Science.gov

Sample records for acid residues based

  1. A microalgae residue based carbon solid acid catalyst for biodiesel production.

    PubMed

    Fu, Xiaobo; Li, Dianhong; Chen, Jie; Zhang, Yuanming; Huang, Weiya; Zhu, Yi; Yang, Jun; Zhang, Chengwu

    2013-10-01

    Biodiesel production from microalgae is recognized as one of the best solutions to deal with the energy crisis issues. However, after the oil extraction from the microalgae, the microalgae residue was generally discarded or burned. Here a novel carbon-based solid acid catalyst derived from microalgae residue by in situ hydrothermal partially carbonization were synthesized. The obtained catalyst was characterized and subjected to both the esterification of oleic acid and transesterification of triglyceride to produce biodiesel. The catalyst showed high catalytic activity and can be regenerated while its activity can be well maintained after five cycles.

  2. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  3. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    PubMed

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion.

  4. Identification of acid-base catalytic residues of high-Mr thioredoxin reductase from Plasmodium falciparum.

    PubMed

    McMillan, Paul J; Arscott, L David; Ballou, David P; Becker, Katja; Williams, Charles H; Müller, Sylke

    2006-11-01

    High-M(r) thioredoxin reductase from the malaria parasite Plasmodium falciparum (PfTrxR) contains three redox active centers (FAD, Cys-88/Cys-93, and Cys-535/Cys-540) that are in redox communication. The catalytic mechanism of PfTrxR, which involves dithiol-disulfide interchanges requiring acid-base catalysis, was studied by steady-state kinetics, spectral analyses of anaerobic static titrations, and rapid kinetics analysis of wild-type enzyme and variants involving the His-509-Glu-514 dyad as the presumed acid-base catalyst. The dyad is conserved in all members of the enzyme family. Substitution of His-509 with glutamine and Glu-514 with alanine led to TrxR with only 0.5 and 7% of wild type activity, respectively, thus demonstrating the crucial roles of these residues for enzymatic activity. The H509Q variant had rate constants in both the reductive and oxidative half-reactions that were dramatically less than those of wild-type enzyme, and no thiolateflavin charge-transfer complex was observed. Glu-514 was shown to be involved in dithiol-disulfide interchange between the Cys-88/Cys-93 and Cys-535/Cys-540 pairs. In addition, Glu-514 appears to greatly enhance the role of His-509 in acid-base catalysis. It can be concluded that the His-509-Glu-514 dyad, in analogy to those in related oxidoreductases, acts as the acid-base catalyst in PfTrxR.

  5. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil.

    PubMed

    Wang, Lingtao; Dong, Xiuqin; Jiang, Haoxi; Li, Guiming; Zhang, Minhua

    2014-04-01

    A novel carbon-based solid acid catalyst was prepared by the sulfonation of incompletely carbonized cassava stillage residue (CSR) with concentrated sulfuric acid, and employed to catalyze the esterification of methanol and free fatty acids (FFAs) in waste cooking oil (WCO). The effects of the carbonization and the sulfonation temperatures on the pore structure, acid density and catalytic activity of the CSR-derived catalysts were systematically investigated. Low temperature carbonization and high temperature sulfonation can cause the collapse of the carbon framework, while high temperature carbonization is not conducive to the attachment of SO3H groups on the surface. The catalyst showed high catalytic activity for esterification, and the acid value for WCO is reduced to below 2mg KOH/g after reaction. The activity of catalyst can be well maintained after five cycles. CSR can be considered a promising raw material for the production of a new eco-friendly solid acid catalyst.

  6. A Sensitive Gel-based Method Combining Distinct Cyclophellitol-based Probes for the Identification of Acid/Base Residues in Human Retaining β-Glucosidases*

    PubMed Central

    Kallemeijn, Wouter W.; Witte, Martin D.; Voorn-Brouwer, Tineke M.; Walvoort, Marthe T. C.; Li, Kah-Yee; Codée, Jeroen D. C.; van der Marel, Gijsbert A.; Boot, Rolf G.; Overkleeft, Herman S.; Aerts, Johannes M. F. G.

    2014-01-01

    Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes. PMID:25344605

  7. Critical aspartic acid residues in pseudouridine synthases.

    PubMed

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  8. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    PubMed Central

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  9. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.

    PubMed

    Fokas, Alexander S; Cole, Daniel J; Ahnert, Sebastian E; Chin, Alex W

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.

  10. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    NASA Astrophysics Data System (ADS)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-09-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.

  11. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis.

    PubMed

    Fokas, Alexander S; Cole, Daniel J; Ahnert, Sebastian E; Chin, Alex W

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  12. Technique development for characterization of metalloorganics in acid-base-neutral fractions of heavy petroleum residues: Topical report

    SciTech Connect

    Pearson, C.D.; Green, J.B.

    1988-01-01

    A novel approach for the characterization of metallorganic compounds in heavy petroleum residues has been developed. Wilmington 1000/sup 0/ F+ and Mayan 925/sup 0/ F+ residues and hydrotreated products were separated into acid-base-neutral (ABN) fractions by a unique nonaqueous ion-exchange technique developed at NIPER. The metal complexes in the feeds, hydrotreated products and ABN fractions were then characterized by determining the total vanadium and nickel and by measuring the vanadium and nickel porphyrin content of each fraction. Molecular weight distribution profiles of the vanadium and nickel compounds in the feed, 400/sup 0/C hydrotreated product and corresponding ABN fractions were obtained by size exclusion chromatography/inductively coupled plasma. The majority of the metal appeared to be in non-porphyrinic form. The vanadium and nickel complexes were distributed into all of the ABN fractions. In the feed and the whole hydrotreated products the porphyrin levels decreased as hydrotreating temperatures increased. In contrast to previously reported work, porphyrins do not always decrease when hydrotreated. The amount of porphyrins in certain ABN fractions increased after hydrotreating at moderate temperatures. The Mayan V and Ni complexes were more resistant to hydrotreating than the Wilmington metal complexes; in particular, the high molecular weight Mayan metal complexes were more resistant to hydrotreating than the high molecular weight Wilmington metal complexes. 15 refs., 11 figs., 10 tabs.

  13. ASCORBIC ACID TREATMENT TO REDUCE RESIDUAL HALOGEN-BASED OXIDANTS PRIOR TO THE DETERMINATION OF HALOGENATED DISINFECTION BYPRODUCTS IN POTABLE WATER

    EPA Science Inventory

    Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants)i.e., HOCl, Cl2, Brw and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include...

  14. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  15. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ. PMID:27324649

  16. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  17. GC-based detection of aldononitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil.

    PubMed

    Liang, Chao; Read, Harry W; Balser, Teri C

    2012-05-19

    Quantitative approaches to characterizing microorganisms are crucial for a broader understanding of the microbial status and function within ecosystems. Current strategies for microbial analysis include both traditional laboratory culture-dependent techniques and those based on direct extraction and determination of certain biomarkers. Few among the diversity of microbial species inhabiting soil can be cultured, so culture-dependent methods introduce significant biases, a limitation absent in biomarker analysis. The glucosamine, mannosamine, galactosamine and muramic acid have been well served as measures of both the living and dead microbial mass, of these the glucosamine (most abundant) and muramic acid (uniquely from bacterial cell) are most important constituents in the soil systems. However, the lack of knowledge on the analysis restricts the wide popularization among scientific peers. Among all existing analytical methods, derivatization to aldononitrile acetates followed by GC-based analysis has emerged as a good option with respect to optimally balancing precision, sensitivity, simplicity, good chromatographic separation, and stability upon sample storage. Here, we present a detailed protocol for a reliable and relatively simple analysis of glucosamine and muramic acid from soil after their conversion to aldononitrile acetates. The protocol mainly comprises four steps: acid digestion, sample purification, derivatization and GC determination. The step-by-step procedure is modified according to former publications. In addition, we present a strategy to structurally validate the molecular ion of the derivative and its ion fragments formed upon electron ionization. We applied GC-EI-MS-SIM, LC-ESI-TOF-MS and isotopically labeled reagents to determine the molecular weight of aldononitrile acetate derivatized glucosamine and muramic acid; we used the mass shift of isotope-labeled derivatives in the ion spectrum to investigate ion fragments of each derivatives. In

  18. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery.

    PubMed

    Jiang, Qian; Yue, Dong; Nie, Yu; Xu, Xianghui; He, Yiyan; Zhang, Shiyong; Wagner, Ernst; Gu, Zhongwei

    2016-06-01

    Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the in vitro gene transfection up to 190-fold as compared with the golden standard PEI25k and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others in vivo with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections. PMID:27097286

  19. A color-determining amino acid residue of proteorhodopsin.

    PubMed

    Ozaki, Yuya; Kawashima, Takayoshi; Abe-Yoshizumi, Rei; Kandori, Hideki

    2014-09-30

    Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria. More than 1000 PRs are classified as blue-absorbing (λmax ∼ 490 nm) and green-absorbing (λmax ∼ 525 nm) PRs. The color determinant is known to be at position 105, where blue-absorbing and green-absorbing PRs possess Gln and Leu, respectively. This suggests hydrophobicity at position 105 plays a key role in color tuning. Here we successfully introduced 19 amino acid residues into position 105 of green-absorbing PR in the membrane environment and investigated the absorption properties. High-performance liquid chromatography analysis shows that the isomeric composition of the all-trans form is >70% for all mutants, indicating little influence of different isomers on color tuning. Absorption spectra of the wild-type and 19 mutant proteins were well-characterized by the pH-dependent equilibria of the protonated and deprotonated counterion (Asp97) of the Schiff base, whereas the λmax values of these two states and the pKa value differed significantly among mutants. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, the λmax values of the two states and the pKa value did not correlate with the hydropathy index of residues. In contrast, the λmax and pKa were correlated with the volume of residues, though Gln and Leu possess similar volumes. This observation concludes that the λmax and pKa of Asp97 are determined by local and specific interactions in the Schiff base moiety, in which the volume of the residue at position 105 is more influential than its hydrophobicity. We suggest that the hydrogen-bonding network in the Schiff base moiety plays a key role in the λmax and pKa of Asp97, and the hydrogen-bonding network is significantly perturbed by large amino acid residues but may be preserved by additional water molecule(s) for small amino acid residues at position 105. PMID:25180875

  20. Differential responses of needle and branch order-based root decay to nitrogen addition: dominant effects of acid-unhydrolyzable residue and microbial enzymes

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Chen, Weiwei; Zhang, Xinyu; Gao, Wenlong; Yang, Hao; Li, Dandan; Li, Shenggong

    2016-04-01

    Both chemical differences between foliage and different orders of fine roots and their contrasting decomposing microenvironments may affect their decomposition. However, little is known about how foliage and branch order-based root decomposition responds to increased N availability and the response mechanisms behind. The effects of different doses of N addition on the decomposition of needles and order-based roots of Pinus elliottii (slash pine) were monitored using the litterbag method for 524 days in a subtropical slash pine plantation in south China. The acid-unhydrolyzable residue (AUR) concentration and microbial extracellular enzymatic activities (EEA) in decomposing needles and roots were also determined. Our results indicate that the responses of needle and order-based root decomposition were N-dose-specific. The decomposition of both needles and lower-order roots was inhibited under the high N dose rate. The retarded decomposition of lower-order roots could be explained more by the increased binding of AUR to inorganic N ions, while the retarded decomposition of needles could be explained more by the reduced microbial EEA. Further, in contrast to lower-order roots, N addition had no effect on the decomposition of higher-order roots. We conclude that the decomposition of foliage and fine roots may fail to mirror each other at ambient conditions or in response to N deposition due to their contrasting decomposition microenvironments and tissue chemistry. Given the differential effects of N addition on order-based roots, our findings highlight the need to consider the tissue chemistry heterogeneity within branching fine root systems when predicting the responses of root decomposition to N loading.

  1. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  2. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  3. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  4. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.

    PubMed

    Zhou, Jianhong; Yan, Wenying; Hu, Guang; Shen, Bairong

    2016-01-01

    Catalytic residues play a significant role in enzyme functions. With the recent accumulation of experimentally determined enzyme 3D structures and network theory on protein structures, the prediction of catalytic residues by amino acid network (AAN, where nodes are residues and links are residue interactions) has gained much interest. Computational methods of identifying catalytic residues are traditionally divided into two groups: sequence-based and structure-based methods. Two new structure- based methods are proposed in current advances: AAN and Elastic Network Model (ENM) of enzyme structures. By concentrating on AAN-based approach, we herein summarized network properties for predictions of catalytic residues. AAN attributes were showed responsible for performance improvement, and therefore the combination of AAN with previous sequence and structural information will be a promising direction for further improvement. Advantages and limitations of AAN-based methods, future perspectives on the application of AAN to the study of protein structure-function relationships are discussed.

  5. Microscopic residues of bone from dissolving human remains in acids.

    PubMed

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found.

  6. Microscopic residues of bone from dissolving human remains in acids.

    PubMed

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found. PMID:25677640

  7. Ligatin binds phosphohexose residues on acidic hydrolases.

    PubMed

    Jakoi, E R; Kempe, K; Gaston, S M

    1981-01-01

    Ligatin, a receptor that recognizes phosphorylated sugars, was isolated from plasma membranes of mouse macrophages, rat ileum, and rat brain. Several acidic hydrolases including N-acetyl beta-D-glucosaminidase (beta-NAG) were solubilized with this receptor. The solubilized beta-NAG bound to ligatin in vitro as demonstrated by affinity chromatography using the immobilized receptor. beta-N-Acetyl D-glucosaminidase-ligatin complexes were dissociated by low concentrations of mannose 6-phosphate (Man6P) and/or glucose 1-phosphate (Glc 1P). The effectiveness of these two phosphomonosaccharides varied depending on the source of the enzyme: ileal beta-NAG-ligatin complexes showed a four-fold preferential dissociation with Man6P; macrophage complexes showed a 160-fold preferential dissociation with Glc 1P. Brain complexes dissociated with nearly equal preference for Man6P and Glc 1P. Heterologous complexes displayed the specificity characteristic of the source of the enzyme regardless of the source of the ligatin. Treatment of the solubilized hydrolases with endoglucosaminidase H released phosphorous-32 label from these enzymes and prevented binding of beta-NAG to ligatin. However, treatment of the solubilized hydrolases with alkaline phosphatase reduced the binding of beta-NAG to ligatin by no more than 30%. This apparent resistance of beta-NAG to dephosphorylation was consistent with the chromatographic behavior of QAE of 3H-labeled acidic oligosaccharides isolated from the solubilized hydrolases. The oligosaccharides that contain phosphorylated hexose were less acidic than phosphomonoesters and were insensitive to alkaline phosphatase until subjected to acid hydrolysis. These results suggested the presence of a phosphodiester on beta-NAG analogous to the NAC glucosamine 1 P6 mannose present on beta-glucuronidase isolated from mouse lymphoma cells (Tabas I, Kornfield, S: J Biol Chem 255: 6633, 1980). PMID:7299841

  8. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Technical Reports Server (NTRS)

    Lumpkin, G. R.

    1982-01-01

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  9. Electron microscopy of carbonaceous matter in Allende acid residues

    NASA Astrophysics Data System (ADS)

    Lumpkin, G. R.

    On the basis of characteristic diffuse ring diffraction patterns, much of the carbonaceous matter in a large suite of Allende acid residues has been identified as a variety of turbostratic carbon. Crystallites of this phase contain randomly stacked sp(2) hybridized carbon layers and diffraction patterns resemble those from carbon black and glassy carbon. Carbynes are probably absent, and are certainly restricted to less than 0.5% of these acid residues. The work of Ott et al. (1981) provides a basis for the possibility that turbostratic carbon is a carrier of noble gases, but an additional component - amorphous carbon - may be necessary to explain the high release temperatures of noble gases as well as the glassy character of many of the carbonaceous particles. Carbynes are considered to be questionable as important carriers of noble gases in the Allende acid residues.

  10. Structure-based identification of catalytic residues.

    PubMed

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction.

  11. Entropy reduction in unfolded peptides (and proteins) due to conformational preferences of amino acid residues.

    PubMed

    Schweitzer-Stenner, Reinhard; Toal, Siobhan E

    2014-11-01

    As established by several groups over the last 20 years, amino acid residues in unfolded peptides and proteins do not exhibit the unspecific random distribution as assumed by the classical random coil model. Individual amino acid residues in small peptides were found to exhibit different conformational preferences. Here, we utilize recently obtained conformational distributions of guest amino acid residues in GxG peptides to estimate their conformational entropy, which we find to be significantly lower than the entropy of an assumed random coil like distribution. Only at high temperature do backbone entropies approach random coil like values. We utilized the obtained backbone entropies of the investigated amino acid residues to estimate the loss of conformational entropy caused by a coil → helix transition and identified two subsets of amino acid residues for which the thus calculated entropy losses correlate well with the respective Gibbs energy of helix formation obtained for alanine based host-guest systems. Calculated and experimentally derived entropic losses were found to be in good agreement. For most of the amino acid residues investigated entropic losses derived from our GxG distributions correlate very well with corresponding values recently obtained from MD simulations biased by conformational propensities derived from truncated coil libraries. Both, conformational entropy and the entropy of solvation exhibit a strong, residue specific temperature dependence, which can be expected to substantially affect the stability of unfolded states. Altogether, our results provide strong evidence for the notion that conformational preferences of amino acid residues matter with regard to the thermodynamics of peptide and protein folding.

  12. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  13. Phosphate acceptor amino acid residues in structural proteins of rhabdoviruses.

    PubMed

    Sokol, F; Tan, K B; McFalls, M L; Madore, P

    1974-07-01

    Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses. PMID:4365328

  14. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities. PMID:19899783

  15. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities.

  16. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  17. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  18. Evidence that three histidine residues of a base non-specific and adenylic acid preferential ribonuclease from Rhizopus niveus are involved in the catalytic function.

    PubMed

    Ohgi, K; Horiuchi, H; Watanabe, H; Iwama, M; Takagi, M; Irie, M

    1992-07-01

    In order to study the structure-function relationship of an RNase T2 family enzyme, RNase Rh, from Rhizopus niveus, we investigated the roles of three histidine residues by means of site-specific mutagenesis. One of the three histidine residues of RNase RNAP Rh produced in Saccharomyces cerevisiae by recombinant DNA technology was substituted to a phenylalanine or alanine residue. A Phe or Ala mutant enzyme at His46 or His109 showed less than 0.03%, but a mutant enzyme at His104 showed 0.54% of the enzymatic activity of the wild-type enzyme with RNA as a substrate. Similar results were obtained, when ApU was used as a substrate. The binding constant of a Phe mutant enzyme at His46 or His109 towards 2'-AMP decreased twofold, but that at His104 decreased more markedly. Therefore, we assumed that these three histidine residues are components of the active site of RNase Rh, that His104 contributes to some extent to the binding and less to the catalysis, and that the other two histidine residues and one carboxyl group not yet identified are probably involved in the catalysis. We assigned the C-2 proton resonances of His46, His104, and His109 by comparison of the 1H-NMR spectra of the three mutant enzymes containing Phe in place of His with that of the native enzyme, and also determined the individual pKa values for His46 and His104 to be 6.70 and 5.94. His109 was not titrated in a regular way, but the apparent pKa value was estimated to be around 6.3. The fact that addition of 2'-AMP caused a greater effect on the chemical shift of His104 in the 1NMR spectra as compared with those of the other histidine residues, may support the idea described above on the role of His104.

  19. Amino acid residues modulating the activities of staphylococcal glutamyl endopeptidases.

    PubMed

    Ono, Toshio; Ohara-Nemoto, Yuko; Shimoyama, Yu; Okawara, Hisami; Kobayakawa, Takeshi; Baba, Tomomi T; Kimura, Shigenobu; Nemoto, Takayuki K

    2010-10-01

    The glutamyl endopeptidase family of enzymes from staphylococci has been shown to be important virulence determinants of pathogenic family members, such as Staphylococcus aureus. Previous studies have identified the N-terminus and residues from positions 185-195 as potentially important regions that determine the activity of three members of the family. Cloning and sequencing of the new family members from Staphylococcus caprae (GluScpr) and Staphylococcus cohnii (GluScoh) revealed that the N-terminal Val residue is maintained in all family members. Mutants of the GluV8 enzyme from S. aureus with altered N-terminal residues, including amino acids with similar properties, were inactive, indicating that the Val residue is specifically required at the N-terminus of this enzyme family in order for them to function correctly. Recombinant GluScpr was found to have peptidase activity intermediate between GluV8 and GluSE from Staphylococcus epidermis and to be somewhat less specific in its substrate requirements than other family members. The 185-195 region was found to contribute to the activity of GluScpr, although other regions of the enzyme must also play a role in defining the activity. Our results strongly indicate the importance of the N-terminal and the 185-195 region in the activity of the glutamyl endopeptidases of staphylococci. PMID:20707600

  20. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field

    PubMed Central

    2015-01-01

    Continuing our effort to introduce d-amino-acid residues in the united residue (UNRES) force field developed in our laboratory, in this work the Cα ··· Cα ··· Cα backbone-virtual-bond-valence-angle (θ) potentials for systems containing d-amino-acid residues have been developed. The potentials were determined by integrating the combined energy surfaces of all possible triplets of terminally blocked glycine, alanine, and proline obtained with ab initio molecular quantum mechanics at the MP2/6-31G(d,p) level to calculate the corresponding potentials of mean force (PMFs). Subsequently, analytical expressions were fitted to the PMFs to give the virtual-bond-valence potentials to be used in UNRES. Alanine represented all types of amino-acid residues except glycine and proline. The blocking groups were either the N-acetyl and N′,N′-dimethyl or N-acetyl and pyrrolidyl group, depending on whether the residue next in sequence was an alanine-type or a proline residue. A total of 126 potentials (63 symmetry-unrelated potentials for each set of terminally blocking groups) were determined. Together with the torsional, double-torsional, and side-chain-rotamer potentials for polypeptide chains containing d-amino-acid residues determined in our earlier work (Sieradzan et al. J. Chem. Theory Comput., 2012, 8, 4746), the new virtual-bond-angle (θ) potentials now constitute the complete set of physics-based potentials with which to run coarse-grained simulations of systems containing d-amino-acid residues. The ability of the extended UNRES force field to reproduce thermodynamics of polypeptide systems with d-amino-acid residues was tested by comparing the experimentally measured and the calculated free energies of helix formation of model KLALKLALxxLKLALKLA peptides, where x denotes any d- or l- amino-acid residue. The obtained results demonstrate that the UNRES force field with the new potentials reproduce the changes of free energies of helix formation upon d

  1. XPS and STEM studies of Allende acid insoluble residues

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Clarke, D. R.

    1980-01-01

    Data on Allende acid residues obtained both before and after etching with hot HNO3 are presented. X-ray photoelectron spectra show predominantly carbonaceous material plus Fe-deficient chromite in both cases. The HNO3 oxidizes the carbonaceous material to some extent. The small chromites in these residues have a wide range of compositions somewhat paralleling those observed in larger Allende chromites and in Murchison chromites, especially in the high Al contents; however, they are deficient in divalent cations, which makes them metastable and indicates that they must have formed at relatively low temperatures. It is suggested that they formed by precipitation of Cr(3+) and Fe(3+) from olivine at low temperature or during rapid cooling.

  2. Involvement of Acidic Amino Acid Residues in Zn(2+) Binding to Respiratory Complex I.

    PubMed

    Kriegel, Sébastien; Srour, Batoul; Steimle, Stefan; Friedrich, Thorsten; Hellwig, Petra

    2015-09-21

    Proton transfer across membranes and membrane proteins is a central process in biological systems. Zn(2+) ions are capable of binding to acidic residues, often found within such specific pathways, thereby leading to a blockage. Here we probed Zn(2+) inhibition of the proton-pumping NADH:ubiquinone oxidoreductase from Escherichia coli by means of electrochemically induced FTIR difference spectroscopy. Numerous conformational changes were identified including those that arise from the reorganization of the membrane arm upon electron transfer in the peripheral arm of the protein. Signals at very high wavenumbers (1781 and 1756 cm(-1)) point to the perturbation of acidic residues in a highly hydrophobic environment upon Zn(2+) binding. In variant D563N(L), which lacks part of the proton pumping activity (residue located on the horizontal amphipathic helix), the spectral signature of Zn(2+) binding is changed. Our data support a role for this residue in proton translocation.

  3. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  4. Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance.

    PubMed

    Zoladz, J A; Szkutnik, Z; Majerczak, J; Duda, K

    1998-09-01

    The purpose of this study was to develop a method to determine the power output at which oxygen uptake (VO2) during an incremental exercise test begins to rise non-linearly. A group of 26 healthy non-smoking men [mean age 22.1 (SD 1.4) years, body mass 73.6 (SD 7.4) kg, height 179.4 (SD 7.5) cm, maximal oxygen uptake (VO2max) 3.726 (SD 0.363) l x min(-1)], experienced in laboratory tests, were the subjects in this study. They performed an incremental exercise test on a cycle ergometer at a pedalling rate of 70 rev x min(-1). The test started at a power output of 30 W, followed by increases amounting to 30 W every 3 min. At 5 min prior to the first exercise intensity, at the end of each stage of exercise protocol, blood samples (1 ml each) were taken from an antecubital vein. The samples were analysed for plasma lactate concentration [La]pl, partial pressure of O2 and CO2 and hydrogen ion concentration [H+]b. The lactate threshold (LT) in this study was defined as the highest power output above which [La-]pl showed a sustained increase of more than 0.5 mmol x l(-1) x step(-1). The VO2 was measured breath-by-breath. In the analysis of the change point (CP) of VO2 during the incremental exercise test, a two-phase model was assumed for the 3rd-min-data of each step of the test: Xi = at(i) + b + epsilon(i) for i = 1,2, ..., T, and E(Xi) > at(i) + b for i = T + 1, ..., n, where X1, ..., Xn are independent and epsilon(i) approximately N(0, sigma2). In the first phase, a linear relationship between VO2 and power output was assumed, whereas in the second phase an additional increase in VO2 above the values expected from the linear model was allowed. The power output at which the first phase ended was called the change point in oxygen uptake (CP-VO2). The identification of the model consisted of two steps: testing for the existence of CP and estimating its location. Both procedures were based on suitably normalised recursive residuals. We showed that in 25 out of 26 subjects

  5. Comparison between liquid and solid acids catalysts on reducing sugars conversion from furfural residues via pretreatments.

    PubMed

    Lin, Keying; Ma, Baojun; Sun, Yuan; Liu, Wanyi

    2014-09-01

    Liquid sulphuric acid is adopted and compared with carbon-based sulfonated solid acids (coal tar-based and active carbon-based) for furfural residues conversion into reducing sugars. The optimum hydrolysis conditions of liquid acid are at 4% of sulphuric acid, 25:1 of liquid and solid ratio, 175°C of reaction temperature and 120 min of reaction time. The reducing sugar yields are reached over 60% on liquid acid via NaOH/H2O2, NaOH/microwave and NaOH/ultrasonic pretreatments, whereas only over 30% on solid acids. The TOFs (turnover number frequency) via NaOH/H2O2 pretreatments are 0.093, 0.020 and 0.023 h(-1) for liquid sulphuric acid, coal tar-based and active carbon-based solid acids catalysts, respectively. Considering the efficiency, cost and environment factors, the liquid and solid acids have their own advantages of potential commercial application values.

  6. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  7. Acid-Base Homeostasis.

    PubMed

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  8. Understanding Acid Base Disorders.

    PubMed

    Gomez, Hernando; Kellum, John A

    2015-10-01

    The concentration of hydrogen ions is regulated in biologic solutions. There are currently 3 recognized approaches to assess changes in acid base status. First is the traditional Henderson-Hasselbalch approach, also called the physiologic approach, which uses the relationship between HCO3(-) and Pco2; the second is the standard base excess approach based on the Van Slyke equation. The third approach is the quantitative or Stewart approach, which uses the strong ion difference and the total weak acids. This article explores the origins of the current concepts framing the existing methods to analyze acid base balance.

  9. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock. PMID:27108171

  10. Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues.

    PubMed

    Yang, Jinsong; Tan, Haisheng; Cai, Yimin

    2016-07-01

    The natural lactic acid bacteria (LAB) population, chemical composition, and silage fermentation of fruit residues were studied. Eighty-two strains of LAB were isolated from fruit residues such as banana leaf and stem, pineapple peel, and papaya peel. All strains were gram-positive and catalase-negative bacteria, and they were divided into 7 groups (A-G) according to morphological and biochemical characters. Strains in groups A to F were rods, and group G was cocci. Group F produced gas from glucose; other groups did not. Groups A to C and F formed dl-lactic acid, whereas groups D, E, and G formed l-lactic acid. Based on the 16S rRNA gene sequence and DNA-DNA hybridization analysis, groups A to G strains were identified as Lactobacillus plantarum (54.9% of the total isolates), Lactobacillus paraplantarum (3.6%), Lactobacillus nagelii (8.5%), Lactobacillus perolens (4.9%), Lactobacillus casei (11.0%), Lactobacillus fermentum (9.8%), and Enterococcus gallinarum (7.3%), respectively. Lactobacillus plantarum and Lactobacillus casei are the most frequently isolated from fruit residues as a dominant species, and they could grow at a lower pH conditions and produce more lactic acid than other isolates. Pineapple and papaya peels contained higher crude protein (11.5-13.8%) and water-soluble carbohydrate (16.8-22.4%), but lower acid detergent fiber contents (21.2 to 26.4%) than banana stems and leaves (8.2% crude protein, 42.8% acid detergent fiber, and 5.1% water-soluble carbohydrate). Compared with banana stem and leaf silages, the pineapple and papaya peel silages were well preserved with a lower pH and higher lactate content. The study suggests that the fruit residues contain excellent LAB species and abundant feed nutrients, and that they can be preserved as silage to be potential food resources for livestock.

  11. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tolerances § 180.155 1-Naphthaleneacetic acid; tolerances for residues. (a) General. Tolerances are established for the combined residues of the plant growth regulator 1-naphthaleneacetic acid and its... 40 Protection of Environment 23 2010-07-01 2010-07-01 false 1-Naphthaleneacetic acid;...

  12. A novel protein distance matrix based on the minimum arc-length between two amino-acid residues on the surface of a globular protein.

    PubMed

    Hall, Damien; Li, Songling; Yamashita, Kazuo; Azuma, Ryuzo; Carver, John A; Standley, Daron M

    2014-06-01

    We present a novel protein distance matrix based on the minimum line of arc between two points on the surface of a protein. Two methods for calculating this distance matrix are developed and contrasted. The first method, which we have called TOPOL, is an approximate rule based algorithm consisting of successive rounds of vector addition. The second method is adapted from the graph theoretic approach of Dijkstra. Both procedures are demonstrated using cytochrome c, a 12,500 Da protein, as a test case. In respect to computational speed and accuracy the TOPOL procedure compares favorably against the more complex method based on shortest path enumeration over a surface manifold grid. Some potential uses of the algorithmic approaches and calculated surface protein distance measurement are discussed. PMID:24589301

  13. Acid-base properties and copper(II) complexes of dipeptides containing histidine and additional chelating bis(imidazol-2-yl) residues.

    PubMed

    Osz, Katalin; Várnagy, Katalin; Süli-Vargha, Helga; Csámpay, Antal; Sanna, Daniele; Micera, Giovanni; Sóvágó, Imre

    2004-01-01

    Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10. PMID:14659629

  14. The cyst wall of Colpoda steinii. A substance rich in glutamic acid residues

    PubMed Central

    Tibbs, J.

    1966-01-01

    1. The cyst wall of Colpoda steinii has been isolated and its chemical nature examined. It had a nitrogen content 13·9±0·2% (s.d.) and an ash 8·6±1·6% (s.d.). After lipid and hot-acid extraction there was a variable residual phosphorus of 0·19–0·64%. The protein nature, indicated by infrared and ultraviolet absorption, was confirmed when 100μg. of hydrolysed wall gave a ninhydrin colour equivalent to that given by 0·88–1·01μmoles of glycine. Hexosamine, hexose, pentose, lipid and dipicolinic acid were absent. 2. Paper chromatography of hydrolysates, besides showing the presence of the usual protein amino acids and three unidentified ninhydrin-reacting spots, indicated the presence of large amounts of glutamic acid. Estimated by chromatography, the amount present was 52·9±0·6 (s.d.) g./100g. of ash-free wall; manometric estimation of l-glutamic acid with l-glutamate 1-carboxy-lyase gave 46·5±0·9 (s.d.) g./100g. 3. Free carboxyl groups were estimated by titration as 0·159±0·011 (s.d.) mole/100g. and those present as amide as 0·154±0·004 (s.d.) mole/100g., and the total was compared with the dicarboxylic acid content 0·360±0·010 (s.d.) mole/100g. 4. After treatment with 98% formic acid 25–30% of the wall material could be extracted by 0·05m-sodium carbonate solution (extract 1); after treatment of the residue with performic acid a further 62–63% based on the original weight could be extracted by 0·05m-sodium carbonate (extract 2). 5. The average values found for the glutamic acid contents were 21·7g./100g. for extract 1 and 58·0g./100g. for extract 2. The cysteic acid content of whole oxidized wall was about 5·8g./100g. and of extract 2 also about 5·8g./100g. The glutamic acid and cysteic acid contents of the final residue were also investigated. 6. The significance of these extraction experiments in relation to the wall structure is discussed. ImagesPlate 1. PMID:4957913

  15. Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid

    PubMed Central

    Reguera, Juan; Carreira, Aura; Riolobos, Laura; Almendral, José María; Mateu, Mauricio G.

    2004-01-01

    Twenty-eight amino acid residues involved in most noncovalent interactions between trimeric protein subunits in the capsid of the parvovirus minute virus of mice were truncated individually to alanine, and the effects on capsid assembly, thermostability, and conformation were analyzed. Only seven side chains were essential for protein subunit recognition. These side chains virtually corresponded with those that either buried a large hydrophobic surface on trimer association or formed buried intertrimer hydrogen bonds or salt bridges. The seven residues are evolutionarily conserved, and they define regularly spaced spots on a thin equatorial belt surrounding each trimer. Truncation of the many side chains that were dispensable for assembly, including those participating in solvent-accessible polar interactions, did not substantially affect capsid thermostability either. However, the interfacial residues located at the base of the pores delineating the capsid five-fold axes participated in a heat-induced conformational rearrangement associated with externalization of the capsid protein N terminus, and they were needed for infectivity. Thus, at the subunit interfaces of this model virus capsid, only key residues involved in the strongest interactions are critical for assembly and stability, but additional residues fulfill other important biological roles. PMID:14981262

  16. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  17. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    PubMed Central

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-01

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism. PMID:25588215

  18. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  19. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  20. 40 CFR 180.318 - 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)butanoic acid, and its metabolite MCPA, (4-chloro-2-methylphenoxy)acetic acid, in or on the following food... acid; tolerance for residues. 180.318 Section 180.318 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.318 4-(2-Methyl-4-chlorophenoxy) butyric acid; tolerance for...

  1. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. PMID:27474618

  2. Determination of residue-specific acid dissociation constants for peptides by band-selective homonuclear-decoupled (1)H NMR.

    PubMed

    Wang, Jing; Rabenstein, Dallas L

    2007-09-01

    Acid dissociation constants of side-chain acidic groups of amino acid residues in peptides can be determined by 1H NMR, provided resonances can be resolved for carbon-bonded reporter protons located near the acidic group. We report here that the increased resolution of the band-selective homonuclear-decoupled (BASHD) TOCSY experiment greatly extends the range of application of the NMR method for determination of residue-specific, side-chain acid dissociation constants of peptides that contain multiple residues of the same amino acid. Chemical shift-pH titration curves are obtained from cross-peaks for reporter protons in BASHD-TOCSY spectra measured as a function of pH. The method is based on using sequence-dependent differences in the chemical shifts of resonances for the backbone CalphaH protons and the increased resolution in BASHD-TOCSY spectra from collapse of CalphaH multiplets to singlets in the F1 dimension to resolve resonances for the side-chain reporter protons. Application of the method is demonstrated by determination of residue-specific pKA values for each of the side-chain ammonium groups of the six lysine residues in the hexadecapeptide Ac-SRGKAKVKAKVKDQTK-NH2. Chemical shift-pH titration curves were obtained for the lysine side-chain CepsilonH2 reporter protons from their resolved CalphaH-CepsilonH2 TOCSY cross-peaks in BASHD-TOCSY spectra. Relative acidities of the six ammonium groups were also determined from the residue specific chemical shift-pH titration data by a pH-independent method, and calculation of fractional concentrations of protonation microspecies using the residue-specific pKAs is also described.

  3. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy.

    PubMed

    Zhao, Bo; Zhang, Qi

    2015-10-28

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.

  4. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.

    PubMed

    Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M

    2001-11-01

    Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.

  5. Particulates in hydrometallurgy: Part III. Dewatering behavior of flocculated laterite acid leach residues

    NASA Astrophysics Data System (ADS)

    Briceno, A.; Osseo-Asare, K.

    1995-02-01

    Three polyacrylamide-based polymers of different chemical properties (polymer A, 34 pct anionic, 11×106 mol wt; polymer B, 7 pct anionic, 7.5×106 mol wt; polymer C, nonionic, 13.5×106 mol wt) were used to evaluate the flocculation behavior of laterite acid leach residues. The solid-liquid separation characteristics of the leach residues were investigated with the aid of settling rate, supernatant turbidity, and slurry filtrability measurements. The polymeric flocculants were found to be effective in improving the dewatering properties of the acid leach residues. Polymer effectiveness increased with increasing polymer dosage for all the polymers, but an optimum polymer dose was only found for polymer A (34 pct anionic, 11×106 mol wt) in the studied range of polymer addition. Similarly, the dewatering behavior was improved at higher polymer molecular weight. In addition, it was found that the flocculation performance was adversely affected by an increase in the degree of polymer hydrolysis which, in turn, increases the ratio of carboxylic to amide functional groups in the polymer chain. Polymer C (nonionic ˜0 pct hydrolysis, 13.5×106 mol wt) was found to be the most efficient flocculant in terms of all the performance criteria investigated. The preceding results were rationalized in terms of bridging flocculation, the ionization and molecular configuration of the polymers, hydrogen bonding, and the solid/aqueous interfacial charge.

  6. Iterative methods based upon residual averaging

    NASA Technical Reports Server (NTRS)

    Neuberger, J. W.

    1980-01-01

    Iterative methods for solving boundary value problems for systems of nonlinear partial differential equations are discussed. The methods involve subtracting an average of residuals from one approximation in order to arrive at a subsequent approximation. Two abstract methods in Hilbert space are given and application of these methods to quasilinear systems to give numerical schemes for such problems is demonstrated. Potential theoretic matters related to the iteration schemes are discussed.

  7. A critical amino acid residue, asp446, in UDP-glucuronosyltransferase.

    PubMed Central

    Iwano, H; Yokota, H; Ohgiya, S; Yotumoto, N; Yuasa, A

    1997-01-01

    An amino acid residue, Asp446, was found to be essential for the enzymic activity of UDP-glucuronosyltransferase (UGT). We obtained a rat phenol UGT (UGT1*06) cDNA (named Ysh) from male rat liver by reverse-transcription (RT)-PCR using pfu polymerase. A mutant Ysh having two different bases, A1337G and G1384A (named Ysh A1337GC1384A), that result in two amino acid substitutions, D446G and V462M, was obtained by RT-PCR using Taq polymerase. Ysh was expressed functionally in microsomes of Saccharomyces cerevisiae strain AH22. However, the expressed protein from YshA1337GG1384A had no transferase activity. Two other mutant cDNAs with YshA1337G having one changed base, A1337G, resulting in one amino acid substitution, D446G, and YshG1384A having a changed base, G1384A, resulting in an amino acid substitution, V462M, were constructed and expressed in the yeast. The expressed protein from YshG1384A (named YshV462M) exhibited enzymic activity, but the one from YshA1337G (named YshD446G) did not show any activity at all. Asp446 was conserved in all UGTs and UDP-galactose:ceramide galactosyltransferases reported, suggesting that Asp446 plays a critical role in each enzyme. PMID:9271076

  8. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false 1-Naphthaleneacetic acid; tolerances for residues. 180.155 Section 180.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.155 1-Naphthaleneacetic...

  9. 40 CFR 180.155 - 1-Naphthaleneacetic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false 1-Naphthaleneacetic acid; tolerances for residues. 180.155 Section 180.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.155 1-Naphthaleneacetic...

  10. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite p... million Bean, mung, sprouts 0.2 (b) Section 18 emergency exemptions. (c) Tolerances with...

  11. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite p... million Bean, mung, sprouts 0.2 (b) Section 18 emergency exemptions. (c) Tolerances with...

  12. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite p... million Bean, mung, sprouts 0.2 (b) Section 18 emergency exemptions. (c) Tolerances with...

  13. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite p... million Bean, mung, sprouts 0.2 (b) Section 18 emergency exemptions. (c) Tolerances with...

  14. 40 CFR 180.202 - p-Chlorophenoxyacetic acid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... established for the combined residues of the plant regulator p-chlorophenoxyacetic acid and its metabolite p... million Bean, mung, sprouts 0.2 (b) Section 18 emergency exemptions. (c) Tolerances with...

  15. Zinc-Mediated Binding of Nucleic Acids to Amyloid-β Aggregates: Role of Histidine Residues.

    PubMed

    Khmeleva, Svetlana A; Radko, Sergey P; Kozin, Sergey A; Kiseleva, Yana Y; Mezentsev, Yuri V; Mitkevich, Vladimir A; Kurbatov, Leonid K; Ivanov, Alexis S; Makarov, Alexander A

    2016-09-01

    Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aβ42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed β-sheet rich Aβ42 aggregates. Another type of Aβ42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aβ metal-binding domain's histidine residues in Aβ-nucleic acid interactions mediated by zinc, Aβ16 mutants with substitutions H6R and H6A-H13A and rat Aβ16 lacking histidine residue 13 were used. The zinc-induced interaction of Aβ16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aβ42 peptide did not affect DNA binding to Aβ42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAβ-nucleic acid interactions. PMID:27567853

  16. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  17. Prediction of contact residue pairs based on co-substitution between sites in protein structures.

    PubMed

    Miyazawa, Sanzo

    2013-01-01

    Residue-residue interactions that fold a protein into a unique three-dimensional structure and make it play a specific function impose structural and functional constraints in varying degrees on each residue site. Selective constraints on residue sites are recorded in amino acid orders in homologous sequences and also in the evolutionary trace of amino acid substitutions. A challenge is to extract direct dependences between residue sites by removing phylogenetic correlations and indirect dependences through other residues within a protein or even through other molecules. Rapid growth of protein families with unknown folds requires an accurate de novo prediction method for protein structure. Recent attempts of disentangling direct from indirect dependences of amino acid types between residue positions in multiple sequence alignments have revealed that inferred residue-residue proximities can be sufficient information to predict a protein fold without the use of known three-dimensional structures. Here, we propose an alternative method of inferring coevolving site pairs from concurrent and compensatory substitutions between sites in each branch of a phylogenetic tree. Substitution probability and physico-chemical changes (volume, charge, hydrogen-bonding capability, and others) accompanied by substitutions at each site in each branch of a phylogenetic tree are estimated with the likelihood of each substitution, and their direct correlations between sites are used to detect concurrent and compensatory substitutions. In order to extract direct dependences between sites, partial correlation coefficients of the characteristic changes along branches between sites, in which linear multiple dependences on feature vectors at other sites are removed, are calculated and used to rank coevolving site pairs. Accuracy of contact prediction based on the present coevolution score is comparable to that achieved by a maximum entropy model of protein sequences for 15 protein families

  18. The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

    PubMed Central

    Dagil, Yulia A.; Arbatsky, Nikolai P.; Alkhazova, Biana I.; L’vov, Vyacheslav L.; Mazurov, Dmitriy V.; Pashenkov, Mikhail V.

    2016-01-01

    Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants. PMID:27513337

  19. [Oxytetracycline and oxolinic acid residues in kuruma prawn (Penaeus japonicus) and the effect of cooking procedures on the residues].

    PubMed

    Uno, Kazuaki

    2002-04-01

    Tissue distribution and residue depletion of oxytetracycline (OTC) and oxolinic acid (OA) were studied in the kuruma prawn (Penaeus japonicus). The prawn were kept in tanks with recirculated artificial seawater at a salinity of 22-23@1000. The water temperature was maintained at 25 degrees C. The average body weight was 22.9 +/- 4.9 g for OTC and 22.5 +/- 3.6 g for OA. The drug was mixed with the diet and orally administered through a catheter to the prawn. The doses of OTC and OA, respectively, were 50 mg/kg body weight. At each sample time, four prawns were sacrificed and tissues were sampled. OTC and OA levels were determined by high-performance liquid chromatography. At the highest levels, the concentrations of OTC were in the other: shell (13.57 micrograms/g) > hemolymph (12.20 micrograms/mL) > muscle (8.30 micrograms/g). For OA, the order was: shell (20.74 micrograms/g) > hemolymph (7.06 micrograms/mL) > muscle (2.05 micrograms/g). The elimination half-lives of hemolymph and muscle were 44.7 and 46.8 hours for OTC and 55.0 and 107.9 hours for OA, respectively. Residual OTC could not be detected in hemolymph and muscle at 20 days after dosing. Residual OA disappeared from hemolymph and muscle at 25 days after dosing. A 25-day period for OTC and 30-day period for OA could be regarded as the proper withdrawal time established for kuruma prawn by the Pharmaceutical Law in Japan. However, the elimination half-lives of shell for OTC and OA could not be calculated because both drug residues persisted in shell tissues, and the elimination phase was not completed during the experimental period. Residual OTC (14.10 +/- 2.26 micrograms/g, n = 6) and OA (0.32 +/- 0.06 microgram/g, n = 7) were detected in exuviae at 3 days and 4 days after dosing, respectively. Residual OTC was reduced to 50-70% in muscle by the usual methods of cooking (boiling, baking at 200 degrees C and frying at 180 degrees C), whereas reduction levels in shell were only 20-30%. Residual OA was

  20. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.

    PubMed

    Wang, Changhui; Wang, Ziyuan; Lin, Lu; Tian, Binghui; Pei, Yuansheng

    2012-02-15

    Effects of low molecular weight organic acids (LMWOAs; citric acid, oxalic acid and tartaric acid) on phosphorus (P) adsorption by ferric-alum water treatment residuals (FARs) were studied. Both batch and column experiments indicated that the effects of LMWOAs on P adsorption were closely related to adsorption time. Initially, all acids presented inhibitory function on P adsorption. The inhibition became weaker with time, eventually promoting P adsorption for citric acid and tartaric acid. In the column experiment with a 61-day duration, high P adsorption rates (>55%) were observed for the test groups containing citric acid and tartaric acid. Interestingly, higher pH likely enhanced P adsorption with the effects of LMWOAs and a distinct relationship between LMWOAs' effects on P adsorption and their concentrations was not observed. Moreover, fractionation of the adsorbed P from the FARs demonstrated that oxalic acid reduced P adsorption capacity, while citric acid and tartaric acid increased. Based on the forms of Fe and Al existing in the FARs and Fourier transform infrared spectroscopy analyses, LMWOAs can promote P adsorption through activating crystalline Fe/Al and preventing crystallization of amorphous Fe/Al to increase P adsorption sites, and can also inhibit P adsorption by competition with adsorption sites.

  1. T Cell Determinants Incorporating [beta]-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo

    SciTech Connect

    Webb, Andrew I.; Dunstone, Michelle A.; Williamson, Nicholas A.; Price, Jason D.; Kauwe, Andreade; Chen, Weisan; Oakley, Aaron; Perlmutter, Patrick; McCluskey, James; Aguilar, Marie-Isabel; Rossjohn, Jamie; Purcell, Anthony W.

    2010-07-20

    A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of {beta}-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding {beta}-amino acid and examined the resultant efficacy of these mimotopes. Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with {beta}-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using {beta}-amino acids. We conclude that the rational incorporation of {beta}-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring {alpha}-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.

  2. Evaluation of the number of ionogenic groups of inulinase by acid-base titration.

    PubMed

    Kovaleva, T A; Holyavka, M G; Rezvan, S G; Kozhedub, S V

    2008-06-01

    Acid base titration showed that Aspergillus awamori inulinase includes 178 asparaginic and glutamic acid residues, 20 histidine, 10 serine, and 34 lysine and tyrosine residues. Denaturation temperature for this enzyme was calculated using analysis of the proportion of stabilizing and destabilizing amino acids in the molecule.

  3. Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity

    PubMed Central

    Wu, Shih-Lu; Li, Chia-Cheng; Chen, Jaw-Chyun; Chen, Yi-Jin; Lin, Ching-Ting; Ho, Tin-Yun; Hsiang, Chien-Yun

    2009-01-01

    Background Endonuclease G (EndoG), a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. Methods To identify the critical amino acid residues of human EndoG, we replaced the conserved histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-expressed EndoG variants were further analyzed by kinetic studies. Results Diethyl pyrocarbonate modification assay revealed that histidine residues were involved in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for catalysis and substrate specificity. H141A mutant required a higher magnesium concentration to achieve its activity, suggesting the unique role of His-141 in both catalysis and magnesium coordination. Furthermore, an additional catalytic residue (Asn-251) and an additional metal ion binding site (Glu-271) of human EndoG were identified. Conclusion Based on the mutational analysis and homology modeling, we proposed that human EndoG shared a similar catalytic mechanism with nuclease A from Anabaena. PMID:19272175

  4. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-01

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs.

  5. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    PubMed

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation.

  6. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    PubMed

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation. PMID:26235877

  7. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.

    PubMed

    Shimamura, A; Nakano, Y J; Mukasa, H; Kuramitsu, H K

    1994-08-01

    The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs.

  8. A Mutational Analysis of Active Site Residues in trans-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Poelarends, Gerrit J.; Serrano, Hector; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    trans -3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations. PMID:23851010

  9. New charge-bearing amino acid residues that promote β-sheet secondary structure.

    PubMed

    Maynard, Stacy J; Almeida, Aaron M; Yoshimi, Yasuharu; Gellman, Samuel H

    2014-11-26

    Proteinogenic amino acid residues that promote β-sheet secondary structure are hydrophobic (e.g., Ile or Val) or only moderately polar (e.g., Thr). The design of peptides intended to display β-sheet secondary structure in water typically requires one set of residues to ensure conformational stability and an orthogonal set, with charged side chains, to ensure aqueous solubility and discourage self-association. Here we describe new amino acids that manifest substantial β-sheet propensity, by virtue of β-branching, and also bear an ionizable group in the side chain. PMID:25393077

  10. Radiogenic Ar retention in residual silica from acid-treated micas

    NASA Astrophysics Data System (ADS)

    Derkowski, Arkadiusz; Szczerba, Marek; Środoń, Jan; Banaś, Michał

    2014-03-01

    In sedimentary basins, immediate equilibration with surface and pore waters of Ar, released from K-bearing minerals during their diagenesis or weathering, has been a paradigm for geochemistry and geochronology. Consequently, K-Ar and Ar-Ar isotope geochronology techniques applied to sedimentary rocks are based on an assumption that no measurable external radiogenic 40Ar (“excess argon”) has been locked in the rock components during their formation and alteration. Our results indicate that the reaction of micaceous sedimentary and diagenetic clay minerals (illite, glauconite) with acid produces microporous silica that retains a great fraction of the initial argon, releasing potassium to the solution. In all tested cases the evolution of K-Ar isotope ages followed the very same pattern: the apparent K-Ar isotope age increased enormously after acid treatment and dropped significantly after silica removal (with hot Na2CO3), but never decreased lower than the initial K-Ar isotope age of the untreated sample. The amorphous silica content and the apparent K-Ar age increased with the acid reaction time. Using the molecular dynamics simulations, the clay-acid reaction by-product was shown to bend and wrap, producing three-dimensional, protonated and hydrated silica. As a consequence of dramatically different hydration energies of Ar and K, potassium is instantaneously released and hydrated outside the residual structure while Ar atoms remain inside the silica network, adsorbed on the surface. This is, to our knowledge, the first experimental evidence that the excess argon can be retained in solid mineral reaction products formed under pressure and temperature close to those of the Earth surface (1 atm, <80 °C).

  11. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.

    PubMed

    Tyler-Cross, R; Schirch, V

    1991-11-25

    The nonenzymatic rates of deamidation of Asn residues in a series of pentapeptides with the sequences VSNXV and VXNSV, where X is one of 10 different amino acids, were determined at neutral, alkaline, and acid pH values. The results demonstrate that in neutral and alkaline solutions the amino acid residue on the amino side of the Asn had little or no effect on the rate of deamidation regardless of its charge or size. The group on the carboxyl side of Asn affected the rate of deamidation significantly. Increasing size and branching in the side chain of this residue decreased the rate of deamidation by as much as 70-fold compared to glycine in the N-G sequence, which had the greatest rate of deamidation. In acidic solution, the rate of deamidation of the Asn residue was not affected by the amino acid sequence of the peptide. The products for each deamidation reaction were tested for the formation of isoAsp residues. In neutral and alkaline solutions, all products showed that the isoAsp:Asp peptide products were formed in about a 3:1 ratio. In acidic solution, the Asp peptide was the only deamidation product formed. All peptides in which a Ser residue follows the Asn residue were found to undergo a peptide cleavage reaction in neutral and alkaline solutions, yielding a tripeptide and a dipeptide. The rate of the cleavage reaction was about 10% of the rate of the deamidation pathway at neutral and alkaline pH values. The rates of deamidation of Asn residues in the peptides studied were not affected by ionic strength, and were not specific base catalyzed. General base catalysis was observed for small bases like ammonia. A model for the deamidation reaction is proposed to account for the observed effects. PMID:1939272

  12. Evolutionary diversification of aminopeptidase N in Lepidoptera by conserved clade-specific amino acid residues.

    PubMed

    Hughes, Austin L

    2014-07-01

    Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family.

  13. Differentiating N-terminal aspartic and isoaspartic acid residues in peptides.

    PubMed

    Sargaeva, Nadezda P; Lin, Cheng; O'Connor, Peter B

    2011-09-01

    Formation of isoaspartic acid (isoAsp) is a common modification of aspartic acid (Asp) or asparagine (Asn) residue in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar properties and identical molecular mass. It was recently shown that they can be differentiated using ion-electron or ion-ion interaction fragmentation methods (ExD) because these methods provide diagnostic fragments c + 57 and z(•) - 57 specific to the isoAsp residue. To date, however, the presence of such fragments has not been explored on peptides with an N-terminal isoAsp residue. To address this question, several N-terminal isoAsp-containing peptides were analyzed using ExD methods alone or combined with chromatography. A diagnostic fragment [M + 2H - 74](+•) was observed for the doubly charged precursor ions with N-terminal isoAsp residues. For some peptides, identification of the N-terminal isoAsp residue was challenging because of the low diagnostic ion peak intensity and the presence of interfering peaks. Supplemental activation was used to improve diagnostic ion detection. Further, N-terminal acetylation was offered as a means to overcome the interference problem by shifting the diagnostic fragment peak to [M + 2H - 116](+•).

  14. Evolutionary Diversifaction of Aminopeptidase N in Lepidoptera by Conserved Clade-specific Amino Acid Residues

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family. PMID:24675701

  15. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    EPA Science Inventory

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  16. Selenium adsorption to aluminum-based water treatment residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solutions at pH values o...

  17. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  18. Residual stress determination from a laser-based curvature measurement

    SciTech Connect

    W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright

    2000-05-08

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  19. Residual Stress Determination from a Laser-Based Curvature Measurement

    SciTech Connect

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  20. An OFDM-Based Speech Encryption System without Residual Intelligibility

    NASA Astrophysics Data System (ADS)

    Tseng, Der-Chang; Chiu, Jung-Hui

    Since an FFT-based speech encryption system retains a considerable residual intelligibility, such as talk spurts and the original intonation in the encrypted speech, this makes it easy for eavesdroppers to deduce the information contents from the encrypted speech. In this letter, we propose a new technique based on the combination of an orthogonal frequency division multiplexing (OFDM) scheme and an appropriate QAM mapping method to remove the residual intelligibility from the encrypted speech by permuting several frequency components. In addition, the proposed OFDM-based speech encryption system needs only two FFT operations instead of the four required by the FFT-based speech encryption system. Simulation results are presented to show the effectiveness of this proposed technique.

  1. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... connection with the use of the pesticide under section 5 experimental use permit. The tolerance will...

  2. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... connection with the use of the pesticide under section 5 experimental use permit. The tolerance will...

  3. 40 CFR 180.550 - Arsanilic acid [(4-aminophenyl) arsonic acid]; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... connection with the use of the pesticide under section 5 experimental use permit. The tolerance will...

  4. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  5. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    PubMed Central

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  6. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    PubMed

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  7. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    PubMed

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  8. Identification of the amino acid residues rendering TI-VAMP insensitive toward botulinum neurotoxin B.

    PubMed

    Sikorra, Stefan; Henke, Tina; Swaminathan, Subramanyam; Galli, Thierry; Binz, Thomas

    2006-03-24

    Botulinum neurotoxins types B, D, F, and G, and tetanus neurotoxin inhibit vesicular fusion via proteolytic cleavage of VAMP/Synaptobrevin, a core component of the membrane fusion machinery. Thus, these neurotoxins became widely used tools for investigating vesicular trafficking routes. Except for VAMP-1, VAMP-2, and Cellubrevin, no other member of the VAMP family represents a substrate for these neurotoxins. The molecular basis for this discrepancy is not known. A 34 amino acid residue segment of VAMP-2 was previously suggested to mediate the interaction with botulinum neurotoxin B, but the validity of the data was later questioned. To check whether this segment alone controls the susceptibility toward botulinum neurotoxin B, it was used to replace the corresponding segment in TI-VAMP. The resulting VAMP hybrid and VAMP-2 were hydrolysed at virtually identical rates. Resetting the VAMP-2 portion in the hybrid from either end to TI-VAMP residues gradually reduced the cleavability. A hybrid encompassing merely the VAMP-2 segment 71-80 around the Gln76/Phe77 scissile bond was still hydrolysed, albeit at a approximately tenfold lower cleavage rate. The contribution of each non-conserved amino acid of the whole 34-mer segment to the interaction was investigated employing VAMP-2. We find that the eight non-conserved residues of the 71-80 segment are all necessary for efficient cleavage. Mutation of an additional six residues located upstream and downstream of this segment affects substrate hydrolysis as well. Vice versa, a readily cleavable TI-VAMP molecule requires at the least the replacement of Ile158, Thr161, and the section 165-174 by Asp64, Ala67, and the 71-80 segment of VAMP-2, respectively. However, the insensitivity of TI-VAMP to botulinum neurotoxin B relies on at least 12 amino acid changes versus VAMP-2. These are scattered along an interface of 22 amino acid residues in length.

  9. A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production.

    PubMed

    Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2016-08-01

    The objective of the present study was to develop a sono-assisted acid pretreatment strategy for the effective removal of lignin and hemicelluloses and to improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, hydroxymethyl furfural and organic acids like citric acid, succinic acid and propionic acid were absent. Changes in structural properties of the biomass were studied in relation to the pretreatment process using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis, and the changes in chemical composition was also monitored. The biomass pretreated with the optimized novel method yielded 0.465g/g of reducing sugars on enzymatic hydrolysis. Fermentation of the non-detoxified hydrolysate yielded 2.14% of bioethanol with a fermentation efficiency of 71.03%. PMID:26949055

  10. Residuals and the Residual-Based Statistic for Testing Goodness of Fit of Structural Equation Models

    ERIC Educational Resources Information Center

    Foldnes, Njal; Foss, Tron; Olsson, Ulf Henning

    2012-01-01

    The residuals obtained from fitting a structural equation model are crucial ingredients in obtaining chi-square goodness-of-fit statistics for the model. The authors present a didactic discussion of the residuals, obtaining a geometrical interpretation by recognizing the residuals as the result of oblique projections. This sheds light on the…

  11. Urea, Glycolic Acid, and Glycerol in an Organic Residue Produced by Ultraviolet Irradiation of Interstellar/Pre-Cometary Ice Analogs

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.; d'Hendecourt, Louis; Thiemann, Wolfram H.-P.

    2010-03-01

    More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH3OH:NH3â = 1:1 ice mixture was UV irradiated at ˜80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.

  12. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.

    PubMed

    Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J; d'Hendecourt, Louis; Thiemann, Wolfram H-P

    2010-03-01

    More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH(3)OH:NH(3) = 1:1 ice mixture was UV irradiated at approximately 80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.

  13. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.

    PubMed

    Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J; d'Hendecourt, Louis; Thiemann, Wolfram H-P

    2010-03-01

    More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH(3)OH:NH(3) = 1:1 ice mixture was UV irradiated at approximately 80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed. PMID:20402585

  14. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  15. Identification of amino acid residues important for the function of Agrobacterium tumefaciens Irr protein.

    PubMed

    Bhubhanil, Sakkarin; Ruangkiattikul, Nantaporn; Niamyim, Phettree; Chamsing, Jareeya; Ngok-Ngam, Patchara; Sukchawalit, Rojana; Mongkolsuk, Skorn

    2012-10-01

    The key amino acid residues that influence the function of the Agrobacterium tumefaciens iron response regulator protein (Irr(At) ) were investigated. Several Irr(At) mutant proteins containing substitutions in amino acids corresponding to candidate metal- and haem-binding sites were constructed. The ability of the mutant proteins to repress the promoter of the membrane bound ferritin (mbfA) gene was investigated using a promoter-lacZ fusion assay. A single mutation at residue H94 significantly decreased the repressive activity of Irr(At) . Multiple mutation analysis revealed the importance of H45, H65, the HHH motif (H92, H93 and H94) and H127 for the repressor function of Irr(At) . H94 is essential for the iron responsiveness of Irr(At) . Furthermore, the Irr(At) mutant proteins showed differential abilities to complement the H(2) O(2) -hyper-resistant phenotype of an irr mutant. PMID:22817265

  16. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  17. Removal of copper from acid wastewater of bioleaching by adsorption onto ramie residue and uptake by Trichoderma viride.

    PubMed

    Wang, Buyun; Wang, Kai

    2013-05-01

    A continuous batch bioleaching was built to realize the bioleaching of sewage sludge in large scale. In the treatment, heavy metal in acid wastewater of bioleaching was removed by adsorption onto ramie residue. Then, acid wastewater was reused in next bioleaching batch. In this way, most time and water of bioleaching was saved and leaching efficiency of copper, lead and chromium kept at a high level in continuous batch bioleaching. It was found that residual heavy metal in sewage sludge is highly related to that in acid wastewater after bioleaching. To get a high leaching efficiency, concentration of heavy metal in acid wastewater should be low. Adsorption of copper from acid wastewater onto ramie residue can be described by pseudo first-order kinetics equation and Freundlich isotherm model. Trichoderma viride has the potential to be used for the concentration and recovery of heavy metal adsorbed onto ramie residue. PMID:23567687

  18. Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues

    PubMed Central

    Sieradzan, Adam K.; Hansmann, Ulrich H.E.; Scheraga, Harold A.; Liwo, Adam

    2013-01-01

    Coarse-grained force fields for protein simulations are usually designed and parameterized to treat proteins composed of natural L-amino-acid residues. However, D-amino-acid residues occur in bacterial, fungal (e.g., gramicidins), as well as human-designed proteins. For this reason, we have extended the UNRES coarse-grained force field developed in our laboratory to treat systems with D-amino-acid residues. We developed the respective virtual-bond-torsional and double-torsional potentials for rotation about the Cα · · · Cα virtual-bond axis and two consecutive Cα · · · Cα virtual-bond axes, respectively, as functions of virtual-bond-dihedral angles γ. In turn, these were calculated as potentials of mean force (PMFs) from the diabatic energy surfaces of terminally-blocked model compounds for glycine, alanine, and proline. The potential-energy surfaces were calculated by using the ab initio method of molecular quantum mechanics at the Møller-Plesset (MP2) level of theory and the 6-31G(d,p) basis set, with the rotation angles of the peptide groups about Ci-1α⋯Ciα(λ(1)) and Ciα⋯Ci+1α(λ(2)) used as variables, and the energy was minimized with respect to the remaining degrees of freedom. The PMFs were calculated by numerical integration for all pairs and triplets with all possible combinations of types (glycine, alanine, and proline) and chirality (D or L); however, symmetry relations reduce the number of non-equivalent torsional potentials to 13 and the number of double-torsional potentials to 63 for a given C-terminal blocking group. Subsequently, one- (for torsional) and two-dimensional (for double-torsional potentials) Fourier series were fitted to the PMFs to obtain analytical expressions. It was found that the torsional potentials of the x-Y and X-y types, where X and Y are Ala or Pro, respectively, and a lowercase letter denotes D-chirality, have global minima for small absolute values of γ, accounting for the double-helical structure of

  19. Chondroitin 4-sulphotransferase-1 and chondroitin 6-sulphotransferase-1 are affected differently by uronic acid residues neighbouring the acceptor GalNAc residues

    PubMed Central

    2004-01-01

    C4ST-1 (chondroitin 4-sulphotransferase-1) and C6ST-1 (chondroitin 6-sulphotransferase-1) transfer sulphate from PAPS (adenosine 3′-phosphate 5′-phosphosulphate) to positions 4 and 6 respectively of the GalNAc residues of chondroitin. We showed previously that C4ST-1 purified from rat chondrosarcoma and recombinant C4ST-1 both transfer sulphate efficiently to position 4 of the GalNAc residues of DSDS (desulphated dermatan sulphate). We report here the specificity of C4ST-1 and C6ST-1 in terms of uronic acid residue recognition around the GalNAc residue to which sulphate is transferred. When [35S]glycosaminoglycans formed from DSDS after incubation with [35S]PAPS and C4ST-1 were digested with chondroitinase ACII, a major part of the radioactivity was recovered in disaccharide fractions and the remainder distributed to tetrasaccharides and larger fractions, indicating that C4ST-1 mainly transferred sulphate to position 4 of the GalNAc residue located at the GlcA-GalNAc-GlcA sequence. Structural analysis of tetrasaccharide and larger oligosaccharide fractions indicated that C4ST-1 mainly transferred sulphate to the GalNAc residue adjacent to the reducing side of the GlcA residue. On the other hand, when [35S]glycosaminoglycans formed from DSDS after incubation with [35S]PAPS and C6ST-1 were digested with chondroitinase ACII, a major part of the radioactivity was recovered in fractions larger than hexasaccharides, indicating that C6ST-1 transferred sulphate to the GalNAc residues located in the L-iduronic acid-rich region. Structural analysis of the tetrasaccharide and larger oligosaccharide fractions indicated that C6ST-1 showed very little preference for the GalNAc residue neighbouring the GlcA residue. These results indicate that C4ST-1 and C6ST-1 differ from each other in the recognition of uronic acid residues adjacent to the targeted GalNAc residue. PMID:15324304

  20. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  1. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  2. Just three water molecules can trigger the undesired nonenzymatic reactions of aspartic acid residues: new insight from a quantum-chemical study

    NASA Astrophysics Data System (ADS)

    Takahashi, O.

    2014-03-01

    Aspartic acid (Asp) residues in peptides and proteins (L-Asp) can undergo spontaneous, nonenzymatic reactions under physiological conditions by which abnormal L-β-Asp, D-Asp, and/or D-β-Asp residues are formed. These altered Asp residues may affect the three-dimensional structures of the peptides and proteins and hence their properties and functions. In fact, the altered Asp residues are relevant to age-related diseases such as cataract and Alzheimer's disease. Most of the above reactions of the L-Asp residue proceed via a cyclic succinimide intermediate. In this paper, I propose a detailed mechanism of cyclization of an Asp residue (forming a precursor of the succinimide) by the B3LYP/6-31+G(d,p) density functional theory calculations carried out for a small Asp-containing model compound complexed with three water molecules which act as general acid-base catalysts in proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form. Then, successive reorientation of a water molecule and conformational change occur followed by the nucleophilic attack of the iminol nitrogen atom on the carboxyl carbon atom of the Asp side chain to form a five-membered ring. A satisfactory agreement was obtained between the calculated and experimental energetics.

  3. Study of TATP: method for determination of residual acids in TATP.

    PubMed

    Matyáš, Robert; Chýlková, Jaromíra

    2013-05-10

    Triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) is nowadays one of the most commonly used improvised explosives. It is prepared by the action of hydrogen peroxide on acetone in an acidic environment. Easily available mineral acids - hydrochloric, sulfuric, nitric and perchloric - are the most often recommended on the extremist web pages dealing with improvised production of explosives. The various TATP producers' choice of acid mainly depends on the author's experiences and the local availability of the acid. A knowledge of the kind of acid used for TATP production can help in detecting the person who has made the TATP, or who has committed a criminal act using TATP. Therefore, a capillary isotachophoretic method was developed for determination of residual anions (originating from the acid used during TATP synthesis) in the resulting TATP crystals. This analytical method has proved to be reliable; the acid used for TATP synthesis was correctly identified in all samples analyzed. PMID:23542054

  4. Amino Acid Residues in the ω-Minus Region Participate in Cellular Localization of Yeast Glycosylphosphatidylinositol-Attached Proteins

    PubMed Central

    Hamada, Kenji; Terashima, Hiromichi; Arisawa, Mikio; Yabuki, Nami; Kitada, Kunio

    1999-01-01

    The final destination of glycosylphosphatidylinositol (GPI)-attached proteins in Saccharomyces cerevisiae is the plasma membrane or the cell wall. Two kinds of signals have been proposed for their cellular localization: (i) the specific amino acid residues V, I, or L at the site 4 or 5 amino acids upstream of the GPI attachment site (the ω site) and Y or N at the site 2 amino acids upstream of the ω site for cell wall localization and (ii) dibasic residues in the region upstream of the ω site (the ω-minus region) for plasma membrane localization. The relationships between these amino acid residues and efficiencies of cell wall incorporation were examined by constructing fusion reporter proteins from open reading frames encoding putative GPI-attached proteins. The levels of incorporation were high in the constructs containing the specific amino acid residues and quite low in those containing two basic amino acid residues in the ω-minus region. With constructs that contained neither specific residues nor two basic residues, levels of incorporation were moderate. These correlations clearly suggest that GPI-attached proteins have two different signals which act positively or negatively in cell wall incorporation for their cellular localization. PMID:10383953

  5. A conserved acidic residue in phenylalanine hydroxylase contributes to cofactor affinity and catalysis.

    PubMed

    Ronau, Judith A; Paul, Lake N; Fuchs, Julian E; Liedl, Klaus R; Abu-Omar, Mahdi M; Das, Chittaranjan

    2014-11-01

    The catalytic domains of aromatic amino acid hydroxylases (AAAHs) contain a non-heme iron coordinated to a 2-His-1-carboxylate facial triad and two water molecules. Asp139 from Chromobacterium violaceum PAH (cPAH) resides within the second coordination sphere and contributes key hydrogen bonds with three active site waters that mediate its interaction with an oxidized form of the cofactor, 7,8-dihydro-l-biopterin, in crystal structures. To determine the catalytic role of this residue, various point mutants were prepared and characterized. Our isothermal titration calorimetry (ITC) analysis of iron binding implies that polarity at position 139 is not the sole criterion for metal affinity, as binding studies with D139E suggest that the size of the amino acid side chain also appears to be important. High-resolution crystal structures of the mutants reveal that Asp139 may not be essential for holding the bridging water molecules together, because many of these waters are retained even in the Ala mutant. However, interactions via the bridging waters contribute to cofactor binding at the active site, interactions for which charge of the residue is important, as the D139N mutant shows a 5-fold decrease in its affinity for pterin as revealed by ITC (compared to a 16-fold loss of affinity in the case of the Ala mutant). The Asn and Ala mutants show a much more pronounced defect in their kcat values, with nearly 16- and 100-fold changes relative to that of the wild type, respectively, indicating a substantial role of this residue in stabilization of the transition state by aligning the cofactor in a productive orientation, most likely through direct binding with the cofactor, supported by data from molecular dynamics simulations of the complexes. Our results indicate that the intervening water structure between the cofactor and the acidic residue masks direct interaction between the two, possibly to prevent uncoupled hydroxylation of the cofactor before the arrival of

  6. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.

  7. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. PMID:24240182

  8. A Novel Treatment for Acid Mine Drainage Utilizing Reclaimed Limestone Residual

    SciTech Connect

    Horace K. Moo-Young; Charles E. Ochola

    2004-08-31

    The viability of utilizing Reclaimed Limestone Residual (RLR) to remediate Acid Mine Drainage (AMD) was investigated. Physical and chemical characterization of RLR showed that it is composed of various minerals that contain significant quantities of limestone or calcium bearing compounds that can be exploited for acid neutralization. Acid Neutralization Potential (ANP) test results showed that RLR has a neutralization potential of approximately 83% as calcium carbonate (CaCO{sub 3}). Neutralization tests with most of the heavy metals associated with AMD showed removal efficiencies of over 99%. An unexpected benefit of utilizing RLR was the removal of hexavalent chromium Cr (VI) from the aqueous phase. Due to an elevation in pH by RLR most AMD heavy metals are removed from solution by precipitation as their metal hydroxides. Cr (VI) however is not removed by pH elevation and therefore subsequent ongoing tests to elucidate the mechanism responsible for this reaction were conducted.

  9. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  10. [Determination of clavulanic acid residue in milk by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Yang, Gang; Huang, Xianhui; Guo, Chunna; Fang, Qiuhua; He, Limin

    2012-06-01

    An analytical method was developed for the determination of clavulanic acid (CLAV) in milk by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A 2 g milk sample was deproteinized by ethanol. The supernatant was transferred into a pear-shaped bottle to be evaporated to about 0.5 mL, and the residue was dissolved with ammonium acetate solution. The sample was determined by HPLC-MS/MS after the purification. The chromatographic separation was achieved on a Luna 5u C8 column using 0.1% formic acid in water and acetonitrile as mobile phases with gradient elution. The identification of CLAV was carried out by MS/MS equipped with electrospray ionization in negative scanning and multiple reaction monitoring (MRM) modes. Matrix-matched calibration standard was used for the quantification. The calibration curve showed perfect linear in the range of 10 - 400 microg/kg with the correlation coefficient of 0.999. The limit of detection (LOD, S/N > or = 3) was 10 microg/kg in milk, and the limit of quantification (LOQ, S/N > or = 10) was 20 microg/kg. The mean recoveries varied from 80.00% to 91.25% at the four spiked levels of LOQ, 1/2MRL (the maximum residue limit), MRL, and 2MRL with the relative standard deviations of 5.60% -8.77%. In conclusion, the established method can be applied for the determination of CLAV residues in milk.

  11. Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of Composite K East Canister Sludge

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Soderquist, C.Z.; Fadeff, S.K.

    1999-04-02

    Laboratory tests were performed to examine mixed nitric/hydrofluoric acid leach treatments for decontaminating dissolver residual solids (KECDVSR24H-2) produced during a 20- to 24-hr dissolution of a composite K East (KE) Basin canister sludge in 95 C 6 M nitric acid (HNO{sub 3}). The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KECDVSR24H-2, contains radionuclides at concentrations which exceed the ERDF Waste Acceptance Criteria for TRU by about a factor of 70, for {sup 239}Pu by a factor of 200, and for {sup 241}Am by a factor of 50. The solids also exceed the ERDF criterion for {sup 137}Cs by a factor of 2 and uranium by a factor of 5. Therefore, the radionuclides of greatest interest in this leaching study are first {sup 239}Pu and {sup 241}Am (both components of TRU) and then uranium and {sup 137}Cs.

  12. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  13. [Nitrate nitrogen leaching and residue of humic acid fertilizer in field soil].

    PubMed

    Liu, Fang-chun; Xing, Shang-jun; Duan, Chun-hua; Du, Zhen-yu; Ma, Hai-lin; Ma, Bing-yao

    2010-07-01

    To elucidate the potential influence of humic acidfertilizer on groundwater and soil quality in clay soil (CS) and sandy soil (SS), nitrate nitrogen leaching and residue of different fertilizers in field soil were studied using a self-made leaching field device. Nitrate nitrogen concentration in leaching water of fertilizer treatments was 28.1%-222.2% higher than that of non-nitrogen treatment in different times, but humic acid fertilizer could prevent nitrate nitrogen leaching both in CS and SS, especially in CS. Nitrate nitrogen concentration of leaching water in CS was 41.2%-59.1% less than that in SS and the inhibiting effect in CS was greater than that in SS. Nitrate nitrogen could be accumulated in soil profile by fertilizer application. The residue of nitrate nitrogen retained in 0-40 cm soil layer of humic acid fertilizer treatment was 59.8% and 54.4% respectively, higher than that of urea and compound fertilizer treatments. Nitrate nitrogen amount of humic acid, urea and compound fertilizer treatments in SS was significantly less than that in CS, being 81.7%, 81.1% and 47.6% respectively. Compared with the conventional fertilizer, humic acid fertilizer treatment improved the contents of organic matter, available nitrogen, phosphorus, and potassium of upper layer soil as well as cation exchange capacity. Besides, total amount of water-soluble salts in humic acid fertilizer treatment was decreased by 24.8% and 22.5% in comparison to urea and compound fertilizer treatments in CS, respectively. In summary, the application of humic acid fertilizer could improve physical and chemical properties of upper layer soil and reduce the risk of potential pollution to groundwater.

  14. Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation.

    PubMed

    Kihara, Akio; Sakuraba, Hiroko; Ikeda, Mika; Denpoh, Aki; Igarashi, Yasuyuki

    2008-04-25

    Yeast Phs1 is the 3-hydroxyacyl-CoA dehydratase that catalyzes the third reaction of the four-step cycle in the elongation of very long-chain fatty acids (VLCFAs). In yeast, the hydrophobic backbone of sphingolipids, ceramide, consists of a long-chain base and an amide-linked C26 VLCFA. Therefore, defects in VLCFA synthesis would be expected to greatly affect sphingolipid synthesis. In fact, in this study we found that reduced Phs1 levels result in significant impairment of the conversion of ceramide to inositol phosphorylceramide. Phs1 proteins are conserved among eukaryotes, constituting a novel protein family. Phs1 family members exhibit no sequence similarity to other dehydratase families, so their active site sequence and catalytic mechanism have been completely unknown. Here, by mutating 22 residues conserved among Phs1 family members, we identified six amino acid residues important in Phs1 function, two of which (Tyr-149 and Glu-156) are indispensable. We also examined the membrane topology of Phs1 using an N-glycosylation reporter assay. Our results suggest that Phs1 is a membrane-spanning protein that traverses the membrane six times and has an N terminus and C terminus facing the cytosol. The important amino acids are concentrated in or near two of the six proposed transmembrane regions. Thus, we also propose a catalytic mechanism for Phs1 that is not unlike mechanisms used by other hydratases active in lipid synthesis.

  15. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    SciTech Connect

    He, Yi; Scheraga, Harold A.; Liwo, Adam

    2015-12-28

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  16. Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach

    NASA Astrophysics Data System (ADS)

    He, Yi; Liwo, Adam; Scheraga, Harold A.

    2015-12-01

    Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.

  17. Function of aspartic acid residues in optimum pH control of L-arabinose isomerase from Lactobacillus fermentum.

    PubMed

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Zhan, Yijing; Xu, Hong

    2014-05-01

    L-Arabinose isomerase (L-AI) catalyzes the isomerization of L-arabinose to L-ribulose and D-galactose to D-tagatose. Most reported L-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial D-tagatose production. Lactobacillus fermentum L-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for D-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, D-galactose was isomerized into D-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other L-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of L-AIs that can be modified for desired optimum pH and better pH stability, which are useful in D-tagatose bioproduction.

  18. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases.

    PubMed

    Salmon, Melissa; Thimmappa, Ramesha B; Minto, Robert E; Melton, Rachel E; Hughes, Richard K; O'Maille, Paul E; Hemmings, Andrew M; Osbourn, Anne

    2016-07-26

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  19. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  20. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  1. Quantitation of residual mouse DNA in monoclonal antibody based products.

    PubMed

    Per, S R; Aversa, C R; Sito, A F

    1990-01-01

    The identification and characterization of cell substrates and testing of bulk and final products is an important issue which must be addressed by manufacturers. In view of the fact that hundreds of applications for Investigational New Drugs (IND) have been submitted over the past few years, there is an obvious need for testing of these products. Detection of DNA by molecular hybridization has been used for various applications including the quantitation and characterization of DNA in biological products. We have developed a precise assay based on hybridization for the detection and quantitation of residual genomic DNA. In order to reduce protein interference, a specific pretreatment method for isolation of DNA in monoclonal antibody based products was implemented. We have used the assay to evaluate levels of contaminating DNA in prepared lots of monoclonal antibodies. Validation experiments demonstrated a sensitivity below 10 pg DNA using nick-translated 32P-labelled genomic DNA probes. The assay allows accurate quantitation of residual DNA in biologics.

  2. Complete replacement of basic amino acid residues with cysteines in Rickettsia prowazekii ATP/ADP translocase.

    PubMed

    Alexeyev, Mikhail F; Winkler, Herbert H

    2002-09-20

    The ATP/ADP translocase (Tlc) of Rickettsia prowazekii is a basic protein with isoelectric point (pI)=9.84. It is conceivable, therefore, that basic residues in this protein are involved in electrostatic interactions with negatively charged substrates. We tested this hypothesis by individually mutating all basic residues in Tlc to Cys. Unexpectedly, mutations of only 20 out of 51 basic residues resulted in greater than 80% inhibition of transport activity. Moreover, 12 of 51Cys-substitution mutants exhibited higher than wild-type (WT) activity. At least in one case this up-effect was additive and the double mutant Lys422Cys Lys427Cys transported ATP five-fold better than WT protein. Since in these two single mutants and in the corresponding double mutant K(m)'s were similar to that of WT protein, we conclude that Tlc may have evolved a mechanism that limits the transporter's exchange rate and that at least these two basic residues play a key role in that mechanism. Based on the alignment of 16 Tlc homologs, the loss of activity in the mutants poorly correlates with charge conservation within the Tlc family. Also, despite the presence of three positively charged and one negatively charged intramembrane residues, we have failed to identify potential charge pairs (salt bridges) by either charge reversal or charge neutralization approaches. PMID:12225862

  3. Effect of lime on the availability of residual phosphorus and its extractability by dilute acid

    SciTech Connect

    Rhue, R.D.; Hensel, D.R.

    1983-01-01

    The objective of this study was to determine the long-term effects of liming an acid, P-deficient Placid sand (sandy, siliceous, hyperthermic Typic Humaquept) on the availability of residual fertilizer P to potatoes (Solanum tuberosum L.). Dolomitic limestone was applied in November 1977, at rates of 0, 2240, 4480, and 8960 kg/ha in a split-plot design with lime as main plots and P treatments as subplots. Phosphorus was applied at rates of 0, 56, 112, and 168 kg/ha in 1978. In 1979 and 1980, P plots were split with one-half fertilized with 56 kg P/ha and the other one-half not fertilized with P (residual). In 1978, maximum tuber yields and top dry weights occurred at the 2240 kg/ha lime rate which resulted in a soil pH of 5.8. Plant P concentrations were unaffected by lime at any sampling rate. In 1979, availability of residual soil P decreased with lime rates > 2240 kg/ha but not enough to significantly affect yields. However, in 1980, overliming injury was observed for tuber yields at the higher lime rates which was the result of P deficiency. Application of P at planting eliminated the overliming injury with maximum yields occurring in the pH range of 6.0 to 6.5. It appears that liming to pH 6.5 in this study resulted in fertilizer reaction products that were more soluble in dilute acid but less plant available than those formed under more acid conditions. However, the Mehlich I extractant appeared to be a suitable extractant for P on this soil if pH was taken into account when interpreting soil-test P. 23 references, 4 figures, 2 tables.

  4. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction.

    PubMed

    Somajo, Sofia; Ahnström, Josefin; Fernandez-Recio, Juan; Gierula, Magdalena; Villoutreix, Bruno O; Dahlbäck, Björn

    2015-05-01

    Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50-60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LG-domains.

  5. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization.

    PubMed

    Addamiano, Claudia; Gerland, Béatrice; Payrastre, Corinne; Escudier, Jean-Marc

    2016-01-01

    Construction and physico-chemical behavior of DNA three way junction (3WJ) functionalized by protein-like residues (imidazole, alcohol and carboxylic acid) at unpaired positions at the core is described. One 5'-C(S)-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5'-C(S)-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected. PMID:27563857

  6. Key Amino Acid Residues of Ankyrin-Sensitive Phosphatidylethanolamine/Phosphatidylcholine-Lipid Binding Site of βI-Spectrin

    PubMed Central

    Wolny, Marcin; Grzybek, Michał; Bok, Ewa; Chorzalska, Anna; Lenoir, Marc; Czogalla, Aleksander; Adamczyk, Klaudia; Kolondra, Adam; Diakowski, Witold; Overduin, Michael; Sikorski, Aleksander F.

    2011-01-01

    It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that “opening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton. PMID:21738695

  7. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida.

    PubMed

    Fukumoto, Mitsuki; Kudou, Daizou; Murano, Shouko; Shiba, Tomoo; Sato, Dan; Tamura, Takashi; Harada, Shigeharu; Inagaki, Kenji

    2012-01-01

    Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.

  8. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  9. Radiometric acid-base titrations.

    PubMed

    Erdey, L; Gimesi, O; Szabadváry, F

    1969-03-01

    Acid-base titrations can be performed with radiometric end-point detection by use of labelled metal salts (e.g., ZnCl(2), HgCl(2)). Owing to the formation or dissolution of the corresponding hydroxide after the equivalence point, the activity of the titrated solution linearly increases or decreases as excess of standard solution is added. The end-point of the titration is determined graphically.

  10. Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of the hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose.

    PubMed Central

    Ludwigs, U; Elgavish, A; Esko, J D; Meezan, E; Rodén, L

    1987-01-01

    Degradation of connective-tissue polysaccharides with bacterial or fungal eliminases and subsequent characterization of the reaction products are now part of standard methodology for the analysis of these compounds. However, the scope of preparative and analytical work based on the use of eliminases has been limited by the lack of procedures for specific removal of the unsaturated uronic acid residues generated in the eliminase reactions. In the present investigation, we have shown that these residues are cleaved by mercuric salts under mild conditions that are not likely to affect other structures in an oligo- or poly-saccharide molecule. Thus the disaccharide generated from hyaluronic acid by digestion with chondroitinase AC or ABC was cleaved into a keto acid and free N-acetylglucosamine within 10 min at room temperature upon exposure to 14 mM-mercuric acetate at pH 5. The reaction of the disaccharide with mercuric salts was used for ready determination of the distribution of radioactivity between the glucuronic acid and N-acetylglucosamine moieties in radioactive hyaluronic acid that had been synthesized by IMR-90 fibroblasts from 3H-labelled monosaccharides. When the precursor was [3H]galactose, over 95% of the incorporated radioactivity was found in the glucuronic acid moiety. In contrast, cells grown in the presence of [3H]glucosamine synthesized a polysaccharide in which almost all of the label was located in the N-acetylglucosamine units. It is apparent from these experiments that the reaction of unsaturated uronic acid residues with mercuric salts provides a new tool with potential for many applications in the study of the structure and metabolism of connective-tissue polysaccharides. PMID:3663191

  11. Identification of essential amino acid residues of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Takahashi, T; Hiramoto, S; Wato, S; Nishimoto, T; Wada, Y; Nagai, K; Yamaguchi, H

    1999-11-01

    Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue.

  12. Identification of essential amino acid residues of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Takahashi, T; Hiramoto, S; Wato, S; Nishimoto, T; Wada, Y; Nagai, K; Yamaguchi, H

    1999-11-01

    Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue. PMID:10544275

  13. Prediction of conformational epitopes with the use of a knowledge-based energy function and geometrically related neighboring residue characteristics

    PubMed Central

    2013-01-01

    Background A conformational epitope (CE) in an antigentic protein is composed of amino acid residues that are spatially near each other on the antigen's surface but are separated in sequence; CEs bind their complementary paratopes in B-cell receptors and/or antibodies. CE predication is used during vaccine design and in immuno-biological experiments. Here, we develop a novel system, CE-KEG, which predicts CEs based on knowledge-based energy and geometrical neighboring residue contents. The workflow applied grid-based mathematical morphological algorithms to efficiently detect the surface atoms of the antigens. After extracting surface residues, we ranked CE candidate residues first according to their local average energy distributions. Then, the frequencies at which geometrically related neighboring residue combinations in the potential CEs occurred were incorporated into our workflow, and the weighted combinations of the average energies and neighboring residue frequencies were used to assess the sensitivity, accuracy, and efficiency of our prediction workflow. Results We prepared a database containing 247 antigen structures and a second database containing the 163 non-redundant antigen structures in the first database to test our workflow. Our predictive workflow performed better than did algorithms found in the literature in terms of accuracy and efficiency. For the non-redundant dataset tested, our workflow achieved an average of 47.8% sensitivity, 84.3% specificity, and 80.7% accuracy according to a 10-fold cross-validation mechanism, and the performance was evaluated under providing top three predicted CE candidates for each antigen. Conclusions Our method combines an energy profile for surface residues with the frequency that each geometrically related amino acid residue pair occurs to identify possible CEs in antigens. This combination of these features facilitates improved identification for immuno-biological studies and synthetic vaccine design. CE-KEG is

  14. Identification of functional amino acid residues involved in polyamine and agmatine transport by human organic cation transporter 2.

    PubMed

    Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2014-01-01

    Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.

  15. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    NASA Astrophysics Data System (ADS)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    Introduction: Iron meteorites are considered to have experienced a complex history, which is indicated by the variations in trace element chemistry (e.g., [1]). Among iron meteorite groups, the so called nonmagmatic groups, such as IAB, IIE, and IIICD, may have passed through different formation paths compared to others. Nitrogen isotopes can be a useful tool to understand the origin and formation processes of iron meteorites. Nikogen isotopes in a number of iron meteorites are measured [2,3], although trapping sites of nitrogen in iron meteorites are not yet clear. This is an important issue because nitrogen, a typical mobile element, may well reflect thermal history of their parent bodies (c.f., [4]). Generally, a major portion of nitrogen in iron meteorites is expected to be in a solid solution in Fe-Ni, especially in f.c.c. Fe-Ni (taenite). Franchi et al. [3] report that at least 25 to 35% of nitrogen in magmatic iron meteorites is in acid insoluble phases, however, not in those of non-magmatic meteorites. This result contradicts with the result [5] who report that a significant portion of nitrogen seems to be trapped in acid residues not only of magmatic meteorites but also of non- magmatic meteorites. To resolve the contradiction described above, and to identify the trapping site, we started measuring nitrogen isotopes in acid residues of iron metcorites. We report here preliminary results on acid residues of Canyon Diablo (IA). Procedures: Acid residues were prepared by Dr. J.-I. Matsuda and his colleagues. Different blocks of Canyon Diablo, "Can-1" and "Can-2" were treated by 14M HCl, 10M-HF + 1M-HCl, 1M-HCl, and by aqua regia, which destroyed Fe-Ni, sulfides, silicates, and shreibersite. Acid residues of these two blocks, "Can-1bn" and "Can-2b," yielded 0.102 wt% and 0.299 wt% of their original masses, respectively These residues seem to consist mostly of graphite No diamond was detected by powder X-ray analysis [6]. Preliminary Results: A predominant

  16. Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy.

    PubMed

    Claridge, Shelley A; Thomas, John C; Silverman, Miles A; Schwartz, Jeffrey J; Yang, Yanlian; Wang, Chen; Weiss, Paul S

    2013-12-11

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structures at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer's and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level.

  17. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975.

    PubMed Central

    Song, D D; Jacques, N A

    1999-01-01

    The site-directed mutated fructosyltransferases (Ftfs) of Streptococcus salivarius ATCC 25975, D312E, D312S, D312N and D312K were all active at 37 degrees C, indicating that Asp-312 present in the 'sucrose box' was not the nucleophilic Asp residue responsible for the formation of a covalent fructosyl-enzyme intermediate required for enzyme activity. Analysis of the kinetic constants of the purified mutated forms of the enzyme showed that Asp-312 was most likely an essential amino acid involved in determining acceptor recognition and/or stabilizing a beta-turn in the protein. In contrast, when the Asp-397 of the Ftf present in the conserved triplet RDP motif of all 60 bacterial and plant family-32 glycosylhydrolases was mutated to a Ser residue, both sucrose hydrolysis and polymerization ceased. Tryptophan emission spectra confirmed that this mutation did not alter protein structure. Comparison of published data from other site-directed mutated enzymes implicated the Asp residue in the RDP motif as the one that may form a transient covalent fructosyl intermediate during the catalysis of sucrose by the Ftf of S. salivarius. PMID:10548559

  18. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.

    PubMed

    Zhang, Qinghua; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui; Jiang, Li

    2011-02-01

    In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H(2)SO(4) concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84°C, utilizing 2.99% (w/w TS) H(2)SO(4) for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.

  19. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids.

    PubMed Central

    Sigal, C T; Zhou, W; Buser, C A; McLaughlin, S; Resh, M D

    1994-01-01

    Membrane targeting of pp60src (Src) is mediated by its myristoylated amino terminus. We demonstrate that, in addition to myristate, six basic residues in the amino terminus are essential for high-affinity binding to the lipid bilayer via electrostatic interaction with acidic phospholipids. Specifically, c-Src was shown to bind 2500-fold more strongly to vesicles composed of the physiological ratio of 2:1 phosphatidylcholine (PC)/phosphatidylserine (PS) than to neutral PC bilayer vesicles. The apparent Kd for binding of c-Src to the PC/PS bilayer was 6 x 10(-7) M. This interaction is sufficiently strong to account for c-Src membrane targeting. Mutants of c-Src in which the amino-terminal basic residues were replaced by neutral asparagine residues exhibited binding isotherms approaching that of wild-type binding to neutral bilayers (apparent Kd of 2 x 10(-3) M). The transforming v-Src and activated c-Src (Y527F) proteins also bound more strongly to PC/PS bilayers (apparent Kd of approximately 1 x 10(-5) M) than to neutral PC bilayers. In vivo experiments with Src mutants confirmed the role of positive charge in mediating membrane binding and cellular transformation. Images PMID:7527558

  20. Effects of the number of fatty acid residues on the phase behaviors of decaglycerol fatty acid esters.

    PubMed

    Ai, Sakiko; Ishitobi, Masahiko

    2006-04-15

    The effects of the number of fatty acid residues (n) in decaglycerol fatty acid esters, i.e., decaglycerol laurates (abbreviated to (C11)nG10), on the phase behaviors of three laurate esters, (C11)1.9G10, (C11)2.7G10, and (C11)3.4G10, were investigated. The unreacted decaglycerol remaining in each ester was removed by liquid extraction before use. (C11)1.9G10 formed hexagonal liquid crystals in aqueous solutions, while (C11)2.7G10 and (C11)3.4G10, which are more hydrophobic than (C11)1.9G10, formed lamellar liquid crystals. The cloud point in aqueous solution was measured for mixtures of these three esters. The cloud phenomenon was observed when the weight ratio of hydrophilic groups to the total surfactant (WH/WS) was around 0.6. The cloud point shifted to a markedly higher temperature, even with a slight increase in the WH/WS ratio. The solubilization abilities of (C11)nG10 for the oils m-xylene and (R)-(+)-limonene were also examined. When the WH/WS ratio was between 0.60 and 0.64, (C11)nG10 formed microemulsions and lyotropic liquid crystals in the presence of water and the oils. These self-organized structures were stable, even above 90 degrees C. It is concluded that the phase behavior of (C11)nG10 are insensitive to temperature, but strongly dependent on both the WH/WS ratio and the number of fatty acid residues (n).

  1. Solid substrate fermentation of cassava fibrous residue for production of alpha-amylase, lactic acid and ethanol.

    PubMed

    Ray, Ramesh C; Mohapatra, Sabita; Panda, Shrutirupa; Kar, Shaktimay

    2008-01-01

    There is serious concern about the disposal of solid residues left after large scale extraction of starch from cassava. Owing to the high starch content (55-65% on dry weight basis) and organic matter of these wastes, an attempt has been made to utilize it for the production of three bioproducts, i.e. alpha-amylase, lactic acid and ethanol in solid substrate fermentation by incubating the solid residue at different moisture holding capacity (40-80%) and incubation period (12- 60 hr for alpha-amylase, 24-144 hr for ethanol and 2-10 days for lactic acid). The highest product yield was obtained at 60% moisture holding capacity of the residue and period of incubation varied from 36 hr (alpha-amylase), 120 hr (ethanol) to 6 days (lactic acid). This study showed that the solid residues from cassava starch factories could serve as a low-cost substrate for bioproducts production.

  2. Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue.

    PubMed

    Onishi, H; Maita, T; Miyanishi, T; Watanabe, S; Matsuda, G

    1986-12-01

    A fluorescent fragment of Mr = 23,800 was obtained by the papain digestion of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene diamine (abbreviated as IAEDANS)-modified chicken gizzard myosin. The fragment was isolated by gel filtration on a Sephadex G-100 column in the presence of 5 M guanidine-HCl followed by anion exchange chromatography on a QAE Sephadex A-50 column. This fragment contained 203 amino acid residues which could be assigned as a COOH-terminal part of the S-1 heavy chain based on the homology with the known sequence of rabbit skeletal myosin fragment. The amino acid sequence was K-G-M-F-R-T-V- G-Q-L-Y-K-E-Q-L-T-K-L-M-T-T-L-R-N-T-N-P-N-F-V-R-C-I-I-P-N-H-E-K-R-A- G-K-L-D-A-H-L-V-L-E-Q-L-R-C-N-G-V-L-E-G-I-R-I-C-R-Q-G-F-P-N-R-I-V-F-Q- E-F-R-Q-R-Y-E-I-L-A-A-N-A-I-P-K-G-F-M-D-G-K-Q-A-C-I-L-M -I-K-A-L-E-L- D-P-N-L-Y-R-I-G-Q-S-K-I-F-F-R-T-G-V-L-A-H-L-E-E-E-R-D-L-K- I-T-D-V-I-I-A- F-Q-A-Q-C-R-G-Y-L-A-R-K-A-F-A-K-R-Q-Q-Q-L-T-A-M-K-V-I-Q-R-N-C-A -A-Y-L-K-L-R-N-W-Q-W-W-R-L-F-T-K-V-K-P-L-L-Q-V-T-R. The cysteine residue which was modified with IAEDANS was of the SH1 type (Cys-65). Pro-197 was suggested to be the NH2-terminal boundary of the alpha-helical coiled-coil rod sequence of gizzard myosin, based on the homology with the nematode sequence reported by MacLachlan and Karn (Proc. Natl. Acad. Sci. U.S. 80, 4253-4257 (1983)). Three different COOH-terminal peptides (Val-Lys-Pro-Leu-Leu-Gln-Val-Thr-Arg, Val-Lys-Pro-Leu-Leu-Gln, and Val-Lys-Pro-Leu-Leu) were isolated from the tryptic digest of this fragment.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Role of enthalpy-entropy compensation interactions in determining the conformational propensities of amino acid residues in unfolded peptides.

    PubMed

    Toal, Siobhan E; Verbaro, Daniel J; Schweitzer-Stenner, Reinhard

    2014-02-01

    The driving forces governing the unique and restricted conformational preferences of amino acid residues in the unfolded state are still not well understood. In this study, we experimentally determine the individual thermodynamic components underlying intrinsic conformational propensities of these residues. Thermodynamic analysis of ultraviolet-circular dichroism (UV-CD) and (1)H NMR data for a series of glycine capped amino acid residues (i.e., G-x-G peptides) reveals the existence of a nearly exact enthalpy-entropy compensation for the polyproline II-β strand equilibrium for all investigated residues. The respective ΔHβ, ΔSβ values exhibit a nearly perfect linear relationship with an apparent compensation temperature of 295 ± 2 K. Moreover, we identified iso-equilibrium points for two subsets of residues at 297 and 305 K. Thus, our data suggest that within this temperature regime, which is only slightly below physiological temperatures, the conformational ensembles of amino acid residues in the unfolded state differ solely with respect to their capability to adopt turn-like conformations. Such iso-equilibria are rarely observed, and their existence herein indicates a common physical origin behind conformational preferences, which we are able to assign to side-chain dependent backbone solvation. Conformational effects such as differences between the number of sterically allowed side chain rotamers can contribute to enthalpy and entropy but not to the Gibbs energy associated with conformational preferences. Interestingly, we found that alanine, aspartic acid, and threonine are the only residues which do not share these iso-equilbiria. The enthalpy-entropy compensation discovered as well as the iso-equilbrium and thermodynamics obtained for each amino acid residue provide a new and informative way of identifying the determinants of amino acid propensities in unfolded and disordered states.

  4. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  5. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  6. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    PubMed

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  7. Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates.

    PubMed

    Lee, Ji Ye; Ryu, Hyun Jin; Oh, Kyeong Keun

    2013-03-01

    The objective of this work was to investigate the feasibility of acid-catalyzed hydrothermal fractionation for maximum solubilization of the hemicellulosic portion of three agricultural residues. The fractionation conditions converted into combined severity factor (CS) in the range of 1.2-2.9. The highest hemicellulose yield of 87.88% was achieved when barley straw was fractionated at a CS of 2.19. However, the maximum glucose release of 15.29% was achieved for the case of rice straw. The maximum productions of various by-products were observed with the fractionation of rape straw: 0.88 g/L of 5-hydroxymethylfurfural (5-HMF), 2.16 g/L of furfural, 0.44 g/L of levulinic acid, 1.59 g/L of formic acid, and 3.06 g/L of acetic acid. The highest selectivities, a criterion for evaluating the fractionation of 21.55 for fractionated solid and 7.48 for liquid hydrolyzate were obtained from barley straw.

  8. Use of an Acid-Base Table.

    ERIC Educational Resources Information Center

    Willis, Grover; And Others

    1986-01-01

    Identifies several ways in which an acid-base table can provide students with information about chemical reactions. Cites examples of the chart's use and includes a table which indicates the strengths of some common acids and bases. (ML)

  9. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue.

    PubMed

    Wise, Olivia; Coskuner, Orkid

    2014-06-30

    Transition metal ion complexation with proteins is ubiquitous across such diverse fields as neurodegenerative and cardiovascular diseases and cancer. In this study, the structures of divalent copper ion centers including three histidine and one oxygen-ligated amino acid residues and the relative binding affinities of the oxygen-ligated amino acid residues with these metal ion centers, which are debated in the literature, are presented. Furthermore, new force field parameters, which are currently lacking for the full-length metal-ligand moieties, are developed for metalloproteins that have these centers. These new force field parameters enable investigations of metalloproteins possessing these binding sites using molecular simulations. In addition, the impact of using the atom equivalence and inequivalence atomic partial charge calculation procedures on the simulated structures of these metallopeptides, including hydration properties, is described.

  10. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  11. Characterization of Protective Epitopes in a Highly Conserved Plasmodium falciparum Antigenic Protein Containing Repeats of Acidic and Basic Residues

    PubMed Central

    Sharma, Pawan; Kumar, Anil; Singh, Balwan; Bharadwaj, Ashima; Sailaja, V. Naga; Adak, T.; Kushwaha, Ashima; Malhotra, Pawan; Chauhan, V. S.

    1998-01-01

    The delineation of putatively protective and immunogenic epitopes in vaccine candidate proteins constitutes a major research effort towards the development of an effective malaria vaccine. By virtue of its role in the formation of the immune clusters of merozoites, its location on the surface of merozoites, and its highly conserved nature both at the nucleotide sequence level and the amino acid sequence level, the antigen which contains repeats of acidic and basic residues (ABRA) of the human malaria parasite Plasmodium falciparum represents such an antigen. Based upon the predicted amino acid sequence of ABRA, we synthesized eight peptides, with six of these (AB-1 to AB-6) ranging from 12 to 18 residues covering the most hydrophilic regions of the protein, and two more peptides (AB-7 and AB-8) representing its repetitive sequences. We found that all eight constructs bound an appreciable amount of antibody in sera from a large proportion of P. falciparum malaria patients; two of these peptides (AB-1 and AB-3) also elicited a strong proliferation response in peripheral blood mononuclear cells from all 11 human subjects recovering from malaria. When used as carrier-free immunogens, six peptides induced a strong, boostable, immunoglobulin G-type antibody response in rabbits, indicating the presence of both B-cell determinants and T-helper-cell epitopes in these six constructs. These antibodies specifically cross-reacted with the parasite protein(s) in an immunoblot and in an immunofluorescence assay. In another immunoblot, rabbit antipeptide sera also recognized recombinant fragments of ABRA expressed in bacteria. More significantly, rabbit antibodies against two constructs (AB-1 and AB-5) inhibited the merozoite reinvasion of human erythrocytes in vitro up to ∼90%. These results favor further studies so as to determine possible inclusion of these two constructs in a multicomponent subunit vaccine against asexual blood stages of P. falciparum. PMID:9596765

  12. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  13. Determination of pesticide residues in fruit-based soft drinks.

    PubMed

    García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2008-12-01

    Here we report the first worldwide reconnaissance study of the presence and occurrence of pesticides in fruit-based soft drinks. While there are strict regulations and exhaustive controls for pesticides in fruits, vegetables, and drinking water, scarce attention has been paid to highly consumed derivate products, which may contain these commodities as ingredients. In the case of the fruit-based soft drinks industry, there are no clear regulations, relating to pesticides, which address them, even when there is significant consumption in vulnerable groups such as children. In this work, we have developed a screening method to search automatically for up to 100 pesticides in fruit-based soft drinks extracts based on the application of liquid chromatography-electrospray time-of-flight mass spectrometry (LC-TOF MS). The sample extracts injected were obtained by a preliminary sample treatment step based on solid-phase extraction using hydrophilic-lipophilic balanced polymer-based reverse phase cartridges and methanol as eluting solvent. Subsequent identification, confirmation, and quantitation were carried out by LC-TOF MS analysis: the confirmation of the target species was based on retention time matching and accurate mass measurements of protonated molecules ([M + H]+) and fragment ions (obtaining accuracy errors typically lower than 2 ppm). With the proposed method, we measured over 100 fruit-based soft drink samples, purchased from 15 different countries from companies with brands distributed worldwide and found relatively large concentration levels of pesticides in most of the samples analyzed. The concentration levels detected were of the micrograms per liter level, low when considering the European maximum residue levels (MRLs) set for fruits but very high (i.e., 300 times) when considering the MRLs for drinking or bottled water. The detected pesticides (carbendazim, thiabendazole, imazalil and its main degradate, prochloraz and its main degradate, malathion, and

  14. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity.

    PubMed

    Watanabe, T; Kobori, K; Miyashita, K; Fujii, T; Sakai, H; Uchida, M; Tanaka, H

    1993-09-01

    Prokaryotic chitinases, class III plant chitinases, yeast chitinases, and endo-beta-N-acetylglucosaminidases share weak amino acid sequence similarities at the certain region of each enzyme. These regions have been assumed to be important for catalytic activities of the enzymes. To verify this assumption, three amino acid residues (Ser-160, Asp-200, Glu-204) in chitinase A1 of Bacillus circulans WL-12 were chosen, based on the amino acid sequence alignment of the regions sharing sequence similarity, and were replaced by site-directed mutagenesis. Kinetic parameters for 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and seven mutant chitinases. Chitinases with Glu-204-->Gln mutation and Glu-204-->Asp mutation were essentially inactive and kcat values of these chitinases were approximately 1/5,000 and 1/17,000 of that of wild-type chitinase, respectively. Asp-200-->Asn mutation decreased the kcat value to approximately 1/350 of that of the wild-type enzyme, while the Km value decreased only slightly. On the other hand, neither the kcat value nor the Km value was affected by Asp-200-->Glu mutation. Thus, it appeared that Glu-204 and Asp-200 are directly involved in the catalytic events of chitinase A1. The role of the carboxyl group of Asp-200 can be fully substituted by that of Glu residue. The Ser-160-->Ala mutant retained 10% activity of the wild-type chitinase indicating that the hydroxyl group of Ser-160 is not absolutely required for the catalytic activity. These results indicate a lysozyme-type catalytic mechanism of the chitinase.

  15. Chemical modification of an alpha 3-fucosyltransferase; definition of amino acid residues essential for enzyme activity.

    PubMed

    Britten, C J; Bird, M I

    1997-02-11

    The biosynthesis of the carbohydrate antigen sialyl Lewis X (sLe(x)) is dependent on the activity of an alpha 3-fucosyltransferase (EC 2.4.1.152, GDP-fucose:Gal beta (1-4)GlcNAc-R alpha (1-3)fucosyltransferase). This enzyme catalyses the transfer of fucose from GDP-beta-fucose to the 3-OH of N-acetylglucosamine present in lactosamine acceptors. In this report, we have investigated the amino acids essential for the activity of a recombinant alpha 3-fucosyltransferase (FucT-VI) through chemical modification of the enzyme with group-selective reagents. FucT-VI activity was found to be particularly sensitive to the histidine-selective reagent diethylpyrocarbonate and the cysteine reagent N-ethylmaleimide, with IC50 values of less than 200 microM. Reagents selective for arginine and lysine had no effect on enzyme activity. The inclusion of GDP-beta-fucose during preincubation with NEM reduces the rate of inactivation whereas inclusion of an acceptor saccharide for the enzyme, Gal beta (1-4)GlcNAc, had no effect. No protective effect with either GDP-beta-fucose or Gal beta (1-4)GlcNAc was observed on treatment of the enzyme with diethylpyrocarbonate. These data suggest that in addition to an NEM-reactive cysteine in, or adjacent to, the substrate-binding site of the enzyme, FucT-VI possesses histidine residue(s) that are essential for enzyme activity.

  16. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  17. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel. PMID:22281143

  18. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process.

  19. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process. PMID:25045141

  20. Intensity-based image registration by minimizing residual complexity.

    PubMed

    Myronenko, Andriy; Song, Xubo

    2010-11-01

    Accurate definition of the similarity measure is a key component in image registration. Most commonly used intensity-based similarity measures rely on the assumptions of independence and stationarity of the intensities from pixel to pixel. Such measures cannot capture the complex interactions among the pixel intensities, and often result in less satisfactory registration performances, especially in the presence of spatially-varying intensity distortions. We propose a novel similarity measure that accounts for intensity nonstationarities and complex spatially-varying intensity distortions in mono-modal settings. We derive the similarity measure by analytically solving for the intensity correction field and its adaptive regularization. The final measure can be interpreted as one that favors a registration with minimum compression complexity of the residual image between the two registered images. One of the key advantages of the new similarity measure is its simplicity in terms of both computational complexity and implementation. This measure produces accurate registration results on both artificial and real-world problems that we have tested, and outperforms other state-of-the-art similarity measures in these cases.

  1. Trace analysis of acidic pharmaceutical residues in waters with isotope dilution gas chromatography-mass spectrometry via methylation derivatization.

    PubMed

    Hu, Ruikang; Yang, Zhaoguang; Zhang, Lifeng

    2011-09-30

    Acidic pharmaceutical residues are pollutants of emerging concern and are generally monitored by HPLC-MS/MS. However, due to the limited separation efficiency of HPLC column and lack of suitable mass transition for confirmation analysis, some interference may not be separated completely and differentiated from ibuprofen, which may cause the results with interference, especially in sample with complex matrix. The objective of this study is to develop a sensitive and reliable method for the determination of acidic pharmaceutical residues in water samples by GC-MS with better resolution by using methylation derivatization and isotope dilution techniques. TMSDM, a mild reagent, was used as the derivatization reagent coupling with the isotope dilution technique, for the first time, to improve the precision and accuracy of the analytical method to determine the pharmaceutical residues in water. The MDLs for the five acidic organic compounds: ibuprofen, gemfibrozil, naproxen, ketoprofen and diclofenac were from 0.7 to 1.1 ng/L, with recoveries ranging from 93 to 110%. Alternative to the HPLC-MS/MS method, the developed GC-MS protocols provides an additional option for the analysis of acidic pharmaceutical residues in water, with better separation efficiency in reducing interferences from complicated sample matrix, for determination of ibuprofen residues.

  2. Amino-acid residues involved in the expression of the activity of Escherichia coli TolC.

    PubMed

    Yamanaka, Hiroyasu; Morisada, Naoyuki; Miyano, Masaya; Tsuge, Hideaki; Shinoda, Sumio; Takahashi, Eizo; Okamoto, Keinosuke

    2004-01-01

    The Escherichia coli TolC, composed of 471 amino-acid residues, functions as a channel tunnel in the transport of various molecules across the outer membrane. We found previously that Leu-412, the 60th amino-acid residue from the carboxy terminal end, was crucial to the transport activity of TolC. Leu-412 is located in a domain which protrudes from the main body of TolC into the periplasm. Subsequent study indicated that the hydrophobicity generated by Leu-412 played an important role in the activity of TolC (H. Yamanaka, T. Nomura, N. Morisada, S. Shinoda, and K. Okamoto, Microb. Pathog. 33: 81-89, 2002). We predicted that other hydrophobic amino-acid residues around Leu-412 were also involved in the expression of the activity of TolC. To test this possibility, we substituted several hydrophobic residues around Leu-412, (Leu-3, Val-6, Leu-212, Leu-213, Leu-223, and Leu-224), with serine and examined the activity of these mutant TolCs. The result showed that Leu-3 is involved in the activity of TolC, but the other residues are not. The involvement of Leu-3 was confirmed by the residue deletion experiment. A subsequent point-mutational analysis of the residue showed that a hydrophobic side chain is required at position 3 for TolC to express its activity. As the distance between the alpha-carbons of Leu-3 and Leu-412 is just 7.45 angstroms, hydrophobic interaction between the two leucine residues might be involved in the activity of TolC. PMID:15502403

  3. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.

    PubMed

    Topham, Christopher M; Smith, Jeremy C

    2015-02-01

    Relative amino acid residue solvent accessibility values allow the quantitative comparison of atomic solvent-accessible surface areas in different residue types and physical environments in proteins and in protein structural alignments. Geometry-optimised tri-peptide structures in extended solvent-exposed reference conformations have been obtained for 43 amino acid residue types at a high level of quantum chemical theory. Significant increases in side-chain solvent accessibility, offset by reductions in main-chain atom solvent exposure, were observed for standard residue types in partially geometry-optimised structures when compared to non-minimised models built from identical sets of proper dihedral angles abstracted from the literature. Optimisation of proper dihedral angles led most notably to marked increases of up to 54% in proline main-chain atom solvent accessibility compared to literature values. Similar effects were observed for fully-optimised tri-peptides in implicit solvent. The relief of internal strain energy was associated with systematic variation in N, C(α) and C(β) atom solvent accessibility across all standard residue types. The results underline the importance of optimisation of 'hard' degrees of freedom (bond lengths and valence bond angles) and improper dihedral angle values from force field or other context-independent reference values, and impact on the use of standardised fixed internal co-ordinate geometry in sampling approaches to the determination of absolute values of protein amino acid residue solvent accessibility. Quantum chemical methods provide a useful and accurate alternative to molecular mechanics methods to perform energy minimisation of peptides containing non-standard (chemically modified) amino acid residues frequently present in experimental protein structure data sets, for which force field parameters may not be available. Reference tri-peptide atomic co-ordinate sets including hydrogen atoms are made freely available

  4. Experimental test of the superheavy fission hypothesis in acid residues from the allende meteorite

    SciTech Connect

    Flynn, G.J.

    1982-01-01

    A description of a series of experiments to find evidence to confirm or contradict the hypothesis that isotopically anomalous Xe (called CCF-Xe) in carbonaceous chondrite meteorites results from the fission decay of a superheavy element is given. The first two experiments were searches for fossil evidence - fission tracks and isotopic anomalies - of superheavy fission decay in the Allende carbonaceous chondrite. It was demonstrated that chromite, a mineral rich in CCF-Xe, records fission tracks, and a search for such tracks in Allende chromite was performed with negative results. It was also demonstrated in certain CCF-XE rich phases of Allende, isotopic anomalies like those seen in Xe should be detectable in Ba and the light rare earths. Preliminary results from a collaborative measurement (with the University of Paris) show the Ba isotopic ratios to be normal in a CCF-Xe rich Allende sample. The third experiment was motivated by reports of the detection of a live, fissioning superheavy element, using a neutron counting technique, in bulk Allende (Flerov, 1978). Since almost all of the allegedly fissiogenic Xe in Allende is concentrated in certain acid insoluble phases, we developed a technique to detect low-level fission activity in these phases. Allende acid insoluble residue (provided by the University of Chicago) was dispersed in a 1 mg/cm/sup 2/ layer, between two track recording detectors. An automatic track locating system was developed to allow large detector areas to be scanned for rate fission events.

  5. SeqX: a tool to detect, analyze and visualize residue co-locations in protein and nucleic acid structures

    PubMed Central

    Biro, Jan C; Fördös, Gergely

    2005-01-01

    Background The interacting residues of protein and nucleic acid sequences are close to each other – they are co-located. Structure databases (like Protein Data Bank, PDB and Nucleic Acid Data Bank, NDB) contain all information about these co-locations; however it is not an easy task to penetrate this complex information. We developed a JAVA tool, called SeqX for this purpose. Results SeqX tool is useful to detect, analyze and visualize residue co-locations in protein and nucleic acid structures. The user a. selects a structure from PDB; b. chooses an atom that is commonly present in every residues of the nucleic acid and/or protein structure(s) c. defines a distance from these atoms (3–15 Å). The SeqX tool detects every residue that is located within the defined distances from the defined "backbone" atom(s); provides a DotPlot-like visualization (Residues Contact Map), and calculates the frequency of every possible residue pairs (Residue Contact Table) in the observed structure. It is possible to exclude +/- 1 to 10 neighbor residues in the same polymeric chain from detection, which greatly improves the specificity of detections (up to 60% when tested on dsDNA). Results obtained on protein structures showed highly significant correlations with results obtained from literature (p < 0.0001, n = 210, four different subsets). The co-location frequency of physico-chemically compatible amino acids is significantly higher than is calculated and expected in random protein sequences (p < 0.0001, n = 80). Conclusion The tool is simple and easy to use and provides a quick and reliable visualization and analyses of residue co-locations in protein and nucleic acid structures. Availability and requirements SeqX, Java J2SE Runtime Environment 5.0 (available from [see Additional file 1] ) and at least a 1 GHz processor and with a minimum 256 Mb RAM. Source codes are available from the authors. PMID:16011796

  6. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  7. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  8. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease.

    PubMed

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag

    2016-08-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  9. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease

    PubMed Central

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag

    2016-01-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  10. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2.

    PubMed

    Dempsey, Daniel R; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J

    2015-11-01

    Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.

  11. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.

    PubMed

    Kumar, Manish; Gromiha, M Michael; Raghava, Gajendra P S

    2011-01-01

    RNA-binding proteins (RBPs) play crucial role in transcription and gene-regulation. This paper describes a support vector machine (SVM) based method for discriminating and classifying RNA-binding and non-binding proteins using sequence features. With the threshold of 30% interacting residues, RNA-binding amino acid prediction method PPRINT achieved the Matthews correlation coefficient (MCC) of 0.32. BLAST and PSI-BLAST identified RBPs with the coverage of 32.63 and 33.16%, respectively, at the e-value of 1e-4. The SVM models developed with amino acid, dipeptide and four-part amino acid compositions showed the MCC of 0.60, 0.46, and 0.53, respectively. This is the first study in which evolutionary information in form of position specific scoring matrix (PSSM) profile has been successfully used for predicting RBPs. We achieved the maximum MCC of 0.62 using SVM model based on PSSM called PSSM-400. Finally, we developed different hybrid approaches and achieved maximum MCC of 0.66. We also developed a method for predicting three subclasses of RNA binding proteins (e.g., rRNA, tRNA, mRNA binding proteins). The performance of the method was also evaluated on an independent dataset of 69 RBPs and 100 non-RBPs (NBPs). An additional benchmarking was also performed using gene ontology (GO) based annotation. Based on the hybrid approach a web-server RNApred has been developed for predicting RNA binding proteins from amino acid sequences (http://www.imtech.res.in/raghava/rnapred/).

  12. Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis.

    PubMed

    Li, Shu-Fen; Song, Li-Ying; Zhang, Guo-Jun; Yin, Wei-Bo; Chen, Yu-Hong; Wang, Richard R-C; Hu, Zan-Min

    2011-12-01

    In order to identify amino acid residues crucial for the enzymatic activity of Δ(8)-sphingolipid desaturases, a sequence comparison was performed among Δ(8)-sphingolipid desaturases and Δ(6)-fatty acid desaturases from various plants. In addition to the known conserved cytb(5) (cytochrome b(5)) HPGG motif and three conserved histidine boxes, they share additional 15 completely conserved residues. A series of site-directed mutants were generated using our previously isolated Δ(8)-sphingolipid desaturase gene from Brassica rapa to evaluate the importance of these residues to the enzyme function. The mutants were functionally characterized by heterologous expression in yeast, allowing the identification of the products of the enzymes. The results revealed that residues H63, N203, D208, D210, and G368 were obligatorily required for the enzymatic activity, and substitution of the residues F59, W190, W345, L369 and Q372 markedly decreased the enzyme activity. Among them, replacement of the residues W190, L369 and Q372 also has significant influence on the ratio of the two enzyme products. Information obtained in this work provides the molecular basis for the Δ(8)-sphingolipid desaturase activity and aids in our understanding of the structure-function relationships of the membrane-bound desaturases.

  13. Synthesis of novel trivalent amino acid glycoconjugates based on the cyclotriveratrylene ('CTV') scaffold.

    PubMed

    van Ameijde, Jeroen; Liskamp, Rob M J

    2003-08-01

    The convenient synthesis of novel trivalent amino acid glycoconjugates based on cyclotriveratrylene ('CTV') is described. These constructs consist of the CTV scaffold, three oligoethylene glycol spacers of variable length connected to a glyco amino acid residue which can also be varied. The resulting library of trivalent glycoconjugates can be used for studying multivalent interactions. PMID:12948190

  14. Significance of the C-terminal amino acid residue in mengovirus RNA-dependent RNA polymerase.

    PubMed

    Dmitrieva, Tatiana M; Alexeevski, Andrei V; Shatskaya, Galina S; Tolskaya, Elena A; Gmyl, Anatoly P; Khitrina, Elena V; Agol, Vadim I

    2007-08-15

    Replication of picornavirus genomes is accomplished by the virally encoded RNA-dependent RNA polymerase (RdRP). Although the primary structure of this enzyme exhibits a high level of conservation, there are several significant differences among different picornavirus genera. In particular, a comparative alignment indicates that the C-terminal sequences of cardiovirus RdRP (known also as 3D(pol)), are 1-amino-acid residue (arginine or tryptophan) longer than that of the enterovirus or rhinovirus enzymes. Here, it is shown that alterations of the last codon of the RdRP-encoding sequence of mengovirus RNA leading to deletion of the C-terminal Trp460 or its replacement by Ala or Phe dramatically impaired viral RNA replication and, in the former case, resulted in a quasi-infectious phenotype (i.e., the mutant RNA might generate a low yield of pseudorevertants acquiring a Tyr residue in place of the deleted Trp460). The replacement of Trp460 by His or Tyr did not appreciably alter the viral growth potential. Homology modeling of three-dimensional structure of mengovirus RdRP suggested that Trp460 may be involved in interaction between the thumb and palm domains of the enzyme. Specifically, Trp460 of the thumb may form a hydrogen bond with Thr219 and hydrophobically interact with Val216 of the palm. The proposed interactions were consistent with the results of in vivo SELEX experiment, which demonstrated that infectious virus could contain Ser or Thr at position 219 and hydrophobic Val, Leu, Ile, as well as Arg (whose side chain has a nonpolar part) at position 216. A similar thumb-palm domain interaction may be a general feature of several RdRPs and its possible functional significance is discussed. PMID:17467026

  15. Identification of glutamic acid 646 as a zinc-coordinating residue in endopeptidase-24.11.

    PubMed

    Le Moual, H; Devault, A; Roques, B P; Crine, P; Boileau, G

    1991-08-25

    Neutral endopeptidase (EC 3.424.11, NEP) is a membrane-bound zinc-metallopeptidase. The substrate specificity and catalytic activity of NEP resemble those of thermolysin, a bacterial zinc-metalloprotease. Comparison of the primary structure of both enzymes suggests that several amino acids present in the active site of thermolysin are also found in NEP. Using site-directed mutagenesis of the cDNA encoding the NEP sequence, we have already shown that His residues 583 and 587 are two of the three zinc ligands. In order to identify the third zinc ligand, we have substituted Val or Asp for Glu616 or Glu646. Val616 NEP showed the same kinetic parameters as the non-mutated NEP. In contrast, the mutant Val646 NEP was almost completely devoid of catalytic activity and unable to bind the tritiated inhibitor [3H]N-[2(R,S)-3-hydroxyaminocarbonyl-2-benzyl-1-oxypropyl]gl ycine, the binding of which is dependent on the presence of the zinc ion. Replacing Glu for Asp at position 646 conserved the negative charge, and the mutant enzyme exhibited the same Km value as the non-mutated enzyme, but kCat was decreased to less than 3% of the value of the non-mutated enzyme. When compared to the non-mutated enzyme Asp646 NEP showed a higher susceptibility to chelating agents, but bound the tritiated inhibitor with the same affinity. Taken together, these observations strongly suggest that Glu646 of NEP is the third zinc-coordinating residue and is equivalent to Glu166 in thermolysin.

  16. Variable clinical manifestations of a glycine to glutamic acid substitution of the COL3A1 gene at residue 736

    SciTech Connect

    Pope, F.M.; Narcisi, P.; Richards, A.J.

    1994-09-01

    Glycine substitutions at the 3{prime} end of the COL3A1 gene generally produce a characteristic clinical phenotype including acrogeria and severe vascular fragility. Here we report a three generation British family in which the propositus presented with aneurysms of the groins. He, his mother, sister and elder daughter all had the external clinical phenotype of vascular EDS IV whilst another daughter and nephew were clinically normal. Cultured skin fibroblasts from the propositus and his clinically affected relatives poorly secreted normal and overmodified collagen III species. Normal components of secreted proteins predominated whilst overmodified molecules were prominent in intracellular material. Surprisingly the normal children also secreted less collagen type III than expected (though more than their clinically abnormal relatives). cDNA from bases 2671 to 3714 were amplified as four overlapping PCR fragments and analysed by DGGE. The region between 2671 and 3015 was heterozygous. Sequencing showed a mutation of glycine to glutamic acid at residue 736. This mutation created an extra Apa 1 restriction site which was suitable for family studies. These showed inheritance of the mutant gene by both vascular and non-vascular clinical phenotypes. This family therefore illustrates that replacement of glycine to glutamic acid at position 736 produces variable clinical and biochemical phenotypes ranging from easily recognizable vascular EDS IV with very poor collagen secretion to an EDS III-like picture and with less severe protein disturbance. The reasons for these differences are at present unexplained.

  17. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The template-directed oligomerization of nucleoside-5'-phosphoro-2-methyl imidazolides on standard oligonucleotide templates has been studied extensively. Here, we describe experiments with templates in which inosinic acid (I) is substituted for guanylic acid, or 2,6-diaminopurine nucleotide (D) for adenylic acid. We find that the substitution of I for G in a template is strongly inhibitory and prevents any incorporation of C into internal positions in the oligomeric products of the reaction. The substitution of D for A, on the contrary, leads to increased incorporation of U into the products. We found no evidence for the template-directed facilitation of oligomerization of A or I through A-I base pairing. The significance of these results for prebiotic chemistry is discussed.

  18. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  19. Calibration diagnostic and updating strategy based on quantitative modeling of near-infrared spectral residuals.

    PubMed

    Yu, Hua; Small, Gary W

    2015-02-01

    A diagnostic and updating strategy is explored for multivariate calibrations based on near-infrared spectroscopy. For use with calibration models derived from spectral fitting or decomposition techniques, the proposed method constructs models that relate the residual concentrations remaining after a prediction to the residual spectra remaining after the information associated with the calibration model has been extracted. This residual modeling approach is evaluated for use with partial least-squares (PLS) models for predicting physiological levels of glucose in a simulated biological matrix. Residual models are constructed with both PLS and a hybrid technique based on the use of PLS scores as inputs to support vector regression. Calibration and residual models are built with both absorbance and single-beam data collected over 416 days. Effective models for the spectral residuals are built with both types of data and demonstrate the ability to diagnose and correct deviations in performance of the calibration model with time. PMID:25473807

  20. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.

  1. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals. PMID:24971658

  2. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.

  3. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-06-25

    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield. PMID:25839825

  4. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli.

    PubMed

    Knuuti, Juho; Belevich, Galina; Sharma, Vivek; Bloch, Dmitry A; Verkhovskaya, Marina

    2013-12-01

    Reactive oxygen species (ROS) production by respiratory Complex I from Escherichia coli was studied in bacterial membrane fragments and in the isolated and purified enzyme, either solubilized or incorporated in proteoliposomes. We found that the replacement of a single amino acid residue in close proximity to the nicotinamide adenine dinucleotide (NADH)-binding catalytic site (E95 in the NuoF subunit) dramatically increases the reactivity of Complex I towards dioxygen (O2 ). In the E95Q variant short-chain ubiquinones exhibit strong artificial one-electron reduction at the catalytic site, also leading to a stronger increase in ROS production. Two mechanisms can contribute to the observed kinetic effects: (a) a change in the reactivity of flavin mononucleotide (FMN) towards dioxygen at the catalytic site, and (b) a change in the population of the ROS-generating state. We propose the existence of two (closed and open) states of the NAD(+) -bound enzyme as one feature of the substrate-binding site of Complex I. The analysis of the kinetic model of ROS production allowed us to propose that the population of Complex I with reduced FMN is always low in the wild-type enzyme even at low ambient redox potentials, minimizing the rate of reaction with O2 in contrast to E95Q variant.

  5. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  6. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. Numerical manifold method based on the method of weighted residuals

    NASA Astrophysics Data System (ADS)

    Li, S.; Cheng, Y.; Wu, Y.-F.

    2005-05-01

    Usually, the governing equations of the numerical manifold method (NMM) are derived from the minimum potential energy principle. For many applied problems it is difficult to derive in general outset the functional forms of the governing equations. This obviously strongly restricts the implementation of the minimum potential energy principle or other variational principles in NMM. In fact, the governing equations of NMM can be derived from a more general method of weighted residuals. By choosing suitable weight functions, the derivation of the governing equations of the NMM from the weighted residual method leads to the same result as that derived from the minimum potential energy principle. This is demonstrated in the paper by deriving the governing equations of the NMM for linear elasticity problems, and also for Laplace's equation for which the governing equations of the NMM cannot be derived from the minimum potential energy principle. The performance of the method is illustrated by three numerical examples.

  8. Electrostatic effects of surface acidic amino acid residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough).

    PubMed

    Zhou, Z; Swenson, R P

    1995-03-14

    The flavodoxin from Desulfovibrio vulgaris (Hildenborough) is a member of a family of small, acidic proteins that contain a single noncovalently bound flavin mononucleotide (FMN) cofactor. These proteins function as low-potential one-electron transferases in bacteria. A distinguishing feature of these flavoproteins is the dramatic decrease in the midpoint potential of the semiquinone/hydroquinone couple of the FMN upon binding to the apoprotein (-172 mV for FMN free in solution versus -443 mV when bound), a perturbation thought to be essential for physiological function. The structural basis of this phenomenon is not yet thoroughly understood. In this study, the contribution of six acidic residues (Asp62, Asp63, Glu66, Asp95, Glu99, and Asp106) to the perturbation of the redox properties of the cofactor has been investigated. These residues are clustered about the FMN binding site within 13 A of the N(1) atom of the cofactor. Using oligonucleotide-directed mutagenesis, these residues were neutralized in various combinations through the substitution of asparagine for aspartate and glutamine for glutamate. Seventeen mutant flavodoxins were generated in which one to all six acidic residues were systematically neutralized, often in various spatial configurations. There was no obvious correlation between the midpoint potentials for the oxidized/semiquinone couple and general electrostatic environment, although some differences were noted. However, the midpoint potential for the semiquinone/hydroquinone couple for each of the mutants was less negative than that of the wild type. These increases are strongly correlated with the number of acid to amide substitutions, with an average contribution of about 15 mV per substitution. Collectively, the unfavorable electrostatic environment provided by these acidic residues accounts for approximately one-third of the large midpoint potential shift for the semiquinone/hydroquinone couple that typifies the flavodoxin family

  9. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  10. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    PubMed Central

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-01-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct. PMID:27681031

  11. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    NASA Astrophysics Data System (ADS)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-09-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct.

  12. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  13. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  14. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  15. The isotopic composition of zinc, palladium, silver, cadmium, tin, and tellurium in acid-etched residues of the Allende meteorite

    SciTech Connect

    Loss, R.D.; Rosman, K.J.R.; De Laeter, J.R. )

    1990-12-01

    The isotopic and elemental abundances of Zn, Pd, Ag, Cd, Sn, and Te have been measured in three acid-resistant residues extracted from the Allende meteorite. High-efficiency, low-contamination ion-exchange procedures were developed to separate and purify the nanogram amounts of these elements present. Elemental-abundance determinations performed by Mass Spectrometric Isotope Dilution agree with previously published work for similarly derived residues. No isotope anomalies similar to those found for Xe (Xe-HL) in these samples were detected for any of these elements, which is consistent with the residues not being derived directly from the Xe-HL carriers. The lack of major Te-isotope anomalies does not support earlier reports of {sup 126}Te and {sup 130}Te excesses which were measured by neutron activation in similar samples. Small excesses were detected in the minor isotopes of Sn and Te, but these may be due to measurement problems associated with the small ion currents obtained for these samples. Two of the residue solutions contain Cd with up to several percent excesses for {sup 106}Cd and {sup 108}Cd. Interpretations of these results are limited by the unknown nature of the carrier minerals in the residues but may indicate the presence of a p-process component in Allende residues.

  16. A single gamma-carboxyglutamic acid residue in a novel cysteine-rich secretory protein without propeptide.

    PubMed

    Hansson, Karin; Thämlitz, Ann-Marie; Furie, Bruce; Furie, Barbara C; Stenflo, Johan

    2006-10-24

    Gamma-glutamyl carboxylase catalyzes the modification of specific glutamyl residues to gamma-carboxyglutamyl (Gla) residues in precursor proteins that possess the appropriate gamma-carboxylation recognition signal within the propeptide region. We describe the immunopurification and first biochemical characterization of an invertebrate high molecular weight Gla-containing protein with homologues in mammals. The protein, named GlaCrisp, was isolated from the venom of the marine cone snail Conus marmoreus. GlaCrisp gave intense signals in Western blot experiments employing the Gla-specific antibody M3B, and the presence of Gla was chemically confirmed by amino acid analysis after alkaline hydrolysis. Characterization of a full-length cDNA clone encoding GlaCrisp deduced a precursor containing an N-terminal signal peptide but, unlike other Gla-containing proteins, no apparent propeptide. The predicted mature protein of 265 amino acid residues showed considerable sequence similarity to the widely distributed cysteine-rich secretory protein family and closest similarity (65% identity) to the recently described substrate-specific protease Tex31. In addition, two cDNA clones encoding the precursors of two isoforms of GlaCrisp were identified. The predicted precursor isoforms differed at three amino acid positions (-6, 9, and 25). Analysis by Edman degradation and nanoelectrospray ionization mass spectrometry, before and after methyl esterfication, identified a Gla residue at amino acid position 9 in GlaCrisp. This is the first example of a Gla-containing protein without an obvious gamma-carboxylation recognition site. The results define a new class of Gla proteins and support the notion that gamma-carboxylation of glutamyl residues is phylogenetically older than blood coagulation and the vertebrate lineage.

  17. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition

    PubMed Central

    Wu, Yun

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins. PMID:27631006

  18. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition.

    PubMed

    Wu, Yun; Zheng, Yufei; Tang, Hua

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins. PMID:27631006

  19. Identifying the Types of Ion Channel-Targeted Conotoxins by Incorporating New Properties of Residues into Pseudo Amino Acid Composition

    PubMed Central

    Wu, Yun

    2016-01-01

    Conotoxins are a kind of neurotoxin which can specifically interact with potassium, sodium type, and calcium channels. They have become potential drug candidates to treat diseases such as chronic pain, epilepsy, and cardiovascular diseases. Thus, correctly identifying the types of ion channel-targeted conotoxins will provide important clue to understand their function and find potential drugs. Based on this consideration, we developed a new computational method to rapidly and accurately predict the types of ion-targeted conotoxins. Three kinds of new properties of residues were proposed to use in pseudo amino acid composition to formulate conotoxins samples. The support vector machine was utilized as classifier. A feature selection technique based on F-score was used to optimize features. Jackknife cross-validated results showed that the overall accuracy of 94.6% was achieved, which is higher than other published results, demonstrating that the proposed method is superior to published methods. Hence the current method may play a complementary role to other existing methods for recognizing the types of ion-target conotoxins.

  20. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  1. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'.

    PubMed

    Maravić, Gordana; Feder, Marcin; Pongor, Sándor; Flögel, Mirna; Bujnicki, Janusz M

    2003-09-01

    Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family. PMID:12946350

  2. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'.

    PubMed

    Maravić, Gordana; Feder, Marcin; Pongor, Sándor; Flögel, Mirna; Bujnicki, Janusz M

    2003-09-01

    Methyltransferases (MTases) from the Erm family catalyze S-adenosyl-L-methionine-dependent modification of a specific adenine residue in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B antibiotics. Despite the available structural data and functional analyses on the level of the RNA substrate, still very little is known about the mechanism of rRNA:adenine-N(6) methylation. Only predictions regarding various aspects of this reaction have been made based on the analysis of the crystal structures of methyltransferase ErmC' (without the RNA) and their comparison with the crystallographic and biochemical data for better studied DNA:m(6)A MTases. To validate the structure-based predictions of presumably essential residues in the catalytic pocket of ErmC', we carried out the site-directed mutagenesis and studied the function of the mutants in vitro and in vivo. Our results indicate that the active site of rRNA:m(6)A MTases is much more tolerant to amino acid substitutions than the active site of DNA:m(6)A MTases. Only the Y104 residue implicated in stabilization of the target base was found to be indispensable. Remarkably, the N101 residue from the "catalytic" motif IV and two conserved residues that form the floor (F163) and one of the walls (N11) of the base-binding site are not essential for catalysis in ErmC'. This somewhat surprising result is discussed in the light of the available structural data and in the phylogenetic context of the Erm family.

  3. Elucidating the exact role of engineered CRABPII residues for the formation of a retinal protonated Schiff base

    SciTech Connect

    Vasileiou, Chrysoula; Wang, Wenjing; Jia, Xiaofei; Lee, Kin Sing Stephen; Watson, Camille T.; Geiger, James H.; Borhan, Babak

    2010-03-04

    Cellular Retinoic Acid Binding Protein II (CRABPII) has been reengineered to specifically bind and react with all-trans-retinal to form a protonated Schiff base. Each step of this process has been dissected and four residues (Lys132, Tyr134, Arg111, and Glu121) within the CRABPII binding site have been identified as crucial for imine formation and/or protonation. The precise role of each residue has been examined through site directed mutagenesis and crystallographic studies. The crystal structure of the R132K:L121E-CRABPII (PDB-3I17) double mutant suggests a direct interaction between engineered Glu121 and the native Arg111, which is critical for both Schiff base formation and protonation.

  4. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  5. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-01

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  6. Identifying the catalytic acid/base in GH29 α-L-fucosidase subfamilies.

    PubMed

    Shaikh, F Aidha; Lammerts van Bueren, Alicia; Davies, Gideon J; Withers, Stephen G

    2013-08-27

    While the catalytic nucleophile in the configuration-retaining α-L-fucosidases from family GH29 is fully conserved with respect to sequence, there is no fully sequence-conserved acid/base residue candidate across the family. X-ray crystallographic studies and kinetic characterizations have allowed the identification of this residue in a few cases, and a recent combination of phylogenetic tree analyses with substrate specificity data has allowed the division of GH29 enzymes into two subfamilies, A and B, allowing the probable assignment of these residues. Here, we perform detailed kinetic and mechanistic characterizations of the corresponding alanine mutants and other candidates. Through comparison of kinetic parameters obtained for the hydrolysis of fucosyl substrates with activated leaving groups by these mutants with those of the corresponding wild-type enzymes, in conjunction with the demonstration of azide rescue, we largely confirm the acid/base residue predictions for the GH29 fucosidases from the two subfamilies.

  7. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  8. Enumerating Pathways of Proton Abstraction Based on a Spatial and Electrostatic Analysis of Residues in the Catalytic Site

    PubMed Central

    Chakraborty, Sandeep

    2012-01-01

    The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology – Proton abstraction Simulation (PRISM) – to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism. PMID:22745790

  9. A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL185.

    PubMed

    Shin, Hyun-Dong; McClendon, Shara; Le, Tien; Taylor, Frank; Chen, Rachel Ruizhen

    2006-12-20

    An economic ferulic acid recovery from biomass via biological methods is of interest for a number of reasons. Ferulic acid is a precursor to vanillin synthesis. It is also a known antioxidant with potential food and medical applications. Despite its universal presence in all plant cell wall material, the complex structure of the plant cell wall makes ferulic acid recovery from biomass a challenging bioprocess. Previously, without pretreatment, very low (3-13%) recovery of ferulic acid from corn residues was achieved. We report here the discovery of a filamentous fungus Neosartorya spinosa NRRL185 capable of producing a full complement of enzymes to release ferulic acid and the development of an enzymatic process for a complete recovery of ferulic acid from corn bran and corn fibers. A partial characterization of the extracellular proteome of the microbe revealed the presence of at least seven cellulases and hemicellulases activities, including multiple iso-forms of xylanase and ferulic acid esterase. The recovered ferulic acid was bio-converted to vanillin, demonstrating its potential application in natural vanillin synthesis. The enzymatic ferulic acid recovery accompanied a significant release of reducing sugars (76-100%), suggesting much broader applications of the enzymes and enzyme mixtures from this organism.

  10. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  11. Electrochemical nanomaterial-based nucleic acid aptasensors.

    PubMed

    Palchetti, Ilaria; Mascini, Marco

    2012-04-01

    Recent progress in the development of electrochemical nanomaterial-aptamer-based biosensors is summarized. Aptamers are nucleic acid ligands that can be generated against amino acids, drugs, proteins, and other molecules. They are isolated from a large random library of synthetic nucleic acids by an iterative process of binding, separation, and amplification, called systematic evolution of ligands by exponential enrichment (SELEX). In this review, different methods of integrating aptamers with different nanomaterials and nanoparticles for electrochemical biosensing application are described.

  12. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    PubMed

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. PMID:23465722

  13. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3.

  14. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. PMID:25600804

  15. Computational study on the roles of amino acid residues in the active site formation mechanism of blue-light photoreceptors

    NASA Astrophysics Data System (ADS)

    Sato, Ryuma; Kitoh-Nishioka, Hirotaka; Ando, Koji; Yamato, Takahisa

    2015-07-01

    To examine the functional roles of the active site methionine (M-site) and glutamic acid (E-site) residues of blue-light photoreceptors, we performed in silico mutation at the M-site in a systematic manner and focused on the hydrogen bonding between the E-site and the substrate: the cyclobutane-pyrimidine dimer (CPD). Fragment molecular orbital calculations with electron correlations demonstrated that substitution of the M-site methionine with either alanine or glutamine always destabilizes the interaction energy between the E-site and the CPD by more than 12.0 kcal/mol, indicating that the methionine and glutamic acid residues cooperatively facilitate the enzymatic reaction in the active site.

  16. pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins.

    PubMed

    Binkowski, T Andrew; Freeman, Patrick; Liang, Jie

    2004-07-01

    Detecting similar protein surfaces provides an important route for discovering unrecognized or novel functional relationship between proteins. The web server pvSOAR (pocket and void Surfaces Of Amino acid Residues) provides an online resource to identify similar protein surface regions. pvSOAR can take a structure either uploaded by a user or obtained from the Protein Data Bank, and identifies similar surface patterns based on geometrically defined pockets and voids. It provides several search modes to compare protein surfaces by similarity in local sequence, local shape and local orientation. Statistically significant search results are reported for visualization and interactive exploration. pvSOAR can be used to predict biological functions of proteins with known three-dimensional structures but unknown biological roles. It can also be used to study functional relationship between proteins and for exploration of the evolutionary origins of structural elements important for protein function. We present an example using pvSOAR to explore the biological roles of a protein whose structure was solved by the structural genomics project. The pvSOAR web server is available at http://pvsoar.bioengr.uic.edu/.

  17. Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues

    SciTech Connect

    Childs, W.C. 3d.; Taron, D.J.; Neuhaus, F.C.

    1985-06-01

    Lipoteichoic acid (LTA) from Lactobacillus casei contains poly(glycerophosphate) substituted with D-alanyl ester residues. The distribution of these residues in the in vitro-synthesized polymer is uniform. Esterification of LTA with D-alanine may occur in one of two modes: (i) addition at random or (ii) addition at a defined locus in the poly(glycerophosphate) chain followed by redistribution of the ester residues. A time-dependent transacylation of these residues from D-(/sup 14/C)alanyl-lipophilic LTA to hydrophilic acceptor was observed. The hydrophilic acceptor was characterized as D-alanyl-hydrophilic LTA. This transacylation requires neither ATP nor the D-alanine incorporation system, i.e., the D-alanine activating enzyme and D-alanine:membrane acceptor ligase. No evidence for an enzyme-catalyzed transacylation reaction was observed. The authors propose that this process of transacylation may be responsible for the redistribution of D-alanyl residues after esterification to the poly(glycerophosphate). As a result, it is difficult to distinguish between these proposed modes of addition.

  18. Effect of 3' terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes.

    PubMed Central

    Chen, Y; Sinha, K; Perumal, K; Reddy, R

    2000-01-01

    It is known that several small RNAs including human and Xenopus signal recognition particle (SRP) RNA, U2 small nuclear RNA (snRNA) and 7SK RNAs are posttranscriptionally adenylated, whereas U6 snRNA and ribosomal 5S RNA are posttranscriptionally uridylated on their 3' ends. In this study, we provide evidence that a small fraction of U6 snRNA and 5S ribosomal RNA molecules from human as well as Xenopus oocytes contain a single posttranscriptionally added adenylic acid residue on their 3' ends. These data show that U6 snRNA and 5S rRNAs are posttranscriptionally modified on their 3' ends by both uridylation and adenylation. Although the SRP RNA, 7SK RNA, 5S RNA, and U6 snRNA with the uridylic acid residue on their 3' ends were readily uridylated, all these RNAs with posttranscriptionally added adenylic acid residue on their 3' ends were not uridylated in vitro, or when U6 snRNA with 3' A(OH) was injected into Xenopus oocytes. These results show that the presence of a single posttranscriptionally added adenylic acid residue on the 3' end of SRP RNA, U6 snRNA, 5S rRNA, or 7SK RNA prevents 3' uridylation. These data also show that adenylation and uridylation are two competing processes that add nucleotides on the 3' end of some small RNAs and suggest that one of the functions of the 3' adenylation may be to negatively affect the 3' uridylation of small RNAs. PMID:10999605

  19. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  20. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker.

    PubMed Central

    Patton, D E; West, J W; Catterall, W A; Goldin, A L

    1992-01-01

    The cytoplasmic linker connecting domains III and IV of the voltage-gated Na+ channel is thought to be involved in fast inactivation. This linker is highly conserved among the various Na+ channels that have been cloned. In the rat brain IIA Na+ channel, it consists of 53 amino acids of which 15 are charged. To investigate the role of this linker in inactivation, we mutated all 15 of the charged residues in various combinations. All but one of these mutants expressed functional channels, and all of these inactivated with kinetics similar to the wild-type channel. We then constructed a series of deletion mutations that span the III-IV linker to determine if any region of the linker is essential for fast inactivation. Deletion of the first 10 amino acids completely eliminated fast inactivation in the channel, whereas deletion of the last 10 amino acids had no substantial effect on inactivation. These results demonstrate that some residues in the amino end of the III-IV linker are critical for fast Na(+)-channel inactivation, but that the highly conserved positively charged and paired negatively charged residues are not essential. PMID:1332059

  1. Jammed acid-base reactions at interfaces.

    PubMed

    Gibbs-Davis, Julianne M; Kruk, Jennifer J; Konek, Christopher T; Scheidt, Karl A; Geiger, Franz M

    2008-11-19

    Using nonlinear optics, we show that acid-base chemistry at aqueous/solid interfaces tracks bulk pH changes at low salt concentrations. In the presence of 10 to 100 mM salt concentrations, however, the interfacial acid-base chemistry remains jammed for hours, until it finally occurs within minutes at a rate that follows the kinetic salt effect. For various alkali halide salts, the delay times increase with increasing anion polarizability and extent of cation hydration and lead to massive hysteresis in interfacial acid-base titrations. The resulting implications for pH cycling in these systems are that interfacial systems can spatially and temporally lag bulk acid-base chemistry when the Debye length approaches 1 nm.

  2. The Yale Pharyngeal Residue Severity Rating Scale: An Anatomically Defined and Image-Based Tool.

    PubMed

    Neubauer, Paul D; Rademaker, Alfred W; Leder, Steven B

    2015-10-01

    The Yale Pharyngeal Residue Severity Rating Scale was developed, standardized, and validated to provide reliable, anatomically defined, and image-based assessment of post-swallow pharyngeal residue severity as observed during fiberoptic endoscopic evaluation of swallowing (FEES). It is a five-point ordinal rating scale based on residue location (vallecula and pyriform sinus) and amount (none, trace, mild, moderate, and severe). Two expert judges reviewed a total of 261 FEES evaluations and selected a no residue exemplar and three exemplars each of trace, mild, moderate, and severe vallecula and pyriform sinus residue. Hard-copy color images of the no residue, 12 vallecula, and 12 pyriform sinus exemplars were randomized by residue location for hierarchical categorization by 20 raters with a mean of 8.3 years of experience (range 2-27 years) performing and interpreting FEES. Severity ratings for all images were performed by the same 20 raters, 2 weeks apart, and with the order of image presentations randomized. Intra-rater test-retest reliability, inter-rater reliability, and construct validity were determined by pooled multi-category multi-rater kappa statistics. Residue ratings were excellent for intra-rater reliability for vallecula (kappa = 0.957 ± 0.014) and pyriform sinus (kappa = 0.854 ± 0.021); very good to excellent for inter-rater reliability for vallecula (kappa = 0.868 ± 0.011) and pyriform sinus (kappa = 0.751 ± 0.011); and excellent for validity for vallecula (kappa = 0.951 ± 0.014) and pyriform sinus (kappa = 0.908 ± 0.017). Clinical uses include accurate classification of vallecula and pyriform sinus residue severity patterns as none, trace, mild, moderate, or severe for diagnostic purposes, determination of functional therapeutic change, and precise dissemination of shared information. Scientific uses include tracking outcome measures, demonstrating efficacy of interventions to reduce pharyngeal residue, investigating morbidity and mortality

  3. Americium recovery from reduction residues

    DOEpatents

    Conner, W.V.; Proctor, S.G.

    1973-12-25

    A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the residues in a suitable acid, adjusting the hydrogen ion concentration to a desired level by adding a base, precipitating the americium as americium oxalate by adding oxalic acid, digesting the solution, separating the precipitate, and thereafter calcining the americium oxalate precipitate to form americium oxide. (Official Gazette)

  4. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    SciTech Connect

    Shiheido, Hirokazu Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  5. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  6. Discriminating the native structure from decoys using scoring functions based on the residue packing in globular proteins

    PubMed Central

    2009-01-01

    Background Setting the rules for the identification of a stable conformation of a protein is of utmost importance for the efficient generation of structures in computer simulation. For structure prediction, a considerable number of possible models are generated from which the best model has to be selected. Results Two scoring functions, Rs and Rp, based on the consideration of packing of residues, which indicate if the conformation of an amino acid sequence is native-like, are presented. These are defined using the solvent accessible surface area (ASA) and the partner number (PN) (other residues that are within 4.5 Å) of a particular residue. The two functions evaluate the deviation from the average packing properties (ASA or PN) of all residues in a polypeptide chain corresponding to a model of its three-dimensional structure. While simple in concept and computationally less intensive, both the functions are at least as efficient as any other energy functions in discriminating the native structure from decoys in a large number of standard decoy sets, as well as on models submitted for the targets of CASP7. Rs appears to be slightly more effective than Rp, as determined by the number of times the native structure possesses the minimum value for the function and its separation from the average value for the decoys. Conclusion Two parameters, Rs and Rp, are discussed that can very efficiently recognize the native fold for a sequence from an ensemble of decoy structures. Unlike many other algorithms that rely on the use of composite scoring function, these are based on a single parameter, viz., the accessible surface area (or the number of residues in contact), but still able to capture the essential attribute of the native fold. PMID:20038291

  7. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs.

  8. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors

    PubMed Central

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  9. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    PubMed

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  10. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  11. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    PubMed

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-01

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. PMID:24657616

  12. Identification and Modulation of the Key Amino Acid Residue Responsible for the pH Sensitivity of Neoculin, a Taste-Modifying Protein

    PubMed Central

    Nakajima, Ken-ichiro; Yokoyama, Kanako; Koizumi, Taichi; Koizumi, Ayako; Asakura, Tomiko; Terada, Tohru; Masuda, Katsuyoshi; Ito, Keisuke; Shimizu-Ibuka, Akiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor–taste substance in particular. PMID:21559382

  13. A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine.

    PubMed

    Bai, Penn; Sharratt, Paul; Yeo, Tze Yuen; Bu, Jie

    2014-09-01

    As the current cost of mineral carbonation is too high for an economically viable industrial process, it is desirable to produce value-added products from CO2 mineralization process. In this work, a facile and cost-effective process was developed for the production of high purity SiO2 from acid-leached serpentine residue. The Si extraction rate is fast even under ambient conditions due to the highly defective structure of the residue. The reaction kinetics were studied and it was found that the Si extraction rate was under a combination of chemical reaction control and film diffusion control. The SiO2 sample prepared has high purity with a nanoporous structure, which renders it a potential candidate for applications such as an adsorbent and a catalyst support.

  14. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    SciTech Connect

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-11-10

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated.

  15. Peptide hairpins with strand segments containing alpha- and beta-amino acid residues: cross-strand aromatic interactions of facing Phe residues.

    PubMed

    Roy, Rituparna S; Gopi, Hosahudya N; Raghothama, S; Gilardi, Richard D; Karle, Isabella L; Balaram, Padmanabhan

    2005-01-01

    The incporation of beta-amino acid residues into the strand segments of designed beta-hairpin leads to the formation of polar sheets, since in the case of beta-peptide strands, all adjacent carbonyl groups point in one direction and the amide groups orient in the opposite direction. The conformational analysis of two designed peptide hairpins composed of alpha/beta-hybrid segments are described: Boc-Leu-betaPhe-Val-(D)-Pro-Gly-Leu-betaPhe-Val-OMe (1) and Boc-betaLeu-Phe-betaVal-D-Pro-Gly-betaLeu-Phe-betaVal-OMe (2). A 500-MHz 1H-NMR (nuclear magnetic resonance) analysis in methanol supports a significant population of hairpin conformations in both peptides. Diagnostic nuclear Overhauser effects (NOEs) are observed in both cases. X-ray diffraction studies on single crystals of peptide 1 reveal a beta-hairpin conformation in both the molecules, which constitute the crystallographic asymmetric unit. Three cross-strand hydrogen bonds and a nucleating type II' beta-turn at the D-Pro-Gly segment are observed in the two independent molecules. In peptide 1, the betaPhe residues at positions 2 and 7 occur at the nonhydrogen-bonding position, with the benzyl side chains pointing on opposite faces of the beta-sheet. The observed aromatic centroid-to-centroid distances are 8.92 A (molecule A) and 8.94 A (molecule B). In peptide 2, the aromatic rings must occupy facing positions in antiparallel strands, in the NMR-derived structure. Peptide 1 yields a normal "hairpin-like" CD spectrum in methanol with a minimum at 224 nm. The CD spectrum of peptide 2 reveals a negative band at 234 nm and a positive band at 221 nm, suggestive of an exciton split doublet. Modeling of the facing Phe side chains at the hydrogen-bonding position of a canonical beta-hairpin suggests that interring separation is approximately 4.78 A for the gauche+ gauche- (g+ g-) rotamer. A previously reported peptide beta-hairpin composed of only alpha-amino acids, Boc-Leu-Phe-Val-D-Pro-Gly-Leu-Phe-Val-OMe also

  16. Fast digestion procedure for determination of catalyst residues in La- and Ni-based carbon nanotubes.

    PubMed

    Mortari, Sergio Roberto; Cocco, Carmem Regina; Bartz, Fabiane Regina; Dresssler, Valderi L; Flores, Erico Marlon de Moraes

    2010-05-15

    A procedure based on microwave-induced combustion (MIC) was applied for carbon nanotube (CNT) digestion and further determination of La and Ni by inductively coupled plasma optical emission spectrometry (ICP OES). Samples (up to 400 mg) were completely combusted at 20 bar of oxygen, and a reflux step was applied to improve the analyte absorption. Combustion was finished in less than 50 s, and analytes were absorbed in diluted acid solution. Absorbing solutions ranging from 1 to 12 mol L(-1) for HCl and from 1 to 14 mol L(-1) HNO(3) were tested. Accuracy for both analytes was evaluated using certified reference materials and analyte spikes. Neutron activation analysis was also used to check accuracy for La. Agreement was better than 96% for La and Ni using a 4 mol L(-1) absorbing solution of HNO(3) or HCl and 15 min of reflux. The residual carbon content was lower than 0.5%. Up to eight samples could be digested simultaneously in 36 min, that makes the throughput using MIC more suitable when it is compared to the digestion by dry ashing as recommended by other procedures. The obtained limits of detection using MIC were lower than those using dry ashing, and a single absorbing solution, e.g., diluted HNO(3), can be used for simultaneous determination of La and Ni by ICP OES. PMID:20405950

  17. [Kidney, Fluid, and Acid-Base Balance].

    PubMed

    Shioji, Naohiro; Hayashi, Masao; Morimatsu, Hiroshi

    2016-05-01

    Kidneys play an important role to maintain human homeostasis. They contribute to maintain body fluid, electrolytes, and acid-base balance. Especially in fluid control, we, physicians can intervene body fluid balance using fluid resuscitation and diuretics. In recent years, one type of fluid resuscitation, hydroxyl ethyl starch has been extensively studied in the field of intensive care. Although their effects on fluid resuscitation are reasonable, serious complications such as kidney injury requiring renal replacement therapy occur frequently. Now we have to pay more attention to this important complication. Another topic of fluid management is tolvaptan, a selective vasopressin-2 receptor antagonist Recent randomized trial suggested that tolvaptan has a similar supportive effect for fluid control and more cost effective compared to carperitide. In recent years, Stewart approach is recognized as one important tool to assess acid-base balance in critically ill patients. This approach has great value, especially to understand metabolic components in acid-base balance. Even for assessing the effects of kidneys on acid-base balance, this approach gives us interesting insight. We should appropriately use this new approach to treat acid-base abnormality in critically ill patients. PMID:27319095

  18. Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones.

    PubMed Central

    Klein, G; Georgopoulos, C

    2001-01-01

    Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele. PMID:11404317

  19. ASCORBIC ACID REDUCTION ON RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    EPA Science Inventory

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (odxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time . Such research projects often have distinct needs from requi...

  20. ASCORBIC ACID REDUCTION OF RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    EPA Science Inventory

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Thus, methods designed for compliance monitoring are not alway...

  1. Stabilization of geothermal residues by encapsulation in portland cement-based composites

    SciTech Connect

    Webster, R.P.; Kukacka, L.E.

    1988-05-01

    Presented are the results from a laboratory test program conducted to identify and evaluate materials for converting hazardous geothermal residues to a non-hazardous and potentially usable form. Results indicate that the residues can be effectively incorporated, as a fine aggregate, into portland cement-based composites. Five geothermal residues obtained from sites in the Salton Sea area of California were evaluated. Three of these were classified as hazardous. After mixing with cement, the leach rates were all well below specified levels. Although structural-grade composites were produced, gradual reductions in properties with time up to 1 yr were noted. This indicates ongoing chemical reactions between the cement paste and the constituents of the residues. Further research is necessary before the composites could be considered for use in structural applications. 3 refs., 8 tabs.

  2. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  3. Production of apple-based baby food: changes in pesticide residues.

    PubMed

    Kovacova, Jana; Kocourek, Vladimir; Kohoutkova, Jana; Lansky, Miroslav; Hajslova, Jana

    2014-01-01

    Apples represent the main component of most fruit-based baby food products. Since not only fruit from organic farming, but also conventionally grown fruit is used for baby food production, the occurrence of pesticide residues in the final product is of high concern. To learn more about the fate of these hazardous compounds during processing of contaminated raw material, apples containing altogether 21 pesticide residues were used for preparation of a baby food purée both in the household and at industrial scale (in the baby food production facility). Within both studies, pesticide residues were determined in raw apples as well as in final products. Intermediate product and by-product were also analysed during the industrial process. Determination of residues was performed by a sensitive multi-detection analytical method based on liquid or gas chromatography coupled with mass spectrometry. The household procedure involved mainly the cooking of unpeeled apples, and the decrease of residues was not extensive enough for most of the studied pesticides; only residues of captan, dithianon and thiram dropped significantly (processing factors less than 0.04). On the other hand, changes in pesticide levels were substantial for all tested pesticides during apple processing in the industrial baby food production facility. The most important operation affecting the reduction of residues was removal of the by-products after pulping (rest of the peel, stem, pips etc.), while subsequent sterilisation has an insignificant effect. Also in this case, captan, dithianon and thiram were identified as pesticides with the most evident decrease of residues.

  4. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  5. KV4.3 expression and gating: S2 and S3 acidic and S4 innermost basic residues.

    PubMed

    Skerritt, Matthew R; Campbell, Donald L

    2009-11-01

    Effects of neutralizing individual negatively charged (acidic [E,D]) and innermost positively charged (basic [K,R]) residues in transmembrane segments S2 (D230Q, E240Q), S3 (D263Q) and S4 (K299A/Q, R302A/Q) of the K(V)4.3 putative voltage sensing domain (VSD) were determined. S2 D230Q generated large macroscopic currents, depolarized steady-state activation ("a(4)") and isochronal (1 sec) inactivation ("i") relationships, and significantly accelerated kinetics of deactivation and recovery (from both macroscopic and closed state inactivation [CSI]). D230Q thus stabilized non-inactivated closed states. These effects were attributable to structural perturbations, and indicated D230 is not primarily involved in voltage sensing. Both S2 E240Q and S3 D263Q failed to generate measurable ionic currents, suggesting deletion of negative charges at these putatively more intracellular acidic positions were functionally "lethal" to macroscopic K(V)4.3 function. S4 innermost positive charge deletion mutants K299A/Q and R032A/Q generated functional currents with reduced peak amplitudes. While reduced K299A/Q and R302A/Q currents prevented accurate determination of "a(4)" and estimates of potential electrostatic perturbations, both sets of mutants: (i) depolarized potentials at which currents could be macroscopically detected, consistent with stabilization of closed states (structural perturbations); and (ii) accelerated macroscopic recovery. These results provide further evidence that: (i) basic residues in S4 are involved not only in regulating K(V)4.3 activation and deactivation, but also CSI and recovery; and (ii) suggest putative electrostatic interactions between acidic S2/S3 and basic S4 residues may be different in K(V)4.3 from those proposed to exist in Shaker. Functional implications are discussed.

  6. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  7. Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding

    PubMed Central

    Xiao, Rui; Gao, Junbin; Bossomaier, Terry

    2016-01-01

    A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102

  8. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.

    PubMed

    Sadeghi, Mehdi; Parto, Sahar; Arab, Shahriar; Ranjbar, Bijan

    2005-06-20

    We have used a statistical approach for protein secondary structure prediction based on information theory and simultaneously taking into consideration pairwise residue types and conformational states. Since the prediction of residue secondary structure by one residue window sliding make ambiguity in state prediction, we used a dynamic programming algorithm to find the path with maximum score. A score system for residue pairs in particular conformations is derived for adjacent neighbors up to ten residue apart in sequence. The three state overall per-residue accuracy, Q3, of this method in a jackknife test with dataset created from PDBSELECT is more than 70%.

  9. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates.

    PubMed

    Ly, Hong Giang T; Absillis, Gregory; Janssens, Rik; Proost, Paul; Parac-Vogt, Tatjana N

    2015-06-15

    SDS-PAGE/Edman degradation and HPLC MS/MS showed that zirconium(IV)-substituted Lindqvist-, Keggin-, and Wells-Dawson-type polyoxometalates (POMs) selectively hydrolyze the protein myoglobin at Asp-X peptide bonds under mildly acidic and neutral conditions. This transformation is the first example of highly sequence selective protein hydrolysis by POMs, a novel class of protein-hydrolyzing agents. The selectivity is directed by Asp residues located on the surface of the protein and is further assisted by electrostatic interactions between the negatively charged POMs and positively charged surface patches in the vicinity of the cleavage site.

  10. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca(2+)-regulated photoprotein berovin.

    PubMed

    Burakova, Ludmila P; Stepanyuk, Galina A; Eremeeva, Elena V; Vysotski, Eugene S

    2016-05-11

    Bright bioluminescence of ctenophores is caused by Ca(2+)-regulated photoproteins. Although these photoproteins are functionally identical to and share many properties of cnidarian photoproteins, like aequorin and obelin, and retain the same spatial architecture, they are extremely sensitive to light, i.e. lose the ability to bioluminesce on exposure to light over the entire absorption spectrum. In addition, the degree of identity of their amino acid sequences with those of cnidarian photoproteins is only 29.4%. This suggests that the residues involved in bioluminescence of ctenophore and cnidarian photoproteins significantly differ. Here we describe the bioluminescent properties of berovin mutants with substitution of the residues located in the photoprotein internal cavity. Since the spatial structure of berovin bound with a substrate is not determined yet, to identify these residues we have modeled it with an accommodated substrate using the structures of some cnidarian Ca(2+)-regulated photoproteins with bound coelenterazine or coelenteramide as templates in order to obtain an adequate sampling and to take into account all possible conformers and variants for ligand-protein docking. Based on the impact of substitutions on the bioluminescent properties and model structures we speculate that within the internal cavity of ctenophore photoproteins, coelenterazine is bound as a 2-peroxy anion adduct which is stabilized owing to Coulomb interaction with a positively charged guanidinium group of Arg41 paired with Tyr204. In this case, the bioluminescence reaction is triggered by only calcium-induced conformational changes leading to the disturbance of charge-charge interaction.

  11. Mindful Mood Balance: A Case Report of Web-Based Treatment of Residual Depressive Symptoms

    PubMed Central

    Felder, Jennifer; Dimidjian, Sona; Beck, Arne; Boggs, Jennifer M; Segal, Zindel

    2014-01-01

    Residual depressive symptoms are associated with increased risk for relapse and impaired functioning. Although there is no definitive treatment for residual depressive symptoms, Mindfulness-Based Cognitive Therapy has been shown to be effective, but access is limited. Mindful Mood Balance (MMB), a Web-based adaptation of Mindfulness-Based Cognitive Therapy, was designed to address this care gap. In this case study, we describe a composite case that is representative of the course of intervention with MMB and its implementation in a large integrated delivery system. Specifically, we describe the content of each of eight weekly sessions, and the self-management skills developed by participating in this program. MMB may be a cost-effective and scalable option in primary care for increasing access to treatments for patients with residual depressive symptoms. PMID:25141988

  12. Stabile Chlorine Isotope Study of Martian Shergottites and Nakhlites; Whole Rock and Acid Leachates and Residues

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2011-01-01

    We have established a precise analytical technique for stable chlorine isotope measurements of tiny planetary materials by TIMS (Thermal Ionization Mass Spectrometry) [1], for which the results are basically consistent with the IRMS tech-nique (gas source mass spectrometry) [2,3,4]. We present here results for Martian shergottites and nakhlites; whole rocks, HNO3-leachates and residues, and discuss the chlorine isotope evolution of planetary Mars.

  13. Radionuclide Leaching from Residual Solids Remaining after Acid Dissolution of K East Area Sludge Composite

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Carlson, C.D.; Soderquist, C.Z.; Fadeff, S.K.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of various leach treatments for decontaminating dissolver residual solids (KEACRESID1) produced during a 24-hour dissolution of K East Basin floor and Weasel Pit sludge composite in boiling 6 M HNO{sub 3}. The scope of this testing has been described in Section 4.5 of ''Testing Strategy to Support the Development of K Basin Sludge Treatment Process'' (Flament 1998). Radionuclides sorbed or associated with the residual solids generated in the K Basin sludge treatment process can restrict disposal of this solid to the Environmental Restoration Disposal Facility (ERDF). The starting dissolver residual solid for this testing, KEACRESID1, is a visibly heterogeneous material. This material contains radionuclides at concentrations above the ERDF Waste Acceptance Criteria for transuranics (TRU) by about a factor of 3, for {sup 239}Pu by a factor of 10, and for {sup 241}Am by a factor of 1.6. It meets the ERDF criterion for {sup 137}Cs by a factor of 4 and for uranium by a factor of 10. Therefore, the radionuclides of greatest interest in this leaching study are first {sup 239}Pu, and then {sup 241}Am, {sup 137}Cs, and uranium.

  14. An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    PubMed Central

    Tavares, Eveline Queiroz de Pinho; Rubini, Marciano Regis; Mello-de-Sousa, Thiago Machado; Duarte, Gilvan Caetano; de Faria, Fabrícia Paula; Ferreira Filho, Edivaldo Ximenes; Kyaw, Cynthia Maria; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio Jose

    2013-01-01

    Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as Km = 27.5 ± 4.33 mg/mL, Vmax = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol. PMID:23936633

  15. Delivery of a foreign epitope by sharing amino acid residues with the carrier matrix.

    PubMed

    Cheong, Wan-Shoo; Drummer, Heidi Edelgard; Netter, Hans-Jürgen

    2009-06-01

    A broad range of structural viral proteins has the ability to assemble into virus-like particles (VLPs). Under the condition that modified subunits are still competent to assemble into VLPs, they are epitope delivery platforms suitable for vaccination purposes. The insertion of foreign sequences can be detrimental for the formation of chimeric VLPs as a result of misfolded subunit proteins. Hence, a strategy was adopted to screen for locations allowing the use of shared residues between the wildtype subunit sequence and the foreign insert. The insertion of a cysteine-containing sequence of hepatitis C virus (HCV) envelope protein 2 (E2) without adding an additional cysteine residue retained the ability of recombinant small hepatitis B surface antigen (HBsAg-S) to form secretion competent VLPs. A cysteine residue shared by the insert and the template protein avoided the formation of non-native disulfide bonds, and allowed the formation of VLPs. The chimeric HBsAg-S VLPs were similar to wildtype VLPs in density exposing the inserted foreign epitope and being immunogenic. Overall, the use of shared sequences between the insert and the subunit will facilitate the design of chimeric VLPs carrying multiple epitopes.

  16. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  17. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  18. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase.

    PubMed

    Pasta, Saloni; Witkowski, Andrzej; Joshi, Anil K; Smith, Stuart

    2007-12-01

    Expression, characterization, and mutagenesis of a series of N-terminal fragments of an animal fatty acid synthase, containing the beta-ketoacyl synthase, acyl transferase, and dehydratase domains, demonstrate that the dehydratase domain consists of two pseudosubunits, derived from contiguous regions of the same polypeptide, in which a single active site is formed by the cooperation of the catalytic histidine 878 residue of the first pseudosubunit with aspartate 1032 of the second pseudosubunit. Mutagenesis and modeling studies revealed an essential role for glutamine 1036 in anchoring the position of the catalytic aspartate. These findings establish that sequence elements previously assigned to a central structural core region of the type I fatty acid synthases and some modular polyketide synthase counterparts play an essential catalytic role as part of the dehydratase domain.

  19. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  20. Residual Motion and Duty Time in Respiratory Gating Radiotherapy Using Individualized or Population-Based Windows

    SciTech Connect

    Fuji, Hiroshi Asada, Yoshihiro; Numano, Masumi; Yamashita, Haruo; Nishimura, Tetsuo; Hashimoto, Takayuki; Harada, Hideyuki; Asakura, Hirofumi; Murayama, Shigeyuki

    2009-10-01

    Purpose: The efficiency and precision of respiratory gated radiation therapy for tumors is affected by variations in respiration-induced tumor motion. We evaluated the use of individualized and population-based parameters for such treatment. Methods and Materials: External respiratory signal records and images of respiration-induced tumor motion were obtained from 42 patients undergoing respiratory gated radiation therapy for liver tumors. Gating window widths were calculated for each patient, with 2, 4, and 10 mm of residual motion, and the mean was defined as the population-based window width. Residual motions based on population-based and predefined window widths were compared. Duty times based on whole treatment sessions, at various window levels, were calculated. The window level giving the longest duty time was defined as the individualized most efficient level (MEL). MELs were also calculated based on the first 10 breathing cycles. The duty times for population-based MELs (defined as mean MELs) and individualized MELs were compared. Results: Tracks of respiration-induced tumor motion ranged from 3 to 50 mm. Half of the patients had larger actual residual motions than the assigned residual motions. Duty times were greater when based on individualized, rather than population-based, window widths. The MELs established during whole treatment sessions for 2 mm and 4 mm of residual motion gave significantly increased duty times, whereas those calculated using the first 10 breathing cycles showed only marginal increases. Conclusions: Using individualized window widths and levels provided more precise and efficient respiratory gated radiation therapy. However, methods for predicting individualized window levels before treatment remain to be explored.

  1. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  2. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  3. The Magic Sign: Acids, Bases, and Indicators.

    ERIC Educational Resources Information Center

    Phillips, Donald B.

    1986-01-01

    Presents an approach that is used to introduce elementary and junior high students to a series of activities that will provide concrete experiences with acids, bases, and indicators. Provides instructions and listings of needed solutions and materials for developing this "magic sign" device. Includes background information and several student…

  4. Student Concept Changes in Acids and Bases.

    ERIC Educational Resources Information Center

    Ye, Renmin; Wells, Raymond R.

    This study focuses on student concept changes in acids and bases. Variables include field dependent level, personal independence level, interest in science or chemistry, teaching strategy, and student gender. This study of Grade 10 students (N=81) provides information relevant to secondary school chemistry learning, teaching, and concept change.…

  5. Analysis of amino acids in latent fingerprint residue by capillary electrophoresis-mass spectrometry.

    PubMed

    Atherton, Tom; Croxton, Ruth; Baron, Mark; Gonzalez-Rodriguez, Jose; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2012-11-01

    The analysis of the chemical composition of fingerprints is important for the development and improvement of existing fingerprint enhancement techniques. This study demonstrates the first analysis of a latent fingerprint sample, using an optimized CE-MS method. In total 12 amino acids were detected in the fingerprint sample. MS/MS fragmentation was used to provide additional identity confirmation, for which eight of the twelve detected amino acids generated confirmatory product ions. Nine amino acids were quantified and their relative abundances were consistent with previous studies with serine and glycine being the most abundant. The successful detection of amino acids from latent fingerprints demonstrates that CE-MS is a potential future technique for further study of such compounds in fingerprint samples.

  6. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles.

    PubMed

    Dixit, Nitin; Salamat-Miller, Nazila; Salinas, Paul A; Taylor, Katherine D; Basu, Sujit K

    2016-05-01

    This study investigated the root cause behind an observed free fatty acid particle formation and resulting Polysorbate 20 (PS20) loss for a sulfatase drug product upon long-term storage at 5 ± 3°C. Reversed- phase chromatography with mass spectrometric analysis as well as charged aerosol detection was used to characterize the peaks associated with the intact and degraded PS20. Additionally, a proteomics study was undertaken to identify the residual host cell proteins in the sulfatase drug substance. PS20 stability studies were conducted in the presence of sulfatase, a sulfatase inhibitor, putative phospholipase B-like 2, and mock drug substance produced using a null cell line vector under experimental conditions optimized for PS20 degradation. This study provides the first published evidence where the residual host cell protein present in the drug substance was identified and experimentally shown to catalyze the breakdown of PS20 in a protein formulation over time, resulting in free fatty acid particles and PS20 loss. This study demonstrates the importance of early detection of potential impurities in the protein drug substance that may contribute to polysorbate degradation to make a judicious selection of the surfactant and its optimized concentration for the final drug product. PMID:27032893

  7. Drug-induced acid-base disorders.

    PubMed

    Kitterer, Daniel; Schwab, Matthias; Alscher, M Dominik; Braun, Niko; Latus, Joerg

    2015-09-01

    The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine).

  8. Arginine of retinoic acid receptor beta which coordinates with the carboxyl group of retinoic acid functions independent of the amino acid residues responsible for retinoic acid receptor subtype ligand specificity.

    PubMed

    Zhang, Zeng Ping; Hutcheson, Juliet M; Poynton, Helen C; Gabriel, Jerome L; Soprano, Kenneth J; Soprano, Dianne Robert

    2003-01-15

    The biological actions of retinoic acid (RA) are mediated by retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta, and RXRgamma). Consistent with the X-ray crystal structures of RARalpha and RARgamma, site-directed mutagenesis studies have demonstrated the importance of a conserved Arg residue (alphaArg(276), betaArg(269), and gammaArg(278)) for coordination with the carboxyl group of RA. However, mutation of Arg(269) to Ala in RARbeta causes only a 3- to 6-fold increase in the K(d) for RA and EC(50) in RA-dependent transcriptional transactivation assays while the homologous mutation in either RARalpha or RARgamma causes a 110-fold and a 45-fold increase in EC(50) value, respectively. To further investigate the nature of this difference, we prepared mutant RARs to determine the effect of conversion of betaR269A to a mutant which mimics either RARalpha ligand selectivity (betaA225S/R269A) or RARgamma ligand selectivity (betaI263M/R269A/V338A). Our results demonstrate that in RARbeta mutants that acquire either RARalpha or RARgamma ligand specificity the Arg(269) position responsible for coordination with the carboxyl group of retinoids continued to function like that of RARbeta. Furthermore, three mutant receptors (betaA225S/R269A, betaA225S/F279, and alphaF286A) were found to have a greater than wild-type affinity for the RARalpha-selective ligand Am580. Finally, a homology-based computer model of the ligand binding domain (LBD) of RARbeta and the X-ray crystal structures of the LBD of both RARalpha and RARgamma are used to describe potential mechanisms responsible for the increased affinity of some mutants for Am580 and for the difference in the effect of mutation of Arg(269) in RARbeta compared to its homologous Arg in RARalpha and RARgamma.

  9. A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia.

    PubMed Central

    Lee, J C; Kwon, Y G; Lawrence, D S; Edelman, A M

    1994-01-01

    The substrate recognition determinants of Ca2+/calmodulin-dependent protein kinase Ia were investigated by using peptide analogues based on the amino acid sequence around Ser-9 of synapsin I. The Km and Vmax for the synthetic peptide Leu-Arg-Arg-Arg-Leu-Ser-Asp-Ala-Asn-Phe are 3.9 microM and 18.5 mumol/(min.mg), respectively. Deletion of Leu at the -5 position lowers the Vmax/Km by 470-fold. The requirement for a hydrophobic residue at -5 was confirmed by the 90- to 2400-fold reduction in Vmax/Km produced by Arg, Ala, or Asp substitutions, but only 2.6-fold decrease after Phe substitution at this position. A hydrophobic residue is similarly required at the +4 position. Deletion of Phe at this position produces a 67-fold reduction, and substitution of Ala for Phe a 43-fold reduction in Vmax/Km. In contrast, substitution with Leu increases Vmax/Km by 1.8-fold. Arg at -3 is also required for recognition as shown by an approximately 240-fold decrease in Vmax/Km after Ala substitution at this position. Positions -2, -4, and +1 appear to play secondary roles in substrate recognition. Arg at -2 and -4 are positive determinants, since Ala substitution at these positions decreases Vmax/Km by 4.7- and 11-fold, respectively. Asp at +1 is a negative influence, since Ala and Leu substitutions at this position increase Vmax/Km by 2.3- and 6.3-fold, respectively. Substitution of Ala for Leu at -1 or Thr for Ser at the 0 position has little effect on phosphorylation kinetics. Thus, Ca2+/calmodulin-dependent protein kinase Ia has the minimal substrate recognition motif of Hyd-Xaa-Arg-Xaa-Xaa-(Ser*/Thr*)-Xaa-Xaa-Xaa-Hyd, where Hyd represents a hydrophobic amino acid residue. PMID:8022798

  10. Energy compensation mechanism for charge-separated protonation states in aspartate-histidine amino acid residue pairs.

    PubMed

    Kamiya, Katsumasa; Boero, Mauro; Shiraishi, Kenji; Oshiyama, Atsushi; Shigeta, Yasuteru

    2010-05-20

    The initial stage of proton propagation in the D-path channel of bovine cytochrome c oxidase, consisting of the approach of an H(+) to the entrance of this specific pathway, is inspected via first-principles calculations. Our model, extracted from the X-ray crystallographic structure, includes the amino acid residue pair aspartate (Asp91) and histidine (His503) as protonatable sites. Our calculations show that an additional proton, corresponding to the H(+) uptake by the enzyme from the inner bulk water, is transferred to either Asp91 or His503, leading to the formation of a neutral or a charge-separated protonation state. The relative stability between the two states amounts to a total energy difference of about 5 kcal/mol; this indicates that both Asp91 and His503 are involved in the proton supply to the D-path, playing the role of proton acceptors. The hydrogen-bond environment around Asp91 and His503 has an important influence on both the energetics and the electronic structure of the system; for instance, it compensates the Coulomb-energy cost in the charge-separated protonation state. An energy partitioning analysis shows that the compensatory effect is mainly due to local electrostatic interactions among the charged Asp91 and His503 side chains and the surrounding polar residues. The energy compensation mechanism we found in this work balances the energetics of Asp-His pairs, hence permitting an efficient and selective regulation of the protonatable amino acid residues, where several protonation states are accessible within energy differences of the order of a few H-bonds. PMID:20411975

  11. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation.

    PubMed

    Smith, Steven D; Bridou, Romain; Johs, Alexander; Parks, Jerry M; Elias, Dwayne A; Hurt, Richard A; Brown, Steven D; Podar, Mircea; Wall, Judy D

    2015-05-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative "cap helix" region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  12. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  13. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  14. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  15. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro.

    PubMed Central

    Engelman, A; Craigie, R

    1992-01-01

    We have probed the structural organization of the human immunodeficiency virus type 1 integrase protein by limited proteolysis and the functional organization by site-directed mutagenesis of selected amino acid residues. A central region of the protein was relatively resistant to proteolysis. Proteins with altered amino acids in this region, or in the N-terminal part of the protein that includes a putative zinc-binding motif, were purified and assayed for 3' processing, DNA strand transfer, and disintegration activities in vitro. In general, these mutations had parallel effects on 3' processing and DNA strand transfer, suggesting that integrase may utilize a single active site for both reactions. The only proteins that were completely inactive in all three assays contained mutations at conserved amino acids in the central region, suggesting that this part of the protein may be involved in catalysis. In contrast, none of the mutations in the N-terminal region resulted in a protein that was inactive in all three assays, suggesting that this part of integrase may not be essential for catalysis. The disintegration reaction was particularly insensitive to these amino acid substitutions, indicating that some function that is important for 3' processing and DNA strand transfer may be dispensable for disintegration. Images PMID:1404595

  16. A Three Dimensional Beam Profile Monitor Based on Residual Gas Ionization

    SciTech Connect

    Lewis, T.A.; Shapira, D.

    1998-11-04

    A three-dimensional beam profile monitor based on tracking the ionization of the residual gas molecules in the evacuated beam pipe is described. Tracking in position and time of the ions and electrons produced in the ionization enables simultaneous position sampling in three dimensions. Special features which make it possible to sample very low beam currents were employed.

  17. Analysis of oxytetracycline residue in salmon muscle using a portable analyzer based on Eu III luminescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxytetracycline (OTC), one of tetracycline (TC) antibiotics, is the most prominent therapeutant in aquaculture worldwide. In this work, OTC residue in salmon muscle is determined by europium-sensitized luminescence (ESL) using an LED-based portable analyzer. OTC is extracted in EDTA-McIlvaine buff...

  18. Post-extraction algal residue in steam-flaked corn-based diets for beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of post-extraction algal residue (PEAR) as N source 23 in steam-flaked corn-based (SFC) beef cattle finishing diets on intake, duodenal flow, digestion, ruminal microbial efficiency, ruminal parameters, and blood constituents were evaluated. Ruminally and duodenally cannulated steers (BW...

  19. Cationic Lipid-Based Nucleic Acid Vectors.

    PubMed

    Jubeli, Emile; Goldring, William P D; Pungente, Michael D

    2016-01-01

    The delivery of nucleic acids into cells remains an important laboratory cell culture technique and potential clinical therapy, based upon the initial cellular uptake, then translation into protein (in the case of DNA), or gene deletion by RNA interference (RNAi). Although viral delivery vectors are more efficient, the high production costs, limited cargo capacity, and the potential for clinical adverse events make nonviral strategies attractive. Cationic lipids are the most widely applied and studied nonviral vectors; however, much remains to be solved to overcome limitations of these systems. Advances in the field of cationic lipid-based nucleic acid (lipoplex) delivery rely upon the development of robust and reproducible lipoplex formulations, together with the use of cell culture assays. This chapter provides detailed protocols towards the formulation, delivery, and assessment of in vitro cationic lipid-based delivery of DNA. PMID:27436310

  20. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts.

    PubMed

    Kwon, S I; Owens, G; Ok, Y S; Lee, D B; Jeon, W-T; Kim, J G; Kim, K-R

    2011-01-01

    The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg(-1) for tetracyclines, 0.2 mg kg(-1) for sulfonamides, and 0.1 mg kg(-1) for macrolides) stated in 'Official Standard of Feeds' under the 'Control of Livestock and Fish Feed Act' in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg(-1) for tetracyclines and 21 exceeded 0.2 mg kg(-1) for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.

  1. Generalization of the residual cutting method based on the Krylov subspace

    NASA Astrophysics Data System (ADS)

    Abe, Toshihiko; Sekine, Yoshihito; Kikuchi, Kazuo

    2016-06-01

    The residual cutting (RC) method has been reported to have superior converging characteristics in numerically solving elliptic partial differential equations. However, its application is limited to linear problems with diagonal-dominant matrices in general, for which convergence of a relaxation method such as SOR is guaranteed. In this study, we propose the generalized residual cutting (GRC) method, which is based on the Krylov subspace and applicable to general unsymmetric linear problems. Also, we perform numerical experiments with various coefficient matrices, and show that the GRC method has some desirable properties such as convergence characteristics and memory usage, in comparison to the conventional RC, BiCGSTAB and GMRES methods.

  2. Early region 1B of adenovirus 2 encodes two coterminal proteins of 495 and 155 amino acid residues.

    PubMed Central

    Anderson, C W; Schmitt, R C; Smart, J E; Lewis, J B

    1984-01-01

    Partial sequence analysis of tryptic peptides has identified the E1B-495R (E1b-57K) (early transcription region 1B of 495 amino acid residues, with an approximate molecular weight of 57,000) protein of adenovirus 2 as encoded by the 495 amino acid open reading frame located in the adenovirus 2 DNA sequence between nucleotides 2016 and 3500. Additional proteins of 16,000 Mr and 18,000 Mr that are related to the E1B-495R protein were identified by cell-free translation of hybridization-selected mRNA. Analysis of [35S]methionine-containing amino terminal tryptic peptides by thin-layer chromatography showed that the E1B-495R, E1B-18K, and E1B-16K proteins all begin at the same initiation codon. The E1B-495R protein from 293 cells also has the same initial tryptic peptide, acetyl-methionyl-glutamyl-arginine. Sequence analysis of E1B-18K tryptic peptides indicated that this protein also has the same carboxy terminus as the E1B-495R protein and that it is derived from an mRNA that is spliced to remove sequences between nucleotides 2250 and 3269, resulting in a protein product of 155 amino acid residues. Analysis of E1B-16K tryptic peptides has not yet revealed the carboxy terminal structure of this protein. Both the E1B-495R and the E1B-155R (E1B-18K) proteins, as well as the E1B-16K protein, were precipitated from cell-free translations and from extracts of infected cells by antiserum against an amino terminal nonapeptide common to these proteins. Images PMID:6323739

  3. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  4. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties. PMID:26159785

  5. Factor D of the alternative pathway of human complement. Purification, alignment and N-terminal amino acid sequences of the major cyanogen bromide fragments, and localization of the serine residue at the active site.

    PubMed Central

    Johnson, D M; Gagnon, J; Reid, K B

    1980-01-01

    The serine esterase factor D of the complement system was purified from outdated human plasma with a yield of 20% of the initial haemolytic activity found in serum. This represented an approx. 60 000-fold purification. The final product was homogeneous as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis (with an apparent mol.wt. of 24 000), its migration as a single component in a variety of fractionation procedures based on size and charge, and its N-terminal amino-acid-sequence analysis. The N-terminal amino acid sequence of the first 36 residues of the intact molecule was found to be homologous with the N-terminal amino acid sequences of the catalytic chains of other serine esterases. Factor D showed an especially strong homology (greater than 60% identity) with rat 'group-specific protease' [Woodbury, Katunuma, Kobayashi, Titani, & Neurath (1978) Biochemistry 17, 811-819] over the first 16 amino acid residues. This similarity is of interest since it is considered that both enzymes may be synthesized in their active, rather than zymogen, forms. The three major CNBr fragments of factor D, which had apparent mol.wts. of 15 800, 6600 and 1700, were purified and then aligned by N-terminal amino acid sequence analysis and amino acid analysis. By using factor D labelled with di-[1,3-14C]isopropylphosphofluoridate it was shown that the CNBr fragment of apparent mol.wt. 6600, which is located in the C-terminal region of factor D, contained the active serine residue. The amino acid sequence around this residue was determined. Images Fig. 1. Fig. 2. PMID:6821372

  6. Factors contributing to decreased protein stability when aspartic acid residues are in {beta}-sheet regions.

    SciTech Connect

    Pokkuluri, P. R.; Cai, X.; Raffen, R.; Gu, M.; Stevens, F. J.; Schiffer, M.

    2002-07-01

    Asp residues are significantly under represented in {beta}-sheet regions of proteins, especially in the middle of {beta}-strands, as found by a number of studies using statistical, modeling, or experimental methods. To further understand the reasons for this under representation of Asp, we prepared and analyzed mutants of a {beta}-domain. Two Gln residues of the immunoglobulin light-chain variable domain (V{sub L}) of protein Len were replaced with Asp, and then the effects of these changes on protein stability and protein structure were studied. The replacement of Q38D, located at the end of a {beta}-strand, and that of Q89D, located in the middle of a {beta}-strand, reduced the stability of the parent immunoglobulin VL domain by 2.0 kcal/mol and 5.3 kcal/mol, respectively. Because the Q89D mutant of the wild-type V{sub L}-Len domain was too unstable to be expressed as a soluble protein, we prepared the Q89D mutant in a triple mutant background, V{sub L}-Len M4L/Y27dD/T94H, which was 4.2 kcal/mol more stable than the wild-type V{sub L}-Len domain. The structures of mutants V{sub L}-Len Q38D and V{sub L}-Len Q89D/M4L/Y27dD/T94H were determined by X-ray diffraction at 1.6 A resolution. We found no major perturbances in the structures of these QD mutant proteins relative to structures of the parent proteins. The observed stability changes have to be accounted for by cumulative effects of the following several factors: (1) by changes in main-chain dihedral angles and in side-chain rotomers, (2) by close contacts between some atoms, and, most significantly, (3) by the unfavorable electrostatic interactions between the Asp side chain and the carbonyls of the main chain. We show that the Asn side chain, which is of similar size but neutral, is less destabilizing. The detrimental effect of Asp within a {beta}-sheet of an immunoglobulin-type domain can have very serious consequences. A somatic mutation of a {beta}-strand residue to Asp could prevent the expression of the

  7. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.

    PubMed

    Guerra, Arcadio; Brea, Roberto J; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2012-11-28

    In this study, a novel dimer-forming cyclic peptide composed exclusively by cyclic γ-amino acids with a saccharide-like outer surface is described. The antiparallel β-sheet type hydrogen bonding interactions responsible for the large association constant in non-polar solvents constitute a suitable model for a novel class of self-assembling peptide nanotubes.

  8. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

    PubMed Central

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-01-01

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane. PMID:27120610

  9. Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues.

    PubMed

    Guerra, Arcadio; Brea, Roberto J; Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2012-11-28

    In this study, a novel dimer-forming cyclic peptide composed exclusively by cyclic γ-amino acids with a saccharide-like outer surface is described. The antiparallel β-sheet type hydrogen bonding interactions responsible for the large association constant in non-polar solvents constitute a suitable model for a novel class of self-assembling peptide nanotubes. PMID:23060041

  10. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  11. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) solution (w/v). Forty eviscerated carcasses and 5 ceca were obtained from the processing li...

  12. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Blodgett, M. P.; Yu, F.; Nagy, P. B.

    2005-04-01

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.

  13. The force field for imidazolium-based ionic liquids: Novel anions with polar residues

    NASA Astrophysics Data System (ADS)

    Fileti, Eudes Eterno; Chaban, Vitaly V.

    2015-07-01

    Many molecules can be converted into ions via relatively simple procedures. These ions can be combined into ionic liquids (ILs). We develop a new force field (FF) for the seven selected AAILs comprising 1-ethyl-3-methylimidazolium cation and amino acid anions with polar residues. All anions were obtained via deprotonation of carboxyl group in analogy with acetate anion. We account for peculiar interactions between the anion and the cation by fitting electrostatic potential for an ion pair, in contrast to isolated ions. Furthermore, we account for hydrogen bonds obtained via electronic structure consideration. The developed model fosters computational investigation of ionic liquids.

  14. Identification of Ourmiavirus 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation.

    PubMed

    Margaria, Paolo; Anderson, Charles T; Turina, Massimo; Rosa, Cristina

    2016-09-01

    Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine-scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement-defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild-type MP (GFP:MPwt) mainly co-localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement-defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.

  15. Purification, Cloning, Characterization and Essential Amino Acid Residues Analysis of a New ι-Carrageenase from Cellulophaga sp. QY3

    PubMed Central

    Ma, Su; Duan, Gaofei; Chai, Wengang; Geng, Cunliang; Tan, Yulong; Wang, Lushan; Le Sourd, Frédéric; Michel, Gurvan; Yu, Wengong; Han, Feng

    2013-01-01

    ι-Carrageenases belong to family 82 of glycoside hydrolases that degrade sulfated galactans in the red algae known as ι-carrageenans. The catalytic mechanism and some substrate-binding residues of family GH82 have been studied but the substrate recognition and binding mechanism of this family have not been fully elucidated. We report here the purification, cloning and characterization of a new ι-carrageenase CgiA_Ce from the marine bacterium Cellulophaga sp. QY3. CgiA_Ce was the most thermostable carrageenase described so far. It was most active at 50°C and pH 7.0 and retained more than 70% of the original activity after incubation at 50°C for 1 h at pH 7.0 or at pH 5.0–10.6 for 24 h. CgiA_Ce was an endo-type ι-carrageenase; it cleaved ι-carrageenan yielding neo-ι-carrabiose and neo-ι-carratetraose as the main end products, and neo-ι-carrahexaose was the minimum substrate. Sequence analysis and structure modeling showed that CgiA_Ce is indeed a new member of family GH82. Moreover, sequence analysis of ι-carrageenases revealed that the amino acid residues at subsites −1 and +1 were more conserved than those at other subsites. Site-directed mutagenesis followed by kinetic analysis identified three strictly conserved residues at subsites −1 and +1 of ι-carrageenases, G228, Y229 and R254 in CgiA_Ce, which played important roles for substrate binding. Furthermore, our results suggested that Y229 and R254 in CgiA_Ce interacted specifically with the sulfate groups of the sugar moieties located at subsites −1 and +1, shedding light on the mechanism of ι-carrageenan recognition in the family GH82. PMID:23741363

  16. Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes.

    PubMed

    Bodénan, F; Deniard, Ph

    2003-05-01

    For the first time, a set of samples of European flue gas cleaning residues, mainly from the incineration of municipal solid waste (MSW), has undergone a mineralogical study. The residues are the result of the neutralization of acid flue gases by lime, the predominant method adopted in Europe, using dry and semi-dry washing processes. The study protocol combines physico-chemical analytical techniques (XRD, FTIR, DSC/TGA) and global chemical analysis enabling identification of the chemical composition of the main constituents, particularly chlorinated Ca-based phases, as well as establishment of modal distributions of the represented phases, both crystalline and amorphous. The samples are slightly hydrated and values vary for trapped Cl, S and even CO(2). The main crystalline phases are NaCl, KCl, CaSO(4), CaCO(3), Ca(OH)(2) and calcium hydroxychloride CaOHCl. CaOHCl is the main chlorine phase, regardless of the treatment process, filtration mode, and specific surface of the Ca-based sorbent. This phase develops during neutralization of HCl by excess lime present according to the reaction Ca(OH)(2)+HCl-->CaOHCl+H(2)O, to the detriment of a complete yield involving the two lime OH groups with formation of CaCl(2).2H(2)O. In addition, it seems that gas temperatures above 150 degrees C increase competition between lime-based neutralization of HCl, SO(2) acid flue gases and CO(2) trapping, thus reducing washing efficiency. PMID:12597999

  17. Chem I Supplement: Emphasis on Acids and Bases

    ERIC Educational Resources Information Center

    Journal of Chemical Education Staff

    1977-01-01

    Provides supplementary notes on acids and bases suitable for secondary school chemistry instruction, including acidity in solid and natural waters, acidity balance in body chemistry, acid and basic foods, pH values of common fluids, examples of drugs, and commercial preparation of nitric acid. (SL)

  18. Pesticide residue analysis in cereal-based baby foods using multi-walled carbon nanotubes dispersive solid-phase extraction.

    PubMed

    González-Curbelo, Miguel Angel; Asensio-Ramos, María; Herrera-Herrera, Antonio V; Hernández-Borges, Javier

    2012-07-01

    In the present study, a new analytical method has been developed for the simultaneous quantification of 15 organophosphorus pesticides, including some of their metabolites, (disulfoton-sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, malaoxon, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos, terbufos-sulfone, disulfoton-sulfone and fensulfothion) in three different types of commercial cereal-based baby foods. Dispersive solid-phase extraction (dSPE) with multi-walled carbon nanotubes (MWCNTs) was used together with gas chromatography with nitrogen phosphorus detection. Most favorable conditions involved a previous ultrasound-assisted extraction of the sample with acetonitrile containing formic acid. After evaporation of the extract and redissolution in water, a dSPE procedure was carried out with MWCNTs. The whole method was validated in terms of repeatability, linearity, precision and accuracy and matrix effect was also evaluated. Absolute recoveries were in the range 64-105 % with relative standard deviation values below 7.6 %. Limits of quantification achieved ranged from 0.31 to 5.50 μg/kg, which were lower than the European Union maximum residue limits for pesticide residues in cereal-based baby foods. PMID:22623047

  19. Leaching of nitrogen and base cations from calcareous soil amended with organic residues.

    PubMed

    Zarabi, Mahboubeh; Jalali, Mohsen

    2012-01-01

    The potential for groundwater and surface water pollution by nutrients in organic residues, primarily nitrogen (N) and base cations (K+, Na+, Ca2+, Mg2+), is a consideration when applying such residues to land. In this study, we used a laboratory column leaching procedure to examine the leaching of N, K+, Na+, Ca2+ and Mg2+ in soils treated with two types of raw organic residues (poultry manure and potato residues) and one municipal waste compost, which are currently recycled on agricultural land in Iran. Each organic residue was thoroughly mixed with two different soils (sandy loam and clay) at the rate of 3%. Soil columns were leached at 4-d intervals for 92 d with distilled water, and effluents were analysed for pH, EC, nitrate (NO3(-)-N), ammonium (NH4(+)-N) K+, Na+, Ca2+ and Mg2+. The results indicated that the amounts of NO3(-)-N and NH4(+)-N leached from the poultry manure and potato residues could represent very important economic losses of N and pose an environmental threat under field conditions. The sandy loam soil amended with poultry manure lost the highest amount of NO3(-)-N (206.4 kg ha(-1)), and clay soil amended with poultry manure lost the highest amounts of NH4(+)-N (454.3 kg ha(-1)). The results showed that a treatment incorporating 3% of municipal waste compost could be used without negative effects to groundwater N concentration in clay soil. Significant amounts of K+, Na+, Ca2+, and Mg2+ were leached owing to the application of poultry manure, potato and municipal waste compost to soils. There was a positive relationship between K+, Na+, Ca2+, and Mg2+ with NO3(-)-N and NH4(+)-N leached in soils. Analysis of variance detected significant effects of amendment, soil type and time on the leaching NO3(-)-N, NH4(+)-N, K+, Na+, Ca2+ and Mg2+.

  20. [Determination of glyphosate and aminomethylphosphonic acid residues in foods using high performance liquid chromatography-mass spectrometry/mass spectrometry].

    PubMed

    Li, Bo; Deng, Xiaojun; Guo, Dehua; Jin, Shuping

    2007-07-01

    A method for the determination of glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in plant products, such as rice, wheat, vegetables, fruits and tea, pig and chicken muscles, aquatic products, chestnut, honey, etc., was developed using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). In this method, PMG and AMPA were extracted with water from samples, defatted using an extraction step with dichloromethane, and purified using a cation-exchange (CAX) solid phase extraction cartridge. Then, these were derived using fluorenylmethylchloroformate (FMOC-Cl) in borate buffer for subsequent HPLC-MS/MS analysis. Isotope-labeled PMG 1, 2(13)- C(15) N was used as the internal standard for the quantitative analysis of two residues. For all samples, the recoveries ranged from 80.0% to 104% and the relative standard deviations (RSDs) ranged from 6.7% to 18.2%. The limit of quantification (LOQ) was determined to be 0.05 mg/kg with a linear range of 0.20-10 microg/L. It is demonstrated that this method is reliable and sensitive for the analysis of PMG and APMA with low concentrations in foods.

  1. Amino acid residues 4425-4621 localized on the three-dimensional structure of the skeletal muscle ryanodine receptor.

    PubMed

    Benacquista, B L; Sharma, M R; Samsó, M; Zorzato, F; Treves, S; Wagenknecht, T

    2000-03-01

    We have localized a region contained within the sequence of amino acid residues 4425-4621 on the three-dimensional structure of the skeletal muscle ryanodine receptor (RyR). Mouse monoclonal antibodies raised against a peptide comprising these residues have been complexed with ryanodine receptors and imaged in the frozen-hydrated state by cryoelectron microscopy. These images, along with images of antibody-free ryanodine receptor, were used to compute two-dimensional averaged images and three-dimensional reconstructions. Two-dimensional averages of immunocomplexes in which the ryanodine receptor was in the fourfold symmetrical orientation disclosed four symmetrical regions of density located on the edges of the receptor's cytoplasmic assembly that were absent from control averages of receptor without added antibody. Three-dimensional reconstructions revealed the antibody-binding sites to be on the so-called handle domains of the ryanodine receptor's cytoplasmic assembly, near their junction with the transmembrane assembly. This study is the first to demonstrate epitope mapping on the three-dimensional structure of the ryanodine receptor.

  2. Lead Isotope Compositions of Acid Residues from Olivine-Phyric Shergottite Tissint: Implications for Heterogeneous Shergottite Source Reservoirs

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Yokoyama, T.; Simon, J. I.; Jones, J. H.

    2015-01-01

    Geochemical studies of shergottites suggest that their parental magmas reflect mixtures between at least two distinct geochemical source reservoirs, producing correlations between radiogenic isotope compositions and trace element abundances. These correlations have been interpreted as indicating the presence of a reduced, incompatible element- depleted reservoir and an oxidized, incompatible- element-enriched reservoir. The former is clearly a depleted mantle source, but there is ongoing debate regarding the origin of the enriched reservoir. Two contrasting models have been proposed regarding the location and mixing process of the two geochemical source reservoirs: (1) assimilation of oxidized crust by mantle derived, reduced magmas, or (2) mixing of two distinct mantle reservoirs during melting. The former requires the ancient Martian crust to be the enriched source (crustal assimilation), whereas the latter requires isolation of a long-lived enriched mantle domain that probably originated from residual melts formed during solidification of a magma ocean (heterogeneous mantle model). This study conducts Pb isotope and trace element concentration analyses of sequential acid-leaching fractions (leachates and the final residues) from the geochemically depleted olivine-phyric shergottite Tissint. The results suggest that the Tissint magma is not isotopically uniform and sampled at least two geochemical source reservoirs, implying that either crustal assimilation or magma mixing would have played a role in the Tissint petrogenesis.

  3. Confronting the residual cardiovascular risk beyond statins: the role of fibrates, omega-3 fatty acids, or niacin, in diabetic patients.

    PubMed

    Christou, Georgios A; Rizos, Evangelos C; Mpechlioulis, Aris; Penzo, Carlo; Pacchioni, Andrea; Nikas, Dimitrios N

    2014-01-01

    Diabetics are regarded a special category of patients known to experience higher rates of cardiovascular complications as compared to the non-diabetic ones. Despite substantial efforts to minimize these risks, with aggressive antiplatelet and lipid lowering therapy, some of the diabetic patients still have a considerable residual risk for cardiovascular adverse events. Important preclinical data with potent lipid-lowering agents, like fibrates, omega-3-fatty acids, and niacin, have shown that they can provide sufficient help in reducing rates of cardiovascular events. In the present review, we are aim to explain their basic mechanisms of action, to present all the available clinical data regarding the efficacy of those agents, and to identify specific diabetic patients' subsets, in whom supplementary therapy with those agents could provide substantial benefit in terms of clinical outcome and not only lipid profile improvement.

  4. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  5. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  6. Enhanced photocatalytic activity of Cl-residual rutile TiO2 nanorods after targeted co-modification with phosphoric and boric acids.

    PubMed

    Wu, Jing; Cui, Haiqin; Zhang, Xuliang; Luan, Yunbo; Jing, Liqiang

    2015-06-28

    The promotion of O2 adsorption on semiconductor surfaces for effectively capturing photogenerated electrons in the photocatalytic degradation of pollutants is highly desired. In this study, the targeted co-modification of residual chlorine rutile TiO2 nanorods with phosphoric and boric acids has been accomplished for the first time by simple wet chemical processes. The key to targeted co-modification is to connect -P-OH and -B-OH to the Cl-residual TiO2 surfaces by -Ti-OH and -Ti-Cl, respectively, consequently forming -Ti-O-P-OH and -Ti-Cl:B-OH ends. By means of the atmosphere-controlled surface photovoltage spectroscopy, the degrees for capturing photogenerated electrons by the adsorbed O2 as receptors on the resulting TiO2 nanorods are quantitatively analyzed. It is confirmed that the targeted co-modification could greatly promote the capture of the photogenerated electrons compared to the phosphate and borate modification alone. This is attributed to increased amounts of adsorbed O2 based on electrochemical O2 reduction and O2 temperature-programmed desorption measurements, further leading to the enhanced separation of photogenerated charges, characterized by an increase in the amount of produced hydroxyl radicals. This is responsible for the obviously enhanced photocatalytic activity of TiO2 nanorods towards the degradation of colorless gas-phase acetaldehyde and liquid-phase phenol. This work would provide us a feasible route for the co-modification with inorganic acids to synthesize efficient nanosized TiO2-based photocatalysts.

  7. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity.

    PubMed

    Stiti, Naim; Podgórska, Karolina; Bartels, Dorothea

    2014-03-01

    The cofactor-binding site of the NAD(+)-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2'- and 3'-hydroxyl groups of the adenosyl ribose ring of NAD(+) and repels the 2'-phosphate moiety of NADP(+). If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD(+) is altered and rendered the enzyme capable of using NADP(+). This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2'-phosphate of NADP(+). Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP(+). The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP(+). Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a "closed" cofactor binding site. The cofactor specificity was shifted even further in favor of NADP(+), as the mutant ALDH3H1E149T/V178R/I200V uses NADP(+) with almost 7-fold higher catalytic efficiency compared to NAD(+). Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.

  8. Roles of basic amino acid residues in the activity of μ-conotoxin GIIIA and GIIIB, peptide blockers of muscle sodium channels.

    PubMed

    Sato, Kazuki; Yamaguchi, Yoko; Ishida, Yukisato; Ohizumi, Yasushi

    2015-04-01

    To study in detail the roles of basic amino acid residues in the activity of μ-conotoxin GIIIA (μ-GIIIA) and GIIIB (μ-GIIIB), specific blockers of muscle sodium channels, seven analogs of μ-GIIIA, and two analogs of μ-GIIIB were synthesized. μ-GIIIA analogs were synthesized by replacing systematically the three Arg residues (Arg1, Arg13, and Arg19) with one, two, and three Lys residues. μ-GIIIB analogs were synthesized by replacing simultaneously all four Lys residues (Lys9, Lys11, Lys16, and Lys19) with Arg residues and further replacement of acidic Asp residues with neutral Ala residues. Circular dichroism spectra of the synthesized analogs suggested that the replacement did not affect the three dimensional structure. The inhibitory effects on the twitch contractions of the rat diaphragm showed that the side chain guanidino group of Arg13 of μ-GIIIA was important for the activity, whereas that of Arg19 had little role for biological activity. Although [Arg9,11,16,19]μ-GIIIB showed higher activity than native μ-GIIIB, highly basic [Ala2,12, Arg9,11,16,19]μ-GIIIB showed lower activity, suggesting that there was an appropriate molecular basicity for the maximum activity.

  9. Ruminal degradation, amino acid composition, and intestinal digestibility of the residual components of five protein supplements.

    PubMed

    Maiga, H A; Schingoethe, D J; Henson, J E

    1996-09-01

    Two ruminally cannulated Holstein cows (approximately 202 DIM) were used to determine the in situ degradability of five protein supplements: blood meal, meat and bone meal, corn gluten meal, expeller soybean meal, and solvent extracted soybean meal. Dacron bags containing 4 g of each supplement in duplicate were soaked in water and then incubated in the rumen for 0, 3, 6, 12, 18, and 24 h for 3 d. Four extra sample bags of each supplement were incubated in the rumen for 12 h to determine the in vitro intestinal digestibility and AA analysis of the residues. Protein supplements were also analyzed for their AA content. Ruminal degradability of individual supplements varied. Solvent soybean meal was the most degradable, and blood meal was the least degradable. Specific first-limiting essential AA were isoleucine for blood meal and meat and bone meal, lysine for corn gluten meal, and methionine for the soybean meals. The RUP fraction in solvent-extracted and expeller soybean meals tended to be more intestinally digestible than did the protein in blood meal and meat and bone meal. In general, all protein supplements, except solvent-extracted soybean meal, were high in RUP and had the potential to provide good quality AA to complement microbial AA for production.

  10. Peptide nucleic acids tagged with four lysine residues for amperometric genosensors

    PubMed Central

    Zanardi, Chiara; Terzi, Fabio; Seeber, Renato; Baldoli, Clara; Licandro, Emanuela; Maiorana, Stefano

    2012-01-01

    A homothymine PNA decamer bearing four lysine residues has been synthesized as a probe for the development of amperometric sensors. On one hand, the four amino groups introduced make this derivative nine times more soluble than the corresponding homothymine PNA decamer and, on the other hand, allow the stable anchoring of this molecule on Au nanostructured surface through the terminal -NH2 moieties. In particular, XPS and electrochemical investigations performed with hexylamine, as a model molecule, indicate that the stable deposition of primary amine derivatives on such a nanostructured surface is possible and involves the free electron doublet on the nitrogen atom. This finding indicates that this PNA derivative is suitable to act as the probe molecule for the development of amperometric sensors.   Thanks to the molecular probe chosen and to the use of a nanostructured surface as the substrate for the sensor assembly, the device proposed makes possible the selective recognition of the target oligonucleotide sequence with very high sensitivity. PMID:22772036

  11. G glycoprotein amino acid residues required for human monoclonal antibody RAB1 neutralization are conserved in rabies virus street isolates.

    PubMed

    Wang, Yang; Rowley, Kirk J; Booth, Brian J; Sloan, Susan E; Ambrosino, Donna M; Babcock, Gregory J

    2011-08-01

    Replacement of polyclonal anti-rabies immunoglobulin (RIG) used in rabies post-exposure prophylaxis (PEP) with a monoclonal antibody will eliminate cost and availability constraints that currently exist using RIG in the developing world. The human monoclonal antibody RAB1 has been shown to neutralize all rabies street isolates tested; however for the laboratory-adapted fixed strain, CVS-11, mutation in the G glycoprotein of amino acid 336 from asparagine (N) to aspartic acid (D) resulted in resistance to neutralization. Interestingly, this same mutation in the G glycoprotein of a second laboratory-adapted fixed strain (ERA) did not confer resistance to RAB1 neutralization. Using cell surface staining and lentivirus pseudotyped with rabies virus G glycoprotein (RABVpp), we identified an amino acid alteration in CVS-11 (K346), not present in ERA (R346), which was required in combination with D336 to confer resistance to RAB1. A complete analysis of G glycoprotein sequences from GenBank demonstrated that no identified rabies isolates contain the necessary combination of G glycoprotein mutations for resistance to RAB1 neutralization, consistent with the broad neutralization of RAB1 observed in direct viral neutralization experiments with street isolates. All combinations of amino acids 336 and 346 reported in the sequence database were engineered into the ERA G glycoprotein and RAB1 was able to neutralize RABVpp bearing ERA G glycoprotein containing all known combinations at these critical residues. These data demonstrate that RAB1 has the capacity to neutralize all identified rabies isolates and a minimum of two distinct mutations in the G glycoprotein are required for abrogation of RAB1 neutralization.

  12. Modern quantitative acid-base chemistry.

    PubMed

    Stewart, P A

    1983-12-01

    Quantitative analysis of ionic solutions in terms of physical and chemical principles has been effectively prohibited in the past by the overwhelming amount of calculation it required, but computers have suddenly eliminated that prohibition. The result is an approach to acid-base which revolutionizes our ability to understand, predict, and control what happens to hydrogen ions in living systems. This review outlines that approach and suggests some of its most useful implications. Quantitative understanding requires distinctions between independent variables (in body fluids: pCO2, net strong ion charge, and total weak acid, usually protein), and dependent variables [( HCO-3], [HA], [A-], [CO(2-)3], [OH-], and [H+] (or pH]. Dependent variables are determined by independent variables, and can be calculated from the defining equations for the specific system. Hydrogen ion movements between solutions can not affect hydrogen ion concentration; only changes in independent variables can. Many current models for ion movements through membranes will require modification on the basis of this quantitative analysis. Whole body acid-base balance can be understood quantitatively in terms of the three independent variables and their physiological regulation by the lungs, kidneys, gut, and liver. Quantitative analysis also shows that body fluids interact mainly by strong ion movements through the membranes separating them.

  13. A General Simulator for Acid-Base Titrations

    NASA Astrophysics Data System (ADS)

    de Levie, Robert

    1999-07-01

    General formal expressions are provided to facilitate the automatic computer calculation of acid-base titration curves of arbitrary mixtures of acids, bases, and salts, without and with activity corrections based on the Davies equation. Explicit relations are also given for the buffer strength of mixtures of acids, bases, and salts.

  14. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    SciTech Connect

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  15. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  16. Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains

    PubMed Central

    Chuang, Gwo-Yu; Acharya, Priyamvada; Schmidt, Stephen D.; Yang, Yongping; Louder, Mark K.; Zhou, Tongqing; Kwon, Young Do; Pancera, Marie; Bailer, Robert T.; Doria-Rose, Nicole A.; Nussenzweig, Michel C.; Mascola, John R.; Kwong, Peter D.

    2013-01-01

    Delineation of antibody epitopes at the residue level is key to understanding antigen resistance mutations, designing epitope-specific probes for antibody isolation, and developing epitope-based vaccines. Ideally, epitope residues are determined in the context of the atomic-level structure of the antibody-antigen complex, though structure determination may in many cases be impractical. Here we describe an efficient computational method to predict antibody-specific HIV-1 envelope (Env) epitopes at the residue level, based on neutralization panels of diverse viral strains. The method primarily utilizes neutralization potency data over a set of diverse viral strains representing the antigen, and enhanced accuracy could be achieved by incorporating information from the unbound structure of the antigen. The method was evaluated on 19 HIV-1 Env antibodies with neutralization panels comprising 181 diverse viral strains and with available antibody-antigen complex structures. Prediction accuracy was shown to improve significantly over random selection, with an average of greater-than-8-fold enrichment of true positives at the 0.05 false-positive rate level. The method was used to prospectively predict epitope residues for two HIV-1 antibodies, 8ANC131 and 8ANC195, for which we experimentally validated the predictions. The method is inherently applicable to antigens that exhibit sequence diversity, and its accuracy was found to correlate inversely with sequence conservation of the epitope. Together the results show how knowledge inherent to a neutralization panel and unbound antigen structure can be utilized for residue-level prediction of antibody epitopes. PMID:23843642

  17. Optimal path choice in railway passenger travel network based on residual train capacity.

    PubMed

    Dou, Fei; Yan, Kai; Huang, Yakun; Wang, Li; Jia, Limin

    2014-01-01

    Passenger's optimal path choice is one of the prominent research topics in the field of railway passenger transport organization. More and more different train types are available, increasing path choices from departure to destination for travelers are unstoppable. However, travelers cannot avoid being confused when they hope to choose a perfect travel plan based on various travel time and cost constraints before departure. In this study, railway passenger travel network is constructed based on train timetable. Both the generalized cost function we developed and the residual train capacity are considered to be the foundation of path searching procedure. The railway passenger travel network topology is analyzed based on residual train capacity. Considering the total travel time, the total travel cost, and the total number of passengers, we propose an optimal path searching algorithm based on residual train capacity in railway passenger travel network. Finally, the rationale of the railway passenger travel network and the optimal path generation algorithm are verified positively by case study.

  18. Optimal Path Choice in Railway Passenger Travel Network Based on Residual Train Capacity

    PubMed Central

    Dou, Fei; Yan, Kai; Huang, Yakun; Jia, Limin

    2014-01-01

    Passenger's optimal path choice is one of the prominent research topics in the field of railway passenger transport organization. More and more different train types are available, increasing path choices from departure to destination for travelers are unstoppable. However, travelers cannot avoid being confused when they hope to choose a perfect travel plan based on various travel time and cost constraints before departure. In this study, railway passenger travel network is constructed based on train timetable. Both the generalized cost function we developed and the residual train capacity are considered to be the foundation of path searching procedure. The railway passenger travel network topology is analyzed based on residual train capacity. Considering the total travel time, the total travel cost, and the total number of passengers, we propose an optimal path searching algorithm based on residual train capacity in railway passenger travel network. Finally, the rationale of the railway passenger travel network and the optimal path generation algorithm are verified positively by case study. PMID:25097867

  19. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  20. /sup 113/Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7

    SciTech Connect

    South, T.L.; Kim, B.; Summers, M.F.

    1989-01-04

    The Zn/sup 2+/ and Cd/sup 2+/ adducts with the 18-residue peptide comprising the amino acid sequence of the first finger (residues 13 through 30) of retroviral nucleic acid binding proteins p7 from HIV-1 (the causative agent of AIDS) have been prepared. /sup 1/H NMR data indicate that the metal adducts are 1:1 compounds that are stable in aqueous solutions for at least a month. The /sup 113/Cd NMR spectral results for the adduct are presented and analyzed. 26 references, 3 figures.

  1. A novel device based on a fluorescent cross-responsive sensor array for detecting pesticide residue

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Hou, Changjun; Lei, Jincan; Huo, Danqun; Luo, Xiaogang; Dong, Liang

    2016-11-01

    In this paper, a novel, simple, rapid, and low-cost detection device for pesticide residue was constructed. A sensor array based on a cross-responsive mechanism was designed. The data collection and processing system was used to detect fluorescent signal of the sensor arrays, and to extract unique patterns of the tested pesticide residue. Four selected pesticides, carbendazim, diazine, fenvalerate, and pentachloronitrobenzene, were detected by the proposed device. Unsupervised pattern recognition methods, hierarchical cluster analysis and principal component analysis, were used to analyze the data. The results showed that the methods could 100% discriminate the four pesticide residues. According to the standard regression linear curve of the fluorescence intensity and the concentration of pesticide, the quantitative value of the pesticide was detected, and the device obtained responses at concentrations below 8 ppb, and it has a good linear relationship in the range of 0.01-1 ppm. According to the results, the proposed detection device showed excellent selectivity and discrimination ability for the pesticide residues. However, our preliminary study demonstrated that the proposed detection device has excellent potential application for the safety inspection of food.

  2. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  3. Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error

    NASA Astrophysics Data System (ADS)

    Jung, Insung; Koo, Lockjo; Wang, Gi-Nam

    2008-11-01

    The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.

  4. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    SciTech Connect

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-15

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  5. Dimerization of a PACAP peptide analogue in DMSO via asparagine and aspartic acid residues.

    PubMed

    Severs, Joanne C; Froland, Wayne A

    2008-03-01

    To optimize the stability of a peptide development candidate for the treatment of type II diabetes, formulation studies were initiated in organic solvents and compared to results obtained in aqueous solutions. Stability was assessed by reversed phase liquid chromatography (RPLC) and electrospray ionization mass spectrometry (ESI-MS). Previous studies had shown deamidation and hydrolysis to be the primary mechanisms of degradation in aqueous formulations. Surprisingly, the use of an organic solvent did not decrease the rate of degradation and, as presented here, produced degradation products including dimers. We propose here that deamidation can readily occur in polar anhydrous organic solvents such as DMSO and that the dimer forms through intermolecular nucleophilic attack of an amino acid side chain on a stabilized cyclic imide intermediate.

  6. Toxicity of melamine and cyanuric acid in broilers and residues in tissues.

    PubMed

    Ding, X-M; Zhang, Ke-Ying; Wang, L; Bai, S-P

    2012-02-01

    The purpose of this study was to characterize the toxicity potential of melamine (MEL), cyanuric acid (CYA), and a combination of MEL and CYA in broilers. A total of 720 commercial 1-day-old COBB 500 male broilers were randomly allotted into 6 groups with 6 replicates each and 20 broilers in each replicate. The dietary treatments were as follows: group I was the control group, group II included 10 mg/kg MEL and 3.3 mg/kg CYA, group III included 30 mg/kg MEL and 10 mg/kg CYA, group IV included 100 mg/kg MEL and 33.3 mg/kg CYA, group V included 100 mg/kg MEL, and group VI included 33.3 mg/kg CYA. The trial lasted for 42 days. CYA alone and the combination of MEL and CYA had adverse effects on the performance, but MEL alone had no effects on the performance. On day 21, the uric acid (UA) content of group IV was increased in serum (p < 0.05); on day 42, the serum aspartate aminotransferase (AST) activity and the level of tumor necrosis factor (TNF)-α and interleukin (IL)-8 increased in group IV (p < 0.05); 100 mg/kg MEL alone increased the level of TNF-α and the rate of renal apoptosis (p < 0.05); and 33.3 mg/kg CYA alone increased the level of IL-8 and the rate of renal apoptosis (p < 0.05). The livers contained MEL concentrations of 17-125 μg/kg wet weight and CYA concentrations of 28-73 μg/kg, and the muscle contained MEL concentrations of 14-105 μg/kg wet weight. It was indicated that MEL alone, CYA alone, and a combination of MEL and CYA inhibit the growth and damage the kidney and liver.

  7. Visual Analysis of Residuals from Data-Based Models in Complex Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ordoñez, Daniel G.; Cuadrado, Abel A.; Díaz, Ignacio; García, Francisco J.; Díez, Alberto B.; Fuertes, Juan J.

    2012-10-01

    The use of data-based models for visualization purposes in an industrial background is discussed. Results using Self-Organizing Maps (SOM) show how through a good design of the model and a proper visualization of the residuals generated by the model itself, the behavior of essential parameters of the process can be easily tracked in a visual way. Real data from a cold rolling facility have been used to prove the advantages of these techniques.

  8. An Introductory Laboratory Exercise for Acids and Bases.

    ERIC Educational Resources Information Center

    Miller, Richard; Silberman, Robert

    1986-01-01

    Discusses an acid-base neutralization exercise requiring groups of students to determine: (1) combinations of solutions giving neutralization; (2) grouping solutions as acids or bases; and (3) ranking groups in order of concentration. (JM)

  9. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  10. Coronavirus phylogeny based on triplets of nucleic acids bases

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Liu, Yanshu; Li, Renfa; Zhu, Wen

    2006-04-01

    We considered the fully overlapping triplets of nucleotide bases and proposed a 2D graphical representation of protein sequences consisting of 20 amino acids and a stop code. Based on this 2D graphical representation, we outlined a new approach to analyze the phylogenetic relationships of coronaviruses by constructing a covariance matrix. The evolutionary distances are obtained through measuring the differences among the two-dimensional curves.

  11. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.

    PubMed

    Listiyani, M A D; Campbell, R E; Miracle, R E; Dean, L O; Drake, M A

    2011-09-01

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations in dried whey products. No legal limit exists in the United States for BP use in whey, but international concerns exist. The objectives of this study were to determine the effect of hydrogen peroxide (HP) or BP bleaching on the flavor of 34% WPC (WPC34) and to evaluate residual BA in commercial and experimental WPC bleached with and without BP. Cheddar whey was manufactured in duplicate. Pasteurized fat-separated whey was subjected to hot bleaching with either HP at 500 mg/kg, BP at 50 or 100 mg/kg, or no bleach. Whey was ultrafiltered and spray dried into WPC34. Color [L*(lightness), a* (red-green), and b* (yellow-blue)] measurements and norbixin extractions were conducted to compare bleaching efficacy. Descriptive sensory and instrumental volatile analyses were used to evaluate bleaching effects on flavor. Benzoic acid was extracted from experimental and commercial WPC34 and 80% WPC (WPC80) and quantified by HPLC. The b* value and norbixin concentration of BP-bleached WPC34 were lower than HP-bleached and control WPC34. Hydrogen peroxide-bleached WPC34 displayed higher cardboard flavor and had higher volatile lipid oxidation products than BP-bleached or control WPC34. Benzoyl peroxide-bleached WPC34 had higher BA concentrations than unbleached and HP-bleached WPC34 and BA concentrations were also higher in BP-bleached WPC80 compared with unbleached and HP-bleached WPC80, with smaller differences than those observed in WPC34. Benzoic acid extraction from permeate showed that WPC80 permeate contained more BA than did WPC34 permeate. Benzoyl peroxide is more effective in color removal of whey and results in fewer flavor side effects compared with HP and residual BA is

  12. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  13. Mathematical modeling of acid-base physiology.

    PubMed

    Occhipinti, Rossana; Boron, Walter F

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis.

  14. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  15. Photocurable bioadhesive based on lactic acid.

    PubMed

    Marques, D S; Santos, J M C; Ferreira, P; Correia, T R; Correia, I J; Gil, M H; Baptista, C M S G

    2016-01-01

    Novel photocurable and low molecular weight oligomers based on l-lactic acid with proven interest to be used as bioadhesive were successfully manufactured. Preparation of lactic acid oligomers with methacrylic end functionalizations was carried out in the absence of catalyst or solvents by self-esterification in two reaction steps: telechelic lactic acid oligomerization with OH end groups and further functionalization with methacrylic anhydride. The final adhesive composition was achieved by the addition of a reported biocompatible photoinitiator (Irgacure® 2959). Preliminary in vitro biodegradability was investigated by hydrolytic degradation in PBS (pH=7.4) at 37 °C. The adhesion performance was evaluated using glued aminated substrates (gelatine pieces) subjected to pull-to-break test. Surface energy measured by contact angles is lower than the reported values of the skin and blood. The absence of cytoxicity was evaluated using human fibroblasts. A notable antimicrobial behaviour was observed using two bacterial models (Staphylococcus aureus and Escherichia coli). The cured material exhibited a strong thrombogenic character when placed in contact with blood, which can be predicted as a haemostatic effect for bleeding control. This novel material was subjected to an extensive characterization showing great potential for bioadhesive or other biomedical applications where biodegradable and biocompatible photocurable materials are required. PMID:26478350

  16. Using quantitative acid-base analysis in the ICU.

    PubMed

    Lloyd, P; Freebairn, R

    2006-03-01

    The quantitative acid-base 'Strong Ion' calculator is a practical application of quantitative acid-base chemistry, as developed by Peter Stewart and Peter Constable. It quantifies the three independent factors that control acidity, calculates the concentration and charge of unmeasured ions, produces a report based on these calculations and displays a Gamblegram depicting measured ionic species. Used together with the medical history, quantitative acid-base analysis has advantages over traditional approaches.

  17. Amino acid residue 247 in canine sulphotransferase SULT1D1: a new determinant of substrate selectivity.

    PubMed Central

    Tsoi, Carrie; Widersten, Mikael; Morgenstern, Ralf; Swedmark, Stellan

    2004-01-01

    The SULT (sulphotransferase) family plays a critical role in the detoxification and activation of endogenous and exogenous compounds as well as in the regulation of steroid hormone actions and neurotransmitter functions. The structure-activity relationships of the human SULTs have been investigated with focus on the amino acid 146 in hSULT1A3 and its impact on dopamine/PNP (p-nitrophenol) specificity. In the present study, we have generated canine SULT1D1 (cSULT1D1) variants with mutations at amino acid residues in the substrate-binding pocket [A146E (Ala-146-->Glu), A146D, A146Q, I86D or D247L]. These mutation sites were chosen with regard to their possible contribution to the marked dopamine/PNP preference of cSULT1D1. After characterization, we found that the overall sulphation efficiencies for the cSULT1D1 A146 and the I86 mutants were strongly decreased for both substrates compared with wild-type cSULT1D1 but the substrate preference was unchanged. In contrast, the D247L mutant was found to be more than 21-fold better at sulphating PNP (120-fold decrease in K(m) value) but 54-fold less efficient in sulphating dopamine (8-fold increase in K(m) value) and the preference was switched from dopamine to PNP, indicating the importance of this amino acid in the dopamine/PNP preference in cSULT1D1. Our results show that Asp-247 has a pronounced effect on the substrate specificity of cSULT1D1 and thus we have identified a previously unrecognized contributor to active-site selectivity. PMID:14614767

  18. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.

    PubMed

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-07-15

    Zinc plant purification residue (ZPR), a typical Zn-hydrometallurgical waste, was collected from the Três Marias Zn plant (MG, Brazil). ZPR was characterized for its metal content and fractionation, mineralogy, toxicity and leachability. Toxicity characteristics leaching procedure (TCLP) and European Community Bureau of Reference (BCR) sequential extraction results revealed that this ZPR displays high percentages of metals (Cd, Cu, Zn and Pb) in the highly mobilizable fractions, increasing its hazardous potential. Bulk chemical analysis, pH dependent leaching and acid (H2SO4) leaching studies confirm that the ZPR is polymetallic, rich in Cd, Cu and Zn. The sulfuric acid concentration (1 M), agitation speed (450 rpm), temperature (40 °C) and pulp density (20 g L(-1)) were optimized to leach the maximum amount of heavy metals (Cd, Cu and Zn). Under optimum conditions, more than 50%, 70% and 60% of the total Cd, Cu and Zn present in the ZPR can be leached, respectively. The metals in the acid leachates were investigated for metal sulfide precipitation with an emphasis on selective Cu recovery. Metal sulfide precipitation process parameters such as initial pH and Cu to sulfide ratio were optimized as pH 1.5 and 1:0.5 (Cu:sulfide) mass ratio, respectively. Under optimum conditions, more than 95% of Cu can be selectively recovered from the polymetallic ZPR leachates. The Cu precipitates characterization studies reveal that they are approximately 0.1 μm in diameter and mainly consist of Cu and S. XRD analysis showed covellite (CuS), chalcanthite (CuSO4·5H2O) and natrochalcite (NaCu2(SO4)2(OH)·H2O) as the mineral phases. ZPRs can thus be considered as an alternative resource for copper production. PMID:27074201

  19. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk.

    PubMed

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-01

    Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH<12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH<7 and pH<12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills. PMID:25934218

  20. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  1. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  2. Critical amino acid residues for the specific binding of the Ti-recognizing recombinant ferritin with oxide surfaces of titanium and silicon.

    PubMed

    Hayashi, Tomohiro; Sano, Ken-Ichi; Shiba, Kiyotaka; Iwahori, Kenji; Yamashita, Ichiro; Hara, Masahiko

    2009-09-15

    The interactions of ferritins fused with a Ti-recognizing peptide (RKLPDA) and their mutants with titanium oxide substrates were explored with an atomic force microscope (AFM). The amino acid sequence of the peptide was systematically modified to elucidate the role of each amino acid residue in the specific interaction. Force measurements revealed a clear correlation among the sequences in the N-terminal domain of ferritin, surface potentials, and long-range electrostatic interactions. Measurements of adhesion forces clearly revealed that hydrogen bonds take part in the specific binding as well as the electrostatic interaction between charged residues and surface charges of Ti oxides. Moreover, our results indicated that not only the charged and polar residues but also a neutral residue (proline) govern the strength of the specific binding, with the order of the residues also being significant. These results demonstrate that the local structure of the peptide governs the special arrangement of charged residues and strongly affects the strength of the bindings.

  3. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy.

    PubMed

    Wang, Xiuzhong; Dong, Shanshan; Gai, Panpan; Duan, Rui; Li, Feng

    2016-08-15

    The ubiquitous presence of antibiotic residues in foodstuff have serious health consequences for consumers from allergic reactions to the evolution of antibiotic-resistant bacteria. To address this problem, a novel homogeneous electrochemical aptasensor with high sensitivity and specificity is designed for antibiotic residues detection based on target-induced and T7 exonuclease-assisted dual recycling signal amplification strategy. It was realized by the remarkable diffusivity difference between hairpin probe and the mononucleotides towards the negatively charged indium tin oxide electrode. For the proof-of-concept experiment, ampicillin, was employed as a model analyte to examine the desirable properties of this assay. A low detection limit of 4.0pM toward ampicillin with an excellent selectivity could be achieved, which has been successfully applied to assay antibiotic in milk. What's more, compared with the immobilization-based electrochemical means, the proposed sensing system avoids the tedious and time-consuming steps of electrode modification, making the experimental processes much simpler and more convenient. With the advantages of high sensitivity, excellent selectivity and simple operation, it is believed that this strategy possesses great potential for the simple, easy and convenient detection of antibiotic residues in food safety field.

  4. Hepatotoxicity of Pentavalent Antimonial Drug: Possible Role of Residual Sb(III) and Protective Effect of Ascorbic Acid

    PubMed Central

    Kato, Kelly C.; Morais-Teixeira, Eliane; Reis, Priscila G.; Silva-Barcellos, Neila M.; Salaün, Pascal; Campos, Paula P.; Dias Corrêa-Junior, José; Rabello, Ana; Demicheli, Cynthia

    2014-01-01

    Pentavalent antimonial drugs such as meglumine antimoniate (Glucantime [Glu; Sanofi-Aventis, São Paulo, Brazil]) produce severe side effects, including cardiotoxicity and hepatotoxicity, during the treatment of leishmaniasis. We evaluated the role of residual Sb(III) in the hepatotoxicity of meglumine antimoniate, as well as the protective effect of the antioxidant ascorbic acid (AA) during antimonial chemotherapy in a murine model of visceral leishmaniasis. BALB/c mice infected with Leishmania infantum were treated intraperitoneally at 80 mg of Sb/kg/day with commercial meglumine antimoniate (Glu) or a synthetic meglumine antimoniate with lower Sb(III) level (MA), in association or not with AA (15 mg/kg/day), for a 20-day period. Control groups received saline or saline plus AA. Livers were evaluated for hepatocytes histological alterations, peroxidase activity, and apoptosis. Increased proportions of swollen and apoptotic hepatocytes were observed in animals treated with Glu compared to animals treated with saline or MA. The peroxidase activity was also enhanced in the liver of animals that received Glu. Cotreatment with AA reduced the extent of histological changes, the apoptotic index, and the peroxidase activity to levels corresponding to the control group. Moreover, the association with AA did not affect the hepatic uptake of Sb and the ability of Glu to reduce the liver and spleen parasite loads in infected mice. In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to reduce side effects in antimonial therapy. PMID:24189251

  5. Unnatural amino acid mutagenesis-based enzyme engineering.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Yoo, Tae Hyeon; Lee, Chong-soon; Yun, Hyungdon

    2015-08-01

    Traditional enzyme engineering relies on substituting one amino acid by one of the other 19 natural amino acids to change the functional properties of an enzyme. However, incorporation of unnatural amino acids (UAAs) has been harnessed to engineer efficient enzymes for biocatalysis. Residue-specific and site-specific in vivo incorporation methods are becoming the preferred approach for producing enzymes with altered or improved functions. We describe the contribution of in vivo UAA incorporation methodologies to enzyme engineering as well as the future prospects for the field, including the integration of UAAs with other new advances in enzyme engineering.

  6. Generalization of the residual cutting method based on the Krylov subspace

    NASA Astrophysics Data System (ADS)

    Abe, Toshihiko; Sekine, Yoshihito; Kikuchi, Kazuo

    2016-06-01

    The residual cutting (RC) method has been reported to have superior converging characteristics in numerically solving elliptic partial differential equations. However, its application is limited to linear problems with diagonal-dominant matrices in general, for which convergence of a relaxation method such as SOR is guaranteed. In this study, we propose the generalized residual cutting (GRC) method, which is based on the Krylov subspace and applicable to general unsymmetric linear problems. Also, we perform numerical experiments with various coefficient matrices, and show that the GRC method has some desirable properties such as convergence characteristics and memory usage, in comparison to the conventional RC, BiCGSTAB and GMRES methods. At the request of the author of this paper, a corrigendum was issued on 22 June 2016 to correct an error in Eq. (2) and Eq. (3).

  7. Rapid detection of pesticide residue in apple based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yongyu; Sun, Yunyun; Peng, Yankun; Dhakal, Sagar; Chao, Kuanglin; Liu, Qiaoqiao

    2012-05-01

    The potential of Raman spectroscopy in the analysis of low concentration organic contaminants on apples' surface was evidenced in this study. Chlorpyrifos, an organophosphorus pesticide, was used as a probe for this purpose. The characteristic peaks of fingerprints of pesticide on an aluminum substrate and apple fruit cuticle without pesticide residue were acquired first. Then a concentration range of chlorpyrifos (commercial products at 40%) solutions were made using deionised and distilled water. Single 100 μL droplets of the chlorpyrifos solutions were placed gently on apple fruit cuticles and left to dry before analysis. Through comparative analysis of the Raman spectra data collected, 341, 632 and 1237cm-1 were identified to detect the chlorpyrifos pesticide residue on apple surface. Based on the relationship between the Raman intensity of the most prominent peak at around 632cm-1 and the pesticide concentrations, the limit of detection of ordinary Raman spectrum for chlorpyrifos was estimated to be 48ppm.

  8. Intrinsic contributions of polar amino acid residues toward thermal stability of an ABC–ATPase of mesophilic origin

    PubMed Central

    Sarin, Jyoti; Raghava, Gajendra P.S.; Chakraborti, Pradip K.

    2003-01-01

    The nucleotide-binding subunit of phosphate-specific transporter (PstB) from mesophilic bacterium, Mycobacterium tuberculosis, is a unique ATP-binding cassette (ABC) ATPase because of its unusual ability to hydrolyze ATP at high temperature. In an attempt to define the basis of thermostability, we took a theoretical approach and compared amino acid composition of this protein to that of other PstBs from available bacterial genomes. Interestingly, based on the content of polar amino acids, this protein clustered with the thermophiles. PMID:12931011

  9. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  10. Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis.

    PubMed

    Haroon, Hamied A; Morris, David M; Embleton, Karl V; Alexander, Daniel C; Parker, Geoffrey J M

    2009-04-01

    Bootstrapping of repeated diffusion-weighted image datasets enables nonparametric quantification of the uncertainty in the inferred fiber orientation. The wild bootstrap and the residual bootstrap are model-based residual resampling methods which use a single dataset. Previously, the wild bootstrap method has been presented as an alternative to conventional bootstrapping for diffusion tensor imaging. Here we present a study of an implementation of model-based residual bootstrapping using q -ball analysis and compare the outputs with conventional bootstrapping. We show that model-based residual bootstrap q-ball generates results that closely match the output of the conventional bootstrap. Both the residual and conventional bootstrap of multifiber methods can be used to estimate the probability of different numbers of fiber populations existing in different brain tissues. Also, we have shown that these methods can be used to provide input for probabilistic tractography, avoiding existing limitations associated with data calibration and model selection.

  11. [Progress in biotransformation of bio-based lactic acid ].

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2013-10-01

    Fermentative production of lactic acid, an important bio-based chemicals, has made considerable progress. In addition to the food industry and production of polylactic acid, lactic acid also can be used as an important platform chemical for the production of acrylic acid, pyruvic acid, 1,2-propanediol, and lactic acid esters. This article summarizes the recent progress in biocatalytic production of lactic acid derivatives by dehydration, dehydrogenation, reduction, and esterification. Trends in the biotransformation of lactic acid are also discussed. PMID:24432656

  12. Formulation and characterization of functional foods based on fruit and vegetable residue flour.

    PubMed

    Ferreira, Mariana S L; Santos, Mônica C P; Moro, Thaísa M A; Basto, Gabriela J; Andrade, Roberta M S; Gonçalves, Édira C B A

    2015-02-01

    Fruits and vegetables are extensively processed and the residues are often discarded. However, due to their rich composition, they could be used to minimize food waste. This study aimed to develop food products based on the solid residue generated from the manufacture of an isotonic beverage. This beverage was produced based on integral exploitation of several fruits and vegetables: orange, passion fruit, watermelon, lettuce, courgette, carrot, spinach, mint, taro, cucumber and rocket. The remaining residue was processed into flour and its functional properties were evaluated. The fruit and vegetable residue (FVR) flour was incorporated with different levels (20 to 35 %) into biscuits and cereal bars. The proximate composition, microbiological stability until 90 days and consumer acceptance were analyzed. The FVR flour presented a higher water holding capacity than oil holding capacity, respectively 7.43 and 1.91 g g(-1) of flour, probably associated with its high levels of carbohydrates (53 %) and fibres (21.5 %). Biscuits enriched with 35 % of FVR flour presented significantly higher fibre, ranging from 57 % to 118 % and mineral contents, from 25 % to 37 % than when only 20 % was added. Cereal bars presented about 75 % of fibres and variable mineral contents between 14 % and 37 %. The incorporation of FVR did not change the fat content. The microbiological examinations are within acceptable limits according to international regulation. The incorporation of FVR flour did not impair consumer acceptance, the sensory attributes averaged around 6. The chemical, microbiological and sensorial results of the designed products attested for an alternative towards applying and reducing agro-industrial wastes. PMID:25694690

  13. Formulation and characterization of functional foods based on fruit and vegetable residue flour.

    PubMed

    Ferreira, Mariana S L; Santos, Mônica C P; Moro, Thaísa M A; Basto, Gabriela J; Andrade, Roberta M S; Gonçalves, Édira C B A

    2015-02-01

    Fruits and vegetables are extensively processed and the residues are often discarded. However, due to their rich composition, they could be used to minimize food waste. This study aimed to develop food products based on the solid residue generated from the manufacture of an isotonic beverage. This beverage was produced based on integral exploitation of several fruits and vegetables: orange, passion fruit, watermelon, lettuce, courgette, carrot, spinach, mint, taro, cucumber and rocket. The remaining residue was processed into flour and its functional properties were evaluated. The fruit and vegetable residue (FVR) flour was incorporated with different levels (20 to 35 %) into biscuits and cereal bars. The proximate composition, microbiological stability until 90 days and consumer acceptance were analyzed. The FVR flour presented a higher water holding capacity than oil holding capacity, respectively 7.43 and 1.91 g g(-1) of flour, probably associated with its high levels of carbohydrates (53 %) and fibres (21.5 %). Biscuits enriched with 35 % of FVR flour presented significantly higher fibre, ranging from 57 % to 118 % and mineral contents, from 25 % to 37 % than when only 20 % was added. Cereal bars presented about 75 % of fibres and variable mineral contents between 14 % and 37 %. The incorporation of FVR did not change the fat content. The microbiological examinations are within acceptable limits according to international regulation. The incorporation of FVR flour did not impair consumer acceptance, the sensory attributes averaged around 6. The chemical, microbiological and sensorial results of the designed products attested for an alternative towards applying and reducing agro-industrial wastes.

  14. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  15. Identification of amino acid residues essential to the activity of lyase CpcT1 from Nostoc sp. PCC7120.

    PubMed

    Zhang, Juan; Sun, Ya Fang; Zhao, Kai Hong; Zhou, Ming

    2012-12-10

    The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's β subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1. PMID:22982227

  16. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel. PMID:27148658

  17. Evaluation of residual iron in carbon nanotubes purified by acid treatments

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Antunes, E. F.; Botelho, E. C.; Baldan, M. R.; Corat, E. J.

    2011-11-01

    A detailed analysis by X-ray photoelectron spectroscopy was carried out on multi-walled carbon nanotube (MWCNT) surfaces after non-oxidative and oxidative purification treatments in liquid-phase. The MWCNT were produced by pyrolysis of camphor and ferrocene, that provides a high yield but with high iron contamination (∼15% wt). The elimination and/or oxidation of iron nanoparticles were monitored by Fe2p and O1s core level. Oxygen-based functional groups attachment was also investigated by C1s fitting. The effectiveness of each treatment in iron removal was evaluated by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The integrity of the MWCNT structure was verified by Raman spectroscopy (RS) and transmission electron microscopy (TEM). A purity degree higher than 98% was achieved only with non-oxidative treatments using sonification process.

  18. Impact of the diet on net endogenous acid production and acid-base balance.

    PubMed

    Poupin, Nathalie; Calvez, Juliane; Lassale, Camille; Chesneau, Caroline; Tomé, Daniel

    2012-06-01

    Net acid production, which is composed of volatile acids (15,000 mEq/day) and metabolic acids (70-100 mEq/day) is relatively small compared to whole-body H⁺ turnover (150,000 mEq/day). Metabolic acids are ingested from the diet or produced as intermediary or end products of endogenous metabolism. The three commonly reported sources of net acid production are the metabolism of sulphur amino acids, the metabolism or ingestion of organic acids, and the metabolism of phosphate esters or dietary phosphoproteins. Net base production occurs mainly as a result of absorption of organic anions from the diet. To maintain acid-base balance, ingested and endogenously produced acids are neutralized within the body by buffer systems or eliminated from the body through the respiratory (excretion of volatile acid in the form of CO₂) and urinary (excretion of fixed acids and remaining H⁺) pathways. Because of the many reactions involved in the acid-base balance, the direct determination of acid production is complex and is usually estimated through direct or indirect measurements of acid excretion. However, indirect approaches, which assess the acid-forming potential of the ingested diet based on its composition, do not take all the acid-producing reactions into account. Direct measurements therefore seem more reliable. Nevertheless, acid excretion does not truly provide information on the way acidity is dealt with in the plasma and this measurement should be interpreted with caution when assessing acid-base imbalance.

  19. Cavity residue leucine 95 and channel residues glutamine 204, aspartic acid 211, and phenylalanine 269 of toluene o-xylene monooxygenase influence catalysis.

    PubMed

    Kurt, Cansu; Sönmez, Burcu; Vardar, Nurcan; Yanık-Yıldırım, K Cansu; Vardar-Schara, Gönül

    2016-09-01

    Structural analysis of toluene-o-xylene monooxygenase (ToMO) hydroxylase revealed the presence of three hydrophobic cavities, a channel, and a pore leading from the protein surface to the active site. Here, saturation mutagenesis was used to investigate the catalytic roles of alpha-subunit (TouA) second cavity residue L95 and TouA channel residues Q204, D211, and F269. By testing the substrates toluene, phenol, nitrobenzene, and/or naphthalene, these positions were found to influence the catalytic activity of ToMO. Several regiospecific variants were identified from TouA positions Q204, F269, and L95. For example, TouA variant Q204H had the regiospecificity of nitrobenzene changed significantly from 30 to 61 % p-nitrophenol. Interestingly, a combination of mutations at Q204H and A106V altered the regiospecificity of nitrobenzene back to 27 % p-nitrophenol. TouA variants F269Y, F269P, Q204E, and L95D improved the meta-hydroxylating capability of nitrobenzene by producing 87, 85, 82, and 77 % m-nitrophenol, respectively. For naphthalene oxidation, TouA variants F269V, Q204A, Q204S/S222N, and F269T had the regiospecificity changed from 16 to 9, 10, 23, and 25 % 2-naphthol, respectively. Here, two additional TouA residues, S222 and A106, were also identified that may have important roles in catalysis. Most of the isolated variants from D211 remained active, whereas having a hydrophobic residue at this position appeared to diminish the catalytic activity toward naphthalene. The mutational effects on the ToMO regiospecificity described here suggest that it is possible to further fine tune and engineer the reactivity of multicomponent diiron monooxygenases toward different substrates at positions that are relatively distant from the active site. PMID:27311562

  20. Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants.

    PubMed

    Hagarman, Andrew; Measey, Thomas J; Mathieu, Daniel; Schwalbe, Harald; Schweitzer-Stenner, Reinhard

    2010-01-20

    A reliable intrinsic propensity scale of amino acid residues is indispensable for an assessment of how local conformational distributions in the unfolded state can affect the folding of peptides and proteins. Short host-guest peptides, such as GxG tripeptides, are suitable tools for probing such propensities. To explore the conformational distributions sampled by the central amino acid residue in these motifs, we combined vibrational (IR, Raman, and VCD) with NMR spectroscopy. The data were analyzed in terms of a superposition of two-dimensional Gaussian distribution functions in the Ramachandran space pertaining to subensembles of polyproline II, beta-strand, right- and left-handed helical, and gamma-turn-like conformations. The intrinsic propensities of eight amino acid residues (x = A, V, F, L, S, E, K, and M) in GxG peptides were determined as mole fractions of these subensembles. Our results show that alanine adopts primarily (approximately 80%) a PPII-like conformation, while valine and phenylalanine were found to sample PPII and beta-strand-like conformations equally. The centers of the respective beta-strand distributions generally do not coincide with canonical values of dihedral angles of residues in parallel or antiparallel beta-strands. In fact, the distributions for most residues found in the beta-region significantly overlap the PPII-region. A comparison with earlier reported results for trivaline reveals that the terminal valines increase the beta-strand propensity of the central valine residue even further. Of the remaining investigated amino acids, methionine preferred PPII the most (0.64), and E, S, L, and K exhibit moderate (0.56-0.45) PPII propensities. Residues V, F, S, E, and L sample, to a significant extent, a region between the canonical PPII and (antiparallel) beta-strand conformations. This region coincides with the sampling reported for L and V using theoretical predictions (Tran et al. Biochemistry 2005, 44, 11369). The distributions of

  1. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.

    PubMed

    Gunner, M R; Zhu, Xuyu; Klein, Max C

    2011-12-01

    The pK(a)s of 96 acids and bases introduced into buried sites in the staphylococcal nuclease protein (SNase) were calculated using the multiconformation continuum electrostatics (MCCE) program and the results compared with experimental values. The pK(a)s are obtained by Monte Carlo sampling of coupled side chain protonation and position as a function of pH. The dependence of the results on the protein dielectric constant (ε(prot)) in the continuum electrostatics analysis and on the Lennard-Jones non-electrostatics parameters was evaluated. The pK(a)s of the introduced residues have a clear dependence on ε(prot,) whereas native ionizable residues do not. The native residues have electrostatic interactions with other residues in the protein favoring ionization, which are larger than the desolvation penalty favoring the neutral state. Increasing ε(prot) scales both terms, which for these residues leads to small changes in pK(a). The introduced residues have a larger desolvation penalty and negligible interactions with residues in the protein. For these residues, changing ε(prot) has a large influence on the calculated pK(a). An ε(prot) of 8-10 and a Lennard-Jones scaling of 0.25 is best here. The X-ray crystal structures of the mutated proteins are found to provide somewhat better results than calculations carried out on mutations made in silico. Initial relaxation of the in silico mutations by Gromacs and extensive side chain rotamer sampling within MCCE can significantly improve the match with experiment.

  2. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay.

    PubMed

    Hu, Lei; Zuo, Peng; Ye, Bang-Ce

    2010-10-01

    An automated multicomponent mesofluidic system (MCMS) based on biorecognitions carried out on meso-scale glass beads in polydimethylsiloxane (PDMS) channels was developed. The constructed MCMS consisted of five modules: a bead introduction module, a bioreaction module, a solution handling module, a liquid driving module, and a signal collection module. The integration of these modules enables the assay to be automated and reduces it to a one-step protocol. The MCMS has successfully been applied toward the detection of veterinary drug residues in animal-derived foods. The drug antigen-coated beads (varphi250 microm) were arrayed in the PDMS channels (varphi300 microm). The competitive immunoassay was then carried out on the surface of the glass beads. After washing, the Cy3-labeled secondary antibody was introduced to probe the antigen-antibody complex anchored to the beads. The fluorescence intensity of each bead was measured and used to determine the residual drug concentration. The MCMS is highly sensitive, with its detection limits ranging from 0.02 (salbutamol) to 3.5 microg/L (sulfamethazine), and has a short assay time of 45 min or less. The experimental results demonstrate that the MCMS proves to be an economic, efficient, and sensitive platform for multicomponent detection of compound residues for contamination in foods or the environment.

  3. A C. elegans-based foam for rapid on-site detection of residual live virus.

    SciTech Connect

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E.; Tucker, Mark David; Kaiser, Julia N.; Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  4. Two Amino Acid Residues Confer Different Binding Affinities of Abelson Family Kinase Src Homology 2 Domains for Phosphorylated Cortactin*

    PubMed Central

    Gifford, Stacey M.; Liu, Weizhi; Mader, Christopher C.; Halo, Tiffany L.; Machida, Kazuya; Boggon, Titus J.; Koleske, Anthony J.

    2014-01-01

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity “Arg-like” SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an “Abl-like” low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. PMID:24891505

  5. DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India.

    PubMed

    Coleman, Michael; Foster, Geraldine M; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J I; Das, Pradeep

    2015-07-14

    Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m(2))] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m(2) was defined as "in range." The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m(2). The mean residual concentration of DDT post-IRS was 0.37 g ai/m(2); 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable.

  6. Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System.

    PubMed

    Worst, Emanuel G; Exner, Matthias P; De Simone, Alessandro; Schenkelberger, Marc; Noireaux, Vincent; Budisa, Nediljko; Ott, Albrecht

    2016-08-01

    The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any

  7. Structural insights into the hot spot amino acid residues of mushroom tyrosinase for the bindings of thujaplicins.

    PubMed

    Takahashi, Satoshi; Kamiya, Takanori; Saeki, Kazunori; Nezu, Tomoka; Takeuchi, Shin-Ichiro; Takasawa, Ryoko; Sunaga, Satoshi; Yoshimori, Atsushi; Ebizuka, Shigeo; Abe, Takehiko; Tanuma, Sei-Ichi

    2010-11-15

    Tyrosinase inhibitors are important agents for cosmetic products. We examined here the inhibitory effects of three isomers of thujaplicins (α, β and γ) on mushroom tyrosinase and analyzed their binding modes using a homology model from the crystal structure of Streptomyces castaneoglobisporus tyrosinase (PDB ID: 1wx2). All the thujaplicins were found to be competitive inhibitors and γ-thujaplicin has the most potent inhibitory activity (IC(50)=0.07μM). It is noted that there are good correlations between their observed IC(50) values and their binding free energies calculated by MM-GB/SA. The binding modes of thujaplicins were predicted to be similar to that of Tyr98 of caddie protein (ORF378), which was co-crystallized with S. castaneoglobisporus tyrosinase. Furthermore, free energy decomposition analysis indicated that the potent inhibitory activity of γ-thujaplicin is due to the interactions with His242, Val243 and Pro257 (hot spot amino acid residues) at the active site of tyrosinase. These results provide a novel structural insight into the hot spot of mushroom tyrosinase for the specific binding of γ-thujaplicin.

  8. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  9. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402

  10. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.

  11. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins.

    PubMed

    Druckmann, S; Ottolenghi, M; Rousso, I; Friedman, N; Sheves, M

    1995-09-19

    Deprotonation/protonation processes involving the retinal Schiff base and the Asp85 residue play dominant roles in the light-induced proton pump of bacteriorhodopsin (bR). Although the pKa values of these two moieties in unphotolyzed bR are well established, the kinetics of the respective titrations in the native pigment are difficult to interpret, primarily due to the extreme (nonphysiological) pKa values of the two moieties (12.2 +/- 0.2 and 2.7, in 0.1 M NaCl, for the Schiff base and for Asp85, respectively). These difficulties are circumvented by applying stopped-flow techniques, time resolving the titrations of several artificial bRs in which the pKa values of the above two residues are substantially modified: 13-CF3 bR, pKa (Schiff base) = 8.2 +/- 0.2; 13-demethyl-11,14-epoxy bR, pKa (Schiff base) = 8.2 +/- 0.1 (in 0.1 M NaCl); aromatic bR, pKa (Asp85) = 5.2 +/- 0.1 (in water). The R82Q bR mutant, pKa (Asp85) congruent to 7.2 was also employed. A major objective was to verify whether the basic relationships of homogeneous kinetics obeyed by elementary acid/base systems in solution (primarily, the possibility to express the equilibrium constant as the ratio of the forward and back rate constants) are also obeyed by the Schiff base and Asp85 moieties. We found that this is the case for the Schiff base in the pH range between 7 and 9 but not at lower pH. These observations led to the conclusion that the Schiff base is titrable from the outside medium via a proton channel, which becomes saturated, and thus rate determining, below pH approximately equal to 7.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides.

    PubMed

    Chung, Thomas W; Hui, Renjie; Ledvina, Aaron; Coon, Joshua J; Tureček, Frantisek

    2012-08-01

    Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations. PMID:22669761

  13. Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NAD.

    PubMed

    Lee, C H; Um, P Y; Park, M H

    2001-05-01

    Deoxyhypusine synthase catalyses the first step in the biosynthesis of hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. The crystal structure of human deoxyhypusine synthase in complex with NAD revealed four NAD-binding sites per enzyme tetramer, and led to a prediction of the spermidine-binding pocket. We have replaced each of the seven amino acid residues at the predicted spermidine-binding site, and eleven residues that contact NAD, on an individual basis with alanine. Of the amino acid residues at the spermidine site, substitution of Asp-243, Trp-327, His-288, Asp-316 or Glu-323 with alanine caused an almost complete loss of spermidine binding and enzyme activity; only the mutation Tyr-305-->Ala showed partial binding and activity. His-288-->Ala was also deficient in terms of binding NAD. NAD binding was significantly reduced in all of the NAD-site mutant enzymes, except for Glu-137-->Ala, which showed a normal binding of NAD, but was totally lacking in spermidine binding. Of the NAD-site mutant enzymes, Asp-342-->Ala, Asp-313-->Ala and Asp-238-->Ala displayed the lowest binding of NAD. These enzymes and His-288Ala also showed a reduced binding of spermidine, presumably because spermidine binding is dependent on NAD. These findings permit the positive identification of amino acid residues critical for binding of spermidine and NAD, and provide a new insight into the complex molecular interactions involved in the deoxyhypusine synthase reaction. PMID:11311149

  14. Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.

    PubMed

    Hou, Desheng; Fan, Jingjing; Han, Lingfei; Ruan, Xiaoling; Feng, Feng; Liu, Wenyuan; Zheng, Feng

    2016-03-18

    A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392 nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives. To avoid these unwanted side reactions, a reliable derivatization method that did not use pyridine was developed. Reaction with 2-NPH·HCl using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as coupling agent in acetonitrile-water (70:30) at room temperature for 2h gave complete reaction and avoided degradation products. The derivatives were analyzed, without any pretreatment, using gradient HPLC with detection in the near visible region. Organic acids commonly found in drug substances and other impurities did not interfere with the analysis. Good linearity (r>0.999) and low limits of quantitation (0.05-0.12 μg mL(-1)) were obtained. The mean recoveries were in the range of 80-115% with RSD <5.81% except for 3-CPA in ibuprofen which was 78.5%. The intra- and inter-day precisions were expressed as RSD <1.98% and <4.39%, respectively. Finally, the proposed method was successfully used for the residue

  15. Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.

    PubMed

    Hou, Desheng; Fan, Jingjing; Han, Lingfei; Ruan, Xiaoling; Feng, Feng; Liu, Wenyuan; Zheng, Feng

    2016-03-18

    A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392 nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives. To avoid these unwanted side reactions, a reliable derivatization method that did not use pyridine was developed. Reaction with 2-NPH·HCl using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as coupling agent in acetonitrile-water (70:30) at room temperature for 2h gave complete reaction and avoided degradation products. The derivatives were analyzed, without any pretreatment, using gradient HPLC with detection in the near visible region. Organic acids commonly found in drug substances and other impurities did not interfere with the analysis. Good linearity (r>0.999) and low limits of quantitation (0.05-0.12 μg mL(-1)) were obtained. The mean recoveries were in the range of 80-115% with RSD <5.81% except for 3-CPA in ibuprofen which was 78.5%. The intra- and inter-day precisions were expressed as RSD <1.98% and <4.39%, respectively. Finally, the proposed method was successfully used for the residue

  16. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    PubMed

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability. PMID:24751080

  17. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    PubMed

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability.

  18. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.

    PubMed

    Zadok, Uri; Asato, Alfred E; Sheves, Mordechai

    2005-06-14

    The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.

  19. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin.

    PubMed

    Ciarlet, Max; Ludert, Juan E; Iturriza-Gómara, Miren; Liprandi, Ferdinando; Gray, James J; Desselberger, Ulrich; Estes, Mary K

    2002-04-01

    We examined 41 human and animal rotavirus strains representative of all known P genotypes for their dependency on cellular N-acetylneuraminic (sialic) acid (SA) residues for infectivity. Our results showed that all rotaviruses studied, whether of animal or human origin, belonging to P genotypes [1], [2], [3], and [7] depended on SA residues on the cell surface for efficient infectivity but that all human and animal rotavirus strains representative of the remaining known P genotypes were SA independent. The SA residue requirement for efficient infectivity did not change for reassortant rotavirus strains with altered VP4-VP7 combinations. The initial interaction of rotavirus strains with SA residues on the cell surface correlated with VP4 genotype specificity, not with species of origin or VP7 G serotype specificity (P = 0.001; r2 = 1.00, Pearson's correlation coefficient). In addition to being a requirement for infectivity, the presence of SA residues on the cell surface is a requirement for efficient growth in cell culture; recognition of the association of specific P genotypes with the binding of rotavirus to SA residues will facilitate our understanding of the molecular basis of the early events of rotavirus-cell interactions in cell culture models and of pathogenicity in vivo. PMID:11907248

  20. Cysteine residues in the zinc finger and amino acids adjacent to the finger are necessary for DNA binding by the LAC9 regulatory protein of Kluyveromyces lactis.

    PubMed Central

    Witte, M M; Dickson, R C

    1988-01-01

    LAC9 is a positive regulatory protein that controls transcription of the lactose-galactose regulon in Kluyveromyces lactis. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae. Both proteins have a single "zinc finger" which plays a role in DNA binding. We previously hypothesized (L. V. Wray, M. M. Witte, R. C. Dickson, and M. I. Riley, Mol. Cell. Biol. 7:1111-1121, 1987) that the DNA-binding domain of the LAC9 protein consisted of the zinc finger as well as a region of amino acids on the carboxyl-terminal side of the zinc finger. In this study we used oligonucleotide-directed mutagenesis to introduce 13 single-amino-acid changes into the proposed DNA-binding domain of the LAC9 protein. Variant LAC9 proteins carrying an amino acid substitution in any one of the four highly conserved Cys residues of the zinc finger had reduced DNA-binding activity, suggesting that each Cys is necessary for DNA binding. Three of four variant LAC9 proteins with amino acid substitutions located on the carboxyl-terminal side of the zinc finger had reduced DNA-binding activity. These results support our hypothesis that the DNA-binding domain of the LAC9 protein is composed of the zinc finger and the adjacent region on the carboxyl side of the zinc finger, a region that has the potential to form an alpha-helix. Finally, LAC9 proteins containing His residues substituted for the conserved Cys residues also had reduced DNA-binding activity, indicating that His residues are not equivalent to Cys residues, as had been previously thought. Images PMID:3146691

  1. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  2. Reclamation of acidic mine residues by creation of technosoils with the addition of biochar and marble waste

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Acosta, José; Faz, Ángel; Zornoza, Raul

    2016-04-01

    This study reports the short-term effect of biochar and marble waste addition for the reclamation of acidic mine residues. A lab incubation was carried out for 90 days. Biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) were added to the soil at a rate of 20 g kg-1. The marble waste (MW) was added at a rate of 200 g kg-1. Bochars and MW were applied independently and combined. A control soil was used without application of amendments. The evolution of different physical, chemical and biochemical properties and availability of heavy metals was periodically monitored. Results showed that original pH (2.8) was increased with all amendments, those samples containing MW being the ones with the highest pH (~8.0). The electrical conductivity (EC) decreased from 6.6 to 3.0-4.5 mS cm-1 in all the treatments receiving MW. Soil organic C (SOC) increased in all samples receiving biochar up to 18-20 g kg-1, with no shifts during the 90 d incubation, indicating the high stability of the C supplied. Recalcitrant organic C accounted for ~90-98% of the SOC. No significant effect of amendment addition was observed for carbohydrates, soluble C, microbial biomass C and β-glucosidase activity. However, arylesterase activity increased with amendments, highly related to pH. The availability of heavy metals decreased up to 90-95% owing to the addition of amendments, mainly in samples containing MW. The MW provided conditions to increase pH and decrease EC and metals mobility. Biochar was an effective strategy to increase SOC, recalcitrant C and AS, essential to create soil structure. However, a labile source of organic matter should be added together with the proposed amendments to promote the activation of microbial communities. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) by the project 18920/JLI/13

  3. Renal acid-base metabolism after ischemia.

    PubMed

    Holloway, J C; Phifer, T; Henderson, R; Welbourne, T C

    1986-05-01

    The response of the kidney to ischemia-induced cellular acidosis was followed over the immediate one hr post-ischemia reflow period. Clearance and extraction experiments as well as measurement of cortical intracellular pH (pHi) were performed on Inactin-anesthetized Sprague-Dawley rats. Arteriovenous concentration differences and para-aminohippurate extraction were obtained by cannulating the left renal vein. Base production was monitored as bicarbonate released into the renal vein and urine; net base production was related to the renal handling of glutamine and ammonia as well as to renal oxygen consumption and pHi. After a 15 min control period, the left renal artery was snared for one-half hr followed by release and four consecutive 15 min reflow periods. During the control period, cortical cell pHi measured by [14C]-5,5-Dimethyl-2,4-Oxazolidinedione distribution was 7.07 +/- 0.08, and Q-O2 was 14.1 +/- 2.2 micromoles/min; neither net glutamine utilization nor net bicarbonate generation occurred. After 30 min of ischemia, renal tissue pH fell to 6.6 +/- 0.15. However, within 45 min of reflow, cortical cell pH returned and exceeded the control value, 7.33 +/- 0.06 vs. 7.15 +/- 0.08. This increase in pHi was associated with a significant rise in cellular metabolic rate, Q-O2 increased to 20.3 +/- 6.4 micromoles/min. Corresponding with cellular alkalosis was a net production of bicarbonate and a net ammonia uptake and glutamine release; urinary acidification was abolished. These results are consistent with a nonexcretory renal metabolic base generating mechanism governing cellular acid base homeostasis following ischemia. PMID:3723929

  4. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm.

    PubMed

    Kumar, Naresh; Raghu, Hirikyathanahalli Vishweswaraiah; Kumar, Abhishek; Haldar, Lopamudra; Khan, Alia; Rane, Sharmila; Malik, Ravinder Kumar

    2012-07-01

    Spore germination based assay involves the transformation of dormant spores of Bacillus stearothermophilus 953 into active vegetative cells. The inhibition of germination process specifically in presence of antibiotic residues was used as a novel approach for monitoring target contaminants in milk. The indicator organism i.e., B. stearothermophilus 953 was initially allowed to sporulate by seeding in sporulation medium and incubating at 55 °C for 18 ± 2 h. The spores exhibited a typical chain behavior as revealed through phase contrast microscopy. The minimal medium inoculated with activated spores was incubated at 64 °C for 2-3 h for germination and outgrowth in presence of specific germinant mixture containing dextrose, whey powder and skimmed milk powder added in specific ratio along with reconstituted milk as negative control and test milk samples. The change in color of the medium from purple to yellow was used as criteria for detection of antibiotic residues in milk. The efficiency of the developed assay was evaluated through a surveillance study on 228 samples of raw, pasteurized and dried milks and results were compared with AOAC approved microbial receptor assay. The presence of antibiotic level was 10.08 % at Codex maximum residual limit having false positive result only in 0.43 % of the samples. The results of the present investigation suggest that developed spore based assay can be a practical solution to dairy industry for its application at farm level, milk processing units, independent testing and R & D centres in order to comply with the legal requirements set by Codex. PMID:22806162

  5. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications.

    PubMed

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  6. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  7. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods

    PubMed Central

    Lise, Stefano; Archambeau, Cedric; Pontil, Massimiliano; Jones, David T

    2009-01-01

    Background Alanine scanning mutagenesis is a powerful experimental methodology for investigating the structural and energetic characteristics of protein complexes. Individual amino-acids are systematically mutated to alanine and changes in free energy of binding (ΔΔG) measured. Several experiments have shown that protein-protein interactions are critically dependent on just a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there is a need for accurate and reliable computational methods. Such methods would also add to our understanding of the determinants of affinity and specificity in protein-protein recognition. Results We present a novel computational strategy to identify hot spot residues, given the structure of a complex. We consider the basic energetic terms that contribute to hot spot interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb electrostatics. We treat them as input features and use machine learning algorithms such as Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based on a set of training examples of alanine mutations. We show that our approach is effective in predicting hot spots and it compares favourably to other available methods. In particular we find the best performances using Transductive Support Vector Machines, a semi-supervised learning scheme. When hot spots are defined as those residues for which ΔΔG ≥ 2 kcal/mol, our method achieves a precision and a recall respectively of 56% and 65%. Conclusion We have developed an hybrid scheme in which energy terms are used as input features of machine learning models. This strategy combines the strengths of machine learning and energy-based methods. Although so far these two types of approaches have mainly been applied separately to

  8. Comparison of molecular dynamics simulation methods for amyloid β(1-42) monomers containing D-aspartic acid residues for predicting retention times in chromatography.

    PubMed

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2011-11-01

    Molecular dynamics simulations of amyloid β(1-42) containing D-aspartic acid residues were performed using several continuous solvent models to investigate the usefulness of simulation methods for D-amino acid-containing proteins and peptides. Normal molecular dynamics simulations and replica exchange molecular dynamics simulations, which are one of the generalized-ensemble algorithms, were performed. Because the β-structure contents of amyloid β(1-42) peptides obtained by replica exchange molecular dynamics simulations with Onufriev-Bashford-Case generalized Born implicit solvent were qualitatively consistent with experimental data, replica exchange molecular dynamics rather than other methods appeared to be more reasonable for calculations of amyloid β(1-42) containing D-aspartic acid residues. Computational results revealed that peptides with stereoinversion of Asp23 tend to form β-sheet structures by themselves, in contrast to the wild-type peptides that form β-sheet structures only after aggregation. These results are expected to be useful for computational investigations of proteins and peptides such as prediction of retention time of peptides and proteins containing D-aspartic acid residues.

  9. Development of a three-dimensional CysLT1 (LTD4) antagonist model with an incorporated amino acid residue from the receptor.

    PubMed

    Zwaagstra, M E; Schoenmakers, S H; Nederkoorn, P H; Gelens, E; Timmerman, H; Zhang, M Q

    1998-04-23

    This paper describes the molecular modeling of leukotriene CysLT1 (or LTD4) receptor antagonists. Several different structural classes of CysLT1 antagonists were superimposed onto the new and highly rigid CysLT1 antagonist 8-carboxy-3'-[2-(2-quinolinyl)ethenyl]flavone (1, VUF 5017) to generate a common pharmacophoric arrangement. On the basis of known structure-activity relationships of CysLT1 antagonists, the quinoline nitrogen (or a bioisosteric equivalent thereof) and an acidic function were taken as the matching points. In order to optimize the fitting of acidic moieties of all antagonists, an arginine residue from the receptor was proposed as the interaction site for the acidic moieties. Incorporation of this amino acid residue into the model revealed additional interactions between the guanidine group and the nitrogen atoms of quinoline-containing CysLT1 antagonists. In some cases, the arginine may even interact with pi-clouds of phenyl residues of CysLT1 antagonists. The alignment of Montelukast (MK-476) suggests the presence of an additional pocket in the binding site for CysLT1 antagonists. The derived model should be useful for a better understanding of the molecular recognition of the leukotriene CysLT1 receptor.

  10. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  11. An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces

    PubMed Central

    Nakadai, Masakazu; Tomida, Shuta; Sekimizu, Kazuhisa

    2016-01-01

    Druggable sites on protein-protein interfaces are difficult to predict. To survey inhibitor-binding sites onto which residues are superimposed at protein-protein interfaces, we analyzed publicly available information for 39 inhibitors that target the protein-protein interfaces of 8 drug targets. By focusing on the differences between residues that were superimposed with inhibitors and non-superimposed residues, we observed clear differences in the distances and changes in the solvent-accessible surface areas (∆SASA). Based on the observation that two or more residues were superimposed onto inhibitors in 37 (95%) of 39 protein-inhibitor complexes, we focused on the two-residue relationships. Application of a cross-validation procedure confirmed a linear negative correlation between the absolute value of the dihedral angle and the sum of the ∆SASAs of the residues. Finally, we applied the regression equation of this correlation to four inhibitors that bind to new sites not bound by the 39 inhibitors as well as additional inhibitors of different targets. Our results shed light on the two-residue correlation between the absolute value of the dihedral angle and the sum of the ∆SASA, which may be a useful relationship for identifying the key two-residues as potential targets of protein-protein interfaces. PMID:26730437

  12. A Truncated Nuclear Norm Regularization Method Based on Weighted Residual Error for Matrix Completion.

    PubMed

    Qing Liu; Zhihui Lai; Zongwei Zhou; Fangjun Kuang; Zhong Jin

    2016-01-01

    Low-rank matrix completion aims to recover a matrix from a small subset of its entries and has received much attention in the field of computer vision. Most existing methods formulate the task as a low-rank matrix approximation problem. A truncated nuclear norm has recently been proposed as a better approximation to the rank of matrix than a nuclear norm. The corresponding optimization method, truncated nuclear norm regularization (TNNR), converges better than the nuclear norm minimization-based methods. However, it is not robust to the number of subtracted singular values and requires a large number of iterations to converge. In this paper, a TNNR method based on weighted residual error (TNNR-WRE) for matrix completion and its extension model (ETNNR-WRE) are proposed. TNNR-WRE assigns different weights to the rows of the residual error matrix in an augmented Lagrange function to accelerate the convergence of the TNNR method. The ETNNR-WRE is much more robust to the number of subtracted singular values than the TNNR-WRE, TNNR alternating direction method of multipliers, and TNNR accelerated proximal gradient with Line search methods. Experimental results using both synthetic and real visual data sets show that the proposed TNNR-WRE and ETNNR-WRE methods perform better than TNNR and Iteratively Reweighted Nuclear Norm (IRNN) methods. PMID:26625414

  13. The role of continuity in residual-based variational multiscale modeling of turbulence

    NASA Astrophysics Data System (ADS)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  14. Moment closures based on minimizing the residual of the PN angular expansion in radiation transport

    NASA Astrophysics Data System (ADS)

    Zheng, Weixiong; McClarren, Ryan G.

    2016-06-01

    In this work we present two new closures for the spherical harmonics (PN) method in slab geometry transport problems. Our approach begins with an analysis of the squared-residual of the transport equation where we show that the standard truncation and diffusive closures do not minimize the residual of the PN expansion. Based on this analysis we derive two models, a moment-limited diffusive (ML DN) closure and a transient PN (TPN) closure that attempt to address shortcomings of common closures. The form of these closures is similar to flux-limiters for diffusion with the addition of a time-derivative in the definition of the closure. Numerical results on a pulsed plane source problem, the Gordian knot of slab-geometry transport problems, indicate that our new closure outperforms existing linear closures. Additionally, on a deep penetration problem we demonstrate that the TPN closure does not suffer from the artificial shocks that can arise in the MN entropy-based closure. Finally, results for Reed's problem demonstrate that the TPN solution is as accurate as the PN+3 solution. We further extend the TPN closure to 2D Cartesian geometry. The line source test problem demonstrates the model effectively damps oscillations and negative densities.

  15. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    PubMed Central

    2015-01-01

    Structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. Combined with mass-per-length measurements performed by dark-field electron microscopy, the results of this study are consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. The results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide. PMID:25382225

  16. A Synchrotron-Based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and Prefibrillar Intermediates with Residue-Specific Resolution

    SciTech Connect

    Klinger, Alexandra L.; Kiselar, Janna; Ilchenko, Serguei; Komatsu, Hiroaki; Chance, Mark R.; Axelsen, Paul H.

    2014-11-09

    The structural models of the fibrils formed by the 40-residue amyloid-β (Aβ40) peptide in Alzheimer’s disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register β-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aβ40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aβ40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aβ40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aβ40. When we combined mass-per-length measurements performed by dark-field electron microscopy, we determined that the results of our study were consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aβ40 fibril (such as 2LMN, 2LMO, 2LMP, and 2LMQ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. Our results also demonstrate that individual Aβ40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aβ peptide.

  17. Amino acid residues 56 to 69 of HLA-A2 specify an antigenic determinant shared by HLA-A2 and HLA-B17.

    PubMed

    Ways, J P; Rothbard, J B; Parham, P

    1986-07-01

    The mouse monoclonal antibody MA2.1 was previously used to define an epitope shared by native HLA-A2 and HLA-B17 molecules and amino acid sequence comparison of nine HLA-A,B,C molecules identified residues 62 to 65 as the region most likely to form this epitope. An unabsorbed rabbit antiserum raised against a peptide corresponding to residues 56 to 69 of HLA-A2 gives highly specific reactions with HLA-A2 and HLA-B17 heavy chains in Western blots. No interactions with native HLA-A2 and B17 molecules were detected in a variety of assays. Although the topographic relationship between the epitopes recognized by the rabbit antiserum and the monoclonal antibody could not be determined, the results show that residues 56 to 69 of HLA-A2 can form epitopes with specificity for HLA-A2 and HLA-B17.

  18. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  19. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  20. Three amino acid residues of an odorant-binding protein are involved in binding odours in Loxostege sticticalis L.

    PubMed

    Yin, J; Zhuang, X; Wang, Q; Cao, Y; Zhang, S; Xiao, C; Li, K

    2015-10-01

    Odorant-binding proteins (OBPs) play an important role in insect olfactory processes and are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors within the antennal sensilla. As an important general odorant binding protein in the process of olfactory recognition, LstiGOBP1 of Loxostege sticticalis L. has been shown to have good affinity to various plant volatiles. However, the binding specificity of LstiGOBP1 should be further explored in order to better understand the olfactory recognition mechanism of L. sticticalis. In this study, real-time PCR experiments indicated that LstiGOBP1 was expressed primarily in adult antennae. Homology modelling and molecular docking were then conducted on the interactions between LstiGOBP1 and 1-heptanol to understand the interactions between LstiGOBP1 and their ligands. Hydrogen bonds formed by amino acid residues might be crucial for the ligand-binding specificity on molecular docking, a hypothesis that was tested by site-directed mutagenesis. As predicted binding sites for LstiGOBP1, Thr15, Trp43 and Val14 were replaced by alanine to determine the changes in binding affinity. Finally, fluorescence assays revealed that the mutants Thr15 and Trp43 had significantly decreased binding affinity to most odours; in mutants that had two-site mutations, the binding to the six odours that were tested was completely abolished. This result indicates that Thr15 and Trp43 were involved in binding these compounds, possibly by forming multiple hydrogen bonds with the functional groups of the ligands. These results provide new insights into the detailed chemistry of odours' interactions with proteins. PMID:26152502

  1. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    PubMed

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3.

  2. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    PubMed

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3. PMID:27266312

  3. Proposal for field-based definition of soil bound pesticide residues.

    PubMed

    Boesten, J J T I

    2016-02-15

    The environmental significance of soil bound pesticide residues (SBPR) is potentially large because approximately one third of the applied mass of the pesticides in agriculture ends up as SBPR. At EU level, there is little regulatory guidance available on the environmental risk assessment of SBPR in spite of some 50 years of SBPR research. This lack of guidance is partially caused by the fact that the current definitions of SBPR are founded on non-extractability in soil in the laboratory whereas for the environmental risk assessment not the soil in the laboratory but the soil in the field is the system of interest. Therefore a definition of SBPR is proposed that is based on the field soil: a molecule (further called 'the mother molecule') is soil bound if a relevant part of this molecule has become part of the solid phase in the soil and if this relevant part will never be released again to the liquid phase in soil under relevant field conditions in the form of this mother molecule or in the form of another molecule that may possibly raise environmental or human toxicological concerns. This mother molecule may be the parent substance that is applied to the soil but it may also be a metabolite of this parent substance. A consequence of the definition is that the SBPR terminology becomes more precise because the mother molecule of the soil bound residue has to be specified. A further consequence is that very strong but reversible sorption of molecules such as paraquat is not considered soil-bound residue anymore (as may be demonstrated by a self-exchange extraction procedure). Furthermore, the definition requires that risk managers have to define what they consider as 'relevant field conditions' (e.g. include also changes of agricultural fields into forests?).

  4. Residual Monte Carlo high-order solver for Moment-Based Accelerated Thermal Radiative Transfer equations

    SciTech Connect

    Willert, Jeffrey Park, H.

    2014-11-01

    In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.

  5. Phthalate residue in goat milk-based infant formulas manufactured in China.

    PubMed

    Ge, W P; Yang, X J; Wu, X Y; Wang, Z; Geng, W; Guo, C F

    2016-10-01

    Phthalates adversely affect the male reproductive system in humans. Through gas chromatography-mass spectrometry analysis, we investigated the residual profile and levels of 15 phthalates in 90 goat milk-based infant formulas from 15 commercial brands of 10 dairy enterprises located in Shaanxi Province, China. In general, dibutyl phthalate was the most detected phthalate, followed by bis(2-ethylhexyl) phthalate, diisobutyl phthalate, and dimethyl phthalate; their geometric mean concentrations in the formulas were 38.1, 24.2, 16.6, and 8.7μg/kg, respectively. Other phthalates were not detected in the investigated samples. No significant differences were found in the phthalate levels among different stages of infant formulas, even though the samples were packaged in different types of containers. These findings demonstrate that goat milk-based infant formulas may represent the main source of exposure to phthalates in infants. PMID:27522423

  6. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage.

    PubMed

    Cao, Y; Cai, Y; Takahashi, T; Yoshida, N; Tohno, M; Uegaki, R; Nonaka, K; Terada, F

    2011-08-01

    The objective of this study was to determine the effect of beet pulp (BP) and lactic acid bacteria (LAB) on silage fermentation quality and in vitro ruminal dry matter (DM) digestion of vegetable residues, including white cabbage, Chinese cabbage, red cabbage, and lettuce. Silage was prepared using a small-scale fermentation system, and treatments were designed as control silage without additive or with BP (30% fresh matter basis), LAB inoculant Chikuso-1 (Lactobacillus plantarum, 5mg/kg, fresh matter basis), and BP+LAB. In vitro incubation was performed using rumen fluid mixed with McDougall's artificial saliva (at a ratio of 1:4, vol/vol) at 39°C for 6h to determine the ruminal fermentability of the vegetable residue silages. These vegetable residues contained high levels of crude protein (20.6-22.8% of DM) and moderate levels of neutral detergent fiber (22.7-33.6% of DM). In all silages, the pH sharply decreased and lactic acid increased, and the growth of bacilli, coliform bacteria, molds, and yeasts was inhibited by the low pH at the early stage of ensiling. The silage treated with BP or LAB had a lower pH and a higher lactic acid content than the control silage. After 6h of incubation, all silages had relatively high DM digestibility (38.6-44.9%); in particular, the LAB-inoculated silage had the highest DM digestibility and the lowest methane production. The vegetable residues had high nutritional content and high in vitro DM digestibility. Also, both the addition of a LAB inoculant and moisture adjustment with BP improved the fermentation quality of the vegetable residue silages. In addition, LAB increased DM digestibility and decreased ruminal methane production. PMID:21787927

  7. QuEChERS-based method for the determination of carbamate residues in aromatic herbs by UHPLC-MS/MS.

    PubMed

    Nantia, Edouard Akono; Moreno-González, David; Manfo, Faustin P T; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-02-01

    A new reliable, fast and highly sensitive method based on ultra-high performance liquid chromatography tandem mass spectrometry has been developed and validated for the determination of 28 carbamates in aromatic herbs. A modified QuEChERS-based method was optimized for the extraction of carbamate residues from a wide variety of fresh herbal products. The proposed method allowed recoveries higher than 72%, achieving quantification limits of 2μgkg(-1), therefore below maximum residue limits established for this type of samples. The combination of QuEChERS with UHPLC-MS/MS introduces a high-throughput methodology for the monitoring of these residues in this type of matrices scarcely explored. The analysis of the real samples revealed that several samples sold in the European Union and in the North West region of Cameroon contain pesticides in concentrations below the maximum residue limits.

  8. QuEChERS-based method for the determination of carbamate residues in aromatic herbs by UHPLC-MS/MS.

    PubMed

    Nantia, Edouard Akono; Moreno-González, David; Manfo, Faustin P T; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-02-01

    A new reliable, fast and highly sensitive method based on ultra-high performance liquid chromatography tandem mass spectrometry has been developed and validated for the determination of 28 carbamates in aromatic herbs. A modified QuEChERS-based method was optimized for the extraction of carbamate residues from a wide variety of fresh herbal products. The proposed method allowed recoveries higher than 72%, achieving quantification limits of 2μgkg(-1), therefore below maximum residue limits established for this type of samples. The combination of QuEChERS with UHPLC-MS/MS introduces a high-throughput methodology for the monitoring of these residues in this type of matrices scarcely explored. The analysis of the real samples revealed that several samples sold in the European Union and in the North West region of Cameroon contain pesticides in concentrations below the maximum residue limits. PMID:27596428

  9. A residue-based toxicokinetic model for pulse-exposure toxicity in aquatic systems

    SciTech Connect

    Hickie, B.E.; McCarty, L.S.; Dixon, D.G.

    1995-12-01

    This pulse-exposure model (PULSETOX) is based on the simple one-compartment first-order kinetics (1CFOK) equation. It tracks the accumulation of waterborne organic chemicals by fish and predicts acute toxicity by means of previously established relationships between whole-body residues and lethality. The predictive capabilities of the model were tested with a data set of 27 acute pulse-exposure lethality tests with larval fathead minnows (Pimephales promelas) exposed to pentachlorophenol (PCP). Tests included eight single exposures (2 to 96 h) and 19 multiple exposures, which varied in the number (2 to 15) and duration (2 to 24 h) of pulses, and time interval between pulses (6 to 24 h). Experimental work included determination of 1CFOK kinetics parameters from [{sup 14}C]PCP uptake and clearance, and from time-toxicity curves. Lethality was expected in any exposure regime where the fish reaches or exceeds the critical body residue (CBR) of 0.30 mmol PCP/kg fish (SD, {+-} 0.02; n = 11). Using the CBR endpoint, the model accounted for between 90 and 93% of variability in the observed lethality data, depending on the toxicokinetic parameters employed. Predictive power of the model was optimized by using kinetics parameters derived from the toxicity curve for pulse-toxicity tests as shown by the regression: predicted LC50 = 1.04 {center_dot} (observed LC50) + 0.01 (p < 0.001, r{sup 2} = 0.94, n = 27).

  10. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    PubMed

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding. PMID:26780705

  11. A second order residual based predictor-corrector approach for time dependent pollutant transport

    NASA Astrophysics Data System (ADS)

    Pavan, S.; Hervouet, J.-M.; Ricchiuto, M.; Ata, R.

    2016-08-01

    We present a second order residual distribution scheme for scalar transport problems in shallow water flows. The scheme, suitable for the unsteady cases, is obtained adapting to the shallow water context the explicit Runge-Kutta schemes for scalar equations [1]. The resulting scheme is decoupled from the hydrodynamics yet the continuity equation has to be considered in order to respect some important numerical properties at discrete level. Beyond the classical characteristics of the residual formulation presented in [1,2], we introduce the possibility to iterate the corrector step in order to improve the accuracy of the scheme. Another novelty is that the scheme is based on a precise monotonicity condition which guarantees the respect of the maximum principle. We thus end up with a scheme which is mass conservative, second order accurate and monotone. These properties are checked in the numerical tests, where the proposed approach is also compared to some finite volume schemes on unstructured grids. The results obtained show the interest in adopting the predictor-corrector scheme for pollutant transport applications, where conservation of the mass, monotonicity and accuracy are the most relevant concerns.

  12. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement.

    PubMed

    Lan, Meijing; Guo, Yirong; Zhao, Ying; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2016-09-28

    This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02-6.45 ng mL(-1), which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL(-1). Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds. PMID:27619097

  13. Multi-residue detection of pesticides using a sensitive immunochip assay based on nanogold enhancement.

    PubMed

    Lan, Meijing; Guo, Yirong; Zhao, Ying; Liu, Yihua; Gui, Wenjun; Zhu, Guonian

    2016-09-28

    This paper describes the development of a new multiplex immunoassay for simultaneous detection of seven pesticides (triazophos, methyl-parathion, fenpropathrin, carbofuran, thiacloprid, chlorothalonil, and carbendazim). Sixteen pairs of pesticide antibodies and antigens were screened for reactivity and cross-reaction. A microarray chip consisting of seven antigens immobilized on a nitrocellulose membrane was then constructed. Nanogold was employed for labeling and signal amplification to obtain a sensitive colorimetric immunoassay. The direct and indirect detection formats were further compared using primary antibody-gold and secondary antibody-gold conjugates as tracers. An integrated 7-plex immunochip assay based on the indirect model was established and optimized. The detection limits for the pesticides were 0.02-6.45 ng mL(-1), which meets detection requirements for pesticide residues. Naked-eye assessment showed the visual detection limits of the assay ranged from 1 to 100 ng mL(-1). Spiked recovery results demonstrated that the immunochip assay had potential for multi-analysis of pesticide residues in vegetables and fruits. The proposed microarray methodology is a flexible and versatile tool, which can be applied to other competitive multiplex immunoassays for small molecular compounds.

  14. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues.

    PubMed

    Andrade, Roberta M S; Ferreira, Mariana S L; Gonçalves, Édira C B A

    2016-02-01

    Edible films were developed from the solid residue of the processing of whole fruits and vegetables. The solid residue, processed into flour (FVR flour) was chemically and structurally characterized by microstructure, elemental composition, structural links, and moisture sorption isotherm. Films were prepared by casting using aqueous extracts of 8% and 10% of flour (w/w) and characterized in terms of thickness, water solubility, mechanical properties, water vapor permeability, and Fourier transform infrared (FTIR). The analysis of microstructure and elemental composition, performed on flour (mean particle size 350 μm), showed an essentially granular aspect, with the presence of fibrous particles having potassium as one of the most abundant elements. FTIR results showed similarity between the characteristic bands of other raw materials used in edible films. The sorption isotherm of FVR flour showed a typical profile of foods rich in soluble components, such as sugars. Dried films presented an average thickness of 0.263 ± 0.003 mm, a homogenous aspect, bright yellow color, pronounced fruit flavor, and high water solubility. The FTIR spectra of the edible films revealed that addition of potato skin flour did not change the molecular conformation. Moreover, the films presented low tensile strength at break when compared with fruit starch-based films.

  15. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues.

    PubMed

    Andrade, Roberta M S; Ferreira, Mariana S L; Gonçalves, Édira C B A

    2016-02-01

    Edible films were developed from the solid residue of the processing of whole fruits and vegetables. The solid residue, processed into flour (FVR flour) was chemically and structurally characterized by microstructure, elemental composition, structural links, and moisture sorption isotherm. Films were prepared by casting using aqueous extracts of 8% and 10% of flour (w/w) and characterized in terms of thickness, water solubility, mechanical properties, water vapor permeability, and Fourier transform infrared (FTIR). The analysis of microstructure and elemental composition, performed on flour (mean particle size 350 μm), showed an essentially granular aspect, with the presence of fibrous particles having potassium as one of the most abundant elements. FTIR results showed similarity between the characteristic bands of other raw materials used in edible films. The sorption isotherm of FVR flour showed a typical profile of foods rich in soluble components, such as sugars. Dried films presented an average thickness of 0.263 ± 0.003 mm, a homogenous aspect, bright yellow color, pronounced fruit flavor, and high water solubility. The FTIR spectra of the edible films revealed that addition of potato skin flour did not change the molecular conformation. Moreover, the films presented low tensile strength at break when compared with fruit starch-based films. PMID:26766297

  16. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    PubMed

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding.

  17. Modeling of copper(II) sites in proteins based on histidyl and glycyl residues.

    PubMed

    Orfei, Marco; Alcaro, Maria Claudia; Marcon, Giordana; Chelli, Mario; Ginanneschi, Mauro; Kozlowski, Henryk; Brasuń, Justyna; Messori, Luigi

    2003-11-01

    The complexes between copper(II) and four synthetic tetrapeptides bearing a single histidine residue within the sequence (AcHGGG, AcGHGG, AcGGHG and AcGGGH, respectively), have been investigated by potentiometric and spectroscopic methods (UV-Vis, circular dichroism and electron paramagnetic resonance). Potentiometric studies in the pH range 4-12 allowed identification and quantitative determination of the species present in solution for each copper-peptide complex. In all cases, upon raising pH, copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination, except in the case of AcGHGG. Based on the potentiometric and spectroscopic results, detailed molecular structures are proposed for the dominant copper(II) tetrapeptide species existing in solution, either at neutral or alkaline pH. The structural consequences of the presence and of the location of a unique histidine residue within the tetrameric sequence are specifically analyzed. Results are discussed in relation to the modeling of copper(II) binding sites in proteins, particular emphasis being devoted to the copper complexes of the prion protein. PMID:14511892

  18. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  19. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L.

    2013-01-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from E. coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid – general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid – general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  20. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.

  1. History of medical understanding and misunderstanding of Acid base balance.

    PubMed

    Aiken, Christopher Geoffrey Alexander

    2013-09-01

    To establish how controversies in understanding acid base balance arose, the literature on acid base balance was reviewed from 1909, when Henderson described how the neutral reaction of blood is determined by carbonic and organic acids being in equilibrium with an excess of mineral bases over mineral acids. From 1914 to 1930, Van Slyke and others established our acid base principles. They recognised that carbonic acid converts into bicarbonate all non-volatile mineral bases not bound by mineral acids and determined therefore that bicarbonate represents the alkaline reserve of the body and should be a physiological constant. They showed that standard bicarbonate is a good measure of acidosis caused by increased production or decreased elimination of organic acids. However, they recognised that bicarbonate improved low plasma bicarbonate but not high urine acid excretion in diabetic ketoacidosis, and that increasing pCO2 caused chloride to shift into cells raising plasma titratable alkali. Both indicate that minerals influence pH. In 1945 Darrow showed that hyperchloraemic metabolic acidosis in preterm infants fed milk with 5.7 mmol of chloride and 2.0 mmol of sodium per 100 kcal was caused by retention of chloride in excess of sodium. Similar findings were made but not recognised in later studies of metabolic acidosis in preterm infants. Shohl in 1921 and Kildeberg in 1978 presented the theory that carbonic and organic acids are neutralised by mineral base, where mineral base is the excess of mineral cations over anions and organic acid is the difference between mineral base, bicarbonate and protein anion. The degree of metabolic acidosis measured as base excess is determined by deviation in both mineral base and organic acid from normal.

  2. Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains.

    PubMed

    Liu, Dan; Zhang, Zheng; Liman, Emily R

    2005-05-27

    TRPM5, a member of the superfamily of transient receptor potential ion channels, is essential for the detection of bitter, sweet, and amino acid tastes. In heterologous cell types it forms a nonselective cation channel that is activated by intracellular Ca(2+). TRPM5 is likely to be part of the taste transduction cascade, and regulators of TRPM5 are likely to affect taste sensation. In this report we show that TRPM5, but not the related channel TRPM4b, is potently blocked by extracellular acidification. External acidification has two effects, a fast reversible block of the current (IC(50) pH = 6.2) and a slower irreversible enhancement of current inactivation. Mutation of a single Glu residue in the S3-S4 linker and a His residue in the pore region each reduced sensitivity of TRPM5 currents to fast acid block (IC(50) pH = 5.8 for both), and the double mutant was nearly insensitive to acidic pH (IC(50) pH = 5.0). Prolonged exposure to acidic pH enhanced inactivation of TRPM5 currents, and mutant channels that were less sensitive to acid block were also less sensitive to acid-enhanced inactivation, suggesting an intimate association between the two processes. These processes are, however, distinct because the pore mutant H896N, which has normal sensitivity to acid block, shows significant recovery from acid-enhanced inactivation. These data show that extracellular acidification acts through specific residues on TRPM5 to block conduction through two distinct but related mechanisms and suggest a possible interaction between extracellular pH and activation and adaptation of bitter, sweet, and amino acid taste transduction.

  3. New Helical Foldamers: Heterogeneous Backbones with 1:2 and 2:1 [alpha]:[superscript beta]-Amino Acid Residue Patterns

    SciTech Connect

    Schmitt, Margaret A.; Choi, SooHyuk; Guzei, Ilia A.; Gellman, Samuel H.

    2008-10-03

    Foldamers, oligomers with strong folding propensities, are subjects of growing interest because such compounds offer unique scaffolds for the development of molecular function. We report two new foldamer classes, oligopeptides with regular 1:2 or 2:1 patterns of {alpha}- and {beta}-amino acid residues. Two distinct helical conformations are detected via 2D NMR in methanol for each backbone. One of the helices for each backbone is characterized via X-ray crystallography.

  4. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  5. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process

    PubMed Central

    2014-01-01

    Background It is well known that the use of denture cleansers can reduce Candida albicans biofilm accumulation; however, the efficacy of citric acid denture cleansers is uncertain. In addition, the long-term efficacy of this denture cleanser is not well established, and their effect on residual biofilms is unknown. This in vitro study evaluated the efficacy of citric acid denture cleanser treatment on C. albicans biofilm recolonization on poly(methyl methacrylate) (PMMA) surface. Methods C. albicans biofilms were developed for 72 h on PMMA resin specimens (n = 168), which were randomly assigned to 1 of 3 cleansing treatments (CTs) overnight (8 h). CTs included purified water as a control (CTC) and two experimental groups that used either a 1:5 dilution of citric acid denture cleanser (CT5) or a 1:8 dilution of citric acid denture cleanser (CT8). Residual biofilms adhering to the specimens were collected and quantified at two time points: immediately after CTs (ICT) and after cleaning and residual biofilm recolonization (RT). Residual biofilms were analyzed by quantifying the viable cells (CFU/mL), and biofilm architecture was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Denture cleanser treatments and evaluation periods were considered study factors. Data were analyzed using two-way ANOVA and Tukey’s Honestly Significant Difference (HSD) test (α = 0.05). Results Immediately after treatments, citric acid denture cleansing solutions (CT5 and CT8) reduced the number of viable cells as compared with the control (p < 0.01). However, after 48 h, both CT groups (CT5 and CT8) showed biofilm recolonization (p < 0.01). Residual biofilm recolonization was also detected by CLSM and SEM analysis, which revealed a higher biomass and average biofilm thickness for the CT8 group (p < 0.01). Conclusion Citric acid denture cleansers can reduce C. albicans biofilm accumulation and cell viability. However, this

  6. Simultaneous screening analysis of 3-methyl-quinoxaline-2-carboxylic acid and quinoxaline-2-carboxylic acid residues in edible animal tissues by a competitive indirect immunoassay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassays contribute greatly to veterinary drug residue analysis and food safety, but there are no reported immunoassays on simultaneously detecting MQCA and QCA, the marker residues for carbadox and olaquindox. It is extremely difficult to produce broad-specificity antibodies that bind both res...

  7. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.

  8. Functional analysis of three amino acid residues of purR repressor, Trpl47, Gln-218 and Gln-292 in Salmonella typhimurium.

    PubMed

    Zhang, H; Wang, A

    2001-04-01

    The amber mutation sites of 6 purR(am) mutants were determined by cloning and DNA sequencing. The results showed that the mutations were distributed at three different sites in PurR coding region, G(721)(-->A), C(933)(-->T) and C(1155)(-->T), which respectively turn Trp-147, Gln-218 and Gln-292 of PurR into TAG terminal codon. To determine the effect of the three amino acid residues on regulatory function of PurR protein 5 different kinds of tRNA suppressor genes, Su3, Su4, Su6, Su7 and Su9 were used for creating the PurR protein variants with single amino acid substitution. The results indicated that Cys, Glu, Gly, His and Arg which substituted Trp-147 respectively all could not recover the regulation function of PurR. It confirmed that Trp-147 is a critical amino acid for the PurR function. Gln-292 substituted respectively by the same amino acids also could not recover the PurR function, demonstrating that Gln-292 is also an important amino acid residue in PurR.

  9. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits.

    PubMed

    Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala

    2016-05-01

    Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation. PMID:27098519

  10. Chip-based sequencing nucleic acids

    SciTech Connect

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  11. Pinpointing the putative heparin/sialic acid-binding residues in the 'sushi' domain 7 of factor H: a molecular modeling study.

    PubMed

    Ranganathan, S; Male, D A; Ormsby, R J; Giannakis, E; Gordon, D L

    2000-01-01

    Factor H, a secretory glycoprotein comprising 20 short consensus repeat (SCR) or 'sushi' domains of about 60 amino acids each, is a regulator of the complement system. The complement-regulatory functions of factor H are targeted by its binding to polyanions such as heparin/sialic acid, involving SCRs 7 and 20. Recently, the SCR 7 heparin-binding site was shown to be co-localized with the Streptococcus Group A M protein binding site on factor H (T.K. Blackmore et al., Infect. Immun. 66, 1427 (1998)). Using sequence analysis of all heparin-binding domains of factor H and its closest homologues, molecular modeling of SCRs 6 and 7, and surface electrostatic potential studies, the residues implicated in heparin/sialic acid binding to SCR 7 have been localized to four regions of sequence space containing stretches of basic as well as histidine residues. The heparin-binding site is spatially compact and lies near the interface between SCRs 6 and 7, with residues in the interdomain linker playing a significant role.

  12. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.

    PubMed

    Bai, Zhongzhong; Gao, Zhen; Sun, Junfei; Wu, Bin; He, Bingfang

    2016-05-01

    d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application.

  13. Assessment of acid-base balance. Stewart's approach.

    PubMed

    Fores-Novales, B; Diez-Fores, P; Aguilera-Celorrio, L J

    2016-04-01

    The study of acid-base equilibrium, its regulation and its interpretation have been a source of debate since the beginning of 20th century. Most accepted and commonly used analyses are based on pH, a notion first introduced by Sorensen in 1909, and on the Henderson-Hasselbalch equation (1916). Since then new concepts have been development in order to complete and make easier the understanding of acid-base disorders. In the early 1980's Peter Stewart brought the traditional interpretation of acid-base disturbances into question and proposed a new method. This innovative approach seems more suitable for studying acid-base abnormalities in critically ill patients. The aim of this paper is to update acid-base concepts, methods, limitations and applications.

  14. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  15. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  16. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the [alpha]I(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid

    SciTech Connect

    Wallis, G.A.; Rash, B.; Sweetman, W.A.; Thomas, J.T.; Grant, M.E.; Boot-Handford, R.P. ); Super, M. ); Evans, G. )

    1994-02-01

    Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified two individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.

  19. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  20. Empirical likelihood based detection procedure for change point in mean residual life functions under random censorship.

    PubMed

    Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K

    2016-05-01

    The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Empirical likelihood based detection procedure for change point in mean residual life functions under random censorship.

    PubMed

    Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K

    2016-05-01

    The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26936529

  2. Zonal representation-based residual-wavefront reconstruction using multiframe Shack-Hartmann measurements

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-11-01

    Atmospheric turbulence-induced wavefront deformation can be only partially corrected by adaptive optics (AO) techniques in astronomical or artificial space object imaging; an accurate estimation of the residual-wavefront phase is still needed to approach the diffraction-limited resolution. The discrete phase gradients measured by Shack-Hartmann wavefront sensors (SHWFS) can help with the estimation. In this study, we build a dynamic average slopes measurement model for SHWFS in short-exposure AO images postprocessing; the proposed model is based on a zonal representation of the wavefront phase using Bernstein basis polynomials instead of the traditional Zernike modal expansion. Further, the turbulence's frozen flow hypothesis is adopted to update the initial model using multiframe SHWFS measurement data to achieve a more accurate reconstruction. Numerical experiments show the reconstruction errors significantly decrease even in poor seeing conditions, and show that our method is less sensitive to different SHWFS measurement noise levels.

  3. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    PubMed

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base.

  4. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting

  5. A novel laser-based approach for cleaning contaminated metallic surfaces coupled with rapid residue analysis

    NASA Astrophysics Data System (ADS)

    Fox, Robert V.; Roberts, Lauren; DeLucia, Frank C.; Miziolek, Andrzej W.; Whitehouse, Andrew I.

    2013-05-01

    We are developing a novel approach for cleaning and confirming contaminated metallic surfaces that is based on laser ablation to clean the surfaces followed closely in time and space by laser analysis of the degree of cleanliness. Laser-based surface cleaning is a well-established technology and is commercially available (e.g., Adapt-Laser). The new development involves the integration of a LIBS (Laser Induced Breakdown Spectroscopy) surface analytical capability to analyze the surface before and right after the laser cleaning step for the presence or absence of unwanted residues. This all-laser approach is being applied to surfaces of steel vessels that have been used for the containment and destruction of chemical munitions. Various processes used for the destruction of chemical munitions result in the creation of oxidized steel surfaces containing residues (e.g., arsenic, mercury) that need to be removed to acceptable levels. In many instances inorganic molecular contaminants become integrated into oxide layers, necessitating complete removal of the oxide layer to achieve ideal levels of surface cleanliness. The focus of this study is on oxidized steel surfaces exposed to thermally decomposed Lewisite, and thus laden with arsenic. We demonstrate here that a commercially-available cleaning laser sufficiently removes the oxide coating and the targeted contaminants from the affected steel surface. Additionally, we demonstrate that LIBS is useful for the identification of arsenic and mercury on steel surfaces before and after laser cleaning, with arsenic being specifically tracked and analyzed at levels less than 1 microgram per square centimeter surface loading. Recent progress and future directions are presented and discussed.

  6. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  7. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  8. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  9. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  10. A Modern Approach to Acid-Base Chemistry

    ERIC Educational Resources Information Center

    Drago, Russell S.

    1974-01-01

    Summarizes current status of our knowledge about acid-base interactions, including Lewis considerations, experimental design, data about donor-acceptor systems, common misconceptions, and hard-soft acid-base model. Indicates that there is the possibility of developing unifying concepts for chemical reactions of inorganic compounds. (CC)

  11. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    ERIC Educational Resources Information Center

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  12. [Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA].

    PubMed

    Khmeleva, S A; Mezentsev, Y V; Kozin, S A; Mitkevich, V A; Medvedev, A E; Ivanov, A S; Bodoev, N V; Makarov, A A; Radko, S P

    2015-01-01

    Interaction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer's disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1-16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests. It has been shown that the presence of zinc ions is necessary for the interaction of the peptides with DNA in solution. H6R substitution has remarkably reduced the ability of domain 1-16 to bind DNA. This is in accordance with the supposition that the coordination of a zinc ion by amino acid residues His6, Glu11, His13, and His14 of the β-amyloid metal-binding domain results in the occurrence of an anion-binding site responsible for the interaction of the domain with DNA. Zinc-induced dimerization and oligomerization of domain 1-16 associated with phosphorylation of Ser8 and the presence of unblocked amino- and carboxy-terminal groups have resulted in a decrease of peptide concentrations required for detection of the peptide-DNA interaction. The presence of multiple anion-binding sites on the dimers and oligomers is responsible for the enhancement of the peptide-DNA interaction. A substitution of the negatively charged residue Asp7 for the neutral residue Asn in close proximity to the anion-binding site of the domain 1-16 of Aβ facilitates the electrostatic interaction between this site and phosphates of a polynucleotide chain, which enhances zinc-induced binding to DNA.

  13. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  14. Effect of Extraction Conditions on the Saccharide (Neutral and Acidic) Composition of the Crude Pectic Extract from Various Agro-Industrial Residues.

    PubMed

    Babbar, Neha; Roy, Sandra Van; Wijnants, Marc; Dejonghe, Winnie; Caligiani, Augusta; Sforza, Stefano; Elst, Kathy

    2016-01-13

    The influence of different extraction methodologies was assessed on the composition of both neutral (arabinose, rhamnose, galactose) and acidic (galacturonic acid) pectic polysaccharides obtained from four agro-industrial residues, namely, berry pomace (BP), onion hulls (OH), pressed pumpkin (PP), and sugar beet pulp (SBP). For acidic pectic polysaccharides, the extraction efficiency was obtained as BP (nitric acid-assisted extraction, 2 h, 62.9%), PP (enzymatic-assisted extraction, 12 h, 75.0%), SBP (enzymatic-assisted extraction, 48 h, 89.8%; and nitric acid-assisted extraction, 4 h, 76.5%), and OH (sodium hexametaphosphate-assisted extraction, 0.5 h, 100%; and ammonium oxalate-assisted extraction, 0.5 h, 100%). For neutral pectic polysaccharides, the following results were achieved: BP (enzymatic-assisted extraction, 24 h, 85.9%), PP (nitric acid-assisted extraction, 6 h, 82.2%), and SBP (enzymatic assisted extraction, 48 h, 97.5%; and nitric acid-assisted extraction, 4 h, 83.2%). On the basis of the high recovery of pectic sugars, SBP and OH are interesting candidates for the further purification of pectin and production of pectin-derived products.

  15. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  16. Nucleic acid duplexes incorporating a dissociable covalent base pair.

    PubMed

    Gao, K; Orgel, L E

    1999-12-21

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  17. Rainfall-induced removal of copper-based spray residues from vines.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; De La Calle, I; López-Periago, J E; Paradelo, M

    2016-10-01

    The continuous use of copper against fungal diseases and off-target effects causes major environmental and agronomic problems. However, the rain-induced removal of Cu-based residues is known only for a limited number of crops. We present the results of rain-induced removal of fungicides from two monitored vineyard plots which were sprayed with two widely used Cu-based formulations: copper-oxychloride (CO) and Bordeaux mixture (BM), respectively. Cu removal per growing season was 0.60±0.12kgha(-1) (30% of the applied fungicide) for CO and 0.80±0.10kgha(-1) for BM (70% of the applied fungicide). Fractioning the Cu in soluble (CuS) and particulate fractions (CuP) showed that most of the Cu was removed as CuP, but CuS concentrations found in throughfall collectors exceeded the regulatory threshold for toxicity in surface waters. The first few millimeters of rain caused most of the Cu removal. Our findings agreed with the data reported in the scientific literature, in which a significant fraction of the Cu-based formulation is loosely attached to the plant surfaces. In addition, we found that rainfall energy had a minor influence on the removal. PMID:27344398

  18. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey.

    PubMed

    Wang, Sai; Liu, Jiahui; Yong, Wei; Chen, Qilong; Zhang, Liya; Dong, Yiyang; Su, Haijia; Tan, Tianwei

    2015-01-01

    Tetracycline (TC) is a common antibacterial agent used for prevention and control of animal diseases. The increasing concern about TC residue in food demands high-performing analytical techniques for food quality assessment. Biosensors represent a promising tool for food safety analysis as they can fulfill some demand that the conventional methods do not attain. In this study, a novel colorimetric aptasensor was developed for sensitive detection of TC in honey. The aptasensor was based on a modified direct competitive enzyme-linked aptamer assay (dc-ELAA) scheme utilizing a 76 mer single-stranded DNA (ssDNA) aptamer selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The optimized aptasensor showed a good limit of detection (LOD of 0.0978 ng/mL), a wide linear range (0.1-1000 ng/mL) toward TC in honey, with good recoveries (92.09-109.7%) in TC-spiked honey, and was compared with an indirect competitive assay-based aptasensor and validated with a standard ELISA. The biosensor based on dc-ELAA with good limit of detection and simplicity can be applied for high-throughput detection of TC in food. PMID:25281141

  19. Rainfall-induced removal of copper-based spray residues from vines.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; De La Calle, I; López-Periago, J E; Paradelo, M

    2016-10-01

    The continuous use of copper against fungal diseases and off-target effects causes major environmental and agronomic problems. However, the rain-induced removal of Cu-based residues is known only for a limited number of crops. We present the results of rain-induced removal of fungicides from two monitored vineyard plots which were sprayed with two widely used Cu-based formulations: copper-oxychloride (CO) and Bordeaux mixture (BM), respectively. Cu removal per growing season was 0.60±0.12kgha(-1) (30% of the applied fungicide) for CO and 0.80±0.10kgha(-1) for BM (70% of the applied fungicide). Fractioning the Cu in soluble (CuS) and particulate fractions (CuP) showed that most of the Cu was removed as CuP, but CuS concentrations found in throughfall collectors exceeded the regulatory threshold for toxicity in surface waters. The first few millimeters of rain caused most of the Cu removal. Our findings agreed with the data reported in the scientific literature, in which a significant fraction of the Cu-based formulation is loosely attached to the plant surfaces. In addition, we found that rainfall energy had a minor influence on the removal.

  20. Development of risk-based computer models for deriving criteria on residual radioactivity and recycling

    SciTech Connect

    Chen, S.Y.

    1994-12-31

    Argonne National Laboratory (ANL) is developing multimedia environmental pathway and health risk computer models to assess radiological risks to human health and to derive cleanup guidelines for environmental restoration, decommissioning, and recycling activities. These models are based on the existing RESRAD code, although each has a separate design and serves different objectives. Two such codes are RESRAD-BUILD and RESRAD-PROBABILISTIC. The RESRAD code was originally developed to implement the US Department of Energy`s (DOE`s) residual radioactive materials guidelines for contaminated soils. RESRAD has been successfully used by DOE and its contractors to assess health risks and develop cleanup criteria for several sites selected for cleanup or restoration programs. RESRAD-BUILD analyzes human health risks from radioactive releases during decommissioning or rehabilitation of contaminated buildings. Risks to workers are assessed for dismantling activities; risks to the public are assessed for occupancy. RESRAD-BUILD is based on a room compartmental model analyzing the effects on room air quality of contaminant emission and resuspension (as well as radon emanation), the external radiation pathway, and other exposure pathways. RESRAD-PROBABILISTIC, currently under development, is intended to perform uncertainty analysis for RESRAD by using the Monte Carlo approach based on the Latin-Hypercube sampling scheme. The codes being developed at ANL are tailored to meet a specific objective of human health risk assessment and require specific parameter definition and data gathering. The combined capabilities of these codes satisfy various risk assessment requirements in environmental restoration and remediation activities.

  1. Amino Acid Residues in Transmembrane Domain 10 of Organic Anion Transporting Polypeptide 1B3 are Critical for Cholecystokinin Octapeptide Transport†

    PubMed Central

    Gui, Chunshan; Hagenbuch, Bruno

    2008-01-01

    Human organic anion transporting polypeptides (OATP) 1B1 and 1B3 are multi-specific transporters that mediate uptake of amphipathic organic compounds into hepatocytes. The two OATPs contain twelve transmembrane domains (TMs) and share 80% amino acid sequence identity. Besides common substrates with OATP1B1, OATP1B3 specifically transports cholecystokinin octapeptide (CCK-8). To determine which structural domains/residues are important for the substrate selectivity of OATP1B3, we constructed a series of chimeric proteins between OATP1B3 and 1B1, expressed them in HEK293 cells and determined uptake of CCK-8 along with surface expression of the proteins. Replacing TM10 in OATP1B3 with TM10 of OATP1B1 resulted in dramatically reduced CCK-8 transport, indicating that TM10 is crucial for recognition and/or translocation of CCK-8. Using site-directed mutagenesis, we identified three key residues within TM10, namely Y537, S545 and T550. When we replaced these residues by the corresponding amino acid residues found in OATP1B1, CCK-8 transport was similarly low as for the replacement of the whole TM10. Kinetic experiments showedthat the Km values for CCK-8 transport in the TM10-replacement and triple mutant were only 1.3 and 1.1 μM, respectively as compared to 16.3 μM for wild-type OATP1B3. Similarly, the Vmax values dropped from 495.5 pmol/normalized mg/min for wild-type OATP1B3 to 13.3 and 19.0 for the TM10-replacement and triple mutant, respectively. Molecular modeling indicated that two of the three identified residues might form hydrogen bonds with CCK-8. In conclusion, we have identified three amino acid residues (Y537, S545 and T550) in TM10 of OATP1B3 that are important for CCK-8 transport. PMID:18690707

  2. Organic acids and bases: Review of toxicological studies

    SciTech Connect

    Leung, H.W.; Paustenbach, D.J. )

    1990-01-01

    Organic acids and bases are among the most frequently used chemicals in the manufacturing industries. However, the toxicology of only a number of them has been fully characterized, and for fewer still have occupational exposure limits been established. This paper reviews the acute and chronic toxicity data of the organic acids and bases, and considers the mechanism by which these chemicals produce their effects. A methodology for establishing preliminary occupational exposure limits based on the physicochemical properties of these chemicals is presented. Workplace exposure limits for 20 organic acids and bases which currently have no exposure guidelines are suggested. Advice regarding appropriate medical treatment of exposure to these materials is discussed. 98 references.

  3. Lightweight combustion residues-based structural materials for use in mines. Technical report, September 1--November 30, 1994

    SciTech Connect

    Chugh, Y.P.; Zhang, Y.; Ghosh, A.K.; Palmer, S.R.

    1994-12-31

    The overall goal of the project is to develop a 70--80 pcf, 2,500--3,000 psi-compressive-strength cellular concrete-type product from PCC fly ash, PCC bottom ash, and/or FBC spent bed ash alone or in suitable combination thereof. The developed combustion residue-based lightweight structural material will be used to replace wooden posts and crib members in underground mines. This report outlines the work completed in the first quarter of the project. The density gradient centrifuge (DGC) has been used to separate a power plant fly ash sample into fractions of different density. Each of the fly ash fractions obtained by DGC, an aliquot of the unseparated fly ash and an aliquot of a magnetic component of the fly ash, were digested in strong acids following the procedures outlined in ASTM 3050. Preliminary experiments have also been carried out to study the effect of mix proportions and curing regimes on the strength and density on the developed material. The DGC separation test reveals that most of the fly ash sample (approx. 90%) has a density above 1.9 g/cm{sup 3}. Indeed, nearly half of the sample has a density greater than 2.4 g/cm{sup 3}. Since only a very small amount of this fly ash has a reasonably low specific gravity, it appears unlikely at this time that enough low density material would be isolated to significantly enhance lightweight concrete production using fractionated material. A series of mixes have been made using fly ash, sodium silicate, cement, sand and water. Preliminary tests show that both cement and sodium silicate can be used as the binders to develop residues-based lightweight concrete. To date, compressive strength as high as 1,290 psi have been achieved with a density of 133 pcf, with 50 g of cement, 50 g of fly ash and 300 g of sand. Most of the work during the first quarter was done to understand the characteristics of the component materials.

  4. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  5. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  6. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses.

    PubMed

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Visser, Nico; Rieder, Elizabeth A

    2010-10-01

    Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures. PMID:20637812

  7. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.

    PubMed

    Tang, Bao; Xu, Hong; Xu, Zongqi; Xu, Cen; Xu, Zheng; Lei, Peng; Qiu, Yibin; Liang, Jinfeng; Feng, Xiaohai

    2015-04-01

    Poly(γ-glutamic acid) (γ-PGA) production by Bacillus subtilis NX-2 was carried out through solid-state fermentation with dry mushroom residues (DMR) and monosodium glutamate production residues (MGPR; a substitute of glutamate) for the first time. Dry shiitake mushroom residue (DSMR) was found to be the most suitable solid substrate among these DMRs; the optimal DSMR-to-MGPR ratio was optimized as 12:8. To increase γ-PGA production, industrial waste glycerol was added as a carbon source supplement to the solid-state medium. As a result, γ-PGA production increased by 34.8%. The batch fermentation obtained an outcome of 115.6 g kg(-1) γ-PGA and 39.5×10(8) colony forming units g(-1) cells. Furthermore, a satisfactory yield of 107.7 g kg(-1) γ-PGA was achieved by compost experiment on a scale of 50 kg in open air, indicating that economically large-scale γ-PGA production was feasible. Therefore, this study provided a novel method to produce γ-PGA from abundant and low-cost agroindustrial residues.

  8. The amino acid residues at 102 and 104 in GP5 of porcine reproductive and respiratory syndrome virus regulate viral neutralization susceptibility to the porcine serum neutralizing antibody.

    PubMed

    Fan, Baochao; Liu, Xing; Bai, Juan; Zhang, Tingjie; Zhang, Qiaoya; Jiang, Ping

    2015-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is mainly responsible for the heavy economic losses in pig industry in the world. A number of neutralizing epitopes have been identified in the viral structural proteins GP3, GP4, GP5 and M. In this study, the important amino acid (aa) residues of HP-PRRSV strain BB affecting neutralization susceptibility of antibody were examined using resistant strains generated under neutralizing antibody (NAb) pressure in MARC-145 cells, reverse genetic technique and virus neutralization assay. HP-PRRSV strain BB was passaged under the pressure of porcine NAb serum in vitro. A resistant strain BB34s with 102 and 104 aa substitutions in GP5, which have been predicted to be the positive sites for pressure selection (Delisle et al., 2012), was cloned and identified. To determine the effect of the two aa residues on neutralization, eight recombinant PRRSV strains were generated, and neutralization assay results confirmed that the aa residues 102 and 104 in GP5 played an important role in NAbs against HP-PRRSV in MARC-145 cells and porcine alveolar macrophages. Alignment of GP5 sequences revealed that the variant aa residues at 102 and 104 were frequent among type 2 PRRSV strains. It may be helpful for understanding the mechanism regulating the neutralization susceptibility of PRRSV to the NAbs and monitoring the antigen variant strains in the field.

  9. Exploring the structure of the 100 amino-acid residue long N-terminus of the plant antenna protein CP29.

    PubMed

    Shabestari, Maryam Hashemi; Wolfs, Cor J A M; Spruijt, Ruud B; van Amerongen, Herbert; Huber, Martina

    2014-03-18

    The structure of the unusually long (∼100 amino-acid residues) N-terminal domain of the light-harvesting protein CP29 of plants is not defined in the crystal structure of this membrane protein. We studied the N-terminus using two electron paramagnetic resonance (EPR) approaches: the rotational diffusion of spin labels at 55 residues with continuous-wave EPR, and three sets of distances with a pulsed EPR method. The N-terminus is relatively structured. Five regions that differ considerably in their dynamics are identified. Two regions have low rotational diffusion, one of which shows α-helical character suggesting contact with the protein surface. This immobile part is flanked by two highly dynamic, unstructured regions (loops) that cover residues 10-22 and 82-91. These loops may be important for the interaction with other light-harvesting proteins. The region around residue 4 also has low rotational diffusion, presumably because it attaches noncovalently to the protein. This section is close to a phosphorylation site (Thr-6) in related proteins, such as those encoded by the Lhcb4.2 gene. Phosphorylation might influence the interaction with other antenna complexes, thereby regulating the supramolecular organization in the thylakoid membrane.

  10. Application of Ganghwa Mugwort in Combination with Ascorbic Acid for the Reduction of Residual Nitrite in Pork Sausage during Refrigerated Storage

    PubMed Central

    Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Kim, Cheon-Jei

    2014-01-01

    The application of ganghwa mugwort (GM), ascorbic acid (AC), and their combinations for reduction of residual nitrite contents was analyzed in pork sausages during storage of 28 d. Six treatments of pork sausages contained the following: Control (no antioxidant added), AC (0.05% AC), GM 0.1 (0.1% GM), GM 0.2 (0.2% GM), AC+GM 0.1 (0.05% AC + 0.1% GM) and AC+GM 0.2 (0.05% AC + 0.2% GM). Results showed that the mixture of 0.05% AC and 0.2% GM was most effective for reducing thiobarbituric acid reactive substances (TBARS) and residual nitrite contents than the control and GM added sausages alone (p<0.05). The color values of all treatments were significantly affected by adding GM (either alone or with AC). Additionally, the total color difference (ΔE) and hue angle (H°) values of treatments added with GM were higher than those of the control as the amount of GM increased (p<0.05). However, there were no significant differences in the pH values between the control and all treatments during the storage period (p>0.05). Our results showed possible applications of antioxidant combination, for preventing the lipid oxidation and decreasing the residual nitrite levels of meat products. PMID:26760936

  11. Non-equivalence of Key Positively Charged Residues of the Free Fatty Acid 2 Receptor in the Recognition and Function of Agonist Versus Antagonist Ligands*

    PubMed Central

    Sergeev, Eugenia; Hansen, Anders Højgaard; Pandey, Sunil K.; MacKenzie, Amanda E.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2016-01-01

    Short chain fatty acids (SCFAs) are produced in the gut by bacterial fermentation of poorly digested carbohydrates. A key mediator of their actions is the G protein-coupled free fatty acid 2 (FFA2) receptor, and this has been suggested as a therapeutic target for the treatment of both metabolic and inflammatory diseases. However, a lack of understanding of the molecular determinants dictating how ligands bind to this receptor has hindered development. We have developed a novel radiolabeled FFA2 antagonist to probe ligand binding to FFA2, and in combination with mutagenesis and molecular modeling studies, we define how agonist and antagonist ligands interact with the receptor. Although both agonist and antagonist ligands contain negatively charged carboxylates that interact with two key positively charged arginine residues in transmembrane domains V and VII of FFA2, there are clear differences in how these interactions occur. Specifically, although agonists require interaction with both arginine residues to bind the receptor, antagonists require an interaction with only one of the two. Moreover, different chemical series of antagonist interact preferentially with different arginine residues. A homology model capable of rationalizing these observations was developed and provides a tool that will be invaluable for identifying improved FFA2 agonists and antagonists to further define function and therapeutic opportunities of this receptor. PMID:26518871

  12. Amino acid residues interacting with both the bound quinone and coenzyme, pyrroloquinoline quinone, in Escherichia coli membrane-bound glucose dehydrogenase.

    PubMed

    Mustafa, Golam; Ishikawa, Yoshinori; Kobayashi, Kazuo; Migita, Catharina T; Elias, M D; Nakamura, Satsuki; Tagawa, Seiichi; Yamada, Mamoru

    2008-08-01

    The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were constructed by site-specific mutagenesis were characterized by enzymatic, pulse radiolysis, and EPR analyses. These mutants retained almost no dehydrogenase activity or ability of PQQ reduction. CD and high pressure liquid chromatography analyses revealed that K493A, D466N, and D466E mutants showed no significant difference in molecular structure from that of the wild-type mGDH but showed remarkably reduced content of bound UQ. A radiolytically generated hydrated electron (e(aq)(-)) reacted with the bound UQ of the wild enzyme and K493R mutant to form a UQ neutral semiquinone with an absorption maximum at 420 nm. Subsequently, intramolecular electron transfer from the bound UQ semiquinone to PQQ occurred. In K493R, the rate of UQ to PQQ electron transfer is about 4-fold slower than that of the wild enzyme. With D354N and D466N mutants, on the other hand, transient species with an absorption maximum at 440 nm, a characteristic of the formation of a UQ anion radical, appeared in the reaction of e(aq)(-), although the subsequent intramolecular electron transfer was hardly affected. This indicates that D354N and D466N are prevented from protonation of the UQ semiquinone radical. Moreover, EPR spectra showed that mutations on Asp-466 or Lys-493 residues changed the semiquinone state of bound UQ. Taken together, we reported here for the first time the existence of a semiquinone radical of bound UQ in purified mGDH and the difference in protonation of ubisemiquinone radical because of mutations in two different amino acid residues, located around PQQ. Furthermore, based on the present results and the spatial arrangement around PQQ, Asp-466 and Lys-493 are suggested to interact both

  13. Functional Role of Residues Corresponding to Helical Domain II (Amino Acids 35 to 46) of Human Immunodeficiency Virus Type 1 Vpr

    PubMed Central

    Singh, Satya P.; Tomkowicz, Brian; Lai, Derhsing; Cartas, Maria; Mahalingam, Sundarasamy; Kalyanaraman, Vaniambadi S.; Murali, Ramachandran; Srinivasan, Alagarsamy

    2000-01-01

    Vpr, encoded by the human immunodeficiency virus type 1 genome, contains 96 amino acids and is a multifunctional protein with features which include cell cycle arrest at G2, nuclear localization, participation in transport of the preintegration complex, cation channel activity, oligomerization, and interaction with cellular proteins, in addition to its incorporation into the virus particles. Recently, structural studies based on nuclear magnetic resonance and circular dichroism spectroscopy showed that Vpr contains a helix (HI)-turn-helix (HII) core at the amino terminus and an amphipathic helix (HIII) in the middle region. Though the importance of helical domains HI and HIII has been defined with respect to Vpr functions, the role of helical domain HII is not known. To address this issue, we constructed a series of mutants in which the HII domain was altered by deletion, insertion, and/or substitution mutagenesis. To enable the detection of Vpr, the sequence corresponding to the Flag epitope (DYKDDDDK) was added, in frame, to the Vpr coding sequences. Mutants, expressed through the in vitro transcription/translation system and in cells, showed an altered migration corresponding to deletions in Vpr. Substitution mutational analysis of residues in HII showed reduced stability for VprW38S-FL, VprL42G-FL, and VprH45W-FL. An assay involving cotransfection of NLΔVpr proviral DNA and a Vpr expression plasmid was employed to analyze the virion incorporation property of Vpr. Mutant Vpr containing deletions and specific substitutions (VprW38S-FL, VprL39G-FL, VprL42G-FL, VprG43P-FL, and VprI46G-FL) exhibited a negative virion incorporation phenotype. Further, mutant Vpr-FL containing deletions also failed to associate with wild-type Vpr, indicating a possible defect in the oligomerization feature of Vpr. Subcellular localization studies indicated that mutants VprΔ35-50-H-FL, VprR36W-FL, VprL39G-FL, and VprI46G-FL exhibited both cytoplasmic and nuclear localization, unlike

  14. Functional role of residues corresponding to helical domain II (amino acids 35 to 46) of human immunodeficiency virus type 1 Vpr.

    PubMed

    Singh, S P; Tomkowicz, B; Lai, D; Cartas, M; Mahalingam, S; Kalyanaraman, V S; Murali, R; Srinivasan, A

    2000-11-01

    Vpr, encoded by the human immunodeficiency virus type 1 genome, contains 96 amino acids and is a multifunctional protein with features which include cell cycle arrest at G(2), nuclear localization, participation in transport of the preintegration complex, cation channel activity, oligomerization, and interaction with cellular proteins, in addition to its incorporation into the virus particles. Recently, structural studies based on nuclear magnetic resonance and circular dichroism spectroscopy showed that Vpr contains a helix (HI)-turn-helix (HII) core at the amino terminus and an amphipathic helix (HIII) in the middle region. Though the importance of helical domains HI and HIII has been defined with respect to Vpr functions, the role of helical domain HII is not known. To address this issue, we constructed a series of mutants in which the HII domain was altered by deletion, insertion, and/or substitution mutagenesis. To enable the detection of Vpr, the sequence corresponding to the Flag epitope (DYKDDDDK) was added, in frame, to the Vpr coding sequences. Mutants, expressed through the in vitro transcription/translation system and in cells, showed an altered migration corresponding to deletions in Vpr. Substitution mutational analysis of residues in HII showed reduced stability for VprW38S-FL, VprL42G-FL, and VprH45W-FL. An assay involving cotransfection of NLDeltaVpr proviral DNA and a Vpr expression plasmid was employed to analyze the virion incorporation property of Vpr. Mutant Vpr containing deletions and specific substitutions (VprW38S-FL, VprL39G-FL, VprL42G-FL, VprG43P-FL, and VprI46G-FL) exhibited a negative virion incorporation phenotype. Further, mutant Vpr-FL containing deletions also failed to associate with wild-type Vpr, indicating a possible defect in the oligomerization feature of Vpr. Subcellular localization studies indicated that mutants VprDelta35-50-H-FL, VprR36W-FL, VprL39G-FL, and VprI46G-FL exhibited both cytoplasmic and nuclear localization

  15. Carbon-based strong solid acid for cornstarch hydrolysis

    NASA Astrophysics Data System (ADS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  16. Identification of an ideal-like fingerprint for a protein fold using overlapped conserved residues based approach.

    PubMed

    Goyal, Amit; Sokalingam, Sriram; Hwang, Kyu-Suk; Lee, Sun-Gu

    2014-07-10

    Design of an efficient fingerprint that detects homologous proteins at distant sequ