonic development has not been investigated. In this study, we took advantage of a novel extracellular agonist for LPARs called gintonin to activate LPARs in adult brain systems. Gintonin, a recently identified active ingredient in ginseng, has been shown to activate LPARs and mobilize Ca(2+) in an artificial cell system. We found that the activation of LPARs by application of gintonin acutely enhanced both excitatory and inhibitory transmission in central synapses, albeit through tentatively distinct mechanisms. Gintonin-mediated LPAR activation primarily resulted in synaptic enhancement and an increase in neuronal excitability in a phospholipase C-dependent manner. Our findings suggest that LPARs are able to directly potentiate synaptic transmission in central synapses when stimulated exogenously. Therefore, LPARs could serve as a useful target to modulate synaptic activity under pathological conditions, including neurodegenerative diseases.

  16. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions.

    PubMed

    Takeuchi, Jun; Okamoto, Masanori; Akiyama, Tomonori; Muto, Takuya; Yajima, Shunsuke; Sue, Masayuki; Seo, Mitsunori; Kanno, Yuri; Kamo, Tsunashi; Endo, Akira; Nambara, Eiji; Hirai, Nobuhiro; Ohnishi, Toshiyuki; Cutler, Sean R; Todoroki, Yasushi

    2014-06-01

    The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor-ABA complexes revealed a tunnel above ABA's 3' ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3' alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3'-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class.

  17. Phosphatidic Acid Induces Ligand-independent Epidermal Growth Factor Receptor Endocytic Traffic through PDE4 Activation

    PubMed Central

    Norambuena, Andrés; Metz, Claudia; Jung, Juan E.; Silva, Antonia; Otero, Carolina; Cancino, Jorge; Retamal, Claudio; Valenzuela, Juan C.; Soza, Andrea

    2010-01-01

    Endocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli. PMID:20554760

  18. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds.

  19. Binding of thyroglobulin to bovine thyroid membranes. Role of specific amino acids in receptor recognition.

    PubMed

    Shifrin, S; Kohn, L D

    1981-10-25

    Bovine thyroglobulin was treated with increasing ratios of succinic anhydride, trinitrobenzene sulfonic acid, tetranitromethane, and N-acetylimidazole in an attempt to assess the role of lysine or tyrosine residues in binding to thyroid membrane receptors. Extensive succinylation results in dissociation to 12 S thyroglobulin with retention of a considerable portion of the three-dimensional structure. Only 25% of the lysine residues can be modified by trinitrophenylation without affecting inter-subunit interactions. Succinylation as well as trinitrophenylation increases the affinity of thyroglobulin for the membrane receptor by a factor of 2. The binding of thyroglobulin to the membrane was reduced after nitration of 30% of the tyrosyl residues with tetranitromethane. O-Acetylation of 40-70% of the tyrosyl residues by N-acetylimidazole nearly abolished the ability of thyroglobulin to bind to the membrane. Removal of the O-acetyl group with hydroxylamine restored the binding properties. The results indicate that tyrosyl residues play an important role in thyroglobulin interactions with thyroid membranes.

  20. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive.

    PubMed

    Couchman, Kiri; Grothe, Benedikt; Felmy, Felix

    2012-02-01

    Neurons of the medial superior olive (MSO) code for the azimuthal location of low-frequency sound sources via a binaural coincidence detection system operating on microsecond time scales. These neurons are morphologically simple and stereotyped, and anatomical studies have indicated a functional segregation of excitatory and inhibitory inputs between cellular compartments. It is thought that this morphological arrangement holds important implications for the computational task of these cells. To date, however, there has been no functional investigation into synaptic input sites or functional receptor distributions on mature neurons of the MSO. Here, functional neurotransmitter receptor maps for amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA), glycine (Gly), and ionotropic γ-aminobutyric acid (GABA(A)) receptors (Rs) were compared and complemented by their corresponding synaptic input map. We find in MSO neurons from postnatal day 20-35 gerbils that AMPARs and their excitatory inputs target the soma and dendrites. Functional GlyRs and their inhibitory inputs are predominantly refined to the somata, although a pool of functional GlyRs is present extrasynaptically on MSO dendrites. GABA(A)R responses are present throughout the cell but lack direct synaptic contact indicating an involvement in volume transmission. NMDARs are present both synaptically and extrasynaptically with an overall distribution similar to GlyRs. Interestingly, even at physiological temperatures these functional NMDARs can be potentiated by synaptically released Gly. The functional receptor and synaptic input maps produced here led to the identification of a cross talk between transmitter systems and raises the possibility that extrasynaptic receptors could be modulating leak conductances as a homeostatic mechanism.

  1. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  2. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  3. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  4. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  5. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats

    PubMed Central

    Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.

    2016-01-01

    Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the

  6. Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site‐directed mutagenesis

    PubMed Central

    Luger, D; Poli, G; Wieder, M; Stadler, M; Ke, S; Ernst, M; Hohaus, A; Linder, T; Seidel, T; Langer, T; Hering, S

    2015-01-01

    Background and Purpose β2/3‐subunit‐selective modulation of GABAA receptors by valerenic acid (VA) is determined by the presence of transmembrane residue β2/3N265. Currently, it is not known whether β2/3N265 is part of VA's binding pocket or is involved in the transduction pathway of VA's action. The aim of this study was to clarify the localization of VA's binding pocket on GABAA receptors. Experimental Approach Docking and a structure‐based three‐dimensional pharmacophore were employed to identify candidate amino acid residues that are likely to interact with VA. Selected amino acid residues were mutated, and VA‐induced modulation of the resulting GABAA receptors expressed in Xenopus oocytes was analysed. Key Results A binding pocket for VA at the β+/α− interface encompassing amino acid β3N265 was predicted. Mutational analysis of suggested amino acid residues revealed a complete loss of VA's activity on β3M286W channels as well as significantly decreased efficacy and potency of VA on β3N265S and β3F289S receptors. In addition, reduced efficacy of VA‐induced I GABA enhancement was also observed for α1M235W, β3R269A and β3M286A constructs. Conclusions and Implications Our data suggest that amino acid residues β3N265, β3F289, β3M286, β3R269 in the β3 subunit, at or near the etomidate/propofol binding site(s), form part of a VA binding pocket. The identification of the binding pocket for VA is essential for elucidating its pharmacological effects and might also help to develop new selective GABAA receptor ligands. PMID:26375408

  7. Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design.

    PubMed

    Volgraf, Matthew; Sellers, Benjamin D; Jiang, Yu; Wu, Guosheng; Ly, Cuong Q; Villemure, Elisia; Pastor, Richard M; Yuen, Po-wai; Lu, Aijun; Luo, Xifeng; Liu, Mingcui; Zhang, Shun; Sun, Liang; Fu, Yuhong; Lupardus, Patrick J; Wallweber, Heidi J A; Liederer, Bianca M; Deshmukh, Gauri; Plise, Emile; Tay, Suzanne; Reynen, Paul; Herrington, James; Gustafson, Amy; Liu, Yichin; Dirksen, Akim; Dietz, Matthias G A; Liu, Yanzhou; Wang, Tzu-Ming; Hanson, Jesse E; Hackos, David; Scearce-Levie, Kimberly; Schwarz, Jacob B

    2016-03-24

    The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimer's disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.

  8. Structural studies of the actions of anesthetic drugs on the γ-aminobutyric acid type A receptor.

    PubMed

    Akk, Gustav; Steinbach, Joe Henry

    2011-12-01

    The γ-aminobutyric acid type A receptor is the major transmitter-gated inhibitory channel in the central nervous system. The receptor is a target for anesthetics, anticonvulsants, anxiolytics, and sedatives whose actions facilitate the flow of chloride ions through the channel and enhance the inhibitory tone in the brain. Both the kinetic and structural aspects of the actions of modulators of the γ-aminobutyric acid type A receptor are of great importance to understanding the molecular mechanisms of general anesthesia. In this review, the structural rearrangements that take place in the γ-aminobutyric acid type A receptor during channel activation and modulation are described, focusing on data obtained using voltage-clamp fluorometry. Voltage-clamp fluorometry entails the binding of an environmentally sensitive fluorophore molecule to a site of interest in the receptor, and measurement of changes in the fluorescence signal resulting from activation- or modulation-elicited structural changes. Detailed investigations can provide a map of structural changes that underlie or accompany the functional effects of modulators.

  9. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  10. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  11. Effects of positive AMPA receptor modulators on calpain-mediated spectrin degradation in cultured hippocampal slices.

    PubMed

    Jourdi, Hussam; Yanagihara, Ted; Martinez, Ulises; Bi, Xiaoning; Lynch, Gary; Baudry, Michel

    2005-01-01

    Positive modulators of AMPA receptors (AMPAr), also known as ampakines, are allosteric effectors of the receptors and have been extensively studied in past years due to their potential use as treatment for various diseases and ailments of the central nervous system such as mild cognitive impairment, schizophrenia, and Alzheimer's disease. Ampakines have been shown to improve performance on memory tasks in animals and in human subjects, an effect linked to their ability to increase agonist-mediated ion influx through AMPAr, thus leading to enhanced synaptic responses and facilitation of long-term potentiation (LTP) induction at glutamatergic synapses. As LTP is associated with calpain activation and spectrin degradation, we determined the effects of ampakine treatment of cultured hippocampal slices on spectrin degradation. Calpain activation was evaluated by determining the levels of the 145-150kDa degradation products of spectrin. Our data indicated that incubation of hippocampal slices with some, but not all positive modulators of AMPA receptors resulted in enhanced spectrin degradation, an effect that was blocked by a calpain inhibitor. In addition, an antagonist of AMPAr but not of NMDAr blocked ampakine-induced spectrin degradation. These results indicate that prolonged treatment with selected ampakines leads to spectrin degradation mediated by activation of the calcium-dependent protease calpain.

  12. Metabotropic glutamate receptors, transmitter output and fatty acids: studies in rat brain slices.

    PubMed Central

    Lombardi, G.; Leonardi, P.; Moroni, F.

    1996-01-01

    1. The effects of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), a non-selective agonist of the metabotropic glutamate receptors (mGluRs), have been studied in rat cortical and striatal slices by measuring the depolarization-induced output of D-[3H]-aspartate (D-[3H]-Asp) and of [3H]-glutamate ([3H]-Glu), neosynthesized from [3H]-glutamine. 2. In cortical slices, 1S,3R-ACPD potentiated the depolarization-induced (KCl, 30 mM) output of both D-[3H]-Asp and [3H]-Glu. The potentiation, obtained at 300 microM 1S,3R-ACPD was 65 +/- 6% for D-[3H]-Asp and 56 +/- 10% for [3H]-Glu. Conversely, in striatal slices, 1S,3R-ACPD reduced the depolarization-induced transmitter output. The reduction, obtained at 300 microM of the agonist, was 60 +/- 8% for D-[3H]-Asp and 50 +/- 5% for neosynthesized [3H]-Glu. 3. Bovine serum albumin (BSA, 15 microM), which is able to bind locally produced fatty acids, completely eliminated the potentiating effect 1S,3R-ACPD had on D-[3H]-Asp output from cortical slices. Low concentrations of arachidonic acid (1-10 microM) or of oleic acid (1-10 microM) added to BSA-containing perfusion medium, restored this potentiating effect. BSA, however, had no effect on the inhibitory action of 1S,3R-ACPD in striatal slices. 4. Bromophenacyl bromide (100 microM), an inhibitor of phospholipase A2, and RG80267 (100 microM), an inhibitor of diacylglycerol lipase, have been shown to inhibit fatty acid production. These compounds prevented the potentiating effect of 1S,3R-ACPD on D-[3H]-Asp-output in cortical slices. 5. Indomethacin (100 microM), an inhibitor of cyclo-oxygenases, plus nordihydroguaiaretic acid (100 microM), an inhibitor of lipoxygenases, increased D-[3H]-Asp output in cortical slices perfused with BSA-containing medium. 6. These experiments suggest that the mGluR-mediated potentiation of transmitter output requires the availability of unsaturated fatty acids, such as arachidonic or oleic acids, in cortical slices. In contrast, the m

  13. Targeting metastasis-initiating cells through the fatty acid receptor CD36.

    PubMed

    Pascual, Gloria; Avgustinova, Alexandra; Mejetta, Stefania; Martín, Mercè; Castellanos, Andrés; Attolini, Camille Stephan-Otto; Berenguer, Antoni; Prats, Neus; Toll, Agustí; Hueto, Juan Antonio; Bescós, Coro; Di Croce, Luciano; Benitah, Salvador Aznar

    2017-01-05

    The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44(bright) cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36(+) metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36(+) metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.

  14. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl.

    PubMed

    Nguyen, Matthew; Singhal, Pankhuri; Piet, Judith W; Shefelbine, Sandra J; Maden, Malcolm; Voss, S Randal; Monaghan, James R

    2017-02-15

    Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.

  15. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor β promoter activation

    PubMed Central

    Lefebvre, Bruno; Ozato, Keiko; Lefebvre, Philippe

    2002-01-01

    Ligand-dependent transcriptional activation of retinoic acid receptors (RARs) is a multistep process culminating in the formation of a multimeric co-activator complex on regulated promoters. Several co-activator complexes harbor an acetyl transferase activity, which is required for retinoid-induced transcription of reporter genes. Using murine P19 embryonal carcinoma cells, we examined the relationship between histone post-translational modifications and activation of the endogenous RARβ2 promoter, which is under the control of a canonical retinoic acid response element and rapidly induced upon retinoid treatment. While histones H3 and H4 were constitutively acetylated at this promoter, retinoid agonists induced a rapid phosphorylation at Ser10 of histone H3. A retinoid antagonist, whose activity was independent of co-repressor binding to RAR, could oppose this agonist-induced H3 phosphorylation. Since such post-translational modifications were not observed at several other promoters, we conclude that histone H3 phosphorylation may be a molecular signature of the activated, retinoid-controlled mRARβ2 gene promoter. PMID:11897660

  16. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival

    PubMed Central

    Rice, Dennis S.; Calandria, Jorgelina M.; Gordon, William C.; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M.; Li, Songhua; Jin, Minghao; Knott, Eric J.; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A.; Bazan, Nicolas G.

    2015-01-01

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells’ functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1−/− mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1−/− mice. RPE-rich eyecup cultures from AdipoR1−/− reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity. PMID:25736573

  17. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling.

    PubMed

    Li, Tingting; Holmstrom, Sam R; Kir, Serkan; Umetani, Michihisa; Schmidt, Daniel R; Kliewer, Steven A; Mangelsdorf, David J

    2011-06-01

    TGR5 is a G protein-coupled bile acid receptor present in brown adipose tissue and intestine, where its agonism increases energy expenditure and lowers blood glucose. Thus, it is an attractive drug target for treating human metabolic disease. However, TGR5 is also highly expressed in gallbladder, where its functions are less well characterized. Here, we demonstrate that TGR5 stimulates the filling of the gallbladder with bile. Gallbladder volume was increased in wild-type but not Tgr5(-/-) mice by administration of either the naturally occurring TGR5 agonist, lithocholic acid, or the synthetic TGR5 agonist, INT-777. These effects were independent of fibroblast growth factor 15, an enteric hormone previously shown to stimulate gallbladder filling. Ex vivo analyses using gallbladder tissue showed that TGR5 activation increased cAMP concentrations and caused smooth muscle relaxation in a TGR5-dependent manner. These data reveal a novel, gallbladder-intrinsic mechanism for regulating gallbladder contractility. They further suggest that TGR5 agonists should be assessed for effects on human gallbladder as they are developed for treating metabolic disease.

  18. Sialyl Lewis(x) hybridized complement receptor type 1 moderates acid aspiration injury.

    PubMed

    Kyriakides, C; Wang, Y; Austen, W G; Favuzza, J; Kobzik, L; Moore, F D; Hechtman, H B

    2001-12-01

    The potentially enhanced anti-inflammatory effects of the sialyl Lewis(x) (sLe(x))-decorated version of soluble complement receptor type 1 (sCR1) in moderating acid aspiration injury are examined. HCl was instilled in tracheostomy tubes placed in mice, and extravasation of (125)I-labeled albumin in bronchoalveolar lavage (BAL) fluid was used to calculate the vascular permeability index (PI). Neutrophil counts in BAL fluid and immunohistochemistry were performed. PI was moderated by 82% after treatment with sCR1sLe(x) compared with 54% in sCR1-untreated mice (P < 0.05). Respective reductions in PI in mice treated 0.5 and 1 h after acid aspiration with sCR1sLe(x) of 70 and 57% were greater than the decreases in PI of 45 and 38% observed in respective sCR1-treated groups (P < 0.05). BAL fluid neutrophil counts in sCR1sLe(x)-treated mice were significantly less than those in sCR1-treated animals, which were similar to those in untreated mice. Immunohistochemistry stained for sCR1 only on the pulmonary vascular endothelium of sCR1sLe(x)- but not sCR1-treated mice. In conclusion, sCR1sLe(x) moderates permeability by antagonizing complement activation and neutrophil adhesion. Delayed complement and neutrophil antagonism significantly reduces injury.

  19. [EFfect of quinazolone-alkyl-carboxylic acid derivatives on the transmembrane Ca2+ ion flux mediated by AMPA receptors].

    PubMed

    Szárics, Eva; LaszTóczi, Bálint; Nyikos, Lajos; Barabás, Péter; Kovács, Ilona; Skuban, Nina; Nagy, Péter I; Kökösi, József; Takácsné, Novák Krisztina; Kardos, Julianna

    2002-01-01

    The excitatory neurotransmitter, Glu, plays a crucial role in many sensory and motor functions as well as in brain development, learning and memory and it is also involved in the pathogenesis of a number of neurological disorders, including epilepsy, Alzheimer's and Parkinson's diseases. Therefore, the study of Glu receptors (GluRs) is of therapeutical importance. We showed here by fluorescence monitoring of transmembrane Ca2+ ion fluxes in response to (S)-alpha-amino-3-hidroxi-5-metil-4-izoxazol propionic acid ((S)-AMPA) on the time scale of 0.00004-10 s that Ca2+ ion influx proceeds through faster and slower desensitizing receptors. Pharmacological isolation of the slower and faster desensitizing AMPA receptor was possible by fluorescence monitoring of Ca2+ ion translocation in response to (S)-AMPA in the presence and absence of various 2-methyl-4-oxo-3H-quinazoline-3-alkyl-carboxilic acid derivatives (Qxs): the acetic acid Q1 inhibits the slower desensitizing receptor response specifically, while the acetyl-piperidine Q5 is a more potent inhibitor of the faster desensitizing receptor response. In addition, spontaneous interictal activity, as induced by high [K+] conditions in hippocampal slices, was reduced significantly by Q5, suggesting a possible anticonvulsant property of Q5. Substitutions of Qxs into the GluR2 S1S2 binding core were consistent with their effect by causing variable degree of S1S2 bridging interaction as one of the main determinants of AMPA receptor agonist activity. The exploitation of differences between similar receptors will be important in the development and use of drugs with high pharmacological specificity.

  20. Succinate reverses in-vitro platelet inhibition by acetylsalicylic acid and P2Y receptor antagonists.

    PubMed

    Spath, Brigitte; Hansen, Arne; Bokemeyer, Carsten; Langer, Florian

    2012-01-01

    High on-treatment platelet reactivity has been associated with adverse cardiovascular events in patients receiving anti-platelet agents, but the molecular mechanisms underlying this phenomenon remain incompletely understood. Succinate, a citric acid cycle intermediate, is released into the circulation under conditions of mitochondrial dysfunction due to hypoxic organ damage, including sepsis, stroke, and myocardial infarction. Because the G protein-coupled receptor (GPCR) for succinate, SUCNR1 (GPR91), is present on human platelets, we hypothesized that succinate-mediated platelet stimulation may counteract the pharmacological effects of cyclooxygenase-1 and ADP receptor antagonists. To test this hypothesis in a controlled in-vitro study, washed platelets from healthy donors were treated with acetylsalicylic acid (ASA) or small-molecule P2Y(1) or P2Y(12) inhibitors and subsequently analyzed by light transmittance aggregometry using arachidonic acid (AA), ADP and succinate as platelet agonists. Aggregation in response to succinate alone was highly variable with only 29% of donors showing a (mostly delayed) platelet response. In contrast, succinate reproducibly and concentration-dependently (10-1000 µM) enhanced platelet aggregation in response to low concentrations of exogenous ADP. Furthermore, while succinate alone had no effect in the presence of platelet inhibitors, responsiveness of platelets to ADP after pretreatment with P2Y(1) or P2Y(12) antagonists was fully restored, when platelets were co-stimulated with 100 µM succinate. Similarly, succinate completely (at 1000 µM) or partially (at 100 µM) reversed the inhibitory effect of ASA on AA-induced platelet aggregation. In contrast, succinate failed to restore platelet responsiveness in the presence of both ASA and the P2Y(12) antagonist, suggesting that concomitant signaling via different GPCRs was required. Essentially identical results were obtained, when flow cytometric analysis of surface CD62P

  1. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  2. Superactivation of AMPA receptors by auxiliary proteins

    PubMed Central

    Carbone, Anna L.; Plested, Andrew J. R.

    2016-01-01

    Glutamate receptors form complexes in the brain with auxiliary proteins, which control their activity during fast synaptic transmission through a seemingly bewildering array of effects. Here we devise a way to isolate the activation of complexes using polyamines, which enables us to show that transmembrane AMPA receptor regulatory proteins (TARPs) exert their effects principally on the channel opening reaction. A thermodynamic argument suggests that because TARPs promote channel opening, receptor activation promotes AMPAR-TARP complexes into a superactive state with high open probability. A simple model based on this idea predicts all known effects of TARPs on AMPA receptor function. This model also predicts unexpected phenomena including massive potentiation in the absence of desensitization and supramaximal recovery that we subsequently detected in electrophysiological recordings. This transient positive feedback mechanism has implications for information processing in the brain, because it should allow activity-dependent facilitation of excitatory synaptic transmission through a postsynaptic mechanism. PMID:26744192

  3. Regulation of Phospholipase D Activity and Phosphatidic Acid Production after Purinergic (P2Y6) Receptor Stimulation*

    PubMed Central

    Scott, Sarah A.; Xiang, Yun; Mathews, Thomas P.; Cho, Hyekyung P.; Myers, David S.; Armstrong, Michelle D.; Tallman, Keri A.; O'Reilly, Matthew C.; Lindsley, Craig W.; Brown, H. Alex

    2013-01-01

    Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway. PMID:23723068

  4. The Free Fatty Acid Receptor G Protein-coupled Receptor 40 (GPR40) Protects from Bone Loss through Inhibition of Osteoclast Differentiation*

    PubMed Central

    Wauquier, Fabien; Philippe, Claire; Léotoing, Laurent; Mercier, Sylvie; Davicco, Marie-Jeanne; Lebecque, Patrice; Guicheux, Jérôme; Pilet, Paul; Miot-Noirault, Elisabeth; Poitout, Vincent; Alquier, Thierry; Coxam, Véronique; Wittrant, Yohann

    2013-01-01

    The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications. PMID:23335512

  5. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons.

  6. Ampakine CX516 ameliorates functional deficits in AMPA receptors in a hippocampal slice model of protein accumulation.

    PubMed

    Kanju, Patrick M; Parameshwaran, Kodeeswaran; Sims, Catrina; Bahr, Ben A; Shonesy, Brian C; Suppiramaniam, Vishnu

    2008-11-01

    AMPAkines are positive modulators of AMPA receptors, and previous work has shown that these compounds can facilitate synaptic plasticity and improve learning and memory in both animals and humans; thus, their role in the treatment of cognitive impairment is worthy of investigation. In this study, we have utilized an organotypic slice model in which chloroquine-induced lysosomal dysfunction produces many of the pathogenic attributes of Alzheimer's disease. Our previous work demonstrated that synaptic AMPA receptor function is impaired in hippocampal slice cultures exhibiting lysosomal dysfunction leading to protein accumulation. The present study investigated the effect of the AMPAkine CX516 on AMPAR-mediated synaptic transmission as well as the CX516 induced modification of single channel AMPA receptor properties in this organotypic slice-culture model. In whole cell recordings from CA1 pyramidal neurons in chloroquine-treated slices we observed a significant decrease in AMPAR-mediated mEPSC frequency and amplitude indicating synaptic dysfunction. Following application of CX516, these parameters returned to nearly normal levels. Similarly, we report chloroquine-induced impairment of AMPAR single channel properties (decreased probability of opening and mean open time), and significant recovery of these properties following CX516 administration. These results suggest that AMPA receptors may be potential pharmaceutical targets for the treatment of neurodegenerative diseases, and highlights AMPAkines, in particular, as possible therapeutic agents.

  7. Allosteric regulation of the discriminative responsiveness of retinoic acid receptor to natural and synthetic ligands by retinoid X receptor and DNA.

    PubMed

    Mouchon, A; Delmotte, M H; Formstecher, P; Lefebvre, P

    1999-04-01

    Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all-trans-retinoic acid (RARs) and 9-cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype alpha, beta or gamma, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all-trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARalpha and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote interaction of DNA-bound human RXRalpha (hRXRalpha)-hRARalpha heterodimers with the nuclear receptor coactivator (NCoA) SRC-1 in vitro. The hormone response element core motifs spacing defined the relative affinity of liganded heterodimers for two NCoAs, SRC-1 and RIP140. hRXRalpha activating function 2 was critical to confer hRARalpha full responsiveness but not differential sensitivity of hRARalpha to natural or synthetic retinoids. We also provide evidence showing that lysines located in helices 3 and 4, which define part of hRARalpha NCoA binding surface, contribute differently to (i) the transcriptional activity and (ii) the interaction of RXR-RAR heterodimers with SRC-1, when challenged by either natural or RAR-selective retinoids. Thus, ligand structure, DNA, and RXR exert allosteric regulations on hRARalpha conformation organized as a DNA-bound heterodimer. We suggest that the use of physically distinct NCoA binding interfaces may be important in controlling specific genes by conformationally restricted ligands.

  8. Allosteric Regulation of the Discriminative Responsiveness of Retinoic Acid Receptor to Natural and Synthetic Ligands by Retinoid X Receptor and DNA

    PubMed Central

    Mouchon, Arnaud; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    1999-01-01

    Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all-trans-retinoic acid (RARs) and 9-cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype α, β or γ, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all-trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARα and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote intera