Science.gov

Sample records for acid residue substitutions

  1. Solvent accessibility, residue charge and residue volume, the three ingredients of a robust amino acid substitution matrix.

    PubMed

    Goodarzi, Hani; Katanforoush, Ali; Torabi, Noorossadat; Najafabadi, Hamed Shateri

    2007-04-21

    Cost measure matrices or different amino acid indices have been widely used for studies in many fields of biology. One major criticism of these studies might be based on the unavailability of an unbiased and yet effective amino acid substitution matrix. Throughout this study we have devised a cost measure matrix based on the solvent accessibility, residue charge, and residue volume indices. Performed analyses on this novel substitution matrix (i.e. solvent accessibility charge volume (SCV) matrix) support the uncontaminated nature of this matrix regarding the genetic code. Although highly similar to a number of previously available cost measure matrices, the SCV matrix results in a more significant optimality in the error-buffering capacity of the genetic code when compared to many other amino acid substitution matrices. Besides, a method to compare an SCV-based scoring matrix with a number of widely used matrices has been devised, the results of which highlights the robustness of this matrix in protein family discrimination.

  2. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.

  3. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  4. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  5. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  6. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  7. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  8. Residue-residue contact substitution probabilities derived from aligned three-dimensional structures and the identification of common folds.

    PubMed Central

    Rodionov, M. A.; Johnson, M. S.

    1994-01-01

    We report the derivation of scores that are based on the analysis of residue-residue contact matrices from 443 3-dimensional structures aligned structurally as 96 families, which can be used to evaluate sequence-structure matches. Residue-residue contacts and the more than 3 x 10(6) amino acid substitutions that take place between pairs of these contacts at aligned positions within each family of structures have been tabulated and segregated according to the solvent accessibility of the residues involved. Contact maps within a family of structures are shown to be highly conserved (approximately 75%) even when the sequence identity is approaching 10%. In a comparison involving a globin structure and the search of a sequence databank (> 21,000 sequences), the contact probability scores are shown to provide a very powerful secondary screen for the top scoring sequence-structure matches, where between 69% and 84% of the unrelated matches are eliminated. The search of an aligned set of 2 globins against a sequence databank and the subsequent residue contact-based evaluation of matches locates all 618 globin sequences before the first non-globin match. From a single bacterial serine proteinase structure, the structural template approach coupled with residue-residue contact substitution data lead to the detection of the mammalian serine proteinase family among the top matches in the search of a sequence databank. PMID:7756991

  9. Anionic substitutes for catalytic aspartic acids in phosphoribulokinase.

    PubMed

    Runquist, Jennifer A; Miziorko, Henry M

    2002-09-15

    Mutagenic substitution of the invariant D42 and D169 residues in phosphoribulokinase (PRK) with amino acids that contain neutral side chains (e.g., alanine or asparagine) results in large decreases in catalytic efficiency (10(5)- and 10(4)-fold for replacement of D42 and D169, respectively). To further evaluate the importance of anionic side chains at residues 42 and 169, substitutions of glutamic acid (D42E, D169E) and cysteine (D42C and D169C in an otherwise cysteine-free protein) have been engineered. All purified mutant enzymes bind the fluorescent alternative substrate trinitrophenyl-ATP and the allosteric effector NADH similarly to wild-type PRK. For D42E and D42C, V(max) exhibits substantial decreases of 135- and 220-fold, respectively. Comparable substitutions for D169 result in smaller effects; D169E and D169C exhibit decreases in V(max) of 39- and 26-fold, respectively. Thus, regardless of the type of substitution, changes at D42 more profoundly affect catalytic rate than do comparable changes at D169. Precedent with enzymes in which cysteine replaces an acidic residue suggests that oxidation of the thiolate to a sulfinate can convert low-activity cysteine mutants into enzymes with improved activity. Periodate oxidation of cysteine-free PRK results in a slight decrease in activity. In contrast, comparable treatment of D42C and D169C proteins increases activity by 5- and 7-fold, respectively. Thus, for reasonably efficient catalysis, PRK requires anionic character in the side chains of residues 42 and 169. The enzyme can, however, tolerate substantial structural and chemical variability at these residues.

  10. Capillary Electrophoresis of Substituted Benzoic Acids

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Spence, John D.; Bushey, Michelle M.

    2005-01-01

    A series of substituted benzoic acids (SBAs) are prepared by students. The pKa shift, a result of the electron-withdrawing or electron-donating characteristics of the subsistent is examined in reference to the electrophoretic migration behavior of benzoic acid.

  11. Hydrophosphorylation of substituted alkynes by phosphonic acids

    SciTech Connect

    Nifant'ev, E.F.; Solovetskaya, L.A.; Maslennikova, V.I.; Sergeev, N.M.

    1987-08-20

    Hydrophosphorylation of functionally substituted alkynes by phosphonic acids can be a convenient method for synthesis of functionally substituted mono- and diphosphine oxides. The ease of hydrophosphorylation is determined by the strength of the negative inductive effect of the substituents on the triple bond and the steric factor. The structure of the bis-adducts was confirmed by elementary analysis and the /sup 31/P and /sup 13/C NMR spectra. The /sup 31/P NMR spectrum is an AB two-spin system. The values of the chemical shifts and spin-spin interaction constants /sup 3/J/sub PP/ are in agreement with the data in the literature for similar compounds.

  12. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  13. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  14. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  15. 40 CFR 721.1680 - Substituted benzoic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted benzoic acid (generic... Substances § 721.1680 Substituted benzoic acid (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted benzoic acid (PMN...

  16. Alanine substitutions of noncysteine residues in the cysteine-stabilized αβ motif

    PubMed Central

    Yang, Ying-Fang; Cheng, Kuo-Chang; Tsai, Ping-Hsing; Liu, Chung-Cheng; Lee, Tian-Ren; Ping-Chiang Lyu

    2009-01-01

    The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine-stabilized αβ motif (CSαβ) consists of an α-helix and an antiparallel triple-stranded β-sheet connected by two disulfide bridges. Proteins containing this motif share low sequence identity but high structural similarity and has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino acid tolerance of CSαβ motif. A systematic alanine substitution is performed on the VrD1. The key residues governing the inhibitory function and structure stability are monitored. Thirty-two of 46 residue positions of VrD1 are altered by site-directed mutagenesis techniques. The circular dichroism spectrum, intrinsic fluorescence spectrum, and chemical denaturation are used to analyze the conformation and structural stability of proteins. The secondary structures were highly tolerant to the amino acid substitutions; however, the protein stabilities were varied for each mutant. Many mutants, although they maintained their conformations, altered their inhibitory function significantly. In this study, we reported the first alanine scan on the plant defensin containing the CSαβ motif. The information is valuable to the scaffold with the CSαβ motif and protein engineering. PMID:19533758

  17. Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica

    PubMed Central

    DasSarma, Shiladitya; Capes, Melinda D.; Karan, Ram; DasSarma, Priya

    2013-01-01

    The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere. PMID:23536799

  18. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  19. The (non)malignancy of cancerous amino acidic substitutions.

    PubMed

    Talavera, David; Taylor, Martin S; Thornton, Janet M

    2010-02-15

    The process of natural selection acts both on individual organisms within a population and on individual cells within an organism as they develop into cancer. In this work, we have taken a first step toward understanding the differences in selection pressures exerted on the human genome under these disparate circumstances. Focusing on single amino acid substitutions, we have found that cancer-related mutations (CRMs) are frequent in evolutionarily conserved sites, whereas single amino acid polymorphisms (SAPs) tend to appear in sites having a more relaxed evolutionary pressure. Those CRMs classed as cancer driver mutations show greater enrichment for conserved sites than passenger mutations. Consistent with this, driver mutations are enriched for sites annotated as key functional residues and their neighbors, and are more likely to be located on the surface of proteins than expected by chance. Overall the pattern of CRM and polymorphism is remarkably similar, but we do see a clear signal indicative of diversifying selection for disruptive amino acid substitutions in the cancer driver mutations. The ultimate consequence of the appearance of those mutations must be advantageous for the tumor cell, leading to cell population-growth and migration events similar to those seen in natural ecosystems.

  20. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  1. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  2. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  3. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  4. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting...

  5. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.

    PubMed Central

    Overington, J.; Donnelly, D.; Johnson, M. S.; Sali, A.; Blundell, T. L.

    1992-01-01

    The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment. PMID:1304904

  6. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    PubMed Central

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  7. [Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution].

    PubMed

    Nakajima, Katsuhisa; Nobusawa, Eri; Nakajima, Setsuko

    2006-06-01

    During protein evolution the amino acid substitutions accumulate with time. However, the effect of accumulation of the amino acid substitutions to structural changes has not been estimated well. We will propose that the discordance of amino acid substitution on the HA protein of influenza A virus is useful for the assessment of structural changes during evolution. Discordance value can be obtained from the experimental data of tolerance or intolerance by introducing site directed mutagenesis at the homologous positions of two HA proteins holding the same amino acid residues. The value of discordance correlated to the number of amino acid differences among proteins. In the H3HA discordance rate was calculated to be 0.45% per one amino acid change. Furthermore, discordance of amino acid substitutions suggests that tolerable amino acid substitutions in different order have a probability of promoting irreversible divergence of the HA protein to different subtypes.

  8. Conformational analysis of amyloid precursor protein fragment containing amino acids 667-676, and the effect of D-Asp and iso-Asp substitution at Asp₆₇₂ residue.

    PubMed

    Shanmugam, Ganesh; Polavarapu, Prasad L; Láng, Emma; Majer, Zsuzsa

    2012-03-01

    Amyloid precursor protein (APP) fragment containing amino acids 667-676, (APP₆₆₇₋₆₇₆), is a substrate for β-secretase which is responsible for generating amyloid β peptides. Conformational analysis of APP₆₆₇₋₆₇₆ peptide [Ac-Ser-Glu-Val-Lys-Met-Asp-Ala-Glu-Phe-Arg-NH₂] and the effect of substitution of Asp₆₇₂ with D-Asp and iso-L-Asp, studied for the first time, demonstrate that the peptide backbone of APP₆₆₇₋₆₇₆ is flexible and adopts different conformations in different solvent environments (water, trifluoroethanol and dimethylsulfoxide). A major conformational difference was observed in trifluoroethanol solvent when Asp₆₇₂ is substituted with D-Asp and iso-Asp. These conformational changes involved in APP₆₆₇₋₆₇₆ may assist in understanding the interactions between β-secretase and APP₆₆₇₋₆₇₆, with relevance to Alzheimer's disease.

  9. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Blount, P.; Sukharev, S. I.; Schroeder, M. J.; Nagle, S. K.; Kung, C.

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  12. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted benzenesulfonic acid salt (generic). 721.1648 Section 721.1648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a)...

  13. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted benzenesulfonic acid salt (generic). 721.1648 Section 721.1648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a)...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted benzenesulfonic acid salt (generic). 721.1648 Section 721.1648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a)...

  16. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted benzenesulfonic acid salt (generic). 721.1648 Section 721.1648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a)...

  17. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted benzenesulfonic acid salt (generic). 721.1648 Section 721.1648 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a)...

  18. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  20. Manipulation of Galactolipid Fatty Acid Composition with Substituted Pyridazinones

    PubMed Central

    John, Judith B. St.

    1976-01-01

    The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants. PMID:16659420

  1. Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter.

    PubMed

    Dodd, Joanna R; Christie, David L

    2007-05-25

    The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.

  2. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  3. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  4. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  5. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-03-16

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  6. Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues.

    PubMed

    Huang, Lu; Wang, Ping; Tian, Jian; Jiang, Huachen; Wu, Ningfeng; Yang, Peilong; Yao, Bin; Fan, Yunliu

    2012-06-01

    The acidic stability of a methyl parathion hydrolase (Ochr-MPH) was improved by selectively changing basic amino acids to acidic ones. Mutation sites were selected based on the position-specific amino acid replacement probabilities (more than or equal to 0.2) and the entropy of each site (more than or equal to 0.8). Three mutants (K208E, K277D, and K208E/K277D) were more stable than the wild-type (WT). Their half-lives at pH 5.0 were 64, 68, 65 min, respectively, whereas that of WT was 39 min. The acidic stability of proteins may therefore be improved by changing selected basic amino acid residues to acidic ones.

  7. Modifications of substituted seryl and threonyl residues in phosphopeptides and a polysialoglycoprotein by beta-elimination and nucleophile additions.

    PubMed

    Mega, T; Nakamura, N; Ikenaka, T

    1990-01-01

    The beta-elimination and nucleophile addition reactions of the substituted serine and threonine residues were studied using several synthesized fluorescence-labeled phosphopeptides and a salmon egg polysialoglycoprotein (PSGP). The reagents used were 1 M CH3SH-0.43 M NaOH, 1 M NaBH4-0.1 M NaOH, 1 M CH3NH2-0.1 M NaOH, and 1 M Na2SO3-0.1 M NaOH. The beta-elimination reaction of a phosphoserine peptide, Gly-Ser(PO4)-Glu-AEAP, was about 20 times faster than that of the corresponding phosphothreonine peptide. The carboxyl-side amino acid of the phosphoamino acids in peptides greatly affected the beta-elimination rate. The beta-elimination reaction rates of O-glycosyl serine and threonine in the polysialoglycoprotein were similar and were about a half of that of the phosphoserine peptide. The rates of addition of the three nucleophiles and hydrogen to alpha-aminoacrylic acid (beta-elimination product of substituted serine) in the peptide decreased in the order of CH3SH, Na2SO3, CH3NH2, and H2(NaBH4), and the addition to alpha-aminocrotonic acid (beta-elimination product of substituted threonine) in the order of Na2SO3, CH3NH2, CH3SH, and H2. These results indicated that sulfite is the most recommended nucleophile because of its high addition rate. If sulfite addition is carried out in the presence of NaBH4, sugar chains can be released as alditols, converting the sugar-attaching amino acids to beta-sulfoamino acids.

  8. Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence.

    PubMed

    Srivastava, Saurabh; Kumar, Amit; Tripathi, Amit Kumar; Tandon, Anshika; Ghosh, Jimut Kanti

    2016-11-01

    A 13-residue frog antimicrobial peptide Temporin L (TempL) possesses versatile antimicrobial activities and is considered a lead molecule for the development of new antimicrobial agents. To find out the amino acid sequences that influence the anti-microbial property of TempL, a phenylalanine zipper-like sequence was identified in it which was not reported earlier. Several alanine-substituted analogs and a scrambled peptide having the same composition of TempL were designed for evaluating the role of this motif. To investigate whether leucine residues instead of phenylalanine residues at 'a' and/or 'd' position(s) of the heptad repeat sequence could alter its antimicrobial property, several TempL analogs were synthesized after replacing these phenylalanine residues with leucine residues. Replacing phenylalanine residues with alanine residues in the phenylalanine zipper sequence significantly compromised the anti-endotoxin property of TempL. This is evident from the higher production of tumor necrosis factor-α and interleukin-6 in lipopolysaccharide (LPS)-stimulated rat bone-marrow-derived macrophage cells in the presence of its alanine-substituted analogs than TempL itself. However, replacement of these phenylalanine residues with leucine residues significantly augmented anti-endotoxin property of TempL. A single alanine-substituted TempL analog (F8A-TempL) showed significantly reduced cytotoxicity but retained the antibacterial activity of TempL, while the two single leucine-substituted analogs (F5L-TempL and F8L-TempL), although exhibiting lower cytotoxicity, were able to retain the antibacterial activity of the parent peptide. The results demonstrate how minor amino acid substitutions in the identified phenylalanine zipper sequence in TempL could yield analogs with better antibacterial and/or anti-endotoxin properties with their plausible mechanism of action.

  9. Silver-catalysed protodecarboxylation of ortho-substituted benzoic acids.

    PubMed

    Cornella, Josep; Sanchez, Carolina; Banawa, David; Larrosa, Igor

    2009-12-14

    Catalytic amounts of Ag(I) salts in DMSO have been found to promote the protodecarboxylation of a wide variety of ortho-substituted benzoic acids under mild conditions and in excellent yields, highlighting a possible role for silver in decarboxylative cross-couplings.

  10. The highly conserved aspartic acid residue between hypervariable regions 1 and 2 of human immunodeficiency virus type 1 gp120 is important for early stages of virus replication.

    PubMed Central

    Wang, W K; Essex, M; Lee, T H

    1995-01-01

    Between hypervariable regions V1 and V2 of human immunodeficiency virus type 1 (HIV-1) gp120 lies a cluster of relatively conserved residues. The contribution of nine charged residues in this region to virus infectivity was evaluated by single-amino-acid substitutions in an infectious provirus clone. Three of the HIV-1 mutants studied had slower growth kinetics than the wild-type virus. The delay was most pronounced in a mutant with an alanine substituted for an aspartic acid residue at position 180. This aspartic acid is conserved by all HIV-1 isolates with known nucleotide sequences. Substitutions with three other residues at this position, including a negatively charged glutamic acid, all affected virus infectivity. The defect identified in these mutants suggests that this aspartic acid residue is involved in the early stages of HIV-1 replication. PMID:7983752

  11. Structural consequences of amino acid substitutions causing Tay-Sachs disease.

    PubMed

    Ohno, Kazuki; Saito, Seiji; Sugawara, Kanako; Sakuraba, Hitoshi

    2008-08-01

    To determine the structural changes in the alpha-subunit of beta-hexosaminidase due to amino acid substitutions causing Tay-Sachs disease, we built structural models of mutant alpha-subunits resulting from 33 missense mutations (24 infantile and 9 late-onset), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected and determining the solvent-accessible surface area of the corresponding amino acid residue in the wild-type alpha-subunit. In the infantile Tay-Sachs group, the number of atoms influenced by a mutation was generally larger than that in the late-onset Tay-Sachs group in both the main chain and the side chain, and residues associated with the mutations found in the infantile Tay-Sachs group tended to be less solvent-accessible than those in the late-onset Tay-Sachs group. Furthermore, color imaging determined the distribution and degree of the structural changes caused by representative amino acid substitutions, and that there were also differences between the infantile and late-onset Tay-Sachs disease groups. Structural study is useful for elucidating the basis of Tay-Sachs disease.

  12. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues. 180.289 Section 180.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  13. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... residues. 180.311 Section 180.311 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.311 Cacodylic acid; tolerances for residues. (a) General. Tolerances are established for...

  14. Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids.

    PubMed Central

    Zürrer, D; Cook, A M; Leisinger, T

    1987-01-01

    Sulfur-limited batch enrichment cultures containing one of nine multisubstituted naphthalenesulfonates and an inoculum from sewage yielded several taxa of bacteria which could quantitatively utilize 19 sulfonated aromatic compounds as the sole sulfur source for growth. Growth yields were about 4 kg of protein per mol of sulfur. Specific degradation rates were about 4 to 14 mu kat/kg of protein. A Pseudomonas sp., an Arthrobacter sp., and an unidentified bacterium were examined. Each desulfonated at least 16 aromatic compounds, none of which served as a carbon source. Pseudomonas sp. strain S-313 converted 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 5-amino-1-naphthalenesulfonic acid, benzenesulfonic acid, and 3-aminobenzenesulfonic acid to 1-naphthol, 2-naphthol, 5-amino-1-naphthol, phenol, and 3-aminophenol, respectively. Experiments with 18O2 showed that the hydroxyl group was derived from molecular oxygen. PMID:3662502

  15. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  16. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  17. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  18. 40 CFR 180.289 - Methanearsonic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Methanearsonic acid; tolerances for...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.289 Methanearsonic acid; tolerances for residues. (a) General. Tolerances are established...

  19. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  20. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  1. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  2. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting...

  3. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting...

  4. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting...

  5. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  6. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting...

  7. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  8. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting...

  9. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  10. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  11. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  12. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  13. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  14. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  15. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  16. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  17. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  18. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  19. Monoclonal antibodies recognizing single amino acid substitutions in hemoglobin

    SciTech Connect

    Stanker, L.H.; Branscomb, E.; Vanderlaan, M.; Jensen, R.H.

    1986-06-01

    Four monoclonal antibodies (mAb) to non-human primate hemoglobin referred to as Cap-4, Cap-5, Rh-2, and Rh-4, and two mAb to human hemoglobin, referred to as H-1 and H-3 were isolated and were partially characterized. Binding studies with these mAb on a panel of hemoglobins and isolated ..cap alpha.. and ..beta.. globin chains revealed a unique reactivity pattern for each mAb. Amino acid sequence analysis of the antigens used to generate the binding data suggests that the specific recognition of certain hemoglobin antigens by each mAb is controlled by the presence of a particular amino acid at a specific position within the epitope. The use of synthetic peptides as antigens confirmed this observation for five of the mAb. No synthetic peptides were tested with the sixth mAb, Rh-2. The amino acids required for binding of mAb Cap-4, Cap-5, Rh-4, and Rh-2 to hemoglobin are alanine at ..beta..5, threonine at ..beta..13, glutamine at ..beta..125, and leucine at ..cap alpha..68. The non-human primate hemoglobin antibodies require a specific amino acid that is not present in human hemoglobin. The amino acid required for binding of Cap-4, Cap-5, and Rh-4 could arise by a single base change in the ..beta.. globin gene, whereas the amino acid required for Rh-2 binding could only occur if two base changes occurred. Thus these mAb are candidate probes for a somatic cell mutation assay on the basis of the detection of peripheral blood red cells that possess single amino acid substituted hemoglobin as a result of single base substitutions in the globin genes of precursor cells.

  20. New substituted amides and hydrazides of pectic acid

    SciTech Connect

    Lapenko, V.L.; Potapova, L.B.; Slivkin, A.I.; Razumnaya, Z.A.

    1988-05-10

    Structural variants of pectin amides and hydrazides are of practical value as flocculants in water treatment. The purpose of this work was to further investigate the synthesis of substituted amides and hydrazides of pectic acid and to study their activity as flocculants. They used pectin, methylation products of pectin, pectic acid, and methyl pectates. The synthesized analogs of pectinic materials containing nitrogen are essentially copolymers of hydrazido (amido) and carboxyl (methoxyl) derivatives of D-galacturonic acid. The flocculant activity of the new polymers was monitored with simulated drainage water containing kaolin or abrasive powder (for glass manufacture) in the presence of polyvalent metal ions. The use of the new ampholytic flocculants in the purification of water from suspended impurities permits a high degree of clarification with a sharp decrease in reagent consumption.

  1. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  2. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  3. Substitution of Val72 residue alters the enantioselectivity and activity of Penicillium expansum lipase.

    PubMed

    Tang, Lianghua; Su, Min; Zhu, Ling; Chi, Liying; Zhang, Junling; Zhou, Qiong

    2013-01-01

    Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35 °C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase.

  4. Structure-function studies of nerve growth factor: functional importance of highly conserved amino acid residues.

    PubMed Central

    Ibáñez, C F; Hallböök, F; Ebendal, T; Persson, H

    1990-01-01

    Selected amino acid residues in chicken nerve growth factor (NGF) were replaced by site-directed mutagenesis. Mutated NGF sequences were transiently expressed in COS cells and the yield of NGF protein in conditioned medium was quantified by Western blotting. Binding of each mutant to NGF receptors on PC12 cells was evaluated in a competition assay. The biological activity was determined by measuring stimulation of neurite outgrowth from chick sympathetic ganglia. The residues homologous to the proposed receptor binding site of insulin (Ser18, Met19, Val21, Asp23) were substituted by Ala. Replacement of Ser18, Met19 and Asp23 did not affect NGF activity. Modification of Val21 notably reduced both receptor binding and biological activity, suggesting that this residue is important to retain a fully active NGF. The highly conserved Tyr51 and Arg99 were converted into Phe and Lys respectively, without changing the biological properties of the molecule. However, binding and biological activity were greatly impaired after the simultaneous replacement of both Arg99 and Arg102 by Gly. The three conserved Trp residues at positions 20, 75 and 98 were substituted by Phe. The Trp mutated proteins retained 15-60% of receptor binding and 40-80% of biological activity, indicating that the Trp residues are not essential for NGF activity. However, replacement of Trp20 significantly reduced the amount of NGF in the medium, suggesting that this residue may be important for protein stability. Images Fig. 4. PMID:2328722

  5. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    PubMed

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  6. Functionalization of Carbon Nanotubes via Electrophilic Substitution Reaction in Polyphosphoric Acid

    DTIC Science & Technology

    2006-07-26

    1 Title of proposed research: Functionalization of Carbon Nanotubes via Electrophilic Substitution Reaction in Polyphosphoric Acid Proposer: Jong...Choi, J.-Y.; Tan, L.-S.; Baek, J.-B. “Functionalization of carbon nanotubes via electrophilic substitution reaction in polyphosphoric acid” AFOSR...2006 4. TITLE AND SUBTITLE Functionalization of carbon nanotubes via electrophilic substitution reaction in polyphosphoric acid 5a. CONTRACT

  7. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  8. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  9. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  10. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  11. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  12. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  13. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  14. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  15. 40 CFR 180.180 - Orthoarsenic acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Orthoarsenic acid; tolerance for residues. 180.180 Section 180.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  16. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    PubMed

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  17. Envelope residue 375 substitutions in simian-human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques.

    PubMed

    Li, Hui; Wang, Shuyi; Kong, Rui; Ding, Wenge; Lee, Fang-Hua; Parker, Zahra; Kim, Eunlim; Learn, Gerald H; Hahn, Paul; Policicchio, Ben; Brocca-Cofano, Egidio; Deleage, Claire; Hao, Xingpei; Chuang, Gwo-Yu; Gorman, Jason; Gardner, Matthew; Lewis, Mark G; Hatziioannou, Theodora; Santra, Sampa; Apetrei, Cristian; Pandrea, Ivona; Alam, S Munir; Liao, Hua-Xin; Shen, Xiaoying; Tomaras, Georgia D; Farzan, Michael; Chertova, Elena; Keele, Brandon F; Estes, Jacob D; Lifson, Jeffrey D; Doms, Robert W; Montefiori, David C; Haynes, Barton F; Sodroski, Joseph G; Kwong, Peter D; Hahn, Beatrice H; Shaw, George M

    2016-06-14

    Most simian-human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants-S, M, Y, H, W, or F-that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env-rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors.

  18. Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques

    PubMed Central

    Li, Hui; Wang, Shuyi; Kong, Rui; Ding, Wenge; Lee, Fang-Hua; Parker, Zahra; Kim, Eunlim; Learn, Gerald H.; Hahn, Paul; Policicchio, Ben; Brocca-Cofano, Egidio; Deleage, Claire; Hao, Xingpei; Chuang, Gwo-Yu; Gorman, Jason; Gardner, Matthew; Lewis, Mark G.; Hatziioannou, Theodora; Santra, Sampa; Apetrei, Cristian; Pandrea, Ivona; Alam, S. Munir; Liao, Hua-Xin; Shen, Xiaoying; Tomaras, Georgia D.; Farzan, Michael; Chertova, Elena; Keele, Brandon F.; Estes, Jacob D.; Lifson, Jeffrey D.; Doms, Robert W.; Montefiori, David C.; Haynes, Barton F.; Sodroski, Joseph G.; Kwong, Peter D.; Hahn, Beatrice H.; Shaw, George M.

    2016-01-01

    Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors. PMID:27247400

  19. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  20. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  1. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  2. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  3. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for residues of the plant growth regulator arsanilic acid , in or on the following food commodities in...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific...

  4. Structure-Activity Relationship Studies of Amino Acid Substitutions in Radiolabeled Neurotensin Conjugates.

    PubMed

    Mascarin, Alba; Valverde, Ibai E; Mindt, Thomas L

    2016-01-05

    Radiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8-13) have been studied as potential imaging probes and therapeutics for NT-1-receptor-positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8-13) for radiotracer development, we herein report a side-by-side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence. Performed investigations include cell internalization experiments, determinations of receptor affinity, measurements of the distribution coefficient, and blood serum stability studies. Of the [(177)Lu]-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-labeled examples studied, analogues of NT(8-13) containing a short hydrophilic tetraethylene glycol (PEG4 ) spacer between the peptide and the radiometal complex, and a minimum number of substitutions of amino acid residues, exhibited the most promising properties in vitro.

  5. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Adani, Fabrizio

    2009-06-01

    In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 euro Nm(-3)) of the volume of biogas of Mixture A dropped to 0.18 euro Nm(-3). Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were -0.20 and 0.11euroNm(-3), respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was -0.09 euro Nm(-3). By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.

  6. Characterization of drinking water treatment residuals for use as a soil substitute.

    PubMed

    Dayton, E A; Basta, N T

    2001-01-01

    The beneficial use of drinking water treatment residuals (WTRs) as a potential source of topsoil for land reclamation was evaluated. Seventeen WTRs were characterized for use as soil substitutes by comparing chemical and physical properties and plant nutrients of the WTRs with soil. A tomato (Lycopersicon esculentum) bioassay was performed to determine the ability of soil chemical tests to measure WTR phosphorus (P) adequacy. The WTR chemical and physical properties were typically adequate for crop growth. None of the WTRs were considered unsuitable as soil substitutes based on plant nutrients, with the exception of P. Tomato vegetative yield and tissue P were poor either because of phytotoxic nitrite-nitrogen (NO2-N) (> 10 mg/kg) generated during the bioassay or because of WTR P deficiency. Limited data suggest that WTRs with NO2-N less than 10 mg/kg and Olsen P greater than 50 mg/kg, water soluble P greater than 580 micrograms/L, or Mehlich III P greater than 54 mg/kg support growth but still produce inadequate tissue P in tomatoes.

  7. 40 CFR 721.2900 - Substituted aminobenzoic acid ester (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted aminobenzoic acid ester... Specific Chemical Substances § 721.2900 Substituted aminobenzoic acid ester (generic name). (a) Chemical... acid ester (PMN P-84-951) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.2900 - Substituted aminobenzoic acid ester (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aminobenzoic acid ester... Specific Chemical Substances § 721.2900 Substituted aminobenzoic acid ester (generic name). (a) Chemical... acid ester (PMN P-84-951) is subject to reporting under this section for the significant new...

  9. 40 CFR 721.2900 - Substituted aminobenzoic acid ester (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted aminobenzoic acid ester... Specific Chemical Substances § 721.2900 Substituted aminobenzoic acid ester (generic name). (a) Chemical... acid ester (PMN P-84-951) is subject to reporting under this section for the significant new...

  10. 40 CFR 721.2900 - Substituted aminobenzoic acid ester (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted aminobenzoic acid ester... Specific Chemical Substances § 721.2900 Substituted aminobenzoic acid ester (generic name). (a) Chemical... acid ester (PMN P-84-951) is subject to reporting under this section for the significant new...

  11. 40 CFR 721.2900 - Substituted aminobenzoic acid ester (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted aminobenzoic acid ester... Specific Chemical Substances § 721.2900 Substituted aminobenzoic acid ester (generic name). (a) Chemical... acid ester (PMN P-84-951) is subject to reporting under this section for the significant new...

  12. Direct ortho-arylation of ortho-substituted benzoic acids: overriding Pd-catalyzed protodecarboxylation.

    PubMed

    Arroniz, Carlos; Ironmonger, Alan; Rassias, Gerry; Larrosa, Igor

    2013-02-15

    ortho-Arylation of ortho-substituted benzoic acids is a challenging process due to the tendency of the reaction products toward Pd-catalyzed protodecarboxylation. A simple method for preventing decarboxylation in sterically hindered benzoic acids is reported. The method described represents a reliable and broadly applicable entry to 2-aryl-6-substituted benzoic acids.

  13. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies activities... subject to this section: P-84-310, triethanolamine salt of a substituted organic acid. (b)...

  14. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies activities... subject to this section: P-84-310, triethanolamine salt of a substituted organic acid. (b)...

  15. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies activities... subject to this section: P-84-310, triethanolamine salt of a substituted organic acid. (b)...

  16. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies activities... subject to this section: P-84-310, triethanolamine salt of a substituted organic acid. (b)...

  17. 40 CFR 747.195 - Triethanolamine salt of a substituted organic acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic acid. 747.195 Section 747.195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Substances § 747.195 Triethanolamine salt of a substituted organic acid. This section identifies activities... subject to this section: P-84-310, triethanolamine salt of a substituted organic acid. (b)...

  18. Chrysosporium lucknowense C1 arabinofuranosidases are selective in releasing arabinose from either single or double substituted xylose residues in arabinoxylans.

    PubMed

    Pouvreau, Laurice; Joosten, Rob; Hinz, Sandra W A; Gruppen, Harry; Schols, Henk A

    2011-04-07

    Two novel arabinofuranosidases, Abn7 and Abf3 from Chrysosporium lucknowense (C1), belonging to the glycoside hydrolase family 43 and 51 were purified and characterized. Abn7 is exclusively able to hydrolyze arabinofuranosyl residues at position O-3 of double substituted xylosyl residues in arabinoxylan-derived oligosaccharides, an activity rarely found thus far. Abf3 is able to release arabinose from position O-2 or O-3 of single substituted xyloses. Both enzymes performed optimal at pH 5.0 and 40°C. Combining Abn7 and Abf3 resulted in a synergistic increase in arabinose release from arabinoxylans. This synergistic effect is due to the action of Abf3 on the remaining arabinose residues at position O-2 on single substituted xylosyl residues resulting from the action of Abn7 on double substituted xylosyl residues. Arabinose release was further increased when an endo-1,4-β-xylanase was present during digestion. The efficiency of these arabinohydrolases from C1 on insoluble arabinoxylan substrates is discussed.

  19. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase.

    PubMed

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-05-11

    Conjugated linolenic acids (CLNs), 18:3 Δ(9,11,13), lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ(9,12,15)). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ(9cis,11trans,13cis)) or α-eleostearic acid (18:3 Δ(9cis,11trans,13trans)). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation.

  20. Microscopic residues of bone from dissolving human remains in acids.

    PubMed

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found.

  1. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.

    PubMed

    Lee, Duck Yeon; Kim, Kyeong-Ae; Yu, Yeon Gyu; Kim, Key-Sun

    2004-07-30

    Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.

  2. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field

    PubMed Central

    2015-01-01

    Continuing our effort to introduce d-amino-acid residues in the united residue (UNRES) force field developed in our laboratory, in this work the Cα ··· Cα ··· Cα backbone-virtual-bond-valence-angle (θ) potentials for systems containing d-amino-acid residues have been developed. The potentials were determined by integrating the combined energy surfaces of all possible triplets of terminally blocked glycine, alanine, and proline obtained with ab initio molecular quantum mechanics at the MP2/6-31G(d,p) level to calculate the corresponding potentials of mean force (PMFs). Subsequently, analytical expressions were fitted to the PMFs to give the virtual-bond-valence potentials to be used in UNRES. Alanine represented all types of amino-acid residues except glycine and proline. The blocking groups were either the N-acetyl and N′,N′-dimethyl or N-acetyl and pyrrolidyl group, depending on whether the residue next in sequence was an alanine-type or a proline residue. A total of 126 potentials (63 symmetry-unrelated potentials for each set of terminally blocking groups) were determined. Together with the torsional, double-torsional, and side-chain-rotamer potentials for polypeptide chains containing d-amino-acid residues determined in our earlier work (Sieradzan et al. J. Chem. Theory Comput., 2012, 8, 4746), the new virtual-bond-angle (θ) potentials now constitute the complete set of physics-based potentials with which to run coarse-grained simulations of systems containing d-amino-acid residues. The ability of the extended UNRES force field to reproduce thermodynamics of polypeptide systems with d-amino-acid residues was tested by comparing the experimentally measured and the calculated free energies of helix formation of model KLALKLALxxLKLALKLA peptides, where x denotes any d- or l- amino-acid residue. The obtained results demonstrate that the UNRES force field with the new potentials reproduce the changes of free energies of helix formation upon d-substitution

  3. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase

    PubMed Central

    Nedrud, David M.; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K.; Legatt, Graig A.

    2014-01-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min−1 for hydrolysis of p-nitrophenyl acetate. Adding a third substitution – Glu79His – increased esterase activity more than tenfold to kcat ~ 1.6 min−1. The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at

  4. Binding of the hemagglutinin from human or equine influenza H3 viruses to the receptor is altered by substitutions at residue 193.

    PubMed

    Medeiros, R; Naffakh, N; Manuguerra, J-C; van der Werf, S

    2004-08-01

    Interactions of the hemagglutinin (HA) of influenza viruses with sialic acids (SA) are important for host range restriction. Most human H3s have a Ser193, while avian and equine H3s usually have an Asn or a Lys, respectively. To investigate the role of residue 193 in the recognition of SA, substitutions were introduced by mutagenesis within a human H3 and an equine H3. Hemadsorption assays performed on COS-1 cells expressing wt or mutated HAs, showed that a K193S substitution in the context of an equine H3 decreased its ability to bind several animal erythrocytes. Using de- and then alpha2,3 or alpha2,6 re-sialylated chicken erythrocytes we showed that for both human and equine H3s, substitution of a Serine by positively-charged Arginine or Lysine at position 193 increased binding to its preferred receptor, SAalpha2,6Gal and SAalpha2,3Gal, respectively. Moreover, when combined with the L194I substitution, the S193R substitution induced binding of the human H3 to NeuAcalpha2,3Gal.

  5. [Effect of point substitutions of Asp-714 and Asp-720 residues on the structure and function of the H+ -ATPase of the yeast plasma membrane].

    PubMed

    Petrov, V V; Ibragimov, R I

    2014-01-01

    Membrane-spanning M5 and M6 segments, which play a role in the formation of cation transport sites in H(+)-, Ca2(+)-, K(+)-, Na(+)-, and other P2-ATPases, are connected by a short extracytoplasmic loop. In the yeast plasma membrane H(+)-ATPase, which belongs to a family of P2-ATPases, the loop is connected to M5 and M6 through the Asp-714 and Asp-720 residues. In this work, the effect of point amino, acidreplacements of Asp-714 and Asp-720 by Ala, Val, Asn, and Glu residues on the function of the enzyme was studied. The Asp714Asn point mutant possessed activities similar to those of the wild-type enzyme, whereas the replacement of Asp-714 by other amino acid residues disrupted biogenesis and led to a loss of activity. All mutants with substitution of Asp-720 were expressed and possessed relatively high activity. The D720V mutant displayed significantly reduced expression levels, activity, H+ transport, and ATP hydrolyzing activity. Thus, substitutions of Asp-714, except for the D714N mutant, led to significant defects in biogenesis and/or function of the enzyme. The results indicate the important role for the Asp-714 residue in biogenesis, structure stability, and enzyme function.

  6. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging.

  7. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  8. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.

    PubMed

    Zhu, Wan Long; Lan, Hongliang; Park, Yoonkyung; Yang, Sung-Tae; Kim, Jae Il; Park, Il-Seon; You, Ho Jin; Lee, Jung Sup; Park, Yong Sun; Kim, Yangmee; Hahm, Kyung-Soo; Shin, Song Yub

    2006-10-31

    To investigate the effect of Pro --> peptoid residue substitution on cell selectivity and the mechanism of antibacterial action of Pro-containing beta-turn antimicrobial peptides, we synthesized tritrpticin-amide (TP, VRRFPWWWPFLRR-NH(2)) and its peptoid residue-substituted peptides in which two Pro residues at positions 5 and 9 are replaced with Nleu (Leu peptoid residue), Nphe (Phe peptoid residue), or Nlys (Lys peptoid residue). Peptides with Pro --> Nphe (TPf) or Pro --> Nleu substitution (TPl) retained antibacterial activity but had significantly higher toxicity to mammalian cells. In contrast, Pro --> Nlys substitution (TPk) increased the antibacterial activity but decreased the toxicity to mammalian cells. Tryptophan fluorescence studies indicated that the bacterial cell selectivity of TPk is closely correlated with a preferential interaction with negatively charged phospholipids. Interestingly, TPk was much less effective at depolarizing of the membrane potential of Staphylococus aureus and Escherichia coli spheroplasts and causing the leakage of a fluorescent dye entrapped within negatively charged vesicles. Furthermore, confocal laser-scanning microscopy showed that TPk effectively penetrated the membrane of both E. coli and S. aureus and accumulated in the cytoplasm, whereas TP and TPf did not penetrate the cell membrane but remained outside or on the cell membrane. These results suggest that the bactericidal action of TPk is due to inhibition of the intracellular components after penetration of the bacterial cell membrane. In addition, TPK with Lys substitution effectively depolarized the membrane potential of S. aureus and E. coli spheroplasts. TPK induced rapid and effective dye leakage from bacterial membrane-mimicking liposomes and did not penetrate the bacterial cell membranes. These results suggested that the ability of TPk to penetrate the bacterial cell membranes appears to involve the dual effects that are related to the increase in the

  9. Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity.

    PubMed Central

    Douglas, C M; Collier, R J

    1987-01-01

    Glutamic acid 553 of Pseudomonas aeruginosa exotoxin A (ETA) has been identified by photoaffinity labeling as a residue within the NAD binding site (S.F. Carroll and R.J. Collier, J. Biol. Chem. 262:8707-8711, 1987). To explore the function of Glu-553 we used oligonucleotide-directed mutagenesis to replace this residue with Asp in cloned ETA and expressed the mutant gene in Escherichia coli K-12. ADP-ribosylation activity of Asp-553 ETA in cell extracts was about 1,800-fold lower and toxicity for mouse L-M929 fibroblasts was at least 10,000-fold lower than that of the wild-type toxin. Extracts containing Asp-553 ETA inhibited the cytotoxicity of authentic ETA on L-M929 fibroblasts, suggesting that the mutant toxin competes for ETA receptors. The results indicate that Glu-553 is crucial for ADP-ribosylation activity and, consequently, cytotoxicity of ETA. Substitution or deletion of this residue may be a route to new ETA vaccines. Images PMID:2889718

  10. Lipid Extracted Microalgal Biomass Residue as a Fertilizer Substitute for Zea mays L.

    PubMed

    Maurya, Rahulkumar; Chokshi, Kaumeel; Ghosh, Tonmoy; Trivedi, Khanjan; Pancha, Imran; Kubavat, Denish; Mishra, Sandhya; Ghosh, Arup

    2015-01-01

    High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha(-1)); T3 to T6-100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10-100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant(-1)), which was closely followed by that (63.48 g plant(-1)) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no

  11. Lipid Extracted Microalgal Biomass Residue as a Fertilizer Substitute for Zea mays L.

    PubMed Central

    Maurya, Rahulkumar; Chokshi, Kaumeel; Ghosh, Tonmoy; Trivedi, Khanjan; Pancha, Imran; Kubavat, Denish; Mishra, Sandhya; Ghosh, Arup

    2016-01-01

    High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha−1); T3 to T6—100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10—100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant−1), which was closely followed by that (63.48 g plant−1) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no

  12. ortho-Lithium/magnesium carboxylate-driven aromatic nucleophilic substitution reactions on unprotected naphthoic acids.

    PubMed

    Aissaoui, Regadia; Nourry, Arnaud; Coquel, Ariane; Dao, Thi Thanh Hà; Derdour, Aicha; Helesbeux, Jean-Jacques; Duval, Olivier; Castanet, Anne-Sophie; Mortier, Jacques

    2012-01-06

    Substitution of an ortho-fluoro or methoxy group in 1- and 2-naphthoic acids furnishing substituted naphthoic acids occurs in good to excellent yields upon reaction with alkyl/vinyl/aryl organolithium and Grignard reagents, in the absence of a metal catalyst without the need to protect the carboxyl (CO(2)H) group. This novel nucleophilic aromatic substitution is presumed to proceed via a precoordination of the organometallic with the substrate, followed by an addition/elimination.

  13. Ideal amino acid exchange forms for approximating substitution matrices.

    PubMed

    Pokarowski, Piotr; Kloczkowski, Andrzej; Nowakowski, Szymon; Pokarowska, Maria; Jernigan, Robert L; Kolinski, Andrzej

    2007-11-01

    We have analyzed 29 published substitution matrices (SMs) and five statistical protein contact potentials (CPs) for comparison. We find that popular, 'classical' SMs obtained mainly from sequence alignments of globular proteins are mostly correlated by at least a value of 0.9. The BLOSUM62 is the central element of this group. A second group includes SMs derived from alignments of remote homologs or transmembrane proteins. These matrices correlate better with classical SMs (0.8) than among themselves (0.7). A third group consists of intermediate links between SMs and CPs - matrices and potentials that exhibit mutual correlations of at least 0.8. Next, we show that SMs can be approximated with a correlation of 0.9 by expressions c(0) + x(i)x(j) + y(i)y(j) + z(i)z(j), 1acids, respectively. The present paper is the continuation of our work (Pokarowski et al., Proteins 2005;59:49-57), where similar approximation were used to derive ideal amino acid interaction forms from CPs. Both approximations allow us to understand general trends in amino acid similarity and can help improve multiple sequence alignments using the fast Fourier transform (MAFFT), fast threading or another methods based on alignments of physicochemical profiles of protein sequences. The use of this approximation in sequence alignments instead of a classical SM yields results that differ by less than 5%. Intermediate links between SMs and CPs, new formulas for approximating these matrices, and the highly significant dependence of classical SMs on coil preferences are new findings.

  14. Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.

    PubMed

    Mishra, Rajeev; Gara, Sudheer Kumar; Mishra, Shambhavi; Prakash, Balaji

    2005-05-01

    Ras superfamily GTP-binding proteins regulate important signaling events in the cell. Ras, which often serves as a prototype, efficiently hydrolyzes GTP in conjunction with its regulator GAP. A conserved glutamine plays a vital role in GTP hydrolysis in most GTP-binding proteins. Mutating this glutamine in Ras has oncogenic effects, since it disrupts GTP hydrolysis. The analysis presented here is of GTP-binding proteins that are a paradox to oncogenic Ras, since they have the catalytic glutamine (Glncat) substituted by a hydrophobic amino acid, yet can hydrolyze GTP efficiently. We term these proteins HAS-GTPases. Analysis of the amino acid sequences of HAS-GTPases reveals prominent presence of insertions around the GTP-binding pocket. Homology modeling studies suggest an interesting means to achieve catalysis despite the drastic hydrophobic substitution replacing the key Glncat of Ras-like GTPases. The substituted hydrophobic residue adopts a "retracted conformation," where it is positioned away from the GTP, as its role in catalysis would be unproductive. This conformation is further stabilized by interactions with hydrophobic residues in its vicinity. These interacting residues are strongly conserved and hydrophobic in all HAS-GTPases, and correspond to residues Asp92 and Tyr96 of Ras. An experimental support for the "retracted conformation" of Switch II arises from the crystal structures of Ylqf and hGBP1. This conformation allows us to hypothesize that, unlike in classical GTPases, catalytic residues could be supplied by regions other than the Switch II (i.e., either the insertions or a neighboring domain).

  15. Substitution of conserved cysteine residues in Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substitutions in the amino-terminal region of Wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution a...

  16. Effect of substitution of low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake.

    PubMed

    DiRienzo, Maureen A; Astwood, James D; Petersen, Barbara J; Smith, Kim M

    2006-02-01

    Low linolenic acid soybean oil (LLSO) has been developed as a substitute for hydrogenated soybean oil to reduce intake of trans FA while improving stability and functionality in processed foods. We assessed the dietary impact of substitution of LLSO for hydrogenated soybean oil (HSBO) used in several food categories. All substitutions were done using an assumption of 100% market penetration. The impact of this substitution on the intake of five FA and trans FA was assessed. Substitution of LLSO for current versions of HSBO resulted in a 45% decrease in intake of trans FA. Impacts on other FA intakes were within the realm of typical dietary intakes. No decrease in intake of alpha-linolenic acid was associated with the use of LLSO in place of HSBO because LLSO substitutes for HSBO that are already low in alpha-linolenic acid.

  17. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute.

  18. Thiostrepton Variants Containing a Contracted Quinaldic Acid Macrocycle Result from Mutagenesis of the Second Residue

    PubMed Central

    Zhang, Feifei; Li, Chaoxuan

    2016-01-01

    The thiopeptides are a family of ribosomally synthesized and posttranslationally modified peptide metabolites, and the vast majority of thiopeptides characterized to date possess one highly modified macrocycle. A few members, including thiostrepton A, harbor a second macrocycle that incorporates a quinaldic acid moiety and the four N-terminal residues of the peptide. The antibacterial properties of thiostrepton A are well established, and its recently discovered ability to inhibit the proteasome has additional implications for the development of antimalarial and anticancer therapeutics. We have conducted the saturation mutagenesis of Ala2 in the precursor peptide, TsrA, to examine which variants can be transformed into a mature thiostrepton analogue. Although the thiostrepton biosynthetic system is somewhat restrictive towards substitutions at the second residue, eight thiostrepton Ala2 analogues were isolated. The TsrA Ala2Ile and Ala2Val variants were largely channeled through an alternate processing pathway wherein the first residue of the core peptide, Ile1, is removed and the resulting thiostrepton analogues bear quinaldic acid macrocycles abridged by one residue. This is the first report revealing that quinaldic acid loop size is amenable to alteration during the course of thiostrepton biosynthesis. Both the antibacterial and proteasome inhibitory properties of the thiostrepton Ala2 analogues were examined. While the identity of the residue at the second position of the core peptide influences thiostrepton biosynthesis, our report suggests it may not be crucial for antibacterial and proteasome inhibitory properties of the full-length variants. In contrast, the contracted quinaldic acid loop can, to differing degrees, affect both types of biological activity. PMID:26630475

  19. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  20. Effect of Charge Substitutions at Residue His-142 on Voltage Gating of Connexin43 Channels

    PubMed Central

    Shibayama, Junko; Gutiérrez, Cristina; González, Daniel; Kieken, Fabien; Seki, Akiko; Requena Carrión, Jesus; Sorgen, Paul L.; Taffet, Steven M.; Barrio, Luis C.; Delmar, Mario

    2006-01-01

    Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119–144; referred to as “L2”). Structural analysis of L2 shows two α-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43. PMID:16963503

  1. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  2. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  3. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  4. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  5. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  6. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  7. Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids.

    PubMed

    Wong, Kin-Yiu; Richard, John P; Gao, Jiali

    2009-10-07

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted alpha-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the second-order Kleinert variational perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relatively small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted alpha-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO(2) substituted alpha-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, DeltaG(o) approximately 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, that is, the driving force DeltaG(o), along with a good correlation of Hammond shift in the transition state structure.

  8. Theoretical Analysis of Kinetic Isotope Effects on Proton Transfer Reactions between Substituted α-Methoxystyrenes and Substituted Acetic Acids

    PubMed Central

    Wong, Kin Yiu; Richard, John P.; Gao, Jiali

    2009-01-01

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted α-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the Kleinert variational second-order perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relative small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted α-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO2 substituted α-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, ΔGo ≈ 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, i.e., the driving force ΔGo, along with a good correlation of Hammond shift in the transition state structure. PMID:19754046

  9. Electronic Effects of 11β Substituted 17β-Estradiol Derivatives and Instrumental Effects on the Relative Gas Phase Acidity

    NASA Astrophysics Data System (ADS)

    Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude

    2012-12-01

    Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.

  10. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    PubMed Central

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  11. Cascade dearomatization of N-substituted tryptophols via Lewis acid-catalyzed Michael reactions.

    PubMed

    Liu, Chuan; Zhang, Wei; Dai, Li-Xin; You, Shu-Li

    2012-09-21

    Lewis acid-catalyzed cascade dearomatization of N-substituted tryptophols via Michael addition reaction was developed. The generality of the method has been demonstrated by the synthesis of versatile furoindoline derivatives with a quaternary carbon center in good yields.

  12. 40 CFR 721.7785 - Substituted alkyl aminomethylene polyphosphonic acid, salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyphosphonic acid, salt (generic). 721.7785 Section 721.7785 Protection of Environment ENVIRONMENTAL PROTECTION... acid, salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted alkylamino methylene polyphosphonic acid,...

  13. 40 CFR 721.7785 - Substituted alkyl aminomethylene polyphosphonic acid, salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyphosphonic acid, salt (generic). 721.7785 Section 721.7785 Protection of Environment ENVIRONMENTAL PROTECTION... acid, salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted alkylamino methylene polyphosphonic acid,...

  14. 40 CFR 721.7785 - Substituted alkyl aminomethylene polyphosphonic acid, salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyphosphonic acid, salt (generic). 721.7785 Section 721.7785 Protection of Environment ENVIRONMENTAL PROTECTION... acid, salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted alkylamino methylene polyphosphonic acid,...

  15. 40 CFR 721.7785 - Substituted alkyl aminomethylene polyphosphonic acid, salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyphosphonic acid, salt (generic). 721.7785 Section 721.7785 Protection of Environment ENVIRONMENTAL PROTECTION... acid, salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted alkylamino methylene polyphosphonic acid,...

  16. 40 CFR 721.7785 - Substituted alkyl aminomethylene polyphosphonic acid, salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyphosphonic acid, salt (generic). 721.7785 Section 721.7785 Protection of Environment ENVIRONMENTAL PROTECTION... acid, salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted alkylamino methylene polyphosphonic acid,...

  17. 40 CFR 721.10690 - Benzenedicarboxylic acid, polymer with substituted alkanediol, dodecanedioic acid, 1,2-ethanediol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenedicarboxylic acid, polymer with substituted alkanediol, dodecanedioic acid, 1,2-ethanediol, alkanedioic acid, alkanediol,.alpha.-hydro-.omega.-hydroxypoly , 1,3-isobenzofurandione, methylene diphenyl diisocyanate, 2-oxepanone, 2,2'-oxybis and polymethylene polyphenylene...

  18. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities.

  19. Allosteric Inhibition of Phosphoenolpyruvate Carboxylases is Determined by a Single Amino Acid Residue in Cyanobacteria

    PubMed Central

    Takeya, Masahiro; Hirai, Masami Yokota; Osanai, Takashi

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO2 fixation and primary metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified. In this study, biochemical analysis revealed that the optimum pH and temperature of Synechocystis 6803 PEPC proteins were 7.3 and 30 °C, respectively. Synechocystis 6803 PEPC was found to be tolerant to allosteric inhibition by several metabolic effectors such as malate, aspartate, and fumarate compared with other cyanobacterial PEPCs. Comparative sequence and biochemical analysis showed that substitution of the glutamate residue at position 954 with lysine altered the enzyme so that it was inhibited by malate, aspartate, and fumarate. PEPC of the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 was purified, and its activity was inhibited in the presence of malate. Substitution of the lysine at position 946 (equivalent to position 954 in Synechocystis 6803) with glutamate made Anabaena 7120 PEPC tolerant to malate. These results demonstrate that the allosteric regulation of PEPC in cyanobacteria is determined by a single amino acid residue, a characteristic that is conserved in different orders. PMID:28117365

  20. Removal of acidic residues of the prodomain of PCSK9 increases its activity towards the LDL receptor.

    PubMed

    Holla, Øystein L; Laerdahl, Jon K; Strøm, Thea Bismo; Tveten, Kristian; Cameron, Jamie; Berge, Knut Erik; Leren, Trond P

    2011-03-11

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and mediates intracellular degradation of the LDLR. The amino-terminus of mature PCSK9, residues 31-53 of the prodomain, has an inhibitory effect on this function of PCSK9, but the underlying mechanism is not fully understood. In this study, we have identified two highly conserved negatively charged segments (residues 32-40 and 48-50, respectively) within this part of the prodomain and performed deletions and substitutions to study their importance for degradation of the LDLRs. Deletion of the acidic residues of the longest negatively charged segment increased PCSK9's ability to degrade the LDLR by 31%, whereas a modest 8% increase was observed when these residues were mutated to uncharged amino acids. Thus, both the length and the charge of this part of the prodomain were important for its inhibitory effect. Deletion of the residues of the shorter second negatively charged segment only increased PCSK9's activity by 8%. Substitution of the amino acids of both charged segments to uncharged residues increased PCSK9's activity by 36%. These findings indicate that the inhibitory effect of residues 31-53 of the prodomain is due to the negative charge of this segment. The underlying mechanism could involve the binding of this peptide segment to positively charged structures which are important for PCSK9's activity. One possible candidate could be the histidine-rich C-terminal domain of PCSK9.

  1. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones.

    PubMed

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-06-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.

  2. 77 FR 65834 - Residues of Fatty Acids, Tall-Oil, Ethoxylated Propoxylated; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... AGENCY 40 CFR Part 180 Residues of Fatty Acids, Tall-Oil, Ethoxylated Propoxylated; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of fatty acids, tall-oil, ethoxylated... residues of fatty ] acids, tall-oil, ethoxylated propoxylated on food or feed commodities. DATES:...

  3. XPS and STEM studies of Allende acid insoluble residues

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Clarke, D. R.

    1980-01-01

    Data on Allende acid residues obtained both before and after etching with hot HNO3 are presented. X-ray photoelectron spectra show predominantly carbonaceous material plus Fe-deficient chromite in both cases. The HNO3 oxidizes the carbonaceous material to some extent. The small chromites in these residues have a wide range of compositions somewhat paralleling those observed in larger Allende chromites and in Murchison chromites, especially in the high Al contents; however, they are deficient in divalent cations, which makes them metastable and indicates that they must have formed at relatively low temperatures. It is suggested that they formed by precipitation of Cr(3+) and Fe(3+) from olivine at low temperature or during rapid cooling.

  4. T Cell Determinants Incorporating [beta]-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo

    SciTech Connect

    Webb, Andrew I.; Dunstone, Michelle A.; Williamson, Nicholas A.; Price, Jason D.; Kauwe, Andreade; Chen, Weisan; Oakley, Aaron; Perlmutter, Patrick; McCluskey, James; Aguilar, Marie-Isabel; Rossjohn, Jamie; Purcell, Anthony W.

    2010-07-20

    A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of {beta}-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding {beta}-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with {beta}-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using {beta}-amino acids. We conclude that the rational incorporation of {beta}-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring {alpha}-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.

  5. Substitutions of Conserved Residues in the C-terminal Region of DnaC Cause Thermolability in Helicase Loading*

    PubMed Central

    Felczak, Magdalena M.; Sage, Jay M.; Hupert-Kocurek, Katarzyna; Aykul, Senem; Kaguni, Jon M.

    2016-01-01

    The DnaB-DnaC complex binds to the unwound DNA within the Escherichia coli replication origin in the helicase loading process, but the biochemical events that lead to its stable binding are uncertain. This study characterizes the function of specific C-terminal residues of DnaC. Genetic and biochemical characterization of proteins bearing F231S and W233L substitutions of DnaC reveals that their activity is thermolabile. Because the mutants remain able to form a complex with DnaB at 30 and 37 °C, their thermolability is not explained by an impaired interaction with DnaB. Photo-cross-linking experiments and biosensor analysis show an altered affinity of these mutants compared with wild type DnaC for single-stranded DNA, suggesting that the substitutions affect DNA binding. Despite this difference, their activity in DNA binding is not thermolabile. The substitutions also drastically reduce the affinity of DnaC for ATP as measured by the binding of a fluorescent ATP analogue (MANT-ATP) and by UV cross-linking of radiolabeled ATP. Experiments show that an elevated temperature substantially inhibits both mutants in their ability to load the DnaB-DnaC complex at a DnaA box. Because a decreased ATP concentration exacerbates their thermolabile behavior, we suggest that the F231S and W233L substitutions are thermolabile in ATP binding, which correlates with defective helicase loading at an elevated temperature. PMID:26728455

  6. Rearrangement of the distal pocket accompanying E7 His yields Gln substitution in elephant carbonmonoxy- and oxymyoglobin: sup 1 H NMR identification of a new aromatic residue in the heme pocket

    SciTech Connect

    Yu, L.P.; La Mar, G.N. ); Mizukami, H. )

    1990-03-13

    Two-dimensional {sup 1}H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO{sub 2}). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO{sub 2} resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The C{zeta}H proton of the Phe CD4 was found to move toward the iron of the heme by {approximately}4 {angstrom} relative to the position in sperm whale MbCO, requiring minimally a 3-{angstrom} movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His {yields} Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties.

  7. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives.

    PubMed

    Zhang, Chun; Yang, Xiao-lan; Yuan, Yong-hua; Pu, Jun; Liao, Fei

    2012-08-01

    Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.

  8. Effect of substitution of high stearic low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake.

    PubMed

    DiRienzo, Maureen A; Lemke, Shawna L; Petersen, Barbara J; Smith, Kim M

    2008-05-01

    High stearic, low alpha-linolenic acid soybean oil (HSLL) has been developed via traditional breeding to serve as a substitute for partially hydrogenated soybean oils used in food manufacturing. The purpose of this study was to estimate the impact on fatty acid intake in the United States if HSLL were substituted for partially hydrogenated soybean oils used in several food categories, including baked goods, shortenings, fried foods, and margarines. Using National Health and Nutrition Examination Survey (NHANES) data (1999-2002), baseline intakes of five fatty acids and trans fatty acids (TFA) were determined at the mean and 90th percentile of fat consumption. Then intakes of these fatty acids were determined after HSLL was substituted for 100% of the partially hydrogenated soybean oils used in these four food categories. The results show that baseline intake of stearic acid is 3.0% energy at the mean and 3.3% energy at the 90th percentile. Use of HSLL could increase stearic acid intake to about 4-5% energy. Mean intakes of TFA could decrease from 2.5 to 0.9% energy, and intake of palmitic acid would remain unchanged. Use of HSLL as a substitute for partially hydrogenated soybean oils would result in changes in the fatty acid composition of the US diet consistent with current dietary recommendations.

  9. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  10. Amino acid substitutions in GyrA affect quinolone susceptibility in Salmonella typhimurium.

    PubMed

    Kongsoi, Siriporn; Changkwanyeun, Ruchirada; Yokoyama, Kazumasa; Nakajima, Chie; Changkaew, Kanjana; Suthienkul, Orasa; Suzuki, Yasuhiko

    2016-10-01

    The prevalence of quinolone-resistant Salmonella has become a public health concern. Amino acid substitutions have generally been found within the quinolone resistance-determining region in subunit A of DNA gyrase (GyrA) of Salmonella Typhimurium. However, direct evidence of the contribution of these substitutions to quinolone resistance remains to be shown. To investigate the significance of amino acid substitutions in S. Typhimurium GyrA to quinolone resistance, we expressed recombinant wild-type (WT) and five mutant DNA gyrases in Escherichia coli and characterized them in vitro. WT and mutant DNA gyrases were reconstituted in vitro by mixing recombinant subunits A and B of DNA gyrase. The correlation between the amino acid substitutions and resistance to quinolones ciprofloxacin, levofloxacin, nalidixic acid, and sitafloxacin was assessed by quinolone-inhibited supercoiling assays. All mutant DNA gyrases showed reduced susceptibility to all quinolones when compared with WT DNA gyrases. DNA gyrase with a double amino acid substitution in GyrA, serine to phenylalanine at codon 83 and aspartic acid to asparagine at 87 (GyrA-S83F-D87N), exhibited the lowest quinolone susceptibility amongst all mutant DNA gyrases. The effectiveness of sitafloxacin was shown by the low inhibitory concentration required for mutant DNA gyrases, including the DNA gyrase with GyrA-S83F-D87N. We suggest sitafloxacin as a candidate drug for the treatment of salmonellosis caused by ciprofloxacin-resistant S. Typhimurium. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Aspartic Acid Residue D3 Critically Determines Cx50 Gap Junction Channel Transjunctional Voltage-Dependent Gating and Unitary Conductance

    PubMed Central

    Xin, Li; Nakagawa, So; Tsukihara, Tomitake; Bai, Donglin

    2012-01-01

    Previous studies have suggested that the aspartic acid residue (D) at the third position is critical in determining the voltage polarity of fast Vj-gating of Cx50 channels. To test whether another negatively charged residue (a glutamic acid residue, E) could fulfill the role of the D3 residue, we generated the mutant Cx50D3E. Vj-dependent gating properties of this mutant channel were characterized by double-patch-clamp recordings in N2A cells. Macroscopically, the D3E substitution reduced the residual conductance (Gmin) to near zero and outwardly shifted the half-inactivation voltage (V0), which is a result of both a reduced aggregate gating charge (z) and a reduced free-energy difference between the open and closed states. Single Cx50D3E gap junction channels showed reduced unitary conductance (γj) of the main open state, reduced open dwell time at ±40 mV, and absence of a long-lived substate. In contrast, a G8E substitution tested to compare the effects of the E residue at the third and eighth positions did not modify the Vj-dependent gating profile or γj. In summary, this study is the first that we know of to suggest that the D3 residue plays an essential role, in addition to serving as a negative-charge provider, as a critical determinant of the Vj-dependent gating sensitivity, open-closed stability, and unitary conductance of Cx50 gap junction channels. PMID:22404924

  12. Influence of glutamic acid residues and pH on the properties of transmembrane helices.

    PubMed

    Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2017-03-01

    Negatively charged side chains are important for the function of particular ion channels and certain other membrane proteins. To investigate the influence of single glutamic acid side chains on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide) as a favorable host peptide framework. We substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated specific (2)H-labeled alanine residues within the core helical region or near the ends of the sequence. Solid-state (2)H NMR spectra reveal little change for the core labels in GWALP23-E12, -E14 and -E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show modest pH-dependent changes in the extent of unwinding of the helix terminals in DLPC and DOPC bilayers. The combined results indicate minor overall responses of these transmembrane helices to changes in pH, with the most buried residue E12 showing no pH dependence. While the Glu residues E14 and E16 may have high pKa values in the lipid bilayer environment, it is also possible that a paucity of helix response is masking the pKa values. Interestingly, when E16 is present, spectral changes at high pH report significant local unwinding of the core helix. Our results are consistent with the expectation that buried carboxyl groups aggressively hold their protons and/or waters of hydration.

  13. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylphenoxypoly(oxyethylene)...

  14. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylphenoxypoly(oxyethylene)...

  15. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylphenoxypoly(oxyethylene)...

  16. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylphenoxypoly(oxyethylene)...

  17. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylphenoxypoly(oxyethylene)...

  18. Microbial hydroxylation of o-bromophenylacetic acid: synthesis of 4-substituted-2,3-dihydrobenzofurans.

    PubMed

    Deshpande, Prashant P; Nanduri, Venkata B; Pullockaran, Annie; Christie, Hamish; Mueller, Richard H; Patel, Ramesh N

    2008-08-01

    Microbial hydroxylation of o-bromophenylacetic acid provided 2-bromo-5-hydroxyphenylacetic acid. This enabled a route to the key intermediate 4-bromo-2,3-dihydrobenzofuran for synthesizing a melatonin receptor agonist and sodium hydrogen exchange compounds. Pd-mediated coupling reactions of 4-bromo-2,3-dihydrobenzofuran provided easy access to the 4-substituted-2,3-dihydrobenzofurans.

  19. Manpower Theory and Policy and the Residual Occupational Elasticity of Substitution.

    ERIC Educational Resources Information Center

    Rostker, Bernard Daniel

    By developing the short-run policy implications of a structurally disaggregated labor market, this study attempts to show that fiscal and manpower policies are complementary means to achieve full employment. Using a constant elasticity of substitution production function, the study demonstrates mathematically that the smaller the residual…

  20. Theoretical Study of 1,3-Dipolar Cycloaddition of Hydrazoic Acid to Substituted Ynamines

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-fang; Yang, Kun; Han, Ke-li

    2009-04-01

    The 1,3-dipolar cycloaddition reactions of various substituted ynamines with hydrazoic acid were theoretically investigated with the high-accuracy CBS-QB3 method. Two regioisomers, 4-amine, and 5-amine substituted adducts, were obtained, with the former as the preferred yield. This regioselectivity is rationalized by the frontier molecular orbital theory. The reactivity and synchronicity are enhanced with the increase of the electron-withdrawing character of the substitute on ynamine fragment. The calculations also show that the effect of solvent increases the activation energy, and the reaction becomes even harder in polar solvent.

  1. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  2. Identification of acid-base catalytic residues of high-Mr thioredoxin reductase from Plasmodium falciparum.

    PubMed

    McMillan, Paul J; Arscott, L David; Ballou, David P; Becker, Katja; Williams, Charles H; Müller, Sylke

    2006-11-03

    High-M(r) thioredoxin reductase from the malaria parasite Plasmodium falciparum (PfTrxR) contains three redox active centers (FAD, Cys-88/Cys-93, and Cys-535/Cys-540) that are in redox communication. The catalytic mechanism of PfTrxR, which involves dithiol-disulfide interchanges requiring acid-base catalysis, was studied by steady-state kinetics, spectral analyses of anaerobic static titrations, and rapid kinetics analysis of wild-type enzyme and variants involving the His-509-Glu-514 dyad as the presumed acid-base catalyst. The dyad is conserved in all members of the enzyme family. Substitution of His-509 with glutamine and Glu-514 with alanine led to TrxR with only 0.5 and 7% of wild type activity, respectively, thus demonstrating the crucial roles of these residues for enzymatic activity. The H509Q variant had rate constants in both the reductive and oxidative half-reactions that were dramatically less than those of wild-type enzyme, and no thiolateflavin charge-transfer complex was observed. Glu-514 was shown to be involved in dithiol-disulfide interchange between the Cys-88/Cys-93 and Cys-535/Cys-540 pairs. In addition, Glu-514 appears to greatly enhance the role of His-509 in acid-base catalysis. It can be concluded that the His-509-Glu-514 dyad, in analogy to those in related oxidoreductases, acts as the acid-base catalyst in PfTrxR.

  3. Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs

    PubMed Central

    Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara

    2016-01-01

    New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO2, NH2, OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine “cores” (3a,3b) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19. Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers. PMID:28144293

  4. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  5. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  6. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  7. Role of lysine and acidic amino acid residues on the insecticidal activity of Jackbean urease.

    PubMed

    Real-Guerra, Rafael; Carlini, Célia Regina; Stanisçuaski, Fernanda

    2013-09-01

    Canavalia ensiformis has three isoforms of urease: Jackbean urease (JBU), Jackbean urease II and canatoxin. These isoforms present several biological activities, independent from the enzymatic property, such as entomotoxicity and antifungal properties. The entomotoxic activity is a property of the whole protein, as well as of a 10 kDa peptide released by insect digestive enzymes. Here we have used chemical modification to observe the influence of lysines and acidic residues on JBU enzymatic and insecticidal activities. Chemical modification of lysine residues was performed with dimethylamine-borane complex and formaldehyde, and acidic residues were modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and ethylenediamine. Derivatized ureases, called JBU-Lys (lysine-modified) and JBU-Ac (acidic residues-modified), were assayed for their biochemical and insecticidal properties. Neither modification altered significantly the kinetic parameters analyzed, indicating that no residue critical for the enzyme activity was affected and that the modifications did not incur in any significant structural alteration. On the other hand, both modifications reduced the toxic activity of the native protein fed to Dysdercus peruvianus. The changes observed in the entomotoxic property of the derivatized proteins reflect alterations in different steps of JBU's toxicity towards insects. JBU-Ac is not susceptible to hydrolysis by insect digestive enzymes, hence impairing the release of toxic peptide(s), while JBU-Lys is processed as the native protein. On the other hand, the antidiuretic effect of JBU on Rhodnius prolixus is altered in JBU-Lys, but not in JBU-Ac. Altogether, these data emphasize the role of lysine and acidic residues on the insecticidal properties of ureases.

  8. Standard test method for acidity of distillation residues or hydrocarbon liquids

    SciTech Connect

    Not Available

    1980-01-01

    This method covers the qualitative determination of the acidity of the distillation residue from a gasoline. The sample of distillation residue or hydrocarbon liquid is shaken with water and the aqueous layer tested for acidity to methyl orange. Some petroleum products are treated with mineral acid as part of the refining procedure. Obviously, any residual mineral acid in a petroleum product is undesirable. The absence of a positive indication in the test for acidity of the distillation residue or aqueous extract of a hydrocarbon liquid is an assurance of the care used in refining the fuel or solvent.

  9. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  10. Modular organization of residue-level contacts shape the selection pressure on individual amino acid sites of ribosomal proteins.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-02-22

    Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly and stability is of central importance. Here we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, inter-nucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, while only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, inter-protein cooperativity, inter-subunit bridge, packing of multiple ribosomal RNA domains etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared to that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties.

  11. Aminobenzoic acid diuretics. 7. 3-Substituted 4-phenyl-, 4-arylcarbonyl-, and 4-arylmethyl-5-sulfamoylbenzoic acids and related compounds.

    PubMed

    Nielsen, O B; Bruun, H; Bretting, C; Feit, P W

    1975-01-01

    Various 4-substituted 3-alkylamino-, 3-alkoxy-, 3-alkylthio-, and 3-alkyl-5-sulfamoylbenzoic acids related to known aminobenzoic acid diuretics were synthesized and screened for their diuretic properties in dogs. The tabulated results from a 3-hr test period revealed that generally the diuretic profile and potency could be retained when 3-alkoxy, 3-alkylthio, and 3-phenethyl were substituted for the 3-alkylamino moiety. The high potency of several 3-alkoxy-, 3-alkylthio-, and 3-phenethyl-4-benzoyl-5-sulfamoylbenzoic acids confirmed previous suggestions that the apparent diuretic effect of 4- and 5-alkylamino-6-carboxy-3-phenyl-1,2-benzisothiazole 1,1-dioxides originates from the corresponding 4-benzoyl-5-sulfamoylbenzoic acid derivatives due to an existing equilibrium in plasma. 4-Benzoyl-5-sulfamoyl-3-(3-thenyloxy) benzoic acid (118) is among the most potent benzoic acid diuretics hitherto synthesized and shows significant diuretic activity in dogs at 1 mug/kg. The results obtained with different 3-substituted 4-phenyl-5-sulfamoylbenzoic acids supported the earlier concept regarding the steric influence of the 4-substituent on the diuretic potency of sulfamoylbenzoic acid diuretics.

  12. A natural, single-residue substitution yields a less active peptaibiotic: the structure of bergofungin A at atomic resolution.

    PubMed

    Gessmann, Renate; Axford, Danny; Brückner, Hans; Berg, Albrecht; Petratos, Kyriacos

    2017-02-01

    Bergofungin is a peptide antibiotic that is produced by the ascomycetous fungus Emericellopsis donezkii HKI 0059 and belongs to peptaibol subfamily 2. The crystal structure of bergofungin A has been determined and refined to 0.84 Å resolution. This is the second crystal structure of a natural 15-residue peptaibol, after that of samarosporin I. The amino-terminal phenylalanine residue in samarosporin I is exchanged to a valine residue in bergofungin A. According to agar diffusion tests, this results in a nearly inactive antibiotic peptide compared with the moderately active samarosporin I. Crystals were obtained from methanol solutions of purified bergofungin mixed with water. Although there are differences in the intramolecular hydrogen-bonding scheme of samarosporin I, the overall folding is very similar for both peptaibols, namely 310-helical at the termini and α-helical in the middle of the molecules. Bergofungin A and samarosporin I molecules are arranged in a similar way in both lattices. However, the packing of bergofungin A exhibits a second solvent channel along the twofold axis. This latter channel occurs in the vicinity of the N-terminus, where the natural substitution resides.

  13. Catechol-substituted L-chicoric acid analogues as HIV integrase inhibitors.

    PubMed

    Lee, Jae Yeol; Yoon, Kwon Joong; Lee, Yong Sup

    2003-12-15

    HIV integrase catalyzes the integration of HIV DNA copy into the host cell DNA, which is essential for the production of progeny viruses. L-Chicoric acid and dicaffeoylquinic acids, isolated from plants, are well known potent inhibitors of HIV integrase. The common structural features of these inhibitors are caffeic acid derivatives connected to tartaric acid or quinic acid through ester bonds. In the present study, we have synthesized and tested the inhibitory activities of a new type of HIV IN inhibitors, which has catechol groups in place of caffeoyl groups in the structure of L-chicoric acid. Upon substitution of catechol groups at succinic acid, pyrrole-dicarboxylic acid, maleimide or maleic anhydride, the inhibitory activities (IC(50)=3.8-23.6 microM) were retained or remarkably increased when compared to parent compound L-chicoric acid (IC(50)=13.7 microM).

  14. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  15. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  16. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  17. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  18. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false p-Chlorophenoxyacetic acid; tolerances... Tolerances § 180.202 p-Chlorophenoxyacetic acid; tolerances for residues. (a) General. A tolerance is established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite...

  19. 40 CFR 180.325 - 2-(m-Chlorophenoxy) propionic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 2-(m-Chlorophenoxy) propionic acid... Tolerances § 180.325 2-(m-Chlorophenoxy) propionic acid; tolerances for residues. (a) General. A tolerance is established for negligible residues of the plant regulator 2-(m-chlorophenoxy) propionic acid from...

  20. Substitution of a single amino acid (aspartic acid for histidine) converts the functional activity of human complement C4B to C4A.

    PubMed Central

    Carroll, M C; Fathallah, D M; Bergamaschini, L; Alicot, E M; Isenman, D E

    1990-01-01

    The C4B isotype of the fourth component of human complement (C4) displays 3- to 4-fold greater hemolytic activity than does its other isotype C4A. This correlates with differences in their covalent binding efficiencies to erythrocytes coated with antibody and complement C1. C4A binds to a greater extent when C1 is on IgG immune aggregates. The differences in covalent binding properties correlate only with amino acid changes between residues 1101 and 1106 (pro-C4 numbering)--namely, Pro-1101, Cys-1102, Leu-1105, and Asp-1106 in C4A and Leu-1101, Ser-1102, Ile-1105, and His-1106 in C4B, which are located in the C4d region of the alpha chain. To more precisely identify the residues that are important for the functional differences, C4A-C4B hybrid proteins were constructed by using recombinant DNA techniques. Comparison of these by hemolytic assay and binding to IgG aggregates showed that the single substitution of aspartic acid for histidine at position 1106 largely accounted for the change in functional activity and nature of the chemical bond formed (ester vs. amide). Surprisingly, substitution of a neutral residue, alanine, for histidine at position 1106 resulted in an increase in binding to immune aggregates without subsequent reduction in the hemolytic activity. This result strongly suggests that position 1106 is not "catalytic" as previously proposed but interacts sterically/electrostatically with potential acceptor sites and serves to "select" binding sites on potential acceptor molecules. Images PMID:2395880

  1. Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6.

    PubMed

    Stolz, A

    1999-10-01

    Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino- and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naphthalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunctional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the catalytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the 2'-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they show about 40-60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BN6 has also been used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6 was studied in continuous cultures and was described by mathematical models.

  2. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers.

  3. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  4. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  5. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  6. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  7. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkyl esters (generic name). 721.1875 Section 721.1875 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to...

  8. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). Link to an amendment published at 79 FR 34636, June 18, 2014. (a) Chemical substance and significant new uses...

  9. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion.

    PubMed

    Liu, An-Hua; Ma, Ran; Song, Chan; Yang, Zhen-Zhen; Yu, Ao; Cai, Yu; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing; Song, Qing-Wen

    2012-11-05

    Steric bulk controls CO(2) absorption: N-substituted amino acid salts in poly(ethylene glycol) reversibly absorb CO(2) in nearly 1:1 stoichiometry. Carbamic acid is thought to be the absorbed form of CO(2); this was supported by NMR and in situ IR spectroscopy, and DFT calculations. The captured CO(2) could be converted directly into oxazolidinones and thus CO(2) desorption could be sidestepped.

  10. Natural and non-natural amino-acid side-chain substitutions: affinity and diffraction studies of meditope–Fab complexes

    PubMed Central

    Bzymek, Krzysztof P.; Avery, Kendra A.; Ma, Yuelong; Horne, David A.; Williams, John C.

    2016-01-01

    Herein, multiple crystal structures of meditope peptide derivatives incorporating natural and unnatural amino acids bound to the cetuximab Fab domain are presented. The affinity of each derivative was determined by surface plasmon resonance and correlated to the atomic structure. Overall, it was observed that the hydrophobic residues in the meditope peptide, Phe3, Leu5 and Leu10, could accommodate a number of moderate substitutions, but these invariably reduced the overall affinity and half-life of the interaction. In one case, the substitution of Phe3 by histidine led to a change in the rotamer conformation, in which the imidazole ring flipped to a solvent-exposed position. Based on this observation, Phe3 was substituted by diphenylalanine and it was found that the phenyl rings in this variant mimic the superposition of the Phe3 and His3 structures, producing a moderate increase, of 1.4-fold, in the half-life of the complex. In addition, it was observed that substitution of Leu5 by tyrosine and glutamate strongly reduced the affinity, whereas the substitution of Leu5 by diphenyl­alanine moderately reduced the half-life (by approximately fivefold). Finally, it was observed that substitution of Arg8 and Arg9 by citrulline dramatically reduced the overall affinity, presumably owing to lost electrostatic interactions. Taken together, these studies provide insight into the meditope–cetuximab interaction at the atomic level. PMID:27834791

  11. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles.

    PubMed

    Yang, Peng; Singh, Jagbir; Wettig, Shawn; Foldvari, Marianna; Verrall, Ronald E; Badea, Ildiko

    2010-08-01

    Gemini surfactants are versatile gene delivery agents because of their ability to bind and compact DNA and their low cellular toxicity. Through modification of the alkyl tail length and the chemical nature of the spacer, new compounds can be generated with the potential to improve the efficiency of gene delivery. Amino acid (glycine and lysine) and dipeptide (glycyl-lysine and lysyl-lysine) substituted spacers of gemini surfactants were synthesized, and their efficiency of gene delivery was assessed in epithelial cells for topical cutaneous and mucosal applications. Three different epithelial cell lines, COS-7, PAM212 and Sf 1Ep cells, were transfected with plasmid DNA encoding for interferon gamma and green fluorescent protein complexed with the amino acid-substituted gemini compounds in the presence of 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine as a helper lipid. Gene expression was quantified by ELISA. Size, zeta potential and circular dichroism measurements were used to characterize the plasmid-gemini (PG) and plasmid-gemini surfactant-helper lipid (PGL) complexes. Gene expression was found to increase up to 72h and then declined by the 7th day. In general, the glycine-substituted surfactant showed consistently high gene expression in all three cell lines. Results of physicochemical and spectroscopic studies of the complexes indicate that substitution of the gemini spacer does not interfere with compaction of the DNA. The superior performance of these spacer-substituted gemini surfactants might be attributed to their better biocompatibility compared to the surfactants possessing unsubstituted spacers.

  12. Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae.

    PubMed

    Gisch, Nicolas; Schwudke, Dominik; Thomsen, Simone; Heß, Nathalie; Hakenbeck, Regine; Denapaite, Dalia

    2015-11-18

    Members of the Mitis group of streptococci possess teichoic acids (TAs) as integral components of their cell wall that are unique among Gram-positive bacteria. Both, lipoteichoic (LTA) and wall teichoic acid, are formed by the same biosynthetic pathway, are of high complexity and contain phosphorylcholine (P-Cho) residues. These residues serve as anchors for choline-binding proteins (CBPs), some of which have been identified as virulence factors of the human pathogen Streptococcus pneumoniae. We investigated the LTA structure of its close relative Streptococcus oralis. Our analysis revealed that S. oralis Uo5 LTA has an overall architecture similar to pneumococcal LTA (pnLTA) and can be considered as a subtype of type IV LTA. Its structural complexity is even higher than that of pnLTA and its composition differs in number and type of carbohydrate moieties, inter-residue connectivities and especially the P-Cho substitution pattern. Here, we report the occurrence of a saccharide moiety substituted with two P-Cho residues, which is unique as yet in bacterial derived surface carbohydrates. Finally, we could link the observed important structural variations between S. oralis and S. pneumoniae LTA to the divergent enzymatic repertoire for their TA biosynthesis.

  13. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  14. In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid.

    PubMed

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-03-31

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin-mediated cancer therapy.

  15. The amino acid sequence around the active-site cysteine and histidine residues, and the buried cysteine residue in ficin.

    PubMed

    Husain, S S; Lowe, G

    1970-04-01

    Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.

  16. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  17. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  18. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  19. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  20. 40 CFR 180.297 - N-1-Naphthyl phthalamic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; tolerances for residues. 180.297 Section 180.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.297 N-1-Naphthyl phthalamic acid; tolerances for residues. (a) General. Tolerances...

  1. 10-Boronic acid substituted camptothecin as prodrug of SN-38.

    PubMed

    Wang, Lei; Xie, Shao; Ma, Longjun; Chen, Yi; Lu, Wei

    2016-06-30

    Malignant tumor cells have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential antitumor therapy. In this study, the 7-ethyl-10-boronic acid camptothecin (B1) was synthesized for the first time as prodrug of SN-38, by linking a cleavable aryl carbon-boron bond to the SN-38. Prodrug B1 selectively activated by H2O2, converted rapidly to the active form SN-38 under favorable oxidative conditions in cancer cells with elevated levels of H2O2. The cell survival assay showed that prodrug B1 was equally or more effective in inhibiting the growth of six different cancer cells, as compared to SN-38. Unexpectedly, prodrug B1 displayed even more potent Topo I inhibitory activity than SN-38, suggesting that it was not only a prodrug of SN-38 but also a typical Topo I inhibitor. Prodrug B1 also demonstrated a significant antitumor activity at 2.0 mg/kg in a xenograft model using human brain star glioblastoma cell lines U87MG.

  2. Two amino acid residues confer type specificity to a neutralizing, conformationally dependent epitope on human papillomavirus type 11.

    PubMed Central

    Ludmerer, S W; Benincasa, D; Mark, G E

    1996-01-01

    Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism. PMID:8676509

  3. Natural derivatives of diphenolic acid as substitutes for bisphenol-A

    NASA Astrophysics Data System (ADS)

    Ertl, Johanna; Cerri, Elisa; Rizzuto, Matteo; Caretti, Daniele

    2014-05-01

    Diphenolic acid had been originally used in the first epoxy resins and was later on forgotten as it was substituted by the cheaper bisphenol A. But in the recent years major health concerns have been raised as bisphenol A has a pseudo-hormonal effect on the body, playing the role of estrogen it can cause a severe impact on the organism, especially in males. Moreover it is produced from acetone and phenol, both from fossil, and thus limited resources. On the contrary, diphenolic acid is synthesized from levulinic acid and phenol. Levulinic acid being directly produced by hydrolysis of biomass. By substituting the fossil phenol with natural phenols from lignin or plant extraction we are able to synthesize a fully renewable substitute for bisphenol A. The reactions to yield an epoxy resin have been examined and the reactivity with epichlorohydrin is satisfying. Moreover, some of the derivatives of diphenolic acid have interesting curing properties and preliminary results show excellent properties of the cured resin, including thermal stability and pencil hardness.

  4. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    SciTech Connect

    Childs, W.C. 3d.; Taron, D.J.; Neuhaus, F.C.

    1985-06-01

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-(/sup 14/C)alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.

  5. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  7. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    PubMed

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere.

  8. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases[S

    PubMed Central

    Watanabe, Kenshi; Ohno, Makoto; Taguchi, Masahiro; Kawamoto, Seiji; Ono, Kazuhisa; Aki, Tsunehiro

    2016-01-01

    Membrane-bound desaturases are physiologically and industrially important enzymes that are involved in the production of diverse fatty acids such as polyunsaturated fatty acids and their derivatives. Here, we identified amino acid residues that determine the substrate specificity of rat Δ6 desaturase (D6d) acting on linoleoyl-CoA by comparing its amino acid sequence with that of Δ5 desaturase (D5d), which converts dihomo-γ-linolenoyl-CoA. The N-terminal cytochrome b5-like domain was excluded as a determinant by domain swapping analysis. Substitution of eight amino acid residues (Ser209, Asn211, Arg216, Ser235, Leu236, Trp244, Gln245, and Val344) of D6d with the corresponding residues of D5d by site-directed mutagenesis switched the substrate specificity from linoleoyl-CoA to dihomo-γ-linolenoyl-CoA. In addition, replacement of Leu323 of D6d with Phe323 on the basis of the amino acid sequence of zebra fish Δ5/6 bifunctional desaturase was found to render D6d bifunctional. Homology modeling of D6d using recent crystal structure data of human stearoyl-CoA (Δ9) desaturase revealed that Arg216, Trp244, Gln245, and Leu323 are located near the substrate-binding pocket. To our knowledge, this is the first report on the structural basis of the substrate specificity of a mammalian front-end fatty acid desaturase, which will aid in efficient production of value-added fatty acids. PMID:26590171

  9. Sequence of the canine herpesvirus thymidine kinase gene: taxon-preferred amino acid residues in the alphaherpesviral thymidine kinases.

    PubMed

    Rémond, M; Sheldrick, P; Lebreton, F; Foulon, T

    1995-12-01

    Multiple sequence alignments of evolutionarily related proteins are finding increasing use as indicators of critical amino acid residues necessary for structural stability or involved in functional domains responsible for catalytic activities. In the past, a number of alignments have provided such information for the herpesviral thymidine kinases, for which three-dimensional structures are not yet available. We have sequenced the thymidine kinase gene of a canine herpesvirus, and with a multiple alignment have identified amino acids preferentially conserved in either of two taxons, the genera Varicellovirus and Simplexvirus, of the subfamily Alphaherpesvirinae. Since some regions of the thymidine kinases show otherwise elevated levels of substitutional tolerance, these conserved amino acids are candidates for critical residues which have become fixed through selection during the evolutionary divergence of these enzymes. Several pairs with distinctive patterns of distribution among the various viruses occur in or near highly conserved sequence motifs previously proposed to form the catalytic site, and we speculate that they may represent interacting, co-ordinately variable residues.

  10. Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR

    NASA Astrophysics Data System (ADS)

    David, Serge; Gourdji, Michel; Guibé, Lucien; Péneau, Alain

    1996-06-01

    The NQR of a quadrupolar probe nucleus is often used to investigate the effect of substituent in molecules. The inductive effect, based on a partial charge migration along the molecular skeleton is the only one present in saturated aliphatics, the conjugative effect appearing in conjugated molecules, especially aromatics. As the stepwise charge migration mechanism, formerly used to explain the inductive effect, is now believed obsolete, we have wanted to reexamined the case of chlorine substituted acetic acids and salts. The data in literature was extended by observing reso-nances and determining NQR frequencies in several acids and salts. The present analysis of the salification of mono-, di-and tri-chloroacetic acids, which is equivalent to a deprotonation or the substitution of the acid hydrogen by a negative unit charge, shows that a model based on the polarization of the chlorine atom(s) by the carboxyle group is consistent with experimental results: the polarization energy appears to be proportional to the NQR frequency shifts; experimental data show a correlation between the NQR frequency shifts accompanying salification and the variations of the intrinsic acidity measured in the gas phase; this, in turn shows that there is a proportionality between the polarization energy and the variations in the acid free enthalpy of dissociation. From the comparison between fluorine, chlorine, bromine and iodine, it also appears that an alternative mechanism, the polarization of the carboxyl group by the halogen, would be important only in the case of the fluoroacetic acid.

  11. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives

    PubMed Central

    Sidova, Veronika; Zoufaly, Pavel; Pokorny, Jan; Dzubak, Petr; Hajduch, Marian; Popa, Igor

    2017-01-01

    In this work, we describe synthesis of conjugates of betulinic acid with substituted triazoles prepared via Huisgen 1,3-cycloaddition. All compounds contain free 28-COOH group. Allylic bromination of protected betulinic acid by NBS gave corresponding 30-bromoderivatives, their substitution with sodium azides produced 30-azidoderivatives and these azides were subjected to CuI catalysed Huisgen 1,3-cycloaddition to give the final conjugates. Reactions had moderate to high yields. All new compounds were tested for their in vitro cytotoxic activities on eight cancer and two non-cancer cell lines. The most active compounds were conjugates of 3β-O-acetylbetulinic acid and among them, conjugate with triazole substituted by benzaldehyde 9b was the best with IC50 of 3.3 μM and therapeutic index of 9.1. Five compounds in this study had IC50 below 10 μM and inhibited DNA and RNA synthesis and caused block in G0/G1 cell cycle phase which is highly similar to actinomycin D. It is unusual that here prepared 3β-O-acetates were more active than compounds with the free 3-OH group and this suggests that this set may have common mechanism of action that is different from the mechanism of action of previously known 3β-O-acetoxybetulinic acid derivatives. Benzaldehyde type conjugate 9b is the best candidate for further drug development. PMID:28158265

  12. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  13. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  14. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  15. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  16. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  17. Partial d-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide

    PubMed Central

    Tugyi, Regina; Uray, Katalin; Iván, Dóra; Fellinger, Erzsébet; Perkins, Alan; Hudecz, Ferenc

    2005-01-01

    The stability of an immunogen against enzymatic degradation is considered an important factor for the design of synthetic vaccines. For our studies, we have selected an epitope from the tandem-repeat unit of the high-molecular-weight MUC2 mucin glycoprotein, which can be underglycosylated in case of colon cancer. In this study, we prepared a MUC2 peptide containing the PTGTQ epitope of a MUC2 protein backbone-specific mAb 996 and its derivatives. In these peptides, the N- and C-terminal flanking regions were systematically substituted by up to three d-amino acids. Peptides prepared by solid-phase synthesis were tested for their mAb 996 binding in competitive ELISA experiments, and their stability was studied in serum and lysosomal preparation. Our data show that the epitope function of peptide 15TPTPTGTQTPT25 is retained even in the presence of two d-amino acid residues at its N-terminal flanking region and up to three at its C-terminal flanking region (tpTPTGTQtpt). Also, this partly d peptide shows high resistance against proteolytic degradation in diluted human serum and in lysosomal preparation. These findings suggest that, by appropriate combination of structural modifications (namely, d-amino acid substitution) in the flanks of an Ab epitope, it is feasible to construct a synthetic antigen with preserved recognition properties and high stability against enzymatic degradation. Peptides tPTPTGTQTpt and tpTPTGTQTpt derived from this study can be used for immunization experiments and as potential components of synthetic vaccines for tumor therapy. PMID:15630090

  18. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  19. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    PubMed

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy.

  20. Chlorine residuals and haloacetic acid reduction in rapid sand filtration.

    PubMed

    Chuang, Yi-Hsueh; Wang, Gen-Shuch; Tung, Hsin-hsin

    2011-11-01

    It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.

  1. Amino acids substitutions in σ1 and μ1 outer capsid proteins of a Vero cell-adapted mammalian orthoreovirus are required for optimal virus binding and disassembly.

    PubMed

    Sandekian, Véronique; Lemay, Guy

    2015-01-22

    In a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant. In the present study, an increased ability of the virus to bind at the Vero cell surface was observed and is likely associated with an increased ability to bind onto cell-surface sialic acid residues. In addition, the kinetics of μ1 disassembly from the virions appears to be altered. The plasmid-based reverse genetics approach confirmed the importance of σ1 amino acids substitutions in VeroAV's ability to efficiently infect Vero cells, although μ1 co-adaptation appears necessary to optimize viral infection. This approach of combining in vitro selection of reoviruses with reverse genetics to identify pertinent amino acids substitutions appears promising in the context of eventual reovirus modification to increase its potential as an oncolytic virus.

  2. Systematic amino acid substitutions improved efficiency of GD2-peptide mimotope vaccination against neuroblastoma.

    PubMed

    Bleeke, Matthias; Fest, Stefan; Huebener, Nicole; Landgraf, Christiane; Schraven, Burkhart; Gaedicke, Gerhard; Volkmer, Rudolf; Lode, Holger N

    2009-11-01

    The likelihood of identifying peptides of sufficient quality for the development of effective cancer vaccines by screening of phage display libraries is low. Here, we introduce the sequential application of systematic amino acid substitution by SPOT synthesis. After the substitution of two amino acids within the sequence of a phage display-derived mimotope of disialoganglioside GD2 (mimotope MA), the novel mimotope C3 showed improved GD2 mimicry in vitro. Peptide vaccination with the C3 mimotope induced an 18-fold increased anti-GD2 serum response associated with reduction of primary tumour growth and spontaneous metastasis in contrast to MA mimotope controls in a syngeneic neuroblastoma model. In summary, SPOT provides an ideal optimisation tool for the development of phage display-derived cancer vaccines.

  3. Direct Substitution of Alcohols in Pure Water by Brønsted Acid Catalysis.

    PubMed

    Ortiz, Rosa; Herrera, Raquel P

    2017-04-01

    With the increasing concern for sustainability, the use of environmentally friendly media to perform chemical processes has attracted the attention of many research groups. Among them, the use of water, as the unique solvent for reactions, is currently an active area of research. One process of particular interest is the direct nucleophilic substitution of an alcohol avoiding its preliminary transformation into a good leaving group, since one of the by-products in this approach would be water. The direct substitution of allylic, benzylic, and tertiary alcohols has been achieved through SN1-type reactions with catalytic amounts of Brønsted or Lewis acids; however, organic solvents are often required. In this review, the pioneering SN1 approaches performed in pure water and in the absence of a metal based Lewis acid are compiled and discussed.

  4. Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1

    SciTech Connect

    Banishev, A A; Vrzheshch, E P; Shirshin, E A

    2009-03-31

    Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima). (laser biology and medicine)

  5. LASER BIOLOGY AND MEDICINE: Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.

    2009-03-01

    Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).

  6. Phosphorous acid residues in apples after foliar fertilization: results of field trials.

    PubMed

    Malusà, E; Tosi, L

    2005-06-01

    The levels of phosphorous acid residues in apples after foliar fertilization with P fertilizers and after treatment with a phosphonate fungicide (Fosetyl-Al) were determined and compared. Two field trials and a glasshouse experiment, using different genotypes and plants of different age, were carried out and monitored over a three-year period. Phosphorous acid residues were found in apples after application of foliar P fertilizers. Concentrations of the residues ranged between 0.02 and 14 mg kg(-1) depending on the phosphorous acid content in the fertilizer used and the plant size and yield. The treatments induced an accumulation of the residue in the course of the experiments, which in some cases reached a level exceeding the maximum limit set by EU legislation. Residues were also detected in other plant organs, i.e., roots and buds. Plants treated with Fosetyl-Al contained phosphorous acid residues in their fruits and buds two years after the suspension of the treatment, suggesting a long-term persistence of the substance in plant storage organs. A second experiment, involving treatment of trees with seven foliar fertilizers of different composition, also induced accumulation of phosphorous acid residues in fruits. It is concluded that a wide array of foliar products containing phosphorous acid, even as a minor component, could mimic the residue effect of phosphonate fungicide treatments.

  7. Single Residue Substitutions That Confer Voltage-Gated Sodium Ion Channel Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1.

    PubMed

    Murray, Justin K; Long, Jason; Zou, Anruo; Ligutti, Joseph; Andrews, Kristin L; Poppe, Leszek; Biswas, Kaustav; Moyer, Bryan D; McDonough, Stefan I; Miranda, Les P

    2016-03-24

    There is interest in the identification and optimization of new molecular entities selectively targeting ion channels of therapeutic relevance. Peptide toxins represent a rich source of pharmacology for ion channels, and we recently reported GpTx-1 analogs that inhibit NaV1.7, a voltage-gated sodium ion channel that is a compelling target for improved treatment of pain. Here we utilize multi-attribute positional scan (MAPS) analoging, combining high-throughput synthesis and electrophysiology, to interrogate the interaction of GpTx-1 with NaV1.7 and related NaV subtypes. After one round of MAPS analoging, we found novel substitutions at multiple residue positions not previously identified, specifically glutamic acid at positions 10 or 11 or lysine at position 18, that produce peptides with single digit nanomolar potency on NaV1.7 and 500-fold selectivity against off-target sodium channels. Docking studies with a NaV1.7 homology model and peptide NMR structure generated a model consistent with the key potency and selectivity modifications mapped in this work.

  8. Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis.

    PubMed Central

    Glaser, P; Munier, H; Gilles, A M; Krin, E; Porumb, T; Bârzu, O; Sarfati, R; Pellecuer, C; Danchin, A

    1991-01-01

    Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis. PMID:2050107

  9. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

    USGS Publications Warehouse

    Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R.

    2006-01-01

    Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. ?? 2006 American Chemical Society.

  10. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  11. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... million Expiration/Revocation Date Cotton, undelinted seed 2.8 1/1/12 (b) Section 18 emergency...

  12. Conversion of Undaria pinnatifida residue to glycolic acid with recyclable methylamine in low temperature hydrothermal liquefaction.

    PubMed

    Chen, Yongxing; Ren, Xiulian; Wei, Qifeng

    2017-03-01

    The conversion of Undaria pinnatifida residue to glycolic acid was carried out using methylamine as catalyst by hydrothermal method at relatively low temperature. GC-MS and HPLC were used to identify the composition of bio-oil and liquid products which provide the knowledge of the chemical reaction pathways of the hydrothermal liquefaction. The main liquid product was organic acid which contained glycolic acid, lactic acid, formic acid and acetic acid. And the major organic acid was glycolic acid with the highest yield of 46.52% or 33.98% of dry biomass. Methylamine promoted the dissolution of cellulose from Undaria pinnatifida residue, and significantly improved the yield of glycolic acid. The mechanism of HTL was investigated and the results show that the carbocation C3 was attacked by methylamine molecule which led to the high yield of glycolic acid. In addition, the recovery of methylamine was studied and the highest recovery rate reached 99.28%.

  13. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  14. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    SciTech Connect

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  15. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  16. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2012-07-01 2012-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  17. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  18. 40 CFR 180.331 - 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and conjugated, determined as the acid, in or on food commodities, as follows: Commodity Parts per... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 4-(2,4-Dichlorophenoxy) butyric acid... Tolerances § 180.331 4-(2,4-Dichlorophenoxy) butyric acid; tolerances for residues. (a) General....

  19. Computational predictors fail to identify amino acid substitution effects at rheostat positions

    PubMed Central

    Miller, M.; Bromberg, Y.; Swint-Kruse, L.

    2017-01-01

    Many computational approaches exist for predicting the effects of amino acid substitutions. Here, we considered whether the protein sequence position class – rheostat or toggle – affects these predictions. The classes are defined as follows: experimentally evaluated effects of amino acid substitutions at toggle positions are binary, while rheostat positions show progressive changes. For substitutions in the LacI protein, all evaluated methods failed two key expectations: toggle neutrals were incorrectly predicted as more non-neutral than rheostat non-neutrals, while toggle and rheostat neutrals were incorrectly predicted to be different. However, toggle non-neutrals were distinct from rheostat neutrals. Since many toggle positions are conserved, and most rheostats are not, predictors appear to annotate position conservation better than mutational effect. This finding can explain the well-known observation that predictors assign disproportionate weight to conservation, as well as the field’s inability to improve predictor performance. Thus, building reliable predictors requires distinguishing between rheostat and toggle positions. PMID:28134345

  20. Amino acid substitutions at position 95 in GyrA can add fluoroquinolone resistance to Mycobacterium leprae.

    PubMed

    Yokoyama, Kazumasa; Kim, Hyun; Mukai, Tetsu; Matsuoka, Masanori; Nakajima, Chie; Suzuki, Yasuhiko

    2012-02-01

    Amino acid substitutions at position 89 or 91 in GyrA of fluoroquinolone-resistant Mycobacterium leprae clinical isolates have been reported. In contrast, those at position 94 in M. tuberculosis, equivalent to position 95 in M. leprae, have been identified most frequently. To verify the possible contribution of amino acid substitutions at position 95 in M. leprae to fluoroquinolone resistance, we conducted an in vitro assay using wild-type and mutant recombinant DNA gyrases. Fluoroquinolone-mediated supercoiling activity inhibition assay and DNA cleavage assay revealed the potent contribution of an amino acid substitution of Asp to Gly or Asn at position 95 to fluoroquinolone resistance. These results suggested the possible future emergence of quinolone-resistant M. leprae isolates with these amino acid substitutions and the usefulness of detecting these mutations for the rapid identification of fluoroquinolone resistance in leprosy.

  1. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  2. Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence

    PubMed Central

    Otsuki, Hitoshi; Kaneko, Osamu; Thongkukiatkul, Amporn; Tachibana, Mayumi; Iriko, Hideyuki; Takeo, Satoru; Tsuboi, Takafumi; Torii, Motomi

    2009-01-01

    The major virulence determinant of the rodent malaria parasite, Plasmodium yoelii, has remained unresolved since the discovery of the lethal line in the 1970s. Because virulence in this parasite correlates with the ability to invade different types of erythrocytes, we evaluated the potential role of the parasite erythrocyte binding ligand, PyEBL. We found 1 amino acid substitution in a domain responsible for intracellular trafficking between the lethal and nonlethal parasite lines and, furthermore, that the intracellular localization of PyEBL was distinct between these lines. Genetic modification showed that this substitution was responsible not only for PyEBL localization but also the erythrocyte-type invasion preference of the parasite and subsequently its virulence in mice. This previously unrecognized mechanism for altering an invasion phenotype indicates that subtle alterations of a malaria parasite ligand can dramatically affect host–pathogen interactions and malaria virulence. PMID:19346470

  3. Teichuronic acid reducing terminal N-acetylglucosamine residue linked by phosphodiester to peptidoglycan of Micrococcus luteus

    SciTech Connect

    Gassner, G.T.; Dickie, J.P.; Hamerski, D.A.; Magnuson, J.K.; Anderson, J.S. )

    1990-05-01

    Teichuronic acid-peptidoglycan complex isolated from Micrococcus luteus cells by lysozyme digestion in osmotically stabilized medium was treated with mild acid to cleave the linkage joining teichuronic acid to peptidoglycan. This labile linkage was shown to be the phosphodiester which joins N-acetylglucosamine, the residue located at the reducing end of the teichuronic acid, through its anomeric hydroxyl group to a 6-phosphomuramic acid, a residue of the glycan strand of peptidoglycan. {sup 31}P nuclear magnetic resonance spectroscopy of the lysozyme digest of cell walls demonstrated the presence of a phosphodiester which was converted to a phosphomonoester by the conditions which released teichuronic acid from cell walls. Reduction of acid-liberated reducing end groups by NaB{sup 3}H{sub 4} followed by complete acid hydrolysis yielded ({sup 3}H) glucosaminitol from the true reducing end residue of teichuronic acid and ({sup 3}H)glucitol from the sites of fragmentation of teichuronic acid. The amount of N-acetylglucosamine detected was approximately stoichiometric with the amount of phosphate in the complex. Partial fragmentation of teichuronic acid provides an explanation of the previous erroneous identification of the reducing end residue.

  4. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The template-directed oligomerization of nucleoside-5'-phosphoro-2-methyl imidazolides on standard oligonucleotide templates has been studied extensively. Here, we describe experiments with templates in which inosinic acid (I) is substituted for guanylic acid, or 2,6-diaminopurine nucleotide (D) for adenylic acid. We find that the substitution of I for G in a template is strongly inhibitory and prevents any incorporation of C into internal positions in the oligomeric products of the reaction. The substitution of D for A, on the contrary, leads to increased incorporation of U into the products. We found no evidence for the template-directed facilitation of oligomerization of A or I through A-I base pairing. The significance of these results for prebiotic chemistry is discussed.

  5. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... established for the combined residues of the plant growth regulator 1-naphthaleneacetic acid and its... ammonium, sodium, or potassium salts, ethyl ester, and acetamide in or on food commodities as...

  6. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.

  7. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  8. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.

    PubMed

    Liu, Zhi-Rong; Zeng, Kai; Zhao, Wei; Li, Ying

    2009-01-01

    Bauxite residue, as solid waste from alumina production, contains mainly hematite [Fe2O3]. Kinetic study of iron leaching of bauxite residue by diluted sulfuric acid at atmospheric pressure has been investigated. The results have been obtained as following: (i) Temperature play an important role in iron leaching from bauxite residue. Higher temperature is favor of Fe(III) leaching from bauxite residue. (ii) The leaching process is applicable to the intra-particle diffusion model and the apparent activation energy of model of leaching is found to be 17.32 kJ/mol.

  9. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.

    PubMed

    Schweitzer-Stenner, Reinhard; Toal, Siobhan E

    2014-11-07

    As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.

  10. Solvent effects on the electronic absorption spectra and acid strength of some substituted pyridinols

    NASA Astrophysics Data System (ADS)

    Hashem, Elham Y.; Saleh, Magda S.

    2002-01-01

    The electronic absorption spectra of some substituted pyridinols in organic solvents of different polarities are studied. Also, the solvent effects on the intramolecular charge transfer bands are discussed using various solvent parameters. The acid-base equilibria of the compounds used are studied spectrophotometrically in various mixed aqueous solvents at 25 °C and 0.1 M ionic strength (NaClO 4). Furthermore, the influence of the solvents on the dissociation constants and tautomeric equilibria of a pyridinol derivatives are discussed. The effect of molecular structure of the pyridinols on the p K's is also examined.

  11. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper.

    PubMed

    Barry, Cornelius S; McQuinn, Ryan P; Chung, Mi-Young; Besuden, Anna; Giovannoni, James J

    2008-05-01

    Color changes often accompany the onset of ripening, leading to brightly colored fruits that serve as attractants to seed-dispersing organisms. In many fruits, including tomato (Solanum lycopersicum) and pepper (Capsicum annuum), there is a sharp decrease in chlorophyll content and a concomitant increase in the synthesis of carotenoids as a result of the conversion of chloroplasts into chromoplasts. The green-flesh (gf) and chlorophyll retainer (cl) mutations of tomato and pepper, respectively, are inhibited in their ability to degrade chlorophyll during ripening, leading to the production of ripe fruits characterized by both chlorophyll and carotenoid accumulation and are thus brown in color. Using a positional cloning approach, we have identified a point mutation at the gf locus that causes an amino acid substitution in an invariant residue of a tomato homolog of the STAY-GREEN (SGR) protein of rice (Oryza sativa). Similarly, the cl mutation also carries an amino acid substitution at an invariant residue in a pepper homolog of SGR. Both GF and CL expression are highly induced at the onset of fruit ripening, coincident with the ripening-associated decline in chlorophyll. Phylogenetic analysis indicates that there are two distinct groups of SGR proteins in plants. The SGR subfamily is required for chlorophyll degradation and operates through an unknown mechanism. A second subfamily, which we have termed SGR-like, has an as-yet undefined function.

  12. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification.

    PubMed

    Wang, Wendong; Li, Hua; Ding, Zhenzhen; Wang, Xiaochang

    2011-01-01

    Due to the formation of disinfection by-products and high concentrations of Al residue in drinking water purification, humic substances are a major component of organic matter in natural waters and have therefore received a great deal of attention in recent years. We investigated the effects of advanced oxidation pretreatment methods usually applied for removing dissolved organic matters on residual Al control. Results showed that the presence of humic acid increased residual Al concentration notably. With 15 mg/L of humic acid in raw water, the concentrations of soluble aluminum and total aluminum in the treated water were close to the quantity of Al addition. After increasing coagulant dosage from 12 to 120 mg/L, the total-Al in the treated water was controlled to below 0.2 mg/L. Purification systems with ozonation, chlorination, or potassium permanganate oxidation pretreatment units had little effects on residual Al control; while UV radiation decreased Al concentration notably. Combined with ozonation, the effects of UV radiation were enhanced. Optimal dosages were 0.5 mg O3/mg C and 3 hr for raw water with 15 mg/L of humic acid. Under UV light radiation, the combined forces or bonds that existed among humic acid molecules were destroyed; adsorption sites increased positively with radiation time, which promoted adsorption of humic acid onto polymeric aluminum and Al(OH)3(s). This work provides a new solution for humic acid coagulation and residual Al control for raw water with humic acid purification.

  13. Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen.

    PubMed

    Punitha, V; Raman, S Sundar; Parthasarathi, R; Subramanian, V; Rao, J Raghava; Nair, Balachandran Unni; Ramasami, T

    2009-07-02

    Studies on the structure and stability of peptides and proteins during l-->d configurational change are certainly important for the designing of peptides with new biological activity and protein engineering. The l-->d amino acid (d AA) changes have been observed in aged proteins such as collagen. Hence, in this study, an attempt has been made to explore the effect of the replacement of l amino acid (l AA) in the model collagen-like peptides with d AA and the origin of structural stability (destability) has been traced using the molecular dynamics (MD) method employing the AMBER force field. Our results reveal that the substitution of d AA produces a large local disruption to the triple-helical structure. Formation of a kink (bulge) at the site of substitution is observed from the detailed analysis of MD trajectory. However, this local perturbation of kinked helix changes the direction of the helices and affects the relative orientation of the respective AA residues for helix-helix interaction, enough to affect the overall stability of the model collagen-like peptide. The destabilization energy per d Ala substitution is 7.87 kcal/mol, which is similar to the value for the Gly-->Ala mutation in collagen. Since the Gly-->Ala mutation is involved in genetic disorders such as osteogenesis imperfecta (OI), the l-->d configurational change may produce a similar effect on collagen.

  14. [Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA].

    PubMed

    Khmeleva, S A; Mezentsev, Y V; Kozin, S A; Mitkevich, V A; Medvedev, A E; Ivanov, A S; Bodoev, N V; Makarov, A A; Radko, S P

    2015-01-01

    Interaction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer's disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1-16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests. It has been shown that the presence of zinc ions is necessary for the interaction of the peptides with DNA in solution. H6R substitution has remarkably reduced the ability of domain 1-16 to bind DNA. This is in accordance with the supposition that the coordination of a zinc ion by amino acid residues His6, Glu11, His13, and His14 of the β-amyloid metal-binding domain results in the occurrence of an anion-binding site responsible for the interaction of the domain with DNA. Zinc-induced dimerization and oligomerization of domain 1-16 associated with phosphorylation of Ser8 and the presence of unblocked amino- and carboxy-terminal groups have resulted in a decrease of peptide concentrations required for detection of the peptide-DNA interaction. The presence of multiple anion-binding sites on the dimers and oligomers is responsible for the enhancement of the peptide-DNA interaction. A substitution of the negatively charged residue Asp7 for the neutral residue Asn in close proximity to the anion-binding site of the domain 1-16 of Aβ facilitates the electrostatic interaction between this site and phosphates of a polynucleotide chain, which enhances zinc-induced binding to DNA.

  15. On the distribution of amino acid residues in transmembrane alpha-helix bundles.

    PubMed Central

    Samatey, F A; Xu, C; Popot, J L

    1995-01-01

    The periodic distribution of residues in the sequence of 469 putative transmembrane alpha-helices from eukaryotic plasma membrane polytopic proteins has been analyzed with correlation matrices. The method does not involve any a priori assumption about the secondary structure of the segments or about the physicochemical properties of individual amino acid residues. Maximal correlation is observed at 3.6 residues per period, characteristic of alpha-helices. A scale extracted from the data describes the propensity of the various residues to lie on the same or on opposite helix faces. The most polar face of transmembrane helices, presumably that buried in the protein core, shows a strong enrichment in aromatic residues, while residues likely to face the fatty acyl chains of lipids are largely aliphatic. PMID:7753846

  16. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease

    PubMed Central

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag

    2016-01-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  17. Conservation of cysteine residues in fungal histidine acid phytases.

    PubMed

    Mullaney, Edward J; Ullah, Abul H J

    2005-03-11

    Amino acid sequence analysis of fungal histidine acid phosphatases displaying phytase activity has revealed a conserved eight-cysteine motif. These conserved amino acids are not directly associated with catalytic function; rather they appear to be essential in the formation of disulfide bridges. Their role is seen as being similar to another eight-cysteine motif recently reported in the amino acid sequence of nearly 500 plant polypeptides. An additional disulfide bridge formed by two cysteines at the N-terminus of all the filamentous ascomycete phytases was also observed. Disulfide bridges are known to increase both stability and heat tolerance in proteins. It is therefore plausible that this extra disulfide bridge contributes to the higher stability found in phytase from some Aspergillus species. To engineer an enhanced phytase for the feed industry, it is imperative that the role of disulfide bridges be taken into cognizance and possibly be increased in number to further elevate stability in this enzyme.

  18. C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus.

    PubMed

    Chen, Yue-Lei; Zacharias, Jeana; Vince, Robert; Geraghty, Robert J; Wang, Zhengqiang

    2012-08-01

    Quinolone-3-carboxylic acid represents a highly privileged chemotype in medicinal chemistry and has been extensively explored as antibiotics and antivirals targeting human immunodeficiency virus (HIV) integrase (IN). Herein we describe the synthesis and anti-hepatitis C virus (HCV) profile of a series of C-6 aryl substituted 4-quinlone-3-carboxylic acid analogues. Significant inhibition was observed with a few analogues at low micromolar range against HCV replicon in cell culture and a reduction in replicon RNA was confirmed through an RT-qPCR assay. Interestingly, evaluation of analogues as inhibitors of NS5B in a biochemical assay yielded only modest inhibitory activities, suggesting that a different mechanism of action could operate in cell culture.

  19. Parvovirus B19 genotype specific amino acid substitution in NS1 reduces the protein's cytotoxicity in culture.

    PubMed

    Kivovich, Violetta; Gilbert, Leona; Vuento, Matti; Naides, Stanley J

    2010-05-25

    A clinical association between idiopathic liver disease and parvovirus B19 infection has been observed. Fulminant liver failure, not associated with other liver-tropic viruses, has been attributed to B19 in numerous reports, suggesting a possible role for B19 components in the extensive hepatocyte cytotoxicity observed in this condition. A recent report by Abe and colleagues (Int J Med Sci. 2007;4:105-9) demonstrated a link between persistent parvovirus B19 genotype I and III infection and fulminant liver failure. The genetic analysis of isolates obtained from these patients demonstrated a conservation of key amino acids in the nonstructural protein 1 (NS1) of the disease-associated genotypes. In this report we examine a conserved residue identified by Abe and colleagues and show that substitution of isoleucine 181 for methionine, as occurs in B19 genotype II, results in the reduction of B19 NS1-induced cytotoxicity of liver cells. Our results support the hypothesis that in the setting of persistent B19 infection, direct B19 NS1-induced cytotoxicity may play a role in idiopathic fulminant liver failure.

  20. Parvovirus B19 Genotype Specific Amino Acid Substitution in NS1 Reduces the Protein's Cytotoxicity in Culture

    PubMed Central

    Kivovich, Violetta; Gilbert, Leona; Vuento, Matti; Naides, Stanley J.

    2010-01-01

    A clinical association between idiopathic liver disease and parvovirus B19 infection has been observed. Fulminant liver failure, not associated with other liver-tropic viruses, has been attributed to B19 in numerous reports, suggesting a possible role for B19 components in the extensive hepatocyte cytotoxicity observed in this condition. A recent report by Abe and colleagues (Int J Med Sci. 2007;4:105-9) demonstrated a link between persistent parvovirus B19 genotype I and III infection and fulminant liver failure. The genetic analysis of isolates obtained from these patients demonstrated a conservation of key amino acids in the nonstructural protein 1 (NS1) of the disease-associated genotypes. In this report we examine a conserved residue identified by Abe and colleagues and show that substitution of isoleucine 181 for methionine, as occurs in B19 genotype II, results in the reduction of B19 NS1-induced cytotoxicity of liver cells. Our results support the hypothesis that in the setting of persistent B19 infection, direct B19 NS1-induced cytotoxicity may play a role in idiopathic fulminant liver failure. PMID:20567611

  1. Dietary Fatty Acids and Changes in Blood Lipids during Adolescence: The Role of Substituting Nutrient Intakes

    PubMed Central

    Harris, Carla; Buyken, Anette; Koletzko, Sibylle; von Berg, Andrea; Berdel, Dietrich; Schikowski, Tamara; Koletzko, Berthold; Heinrich, Joachim; Standl, Marie

    2017-01-01

    The relevance of dietary fatty acids (FA) for blood lipids should be assessed in the context of substituting nutrients. Such evidence is lacking for adolescents. This study describes prospective associations of dietary FA with changes in serum lipids during adolescence, and considers the theoretical isocaloric replacements of saturated FA (SFA) with other FA or carbohydrates (CHO). Children from the GINIplus and LISAplus birth cohorts, with data on FA intakes (at age 10 years) and serum lipids (at age 10 and 15 years), were included (n = 1398). Associations of SFA, monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA) and n-6 PUFA, with changes in low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TAG), and total cholesterol to HDL ratio (TOTAL:HDL), were assessed by linear regression. Substitution models assessed isocaloric replacements of SFA with MUFA, n-3 PUFA, n-6 PUFA or CHO. Higher SFA intakes were associated with decreasing TAG. No associations were observed for fatty acid intakes with LDL, HDL or TOTAL:HDL. In females, replacing SFA with CHO was associated with increasing LDL, TAG and TOTAL:HDL. Our findings confirm observations in adults, although sex-specific determinants seem relevant in our adolescent population. Overlooking the nutrient context when limiting SFA intakes might have detrimental consequences appreciable as early as adolescence. PMID:28208667

  2. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro.

    PubMed Central

    Engelman, A; Craigie, R

    1992-01-01

    We have probed the structural organization of the human immunodeficiency virus type 1 integrase protein by limited proteolysis and the functional organization by site-directed mutagenesis of selected amino acid residues. A central region of the protein was relatively resistant to proteolysis. Proteins with altered amino acids in this region, or in the N-terminal part of the protein that includes a putative zinc-binding motif, were purified and assayed for 3' processing, DNA strand transfer, and disintegration activities in vitro. In general, these mutations had parallel effects on 3' processing and DNA strand transfer, suggesting that integrase may utilize a single active site for both reactions. The only proteins that were completely inactive in all three assays contained mutations at conserved amino acids in the central region, suggesting that this part of the protein may be involved in catalysis. In contrast, none of the mutations in the N-terminal region resulted in a protein that was inactive in all three assays, suggesting that this part of integrase may not be essential for catalysis. The disintegration reaction was particularly insensitive to these amino acid substitutions, indicating that some function that is important for 3' processing and DNA strand transfer may be dispensable for disintegration. Images PMID:1404595

  3. Highly efficient coupling of beta-substituted aminoethane sulfonyl azides with thio acids, toward a new chemical ligation reaction.

    PubMed

    Merkx, Remco; Brouwer, Arwin J; Rijkers, Dirk T S; Liskamp, Rob M J

    2005-03-17

    [reaction: see text] A highly efficient coupling of protected beta-substituted aminoethane sulfonyl azides with thio acids is reported. In the case of peptide thio acids, this method encompasses a new chemoselective ligation method. Furthermore, the resulting alpha-amino acyl sulfonamides can be alkylated with suitable electrophiles to obtain densely functionalized sulfonamide scaffolds.

  4. New sialyl Lewisx mimic containing an α-substituted β3-amino acid spacer

    PubMed Central

    Pedatella, Silvana; De Nisco, Mauro; Ernst, Beat; Guaragna, Annalisa; Wagner, Beatrice; Woods, Robert J.; Palumbo, Giovanni

    2014-01-01

    A highly convergent and efficient synthesis of a new sialyl Lewisx (sLex) mimic, which was predicted by computational studies to fulfil the spacial requirements for a selectin antagonist, has been developed. With a β2,3-amino acid residue L-galactose (bioisostere of the L-fucose moiety present in the natural sLex) and succinate are linked, leading to a mimic of sLex that contains all the required pharmacophores, namely the 3- and 4-hydroxy group of L-fucose, the 4- and 6-hydroxy group of D-galactose and the carboxylic acid of N-acetylneuraminic acid. The key step of the synthesis involves a tandem reaction consisting of a N-deprotection and a suitable O→N intramolecular acyl migration reaction which is promoted by cerium ammonium nitrate (CAN). Finally, the new sialyl Lewisx mimic was biologically evaluated in a competitive binding assay. PMID:17980866

  5. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.

    PubMed

    Canettieri, Eliana Vieira; de Moraes Rocha, George Jackson; de Carvalho, João Andrade; de Almeida e Silva, João Batista

    2007-01-01

    Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural.

  6. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    PubMed

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  7. Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution.

    PubMed

    Nakajima, Katsuhisa; Nobusawa, Eri; Nagy, Alexander; Nakajima, Setsuko

    2005-05-01

    In order to clarify the effect of an accumulation of amino acid substitutions on the hemadsorption character of the influenza AH3 virus hemagglutinin (HA) protein, we introduced single-point amino acid changes into the HA1 domain of the HA proteins of influenza viruses isolated in 1968 (A/Aichi/2/68) and 1997 (A/Sydney/5/97) by using PCR-based random mutation or site-directed mutagenesis. These substitutions were classified as positive or negative according to their effects on the hemadsorption activity. The rate of positive substitutions was about 50% for both strains. Of 44 amino acid changes that were identical in the two strains with regard to both the substituted amino acids and their positions in the HA1 domain, 22% of the changes that were positive in A/Aichi/2/68 were negative in A/Sydney/5/97 and 27% of the changes that were negative in A/Aichi/2/68 were positive in A/Sydney/5/97. A similar discordance rate was also seen for the antigenic sites. These results suggest that the accumulation of amino acid substitutions in the HA protein during evolution promoted irreversible structural changes and therefore that antigenic changes in the H3HA protein may not be limited.

  8. Stabilization of an α/β-Hydrolase by Introducing Proline Residues: Salicylic Acid Binding Protein 2 from Tobacco.

    PubMed

    Huang, Jun; Jones, Bryan J; Kazlauskas, Romas J

    2015-07-21

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. We investigated a plant esterase, salicylic acid binding protein 2 (SABP2), as a model α/β-hydrolase. SABP2 shows typical stability to urea (unfolding free energy 6.9 ± 1.5 kcal/mol) and to heat inactivation (T1/2 15min 49.2 ± 0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homologue or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1), and E215P (+0.9). Introducing proline in the cap domain did not stabilize SABP2 (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/2 15min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P−S70P ΔT1/2 15min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases.

  9. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots

    PubMed Central

    Missihoun, Tagnon D.; Kotchoni, Simeon O.; Bartels, Dorothea

    2016-01-01

    Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species. PMID:27798665

  10. Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution

    SciTech Connect

    Schmidheini, T.; Moesch, H.U.; Braus, G. ); Evans, J.N.S. )

    1990-04-17

    Chorismate mutase, a branch-point enzyme in the aromatic amino acid pathway of Saccharomyces cerevisiae, and also a mutant chorismate mutase with a single amino acid substitution in the C-terminal part of the protein have been purified approximately 20-fold and 64-fold from overproducing strains, respectively. The wild-type enzyme is activated by tryptophan and subject to feedback inhibition by tyrosine, whereas the mutant enzyme does not respond to activation by tryptophan nor inhibition by tyrosine. Both enzymes are dimers consisting of two identical subunits of M{sub r} 30,000, each one capable of binding one substrate and one activator molecule. Each subunit of the wild-type enzyme also binds one inhibitor molecule, whereas the mutant enzyme lost this ability. The enzyme reaction was observed by {sup 1}H NMR and shows a direct and irreversible conversion of chorismate to prephenate without the accumulation of any enzyme-free intermediates. The kinetic data of the wild-type chorismate mutase show positive cooperativity toward the substrate with a Hill coefficient of 1.71 and a (S){sub 0.5} value of 4.0 mM. In the presence of the activator tryptophan, the cooperativity is lost. The enzyme has an (S){sub 0.5} value of 1.2 mM in the presence of 10 {mu}M tryptophan and an increased (S){sub 0.5} value of 8.6 mM in the presence of 300 {mu}M tyrosine. In the mutant enzyme, a loss of the cooperativity was observed, and (S){sub 0.5} was reduced to 1.0 mM. This enzyme is therefore locked in the activated state by a single amino acid substitution.

  11. Synthesis of heteroboroxines with MB₂O₃ core (M = Sb, Bi, Sn)--an influence of the substitution of parent boronic acids.

    PubMed

    Kořenková, Monika; Mairychová, Barbora; Růžička, Aleš; Jambor, Roman; Dostál, Libor

    2014-05-21

    The synthesis and structure of stiba-, stanna- and bismaheteroboroxines of a general formula L(E)M[(OBR)2O] supported by a N,C,N-chelating ligand L [where L = C6H3-2,6-(CH2NMe2)2, M, E = Sb, lone pair or Sn, Ph or Bi, lone pair] is reported. The target compounds are prepared by straightforward one-step reactions between oxides (LMO)2 (M = Sb or Bi) or organotin(iv) carbonate L(Ph)Sn(CO3) with four or two molar equivalents of corresponding organoboronic acid. All compounds were characterized with the help of elemental analysis, multinuclear NMR spectroscopy and on several occasions the molecular structure was determined using single-crystal X-ray diffraction analysis. The influence of both the substitution of the parent organoboronic acid and the central atom used on the feasibility of the condensation reaction was addressed. Furthermore, several heteroboroxines containing nitrogen donor functionality (i.e. NH2, NMe2, CN or 4-pyridyl) included in the boronic acid residue were synthesized and characterized with the aim to prepare boroxine-based covalent frameworks (through intermolecular N→B interactions) containing metal atoms in their structures. Although no such intermolecular bonding was detected in solution of these compounds, it was shown that the organotin(iv) heteroboroxine substituted by 4-pyridyl group forms an infinite polymeric chains via N→B interactions in the solid state. This polymer collapsed back to monomeric units upon dissolution.

  12. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane

    PubMed Central

    Kucher, Volodymyr; Li, Emily Y.; Conforti, Laura; Zahedi, Kamyar A.

    2012-01-01

    The NH2 terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH2-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH2 terminus of NBCe1A are important in its accurate targeting to the plasma membrane. PMID:22442137

  13. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  14. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  15. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  16. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  17. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach

    PubMed Central

    Mayer, Kimberly M; Shanklin, John

    2007-01-01

    Background The large amount of available sequence information for the plant acyl-ACP thioesterases (TEs) made it possible to use a bioinformatics-guided approach to identify amino acid residues involved in substrate specificity. The Conserved Property Difference Locator (CPDL) program allowed the identification of putative specificity-determining residues that differ between the FatA and FatB TE classes. Six of the FatA residue differences identified by CPDL were incorporated into the FatB-like parent via site-directed mutagenesis and the effect of each on TE activity was determined. Variants were expressed in E. coli strain K27 that allows determination of enzyme activity by GCMS analysis of fatty acids released into the medium. Results Substitutions at four of the positions (74, 86, 141, and 174) changed substrate specificity to varying degrees while changes at the remaining two positions, 110 and 221, essentially inactivated the thioesterase. The effects of substitutions at positions 74, 141, and 174 (3-MUT) or 74, 86, 141, 174 (4-MUT) were not additive with respect to specificity. Conclusion Four of six putative specificity determining positions in plant TEs, identified with the use of CPDL, were validated experimentally; a novel colorimetric screen that discriminates between active and inactive TEs is also presented. PMID:17201914

  18. Precious-Metal-Free Heteroarylation of Azlactones: Direct Synthesis of α-Pyridyl, α-Substituted Amino Acid Derivatives.

    PubMed

    Johnson, Tarn C; Marsden, Stephen P

    2016-10-21

    A one-pot, three-component synthesis of α-pyridyl, α-substituted amino acid derivatives is described. The key transformation is a direct, precious-metal-free heteroarylation of readily available, amino acid derived azlactones with electrophilically activated pyridine N-oxides. The resulting intermediates can be used directly as efficient acylating agents for a range of nucleophiles, leading to the heteroarylated amino acid derivatives in a single vessel.

  19. An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor

    PubMed Central

    González-Cabrera, Joel; Davies, T. G. Emyr; Field, Linda M.; Kennedy, Peter J.; Williamson, Martin S.

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed. PMID:24367572

  20. Binding of ring-substituted indole-3-acetic acids to human serum albumin.

    PubMed

    Soskić, Milan; Magnus, Volker

    2007-07-01

    The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.

  1. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, V. S.; Chandramohan, P.; Velmurugan, S.

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe(2-x)CrxO4 (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N2H4. Dissolution of oxide was found to be stoichiometric.

  2. 75 FR 1773 - Notice of Receipt of a Pesticide Petition Filed for Residues of Polymeric Polyhydroxy Acid in or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... AGENCY Notice of Receipt of a Pesticide Petition Filed for Residues of Polymeric Polyhydroxy Acid in or... establishment of a regulation for residues of the plant growth regulator, polymeric polyhydroxy acid, in or on... polymeric polyhydroxy acid in or on all food commodities. EPA has determined that the pesticide...

  3. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    PubMed

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation.

  4. Impact of the E540V amino acid substitution in GyrB of Mycobacterium tuberculosis on quinolone resistance.

    PubMed

    Kim, Hyun; Nakajima, Chie; Yokoyama, Kazumasa; Rahim, Zeaur; Kim, Youn Uck; Oguri, Hiroki; Suzuki, Yasuhiko

    2011-08-01

    Amino acid substitutions conferring resistance to quinolones in Mycobacterium tuberculosis have generally been found within the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase (GyrA) rather than the B subunit of DNA gyrase (GyrB). To clarify the contribution of an amino acid substitution, E540V, in GyrB to quinolone resistance in M. tuberculosis, we expressed recombinant DNA gyrases in Escherichia coli and characterized them in vitro. Wild-type and GyrB-E540V DNA gyrases were reconstituted in vitro by mixing recombinant GyrA and GyrB. Correlation between the amino acid substitution and quinolone resistance was assessed by the ATP-dependent DNA supercoiling assay, quinolone-inhibited supercoiling assay, and DNA cleavage assay. The 50% inhibitory concentrations of eight quinolones against DNA gyrases bearing the E540V amino acid substitution in GyrB were 2.5- to 36-fold higher than those against the wild-type enzyme. Similarly, the 25% maximum DNA cleavage concentrations were 1.5- to 14-fold higher for the E540V gyrase than for the wild-type enzyme. We further demonstrated that the E540V amino acid substitution influenced the interaction between DNA gyrase and the substituent(s) at R-7, R-8, or both in quinolone structures. This is the first detailed study of the contribution of the E540V amino acid substitution in GyrB to quinolone resistance in M. tuberculosis.

  5. A microalgae residue based carbon solid acid catalyst for biodiesel production.

    PubMed

    Fu, Xiaobo; Li, Dianhong; Chen, Jie; Zhang, Yuanming; Huang, Weiya; Zhu, Yi; Yang, Jun; Zhang, Chengwu

    2013-10-01

    Biodiesel production from microalgae is recognized as one of the best solutions to deal with the energy crisis issues. However, after the oil extraction from the microalgae, the microalgae residue was generally discarded or burned. Here a novel carbon-based solid acid catalyst derived from microalgae residue by in situ hydrothermal partially carbonization were synthesized. The obtained catalyst was characterized and subjected to both the esterification of oleic acid and transesterification of triglyceride to produce biodiesel. The catalyst showed high catalytic activity and can be regenerated while its activity can be well maintained after five cycles.

  6. Radioiodinated 5-iodothienyl-2-substituted long chain fatty acids for myocardial imaging

    SciTech Connect

    Goodman, M.M.; Knapp, F.F. Jr.; Kirsch, G.; Owen, B.A.

    1984-01-01

    Thienyl-2-alkyl derivatives undergo facile iodination regiospecifically at the 5-position of the thiophene ring and are alternatives to iodophenyl agents. /sup 125/I-labeled 2-(17-oxoheptadecanoly)-5-iodothiophene (VIIIa) and /sup 125/I-labeled 2-(13-oxotridecanoyl)-5-iodothiophene (VIIIb) were prepared as model agents. The substrate was 2-(17-oxoheptadecanoyl)thiophene (VIa), in which the thiophene ring was attached to the terminal position of heptadecanoic acid. (VIa) was prepared by Friedel-Crafts condensation of 16-iodohexadecanoyl chloride, with thiophene followed by -I + CN/sup -/ ..-->.. -CN; Wolff-Kishner reduction; -CN + OH/sup -/ ..-->.. -COOH (VI). Regiospecific rho-(bis-(trifluoroacety 1)) thallation of (VIa), followed by treatment with KI gave 2-(17-oxoheptadecanoyl)-5-iodothiophene (VIIIa). Compound VIIIb was prepared in the same manner. Compounds Ia, b-VIIIa,b, were analyzed by TLC, IR, MS, NMR, and CandH. I-125-labeled (VIIIa) and (VIIIb) were prepared in the same manner. I-125 (VIIIb) showed high myocardial uptake in rats (4/group). Iodothienyl fatty acids may represent alternatives to iodophenyl substituted fatty acids for myocardial imaging.

  7. Enantioselective Ring-Opening Polymerization of rac-Lactide Dictated by Densely Substituted Amino Acids.

    PubMed

    Sanchez-Sanchez, Ana; Rivilla, Ivan; Agirre, Maddalen; Basterretxea, Andere; Etxeberria, Agustin; Veloso, Antonio; Sardon, Haritz; Mecerreyes, David; Cossío, Fernando P

    2017-04-05

    Organocatalysis is becoming an important tool in polymer science because of its versatility and specificity. To date a limited number of organic catalysts have demonstrated the ability to promote stereocontrolled polymerizations. In this work we report one of the first examples of chirality transfer from a catalyst to a polymer in the organocatalyzed ring-opening polymerization (ROP) of rac-lactide (rac-LA). We have polymerized rac-LA using the diastereomeric densely substituted amino acids (2S,3R,4S,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (endo-6) and (2S,3S,4R,5S)-1-methyl-4-nitro-3,5-diphenylpyrrolidine-2-carboxylic acid (exo-6), combined with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a cocatalyst. Both diastereoisomers not only showed the ability to synthesize enriched isotactic polylactide with a Pm higher than 0.90 at room temperature but also were able to preferentially promote the polymerization of one of the isomers (l or d) with respect to the other. Thus, exo-6 preferentially polymerized l-lactide, whereas endo-6 preferred d-lactide as the substrate. Density functional theory calculations were conducted to investigate the origins of this unique stereocontrol in the polymerization, providing mechanistic insight and explaining why the chirality of the catalyst is able to define the stereochemistry of the monomer insertion.

  8. Soluble Epoxide Hydrolase Inhibition and Epoxyeicosatrienoic Acid Treatment Improve Vascularization of Engineered Skin Substitutes

    PubMed Central

    Hahn, Jennifer M.; McFarland, Kevin L.; Combs, Kelly A.; Lee, Kin Sing Stephen; Inceoglu, Bora; Wan, Debin; Boyce, Steven T.; Hammock, Bruce D.

    2016-01-01

    Background: Autologous engineered skin substitutes comprised of keratinocytes, fibroblasts, and biopolymers can serve as an adjunctive treatment for excised burns. However, engineered skin lacks a vascular plexus at the time of grafting, leading to slower vascularization and reduced rates of engraftment compared with autograft. Hypothetically, vascularization of engineered skin grafts can be improved by treatment with proangiogenic agents at the time of grafting. Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are inactivated by soluble epoxide hydrolase (sEH). EETs have multiple biological activities and have been shown to promote angiogenesis. Inhibitors of sEH (sEHIs) represent attractive therapeutic agents because they increase endogenous EET levels. We investigated sEHI administration, alone or combined with EET treatment, for improved vascularization of engineered skin after grafting to mice. Methods: Engineered skin substitutes, prepared using primary human fibroblasts and keratinocytes, were grafted to full-thickness surgical wounds in immunodeficient mice. Mice were treated with the sEHI 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered in drinking water throughout the study period, with or without topical EET treatment, and were compared with vehicle-treated controls. Vascularization was quantified by image analysis of CD31-positive areas in tissue sections. Results: At 2 weeks after grafting, significantly increased vascularization was observed in the TPPU and TPPU + EET groups compared with controls, with no evidence of toxicity. Conclusions: The results suggest that sEH inhibition can increase vascularization of engineered skin grafts after transplantation, which may contribute to enhanced engraftment and improved treatment of full-thickness wounds. PMID:28293507

  9. Amino acid residues Leu135 and Tyr236 are required for RNA binding activity of CFIm25 in Entamoeba histolytica.

    PubMed

    Ospina-Villa, Juan David; Zamorano-Carrillo, Absalom; Lopez-Camarillo, Cesar; Castañon-Sanchez, Carlos A; Soto-Sanchez, Jacqueline; Ramirez-Moreno, Esther; Marchat, Laurence A

    2015-08-01

    Pre-mRNA 3' end processing in the nucleus is essential for mRNA stability, efficient nuclear transport, and translation in eukaryotic cells. In Human, the cleavage/polyadenylation machinery contains the 25 kDa subunit of the Cleavage Factor Im (CFIm25), which specifically recognizes two UGUA elements and regulates the assembly of polyadenylation factors, poly(A) site selection and polyadenylation. In Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, EhCFIm25 has been reported as a RNA binding protein that interacts with the Poly(A) Polymerase. Here, we follow-up with the study of EhCFIm25 to characterize its interaction with RNA. Using in silico strategy, we identified Leu135 and Tyr236 in EhCFIm25 as conserved amino acids among CFIm25 homologues. We therefore generated mutant EhCFIm25 proteins to investigate the role of these residues for RNA interaction. Results showed that RNA binding activity was totally abrogated when Leu135 and Tyr236 were replaced with Ala residue, and Tyr236 was changed for Phe. In contrast, RNA binding activity was less affected when Leu135 was substituted by Thr. Our data revealed for the first time -until we know-the functional relevance of the conserved Leu135 and Tyr236 in EhCFIm25 for RNA binding activity. They also gave some insights about the possible chemical groups that could be interacting with the RNA molecule.

  10. Polymorphisms at Amino Acid Residues 141 and 154 Influence Conformational Variation in Ovine PrP

    PubMed Central

    Yang, Sujeong; Thackray, Alana M.; Hopkins, Lee; Monie, Tom P.; Burke, David F.; Bujdoso, Raymond

    2014-01-01

    Polymorphisms in ovine PrP at amino acid residues 141 and 154 are associated with susceptibility to ovine prion disease: Leu141Arg154 with classical scrapie and Phe141Arg154 and Leu141His154 with atypical scrapie. Classical scrapie is naturally transmissible between sheep, whereas this may not be the case with atypical scrapie. Critical amino acid residues will determine the range or stability of structural changes within the ovine prion protein or its functional interaction with potential cofactors, during conversion of PrPC to PrPSc in these different forms of scrapie disease. Here we computationally identified that regions of ovine PrP, including those near amino acid residues 141 and 154, displayed more conservation than expected based on local structural environment. Molecular dynamics simulations showed these conserved regions of ovine PrP displayed genotypic differences in conformational repertoire and amino acid side-chain interactions. Significantly, Leu141Arg154 PrP adopted an extended beta sheet arrangement in the N-terminal palindromic region more frequently than the Phe141Arg154 and Leu141His154 variants. We supported these computational observations experimentally using circular dichroism spectroscopy and immunobiochemical studies on ovine recombinant PrP. Collectively, our observations show amino acid residues 141 and 154 influence secondary structure and conformational change in ovine PrP that may correlate with different forms of scrapie. PMID:25126555

  11. Effect of the secondary structure of carbohydrate residues of alpha 1-acid glycoprotein (orosomucoid) on the local dynamics of Trp residues.

    PubMed

    Albani, Jihad René

    2004-01-01

    We studied in this work the relation between the secondary structure of the carbohydrate residues of alpha1-acid glycoprotein and the local motions of Trp residues of the protein. We measured for this purpose the fluorescence emission intensity and anisotropy of the Trp residues between -46 and +30 degrees of the sialylated and asialylated protein. Our results indicate that, in both forms, the global profile of the emission intensity with temperature shows that Trp residues display static and collisional interaction with the neighboring amino acids. However, the profile of the asialylated form is more structured than that observed for the sialylated protein. The Y-plot analysis of the emission-anisotropy results indicated that the frictional resistance to rotation of the surface Trp residue is less important in the sialylated protein than in the asialylated form. This result is in good agreement with the fact that, in the asialylated conformation, the carbohydrate residues are closer to the protein surface than in the sialylated form, thereby increasing the contact of the surface Trp residue with the neighboring amino acids. Also, the interaction between the carbohydrate residues and the surface Trp residue contributes to the modification of the frictional resistance to rotation of the fluorophore.

  12. An interactive visualization tool to explore the biophysical properties of amino acids and their contribution to substitution matrices

    PubMed Central

    Bulka, Blazej; desJardins, Marie; Freeland, Stephen J

    2006-01-01

    Background Quantitative descriptions of amino acid similarity, expressed as probabilistic models of evolutionary interchangeability, are central to many mainstream bioinformatic procedures such as sequence alignment, homology searching, and protein structural prediction. Here we present a web-based, user-friendly analysis tool that allows any researcher to quickly and easily visualize relationships between these bioinformatic metrics and to explore their relationships to underlying indices of amino acid molecular descriptors. Results We demonstrate the three fundamental types of question that our software can address by taking as a specific example the connections between 49 measures of amino acid biophysical properties (e.g., size, charge and hydrophobicity), a generalized model of amino acid substitution (as represented by the PAM74-100 matrix), and the mutational distance that separates amino acids within the standard genetic code (i.e., the number of point mutations required for interconversion during protein evolution). We show that our software allows a user to recapture the insights from several key publications on these topics in just a few minutes. Conclusion Our software facilitates rapid, interactive exploration of three interconnected topics: (i) the multidimensional molecular descriptors of the twenty proteinaceous amino acids, (ii) the correlation of these biophysical measurements with observed patterns of amino acid substitution, and (iii) the causal basis for differences between any two observed patterns of amino acid substitution. This software acts as an intuitive bioinformatic exploration tool that can guide more comprehensive statistical analyses relating to a diverse array of specific research questions. PMID:16817972

  13. Acid mine drainage simulated leaching behavior of goethite and cobalt substituted goethite

    NASA Astrophysics Data System (ADS)

    Penprase, S. B.; Kimball, B. E.

    2015-12-01

    Though most modern day mining aims to eliminate the seepage of acid mine drainage (AMD) to the local watershed, historical mines regularly receive little to no remediation, and often release acidic, metal-rich drainage and particles to the environment. Treatment of AMD often includes neutralizing pH to facilitate the precipitation of Fe-oxides and dissolved trace metals, thereby forming Trace Metal Substituted (TMS) forms of known minerals, such as goethite (α-FeOOH). The stability of TMS precipitates is not fully understood. As a result, we conducted a 20 day leach experiment using laboratory synthesized pure (Gt) and cobalt-substituted (CoGt) goethites with a dilute ultrapure HCl solution (pH = 3.61) at T = 23.3±2.5ºC. Leached solids were characterized using X-ray diffraction (XRD) and scanning electron microscopy paired with energy dispersive spectroscopy (SEM-EDS). Leach solutions were sampled for pH and conductivity, and dissolved chemistry was determined with Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Preliminary results indicate Gt and CoGt filtered leach solutions experienced constant pH (Gt = 3.9 ± 0.1, CoGt = 6.8 ± 0.2) and conductivity (Gt = 69 ± 6.6 μS/cm, CoGt = 81 ± 16 μS/cm) for t = 0-20 days. Micro-focused XRD results indicate that leached solids did not change in mineralogy throughout the experiment, and SEM images show minor disintegration along mineral grain edges, but little overall change in shape. Preliminary ICP-MS results show lower dissolved Fe concentrations for CoGt (1.1 ± 1.1 ppb) compared to Gt (17 ± 8.9 ppb) over time. Dissolved Co concentrations ranged from 560 - 830 ppb and increased over time. Compared to leaching of pure Gt, leaching of CoGt generated significantly higher pH, slightly higher conductivity, and significantly less dissolved Fe. During the CoGt leach, Co was preferentially leached over Fe. The differences in leaching behavior between pure and TMS goethite in the laboratory have implications for

  14. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop

    PubMed Central

    Winkler, Marisa L.; Papp-Wallace, Krisztina M.; Bonomo, Robert A.

    2015-01-01

    Objectives The objective of this study was to explore the activity of ceftazidime and ceftazidime/avibactam against a collection of isogenic strains of Escherichia coli DH10B possessing SHV and KPC β-lactamases containing single amino acid substitutions in the Ω-loop (residues 164–179). Methods Ceftazidime and ceftazidime/avibactam MICs were determined by the agar dilution method for a panel of isogenic E. coli strains expressing SHV-1 and KPC-2 with amino acid substitutions at positions 164, 167, 169 or 179. Two KPC-2 β-lactamase variants that possessed elevated MICs of ceftazidime/avibactam were selected for further biochemical analyses. Results Avibactam restored susceptibility to ceftazidime for all Ω-loop variants of SHV-1 with MICs <8 mg/L. In contrast, several of the Arg164 and Asp179 variants of KPC-2 demonstrated MICs of ceftazidime/avibactam >8 mg/L. β-Lactamase kinetics showed that the Asp179Asn variant of KPC-2 demonstrated enhanced kinetic properties against ceftazidime. The Ki app, k2/K and koff of the Arg164Ala and Asp179Asn variant KPC-2 β-lactamases indicated that avibactam effectively inhibited these enzymes. Conclusions Several KPC-2 variants demonstrating ceftazidime resistance as a result of single amino acid substitutions in the Ω-loop were not susceptible to ceftazidime/avibactam (MICs >8 mg/L). We hypothesize that this observation is due to the stabilizing interactions (e.g. hydrogen bonds) of ceftazidime within the active site of variant β-lactamases that prevent avibactam from binding to and inhibiting the β-lactamase. As ceftazidime/avibactam is introduced into the clinic, monitoring for new KPC-2 variants that may exhibit increased ceftazidime kinetics as well as resistance to this novel antibiotic combination will be important. PMID:25957381

  15. Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity

    PubMed Central

    Kumar, Amit; Tripathi, Amit Kumar; Kathuria, Manoj; Shree, Sonal; Tripathi, Jitendra Kumar; Purshottam, R. K.; Ramachandran, Ravishankar; Mitra, Kalyan

    2016-01-01

    Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with

  16. Single amino acid substitutions on the needle tip protein IpaD increased Shigella virulence.

    PubMed

    Meghraoui, Alaeddine; Schiavolin, Lionel; Allaoui, Abdelmounaaïm

    2014-07-01

    Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence.

  17. Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications.

    PubMed

    Swatkoski, Stephen; Gutierrez, Peter; Wynne, Colin; Petrov, Alexey; Dinman, Jonathan D; Edwards, Nathan; Fenselau, Catherine

    2008-02-01

    Microwave-accelerated proteolysis using acetic acid has been shown to occur specifically on either or both sides of aspartic acid residues. This chemical cleavage has been applied to ovalbumin and several model peptides to test the effect on some of the more common post-translational modifications. No oxidation of methionine or cysteine was observed; however, hydrolysis of phosphate groups proceeds at a detectable rate. Acid cleavage was also extended to the yeast ribosome model proteome, where it provided information on 74% of that proteome. Aspartic acid occurs across the proteome with approximately half the frequency of the combined occurrence of the trypsin residues lysine and arginine, and implications of this are considered.

  18. Modification of amino acid residues in carious dentin matrix.

    PubMed

    Kleter, G A; Damen, J J; Buijs, M J; Ten Cate, J M

    1998-03-01

    The Maillard reaction between sugar and protein has been postulated as the cause for the browning and arrestment of caries lesions. This reaction has been implicated as the cause for decreased degradability of collagen in vivo. The aim of the present study was to verify the occurrence of the reaction in vivo. Carious and sound dentin samples were taken from extracted human teeth and analyzed for the fluorescence characteristic of the Maillard reaction and oxidation and, by HPLC, for Maillard products. In addition, physiological cross-links were analyzed by HPLC. Oxidation- and Maillard reaction-related fluorescence increased in collagenase digests from carious dentin. Advanced Maillard products (carboxymethyllysine and pentosidine) increased, whereas furosine, a marker for the initial reaction, was not observed consistently. This implies no direct addition of sugars to protein, but rather the addi-tion of smaller metabolites and glycoxidation products. In addition, the physiological cross-links hydroxylysinonorleucine and dihydroxylysinonorleucine decreased in carious dentin. Also for hydroxylysylpyridinoline, a decrease was observed, but not consistently. In conclusion, the caries process modifies amino acids in dentin collagen, which can lead to increased resistance against proteolysis and ultimately to caries arrestment.

  19. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.

    PubMed

    Numata, T; Suzuki, A; Yao, M; Tanaka, I; Kimura, M

    2001-01-16

    The ribonuclease MC1 (RNase MC1), isolated from seeds of bitter gourd (Momordica charantia), consists of 190 amino acids and is characterized by specific cleavage at the 5'-side of uridine. Site-directed mutagenesis was used to evaluate the contribution of four amino acids, Asn71, Val72, Leu73, and Arg74, at the alpha4-alpha5 loop between alpha4 and alpha5 helices for recognition of uracil base by RNase MC1. Four mutants, N71T, V72L, L73A, and R74S, in which Asn71, Val72, Leu73, and Arg74 in RNase MC1 were substituted for the corresponding amino acids, Thr, Leu, Ala, and Ser, respectively, in a guanylic acid preferential RNase NW from Nicotiana glutinosa, were prepared and characterized with respect to enzymatic activity. Kinetic analysis with a dinucleoside monophosphate, CpU, showed that the mutant N71T exhibited 7.0-fold increased K(m) and 2.3-fold decreased k(cat), while the mutant L73A had 14.4-fold increased K(m), although it did retain the k(cat) value comparable to that of the wild-type. In contrast, replacements of Val72 and Arg74 by the corresponding amino acids Leu and Ser, respectively, had little effect on the enzymatic activity. This observation is consistent with findings in the crystal structure analysis that Asn71 and Leu73 are responsible for a uridine specificity for RNase MC1. The role of Asn71 in enzymatic reaction of RNase MC1 was further investigated by substituting amino acids Ala, Ser, Gln, and Asp. Our observations suggest that Asn71 has at least two roles: one is base recognition by hydrogen bonding, and the other is to stabilize the conformation of the alpha4-alpha5 loop by hydrogen bonding to the peptide backbone, events which possibly result in an appropriate orientation of the alpha-helix (alpha5) containing active site residues. Mutants N71T and N71S showed a remarkable shift from uracil to guanine specificity, as evaluated by cleavage of CpG, although they did exhibit uridine specificity against yeast RNA and homopolynucleotides.

  20. Evolutionary diversification of aminopeptidase N in Lepidoptera by conserved clade-specific amino acid residues.

    PubMed

    Hughes, Austin L

    2014-07-01

    Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family.

  1. Properties of Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H+H(M182)L.

    PubMed

    Fufina, T Yu; Vasilieva, L G; Khatypov, R A; Shuvalov, V A

    2011-04-01

    Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacteriochlorophyll (BChl) B(B) Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacteriopheophytin appears in the B(B) binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386-7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl B(B) Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl B(B) Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, β-side. Weaker coordination of BChl B(B) Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position.

  2. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  3. Progesterone binding to the tryptophan residues of human alpha1-acid glycoprotein.

    PubMed

    Albani, J R

    2006-11-06

    Binding studies between progesterone and alpha1-acid glycoprotein allowed us to demonstrate that the binding site of progesterone contains one hydrophobic tryptophan residue and that the structure of the protein is not altered upon binding. The data obtained at saturated concentrations of progesterone clearly reveal the type of interaction at physiological levels.

  4. Enzymatic production of enantiopure amino acids from mono-substituted hydantoin substrates.

    PubMed

    Matcher, Gwynneth F; Dorrington, Rosemary A; Burton, Stephanie G

    2012-01-01

    Biocatalytic conversion of 5-substituted hydantoin derivatives is an efficient method for the production of unnatural enantiomerically pure amino acids. The enzymes required to carry out this hydrolysis occur in a wide variety of eubacterial species each of which exhibit variations in substrate selectivity, enantiospecificity, and catalytic efficiency. Screening of the natural environment for bacterial strains capable of utilizing hydantoin as a nutrient source (as opposed to rational protein design of known enzymes) is a cost-effective and valuable approach for isolating microbial species with novel hydantoin-hydrolysing enzyme systems. Once candidate microbial isolates have been identified, characterization and optimization of the activity of target enzyme systems can be achieved by subjecting the hydantoin-hydrolysing system to physicochemical manipulations aimed at the enzymes activity within the natural host cells, expressed in a heterologous host, or as purified enzymes. The latter two options require knowledge of the genes encoding for the hydantoin-hydrolysing enzymes. This chapter describes the methods that can be used in conducting such development of hydantoinase-based biocatalytic routes for production of target amino acids.

  5. Synthesis and biological relationships of 3',6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives as antimitotic agents.

    PubMed

    Lai, Ya-Yun; Huang, Li-Jiau; Lee, Kuo-Hsiung; Xiao, Zhiyan; Bastow, Kenneth F; Yamori, Takao; Kuo, Sheng-Chu

    2005-01-03

    As part of a continuing search for potential anticancer drug candidates in the 2-phenyl-4-quinolone series, 3',6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives and their salts were synthesized and evaluated. Preliminary screening showed that carboxylic acid analogs containing a m-fluoro substituted 2-phenyl group displayed the highest in vitro anticancer activity. Activity decreased significantly if a chlorine or methoxy group replaced the fluorine atom. 3'-Fluoro-6-methoxy-2-phenyl-4-quinolone-3-carboxylic acid (68) had the highest in vitro cytotoxic activity among all tested carboxylic acid derivatives and their salts. The mechanism of action may be similar, but not identical, to that of tubulin binding drugs, such as navelbine and taxol. Compound 68 merits further investigation as a novel hydrophilic antimitotic agent.

  6. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position.

    PubMed

    Lin, Du'an; Lam, Hiu Yung; Han, Wenbo; Cotroneo, Nicole; Pandya, Bhaumik A; Li, Xuechen

    2017-02-01

    Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported.

  7. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    SciTech Connect

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  8. Amino Acid Residues in the Putative Transmembrane Domain 11 of Human Organic Anion Transporting Polypeptide 1B1 Dictate Transporter Substrate Binding, Stability, and Trafficking.

    PubMed

    Hong, Weifang; Wu, Zhixuan; Fang, Zihui; Huang, Jiujiu; Huang, Hong; Hong, Mei

    2015-12-07

    Organic anion transporting polypeptides (OATPs, gene symbol SLCO) are membrane proteins that mediate the sodium-independent transport of a wide range of endogenous and exogenous compounds. Due to their broad substrate specificity, wide tissue distribution, and involvement in drug-drug interactions, OATPs have been considered as key players in drug absorption, distribution, and excretion. Transmembrane domains (TMs) are crucial structural features involved in proper functions of many transporters. According to computer-based modeling and previous studies of our laboratory and others, TM11 of OATP1B1 may face the substrate interaction pocket and thus play an important role in the transport function of the protein. Alanine-scanning of the transmembrane domain identified seven critical amino acid residues within the region. Further analysis revealed that alanine substitution of these residues resulted in reduced protein stability, which led to significantly decreased protein expression on the plasma membrane. In addition, all mutants exhibited an altered Km for ES uptake (either high affinity or low affinity component, or both), though Km for taurocholate transport only changed in R580A, G584A, and F591A. These results suggested that critical residues in TM11 not only affect protein stability of the transporter, but its interaction with substrates as well. The identification of seven essential residues out of 21 TM amino acids highlighted the importance of this transmembrane domain in the proper function of OATP1B1.

  9. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  10. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  11. Improved synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and sodium azide catalyzed by silica sulfuric acid.

    PubMed

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%-95% yield.

  12. Single-chain site-specific mutations of fluorescein-amino acid contact residues in high affinity monoclonal antibody 4-4-20.

    PubMed

    Denzin, L K; Whitlow, M; Voss, E W

    1991-07-25

    Previous crystallographic studies of high affinity anti-fluorescein monoclonal antibody 4-4-20 (Ka = 1.7 x 10(10) M-1) complexed with fluorescyl ligand resolved active site contact residues involved in binding. For better definition of the relative roles of three light chain antigen contact residues (L27dhis, L32tyr and L34arg), four site-specific mutations (L27dhis to L27lys, L32tyr to L32phe, and L34arg to L34lys and L34his) were generated and expressed in single-chain antigen binding derivatives of monoclonal antibody 4-4-20 containing two different polypeptide linkers (SCA 4-4-20/205c, 25 amino acids and SCA 4-4-20/212, 14 amino acids). Results showed that L27dhis and L32tyr were necessary for wild type binding affinities, however, were not required for near-wild type Qmax values (where Qmax is the maximum fluoroscein fluorescence quenching expressed as percent). Tyrosine L32 which hydrogen bonds with ligand was also characterized at the haptenic level through the use of 9-hydroxyphenylfluoron which lacks the carboxyl group to which L32 tyrosine forms a hydrogen bond. Results demonstrated that wild type SCA and mutant L32phe possessed similar HPF binding characteristics. Active site contact residue L34arg was important for fluorescein quenching maxima and binding affinity (L34his mutant), however, substitution of lysine for arginine at L34 did not have a significant effect on observed Qmax value. In addition, substitutions had no effect on structural and topological characteristics, since all mutants retained similar idiotypic and metatypic properties. Finally, two linkers were comparatively examined to determine relative contributions to mutant binding properties and stability. No linker effects were observed. Collectively, these results verified the importance of these light chain fluorescein contact residues in the binding pocket of monoclonal antibody 4-4-20.

  13. Identification of the amino acid residues responsible for stable nucleosome formation by histone H3.Y.

    PubMed

    Kujirai, Tomoya; Horikoshi, Naoki; Xie, Yan; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2017-01-24

    Histone H3.Y is conserved among primates. We previously reported that exogenously produced H3.Y accumulates around transcription start sites, suggesting that it may play a role in transcription regulation. The H3.Y nucleosome forms a relaxed chromatin conformation with flexible DNA ends. The H3.Y-specific Lys42 residue is partly responsible for enhancing the flexibility of the nucleosomal DNA. To our surprise, we found that H3.Y stably associates with chromatin and nucleosomes in vivo and in vitro. However, the H3.Y residues responsible for its stable nucleosome incorporation have not been identified yet. In the present study, we performed comprehensive mutational analyses of H3.Y, and determined that the H3.Y C-terminal region including amino acid residues 124-135 is responsible for its stable association with DNA. Among the H3.Y C-terminal residues, the H3.Y Met124 residue significantly contributed to the stable DNA association with the H3.Y-H4 tetramer. The H3.Y M124I mutation substantially reduced the H3.Y-H4 association in the nucleosome. In contrast, the H3.Y K42R mutation affected the nucleosome stability less, although it contributes to the flexible DNA ends of the nucleosome. Therefore, these H3.Y-specific residues, Lys42 and Met124, play different and specific roles in nucleosomal DNA relaxation and stable nucleosome formation, respectively, in chromatin.

  14. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  15. The prediction of the degree of exposure to solvent of amino acid residues via genetic programming

    SciTech Connect

    Handley, S.

    1994-12-31

    In this paper I evolve programs that predict the degree of exposure to solvent (the buriedness) of amino acid residues given only the primary structure. I use genetic programming to evolve programs that take as input the primary structure and that output the buriedness of each residue. I trained these programs on a set of 82 proteins from the Brookhaven Protein Data Bank (PDB) and cross-validated them on a separate testing set of 40 proteins, also from the PDB. The best program evolved had a correlation of 0.434 between the predicted and observed buriednesses on the testing set.

  16. Ser-substituted mutations of Cys residues in Bacillus thuringiensis Vip3Aa7 exert a negative effect on its insecticidal activity.

    PubMed

    Dong, Fang; Zhang, Shanshan; Shi, Ruiping; Yi, Shuyuan; Xu, Fangyan; Liu, Ziduo

    2012-11-01

    Vegetative insecticidal proteins (VIPs), which were produced by Bacillus thuringiensis during its vegetative growth stage, display a broad insecticidal spectrum to Lepidoptera larvae. Sequence alignment of the Vip3A-type indicates that three cysteine residues were conserved in Vip3A-type proteins. To determine whether these conserved cysteine residues contributed to the insecticidal activity, the three residues were respectively substituted with serine in the Vip3Aa7 protein by site-directed mutagenesis. Bioassays using the third instar larvae of Plutella xylostella showed that the toxicity of C401S and C507S mutants were completely abolished. To find out the inactivity reason of mutants, three mutants and the wild-type Vip3Aa7 were treated with trypsin. The results indicated that the C507S mutant was rapidly cleaved and resulted in decrease of the 62 kDa toxic core fragment. These results indicated that the replacement of the Cys(507) with a Ser(507) caused decrease in C507S resistance against trypsin degradation. It is suggesting a possible association between insecticidal activity and trypsin sensitivity of Vip3A proteins. This study serves a guideline for the study of Vip3A protein structure and active mechanism.

  17. A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production.

    PubMed

    Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2016-08-01

    The objective of the present study was to develop a sono-assisted acid pretreatment strategy for the effective removal of lignin and hemicelluloses and to improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, hydroxymethyl furfural and organic acids like citric acid, succinic acid and propionic acid were absent. Changes in structural properties of the biomass were studied in relation to the pretreatment process using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis, and the changes in chemical composition was also monitored. The biomass pretreated with the optimized novel method yielded 0.465g/g of reducing sugars on enzymatic hydrolysis. Fermentation of the non-detoxified hydrolysate yielded 2.14% of bioethanol with a fermentation efficiency of 71.03%.

  18. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    SciTech Connect

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-07-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO/sub 4//PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene.

  19. Predicting the functional consequences of cancer-associated amino acid substitutions

    PubMed Central

    Shihab, Hashem A.; Gough, Julian; Cooper, David N.; Day, Ian N. M.; Gaunt, Tom R.

    2013-01-01

    Motivation: The number of missense mutations being identified in cancer genomes has greatly increased as a consequence of technological advances and the reduced cost of whole-genome/whole-exome sequencing methods. However, a high proportion of the amino acid substitutions detected in cancer genomes have little or no effect on tumour progression (passenger mutations). Therefore, accurate automated methods capable of discriminating between driver (cancer-promoting) and passenger mutations are becoming increasingly important. In our previous work, we developed the Functional Analysis through Hidden Markov Models (FATHMM) software and, using a model weighted for inherited disease mutations, observed improved performances over alternative computational prediction algorithms. Here, we describe an adaptation of our original algorithm that incorporates a cancer-specific model to potentiate the functional analysis of driver mutations. Results: The performance of our algorithm was evaluated using two separate benchmarks. In our analysis, we observed improved performances when distinguishing between driver mutations and other germ line variants (both disease-causing and putatively neutral mutations). In addition, when discriminating between somatic driver and passenger mutations, we observed performances comparable with the leading computational prediction algorithms: SPF-Cancer and TransFIC. Availability and implementation: A web-based implementation of our cancer-specific model, including a downloadable stand-alone package, is available at http://fathmm.biocompute.org.uk. Contact: fathmm@biocompute.org.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23620363

  20. Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity.

    PubMed

    Paraskevopoulos, Georgios; Krátký, Martin; Mandíková, Jana; Trejtnar, František; Stolaříková, Jiřina; Pávek, Petr; Besra, Gurdyal; Vinšová, Jarmila

    2015-11-15

    Inspired by the high antituberculous activity of novel nitro-substituted derivatives and based on promising predicted ADMET properties we have synthesized a series of 33 salicylanilides containing nitro-group in their salicylic part and evaluated them for their in vitro antimycobacterial, antimicrobial and antifungal activities. The presence of nitro-group in position 4 of the salicylic acid was found to be beneficial and the resulting molecules exhibited minimum inhibitory concentrations (MICs) ranging from 2 to 32 μM against Mycobacterium tuberculosis. The best activity was found for 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide (MIC=2 μM). 4-Nitrosalicylanilides were also found to be active against all Staphylococcus species tested while for MRSA strain 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide's MIC was 0.98 μM. None of the nitrosalicylanilides was active against Enterococcus sp. J 14365/08 and no considerable activity was found against Gram-negative bacteria or fungi. The hepatotoxicity of all nitrosalicylanilides was found to be in the range of their MICs for HepG2 cells.

  1. Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors

    PubMed Central

    Kumar, Satish; Namkung, Wan; Verkman, A. S.; Sharma, Pawan K.

    2013-01-01

    Transmembrane protein 16A (TMEM16A) channels are recently discovered membrane proteins that functions as a calcium activated chloride channel (CaCC). CaCCs are major regulators of various physiological processes, such as sensory transduction, epithelial secretion, smooth muscle contraction and oocyte fertilization. Thirty novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids (B01–B30) were synthesized and evaluated for their TMEM16A inhibitory activity by using short circuit current measurements in Fischer rat thyroid (FRT) cells expressing human TMEM16A. IC50 values were calculated using YFP fluorescence plate reader assay. Final compounds, having free carboxylic group displayed significant inhibition. Eight of the novel compounds B02, B13, B21, B23, B25, B27, B28, B29 exhibit excellent CaCCs inhibition with IC50 value <6 μM, with compound B25 exhibiting the lowest IC50 value of 2.8 ± 1.3 μM. None of the tested ester analogs of final benzofuran derivatives displayed TMEM16A/CaCCs inhibition. PMID:22739085

  2. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    SciTech Connect

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  3. Synthesis and reactivity of 6-substituted (Z)-2-En-4-ynoic acids

    SciTech Connect

    Struve, G.; Seltzer, S.

    1982-05-21

    Five different 6-substituted (Z)-2-en-4-ynoic acids (X = CH/sub 3/,CH/sub 3/CHOH, CH/sub 3/C(=CH/sub 2/), CH/sub 3/CHOAc, CH/sub 3/CO have been synthesized. The first three were formed by coupling of methyl(Z)-3-iodopropenoate and the appropriate cuprous acetylide followed by ester hydrolysis. The latter two were obtained from the hydroxyl compound by acetylation and oxidation, respectively. Three of the five compounds were shown to undergo lactonization by nucleophilic addition of the carboxlate group to the acetylenic carbon to yield 4-alkylidene-2-butenolide derivatives with specific trans addition. The rate of lactonization for the title compound (X = CH/sub 3/CO) is too fast to measure. The kinetics of lactonization for X = CH/sub 3/CHOAc and CH/sub 3/CHOH have been measured in water and dimethylformamide. The observed rate ratio for lactonization suggests the possibility of electrophilic catalysis by the neighboring acetate group.

  4. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    PubMed

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  5. Relation between the secondary structure of carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and the fluorescence of the protein.

    PubMed

    Albani, Jihad R

    2003-05-01

    We studied in this work the relation that exists between the secondary structure of the glycans of alpha(1)-acid glycoprotein and the fluorescence of the Trp residues of the protein. We calculated for that the efficiency of quenching and the radiative and non-radiative constants. Our results indicate that the glycans display a spatial structure that is modified upon asialylation. The asialylated conformation is closer to the protein matrix than the sialylated form, inducing by that a decrease in the fluorescence parameters of the Trp residues. In fact, the mean quantum yield of Trp residues in sialylated and asialylated alpha(1)-acid glycoprotein are 0.0645 and 0.0385, respectively. Analysis of the fluorescence emission of alpha(1)-acid glycoprotein as the result of two contributions (surface and hydrophobic domains) indicates that quantum yields of both classes of Trp residues are lower when the protein is in the asialylated form. Also, the mean fluorescence lifetime of Trp residues decreases from 2.285 ns in the sialylated protein to 1.948 ns in the asialylated one. The radiative rate constant k(r) of the Trp residues in the sialylated alpha(1)-acid glycoprotein is higher than that in the asialylated protein. Thus, the carbohydrate residues are closer to the Trp residues in the absence of sialic acid. The modification of the spatial conformation of the glycans upon asialylation is confirmed by the decrease of the fluorescence lifetimes of Calcofluor, a fluorophore that binds to the carbohydrate residues. Finally, thermal intensity quenching of Calcofluor bound to alpha(1)-acid glycoprotein shows that the carbohydrate residues have slower residual motions in the absence of sialic acid residues.

  6. Microwave-Assisted Syntheses of Amino Acid Ester Substituted Benzoic Acid Amides: Potential Inhibitors of Human CD81-Receptor HCV-E2 Interaction

    PubMed Central

    Holzer, Marcel; Ziegler, Sigrid; Kronenberger, Bernd; Klein, Christian D; Hartmann, Rolf W

    2008-01-01

    Results from our group showed benzyl salicylate to be a moderate inhibitor of the CD81-LEL–HCV-E2 interaction. To increase the biological activity, heterocyclic substituted benzoic acids were coupled to amino acid esters via microwave assisted DCC-reaction. The prepared compounds were tested for their inhibitory potency by means of a fluorescence labeled antibody assay system using HUH7.5 cells. PMID:19662141

  7. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.

    PubMed

    Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-04-01

    A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection.

  8. Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides.

    PubMed

    Dremina, Elena S; Sharov, Victor S; Davies, Michael J; Schöneich, Christian

    2007-10-01

    The oxidative modification of proteins plays an important role in a wide range of pathological processes and aging. Proteins are modified by numerous biologic oxidants including hydrogen peroxide, peroxynitrite, singlet oxygen, and oxygen- and nitrogen-centered radicals. More recently, an additional class of physiologically important oxidants has been identified, peptide and protein peroxides. The latter react quite rapidly and selectively with protein cysteine residues. The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is reversibly regulated through NO-dependent S-glutathiolation of specific cysteine residues. The irreversible oxidation of these cysteine residues could, therefore, impair NO-dependent muscle relaxation. Here, we show that specific protein-derived (amino acid) peroxides react selectively with a subset of the 22 reduced cysteine residues of SERCA1, including a peptide-containing Cys674 and Cys675, where Cys674 (in SERCA2) represents one of the targets for NO-dependent S-glutathiolation. Out of 11 tested amino acid, peptide, and protein peroxides, those derived from free tryptophan and free tyrosine showed the highest reactivity towards SERCA, while no oxidation under similar experimental conditions was detected through hydrogen peroxide. Among the peroxides from tryptophan, those of free tryptophan showed a significantly higher reactivity as compared to those from N- and C-terminally blocked tryptophan. Quantitative HPLC-MS/MS analysis demonstrated that the highest reactivity of the tryptophan-derived peroxides was observed for Cys774 and Cys938, cysteine residues, which are embedded within the transmembrane domains of SERCA1. This unusual reactivity of transmembrane domains cannot be solely rationalized by the hydrophobicity of the oxidant, as the peroxide from dl-tryptophan shows considerable higher reactivity as compared to the one derived from N-acetyl-tryptophan methyl ester. Our data demonstrate a potential role of peptide- and protein

  9. A sensitive gel-based method combining distinct cyclophellitol-based probes for the identification of acid/base residues in human retaining β-glucosidases.

    PubMed

    Kallemeijn, Wouter W; Witte, Martin D; Voorn-Brouwer, Tineke M; Walvoort, Marthe T C; Li, Kah-Yee; Codée, Jeroen D C; van der Marel, Gijsbert A; Boot, Rolf G; Overkleeft, Herman S; Aerts, Johannes M F G

    2014-12-19

    Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes.

  10. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  11. Mutagenesis of conserved amino acids of Helicobacter pylori fur reveals residues important for function.

    PubMed

    Carpenter, Beth M; Gancz, Hanan; Benoit, Stéphane L; Evans, Sarah; Olsen, Cara H; Michel, Sarah L J; Maier, Robert J; Merrell, D Scott

    2010-10-01

    The ferric uptake regulator (Fur) of the medically important pathogen Helicobacter pylori is unique in that it has been shown to function as a repressor both in the presence of an Fe2+ cofactor and in its apo (non-Fe2+-bound) form. However, virtually nothing is known concerning the amino acid residues that are important for Fur functioning. Therefore, mutations in six conserved amino acid residues of H. pylori Fur were constructed and analyzed for their impact on both iron-bound and apo repression. In addition, accumulation of the mutant proteins, protein secondary structure, DNA binding ability, iron binding capacity, and the ability to form higher-order structures were also examined for each mutant protein. While none of the mutated residues completely abrogated the function of Fur, we were able to identify residues that were critical for both iron-bound and apo-Fur repression. One mutation, V64A, did not alter regulation of any target genes. However, each of the five remaining mutations showed an effect on either iron-bound or apo regulation. Of these, H96A, E110A, and E117A mutations altered iron-bound Fur regulation and were all shown to influence iron binding to different extents. Additionally, the H96A mutation was shown to alter Fur oligomerization, and the E110A mutation was shown to impact oligomerization and DNA binding. Conversely, the H134A mutant exhibited changes in apo-Fur regulation that were the result of alterations in DNA binding. Although the E90A mutant exhibited alterations in apo-Fur regulation, this mutation did not affect any of the assessed protein functions. This study is the first for H. pylori to analyze the roles of specific amino acid residues of Fur in function and continues to highlight the complexity of Fur regulation in this organism.

  12. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation.

    PubMed

    Yang, J; Cao, Y; Cai, Y; Terada, F

    2010-07-01

    Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.

  13. Deletion of Ac-NMePhe(1) from [NMePhe(1) ]arodyn under acidic conditions, part 2: effects of substitutions on pharmacological activity.

    PubMed

    Fang, Wei-Jie; Bennett, Marco A; Murray, Thomas F; Aldrich, Jane V

    2011-01-01

    Arodyn (Ac[Phe¹,²,³,Arg⁴,D-Ala⁸]Dyn A(1-11)NH₂) is an acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al., J Med Chem 2002, 45, 5617), and its analog [NMePhe¹]arodyn shows even higher affinity and selectivity for κ opioid receptors (Bennett et al., J Pept Res 2005, 65, 322). However, the latter compound is prone to deletion of the Ac-NMePhe moiety from the N-terminus of the peptide during acidic cleavage as described in the accompanying paper. Several stable analogs of [NMePhe¹]arodyn and [NMePhe¹,Trp³]arodyn where the acetyl group was substituted with a heteroatom-containing group were evaluated for their opioid receptor affinity, selectivity, and efficacy. Methoxycarbonyl derivatives exhibited the highest κ opioid receptor affinity among the analogs. Additional [CH₃OCO-NMePhe¹]arodyn analogs where position 3 was substituted with other aromatic or nonaromatic residues were also evaluated for κ receptor affinity, selectivity, and efficacy. [CH₃OCO-NMePhe¹]arodyn has similar κ opioid receptor affinity as [NMePhe¹]arodyn, retains high κ opioid receptor selectivity, and is a potent κ opioid receptor antagonist.

  14. Comparison between liquid and solid acids catalysts on reducing sugars conversion from furfural residues via pretreatments.

    PubMed

    Lin, Keying; Ma, Baojun; Sun, Yuan; Liu, Wanyi

    2014-09-01

    Liquid sulphuric acid is adopted and compared with carbon-based sulfonated solid acids (coal tar-based and active carbon-based) for furfural residues conversion into reducing sugars. The optimum hydrolysis conditions of liquid acid are at 4% of sulphuric acid, 25:1 of liquid and solid ratio, 175°C of reaction temperature and 120 min of reaction time. The reducing sugar yields are reached over 60% on liquid acid via NaOH/H2O2, NaOH/microwave and NaOH/ultrasonic pretreatments, whereas only over 30% on solid acids. The TOFs (turnover number frequency) via NaOH/H2O2 pretreatments are 0.093, 0.020 and 0.023 h(-1) for liquid sulphuric acid, coal tar-based and active carbon-based solid acids catalysts, respectively. Considering the efficiency, cost and environment factors, the liquid and solid acids have their own advantages of potential commercial application values.

  15. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume.

    PubMed Central

    Kapp, O. H.; Moens, L.; Vanfleteren, J.; Trotman, C. N.; Suzuki, T.; Vinogradov, S. N.

    1995-01-01

    Seven-hundred globin sequences, including 146 nonvertebrate sequences, were aligned on the basis of conservation of secondary structure and the avoidance of gap penalties. Of the 182 positions needed to accommodate all the globin sequences, only 84 are common to all, including the absolutely conserved PheCD1 and HisF8. The mean number of amino acid substitutions per position ranges from 8 to 13 for all globins and 5 to 9 for internal positions. Although the total sequence volumes have a variation approximately 2-3%, the variation in volume per position ranges from approximately 13% for the internal to approximately 21% for the surface positions. Plausible correlations exist between amino acid substitution and the variation in volume per position for the 84 common and the internal but not the surface positions. The amino acid substitution matrix derived from the 84 common positions was used to evaluate sequence similarity within the globins and between the globins and phycocyanins C and colicins A, via calculation of pairwise similarity scores. The scores for globin-globin comparisons over the 84 common positions overlap the globin-phycocyanin and globin-colicin scores, with the former being intermediate. For the subset of internal positions, overlap is minimal between the three groups of scores. These results imply a continuum of amino acid sequences able to assume the common three-on-three alpha-helical structure and suggest that the determinants of the latter include sites other than those inaccessible to solvent. PMID:8535255

  16. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups.

    PubMed

    Sengkhamparn, Nipaporn; Bakx, Edwin J; Verhoef, René; Schols, Henk A; Sajjaanantakul, Tanaboon; Voragen, Alphons G J

    2009-09-28

    The okra plant, Abelmoschus esculentus (L.) Moench, a native plant from Africa, is now cultivated in many other areas such as Asia, Africa, Middle East, and the southern states of the USA. Okra pods are used as vegetables and as traditional medicines. Sequential extraction showed that the Hot Buffer Soluble Solids (HBSS) extract of okra consists of highly branched rhamnogalacturonan (RG) I containing high levels of acetyl groups and short galactose side chains. In contrast, the CHelating agent Soluble Solids (CHSS) extract contained pectin with less RG I regions and slightly longer galactose side chains. Both pectic populations were incubated with homogeneous and well characterized rhamnogalacturonan hydrolase (RGH), endo-polygalacturonase (PG), and endo-galactanase (endo-Gal), monitoring both high and low molecular weight fragments. RGH is able to degrade saponified HBSS and, to some extent, also non-saponified HBSS, while PG and endo-Gal are hardly able to degrade either HBSS or saponified HBSS. In contrast, PG is successful in degrading CHSS, while RGH and endo-Gal are hardly able to degrade the CHSS structure. These results point to a much higher homogalacturonan (HG) ratio for CHSS when compared to HBSS. In addition, the CHSS contained slightly longer galactan side chains within its RG I region than HBSS. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated the presence of acetylated RG oligomers in the HBSS and CHSS enzyme digests and electron spray ionization-ion trap-mass spectrum showed that not only galacturonosyl residues but also rhamnosyl residues in RG I oligomers were O-acetylated. NMR spectroscopy showed that all rhamnose residues in a 20kDa HBSS population were O-acetylated at position O-3. Surprisingly, the NMR data also showed that terminal alpha-linked galactosyl groups were present as neutral side chain substituents. Taken together, these results demonstrate that okra contained RG I structures which have not

  17. Important amino acid residues of hexachlorocyclohexane dehydrochlorinases (LinA) for enantioselective transformation of hexachlorocyclohexane isomers.

    PubMed

    Shrivastava, Nidhi; Macwan, Ankit S; Kohler, Hans-Peter E; Kumar, Ashwani

    2017-03-01

    LinA-type1 and LinA-type2 are two well-characterized variants of the enzyme 'hexachlorocyclohexane (HCH)-dehydrochlorinase'. They differ from each other at ten amino acid positions and exhibit differing enantioselectivity for the transformation of the (-) and (+) enantiomers of α-HCH. Amino acids responsible for this enantioselectivity, however, are not known. An in silico docking analysis identified four amino acids (K20, L96, A131, and T133) in LinA-type1 that could be involved in selective binding of the substrates. Experimental studies with constructed mutant enzymes revealed that a combined presence of three amino acid changes in LinA-type1, i.e. K20Q, L96C, and A131G, caused a reversal in its preference from the (-) to the (+) enantiomer of α-HCH. This preference was enhanced by the additional amino acid change T133 M. Presence of these four changes also caused the reversal of enantioselectivity of LinA-type1 for δ-HCH, and β-, γ-, and δ-pentachlorocyclohexens. Thus, the residues K20, L96, A131, and T133 in LinA-type1 and the residues Q20, C96, G131, and M133 in LinA-type 2 appear to be important determinants for the enantioselectivity of LinA enzymes.

  18. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    PubMed

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL(-1), whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL(-1), corresponding to a productivity of 1.46gL(-1)h(-1). This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.

  19. Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration.

    PubMed

    Mabrouk, Kamel; Ram, Narendra; Boisseau, Sylvie; Strappazzon, Flavie; Rehaim, Amel; Sadoul, Rémy; Darbon, Hervé; Ronjat, Michel; De Waard, Michel

    2007-10-01

    Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca(2+) mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.

  20. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades.

    PubMed Central

    Martínez, M A; Dopazo, J; Hernández, J; Mateu, M G; Sobrino, F; Domingo, E; Knowles, N J

    1992-01-01

    The genetic diversification of foot-and-mouth disease virus (FMDV) of serotype C over a 6-decade period was studied by comparing nucleotide sequences of the capsid protein-coding regions of viruses isolated in Europe, South America, and The Philippines. Phylogenetic trees were derived for VP1 and P1 (VP1, VP2, VP3, and VP4) RNAs by using the least-squares method. Confidence intervals of the derived phylogeny (significance levels of nodes and standard deviations of branch lengths) were placed by application of the bootstrap resampling method. These procedures defined six highly significant major evolutionary lineages and a complex network of sublines for the isolates from South America. In contrast, European isolates are considerably more homogeneous, probably because of the vaccine origin of several of them. The phylogenetic analysis suggests that FMDV CGC Ger/26 (one of the earliest FMDV isolates available) belonged to an evolutionary line which is now apparently extinct. Attempts to date the origin (ancestor) of the FMDVs analyzed met with considerable uncertainty, mainly owing to the stasis noted in European viruses. Remarkably, the evolution of the capsid genes of FMDV was essentially associated with linear accumulation of silent mutations but continuous accumulation of amino acid substitutions was not observed. Thus, the antigenic variation attained by FMDV type C over 6 decades was due to fluctuations among limited combinations of amino acid residues without net accumulation of amino acid replacements over time. PMID:1316467

  1. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  2. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase.

    PubMed

    Burner, U; Obinger, C; Paumann, M; Furtmüller, P G; Kettle, A J

    1999-04-02

    Myeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation. We have investigated the mechanism by which benzoic acid hydrazides (BAH) are oxidized by myeloperoxidase, and we have determined the features that enable them to inactivate the enzyme. BAHs readily reduced compound I of myeloperoxidase. The rate constants for these reactions ranged from 1 to 3 x 10(6) M-1 s-1 (15 degrees C, pH 7.0) and were relatively insensitive to the substituents on the aromatic ring. Rate constants for reduction of compound II varied between 6.5 x 10(5) M-1 s-1 for ABAH and 1.3 x 10(3) M-1 s-1 for 4-nitrobenzoic acid hydrazide (15 degrees C, pH 7.0). Reduction of both compound I and compound II by BAHs adhered to the Hammett rule, and there were significant correlations with Brown-Okamoto substituent constants. This indicates that the rates of these reactions were simply determined by the ease of oxidation of the substrates and that the incipient free radical carried a positive charge. ABAH was oxidized by myeloperoxidase without added hydrogen peroxide because it underwent auto-oxidation. Although BAHs generally reacted rapidly with compound II, they should be poor peroxidase substrates because the free radicals formed during peroxidation converted myeloperoxidase to compound III. We found that the reduction of ferric myeloperoxidase by BAH radicals was strongly influenced by Hansch's hydrophobicity constants. BAHs containing more hydrophilic substituents were more effective at converting the enzyme to compound III. This implies that BAH radicals must hydrogen bond to residues in the distal heme pocket before they can reduce the ferric enzyme. Inactivation of myeloperoxidase by BAHs

  3. The amino acid residues at 102 and 104 in GP5 of porcine reproductive and respiratory syndrome virus regulate viral neutralization susceptibility to the porcine serum neutralizing antibody.

    PubMed

    Fan, Baochao; Liu, Xing; Bai, Juan; Zhang, Tingjie; Zhang, Qiaoya; Jiang, Ping

    2015-06-02

    Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the heavy economic losses in pig industry in the world. A number of neutralizing epitopes have been identified in the viral structural proteins GP3, GP4, GP5 and M. In this study, the important amino acid (aa) residues of HP-PRRSV strain BB affecting neutralization susceptibility of antibody were examined using resistant strains generated under neutralizing antibody (NAb) pressure in MARC-145 cells, reverse genetic technique and virus neutralization assay. HP-PRRSV strain BB was passaged under the pressure of porcine NAb serum in vitro. A resistant strain BB34s with 102 and 104 aa substitutions in GP5, which have been predicted to be the positive sites for pressure selection (Delisle et al., 2012), was cloned and identified. To determine the effect of the two aa residues on neutralization, eight recombinant PRRSV strains were generated, and neutralization assay results confirmed that the aa residues 102 and 104 in GP5 played an important role in NAbs against HP-PRRSV in MARC-145 cells and porcine alveolar macrophages. Alignment of GP5 sequences revealed that the variant aa residues at 102 and 104 were frequent among type 2 PRRSV strains. It may be helpful for understanding the mechanism regulating the neutralization susceptibility of PRRSV to the NAbs and monitoring the antigen variant strains in the field.

  4. Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues

    SciTech Connect

    Pande, C.S.; Pelzig, M.; Glass, J.D.

    1980-02-01

    Camphorquinone-10-sulfonic acid hydrate was prepared by the action of selenous acid on camphor-10-sulfonic acid. Camphorquinone-10-sulfonylnorleucine was prepared either from the sulfonic acid via the sulfonyl chloride or by selenous acid oxidation of camphor-10-sulfonylnorleucine. These reagents are useful for specific, reversible modification of the guanidino groups of arginine residues. Camphorquinonsulfonic acid is a crystalline water-soluble reagent that is especially suitable for use with small arginine-containing molecules, because the sulfonic acid group of the reagent is a convenient handle for analytical and preparative separation of products. Camphorquinonesulfonylnorleucine is more useful for work with large polypeptides and proteins, because hydrolysates of modified proteins may be analyzed for norleucine to determine the extent of arginine modification. The adducts of the camphorquinone derivatives with the guanidino group are stable to 0.5 M hydroxylamine solutions at pH 7, the recommended conditions for cleavage of the corresponding cyclohexanedione adducts. At pH 8-9 the adducts of the camphorquinone derivatives with the guanidino group are cleaved by o-phenylenediamine. The modification and regeneration of arginine, of the dipeptide arginylaspartic acid, of ribonuclease S-peptide, and of soybean trypsin inhibitor are presented as demonstrations of the use of the reagents.The use of camphorquinonesulfonyl chloride to prepare polymers containing arginine-specific ligands is discussed.

  5. Stereoselective Michael Addition of Glycine Anions to Chiral Fischer Alkenylcarbene Complexes. Asymmetric Synthesis of beta-Substituted Glutamic Acids.

    PubMed

    Ezquerra, Jesús; Pedregal, Concepción; Merino, Isabel; Flórez, Josefa; Barluenga, José; García-Granda, Santiago; Llorca, María-Amparo

    1999-09-03

    The reaction of lithium enolates of achiral N-protected glycine esters with chiral alkoxyalkenylcarbene complexes of chromium provided the corresponding Michael adducts with either high anti or syn selectivity depending on the nature of the nitrogen protecting group, and high diastereofacial selectivity when carbene complexes containing the (-)-8-phenylmenthyloxy group were employed. Subsequent oxidation of the metal-carbene moiety followed by deprotection of the amine group and hydrolysis of both carboxylic esters afforded enantiomerically enriched 3-substituted glutamic acids of natural as well as unnatural stereochemistry. Alternatively, when the deprotection step was performed previously to the oxidation, cyclic aminocarbene complexes were formed, which finally led to optically active 3-substituted pyroglutamic acids.

  6. Amino acid residues involved in the substrate specificity of TauT/SLC6A6 for taurine and γ-aminobutyric acid.

    PubMed

    Yahara, Tohru; Tachikawa, Masanori; Akanuma, Shin-ichi; Kubo, Yoshiyuki; Hosoya, Ken-ichi

    2014-01-01

    Taurine transporter (TauT/SLC6A6) is an "honorary" γ-aminobutyric acid (GABA) transporter because of its low affinity for GABA. The sequence analysis of TauT implied the role of Gly57, Phe58, Leu306 and Glu406 in the substrate recognition of TauT, and amino acid-substitutions were performed. Immunocytochemistry supported no marked effect of mutations on the expression of TauT. TauT-expressing oocytes showed a reduction in [(3)H]taurine uptake by G57E, F58I, L306Q and E406C, and change in [(3)H]GABA uptake by G57E and E406C, suggesting their significant roles in the function of TauT. G57E lost the activity of [(3)H]taurine and [(3)H]GABA uptake, suggesting that Gly57 is involved in the determination of substrate pocket volume and in the interaction with substrates. E406C exhibited a decrease and an increase in the affinity for taurine and GABA, respectively, suggesting the involvement of Glu406 in the substrate specificity of TauT. The inhibition study supported the role of Glu406 in the substrate specificity since [(3)H]taurine and [(3)H]GABA uptake by E406C was less sensitive to taurine and β-alanine, and more sensitive to GABA and nipecotic acid than was the case with wild type of TauT. F58I had an increased affinity for GABA, suggesting the involvement of Phe58 in the substrate accessibility. The kinetic parameters showed the decreased and increased affinities of L306Q for taurine and GABA, respectively, supporting that substrate recognition of TauT is conformationally regulated by the branched-side chain of Leu306. In conclusion, the present results suggest that these residues play important roles in the transport function and substrate specificity of TauT.

  7. Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal.

    PubMed

    Mullen, R T; Lee, M S; Flynn, C R; Trelease, R N

    1997-11-01

    The purpose of this study was to determine whether the plant type 1 peroxisomal targeting signal (PTS1) utilizes amino acid residues that do not strictly adhere to the serine-lysine-leucine (SKL) motif (small-basic-hydrophobic residues). Selected residues were appended to the C terminus of chloramphenicol acetyltransferase (CAT) and were tested for their ability to target CAT fusion proteins to glyoxysomes in tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 suspension-cultured cells. CAT was redirected from the cytosol into glyoxysomes by a wide range of residues, i.e. A/C/G/S/T-H/K/ L/N/R-I/L/M/Y. Although L and N at the -2 position (-SLL, -ANL) do not conform to the SKL motif, both functioned, but in a temporally less-efficient manner. Other SKL divergent residues, however, did not target CAT to glyoxysomes, i.e. F or P at the -3 position (-FKL, -PKL), S or T at the -2 position (-SSI, STL), or D at the -1 position (-SKD). The targeting inefficiency of CAT-ANL could be ameliorated when K was included at the -4 position (-KANL). In summary, the plant PTS1 mostly conforms to the SKL motif. For those PTS1s that possess nonconforming residue(s), other residues upstream of the PTS1 appear to function as accessory sequences that enhance the temporal efficiency of peroxisomal targeting.

  8. Removal of copper from acid wastewater of bioleaching by adsorption onto ramie residue and uptake by Trichoderma viride.

    PubMed

    Wang, Buyun; Wang, Kai

    2013-05-01

    A continuous batch bioleaching was built to realize the bioleaching of sewage sludge in large scale. In the treatment, heavy metal in acid wastewater of bioleaching was removed by adsorption onto ramie residue. Then, acid wastewater was reused in next bioleaching batch. In this way, most time and water of bioleaching was saved and leaching efficiency of copper, lead and chromium kept at a high level in continuous batch bioleaching. It was found that residual heavy metal in sewage sludge is highly related to that in acid wastewater after bioleaching. To get a high leaching efficiency, concentration of heavy metal in acid wastewater should be low. Adsorption of copper from acid wastewater onto ramie residue can be described by pseudo first-order kinetics equation and Freundlich isotherm model. Trichoderma viride has the potential to be used for the concentration and recovery of heavy metal adsorbed onto ramie residue.

  9. Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues

    PubMed Central

    Sieradzan, Adam K.; Hansmann, Ulrich H.E.; Scheraga, Harold A.; Liwo, Adam

    2013-01-01

    Coarse-grained force fields for protein simulations are usually designed and parameterized to treat proteins composed of natural L-amino-acid residues. However, D-amino-acid residues occur in bacterial, fungal (e.g., gramicidins), as well as human-designed proteins. For this reason, we have extended the UNRES coarse-grained force field developed in our laboratory to treat systems with D-amino-acid residues. We developed the respective virtual-bond-torsional and double-torsional potentials for rotation about the Cα · · · Cα virtual-bond axis and two consecutive Cα · · · Cα virtual-bond axes, respectively, as functions of virtual-bond-dihedral angles γ. In turn, these were calculated as potentials of mean force (PMFs) from the diabatic energy surfaces of terminally-blocked model compounds for glycine, alanine, and proline. The potential-energy surfaces were calculated by using the ab initio method of molecular quantum mechanics at the Møller-Plesset (MP2) level of theory and the 6-31G(d,p) basis set, with the rotation angles of the peptide groups about Ci-1α⋯Ciα(λ(1)) and Ciα⋯Ci+1α(λ(2)) used as variables, and the energy was minimized with respect to the remaining degrees of freedom. The PMFs were calculated by numerical integration for all pairs and triplets with all possible combinations of types (glycine, alanine, and proline) and chirality (D or L); however, symmetry relations reduce the number of non-equivalent torsional potentials to 13 and the number of double-torsional potentials to 63 for a given C-terminal blocking group. Subsequently, one- (for torsional) and two-dimensional (for double-torsional potentials) Fourier series were fitted to the PMFs to obtain analytical expressions. It was found that the torsional potentials of the x-Y and X-y types, where X and Y are Ala or Pro, respectively, and a lowercase letter denotes D-chirality, have global minima for small absolute values of γ, accounting for the double-helical structure of

  10. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  11. Reactivity of Cations and Zwitterions Formed in Photochemical and Acid-Catalyzed Reactions from m-Hydroxycycloalkyl-Substituted Phenol Derivatives.

    PubMed

    Cindro, Nikola; Antol, Ivana; Mlinarić-Majerski, Kata; Halasz, Ivan; Wan, Peter; Basarić, Nikola

    2015-12-18

    Three m-substituted phenol derivatives, each with a labile benzylic alcohol group and bearing either protoadamantyl 4, homoadamantyl 5, or a cyclohexyl group 6, were synthesized and their thermal acid-catalyzed and photochemical solvolytic reactivity studied, using preparative irradiations, fluorescence measurements, nanosecond laser flash photolysis, and quantum chemical calculations. The choice of m-hydroxy-substitution was driven by the potential for these phenolic systems to generate m-quinone methides on photolysis, which could ultimately drive the excited-state pathway, as opposed to forming simple benzylic carbocations in the corresponding thermal route. Indeed, thermal acid-catalyzed reactions gave the corresponding cations, which undergo rearrangement and elimination from 4, only elimination from 5, and substitution and elimination from 6. On the other hand, upon photoexcitation of 4-6 to S1 in a polar protic solvent, proton dissociation from the phenol, coupled with elimination of the benzylic OH (as hydroxide ion) gave zwitterions (formal m-quinone methides). The zwitterions exhibit reactivity different from the corresponding cations due to a difference in charge distribution, as shown by DFT calculations. Thus, protoadamantyl zwitterion has a less nonclassical character than the corresponding cation, so it does not undergo 1,2-shift of the carbon atom, as observed in the acid-catalyzed reaction.

  12. Nucleophilic substitution reactions of alcohols with use of montmorillonite catalysts as solid Brønsted acids.

    PubMed

    Motokura, Ken; Nakagiri, Nobuaki; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2007-08-03

    We have developed an environmentally benign synthetic approach to nucleophilic substitution reactions of alcohols that minimizes or eliminates the formation of byproducts, resulting in a highly atom-efficient chemical process. Proton- and metal-exchanged montmorillonites (H- and Mn+-mont) were prepared easily by treating Na+-mont with an aqueous solution of hydrogen chloride or metal salt, respectively. The H-mont possessed outstanding catalytic activity for nucleophilic substitution reactions of a variety of alcohols with anilines, because the unique acidity of the H-mont catalyst effectively prevents the neutralization by the basic anilines. In addition, amides, indoles, 1,3-dicarbonyl compounds, and allylsilane act as nucleophiles for the H-mont-catalyzed substitutions of alcohols, which allowed efficient formation of various C-N and C-C bonds. The solid H-mont was reusable without any appreciable loss in its catalytic activity and selectivity. Especially, an Al3+-mont showed high catalytic activity for the alpha-benzylation of 1,3-dicarbonyl compounds with primary alcohols due to cooperative catalysis between a protonic acid site and a Lewis acidic Al3+ species in its interlayer spaces.

  13. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.

    PubMed

    Tinjum, James M; Benson, Craig H; Edil, Tuncer B

    2008-02-25

    Batch leaching studies on chromite ore processing residue (COPR) were performed using acids to investigate leaching of hexavalent chromium, Cr(VI), with respect to particle size, reaction time, and type of acid (HNO(3) and H(2)SO(4)). Aqueous Cr(VI) is maximized at approximately 0.04 mol Cr(VI) per kg of dry COPR at pH 7.6-8.1. Cr(VI) mobilized more slowly for larger particles, and the pH increased with time and increased more rapidly for smaller particles, suggesting that rate limitations occur in the solid phase. With H(2)SO(4), the pH stabilized at a higher value (8.8 for H(2)SO(4) vs. 8.0 for HNO(3)) and more rapidly (16 h vs. 30 h), and the differences in pH for different particle sizes were smaller. The acid neutralization capacity (ANC) of COPR is very large (8 mol HNO(3) per kg of dry COPR for a stable eluate pH of 7.5). Changes to the elemental and mineralogical composition and distribution in COPR particles after mixing with acid indicate that Cr(VI)-bearing solids dissolved. However, concentrations of Cr(VI) >2800 mg kg(-1) (>50% of the pre-treatment concentration) were still found after mixing with acid, regardless of the particle size, reaction time, or type of acid used. The residual Cr(VI) appears to be partially associated with poorly-ordered Fe and Al oxyhydroxides that precipitated in the interstitial areas of COPR particles. Remediation strategies that use HNO(3) or H(2)SO(4) to neutralize COPR or to maximize Cr(VI) in solution are likely to require extensive amounts of acid, may not mobilize all of the Cr(VI), and may require extended contact time, even under well-mixed conditions.

  14. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  15. Evidence that the amino acid residue Cys117 of chloroplastic monodehydroascorbate reductase is involved in its activity and structural stability.

    PubMed

    Li, Feng; Wu, Qing-Yun; Sun, Yan-Li; Ma, Na-Na; Wang, Xiao-Yun; Meng, Qing-Wei

    2010-04-01

    Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is crucial for AsA regeneration and essential for maintaining the reduced pool of AsA. And the amino acid residue C117 of chloroplastic MDAR is the conserved cysteine residue in MDAR isoforms. A series mutation of conserved amino acid residue cysteine117 (C117) was constructed to investigate its role in MDAR structural stability and activity. Our study revealed that mutation in this conserved residue could cause pronounced loss of activity and conformational changes. Spectroscopic experiments indicated that these mutations influenced transition from the molten globule intermediate to the native state in folding process. These results suggested that amino acid residue C117 played a relatively important role in keeping MDAR structural stability and activity.

  16. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  17. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  18. Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of Composite K East Canister Sludge

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Soderquist, C.Z.; Fadeff, S.K.

    1999-04-02

    Laboratory tests were performed to examine mixed nitric/hydrofluoric acid leach treatments for decontaminating dissolver residual solids (KECDVSR24H-2) produced during a 20- to 24-hr dissolution of a composite K East (KE) Basin canister sludge in 95 C 6 M nitric acid (HNO{sub 3}). The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KECDVSR24H-2, contains radionuclides at concentrations which exceed the ERDF Waste Acceptance Criteria for TRU by about a factor of 70, for {sup 239}Pu by a factor of 200, and for {sup 241}Am by a factor of 50. The solids also exceed the ERDF criterion for {sup 137}Cs by a factor of 2 and uranium by a factor of 5. Therefore, the radionuclides of greatest interest in this leaching study are first {sup 239}Pu and {sup 241}Am (both components of TRU) and then uranium and {sup 137}Cs.

  19. Functional role of polar amino acid residues in Na+/H+ exchangers.

    PubMed Central

    Wiebe, C A; Dibattista, E R; Fliegel, L

    2001-01-01

    Na(+)/H(+) exchangers are a family of ubiquitous membrane proteins. In higher eukaryotes they regulate cytosolic pH by removing an intracellular H(+) in exchange for an extracellular Na(+). In yeast and Escherichia coli, Na(+)/H(+) exchangers function in the opposite direction to remove intracellular Na(+) in exchange for extracellular H(+). Na(+)/H(+) exchangers display an internal pH-sensitivity that varies with the different antiporter types. Only recently have investigations examined the amino acids involved in pH-sensitivity and in cation binding and transport. Histidine residues are good candidates for H(+)-sensing amino acids, since they can ionize within the physiological pH range. Histidine residues have been shown to be important in the function of the E. coli Na(+)/H(+) exchanger NhaA and in the yeast Na(+)/H(+) exchanger sod2. In E. coli, His(225) of NhaA may function to interact with, or regulate, the pH-sensory region of NhaA. In sod2, His(367) is also critical to transport and may be a functional analogue of His(225) of NhaA. Histidine residues are not critical for the function of the mammalian Na(+)/H(+) exchanger, although an unusual histidine-rich sequence of the C-terminal tail has some influence on activity. Other amino acids involved in cation binding and transport by Na(+)/H(+) exchangers are only beginning to be studied. Amino acids with polar side chains such as aspartate and glutamate have been implicated in transport activity of NhaA and sod2, but have not been studied in the mammalian Na(+)/H(+) exchanger. Further studies are needed to elucidate the mechanisms involved in pH-sensitivity and cation binding and transport by Na(+)/H(+) exchangers. PMID:11415429

  20. Prediction of functionally important residues in globular proteins from unusual central distances of amino acids

    PubMed Central

    2011-01-01

    Background Well-performing automated protein function recognition approaches usually comprise several complementary techniques. Beside constructing better consensus, their predictive power can be improved by either adding or refining independent modules that explore orthogonal features of proteins. In this work, we demonstrated how the exploration of global atomic distributions can be used to indicate functionally important residues. Results Using a set of carefully selected globular proteins, we parametrized continuous probability density functions describing preferred central distances of individual protein atoms. Relative preferred burials were estimated using mixture models of radial density functions dependent on the amino acid composition of a protein under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric methods. We also showed that the unexpectedness is a property of regions involved in protein-protein interactions, and thus can be used for the ranking of protein docking predictions. The computational approach implemented in this work is freely available via a Web interface at http://www.bioinformatics.org/surpresi. Conclusions Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn out to be

  1. Conformational characterization of the 1-aminocyclobutane-1-carboxylic acid residue in model peptides.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.

  2. A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual

    SciTech Connect

    Horace K. Moo-Young; Charles E. Ochola

    2004-08-31

    The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) from the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.

  3. N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: Influence of isomeric substitution on radiolabeling and target cell residualization

    PubMed Central

    Choi, Jaeyeon; Vaidyanathan, Ganesan; Koumarianou, Eftychia; McDougald, Darryl; Pruszynski, Marek; Osada, Takuya; Lahoutte, Tony; Lyerly, H. Kim; Zalutsky, Michael R.

    2014-01-01

    Introduction N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate ([*I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [131I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[131I]iodobenzoate (iso-[131I]SGMIB) wherein this bulky group was moved from ortho to meta position. Methods Boc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors — trastuzumab (Tras) and a nanobody 5F7 (Nb) — were labeled using iso-[*I]SGMIB and [*I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed. Results When the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[131I]SGMIB were significantly higher than those for Boc2-[131I]SGMIB (70.7 ± 2.0% vs 56.5 ± 5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[131I]SGMIB than with [131I]SGMIB (Nb, 33.1 ± 7.1% vs 28.9 ± 13.0%; Tras, 45.1 ± 4.5% vs 34.8 ± 10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5F7 Nb indicated similar residualizing capacity over 6 h; however, at 24 h, radioactivity retained intracellularly for iso-[131I]SGMIB-Nb was lower than for [125I]SGMIB-Nb (46.4 ± 1.3% vs 56.5 ± 2.5%); similar results were

  4. Effects of bis homoallylic and homoallylic hydroxyl substitution on the olefinic 13C resonance shifts in fatty acid methyl esters.

    PubMed

    Pfeffer, P E; Sonnet, P E; Schwartz, D P; Osman, S F; Weisleder, D

    1992-04-01

    Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.

  6. [Nitrate nitrogen leaching and residue of humic acid fertilizer in field soil].

    PubMed

    Liu, Fang-chun; Xing, Shang-jun; Duan, Chun-hua; Du, Zhen-yu; Ma, Hai-lin; Ma, Bing-yao

    2010-07-01

    To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.

  7. A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA.

    PubMed

    Shen, Li; Gao, Ge; Zhang, Ying; Zhang, He; Ye, Zhiqiang; Huang, Shichao; Huang, Jinyan; Kang, Jiuhong

    2010-10-01

    Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system.

  8. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Varo, G.; Zimanyi, L.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The switch in the bacteriorhodopsin photocycle, which reorients access of the retinal Schiff base from the extracellular to the cytoplasmic side, was suggested to be an M1----M2 reaction (Varo and Lanyi. 1991. Biochemistry. 30:5008-5015, 5016-5022). Thus, in this light-driven proton pump it is the interconversion of proposed M substates that gives direction to the transport. We find that in monomeric, although not purple membrane-lattice immobilized, D115N bacteriorhodopsin, the absorption maximum of M changes during the photocycle: in the time domain between its rise and decay it shifts 15 nm to the blue relative to the spectrum at earlier times. This large shift strongly supports the existence of two M substates. Since D115 is located near the beta-ionone ring of the retinal, the result raises questions about the possible involvement of the retinal chain or protein residues as far away as 10 A from the Schiff base in the mechanism of the switching reaction.

  9. "Silent" Amino Acid Residues at Key Subunit Interfaces Regulate the Geometry of Protein Nanocages.

    PubMed

    Zhang, Shengli; Zang, Jiachen; Zhang, Xiaorong; Chen, Hai; Mikami, Bunzo; Zhao, Guanghua

    2016-11-22

    Rendering the geometry of protein-based assemblies controllable remains challenging. Protein shell-like nanocages represent particularly interesting targets for designed assembly. Here, we introduce an engineering strategy-key subunit interface redesign (KSIR)-that alters a natural subunit-subunit interface by selective deletion of a small number of "silent" amino acid residues (no participation in interfacial interactions) into one that triggers the generation of a non-native protein cage. We have applied KSIR to construct a non-native 48-mer nanocage from its native 24-mer recombinant human H-chain ferritin (rHuHF). This protein is a heteropolymer composed of equal numbers of two different subunits which are derived from one polypeptide. This strategy has allowed the study of conversion between protein nanocages with different geometries by re-engineering key subunit interfaces and the demonstration of the important role of the above-mentioned specific residues in providing geometric specificity for protein assembly.

  10. Chemical modification of amino acid residues in glycerinated Vorticella stalk and Ca(2+)-induced contractility.

    PubMed

    Kono, R; Ochiai, T; Asai, H

    1997-01-01

    The glycerinated stalk of the peritrich ciliate Vorticella, was treated with various reagents to chemically modify the amino acid residues. The influences of these modifcations on spasmoneme contractility were investigated. First, it was confirmed that the spasmoneme contraction is not inhibited by alteration of SH groups. It was also demonstrated that chemical modification of methionine and tryptophan residues abolishes spasmoneme contractility. The reagents used for chemical modification were N-bromosuccinimide (NBS), chloramine T, and 2-hydroxy-5-nitrobenzyl bromide (HNBB), which abolished spasmoneme contractility at concentrations of 40-50 microM, 200-300 microM, and 4 mM, respectively. These results suggest that, along with Ca2+ binding proteins, there are other as yet to be identified proteins involved in contractility.

  11. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  12. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  13. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    PubMed

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.

  14. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.

  15. Structure-based functional studies of the effects of amino acid substitutions in GerBC, the C subunit of the Bacillus subtilis GerB spore germinant receptor.

    PubMed

    Li, Yunfeng; Catta, Parvathimadhavi; Stewart, Kerry-Ann V; Dufner, Matthew; Setlow, Peter; Hao, Bing

    2011-08-01

    Highly conserved amino acid residues in the C subunits of the germinant receptors (GRs) of spores of Bacillus and Clostridium species have been identified by amino acid sequence comparisons, as well as structural predictions based on the high-resolution structure recently determined for the C subunit of the Bacillus subtilis GerB GR (GerBC). Single and multiple alanine substitutions were made in these conserved residues in three regions of GerBC, and the effects of these changes on B. subtilis spore germination via the GerB GR alone or in concert with the GerK GR, as well as on germination via the GerA GR, were determined. In addition, levels of the GerBC variants in the spore inner membrane were measured, and a number of the GerBC proteins were expressed and purified and their solubility and aggregation status were assessed. This work has done the following: (i) identified a number of conserved amino acids that are crucial for GerBC function in spore germination via the GerB GR and that do not alter spores' levels of these GerBC variants; (ii) identified other conserved GerBC amino acid essential for the proper folding of the protein and/or for assembly of GerBC in the spore inner membrane; (iii) shown that some alanine substitutions in GerBC significantly decrease the GerA GR's responsiveness to its germinant l-valine, consistent with there being some type of interaction between GerA and GerB GR subunits in spores; and (iv) found no alanine substitutions that specifically affect interaction between the GerB and GerK GRs.

  16. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes.

    PubMed

    Yuan, Yuan; Wang, Zhouyong; Jiang, Chao; Wang, Xumin; Huang, Luqi

    2014-01-25

    Chlorogenic acids (CGAs) and luteolin are active compounds in Lonicera japonica, a plant of high medicinal value in traditional Chinese medicine. This study provides a comprehensive overview of gene families involved in chlorogenic acid and luteolin biosynthesis in L. japonica, as well as its substitutes Lonicera hypoglauca and Lonicera macranthoides. The gene sequence feature and gene expression patterns in various tissues and buds of the species were characterized. Bioinformatics analysis revealed that 14 chlorogenic acid and luteolin biosynthesis-related genes were identified from the L. japonica transcriptome assembly. Phylogenetic analyses suggested that the function of individual gene could be differentiation and induce active compound diversity. Their orthologous genes were also recognized in L. hypoglauca and L. macranthoides genomic datasets, except for LHCHS1 and LMC4H2. The expression patterns of these genes are different in the tissues of L. japonica, L. hypoglauca and L. macranthoides. Results also showed that CGAs were controlled in the first step of biosynthesis, whereas both steps controlled luteolin in the bud of L. japonica. The expression of LJFNS2 exhibited positive correlation with luteolin levels in L. japonica. This study provides significant information for understanding the functional diversity of gene families involved in chlorogenic acid and the luteolin biosynthesis, active compound diversity of L. japonica and its substitutes, and the different usages of the three species.

  17. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods.

    PubMed

    Zou, Xiao-Qiang; Huang, Jian-Hua; Jin, Qing-Zhe; Liu, Yuan-Fa; Tao, Guan-Jun; Cheong, Ling-Zhi; Wang, Xing-Guo

    2012-09-19

    Human milk fat substitutes (HMFSs) were prepared by a two-step process, namely, Lipozyme RM IM-catalyzed acidolysis of interesterified high-melting palm stearin with fatty acids from rapeseed oil and blending of the enzymatic product with the selected oils on the basis of the calculation model. The optimum conditions for the enzymatic reaction were a mole ratio of palm stearin/fatty acids 1:10, 60 °C, 8% enzyme load (wt % of substrates), 4 h, and 3.5% water content (wt % of enzyme); the enzymatic product contained 39.6% palmitic acid (PA), 83.7% of the fatty acids at sn-2 position were PA (sn-2 PA), and the distribution probability of PA at the sn-2 position among total PA (% sn-2 PA) was 70.5%. With the fatty acid profiles of human milk fat (HMF) as a preferable goal, a physical blending model was established for the second step to guarantee the maximum addition of selected oils. Based on the model prediction, a desirable formula constituted enzymatic product/rapeseed oil/sunflower oil/palm kernel oil/algal oil/microbial oil at a mole ratio of 1:0.28:0.40:0.36:0.015:0.017, and the final product had PA content, sn-2 PA, and %sn-2 PA at 23.5, 43.1, and 61.1%, respectively. The contents of arachidonic and docosahexaenoic acids were 0.4 and 0.3%, respectively. Relying on the total and sn-2 fatty acid compositions of HMF and "deducting score" principle, the score for the similarity between the final product and HMF was scaled as 89.2, indicating the potential as a fat substitute in infant formulas.

  18. Methylol polyesters of C12-C22 hydrocarbon substituted succinic anhydride or acid, their preparation and use as additives for lubricants and fuels

    SciTech Connect

    Gutierrez, A.; Ryer, J.; Shaub, H.; Winans, E.D.

    1980-06-24

    Methylol polyester derivatives of C12-C22 hydrocarbon substituted succinic anhydride or acid which are the equimolar reaction products of said C12-C22 hydrocarbon substituted succinic anhydride or acid and a cyclic poly(Methylol) compound provide activity: in fuels as rust inhibitors; in automatic transmission fluids as copper corrosion inhibitors; and, in automotive, industrial and lubricating oils as sludge dispersants , rust-inhibitors, friction reducers (Lubricity agents) and copper alloy corrosion inhibitors.

  19. Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: influence of hydrophobic and hydrophilic substitution degree.

    PubMed

    Layek, Buddhadev; Haldar, Manas K; Sharma, Gitanjali; Lipp, Lindsey; Mallik, Sanku; Singh, Jagdish

    2014-03-03

    Gene therapy holds immense potential as a future therapeutic strategy for the treatment of numerous genetic diseases which are incurable to date. Nevertheless, safe and efficient gene delivery remains the most challenging aspects of gene therapy. To overcome this difficulty a series of hexanoic acid (HA) and monomethoxy poly(ethylene glycol) (mPEG) double grafted chitosan-based (HPC) nanomicelles were developed as nonviral gene carrier. HPC polymers with various HA and mPEG substitution degrees were synthesized, and their chemical structures were confirmed by (1)H NMR spectroscopy. HPC nanomicelles exhibited excellent blood compatibility and cell viability, as demonstrated by in vitro hemolysis and MTT assay, respectively. The cationic HPC nanomicelles retained the plasmid DNA (pDNA) binding capacity of chitosan and formed stable HPC/pDNA polyplexes with diameters below 200 nm. Both hydrophobic and hydrophilic substitution resulted in suppressed nonspecific protein adsorption on HPC/pDNA polyplexes and increased pDNA dissociation. However, resistance against DNase I degradation was enhanced by HA conjugation while being inhibited by mPEG substitution. Amphiphilic modification resulted in 3-4.5-fold higher cellular uptake in human embryonic kidney 293 cells (HEK 293) mainly through clathrin-mediated pathway. The optimal HPC/pDNA polyplexes displayed 50-fold and 1.2-fold higher gene transfection compared to unmodified chitosan and Fugene, respectively, in HEK 293 cells. Moreover, both the cellular uptake and in vitro transfection study suggested a clear dependence of gene expression on the extent of HA and mPEG substitution. These findings demonstrate that amphiphilic HPC nanomicelles with the proper combination of HA and mPEG substitution could be used as a promising gene carrier for efficient gene therapy.

  20. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' < 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining

  1. Conformation of dehydropentapeptides containing four achiral amino acid residues – controlling the role of L-valine

    PubMed Central

    Krzciuk-Gula, Joanna; Makowski, Maciej; Latajka, Rafał; Kafarski, Paweł

    2014-01-01

    Summary Structural studies of pentapeptides containing an achiral block, built from two dehydroamino acid residues (ΔZPhe and ΔAla) and two glycines, as well as one chiral L-Val residue were performed using NMR spectroscopy. The key role of the L-Val residue in the generation of the secondary structure of peptides is discussed. The obtained results suggest that the strongest influence on the conformation of peptides arises from a valine residue inserted at the C-terminal position. The most ordered conformation was found for peptide Boc-Gly-ΔAla-Gly-ΔZPhe-Val-OMe (3), which adopts a right-handed helical conformation. PMID:24778717

  2. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    PubMed Central

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru

    2012-01-01

    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528

  3. Identification of the roles of individual amino acid residues of the helix E of the major antenna of photosystem II (LHCII) by alanine scanning mutagenesis.

    PubMed

    Liu, Cheng; Rao, Yan; Zhang, Lei; Yang, Chunhong

    2014-10-01

    The functions of the helix E (W97-F105), an amphiphilic lumenal 310 helix of the major antenna of photosystem II (LHCII), are still unidentified. To elucidate the roles of individual amino acid residue of the helix E, alanine scanning mutagenesis has been performed to mutate every residue of this domain to alanine. The influence of every alanine substitution on the structure and function of LHCII has been investigated biochemically and spectroscopically. The results show that all mutations have little impact on the pigment binding and configuration. However, many mutants presented decreased thermo- or photo-stability compared with the wild type, highlighting the significance of this helix to the stability of LHCII. The most critical residue for stability is W97. The mutant W97A yielded very fragile trimeric pigment protein complexes. The structural analysis revealed that the hydrogen bonding and aromatic interactions between W97, F195, F194 and a water molecule contributed greatly to the stability of LHCII. Moreover, Q103A and F105A have been identified to be able to reinforce the tendency of aggregation in vitro. The structural analysis suggested that the enhancement in aggregation formation for Q103A and F105A might be attributed to the changing hydrophobicity of the region.

  4. Identification of essential amino acid residues of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Takahashi, T; Hiramoto, S; Wato, S; Nishimoto, T; Wada, Y; Nagai, K; Yamaguchi, H

    1999-11-01

    Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue.

  5. Synthesis, spectral properties, and antitumor activity of a new axially substituted phthalocyanine complex of zirconium(IV) with citric acid.

    PubMed

    Tomachynski, Larisa A; Chernii, Victor Y; Gorbenko, Helena N; Filonenko, Valeriy V; Volkov, Sergey V

    2004-06-01

    The new axially substituted phthalocyanine (pc) complex of zirconium(IV) with citric acid is reported. It has been shown that the replacement of two Cl-atoms with two citric acid fragments takes place as the result of the reaction between [ZrCl2(pc)] and citric acid. The complex [Zr(citrate)2(pc)] was formed. The spectroscopic properties of the synthesized compound in DMSO, RPMI 1640 medium with and without fetal calf serum (FCS), H2O, and buffer (Tris) solutions have been described. Antitumor activity of this compound has been studied. The cytostatic activity was observed in the concentration range of 6.1-9.0x10(9) molecules [Zr(citrate)2(pc)]/cell and occurred in 4-6 h after treatment with [Zr(citrate)2(pc)] solution.

  6. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.

    PubMed

    Zhang, Qinghua; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui; Jiang, Li

    2011-02-01

    In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H(2)SO(4) concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84°C, utilizing 2.99% (w/w TS) H(2)SO(4) for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.

  7. Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy.

    PubMed

    Claridge, Shelley A; Thomas, John C; Silverman, Miles A; Schwartz, Jeffrey J; Yang, Yanlian; Wang, Chen; Weiss, Paul S

    2013-12-11

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structures at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer's and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level.

  8. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    PubMed Central

    Song, D D; Jacques, N A

    1999-01-01

    The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the purified mutated forms of the enzyme showed that Asp-312 was most likely an essential amino acid involved in determining acceptor recognition and/or stabilizing a beta-turn in the protein. In contrast, when the Asp-397 of the Ftf present in the conserved triplet RDP motif of all 60 bacterial and plant family-32 glycosylhydrolases was mutated to a Ser residue, both sucrose hydrolysis and polymerization ceased. Tryptophan emission spectra confirmed that this mutation did not alter protein structure. Comparison of published data from other site-directed mutated enzymes implicated the Asp residue in the RDP motif as the one that may form a transient covalent fructosyl intermediate during the catalysis of sucrose by the Ftf of S. salivarius. PMID:10548559

  9. Identification of Structural and Catalytic Classes of Highly Conserved Amino Acid Residues in Lysine 2,3-Aminomutase †

    PubMed Central

    Chen, Dawei; Frey, Perry A.; Lepore, Bryan W.; Ringe, Dagmar; Ruzicka, Frank J.

    2008-01-01

    Lysine 2,3-aminomutase (LAM) from Clostridium subterminale SB4 catalyzes the interconversion of (S)-lysine and (S)-β-lysine by a radical mechanism involving coenzymatic actions of S-adenosylmethionine (SAM), a [4Fe-4S] cluster, and pyridoxal-5′-phosphate (PLP). The enzyme contains a number of conserved acidic residues and a cysteine and arginine-rich motif, that binds iron and sulfide in the [4Fe–4S] cluster. The results of activity and iron, sulfide, and PLP analysis of variants resulting from site-specific mutations of the conserved acidic residues and the arginine residues in the iron-sulfide binding motif indicate two classes of conserved residues of each type. Mutation of the conserved residues Arg134, Asp293, and Asp330 abolish all enzymatic activity. Based on the x-ray crystal structure, these residues bind the ε-aminium and α-carboxylate groups of (S)-lysine. However, among these residues only Asp293 appears to be important for stabilizing the [4Fe–4S] cluster. Members of a second group of conserved residues appear to stabilize the structure of LAM. Mutations of arginine residues 130, 135, and 136 and acidic residues Glu86, Asp165, Glu236, and Asp172 dramatically decrease iron and sulfide contents in the purified variants. Mutation of Asp96 significantly decreases iron and sulfide content. Variants in Arg130 or Asp172 display no detectable activity, whereas variants in the other positions display low to very low activities. Structural roles are assigned to this latter class of conserved amino acids. In particular, a network of hydrogen bonded interactions of Arg130, Glu86, Arg135 and the main chain carbonyl groups of Cys132 and Leu55 appears to stabilize the [4Fe–4S] cluster. PMID:17042481

  10. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation.

    PubMed

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril's morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4'-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with

  11. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  12. Effects of the number of fatty acid residues on the phase behaviors of decaglycerol fatty acid esters.

    PubMed

    Ai, Sakiko; Ishitobi, Masahiko

    2006-04-15

    The effects of the number of fatty acid residues (n) in decaglycerol fatty acid esters, i.e., decaglycerol laurates (abbreviated to (C11)nG10), on the phase behaviors of three laurate esters, (C11)1.9G10, (C11)2.7G10, and (C11)3.4G10, were investigated. The unreacted decaglycerol remaining in each ester was removed by liquid extraction before use. (C11)1.9G10 formed hexagonal liquid crystals in aqueous solutions, while (C11)2.7G10 and (C11)3.4G10, which are more hydrophobic than (C11)1.9G10, formed lamellar liquid crystals. The cloud point in aqueous solution was measured for mixtures of these three esters. The cloud phenomenon was observed when the weight ratio of hydrophilic groups to the total surfactant (WH/WS) was around 0.6. The cloud point shifted to a markedly higher temperature, even with a slight increase in the WH/WS ratio. The solubilization abilities of (C11)nG10 for the oils m-xylene and (R)-(+)-limonene were also examined. When the WH/WS ratio was between 0.60 and 0.64, (C11)nG10 formed microemulsions and lyotropic liquid crystals in the presence of water and the oils. These self-organized structures were stable, even above 90 degrees C. It is concluded that the phase behavior of (C11)nG10 are insensitive to temperature, but strongly dependent on both the WH/WS ratio and the number of fatty acid residues (n).

  13. Identification of Amino Acid Substitutions with Compensational Effects in the Attachment Protein of Canine Distemper Virus

    PubMed Central

    Sattler, Ursula; Khosravi, Mojtaba; Avila, Mislay; Pilo, Paola; Langedijk, Johannes P.; Ader-Ebert, Nadine; Alves, Lisa A.; Plattet, Philippe

    2014-01-01

    ABSTRACT The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. IMPORTANCE To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes

  14. Identification of amino acid substitutions with compensational effects in the attachment protein of canine distemper virus.

    PubMed

    Sattler, Ursula; Khosravi, Mojtaba; Avila, Mislay; Pilo, Paola; Langedijk, Johannes P; Ader-Ebert, Nadine; Alves, Lisa A; Plattet, Philippe; Origgi, Francesco C

    2014-07-01

    The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the

  15. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization.

    PubMed

    Magnusson, P; Farley, J R

    2002-12-01

    High-performance liquid chromatography (HPLC) separates three human bone alkaline phosphatase (BALP) isoforms in serum; two major BALP isoforms, B1 and B2, and a minor fraction, B/I, which is composed on average of 70% bone and 30% intestinal ALP. The current studies were intended to identify an in vitro source of the BALP isoforms for physical, biochemical, and immunological characterizations. The three BALP isoforms were identified in extracts of human osteosarcoma (SaOS-2) cells, by HPLC, after separation by anion-exchange chromatography. All three BALP isoforms were similar with respect to freeze-thaw stability, solubility, heat inactivation, and inhibition by L-phenylalanine, L-homoarginine, and levamisole. The isoforms were also kinetically similar (i.e., maximal velocity and KM at pH 8.8 and pH 10.0). The isoforms differed, however, with respect to sensitivity to precipitation with wheat germ agglutinin (WGA), P < 0.001, but not Concanavalin A. At 3.0 mg/ml, WGA precipitated approximately 25% of B/I but more than 80% of B1 and B2. Molecular weights were estimated by native gradient gel electrophoresis: B/I, 126 kDa; B1, 136 kDa; and B2, 141 kDa. Desialylation with neuraminidase reduced the apparent sizes of B1 and B2 to 127 kDa (i.e., approximately to that of B/I). The total carbohydrate content was calculated to be 18 kDa, 28 kDa, and 33 kDa (i.e., 14%, 21%, and 23%) for the BALP isofonns, B/I, B1, and B2, respectively. The number of sialic acid residues was estimated to be 29 and 45, for each B1 and B2 homodimer, respectively. Apparent discrepancies between these estimates of molecular weight and estimates based on gel filtration chromatography were attributed to nonspecific interactions between carbohydrate residues and the gel filtration beads. All three BALP isoforms showed similar dose-dependent linearity in the commercial Alkphase-B and Tandem-MP Ostase immunoassays, r = 0.944 and r = 0.985, respectively (P < 0.001). In summary, our data indicate that

  16. Identification of amino acid residues critical for catalysis and stability in Aspergillus niger family 1 pectin lyase A.

    PubMed Central

    Sánchez-Torres, Paloma; Visser, Jaap; Benen, Jacques A E

    2003-01-01

    Site-directed-mutagenesis studies were performed on family 1 pectin lyase A (PL1A) from Aspergillus niger to gain insight into the reaction mechanism for the pectin lyase-catalysed beta-elimination cleavage of methylesterified polygalacturonic acid and to stabilize the enzyme at slightly basic pH. On the basis of the three-dimensional structures of PL1A [Mayans, Scott, Connerton, Gravesen, Benen, Visser, Pickersgill and Jenkins (1997) Structure 5, 677-689] and the modelled enzyme-substrate complex of PL1B [Herron, Benen, Scavetta, Visser and Jurnak (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 8762-8769], Asp154, Arg176, Arg236 and Lys239 were mutagenized. Substituting Arg236 with alanine or lysine rendered the enzyme completely inactive, and mutagenesis of Arg176 and Lys239 severely affected catalysis. The Asp154-->Arg and Asp154-->Glu mutant enzymes were only moderately impaired in respect of catalysis. The results strongly indicate that Arg236, which is sandwiched between Arg176 and Lys239, would initiate the reaction upon enzyme-substrate interaction, through the abstraction of the proton at C5 of the galacturonopyranose ring. The positively charged residues Arg176 and Lys239 are responsible for lowering the p K a of Arg236. Arg176 and Lys239 are maintained in a charged state by interacting with Asp154 or bulk solvent respectively. The deprotonation of the Asp186-Asp221 pair was proposed to be responsible for a pH-driven conformational change of PL1A [Mayans, Scott, Connerton, Gravesen, Benen, Visser, Pickersgill and Jenkins (1997) Structure 5, 677-689]. Substitution of Asp186 and Asp221 by Asn186 and Asn221 was expected to stabilize the enzyme. However, the Asp186-->Asn/Asp221-->Asn enzyme appeared less stable than the wild-type enzyme, even at pH 6.0, as evidenced by fluorescence studies. This demonstrates that the pH-dependent conformational change is not driven by deprotonation of the Asp186-Asp221 pair. PMID:12418964

  17. Role of enthalpy-entropy compensation interactions in determining the conformational propensities of amino acid residues in unfolded peptides.

    PubMed

    Toal, Siobhan E; Verbaro, Daniel J; Schweitzer-Stenner, Reinhard

    2014-02-06

    The driving forces governing the unique and restricted conformational preferences of amino acid residues in the unfolded state are still not well understood. In this study, we experimentally determine the individual thermodynamic components underlying intrinsic conformational propensities of these residues. Thermodynamic analysis of ultraviolet-circular dichroism (UV-CD) and (1)H NMR data for a series of glycine capped amino acid residues (i.e., G-x-G peptides) reveals the existence of a nearly exact enthalpy-entropy compensation for the polyproline II-β strand equilibrium for all investigated residues. The respective ΔHβ, ΔSβ values exhibit a nearly perfect linear relationship with an apparent compensation temperature of 295 ± 2 K. Moreover, we identified iso-equilibrium points for two subsets of residues at 297 and 305 K. Thus, our data suggest that within this temperature regime, which is only slightly below physiological temperatures, the conformational ensembles of amino acid residues in the unfolded state differ solely with respect to their capability to adopt turn-like conformations. Such iso-equilibria are rarely observed, and their existence herein indicates a common physical origin behind conformational preferences, which we are able to assign to side-chain dependent backbone solvation. Conformational effects such as differences between the number of sterically allowed side chain rotamers can contribute to enthalpy and entropy but not to the Gibbs energy associated with conformational preferences. Interestingly, we found that alanine, aspartic acid, and threonine are the only residues which do not share these iso-equilbiria. The enthalpy-entropy compensation discovered as well as the iso-equilbrium and thermodynamics obtained for each amino acid residue provide a new and informative way of identifying the determinants of amino acid propensities in unfolded and disordered states.

  18. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    PubMed Central

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  19. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  20. Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood.

    PubMed

    Sievers, Carsten; Marzialetti, Teresita; Hoskins, Travis J C; Valenzuela Olarte, Mariefel B; Agrawal, Pradeep K; Jones, Christopher W

    2009-10-01

    The composition of solid residues from hydrolysis reactions of loblolly pine wood with dilute mineral acids is analyzed by (13)C Cross Polarization Magic Angle Spinning (CP MAS) NMR spectroscopy. Using this method, the carbohydrate and lignin fractions are quantified in less than 3h as compared to over a day using wet chemical methods. In addition to the quantitative information, (13)C CP MAS NMR spectroscopy provides information on the formation of additional extractives and pseudo lignin from the carbohydrates. Being a non-destructive technique, NMR spectroscopy provides unambiguous evidence of the presence of side reactions and products, which is a clear advantage over the wet chemical analytical methods. Quantitative results from NMR spectroscopy and proximate analysis are compared for the residues from hydrolysis of loblolly pine wood under 13 different conditions; samples were treated either at 150 degrees C or 200 degrees C in the presence of various acids (HCl, H(2)SO(4), H(3)PO(4), HNO(3) and TFA) or water. The lignin content determined by both methods differed on averaged by 2.9 wt% resulting in a standard deviation of 3.5 wt%. It is shown that solid degradation products are formed from saccharide precursors under harsh reaction conditions. These degradation reactions limit the total possible yield of monosaccharides from any subsequent reaction.

  1. Theoretical exploration of the cooperative effect in NMF-NMF-amino acid residue hydrogen bonding system.

    PubMed

    Li, Xichen; Liu, Wenlan; Sun, Kening; Wang, Yan; Tan, Hongwei; Chen, Guangju

    2008-09-28

    This paper presents a theoretical study of the cooperative effect in sixteen linearly-arranged trimer systems consisting of N-methylformamide dimer and an extra amino acid residue. These trimer systems, NMF-NMF-AAR, in short, have been systematically investigated by full optimization at B3LYP/cc-pVTZ level and subsequent electronic energy calculations at PBE1PBE/cc-pVTZ, HF/cc-pVTZ and MP2/cc-pVTZ, respectively. Obvious spatial transformation due to energetic factors has been found in almost all the trimers. Systematic analysis in weak interaction energy components has shown that: (1) in these trimer systems, the bonding structure and the cooperative effect combine to determine the stability of both HB1 and HB2. For HB2, the structure of the constituent amino acid residue also plays a crucial role by interfering with the neighboring moieties; (2) the large contribution of the cooperative effect to the overall hydrogen bonding energy has claimed the importance of cooperativity in our systems; (3) the non-hydrogen bonding weak interaction components are found to be non-negligible in these trimer systems; (4) moreover, the cooperative effect between these non-hydrogen bonding components is always found to be positive. The good performances of PBE1PBE and PM6 have been established by comparisons between these methods.

  2. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control.

  3. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    PubMed

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  4. The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

    PubMed Central

    Dagil, Yulia A.; Arbatsky, Nikolai P.; Alkhazova, Biana I.; L’vov, Vyacheslav L.; Mazurov, Dmitriy V.; Pashenkov, Mikhail V.

    2016-01-01

    Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants. PMID:27513337

  5. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues.

    PubMed

    Matsuura, Yoshinori; Takehira, Michiyo; Joti, Yasumasa; Ogasahara, Kyoko; Tanaka, Tomoyuki; Ono, Naoko; Kunishima, Naoki; Yutani, Katsuhide

    2015-10-26

    Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.

  6. Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids).

    PubMed

    Serkedjieva, J; Manolova, N; Bankova, V

    1992-03-01

    The antiviral activity of six synthetic substances, esters of substituted cinnamic acids, identical with or analogous to some of the constituents of the Et2O fraction of propolis was studied in vitro. One of them, isopentyl ferulate, inhibited significantly the infectious activity of influenza virus A/Hong Kong (H3N2) in vitro and the production of hemagglutinins in ovo. By the use of diverse experimental patterns, it was found that the maximal inhibition of viral reproduction was observed when test substances were present in the medium during the whole infectious process.

  7. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  8. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin.

    PubMed

    Berlett, B S; Levine, R L; Stadtman, E R

    1996-02-23

    During exposure to ozone, the methionine and aromatic amino acid residues of Escherichia coli glutamine synthetase (GS) and bovine serum albumin (BSA) are oxidized rapidly in the order Met > Trp > Tyr approximately His > Phe. The loss of His is matched by a nearly equivalent formation of aspartate or of a derivative that is converted to aspartic acid upon acid hydrolysis. Conversion of His to aspartate was confirmed by showing that the oxidation of E. coli protein in which all His residues were uniformly labeled with 14C gave rise to 14C-labeled aspartic acid in 80% yield and also by the demonstration that His residues in the tripeptides Ala-His-Ala or Ala-Ala-His gave rise to nearly stoichiometric amounts of aspartic acid whereas oxidation of His-Ala-Ala yielded only 36% aspartate. The oxidation of BSA and GS led to formation, respectively, of 11 and 3.3 eq of carbonyl groups and 0.5 and 0.3 eq of quinoprotein per subunit. Although BSA and GS contain nearly identical amounts of each kind of aromatic amino acid residues, oxidation of these residues in BSA was about 1.5-2.0 times faster than in GS indicating that the susceptibility to oxidation is dependent on the primary, secondary, tertiary, and quaternary structure of the protein.

  9. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    PubMed

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tacid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size.

  10. Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates.

    PubMed

    Lee, Ji Ye; Ryu, Hyun Jin; Oh, Kyeong Keun

    2013-03-01

    The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of three agricultural residues. The fractionation conditions converted into combined severity factor (CS) in the range of 1.2-2.9. The highest hemicellulose yield of 87.88% was achieved when barley straw was fractionated at a CS of 2.19. However, the maximum glucose release of 15.29% was achieved for the case of rice straw. The maximum productions of various by-products were observed with the fractionation of rape straw: 0.88 g/L of 5-hydroxymethylfurfural (5-HMF), 2.16 g/L of furfural, 0.44 g/L of levulinic acid, 1.59 g/L of formic acid, and 3.06 g/L of acetic acid. The highest selectivities, a criterion for evaluating the fractionation of 21.55 for fractionated solid and 7.48 for liquid hydrolyzate were obtained from barley straw.

  11. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  12. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  13. A Delicate Balance When Substituting a Small Hydrophobe onto Low Molecular Weight Polyethylenimine to Improve Its Nucleic Acid Delivery Efficiency.

    PubMed

    Meneksedag-Erol, Deniz; KC, Remant Bahadur; Tang, Tian; Uludağ, Hasan

    2015-11-11

    High molecular weight (HMW) polyethylenimine (PEI) is one of the most versatile nonviral gene vectors that was extensively investigated over the past two decades. The cytotoxic profile of HMW PEI, however, encouraged a search for safer alternatives. Because of lack of cytotoxicity of low molecular weight (LMW) PEI, enhancing its performance via hydrophobic modifications has been pursued to this end. Since the performance of modified PEIs depends on the nature and extent of substituents, we systematically investigated the effect of hydrophobic modification of LMW (1.2 kDa) PEI with a short propionic acid (PrA). Moderate enhancements in PEI hydrophobicity resulted in enhanced cellular uptake of polyplexes and siRNA-induced silencing efficacy, whereas further increase in PrA substitution abolished the uptake as well as the silencing. We performed all-atom molecular dynamics simulations to elucidate the mechanistic details behind these observations. A new assembly mechanism was observed by the presence of hydrophobic PrA moieties, where PrA migrated to core of the polyplex. This phenomenon caused higher surface hydrophobicity and surface charge density at low substitutions, and it caused deleterious effects on surface hydrophobicity and cationic charge at higher substitutions. It is evident that an optimal balance of hydrophobicity/hydrophilicity is needed to achieve the desired polyplex properties for an efficient siRNA delivery, and our mechanistic findings should provide valuable insights for the design of improved substituents on nonviral carriers.

  14. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment.

    PubMed

    Sanders, Jeffrey M; Wampole, Matthew E; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D; Thakur, Mathew L; Wickstrom, Eric

    2013-10-03

    Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multimutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick base pairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA:PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA:PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition.

  15. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  16. Interaction between carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and saturating concentrations of Calcofluor White. A fluorescence study.

    PubMed

    Albani, J R; Sillen, A; Plancke, Y D; Coddeville, B; Engelborghs, Y

    2000-07-24

    Calcofluor White is a fluorescent probe that interacts with polysaccharides and is commonly used in clinical studies. Interaction between Calcofluor White and carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) was previously followed by fluorescence titration of the Trp residues of the protein. A stoichiometry of one Calcofluor for one protein has been found [J.R. Albani and Y.D. Plancke, Carbohydr. Res., 318 (1999) 193-200]. Alpha1-acid glycoprotein contains 40% carbohydrate by weight and has up to 16 sialic acid residues. Since binding of Calcofluor to alpha1-acid glycoprotein occurs mainly on the carbohydrate residues, we studied in the present work the interaction between Calcofluor and the protein by following the fluorescence change of the fluorophore. In order to establish the role of the sialic acid residues in the interaction, the experiments were performed with the sialylated and asialylated protein. Interaction of Calcofluor with sialylated alpha1-acid glycoprotein induces a red shift of the emission maximum of the fluorophore from 438 to 450 nm at saturation (one Calcofluor for one sialic acid) and an increase in the fluorescence intensity. At saturation the fluorescence intensity increase levels off. Binding of Calcofluor to asialylated acid glycoprotein does not change the position of the emission maximum of the fluorophore and induces a decrease in its fluorescence intensity. Saturation occurs when 10 molecules of Calcofluor are bound to 1 mol of alpha1-acid glycoprotein. Since the protein contains five heteropolysaccharide groups, we have 2 mol of Calcofluor for each group. Addition of free sialic acid to Calcofluor induces a continuous decrease in the fluorescence intensity of the fluorophore but does not change the position of the emission maximum. Our results confirm the presence of a defined spatial conformation of the sialic acid residues, a conformation that disappears when they are free in solution. Dynamics studies on Calcofluor

  17. Osmium isotope anomalies in chondrites: Results for acid residues and related leachates

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; O'D. Alexander, Conel M.; Walker, Richard J.

    2010-03-01

    We have investigated Os isotope anomalies in acid residues enriched in insoluble organic matter (IOM) extracted from ten primitive chondrites, acid leachates and residues of these fractions, as well as acid leachates of bulk chondrites. Osmium isotopic compositions of bulk carbonaceous, ordinary and enstatite chondrites are also reported. Consistent with prior results, bulk chondrites have homogeneous Os isotope compositions for s-, r-, and p-process nuclides that are indistinguishable from terrestrial, at the current level of resolution. In contrast, nearly all the IOM-rich residues are enriched in s-process Os, evidently due to the preferential incorporation of s-process enriched presolar grains (most likely presolar SiC). Presolar silicate grains that formed in red giant branch (RGB) or asymptotic giant branch (AGB) stars are also likely hosts of additional s-process Os in chondrites. Consistent with one prior study, Os released by weak acid leaching of bulk chondrites is slightly to strongly enriched in r-process nuclides, of which the carrier may be fine-grained presolar silicates formed in supernovae or unidentified solar phases. Collectively, the different, chemically concentrated components in these meteorites are variably enriched in s-, r-, and possibly p-process Os, of which the individual carriers must have been produced in multiple stellar environments. The lack of evidence for Os isotopic heterogeneity among bulk chondrites contrasts with evidence for isotopic heterogeneities for various other elements at approximately the same levels of resolution (e.g., Cr, Mo, Ru, Ba, Sm, and Nd). One possible explanation for this is that the heterogeneities for some elements in bulk materials reflect selective removal of some types of presolar grains as a result of nebular processes, and that because of the strong chemical differences between Os and the other elements, the Os was not significantly affected. Another possible explanation is that late-stage injection

  18. Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues

    PubMed Central

    Schwartz, Russell; Istrail, Sorin; King, Jonathan

    2001-01-01

    Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20–22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence. PMID:11316883

  19. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  20. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  1. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  2. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  3. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  4. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  5. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  6. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  7. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  8. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  9. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein

    PubMed Central

    Wu, Hao; Wang, Wei; Naiyer, Nada; Fichtenbaum, Eric; Qualley, Dominic F.; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic

  10. A conservative amino acid substitution alters the regiospecificity of CYP94A2, a fatty acid hydroxylase from the plant Vicia sativa.

    PubMed

    Kahn, R A; Le Bouquin, R; Pinot, F; Benveniste, I; Durst, F

    2001-07-15

    Fatty acid omega-hydroxylation is involved in the biosynthesis of the plant cuticle, formation of plant defense signaling molecules, and possibly in the rapid catabolism of free fatty acids liberated under stress conditions. CYP94A2 is a cytochrome P450-dependent medium-chain fatty acid hydroxylase that was recently isolated from Vicia sativa. Contrary to CYP94A1 and CYP86A1, two other fatty acid hydroxylases previously characterized in V. sativa and Arabidopsis thaliana, CYP94A2 is not a strict omega-hydroxylase, but exhibits chain-length-dependent regioselectivity of oxidative attack. Sequence alignments of CYP94A2 with CYP94A1 and molecular modeling studies suggested that F494, located in SRS-6 (substrate recognition site) was involved in substrate recognition and positioning. Indeed, a conservative amino acid substitution at that position markedly altered the regiospecificity of CYP94A2. The observed shift from omega toward omega-1 hydroxylation was prominent with lauric acid as substrate and declined with increasing fatty acid chain length.

  11. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.

  12. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  13. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C.

  14. Hydrogen bonding in electronically excited states: a comparison between formic acid dimer and its mono-substituted thioderivatives.

    PubMed

    Cimas, Alvaro; Mó, Otilia; Yáñez, Manuel; Martín, Nazario; Corral, Inés

    2010-10-28

    A multi-state complete active space second order perturbation theory (MS-CASPT2) study on the valence singlet electronic excited states of formic acid dimer is presented. The electronic spectrum of this dihydrogen bonded system is dominated by nπ* and ππ* intramonomer and charge transfer excitations and consists of a very intense ππ* transition at 8.25 eV and three weaker nπ*(2×) and ππ*(1×) electronic excitations at 6.21 eV, 9.13 eV, and 9.93 eV, respectively. The characteristic nπ*-nπ*-ππ*-ππ*… pattern found in the formic acid dimer electronic spectrum is altered when a sulfur atom is introduced in the molecule. Furthermore, carbonyl-by-thiocarbonyl or hydroxyl-by-thiohydroxyl substitution is predicted to strongly affect the intensity of the above electronic transitions. The effect of oxygen-by-sulfur substitution on the geometry of the first excited state (S(1)) has been investigated at the CC2 and CASSCF levels of theory. Although the two methods qualitatively predict the same geometrical changes upon nπ* excitation, the geometries of the S(1) state are found to differ considerably between the two levels.

  15. Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist.

    PubMed

    Heise, C E; Santos, W L; Schreihofer, A M; Heasley, B H; Mukhin, Y V; Macdonald, T L; Lynch, K R

    2001-12-01

    The physiological implications of lysophosphatidic acid occupancy of individual receptors are largely unknown because selective agonists/antagonists are unavailable currently. The molecular cloning of three high-affinity lysophosphatidic acid receptors, LPA1, LPA2, and LPA3, provides a platform for developing receptor type-selective ligands. Starting with an N-acyl ethanolamide phosphate LPA analog, we made a series of substitutions at the second carbon to generate compounds with varying spatial, stereochemical, and electronic characteristics. Analysis of this series at each recombinant LPA receptor using a guanosine 5'-O-(3-[35S]thio)triphosphate (GTP[gamma35S]) binding assay revealed sharp differences in activity. Our results suggest that these receptors have one spatially restrictive binding pocket that interacts with the 2-substituted moieties and prefers small hydrophobic groups and hydrogen bonding functionalities. The agonist activity predicted by the GTP[gamma35S] binding assay was reflected in the activity of a subset of compounds in increasing arterial pressure in anesthetized rats. One compound with a bulky hydrophobic group (VPC12249) was a dual LPA1/LPA3 competitive antagonist. Several compounds that had smaller side chains were found to be LPA1-selective agonists.

  16. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids.

    PubMed

    Steffan, Tobias; Renukappa-Gutke, Thejavathi; Höfner, Georg; Wanner, Klaus T

    2015-03-15

    In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114.

  17. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus

    PubMed Central

    Schrauwen, Eefje J. A.; Burke, David F.; Rimmelzwaan, Guus F.; Herfst, Sander; Fouchier, Ron A. M.

    2016-01-01

    Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission. PMID:26792744

  18. Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability.

    PubMed

    Long, Shuiqing; Zhang, Xian; Rao, Zhiming; Chen, Kaiyue; Xu, Meijuan; Yang, Taowei; Yang, Shangtian

    2016-01-01

    L-Asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. It can be used to reduce the formation of acrylamide, which is carcinogenic to humans in foods, via removal of the precursor, asparagine, from the primary ingredients. However, low activity and poor thermostability of L-asparaginase restrict its application in food industry. In this study, we successfully improved thermostability and catalytic efficiency of L-asparaginase II (BsAII) from Bacillus subtilis B11-06 by site-directed mutagenesis. According to sequences alignment and homologous modeling, residues G107, T109 and S166 which were adjacent to the catalytic cavity were selected and substituted by Asp, Gln/Ser and Ala, respectively, to construct mutants G107D, T109Q, T109S and S166A. The BsAII mutant of G107D (G107Dansz) displayed superior performance in thermal tolerance and higher activity than the wild-type enzyme (towards L-asparagine). Comparative analysis of hydrogen bond interactions, surface electrostatic potential and structure of substrate binding pocket between G107Danszand BsAII indicated that the substitution of G107, which was adjacent to catalytic cavity with Asp, resulted in small conformational changes and surface electrostatic potential redistribution and contributed to the improved protein stability and catalytic efficiency.

  19. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    PubMed

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.

  20. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins.

    PubMed

    Ido, Hiroyuki; Nakamura, Aya; Kobayashi, Reiko; Ito, Shunsuke; Li, Shaoliang; Futaki, Sugiko; Sekiguchi, Kiyotoshi

    2007-04-13

    Laminins are the major cell-adhesive proteins in the basement membrane, consisting of three subunits termed alpha, beta, and gamma. The putative binding site for integrins has been mapped to the G domain of the alpha chain, although trimerization with beta and gamma chains is necessary for the G domain to exert its integrin binding activity. The mechanism underlying the requirement of beta and gamma chains in integrin binding by laminins remains poorly understood. Here, we show that the C-terminal region of the gamma chain is involved in modulation of the integrin binding activity of laminins. We found that deletion of the C-terminal three but not two amino acids within the gamma1 chain completely abrogated the integrin binding activity of laminin-511. Furthermore, substitution of Gln for Glu-1607, the amino acid residue at the third position from the C terminus of the gamma1 chain, also abolished the integrin binding activity, underscoring the role of Glu-1607 in integrin binding by the laminin. We also found that the conserved Glu residue of the gamma2 chain is necessary for integrin binding by laminin-332, suggesting that the same mechanism operates in the modulation of the integrin binding activity of laminins containing either gamma1 or gamma2 chains. However, the peptide segment modeled after the C-terminal region of gamma1 chain was incapable of either binding to integrin or inhibiting integrin binding by laminin-511, making it unlikely that the Glu residue is directly recognized by integrin. These results, together, indicate a novel mechanism operating in ligand recognition by laminin binding integrins.

  1. Nitrate and Nitrite Determination in Gunshot Residue Samples by Capillary Electrophoresis in Acidic Run Buffer().

    PubMed

    Erol, Özge Ö; Erdoğan, Behice Y; Onar, Atiye N

    2017-03-01

    Simultaneous determination of nitrate and nitrite in gunshot residue has been conducted by capillary electrophoresis using an acidic run buffer (pH 3.5). In previously developed capillary electrophoretic methods, alkaline pH separation buffers were used where nitrite and nitrate possess similar electrophoretic mobility. In this study, the electroosmotic flow has been reversed by using low pH running buffer without any additives. As a result of reversing the electroosmotic flow, very fast analysis has been actualized, well-defined and separated ion peaks emerge in less than 4 min. Besides, the limit of detection was improved by employing large volume sample stacking. Limit of detection values were 6.7 and 4.3 μM for nitrate and nitrite, respectively. In traditional procedure, mechanical agitation is employed for extraction, while in this work the extraction efficiency of ultrasound mixing for 30 min was found sufficient. The proposed method was successfully applied to authentic gunshot residue samples.

  2. A synthetic amino acid residue containing a new oligopeptide-based photosensitive fluorescent organogel.

    PubMed

    Maiti, Dibakar Kumar; Banerjee, Arindam

    2013-01-01

    A synthetic amino acid (with a stilbene residue in the main chain) containing a tripeptide-based organogelator has been discovered. This peptide-based synthetic molecule 1 self-assembles in various organic solvents to form an organogel. The gel has been thoroughly characterized by using various microscopic techniques including field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visible and fluorescence spectroscopy, and rheology. Morphological investigations using FESEM and AFM show a nanofibrillar network structure. Interestingly, the organogel is photoresponsive and a gel-sol transition occurred by irradiating the gel with UV light of 365 nm for 2 h as shown by the UV and fluorescence study. This photoresponsive fluorescent gel holds promise for new peptide-based soft materials with interesting applications.

  3. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel.

  4. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  5. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    PubMed Central

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  6. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    NASA Astrophysics Data System (ADS)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-09-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.

  7. Differential contribution of basic residues to HIV-1 nucleocapsid protein’s nucleic acid chaperone function and retroviral replication

    PubMed Central

    Wu, Hao; Mitra, Mithun; Naufer, M. Nabuan; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein contains 15 basic residues located throughout its 55-amino acid sequence, as well as one aromatic residue in each of its two CCHC-type zinc finger motifs. NC facilitates nucleic acid (NA) rearrangements via its chaperone activity, but the structural basis for this activity and its consequences in vivo are not completely understood. Here, we investigate the role played by basic residues in the N-terminal domain, the N-terminal zinc finger and the linker region between the two zinc fingers. We use in vitro ensemble and single-molecule DNA stretching experiments to measure the characteristics of wild-type and mutant HIV-1 NC proteins, and correlate these results with cell-based HIV-1 replication assays. All of the cationic residue mutations lead to NA interaction defects, as well as reduced HIV-1 infectivity, and these effects are most pronounced on neutralizing all five N-terminal cationic residues. HIV-1 infectivity in cells is correlated most strongly with NC’s NA annealing capabilities as well as its ability to intercalate the DNA duplex. Although NC’s aromatic residues participate directly in DNA intercalation, our findings suggest that specific basic residues enhance these interactions, resulting in optimal NA chaperone activity. PMID:24293648

  8. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity

    PubMed Central

    Martin, Sandra L.; Bushman, Diane; Wang, Fei; Li, Patrick Wai-Lun; Walker, Ann; Cummiskey, Jessica; Branciforte, Dan; Williams, Mark C.

    2008-01-01

    L1 is a ubiquitous interspersed repeated sequence in mammals that achieved its high copy number by autonomous retrotransposition. Individual L1 elements within a genome differ in sequence and retrotransposition activity. Retrotransposition requires two L1-encoded proteins, ORF1p and ORF2p. Chimeric elements were used to map a 15-fold difference in retrotransposition efficiency between two L1 variants from the mouse genome, TFC and TFspa, to a single amino acid substitution in ORF1p, D159H. The steady-state levels of L1 RNA and protein do not differ significantly between these two elements, yet new insertions are detected earlier and at higher frequency in TFC, indicating that it converts expressed L1 intermediates more effectively into new insertions. The two ORF1 proteins were purified and their nucleic acid binding and chaperone activities were examined in vitro. Although the RNA and DNA oligonucleotide binding affinities of these two ORF1 proteins were largely indistinguishable, D159 was significantly more effective as a nucleic acid chaperone than H159. These findings support a requirement for ORF1p nucleic acid chaperone activity at a late step during L1 retrotransposition, extend the region of ORF1p that is known to be critical for its functional interactions with nucleic acids, and enhance understanding of nucleic acid chaperone activity. PMID:18790804

  9. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  10. Correlated Evolution of Nearby Residues in Drosophilid Proteins

    PubMed Central

    Callahan, Benjamin; Neher, Richard A.; Bachtrog, Doris; Andolfatto, Peter; Shraiman, Boris I.

    2011-01-01

    Here we investigate the correlations between coding sequence substitutions as a function of their separation along the protein sequence. We consider both substitutions between the reference genomes of several Drosophilids as well as polymorphisms in a population sample of Zimbabwean Drosophila melanogaster. We find that amino acid substitutions are “clustered” along the protein sequence, that is, the frequency of additional substitutions is strongly enhanced within ≈10 residues of a first such substitution. No such clustering is observed for synonymous substitutions, supporting a “correlation length” associated with selection on proteins as the causative mechanism. Clustering is stronger between substitutions that arose in the same lineage than it is between substitutions that arose in different lineages. We consider several possible origins of clustering, concluding that epistasis (interactions between amino acids within a protein that affect function) and positional heterogeneity in the strength of purifying selection are primarily responsible. The role of epistasis is directly supported by the tendency of nearby substitutions that arose on the same lineage to preserve the total charge of the residues within the correlation length and by the preferential cosegregation of neighboring derived alleles in our population sample. We interpret the observed length scale of clustering as a statistical reflection of the functional locality (or modularity) of proteins: amino acids that are near each other on the protein backbone are more likely to contribute to, and collaborate toward, a common subfunction. PMID:21383965

  11. Enantioselective sp(3) C-H alkylation of γ-butyrolactam by a chiral Ir(I) catalyst for the synthesis of 4-substituted γ-amino acids.

    PubMed

    Tahara, Yu-ki; Michino, Masamichi; Ito, Mamoru; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2015-12-04

    Ir-catalyzed sp(3) C-H alkylation of γ-butyrolactam with alkenes was used for the highly enantioselective synthesis of 5-substituted γ-lactams, which were readily converted into chiral 4-substituted γ-amino acids. A broad scope of alkenes was amenable as coupling partners, and the alkylated product using acrylate could be transformed into the key intermediate of pyrrolam A synthesis.

  12. Chiral phosphoric acid catalyzed highly enantioselective Friedel-Crafts alkylation reaction of C3-substituted indoles to β,γ-unsaturated α-ketimino esters.

    PubMed

    Bi, Bo; Lou, Qin-Xin; Ding, Yu-Yang; Chen, Sheng-Wei; Zhang, Sha-Sha; Hu, Wen-Hui; Zhao, Jun-Ling

    2015-02-06

    A highly enantioselective C2 Friedel-Crafts alkylation reaction of 3-substituted indoles to β,γ-unsaturated α-ketimino esters has been developed. This reaction was efficiently catalyzed by a chiral phosphoric acid catalyst. The corresponding C2-substituted indole derivatives, bearing an α-ketimino ester motif, were obtained in moderate to high yields (up to 93%) and with high enantioselectivities (up to >99% ee).

  13. Critical amino acid residues involved in the electrogenic sodium-bicarbonate cotransporter kNBC1-mediated transport.

    PubMed

    Abuladze, Natalia; Azimov, Rustam; Newman, Debra; Sassani, Pakan; Liu, Weixin; Tatishchev, Sergei; Pushkin, Alexander; Kurtz, Ira

    2005-06-15

    We have previously reported a topological model of the electrogenic Na(+)-HCO(3)(-) cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na(+)-dependent base flux of the mutants was determined using intracellular pH measurements with 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na(+)-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented.

  14. Critical amino acid residues involved in the electrogenic sodium–bicarbonate cotransporter kNBC1-mediated transport

    PubMed Central

    Abuladze, Natalia; Azimov, Rustam; Newman, Debra; Sassani, Pakan; Liu, Weixin; Tatishchev, Sergei; Pushkin, Alexander; Kurtz, Ira

    2005-01-01

    We have previously reported a topological model of the electrogenic Na+–HCO3− cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na+-dependent base flux of the mutants was determined using intracellular pH measurements with 2′,7′-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na+-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented. PMID:15817634

  15. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process.

  16. Short communication: The effect of substituting fish oil in dairy cow diets with docosahexaenoic acid-micro algae on milk composition and fatty acids profile.

    PubMed

    Abughazaleh, A A; Potu, R B; Ibrahim, S

    2009-12-01

    The effects of substituting fish oil (FO) with docosahexaenoic acid (DHA)-micro algae on milk chemical and fatty acid composition were examined in this study. Twenty-four Holstein cows in mid lactation grazing on an alfalfa-grass based pasture were divided into 4 treatment groups (6 cows/treatment) and supplemented with 7 kg/d grain mix plus 350 g of soybean oil and one of the following: 1) 150 g of FO, 2) 100 g of FO plus 50 g of algae, 3) 50 g of FO plus 100 g of algae, or 4) 150 g of algae. Cows were fed treatment diets for 3 wk, and milk samples were collected from each cow during the last 3 d of the study. Milk production (17.96, 17.56, 17.55, and 19.26 kg/d for treatment diets 1 to 4, respectively), milk fat percentages (3.17, 3.49, 3.74, and 3.43%), and milk protein percentages (3.35, 3.50, 3.71, and 3.42%) were similar between treatment diets. Concentrations (g/100 g of fatty acids) of milk cis-9 trans-11 (c9t11) conjugated linoleic acid (CLA; 3.41, 3.69, 4.47, and 4.21 for treatment diets 1 to 4, respectively) and vaccenic acid (11.80, 12.83, 13.87, and 13.53) were similar between treatment diets. Results of this study suggest that DHA-micro algae can partially or fully substitute FO in a cow's diet without any adverse effects on milk production, milk composition, or milk c9t11 CLA content. The DHA-micro algae may be used as a viable alternative for FO in cow's diet to modify rumen biohydrogenation to increase milk c9t11 CLA content.

  17. In Silico profiling of deleterious amino acid substitutions of potential pathological importance in haemophlia A and haemophlia B

    PubMed Central

    2012-01-01

    Background In this study, instead of current biochemical methods, the effects of deleterious amino acid substitutions in F8 and F9 gene upon protein structure and function were assayed by means of computational methods and information from the databases. Deleterious substitutions of F8 and F9 are responsible for Haemophilia A and Haemophilia B which is the most common genetic disease of coagulation disorders in blood. Yet, distinguishing deleterious variants of F8 and F9 from the massive amount of nonfunctional variants that occur within a single genome is a significant challenge. Methods We performed an in silico analysis of deleterious mutations and their protein structure changes in order to analyze the correlation between mutation and disease. Deleterious nsSNPs were categorized based on empirical based and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for analysis of protein structure stability. Results Out of 510 nsSNPs in F8, 378 nsSNPs (74%) were predicted to be 'intolerant' by SIFT, 371 nsSNPs (73%) were predicted to be 'damaging' by PolyPhen and 445 nsSNPs (87%) as 'less stable' by I-Mutant2.0. In F9, 129 nsSNPs (78%) were predicted to be intolerant by SIFT, 131 nsSNPs (79%) were predicted to be damaging by PolyPhen and 150 nsSNPs (90%) as less stable by I-Mutant2.0. Overall, we found that I-Mutant which emphasizes support vector machine based method outperformed SIFT and PolyPhen in prediction of deleterious nsSNPs in both F8 and F9. Conclusions The models built in this work would be appropriate for predicting the deleterious amino acid substitutions and their functions in gene regulation which would be useful for further genotype-phenotype researches as well as the pharmacogenetics studies. These in silico tools, despite being helpful in providing information about the nature of mutations, may also function as a first-pass filter to

  18. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  19. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  20. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  1. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  2. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  3. A More Challenging Interpretative Nitration Experiment Employing Substituted Benzoic Acids and Acetanilides

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Lin, Tung-Yin

    2008-01-01

    An experiment is described involving the nitration of ortho or meta monosubstituted benzoic acids (XC[subscript 6]H[subscript 4]CO[subscript 2]H, X = Halogen, Me, OH, or OMe) and monochlorinated acetanilides with nitric acid to determine the regioselectivity of addition by [superscript 1]H NMR spectroscopy and molecular modeling. Students were…

  4. Synthesis of cyclopropyl-substituted furans by brønsted Acid promoted cascade reactions.

    PubMed

    Clark, J Stephen; Romiti, Filippo; Hogg, Kirsten F; Hamid, Malai Haniti S A; Richter, Sven C; Boyer, Alistair; Redman, Joanna C; Farrugia, Louis J

    2015-05-04

    Chloroacetic acid promotes an efficient and diastereoselective intramolecular cascade reaction of electron-deficient ynenones to deliver products featuring a 2,3,5-trisubstituted furan bearing a fused cyclopropyl substituent at the 5-position. Synthetically relevant polycyclic building blocks featuring rings of various sizes and heteroatoms have been synthesized in high yield using this mild acid-catalyzed reaction.

  5. Differential expression of the α2,3-sialic acid residues in breast cancer is associated with metastatic potential.

    PubMed

    Cui, Hongxia; Lin, Yu; Yue, Liling; Zhao, Xuemei; Liu, Jicheng

    2011-05-01

    Aberrant sialylation is closely associated with the malignant phenotype of cancer cells and metastatic potential. However, the precise nature of the molecules in breast cancers has not been unveiled. In this study, we investigated the expression levels of α2,3-sialic acid residues of 50 primary tumor cases, 50 pair-matched lymph node metastasis tumor samples and in the MDA-MB-231, T-47D and MCF-7 breast cancer cell lines with different metastatic potential. The expression of α2,3-sialic acid residues was analyzed by histochemistry, cytochemistry and flow cytometry with Maackia amurensis lectin (MAL). The invasion and migration abilities of cells were examined using cell adhesion and transwell in vitro assays. Pair-matched lymph node metastasis tumor samples exhibited higher levels of expression of α2,3-sialic acid residues compared to that of primary tumors (P=0.0432). Furthermore, of 38 tumors cases in T1/T2 stages, 31 (81.58%) had weak staining for MAL, which specifically binds to α2,3-sialic acid residues, whereas of 12 tumor cases in T3/T4 stages, only 1 (8.33%) had weak reactions for MAL. The highly metastatic breast cancer cell line MDA-MB-231 exhibited the strongest binding to MAL and the highest expression levels of α2,3-sialic acid residues among the selected cell lines, depending on mRNA expression levels of α2,3-sialyltransferase gene. The adhesion, invasion and migration activities confirmed that MDA-MB-231 exhibited the greater cell adhesion to, migration toward and invasion to Matrigel. Taken together, the high expression of α2,3-sialic acid residues in breast cancer was associated with metastatic potential. This property may be important for developing new therapeutic approaches for breast cancer.

  6. Identification of Amino Acid Residues of ERH Required for Its Recruitment to Nuclear Speckles and Replication Foci in HeLa Cells

    PubMed Central

    Banko, Monika I.; Krzyzanowski, Marek K.; Turcza, Paulina; Maniecka, Zuzanna; Kulis, Marta; Kozlowski, Piotr

    2013-01-01

    ERH is a small, highly evolutionarily conserved nuclear protein of unknown function. Its three-dimensional structure is absolutely unique and it can form a homodimer through a β sheet surface. ERH has been shown to interact, among others, with PDIP46/SKAR and Ciz1. When coexpressed with the latter protein, ERH accumulates in replication foci in the nucleus of HeLa cells. Here, we report that when ERH is coexpressed with PDIP46/SKAR in HeLa cells, it is recruited to nuclear speckles, and identify amino acid residues critical for targeting ERH to both these subnuclear structures. ERH H3A Q9A shows a diminished recruitment to nuclear speckles but it is recruited to replication foci. ERH E37A T51A is very poorly recruited to replication foci while still accumulating in nuclear speckles. Consequently, ERH H3A Q9A E37A T51A is recruited neither to nuclear speckles nor to replication foci. The lack of interactions of these three ERH forms with PDIP46/SKAR and/or Ciz1 was further confirmed in vitro by GST pull-down assay. The residues whose substitutions interfere with the accumulation in nuclear speckles are situated on the β sheet surface of ERH, indicating that only the monomer of ERH can interact with PDIP46/SKAR. Substitutions affecting the recruitment to replication foci map to the other side of ERH, near a long loop between the α1 and α2 helices, thus both the monomer and the dimer of ERH could interact with Ciz1. The construction of the ERH mutants not recruited to nuclear speckles or replication foci will facilitate further studies on ERH actions in these subnuclear structures. PMID:24015320

  7. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes.

    PubMed

    Knaus, Tanja; Mutti, Francesco G; Humphreys, Luke D; Turner, Nicholas J; Scrutton, Nigel S

    2015-01-07

    Ene-reductases (ERs) are flavin dependent enzymes that catalyze the asymmetric reduction of activated carbon-carbon double bonds. In particular, α,β-unsaturated carbonyl compounds (e.g. enals and enones) as well as nitroalkenes are rapidly reduced. Conversely, α,β-unsaturated esters are poorly accepted substrates whereas free carboxylic acids are not converted at all. The only exceptions are α,β-unsaturated diacids, diesters as well as esters bearing an electron-withdrawing group in α- or β-position. Here, we present an alternative approach that has a general applicability for directly obtaining diverse chiral α-substituted carboxylic acids. This approach combines two enzyme classes, namely ERs and aldehyde dehydrogenases (Ald-DHs), in a concurrent reductive-oxidative biocatalytic cascade. This strategy has several advantages as the starting material is an α-substituted α,β-unsaturated aldehyde, a class of compounds extremely reactive for the reduction of the alkene moiety. Furthermore no external hydride source from a sacrificial substrate (e.g. glucose, formate) is required since the hydride for the first reductive step is liberated in the second oxidative step. Such a process is defined as a hydrogen-borrowing cascade. This methodology has wide applicability as it was successfully applied to the synthesis of chiral substituted hydrocinnamic acids, aliphatic acids, heterocycles and even acetylated amino acids with elevated yield, chemo- and stereo-selectivity. A systematic methodology for optimizing the hydrogen-borrowing two-enzyme synthesis of α-chiral substituted carboxylic acids was developed. This systematic methodology has general applicability for the development of diverse hydrogen-borrowing processes that possess the highest atom efficiency and the lowest environmental impact.

  8. The effect of substitution of the N-acetyl groups of N-acetylgalactosamine residues in chondroitin sulfate on its degradation by chondroitinase ABC.

    PubMed

    Madhunapantula, Subbarao V; Achur, Rajeshwara N; Bhavanandan, Veer P; Gowda, D Channe

    2007-11-01

    Chondroitinase ABC is a lyase that degrades chondroitin sulfate, dermatan sulfate and hyaluronic acid into disaccharides. The purpose of this study was to determine the ability of chondroitinase ABC to degrade chondroitin sulfate in which the N-acetyl groups are substituted with different acyl groups. The bovine tracheal chondroitin sulfate A (bCSA) was N-deacetylated by hydrazinolysis, and the free amino groups derivatized into N-formyl, N-propionyl, N-butyryl, N-hexanoyl or N-benzoyl amides. Treatment of the N-acyl or N-benzoyl derivatives of bCSA with chondroitinase ABC and analysis of the products showed that the N-formyl, N-hexanoyl and N-benzoyl derivatives are completely resistant to the enzyme. In contrast, the N-propionyl or N-butyryl derivatives were degraded into disaccharides with slower kinetics compared to that of unmodified bCSA. The rate of degradation of bCSA derivatives by the enzyme was found to be in the order of N-acetyl>N-propionyl>N-butyryl bCSA. These results have important implications for understanding the interaction of N-acetyl groups of glycosaminoglycans with chondroitinase ABC.

  9. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions

    PubMed Central

    Rosnow, Josh J.; Evans, Marc A.; Kapralov, Maxim V.; Cousins, Asaph B.; Edwards, Gerald E.; Roalson, Eric H.

    2015-01-01

    The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol–1 Rubisco active sites s–1), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed. PMID:26417023

  10. Asymmetric synthesis of enantiomerically and diastereoisomerically enriched 4-[F or Br]-substituted glutamic acids.

    PubMed

    Belokon, Yuri N; Maleev, Victor I; Savel'eva, Tatiana F; Moskalenko, Margarita A; Pripadchev, Dmitri A; Khrustalev, Victor N; Saghiyan, Ashot S

    2010-11-01

    A novel simple synthetic protocol for the preparation of both (2S,4R)- and (2S,4S)-FGlu, applying Michael addition of methyl α-fluoroacrylate to a NiII complex of glycine Schiff base with BPB, was elaborated. In addition, same reaction of mentioned complex with ethyl α-bromoacrylate leads to the NiII complex of the Schiff base of BPB with (2S,4R)-4-bromo-glutamic acid monoester, that can be transformed into the corresponding complexes of 1-aminocyclopropane-1,2-dicarboxylic acid. The decomposition of the diastereoisomerically pure complexes leads to corresponding enantiomerically enriched (ee>98%) amino acids.

  11. Bradykinin analogues with beta-amino acid substitutions reveal subtle differences in substrate specificity between the endopeptidases EC 3.4.24.15 and EC 3.4.24.16.

    PubMed

    Lew, R A; Boulos, E; Stewart, K M; Perlmutter, P; Harte, M F; Bond, S; Aguilar, M I; Smith, A I

    2000-09-01

    The closely related zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) cleave many common substrates, including bradykinin (BK). As such, there are few substrate-based inhibitors which are sufficiently selective to distinguish their activities. We have used BK analogues with either alanine or beta-amino acid (containing an additional carbon within the peptide backbone) substitutions to elucidate subtle differences in substrate specificity between the enzymes. The cleavage of the analogues by recombinant EP24.15 and EP24.16 was assessed, as well as their ability to inhibit the two enzymes. Alanine-substituted analogues were generally better substrates than BK itself, although differences between the peptidases were observed. Similarly, substitution of the four N-terminal residues with beta-glycine enhanced cleavage in some cases, but not others. beta-Glycine substitution at or near the scissile bond (Phe5-Ser6) completely prevented cleavage by either enzyme: interestingly, these analogues still acted as inhibitors, although with very different affinities for the two enzymes. Also of interest, beta-Gly8-BK was neither a substrate nor an inhibitor of EP24.15, yet could still interact with EP24.16. Finally, while both enzymes could be similarly inhibited by the D-stereoisomer of beta-C3-Phe5-BK (IC50 approximately 20 microM, compared to 8 microM for BK), EP24.16 was relatively insensitive to the L-isomer (IC50 12 approximately microM for EP24.15, >40 microM for EP24.16). These studies indicate subtle differences in substrate specificity between EP24.15 and EP24.16, and suggest that beta-amino acid analogues may be useful as templates for the design of selective inhibitors.

  12. Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus ▿

    PubMed Central

    Martínez-Sobrido, Luis; Emonet, Sébastien; Giannakas, Panagiotis; Cubitt, Beatrice; García-Sastre, Adolfo; de la Torre, Juan C.

    2009-01-01

    Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus. PMID:19710144

  13. Magnesium-mediated intramolecular reductive coupling: a stereoselective synthesis of C(2)-symmetric 3,4-bis-silyl-substituted adipic acid derivatives.

    PubMed

    Kundu, Pintu K; Ghosh, Sunil K

    2009-11-21

    Chiral C(2)-symmetric 3,4-bis-silyl-substituted adipic acid derivatives have been synthesised by a Mg/trimethylsilyl chloride-mediated intramolecular reductive coupling of symmetrical disiloxanes of beta-silylacrylic acid N-oxazolidinone derivatives. Efficient and short syntheses of enantiomerically pure enantiomers of 2,6-dioxabicyclo[3.3.0]octane-3,7-dione have been achieved from the bis-silylated adipic acid derivatives using Fleming-Tamao oxidation as the key step.

  14. Monoclonal antipeptide antibodies against amino acid residues 1101-1106 of human C4 distinguish C4A from C4B.

    PubMed

    Reilly, B D; Levine, P; Rothbard, J; Skanes, V M

    1991-01-01

    Comparison of amino acid sequences of the alpha-chain fragment of human C4, C4d, has shown C4A- and C4B-specific sequences at residues 1101-1106 in which the aspartic acid-histidine substitution at position 1106 may be related to the amide and ester bond forming properties of these molecules. Peptides containing twelve amino acid residues of the C4A- or C4B-specific sequences were synthesized and injected into female Balb/c mice. Serum from 2 mice, one immunized with the C4A-specific peptide and the other with the C4B-specific peptide, gave strong isotype-specific responses in an enzyme-linked immunosorbent assay against affinity-purified C4A3 and C4B2B1. Spleen cells from these mice were fused with the mouse myeloma SP2/0-Ag 14, and two cloned cell lines, AII-1 and BII-1, were established from hybrids. Enzyme-linked immunosorbent assay and western blotting of monoclonal antibodies AII-1 and BII-1 show that the former reacts with the C4A but not with the C4B alpha-chain and the latter with C4B but not with the C4A alpha-chain. Furthermore, immunoblotting of C4 allelic variants showed that AII-1 reacted with all C4A allotypes tested, including A6, A4, A3 and A2, whereas BII-1 reacted with all C4B allotypes tested, including B5, B3, B2, and B1.

  15. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.

    PubMed

    Topham, Christopher M; Smith, Jeremy C

    2015-02-01

    Relative amino acid residue solvent accessibility values allow the quantitative comparison of atomic solvent-accessible surface areas in different residue types and physical environments in proteins and in protein structural alignments. Geometry-optimised tri-peptide structures in extended solvent-exposed reference conformations have been obtained for 43 amino acid residue types at a high level of quantum chemical theory. Significant increases in side-chain solvent accessibility, offset by reductions in main-chain atom solvent exposure, were observed for standard residue types in partially geometry-optimised structures when compared to non-minimised models built from identical sets of proper dihedral angles abstracted from the literature. Optimisation of proper dihedral angles led most notably to marked increases of up to 54% in proline main-chain atom solvent accessibility compared to literature values. Similar effects were observed for fully-optimised tri-peptides in implicit solvent. The relief of internal strain energy was associated with systematic variation in N, C(α) and C(β) atom solvent accessibility across all standard residue types. The results underline the importance of optimisation of 'hard' degrees of freedom (bond lengths and valence bond angles) and improper dihedral angle values from force field or other context-independent reference values, and impact on the use of standardised fixed internal co-ordinate geometry in sampling approaches to the determination of absolute values of protein amino acid residue solvent accessibility. Quantum chemical methods provide a useful and accurate alternative to molecular mechanics methods to perform energy minimisation of peptides containing non-standard (chemically modified) amino acid residues frequently present in experimental protein structure data sets, for which force field parameters may not be available. Reference tri-peptide atomic co-ordinate sets including hydrogen atoms are made freely available.

  16. Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid.

    PubMed

    Liu, Mengrui; Du, Hongliang; Zhai, Guangxi

    2016-10-01

    Hydrophobically-modified polymers based on chondroitin sulfate with different degree of substitution (DS) of deoxycholic acid (DOCA) were developed for docetaxel delivery. Chondroitin sulfate-deoxycholic acid (CSAD) bioconjugates were synthesized via the linker of adipic dihydrazide by amide bond. They were characterized with spherical shape, mean diameter of around 165.2nm and negative zeta potential (-14.87 to -20.53mV). An increase of DOCA DS reduced size of nanoparticles, while increasing drug loading efficiency. Drug release in vitro showed a triphasic sustained pattern and higher accumulative drug release percentage was observed with increased DS of DOCA on polymer. Self-assemblies with higher DS also had enhanced internalization of nanoparticles and stronger cytotoxicity at the cellular level. The self-assemble nanoparticles demonstrate to be excellent targeting drug delivery systems and the desired therapeutics can be achieved via the alteration of DS.

  17. Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: approach from amino acid substitution matrix and auto covariance transformation.

    PubMed

    Yu, Xiaoqing; Zheng, Xiaoqi; Liu, Taigang; Dou, Yongchao; Wang, Jun

    2012-05-01

    Apoptosis proteins are very important for understanding the mechanism of programmed cell death. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on amino acid substitution matrix and auto covariance transformation, we introduce a new sequence-based model, which not only quantitatively describes the differences between amino acids, but also partially incorporates the sequence-order information. This method is applied to predict the apoptosis proteins' subcellular location of two widely used datasets by the support vector machine classifier. The results obtained by jackknife test are quite promising, indicating that the proposed method might serve as a potential and efficient prediction model for apoptosis protein subcellular location prediction.

  18. Amino acid residues of bitter taste receptor TAS2R16 that determine sensitivity in primates to β-glycosides

    PubMed Central

    Imai, Hiroo; Suzuki-Hashido, Nami; Ishimaru, Yoshiro; Sakurai, Takanobu; Yin, Lijie; Pan, Wenshi; Ishiguro, Masaji; Masuda, Katsuyoshi; Abe, Keiko; Misaka, Takumi; Hirai, Hirohisa

    2016-01-01

    In mammals, bitter taste is mediated by TAS2Rs, which belong to the family of seven transmembrane G protein-coupled receptors. Since TAS2Rs are directly involved in the interaction between mammals and their dietary sources, it is likely that these genes evolved to reflect species-specific diets during mammalian evolution. Here, we analyzed the amino acids responsible for the difference in sensitivities of TAS2R16s of various primates using a cultured cell expression system. We found that the sensitivity of TAS2R16 varied due to several amino acid residues. Mutation of amino acid residues at E86T, L247M, and V260F in human and langur TAS2R16 for mimicking the macaque TAS2R16 decreased the sensitivity of the receptor in an additive manner, which suggests its contribution to the potency of salicin, possibly via direct interaction. However, mutation of amino acid residues 125 and 133 in human TAS2R16, which are situated in helix 4, to the macaque sequence increased the sensitivity of the receptor. These results suggest the possibility that bitter taste sensitivities evolved independently by replacing specific amino acid residues of TAS2Rs in different primate species to adapt to species-specific food. PMID:27924271

  19. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    PubMed Central

    Biro, Jan C; Fördös, Gergely

    2005-01-01

    Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. PMID:16011796

  20. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues.

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Jain, Rohan; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2017-02-15

    Zinc (Zn) leaching yields and kinetics from three different zinc plant leach residues (ZLR) generated in different periods (ZLR1>30 years, ZLR2 5-30 years and ZLR3<2 years) were investigated. The factors affecting the Zn leaching rate such as solid to liquid ratio, temperature, acid concentration and agitation were optimized. Under optimum conditions, 46.2 (±4.3), 23.3 (±2.7) and 17.6 (±1.2) mg of Zn can be extracted per gram of ZLR1, ZLR2 and ZLR3, respectively. The Zn leaching kinetics of ZLRs follow the shrinking core diffusion model. The activation energy required to leach Zn from ZLR1, ZLR2 and ZLR3 were estimated to be 2.24kcal/mol, 6.63kcal/mol and 11.7kcal/mol, respectively, by the Arrhenius equation. The order of the reaction with respect to the sulfuric acid concentration was also determined as 0.20, 0.56, and 0.87 for ZLR1, ZLR2 and ZLR3, respectively. Zn was selectively recovered from the leachates by adjusting the initial pH and by the addition of sodium hydroxide and sodium sulfide. More than 90% of Zn was selectively recovered as sphalerite from the ZLR polymetallic leachates by chemical sulfide precipitation.