Science.gov

Sample records for acid resin tulsion

  1. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  2. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  3. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  4. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  5. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  6. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  7. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  8. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  11. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  12. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  13. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  14. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  15. Extraction of uranium by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Rao, P.R.V.; Srinivasan, M.

    1995-05-01

    The extraction of U(VI), Th(IV) and a number of fission products from nitric acid medium by a newly synthesised macroporous bifunctional phosphinic acid resin has been studied. The extraction of uranium from sulphuric acid medium has also been studied. While the gel type phosphinic acid resins seems to pose a number of problems in practical applications, the macroporous type resins are shown to be suitable for a variety of applications where conventional ion exchange resins are of limited use. 12 refs., 5 figs., 3 tabs.

  16. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  17. Leaching of concrete admixtures containing thiocyanate and resin acids.

    PubMed

    Andersson, A C; Stromvall, A M

    2001-02-15

    There is an increasing concern about the emission of pollutants during the construction and lifetime of buildings. The leaching of concrete admixtures containing thiocyanate and resin acids was studied using standard leaching tests and chemical analysis. Ecotoxicological risk was assessed for each admixture. Thiocyanate leaching from concrete, with a chlorine-free accelerating admixture, was determined by ion chromatography. Of the total amount of thiocyanate added, 6-8% was emitted within 30 d. The thiocyanate diffusion curve indicates a fast dissolution process from the surface layer, followed by a slower continuous diffusion process. Thiocyanate exhibits both acute and chronic toxicity, which makes it of immediate environmental concern. Resin acid leaching from concrete test specimens containing an admixture of air-entraining agents with tall oil was determined by solid-phase extraction, methylation, and GC/MS. Of added resin acids, 10% was emitted over 143 d. The leaching curves for the resin acids indicate a continuous diffusion that is proportional to the square root of time and follows Fick's first law of diffusion. The chemical composition of the resin acids in the leachate demonstrates degradation and rearrangement of the resin acids during diffusion. Resin acids emitted from concrete are of environmental concern because they are persistent and have the ability to bioaccumulate in aquatic organisms.

  18. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    SciTech Connect

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  19. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    SciTech Connect

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  20. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  1. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  3. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  4. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins... Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section and applied on aluminum may be safely used as...

  5. Surface roughness of composite resins subjected to hydrochloric acid.

    PubMed

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  6. Fatty and resinic acids extractions from crude tall oil

    SciTech Connect

    Nogueira, J.M.F.

    1996-11-01

    The separation of fatty and resinic acidic fractions from crude tall-oil soap solutions with n-heptane by the technique of dissociation extraction is discussed. The theory of the overall process is supported by a systematic study developed to cover the high selectivity demonstrated in the differential solubility and the aptness between fatty and diterpenic acids to both liquids phases. To study the main factors affecting those liquid-liquid extraction systems and the amphiphilic behavior of such molecules involved, sodium salts aqueous solutions of crude tall oil and synthetic mixtures as molecular acidic models were used.

  7. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  8. Allergenic potential of abietic acid, colophony and pine resin-HA. Clinical and experimental studies.

    PubMed

    Karlberg, A T; Boman, A; Wahlberg, J E

    1980-12-01

    Resin acids are considered to be the main allergens in colophony (rosin). Tall oils also contain resin acids and may then be potential sensitizers. A resin acid concentrate (pine resin-HA) together with Chinese colophony were included in our standard series and applied on 563 patients with contact dermatitis. Fourteen showed an isolated sensitivity to colophony and two to pine resin-HA. Six patients reacted to both test compounds. Guinea pig maximization tests (Magnusson & Kligman 1969) showed that pine resin-HA (2 series) was a grade I allergen, abietic acid a grade III allergen and colophony a grade IV allergen. The risk that the resin acids in tall oils would induce contact sensitivity to workers exposed to tall oil-containing products like cutting fluids and cleansing agents is considered to be minimal.

  9. Oxidation-resistant acidic resins prepared by partial carbonization as cocatalysts in synthesis of adipic acid.

    PubMed

    Wei, Huijuan; Li, Hongbian; Liu, Yangqing; Jin, Peng; Wang, Xiangyu; Li, Baojun

    2012-08-01

    The oxidation-resistant acidic resins are of great importance for the catalytic oxidation systems. In this paper, the oxidatively stable acidic resins are obtained from the cation ion exchange resins (CIERs) through the thermal treatment in N(2) atmosphere. The structure and properties of the thermally treated CIERs were characterized by chemical analysis, Fourier transform infrared (FT-IR) spectra, acid capacity measurement and scanning electron microscope (SEM). The thermally treated CIERs possess high acid capacity up to 4.09 mmol g(-1). A partial carbonization is observed in the thermal treatment process of CIERs, but the morphology of resin spheres maintains well. The as-prepared CIERs are used as solid acids to assist the hydrogen peroxide oxidation of cyclohexene to adipic acid (ADA) with tungstic acid as the catalyst precursor. The improved yields of ADA in the recycling reaction are obtained in the presence of acidic CIERs. Meanwhile, the unproductive decomposition of H(2)O(2) is effectively suppressed. The high yields of ADA (about 81%) are kept by the thermally treated CIERs even after the fifth cycle. The thermally treated CIERs exhibit excellent acid-catalytic performance and possess remarkable oxidation-resistant capability.

  10. Enrichment and separation of chlorogenic acid from the extract of Eupatorium adenophorum Spreng by macroporous resin.

    PubMed

    Liu, Boyan; Dong, Beitao; Yuan, Xiaofan; Kuang, Qirong; Zhao, Qingsheng; Yang, Mei; Liu, Jie; Zhao, Bing

    2016-01-01

    A simple and efficient chromatographic method for separation of chlorogenic acid from Eupatorium adenophorum Spreng extract was developed. The adsorption properties of nine macroporous resins were evaluated. NKA-II resin showed much better adsorption/desorption properties. The adsorption of chlorogenic acid on NKA-II resin at 25°C was well fitted to Langmuir isotherm model and pseudo-second-order kinetic model. The dynamic adsorption and desorption experiments were carried out on columns packed with NKA-II resin to optimize the separation process. The content of chlorogenic acid in the product increased to 22.17%, with a recovery yield of 82.41%.

  11. Semisynthesis of the antiviral abietane diterpenoid jiadifenoic acid C from callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin.

    PubMed

    González, Miguel A; Zaragozá, Ramón J

    2014-09-26

    The semisynthesis of the antiviral abietane diterpenoid (+)-jiadifenoic acid C starting from the available methyl ester of callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin is reported. A protocol for the isolation of methyl callitrisate (methyl 4-epidehydroabietate) in gram quantities from sandarac resin is also described. Allylic C-17 oxygenation was introduced by regioselective dehydrogenation of the isopropyl group of methyl callitrisate with DDQ followed by selenium-catalyzed allylic oxidation. Ester hydrolysis afforded (+)-jiadifenoic acid C in 22% overall yield from methyl callitrisate. This semisynthetic route provides a convenient source of this anti-Coxsackie virus B natural product for further biological studies.

  12. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    SciTech Connect

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  13. Isolation of organic acids from large volumes of water by adsorption on macroporous resins

    USGS Publications Warehouse

    Aiken, George R.; Suffet, I.H.; Malaiyandi, Murugan

    1987-01-01

    Adsorption on synthetic macroporous resins, such as the Amberlite XAD series and Duolite A-7, is routinely used to isolate and concentrate organic acids from forge volumes of water. Samples as large as 24,500 L have been processed on site by using these resins. Two established extraction schemes using XAD-8 and Duolite A-7 resins are described. The choice of the appropriate resin and extraction scheme is dependent on the organic solutes of interest. The factors that affect resin performance, selectivity, and capacity for a particular solute are solution pH, resin surface area and pore size, and resin composition. The logistical problems of sample handling, filtration, and preservation are also discussed.

  14. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  15. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  16. Vacancy ion-exclusion chromatography of haloacetic acids on a weakly acidic cation-exchange resin.

    PubMed

    Helaleh, Murad I H; Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Taoda, Hiroshi; Ding, Ming-Yu; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2003-05-16

    A new and simple approach is described for the determination of the haloacetic acids (such as mono-, di- and trichloroacetic acids) usually found in drinking water as chlorination by-products after disinfection processes and acetic acid. The new approach, termed vacancy ion-exclusion chromatography, is based on an ion-exclusion mechanism but using the sample solution as the mobile phase, pure water as the injected sample, and a weakly acidic cation-exchange resin column (TSKgel OApak-A) as the stationary phase. The addition of sulfuric acid to the mobile phase results in highly sensitive conductivity detection with sharp and well-shaped peaks, leading to excellent and efficient separations. The elution order was sulfuric acid, dichloroacetic acid, monochloroacetic acid, trichloroacetic acid, and acetic acid. The separation of these acids depends on their pKa values. Acids with lower pKa values were eluted earlier than those with higher pKa, except for trichloroacetic acid due to a hydrophobic-adsorption effect occurring as a side-effect of vacancy ion-exclusion chromatography. The detection limits of these acids in the present study with conductivity detection were 3.4 microM for monochloroacetic acid, 0.86 microM for dichloroacetic acid and 0.15 microM for trichloroacetic acid.

  17. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  18. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr.

  19. Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid-Based Resins

    DTIC Science & Technology

    2005-12-01

    The sample was titrated with the perchloric acid / peracetic acid solution (Aldrich) until the indicator, 0.1% crystal violet in acetic acid (Aldrich...Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid -Based Resins by John J. La Scala, Amutha Jeyarajasingam, Cherise Winston...Aberdeen Proving Ground, MD 21005-5069 ARL-TR-3681 December 2005 Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid -Based

  20. Isolation of hydrophilic organic acids from water using nonionic macroporous resins

    USGS Publications Warehouse

    Aiken, G.R.; McKnight, Diane M.; Thorn, K.A.; Thurman, E.M.

    1992-01-01

    A method has been developed for the isolation of hydrophilic organic acids from aquatic environments using Amberlite* * Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. XAD-4 resin. The method uses a two column array of XAD-8 and XAD-4 resins in series. The hydrophobic organic acids, composed primarily of aquatic fulvic acid, are removed from the sample on XAD-8, followed by the isolation of the more hydrophilic organic acids on XAD-4. For samples from a number of diverse environments, more of the dissolved organic carbon was isolated on the XAD-8 resin (23-58%) than on the XAD-4 resin (7-25%). For these samples, the hydrophilic acids have lower carbon and hydrogen contents, higher oxygen and nitrogen contents, and are lower in molecular weight than the corresponding fulvic acids. 13C NMR analyses indicate that the hydrophilic acids have a lower concentration of aromatic carbon and greater heteroaliphatic, ketone and carboxyl content than the fulvic acid. ?? 1992.

  1. High Performance Fatty Acid-Based Vinyl Ester Resin for Liquid Molding

    DTIC Science & Technology

    2007-07-01

    Diglycidyl ether of bisphenol-A ( DGEBA ) Methacrylic Acid Figure 1: The reaction of DGEBA and methacrylic acid to produce the vinyl ester 2.3...High Performance Fatty Acid -Based Vinyl Ester Resin for Liquid Molding by Xing Geng, John J. La Scala, James M. Sands, and Giuseppe R...it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-RP-184 July 2007 High Performance Fatty Acid

  2. Adsorption performance of salicylic acid on a novel resin with distinctive double pore structure.

    PubMed

    Xiao, Guqing; Wen, Ruiming; Liu, Aijiao; He, Guowen; Wu, Dan

    2017-05-05

    Two approaches were used to synthesize two resins with different pore structures. In one way, the CH2Cl groups in macroporous chloromethylated polystyrene resin were transformed to methylene bridges, and achieved a hypercrosslinked resin with plentiful micropores (denoted GQ-06). In the other way, 50% of the CH2Cl groups in chloromethylated polystyrene resin was used to produce micropores, while the residual 50% of the CH2Cl groups was reacted with 2-aminopyridine, and prepared another resin with double pore structure of hypercrosslinked resin and macroporous resin (denoted GQ-11). The adsorption of salicylic acid (SA) on GQ-11 was investigated using GQ-06 as the reference adsorbent. The effect of pH on the adsorption of SA on GQ-06 was consistent with the dissociation curve of SA. The maximum adsorption capacity of SA on GQ-11 was observed at the solution pH of 2.64. The greater adsorption rate of SA on GQ-11 than that of GQ-06 was attributed to its double pore structure. The multifunctional adsorption mechanism of anion exchange and hydrophobic interaction resulted in the larger equilibrium capacity of SA on GQ-11 than that of GQ-06. GQ-06 and GQ-11 could be regenerated by absolute alcohol and 80% of alcohol -0.5mol/L of sodium hydroxide aqueous solution, respectively.

  3. Diterpene resin acids: Major active principles in tall oil against Variegated cutworm,Peridroma saucia (Lepidoptera: Noctuidae).

    PubMed

    Xie, Y; Isman, M B; Feng, Y; Wong, A

    1993-06-01

    Tall oil, a by-product of the kraft process for pulping softwood, has been shown to have insecticidal properties. In the present study, the active principles in tall oil against the variegated cutworm,Peridroma saucia Hübner, were investigated. GC-MS analysis showed that abietic, dehydroabietic, and isopimaric acids were major resin acid components of crude tall oil and depitched tall oil. When crude tall oil samples of differing resin acid composition were incorporated into artificial diet at a concentration of 2.0% fresh weight, they suppressed larval growth by 45-60% compared to controls. This suppression was significantly (P≤0.05) correlated with the equivalent contents of abietic, dehydroabietic, isopimaric, and total resin acids. These results were also evident from a diet choice test, showing that the second-instar larvae obviously selected diets with low levels of resin acids when different diets were randomly arranged in a Petri dish. Bioassays with pure resin acids (abietic, dehydroabietic, and isopimaric acids) demonstrated that all individual chemicals have similar bioactivity against this insect. Comparison of the bioactivities of depitched tall oil and an equivalent mixture of pure resin acids in thePeridroma chronic growth bioassay indicated that pure resin acids and depitched tall oil share a common mode of action to this insect. This study confirms that resin acids are major active principles in tall oil against the variegated cutworm, but other chemicals likely also contribute to the bioactivity of tall oil.

  4. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri.

    PubMed

    Banno, Norihiro; Akihisa, Toshihiro; Yasukawa, Ken; Tokuda, Harukuni; Tabata, Keiichi; Nakamura, Yuji; Nishimura, Reiko; Kimura, Yumiko; Suzuki, Takashi

    2006-09-19

    Boswellic acids are the main well-known active components of the resin of Boswellia carteri (Burseraceae) and these are still dealing with the ethnomedicinal use for the treatment of rheumatoid arthritis and other inflammatory diseases. Although several studies have already been reported on the pharmacological properties, especially on the anti-inflammatory activity, of Boswellia carteri resin and boswellic acids, the ethnomedicinal importance of Boswellia carteri and its components, boswellic acids, prompted us to undertake detailed investigation on the constituents of the resin and their anti-inflammatory activity. Fifteen triterpene acids, viz., seven of the beta-boswellic acids (ursane-type) (1-7), two of the alpha-boswellic acids (oleanane-type) (8, 9), two of the lupeolic acids (lupane-type) (10, 11), and four of the tirucallane-type (12-14, 16), along with two cembrane-type diterpenes (17, 18), were isolated and identified from the methanol extract of the resin of Boswellia carteri. Upon evaluation of 17 compounds, 1-14 and 16-18, and compound 15, semi-synthesized from 14 by acetylation, for their inhibitory activity against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation (1 microg/ear) in mice, all of the compounds, except for 18, exhibited marked anti-inflammatory activity with a 50% inhibitory dose (ID(50)) of 0.05-0.49 mg/ear.

  5. Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin.

    PubMed

    Brütsch, Timothée; Jaffuel, Geoffrey; Vallat, Armelle; Turlings, Ted C J; Chapuisat, Michel

    2017-04-01

    Wood ants fight pathogens by incorporating tree resin with antimicrobial properties into their nests. They also produce large quantities of formic acid in their venom gland, which they readily spray to defend or disinfect their nest. Mixing chemicals to produce powerful antibiotics is common practice in human medicine, yet evidence for the use of such "defensive cocktails" by animals remains scant. Here, we test the hypothesis that wood ants enhance the antifungal activity of tree resin by treating it with formic acid. In a series of experiments, we document that (i) tree resin had much higher inhibitory activity against the common entomopathogenic fungus Metarhizium brunneum after having been in contact with ants, while no such effect was detected for other nest materials; (ii) wood ants applied significant amounts of endogenous formic and succinic acid on resin and other nest materials; and (iii) the application of synthetic formic acid greatly increased the antifungal activity of resin, but had no such effect when applied to inert glass material. Together, these results demonstrate that wood ants obtain an effective protection against a detrimental microorganism by mixing endogenous and plant-acquired chemical defenses. In conclusion, the ability to synergistically combine antimicrobial substances of diverse origins is not restricted to humans and may play an important role in insect societies.

  6. Evaluation of flowable resin composite surfaces eroded by acidic and alcoholic drinks.

    PubMed

    Han, Linlin; Okamoto, Akira; Fukushima, Masayoshi; Okiji, Takashi

    2008-05-01

    The purpose of this study was to evaluate the morphological changes of the surfaces of flowable resins eroded by orange juice and alcohol drinks. The tested products were Beautifil Flow BF02 and BF10, Clearfil Majesty LV, Filtek Supreme XT Flowable Restorative, Unifil LoFlo Plus and Filtek Supreme. Filler percentages of flowable resins were calculated after the latter were incinerated at 750 degrees C. Specimens were shaped into a disk form with a diameter of 10 mm and a thickness of 1 mm. Morphological changes were evaluated for the following types of flowable resin surfaces: polished surface, surfaces eroded by 100% orange juice, wine and whisky. Filler percentages of the tested flowable resins ranged between 42 and 78%. Surface degradation was observed for the specimens immersed in acidic and alcoholic drinks, and it was thought that the lower the filler percentage, the greater was the surface degradation. Decomposition of the matrix resin and fallout of the fillers were observed in flowable resins that eroded with acidic and alcoholic drinks.

  7. New matrix polymers for photo-activated resin composites using di-alpha-fluoroacrylic acid derivatives.

    PubMed

    Kurata, Shigeaki; Yamazaki, Noboru

    2008-07-01

    A novel matrix resin for photo-activated resin composites was developed using alpha-fluoroacrylic acid derivatives. To render resin composites with improved mechanical properties, silica fillers were also used. It was found that the newly developed fluorine-substituted monomer was polymerized quite easily not only by free radical chemical initiators, but also by photoirradiation using free radical photoinitiator system. In particular, the photopolymerization rate of the novel monomer was more than two times faster than that of corresponding methacrylate-based monomer. Composite based on the newly developed matrix resin had higher micro-Vickers hardness and compressive strength values than the methacrylate-based composite, and that it contained only trace residual monomers compared with the methacrylate-based material. The high polymerization conversion of the fluorine-substituted monomer could be attributed to the polar effect or the small steric hindrance of fluorine at the alpha-position.

  8. Influence of a peracetic acid-based immersion on indirect composite resin.

    PubMed

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  9. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    SciTech Connect

    Morris, John B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  10. A method for the production of weakly acidic cation exchange resins

    NASA Astrophysics Data System (ADS)

    Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.

    1991-12-01

    The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.

  11. Resin Adaptation of Radicular Dentin Tubules after Endodontic Instrumentation and Acid Etching.

    DTIC Science & Technology

    1983-02-01

    the manuscript. DISCLAIMERS The statements, opinions, and advertisements in the Journal of Endodontics are solely those of the individual authors...I RD-Ai26 872 RESIN ADAPTATION OF RADICULAR DENTIN TUBULES AFTER / I ENDODONTIC INSTRUMENTATION AND ACID ETCHING(U) WALTER I REED ARMY INST OF...Adaptation to Radicular Dentin Tubules SbisoofpeAfter Endodontic Instrumentation and Acid Etching 1982-1983 6. PERFORMING ORG. REPORTNUMBER -, AUTHOR(a) S

  12. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  13. Shear bond strength of resin to acid/pumice-microabraded enamel.

    PubMed

    Royer, M A; Meiers, J C

    1995-01-01

    The effect of enamel microabrasion techniques consisting of either 18% hydrochloric acid in pumice or a commercially available abrasive/10% hydrochloric acid mixture, PREMA, on composite/enamel shear bond strengths was investigated. Sixty extracted third molars had the bonding surface flattened and were divided into six treatment groups (n=10) with the enamel treated prior to bonding as follows: Group 1-- untreated; Group 2--37% phosphoric acid etched for 30 seconds; Group 3--18% hydrochloric acid/pumice mixture applied for five 20-second treatments; Group 4--similar to Group 3 with additional 37% phosphoric acid etch; Group 5--treated with PREMA compound applied for five 20-second treatments; Group 6--similar to Group 5 treatment with additional 37% phosphoric acid. Herculite XR composite resin was then bonded to all samples using a VLC unit. Samples were tested in shear, and fractured enamel surfaces were evaluated using light microscopy to determine the enamel-to-resin failures. Resin bond strengths to microabraded and H3PO4-etched enamel were similar to bond strengths of untreated H3PO4-etched enamel and were significantly better than bond strengths to PREMA-treated or unetched enamel.

  14. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    PubMed

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system.

  15. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  16. Synthesis and properties of a cation exchange resin prepared by the pyrolysis of starch in the presence of phytic acid

    SciTech Connect

    Lehrfeld, J.

    1995-12-01

    A material having cation exchange and adsorption properties was prepared by the controlled pyrolysis of starch in the presence of a commercial phytic acid solution. Resins can be prepared with binding capacities of 0.7-5.7 meq/g. These resins also have the ability to remove atrazine from aqueous solutions.

  17. Acute effects of chlorinated resin acid exposure on juvenile rainbow trout, Oncorhynchus mykiss

    SciTech Connect

    Kennedy, C.J.; Sweeting, R.M.; Farrell, A.P.; McKeown, B.A.; Johansen, J.A.

    1995-06-01

    The effects of an acute exposure to either 14-monochlorodehydroabietic acid (MCDHAA) or 12,14-dichlorodehydroabietic acid (DCDHAA) were examined in juvenile rainbow trout, Oncorhynchus mykiss. The experimentally determined 96-h LC50 values (and their 95% confidence limits) were 1.03 (0.72, 1.48) and 0.91 (0.70, 1.21) mg/L, for MCDHAA and DCDHAA, respectively. To measure effects on several biochemical parameters, swimming performance, and disease resistance, juvenile trout were exposed for 24 h to sublethal concentrations of one or the other resin acid in an intermittent-flow respirometer. Hematocrit, plasma lactate, and liver protein were significantly affected by exposure to the highest dose (80% of the 96-h LC50 value) of either of the resin acids. Plasma cortisol levels were 14- and 3-fold higher than were controls. Resistance to infection by Aeromonas salmonicida was significantly reduced; the cumulative percent mortalities due to furunculosis in fish exposed to MCDHAA or DCDHAA reached 20 and 26%, respectively. Swimming performance, measured as critical swimming speed (mean values 6.32 {+-} 0.20 and 5.93 {+-} 0.15 body lengths per second for MCDHAA and DCDHAA, respectively), was not significantly affected by resin acid exposure.

  18. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena.

  19. Direct determination of resin and fatty acids in process waters of paper industries by liquid chromatography/mass spectrometry.

    PubMed

    Rigol, A; Latorre, A; Lacorte, S; Barceló, D

    2003-04-01

    Liquid chromatography/mass spectrometry (LC/MS)-based methods were developed for the analysis of 10 resin acids and five fatty acids in process waters of paper industries. No fragmentation of target compounds was observed using atmospheric pressure chemical ionization (APCI) with negative ionization. The [M - H](-) ion permitted the individual quantification of fatty and aromatic resin acids, whereas the non-aromatic resin acids presented a single and common ion at m/z 301. Separation with two columns of different polarity permitted peak confirmation. The method that used a C(8) column with 2-propanol in the mobile phase allowed a certain separation and identification of the non-aromatic resin acids, whereas the method using a C(18) column provided detection limits 10-fold lower for fatty acids. Limits of detection were 0.10 ng for all compounds. Direct sample introduction was compared with liquid-liquid extraction, with similar recoveries (70-101%). Whereas slightly lower detection limits were obtained with liquid-liquid extraction, better reproducibility was observed for direct sample introduction. Resin and fatty acids were determined in process waters of several paper industries. Palmitic, dehydroabietic and non-aromatic resin acids were encountered in most water samples, at levels between 22 and 403 micro g l(-1). LC/MS with direct sample introduction was found to be a good alternative to traditional liquid-liquid extraction and gas chromatography for the analysis of such compounds since no derivatization was required and sample manipulation was minimal.

  20. Influence of anionic species on uranium separation from acid mine water using strong base resins.

    PubMed

    Ladeira, Ana Claudia Queiroz; Gonçalves, Carlos Renato

    2007-09-30

    The presence of uranium and other elements in high concentrations in acid mine drainage at Poços de Caldas Uranium Mine (Brazil) is a matter of concern. The acid water pH is around 2.7, the uranium concentration is in the range of 6-14 mg L(-1), sulfate concentration near 1400 mg L(-1), fluoride 140 mg L(-1) and iron 180 mg L(-1). In this solution, where sulfate is present in elevated concentrations, uranium is basically in the form of UO(2)(SO(4))(3)(4-). This study investigated the separation of uranium from the other anions present in the acid water under batch and column mode using ion exchange technique. The pH studied was 2.7 and 3.9. Two strong base anionic resins were tested. The influence of ions, commonly found in acid waters like sulfate and fluoride, on ion exchange process was also assessed. Equilibrium studies were carried out to determine the maximum adsorption capacities of the resins. The resins showed a significant capacity for uranium uptake which varied from 66 to 108 mg g(-1) for IRA 910U and 53 to 79 mg g(-1) for Dowex A. The results also showed that SO(4)(2-) is the most interfering ion and it had a deleterious effect on the recovery in the pH range studied. Fluoride did not affect uranium removal.

  1. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  2. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  3. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    PubMed Central

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  4. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-07-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6.

  5. Solid phase synthesis of partially protected tocinoic acid: optimization with respect to resin and protecting groups.

    PubMed

    Hlavácek, J; Ragnarsson, U

    2001-07-01

    A few solid phase and solution approaches of good repute were applied in parallel with the aim to provide optimized routes to Boc- and Fmoc-tocinoic acid (3a and 3c) and the corresponding Tyr(Bu(t)) derivatives (3b and 3d). Boc-tocinoic acid is known to couple with tripeptide amides to give substituted oxytocin precursors in high yields, requiring only Boc-cleavage to furnish the corresponding hormone analogs with minimal loss of material. For comparison, two protected linear hexapeptides (2a and 2b) were prepared on three polystyrene supports, two with acid-labile handles and one a conventional chloromethylated resin, in yields of 62-82 and 58-76%, respectively. The intermediate 2a could be converted to 3a with physical data in agreement with those earlier reported. Similarly, the intermediate 2b was converted to 3b. The highest yields for both 2a and 2b were obtained with a 2-chlorotrityl chloride resin, which in addition provided advantages with respect to overall speed and convenience. Additional syntheses of 3c and 3d on this and of 3c on SASRIN resin, in conjunction with trityl instead of benzyl for side-chain protection of cysteine, were also elaborated.

  6. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-12-22

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. A study has been conducted to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. A select few of the top candidate eluants from the screening tests were subjected to actual sorption (loading) and elution tests to confirm their elution ability. The actual sorption (loading) and elution tests mimicked the typical sRF-cesium ion exchange process (i.e., sorption or loading, caustic wash, water rinse, and elution) via batch contact sorption and quasi column caustic wash/water rinse/elution. The eluants tested included ammonium carbonate, ammonium acetate, calcium acetate, magnesium

  7. Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution.

    PubMed

    Huang, Jianhan; Jin, Xiaoying; Mao, Jinglin; Yuan, Bin; Deng, Rujie; Deng, Shuguang

    2012-05-30

    We report an effective approach for tailoring the pore textural properties and surface polarity of a hypercrosslinked resin to enhance its adsorption capacity and selectivity for removing salicylic acid from aqueous solution. Four hypercrosslinked resins were synthesized by controlling the reaction time of the self Friedel-Crafts reaction of chloromethylated polystyrene-co-divinylbenzene, and then modified with diethylenetriamine to adjust their surface polarity. The resins were characterized with N(2) adsorption for pore textural properties, Fourier transform infrared spectroscopy (FT-IR) for surface functional groups, chemical analysis for residual chlorine content and weak basic exchange capacity. Adsorption equilibrium, kinetics and breakthrough performance were determined for the removal of salicylic acid from aqueous solution on a selected resin HJ-M01. The equilibrium adsorption capacity of salicylic acid on HJ-M01 is significantly higher than that on its precursor HJ-11 and a few commercial adsorbents including AB-8, XAD-4 and XAD-7. The dynamic adsorption capacity of salicylic acid on HJ-M01 was found to be 456.4 mg/L at a feed concentration of 1000 mg/L and 294 K. The used resin could be fully regenerated with 1% sodium hydroxide solution. The hypercrosslinked resins being developed were promising alternatives to commercial adsorbents for removing salicylic acid and other volatile organic compounds (VOCs) from aqueous solution.

  8. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    SciTech Connect

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Morris, D. E. [Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

    1999-08-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO{sub 2}{sup 2+} nitrate species and {sup 239}Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures ({approx}50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO{sub 3} process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations {<=}10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO{sub 2}{sup 2+} nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of {sup 239}Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy.

  9. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  10. Biophysical study of resin acid effects on phospholipid membrane structure and properties.

    PubMed

    Jagalski, Vivien; Barker, Robert; Topgaard, Daniel; Günther-Pomorski, Thomas; Hamberger, Björn; Cárdenas, Marité

    2016-11-01

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.

  11. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin

    PubMed Central

    Mai, Sui; Kim, Young Kyung; Toledano, Manuel; Breschi, Lorenzo; Ling, Jun Qi; Pashley, David H.; Tay, Franklin R.

    2009-01-01

    Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: I) XP Bond, an etch-and-rinse adhesive using moist bonding; II) XP Bond using dry bonding; and III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2–4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin. PMID:19481792

  12. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  13. Exposure to dust, resin acids, and monoterpenes in softwood lumber mills.

    PubMed

    Demers, P A; Teschke, K; Davies, H W; Kennedy, S M; Leung, V

    2000-01-01

    A study to assess exposure to potential respiratory hazards in a large lumber mill processing spruce (Picea engelmannii and glauca), pine (Pinus contorta), and fir (Abies lasiocarpa) used a random sampling strategy to assess exposures for all jobs in the sawmill, planer mills, and yard. Personal samples for inhalable particulate were collected to measure exposure to dust and resin acids (abietic acid and pimaric acid). To estimate wood dust exposure, rather than overall dust, the resin acid content within dust was used in combination with observations of job tasks and proximity to dust sources. Passive dosimeters were used to measure exposure to alpha-pinene, beta-pinene, delta3-carene, and other unidentified wood volatiles suspected to be monoterpenes. The GM of the 220 inhalable particulate samples was 1.0 mg/m3 whereas the mean abietic acid, pimaric acid, and estimated wood dust levels were 7.2 microg/m3, 0.6 microg/m3, and 0.5 mg/m3, respectively. The GMs of the 222 monoterpene samples were 0.1 mg/m3 for alpha-pinene, 0.3 mg/m3 for beta-pinene, 0.1 mg/m3 for delta3-carene, and 0.5 mg/m3 for the unidentified wood volatiles. Monoterpene exposures were much lower than those observed in other studies conducted in Sweden and Finland. The results of this exposure assessment highlight the importance of considering the content of airborne particulates in lumber mills as well as potential exposure to wood chemicals.

  14. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin.

    PubMed

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-12

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu(2+) and CuHL(0)) coordinated with neutral amine sites and anionic complex species (CuL(-) and Cu2L2(2-)) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  15. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    NASA Astrophysics Data System (ADS)

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-05-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL- and Cu2L22-) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.

  16. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid.

    PubMed

    Hashmi, Sara M; Firoozabadi, Abbas

    2013-03-15

    Asphaltene precipitation occurs in petroleum fluids under certain unfavorable conditions, but can be controlled by tuning composition. Aromatic solvents in large quantities can prevent precipitation entirely and can dissolve already precipitated asphaltenes. Some polymeric surfactants can dissolve asphaltenes when added at much lower concentrations than required by aromatic solvents. Other dispersants can truncate asphaltene precipitation at the sub-micron length scale, creating stable colloidal asphaltene dispersants. One particular asphaltene dispersant, dodecylbenzene sulfonic acid (DBSA), can do both, namely: (1) stabilize asphaltene colloids and (2) dissolve asphaltenes to the molecular scale. Acid-base interactions are responsible for the efficiency of DBSA in dissolving asphaltenes compared to aromatic solvents. However, many details remain to be quantified regarding the action of DBSA on asphaltenes, including the effect of petroleum fluid composition. For instance, resins, naturally amphiphilic components of petroleum fluids, can associate with asphaltenes, but it is unknown whether they cooperate or compete with DBSA. Similarly, the presence of metals is known to hinder asphaltene dissolution by DBSA, but its effect on colloidal asphaltene stabilization has yet to be considered. We introduce the concepts of cooperativity and competition between petroleum fluid components and DBSA in stabilizing and dissolving asphaltenes. Notably, we find that resins cooperatively interact with DBSA in dissolving asphaltenes. We use UV-vis spectroscopy to investigate the interactions responsible for the phase transitions between unstable suspensions, stable suspensions, and molecular solutions of asphaltenes.

  17. Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin

    PubMed Central

    Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan

    2015-01-01

    Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970

  18. Identification of dehydroabietc acid from Boswellia thurifera resin as a positive GABAA receptor modulator.

    PubMed

    Rueda, Diana C; Raith, Melanie; De Mieri, Maria; Schöffmann, Angela; Hering, Steffen; Hamburger, Matthias

    2014-12-01

    In a two-microelectrode voltage clamp assay with Xenopus laevis oocytes, a petroleum ether extract (100 μg/mL) of the resin of Boswellia thurifera (Burseraceae) potentiated GABA-induced chloride currents (IGABA) through receptors of the subtype α₁β₂γ₂s by 319.8% ± 79.8%. With the aid of HPLC-based activity profiling, three known terpenoids, dehydroabietic acid (1), incensole (2), and AKBA (3), were identified in the active fractions of the extract. Structure elucidation was achieved by means of HR-MS and microprobe 1D/2D NMR spectroscopy. Compound 1 induced significant receptor modulation in the oocyte assay, with a maximal potentiation of IGABA of 397.5% ± 34.0%, and EC₅₀ of 8.7 μM ± 1.3 μM. This is the first report of dehydroabietic acid as a positive GABAA receptor modulator.

  19. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  20. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid.

    PubMed

    James, W M; Emerick, M C; Agnew, W S

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including alpha-(2----8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis alpha-(2----8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3200 pmol of [3H]TTX-binding sites/mg of protein and a single polypeptide of approximately 285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. We further describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  1. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  2. Toxic effects of some conifer resin acids and tea tree oil on human epithelial and fibroblast cells.

    PubMed

    Söderberg, T A; Johansson, A; Gref, R

    1996-02-22

    The present study was undertaken to assess and compare the in vitro cytotoxic effects of three resin acid analogues: dehydrobietic acid, podocarpic acid, O-methylpodocarpic acid; an essential oil from Australia (tea tree oil); and tapped oleoresin from Thailand, on human epithelial and fibroblast cells, using a quantitative neutral red spectrophotometric assay. All of the investigated compounds except for tea tree oil exhibited a cytotoxic activity which was proportional to their concentrations and time of exposure up to 24 h, i.e. higher concentrations and longer time of exposure caused increased cell death. Dehydroabietic acid and the oleoresin were the most toxic compounds followed by O-methylpodocarpic acid, whereas podocarpic acid and tea tree oil showed a lower level of toxicity. On the basis on these findings it is concluded that an isopropyl group on the aromatic C-ring is of great importance for the cytotoxicity of the tested abietane resin acids, thus indicating that the cytotoxic activity of oleoresins most probably is caused by synergistic or additive effects of resin acids. The results from this work support the view that antibacterial activity parallels cytotoxic activity which suggests a similar mode of action, most probably exerted by membrane-associated reactions.

  3. Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin.

    PubMed

    Deepatana, A; Valix, M

    2006-09-21

    This study examined the recovery of nickel and cobalt from organic acid complexes using a chelating aminophosphonate Purolite S950 resin. These metal complexes are generated by bioleaching nickel laterite ores, a commercial nickel and cobalt mineral oxide, with heterotrophic organism and their metabolites or organic acid products. Equilibrium adsorption tests were conducted as a function of Ni and Co concentrations (15-2000 mg/L), solution pH (0.01 and 0.1 M acids) and three metabolic complexing agents (citrate, malate and lactate). It was shown that the adsorption of the various Ni- and Co-complexes on Purolite were quite low, 16-18 and 5.4-9 mg/g of resin, respectively, in comparison to the smaller nickel ions and nickel sulfate. This was attributed to the bulky organic ligands which promoted crowding effect or steric hindrance. The adsorption of these complexes was further hampered by the strong affinity of the resin to H+ ions under acidic conditions. Mechanisms of adsorption, as inferred from the fitted empirical Langmuir and Freundlich models, were correlated to the proposed steric hindrance and competitive adsorption effects. Nickel and cobalt elution from the resin were found be effective and were independent of the type of metal complexes and metal concentrations. This study demonstrated the relative challenges involved in recovering nickel and cobalt from bioleaching solutions.

  4. Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (beta-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.

  5. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  6. Influence of hydrofluoric acid on extraction of thorium using a commercially available extraction chromatographic resin.

    PubMed

    Shimada-Fujiwara, Asako; Hoshi, Akiko; Kameo, Yutaka; Nakashima, Mikio

    2009-05-01

    The dependence of Th recovery on hydrofluoric acid (HF) concentration in nitric acid (HNO(3)) solutions (1-5 mol/dm(3)) containing 1x10(-6) mol/dm(3) of Th and various concentrations of HF and the elution behavior were studied using a commercially available UTEVA (for uranium and tetravalent actinide) resin column. Thorium recovery decreased with an increase in HF concentration in the sample solutions. The concentration of HF at which Th recovery started to decrease was approximately 1x10(-4) mol/dm(3) in 1 mol/dm(3) HNO(3) solution, approximately 1x10(-3) mol/dm(3) in 3 mol/dm(3) HNO(3) solution, and approximately 1x10(-2) mol/dm(3) in 5 mol/dm(3) HNO(3) solution. When Al(NO(3))(3) (0.2 mol/dm(3)) or Fe(NO(3))(3) (0.6 mol/dm(3)) was added as a masking agent for F(-) to the Th solution containing 1x10(-1) mol/dm(3) HF and 1 mol/dm(3) HNO(3), Th recovery improved from 1.4+/-0.3% to 95+/-5% or 93+/-3%. Effective extraction of Th using UTEVA resin was achieved by selecting the concentration of HNO(3) and/or adding masking agents such as Al(NO(3))(3) according to the concentration of HF in the sample solution.

  7. Biogenic glutamic acid-based resin: Its synthesis and application in the removal of cobalt(II).

    PubMed

    Jamiu, Zakariyah A; Saleh, Tawfik A; Ali, Shaikh A

    2017-04-05

    Inexpensive biogenic glutamic acid has been utilized to synthesize a cross-linked dianionic polyelectrolyte (CDAP) containing metal chelating ligands. Cycloterpolymerization, using azoisobutyronitrile as an initiator, of N,N-diallylglutamic acid hydrochloride, sulfur dioxide and a cross-linker afforded a pH-responsive cross-linked polyzwitterionic acid (CPZA) which upon basification with NaOH was converted into CDAP. The new resin, characterized by a multitude of spectroscopic techniques as well as Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyses, was evaluated for the removal of Co(II) as a model case under different conditions. The adsorption capacity of 137mgg(-1) does indeed make the resin as one of the most effective sorbents in recent times. The resin leverages its cheap natural source and ease of regeneration in combination with its high and fast uptake capacities to offer a great promise for wastewater treatment. The resin has demonstrated remarkable efficiency in removing toxic metal ions including arsenic from a wastewater sample.

  8. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.

    PubMed

    Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou

    2014-05-15

    A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater.

  9. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution.

    PubMed

    Shu, Hung-Yee; Chang, Ming-Chin; Chen, Chi-Chun; Chen, Po-En

    2010-12-15

    In this study, a synthesized cation exchange resin supported nano zero-valent iron (NZVI) complex forming NZVI-resin was proposed for the decoloration of an azo dye Acid Blue 113 (AB 113), taking into account reaction time, initial dye concentration, NZVI dose and pH. From results, the successful decoloration of the AB 113 solution was observed using a NZVI-resin. Increasing the iron load to 50.8 mg g(-1), the removal efficiencies of the AB 113 concentration increased exponentially. With an initial dye concentration of 100 mg l(-1) and nano iron load of 50.8 mg g(-1), the best removal efficiencies were obtained at 100 and 12.6% for dye concentration and total organic carbon, respectively. Color removal efficiency was dependent on initial dye concentration and iron load. Moreover, the removal rates followed modified pseudo-first order kinetic equations with respect to dye concentration. Thus, the observed removal rate constants (k) were 0.137-0.756 min(-1) by NZVI loads of 4.9-50.8 mg g(-1). Consequently, the NZVI-resin performed effectively for the decoloration of AB 113 azo dye, offering great potential in the application of NZVI-resins in larger scale column tests and further field processes.

  10. Isolation and separation of transplutonium elements from other actinides on ion exchange resins from aqueous and aqueous ethanol solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1987-11-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on an anion exchange resin and a cation exchange resin in aqueous and aqueous alcohol solutions of sulfuric acid was investigated as a function of the concentration of various components of the solution. It was found that the presence of alcohol in sulfuric acid solutions leads to an increase in the distribution coefficients both on cation exchange resins and on anion exchange resins. The possibility of using ion exchange resins for the concentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements that form strong complexes with sulfate ions in a wide range of sulfuric acid concentrations was demonstrated.

  11. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid.

    PubMed

    Smiga-Matuszowicz, Monika; Janicki, Bartosz; Jaszcz, Katarzyna; Łukaszczyk, Jan; Kaczmarek, Marcin; Lesiak, Marta; Sieroń, Aleksander L; Simka, Wojciech; Mierzwiński, Maciej; Kusz, Damian

    2014-12-01

    In this study new biodegradable materials obtained by crosslinking poly(3-allyloxy-1,2-propylene succinate) (PSAGE) with oligo(isosorbide maleate) (OMIS) and small amount of methyl methacrylate were investigated. The porous scaffolds were obtained in the presence of a foaming system consisted of calcium carbonate/carboxylic acid mixture, creating in situ porous structure during crosslinking of liquid formulations. The maximum crosslinking temperature and setting time, the cured porous materials morphology as well as the effect of their porosity on mechanical properties and hydrolytic degradation process were evaluated. It was found that the kind of carboxylic acid used in the foaming system influenced compressive strength and compressive modulus of porous scaffolds. The MTS cytotoxicity assay was carried out for OMIS using hFOB1.19 cell line. OMIS resin was found to be non-toxic in wide range of concentrations. On the ground of scanning electron microscopy (SEM) observations and energy X-ray dispersive analysis (EDX) it was found that hydroxyapatite (HA) formation at the scaffolds surfaces within short period of soaking in phosphate buffer solution occurs. After 3h immersion a compact layer of HA was observed at the surface of the samples. The obtained results suggest potential applicability of resulted new porous crosslinked polymeric materials as temporary bone void fillers.

  12. Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin

    SciTech Connect

    Jei Kwon Moon; Eil Hee Lee; Chong-Hun Jung; Byung Chul Lee

    2006-07-01

    An extractant impregnated resin (EIR) was prepared by impregnation of Aliquat 336 into Amberlite XAD-4 for separation of technetium from rhodium in nitric acid solution. The prepared EIR showed high preference for rhenium (chemical analogue of technetium) over rhodium. The adsorption isotherms for rhenium were described well by Langmuir equation in both the single and multi-component systems. Maximum adsorption capacities obtained by modelling the isotherms of rhenium were 2.01 meq g{sup -1} and 1.97 meq g{sup -1} for the single and the multi-component systems, respectively. Column tests were also performed to confirm the separation efficiency of rhenium using a jacketed glass column (diam. 11 x L 150). The EIR column showed successful separation of rhenium with the breakthrough volume of about 122 BV for the breakthrough concentration of 0.08. Also the breakthrough data were modelled successfully by assuming a homogeneous diffusion model in the particle phase. The diffusivities obtained from the modelling were in the order of 10{sup -7} cm{sup 2} min{sup -1} for a rhenium. The rhenium adsorbed on the bed could be eluted with a high purity by using a nitric acid solution. (authors)

  13. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments

    SciTech Connect

    Hickey, C.W.; Martin, M.L.

    1995-08-01

    Five sediment-dwelling native New Zealand freshwater invertebrate species (amphipod, Chaetocorophium c.f. lucasi; clam, Sphaerium novaezelandiae; oligochaete, Lumbriculus variegatus; tanaid, Tanais standfordi; and the burrowing mayfly, Ichthybotus hudsoni) were assessed for their suitability for sediment toxicity testing by comparison of sensitivity to reference toxicants [phenol and pentachlorophenol (PCP)] and contaminated sediments. The 96-h EC50 values at 20 C showed a greater range in test sensitivity for phenol (30-fold range) from the most sensitive test, amphipod (8.1 mg/L), to the least sensitive one, clam (243 mg/L), compared with PCP (14-fold range), with amphipod the most sensitive test species (0.13 mg/L) and tanaid the least sensitive (1.8 mg/L). Clam reburial was a more sensitive end point than was lethality for phenol (by 20-fold) and PCP (by 2.4-fold). Four of the test species, excluding the tanaid, showed good 10-d survival in reference muds ({ge}87%) but lower survival in sand sediments ({ge}79%). Bleached kraft mill sediment containing high resin-acid concentrations (total 1,900 mg/kg dry weight) showed significant reductions in amphipod survival (15%), clam reburial (30%), and oligochaete survival (17%), and reproduction (49%). Amphipods, clams, and oligochaetes were the most promising species for sublethal test development.

  14. Dissolution of resin acids, retene and wood sterols from contaminated lake sediments.

    PubMed

    Meriläinen, Päivi; Lahdelma, Ilpo; Oikari, Laura; Hyötyläinen, Tarja; Oikari, Aimo

    2006-10-01

    The dissolution potency of hydrophobic resin acids (RAs), retene and wood sterols from sediments was studied. These wood extractives and their metabolites are sorbed from pulp and paper mill effluents to downstream sediments. With harmful components like these, sediments can pose a hazard to the aquatic environment. Therefore, sediment elutriates with water were produced under variable conditions (agitation rate and efficiency, time), and concentrations of the dissoluted compounds were analyzed. Both naturally contaminated field sediments and artificially spiked sediments were studied. By vigorous agitation RAs can be released fast from the sediment matrix and equilibrium reached within 3 days. Compared to RAs, desorption of retene from lake sediment was slower and did not completely reach equilibrium in 23 days. Sterols spiked to pristine sediment with a 33-day contact time desorbed faster than those associated authentically with industrial sediment of from a contaminated lake. Simulating the water turbulence adjacent to a sediment surface by low and high rate of agitation in the laboratory, an increase in the mixing rate after 43-day elutriation suddenly released a high amount of wood sterols. The results indicate wide variation between hazardous chemicals in their tendency to dissolution from sediment solids. Erosion and hydrology adjacent to the sediment surface, as well as risks from dredging activities of sediments, may expose lake biota to bioactive chemicals.

  15. Effect of ascorbic acid on bond strength between the hydrogen peroxide-treated fiber posts and composite resin cores

    PubMed Central

    Talebian, Reza; Khamverdi, Zahra; Nouri, Maryam; Kasraei, Shahin

    2014-01-01

    Aim: This study evaluated the effect of 10% ascorbic acid on the bond strength between fiber post and composite resin core after applying 24% hydrogen peroxide. Materials and Methods: Twenty-four hydrogen peroxide-treated fiber posts were divided into 4 groups (n = 6). Group 1 was the control group with no treatment. In groups 2-4, post surfaces were treated with 10% v ascorbic acid solution for 10, 30 and 60 minutes, respectively. Cores were built up using flowable composite resin. Two sticks were prepared from each specimen. Microtensile bond strength test was performed for each stick. Failure modes of sticks were evaluated under a stereomicroscope (×20). Surface morphologies of two fractured sticks from each group were assessed by SEM. Statistical analysis: Data were analyzed using one-way ANOVA and Tukey HSD tests (α = 0.05). Results: The highest microtensile bond strength was observed in Group 4 (20.55 ± 2.09) and the lowest in Group 1 (10.10 ± 0.55). There were significant differences in microtensile bond strength between all the groups (P < 0.05). Conclusion: It is concluded that ascorbic acid application increased the microtensile bond strength between the hydrogen peroxide treated fiber post and composite resin core. The increase is dependent on the duration of exposure to the antioxidant. PMID:24944443

  16. Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins.

    PubMed

    Janin, Amélie; Blais, Jean-François; Mercier, Guy; Drogui, Patrick

    2009-09-30

    The purpose of this study was to selectively remove chromium and copper from CCA-treated wood acid leachates (initial concentrations of 447-651 mg As l(-1), 374-453 mg Cu l(-1) and 335-622 mg Cr l(-1)) using ion exchange resins and precipitation techniques. Batch experiments revealed that the chelating resin Dowex M4195 had a high copper selectivity in the presence of chromium while the Amberlite IR120 resin had a high chromium sorption capacity. Combining M4195 and IR120 resins in four successive columns, made with Plexiglas tube, led to 96% copper extraction and 68% chromium extraction. NH(4)OH (4M) efficiently eluted copper from the chelating resin while H(2)SO(4) (10%v/v) was used for IR120 resin elution. Copper and chromium recovery by elution reached 94% and 81%, respectively. Successive sorption and elution steps using M4195 and IR120 ion exchange resins presented similar metal removal capacities over the five cycles. No resin deterioration was observed but the results suggested arsenic bulk diffusion into the M4195 resin. Successive treatments of CCA-treated wood leachate with M4195 and IR120 allowed for copper and chromium removal while arsenic could be extracted by coagulation treatment with ferric chloride and precipitation with Ca(OH)(2) at pH 5.7. This final process led to 99.9% arsenic removal. The final effluent contained less than 1 mg l(-1) of arsenic, chromium and copper.

  17. Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was carried out. Using dilute sulfuric acid as the eluent, the TSKgel G3000PWXL, resin acted as an advanced stationary phase for these C1-C7 carboxylic acids. Excellent simultaneous separation and symmetrical peaks for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min with 0.25 mM sulfuric acid containing 1 mM 2-methylheptanoic acid at pH 3.3 as the eluent. Using dilute sodium hydroxide as the eluent, the TSKgel G3000PWXL resin also behaved as an advanced stationary phase for these C1-C7 amines. Excellent simultaneous separation and good peaks for these C1-C7 amines were achieved on the TSKgel G3000PWXL column in 60 min with 10 mM sodium hydroxide containing 0.5 mM 1-methylheptylamine at pH 11.9 as the eluent.

  18. Novel polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6): Synthesis, characterization and extraction of Sr(II) in high acidity HNO3 medium.

    PubMed

    Ye, Gang; Bai, Feifei; Wei, Jichao; Wang, Jianchen; Chen, Jing

    2012-07-30

    A novel kind of polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6) was synthesized through a post-modification approach. The DCH18C6 moieties bearing amino groups were firstly prepared, followed by covalent grafting to a silica precursor P-(CH(2))(3)-Cl (Where P represents a 3-dimentional polymerized silica matrix) based on nucleophilic substitution reaction. (29)Si and (13)C solid-state NMR, FT-IR, XPS, TGA, ESEM and elemental analysis were employed to systematically characterize the structure, thermal property and surface morphology of the functionalized resin. The results indicated that the DCH18C6 ligands were successfully bonded to the polysiloxane resin with a satisfactory grafting degree (33.6wt.%). Due to the robust organosilica framework and the covalent immobilization of the ligands, the functionalized resin had excellent thermal stability and acid resistance. Batch experiments showed that the resin could effectively separate Sr(II) in high acidity mediums. The distribution coefficient (K(d)) of 43.6cm(3)/g could be achieved in 5.0mol/L HNO(3) solution. The influences of contact time and acidity of HNO(3) on the resin's extraction performance were examined. The reusability and the selectivity to Sr(II) over interference ions were investigated. The DCH18C6-functionalized resin might be potentially applied for the radiostrontium removal in the high level liquid waste (HLLW).

  19. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Wang, Qiongfang; Lu, Yuqi

    2016-10-01

    This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o) < 0) indicate the adsorption of DCF is spontaneous but nonspontaneous (ΔG(o) > 0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry.

  20. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins.

    PubMed

    Wu, Shiyu; Gu, Lisha; Huang, Zihua; Sun, Qiurong; Chen, Huimin; Ling, Junqi; Mai, Sui

    2017-02-01

    The biomimetic remineralization of apatite-depleted dentin is a potential method for enhancing the durability of resin-dentin bonding. To advance this strategy from its initial proof-of-concept design, we sought to investigate the characteristics of polyacrylic acid (PAA) adsorption to desorption from type I collagen and to test the mineralization ability of PAA-bound collagen. Portland cement and β-tricalcium phosphate (β-TCP) were homogenized with a hydrophilic resin blend to produce experimental resins. The collagen fibrils reconstituted on nickel (Ni) grids were mineralized using different methods: (i) group I consisted of collagen treated with Portland cement-based resin in simulated body fluid (SBF); (ii) group II consisted of PAA-bound collagen treated with Portland cement-based resin in SBF; and (iii) group III consisted of PAA-bound collagen treated with β-TCP-doped Portland cement-based resin in deionized water. Intrafibrillar mineralization was evaluated using transmission electron microscopy. We found that a carbonyl-associated peak at pH 3.0 increased as adsorption time increased, whereas a hydrogen bond-associated peak increased as desorption time increased. The experimental resins maintained an alkaline pH and the continuous release of calcium ions. Apatite was detected within PAA-bound collagen in groups II and III. Our results suggest that PAA-bound type I collagen fibrils can be mineralized using Portland cement-based resins.

  1. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG5-SDB was estimated to be about 682 and 544.2mgg(-1) respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings.

  2. Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solutions.

    PubMed

    Misra, R K; Jain, S K; Khatri, P K

    2011-01-30

    Iminodiacetic acid functionality has been introduced on styrene-divinyl benzene co-polymeric beads and characterized by FT-IR in order to develop weak acid based cation exchange resin. This resin was evaluated for the removal of different heavy metal ions namely Cd(II), Cr(VI), Ni(II) and Pb(II) from their aqueous solutions. The results showed greater affinity of resin towards Cr(VI) for which 99.7% removal achieved in optimal conditions following the order Ni(II)>Pb(II)>Cd(II) with 65%, 59% and 28% removal. Experiments were also directed towards kinetic studies of adsorption and found to follow first order reversible kinetic model with the overall rate constants 0.3250, 0.2393, 0.4290 and 0.2968 for Cr(VI), Ni(II), Pb(II) and Cd(II) removal respectively. Detailed studies of Cr(VI) removal has been carried out to see the effect of pH, resin dose and metal ion concentration on adsorption and concluded that complexation enhanced the chromium removal efficacy of resin drastically, which is strongly pH dependent. The findings were also supported by the comparison of FT-IR spectra of neat resin with the chromium-adsorbed resin.

  3. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    USGS Publications Warehouse

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  4. Long-term impact of acid resin waste deposits on soil quality of forest areas I. Contaminants and abiotic properties.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Cabrera, Francisco; Buegger, Franz; Fuss, Roland; Pritsch, Karin; Schloter, Michael

    2008-11-15

    Acid resins are residues characterised by elevated concentrations of hydrocarbons and trace elements, which were produced by mineral oil industries in Central Europe during the first half of the last century. Due to the lack of environmental legislation at that time, these wastes were dumped into excavated ponds in public areas without further protection. In this work, the long-term effects of such resin deposits on soil quality of two forest areas (Bayern, Germany) were assessed. We evaluated the distribution and accumulation of contaminants in the surroundings of the deposits, where the waste was disposed of about 60 years ago. General soil chemical properties such as pH, C, N and P content were also investigated. Chemical analysis of resin waste from the deposits revealed large amounts of potential contaminants such as hydrocarbons (93 g kg(-1)), As (63 mg kg(-1)), Cd (24 mg kg(-1)), Cu (1835 mg kg(-1)), Pb (8100 mg kg(-1)) and Zn (873 mg kg(-1)). Due to the location of the deposits on a hillside and the lack of adequate isolation, contaminants have been released downhill despite the solid nature of the waste. Five zones were investigated in each site: the deposit, three affected zones along the plume of contamination and a control zone. In affected zones, contaminants were 2 to 350 times higher than background levels depending on the site. In many cases, contaminants exceeded the German environmental guidelines for the soil-groundwater path and action levels based on extractable concentrations. Resin contamination yielded larger total C/total N ratios in affected zones, but no clear effect was observed on absolute C, N and P concentrations. In general, no major acidification effect was reported in affected zones.

  5. Fatty and resin acid analysis in tall oil products via supercritical fluid extraction-supercritical fluid reaction using enzymatic catalysis.

    PubMed

    Taylor, S L; King, J W

    2001-07-01

    Supercritical fluid extraction (SFE) is combined with supercritical fluid reaction (SFR) in an analytical mode to assess tall oil products for their fatty or resin acid content or both. The SFR consists of an inline enzymatically catalyzed reaction in which a lipase transesterifies specific lipids with methanol. The SFE-SFR sequence is conducted employing commercially available extractors using supported lipases in the extraction cell to form methyl esters. In this study, six different commercially available lipases are screened for activity. The SFE-SFR extracts are analyzed by capillary gas chromatography and supercritical fluid chromatography and then compared with tall oil products derivatized by conventional chemical derivatization techniques.

  6. Production of 61Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin.

    PubMed

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna; Das, Malay Kanti

    2012-02-01

    (61)Cu was produced by (nat)Co(α, xn)(61)Cu reaction. (61)Cu production yield was 89.5 MBq/μAh (2.42 mCi/μAh) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of (61)Cu was >99% 1 h after EOI. Final product was suitable for making complex with N(2)S(2) type of ligands.

  7. Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability.

    PubMed

    Ottosson, Nina E; Wu, Xiongyu; Nolting, Andreas; Karlsson, Urban; Lund, Per-Eric; Ruda, Katinka; Svensson, Stefan; Konradsson, Peter; Elinder, Fredrik

    2015-08-24

    Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.

  8. Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol.

    PubMed

    Hughes, Stephen R; Moser, Bryan R; Robinson, Samantha; Cox, Elby J; Harmsen, Amanda J; Friesen, Jon A; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Liu, Siqing; Saha, Badal C; Jackson, John S; Cotta, Michael A; Rich, Joseph O; Caimi, Paolo

    2012-05-31

    A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.

  9. PRELIMINARY REPORT ON EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-09-01

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. Studies are ongoing to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. The next phase of testing for this work will focus on the following down selected eluants: Ammonium carbonate, ammonium acetate, calcium acetate, magnesium acetate, nitric acid, and ammonium hydroxide. The next testing phase is a confirmation of the elution ability of the selected eluants. It will mimic a typical sRF cesium ion exchange process i.e., sorption or loading, caustic wash, water rinse, and elution via batch contact sorption and quasi column caustic wash/water rinse/elution. Due to corrosion

  10. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  11. Separation of Bk(IV) and Ce(IV) from trivalent transplutonium and rare earth elements on ion exchange resins in solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Stepushkina, V.V.

    1987-11-01

    Th behavior of Am, Cm, Bk, Cf, Es, Ce, Eu, and Pr on an anion exchange resin and a cation exchange resin in a mixture with PbO/sub 2/ was investigated in sulfuric acid solutions. A substantial difference was detected in the distribution coefficients of Bk and Ce, on the one hand, and the remaining transplutonium and rare earth elements, on the other, associated with oxidation of the first two elements to the tetravalent state. Methods are proposed for the concentration and separation of Bk(IV) and Ce(IV) from the other transplutonium and rare earth elements on an anion exchange resin in solution of 0.01-0.25 M H/sub 2/SO/sub 4/ and a cation exchange resin in 0.75-1.0 M H/sub 2/SO/sub 4/.

  12. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    PubMed

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.

  13. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM SPHERICAL RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Nash, C.; Pennebaker, F.

    2011-10-23

    Ion Exchange column loading and elution of cesium from spherical resorcinol-formaldehyde resin have been conducted for two potential non-acid eluants -(NH{sub 4}){sub 2}CO{sub 3} and CH{sub 3}COONH{sub 4}. The results revealed encouraging cesium elution performance. 100% elution was achieved in at most 22 hours ({approx}28 bed volumes) of elution. Elution performance was fairly high at 6 hours ({approx}8 bed volumes) of elution for some of the eluants and also practically comparable to the benchmark acid eluant (HNO{sub 3}). Hence, it is quite possible 100% percent elution will be closer to the 6th hour than the 22nd hour. Elution is generally enhanced by increasing the concentration and pH of the eluants, and combining the eluants.

  14. Transesterification catalyzed by polystyrene-supported chymotrypsin in toluene: the effect of neutralization of basic or acidic groups attaching to polystyrene resins.

    PubMed

    Ohtani, N; Inoue, Y; Kobayashi, A; Sugawara, T

    1995-10-05

    Crosslinked polystyrene resins containing a low level of either basic or acidic groups were used for supports of alpha-chymotrypsin (CT), which catalyzed the transesterification of N-acetyl-L-phenylalanine ethyl ester (AcPheOEt) with propanol in toluene. With a minimal amount of water, CT was sorbed to the resins, basic or acidic groups of which were partly or fully neutralized by several soluble acids or bases. With an increasing degree of neutralization of basic resins by free acids, the rate of disappearance of AcPheOEt was decreased, whereas the by-product formation of AcPheOH, due to hydrolysis, was considerably suppressed, compared with the ester-exchange product, AcPheOPr. The pK(a) value of the neutralizing acid was also important for both CT activity and reaction selectivity. AcPheOPr was selectively produced at a certain range of pK(a) values. On the other hand, the neutralization of acidic resins with free amines enhanced the CT activity but a strong base promoted the formation of hydrolysis product.

  15. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions

    PubMed Central

    López-Suevos, Francisco; Dickens, Sabine H.

    2008-01-01

    Objective Evaluate the effects of core structure and storage conditions on the mechanical properties of acid-resin modified composites and a control material by three-point bending and conversion measurements 15 min and 24 h after curing. Methods The monomers pyromellitic dimethacrylate (PMDM), biphenyldicarboxylic-acid dimethacrylate (BPDM), (isopropylidene-diphenoxy)bis(phthalic-acid) dimethacrylate (IPDM), oxydiphthalic-acid dimethacrylate (ODPDM), and Bis-GMA were mixed with triethyleneglycol dimethacrylate (TEGDMA) in a 40/60 molar ratio, and photo-activated. Composite bars (Barium-oxide-glass/resin = 3/1 mass ratio, (2 × 2 × 25) mm, n = 5) were light-cured for 1 min per side. Flexural strength (FS), elastic modulus (E), and work-of-fracture (WoF) were determined in three-point bending after 15 min (stored dry); and after 24 h under dry and wet storage conditions at 37 °C. Corresponding degrees of conversion (DC) were evaluated by Fourier transform infrared spectroscopy. Data was statistically analyzed (2-way analysis of variance, ANOVA, Holm-Sidak, p < 0.05). Results Post-curing significantly increased FS, E and DC in nearly all cases. WoF did not change, or even decreased with time. For all properties ANOVA found significant differences and interactions of time and material. Wet storage reduced the moduli and the other properties measured with the exception of FS and WoF of ODPDM; DC only decreased in BPDM and IPDM composites. Significance Differences in core structure resulted in significantly different physical properties of the composites studied with two phenyl rings connected by one ether linkage as in ODPDM having superior FS, WoF and DC especially after 24 h under wet conditions. As expected, post-curing significantly contributed to the final mechanical properties of the composites, while wet storage generally reduced the mechanical properties. PMID:17980422

  16. Preliminary enrichment and separation of chlorogenic acid from Helianthus tuberosus L. leaves extract by macroporous resins.

    PubMed

    Sun, Peng-Cheng; Liu, Ying; Yi, Yue-Tao; Li, Hong-Juan; Fan, Ping; Xia, Chuan-Hai

    2015-02-01

    In the present study, a simple and efficient method for the preparative separation of 3-CQA from the extract of Helianthus tuberosus leaves with macroporous resins was studied. ADS-21 showed much higher adsorption capacity and better adsorption/desorption properties for 3-CQA among the tested resins. The adsorption of 3-CQA on ADS-21 resin at 25°C was fitted best to the Langmuir isotherm model and pseudo-second-order kinetic model. Dynamic adsorption/desorption experiments were carried out in a glass column packed with ADS-21 to optimise the separation process of 3-CQA from H. tuberosus leaves extract. After one treatment with ADS-21, the content of 3-CQA in the product was increased 5.42-fold, from 12.0% to 65.2%, with a recovery yield of 89.4%. The results demonstrated that the method was suitable for large-scale separation and manufacture of 3-CQA from H. tuberosus leaves.

  17. Effect of adhesive hydrophilicity and curing-time on the permeability of resins bonded to water vs. ethanol-saturated acid-etched dentin

    PubMed Central

    Cadenaro, Milena; Breschi, Lorenzo; Rueggeberg, Frederick A.; Agee, Kelli; Di Lenarda, Roberto; Carrilho, Marcela; Tay, Franklin R.; Pashley, David H.

    2009-01-01

    Objective This study examined the ability of five comonomer blends (R1-R5) of methacrylate-based experimental dental adhesives solvated with 10 mass% ethanol, at reducing the permeability of acid-etched dentin. The resins were light-cured for 20, 40 or 60 s. The acid-etched dentin was saturated with water or 100% ethanol. Method Human unerupted third molars were converted into crown segments by removing the occlusal enamel and roots. The resulting crown segments were attached to plastic plates connected to a fluid-filled system for quantifying fluid flow across smear layer-covered dentin, acid-etched dentin and resin-bonded dentin. The degree of conversion of the resins was measured using Fourier transform infrared spectroscopy. Result Application of the most hydrophobic comonomer blend (R1) to water-saturated dentin produced the smallest reductions in dentin permeability (31.9, 44.1 and 61.1% after light-curing for 20, 40 or 60 s respectively). Application of the same blend to ethanol-saturated dentin reduced permeability of 74.1, 78.4 and 81.2%, respectively (p<0.05). Although more hydrophilic resins produced larger reductions in permeability, the same trend of significantly greater reductions in ethanol-saturated dentin over that of water-saturated dentin remained. This result can be explained by the higher solubility of resins in ethanol vs. water. Significance The largest reductions in permeability produced by resins were equivalent but not superior, to those produced by smear layers. Resin sealing of dentin remains a technique-sensitive step in bonding etch-and-rinse adhesives to dentin. PMID:18571228

  18. Highly efficient co-removal of copper (II) and phthalic acid with self-synthesized polyamine resin.

    PubMed

    Ling, Chen; Liu, Fu-Qiang; Long, Chao; Wei, Meng-Meng; Li, Aimin

    2014-01-01

    A novel method was proposed for efficient co-removal of Cu (II) and phthalic acid (PA) using self-synthesized polyamine resin (R-NH(2)). The adsorption properties of R-NH(2) were thoroughly investigated by equilibrium, kinetic and dynamic tests in sole and binary systems at pH 5.0. The Freundlich model was a good fit for all the isotherm data, showing higher Kf values in the binary system than the sole system. The pseudo-second-order kinetic equation showed a better correlation to the experimental data in all cases and PA uptake was much faster than that of Cu (II). R-NH(2) showed highest adsorption capacities to both Cu (II) and PA among the five tested resins. Moreover, the presence of PA markedly enhanced the adsorption of Cu (II), being around 3.5 times of that of the sole system. The adsorption of PA was also slightly increased when Cu (II) was coexistent. Furthermore, using Fourier transform infrared spectrometry (FTIR) and species calculations, possible mechanisms were proposed that Cu (II) coordinated with -NH(2) and negative PA species interacted with -NH(3)(+) by electrostatic attraction. [Cu-PA] complex in the binary system possessed a much higher affinity than free Cu (II) to chelating with -NH(2), resulting in mutual enhancement.

  19. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  20. Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices

    SciTech Connect

    Despotopulos, J D; Sudowe, R

    2012-02-21

    somewhere between Nb and Pa. Much more recent studies have examined the properties of Db from HNO{sub 3}/HF matrices, and suggest Db forms complexes similar to those of Pa. Very little experimental work into the behavior of element 114 has been performed. Thermochromatography experiments of three atoms of element 114 indicate that the element 114 is at least as volatile as Hg, At, and element 112. Lead was shown to deposit on gold at temperatures about 1000 C higher than the atoms of element 114. Results indicate a substantially increased stability of element 114. No liquid phase studies of element 114 or its homologs (Pb, Sn, Ge) or pseudo-homologs (Hg, Cd) have been performed. Theoretical predictions indicate that element 114 is should have a much more stable +2 oxidation state and neutral state than Pb, which would result in element 114 being less reactive and less metallic than Pb. The relativistic effects on the 7p{sub 1/2} electrons are predicted to cause a diagonal relationship to be introduced into the periodic table. Therefore, 114{sup 2+} is expected to behave as if it were somewhere between Hg{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}. In this work two commercially available extraction chromatography resins are evaluated, one for the separation of Db homologs and pseudo?homologs from each other as well as from potential interfering elements such as Group IV Rf homologs and actinides, and the other for separation of element 114 homologs. One resin, Eichrom's DGA resin, contains a N,N,N',N'-tetra-n-octyldiglycolamide extractant, which separates analytes based on both size and charge characteristics of the solvated metal species, coated on an inert support. The DGA resin was examined for Db chemical systems, and shows a high degree of selectivity for tri-, tetra-, and hexavalent metal ions in multiple acid matrices with fast kinetics. The other resin, Eichrom's Pb resin, contains a di-t-butylcyclohexano 18-crown-6 extractant with isodecanol solvent, which separates

  1. Microleakage of composite resin restorations with a 10 percent maleic acid etchant.

    PubMed

    Gilpatrick, R O; Owens, B M; Kaplan, I; Cook, G

    1996-04-01

    Microleakage of Class V composite resin restorations with margins all in enamel were compared in this in-vitro study using Scotchbond MultiPurpose Adhesive (SMP) (3M Corp.), and Scotchbond II (SB II) (3M Corp). Twenty extracted human molars were randomly separated into two groups: Group One, which used the SMP system and Group Two, which used the SB II system. Circular Class V preparations were cut 1.8 mm deep and 3 mm in diameter using a #556 fissure bur. Cavosurface margins, all in enamel, were beveled. The enamel and dentin were treated following manufacturer's directions for each group, and a microfilled composite resin, Silux Plus (3M Corp), was applied in two hand-placed increments. All teeth were finished with Sof-Lex discs, stored in water for seven days, then thermocycled in a water bath for 100 cycles, alternating from 4 degrees C to 58 degrees C. The teeth were placed in a 5 percent solution of methylene blue, rinsed and then invested in resin. All teeth were sectioned vertically and horizontally and a ratio (percentage) of wall length to amount of leakage along each wall was established. The overall mean leakage of Group One was 15.27 percent and Group Two was 13.84 percent. Looking at individual walls, the mean occlusal wall leakage of Group One was 28.41 percent and Group Two was 12.45 percent. Mean gingival wall leakage of Group One was 15.96 percent and Group Two was 21.80 percent. Comparing the two groups, using a student's t test, there was no significant difference between the overall mean leakage or between the gingival wall leakage (p > 0.05); however, there was a significant difference between the occlusal wall leakage (p < 0.05), with SMP exhibiting more leakage.

  2. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v).

  3. A new way to do an old reaction: highly efficient reduction of organic azides by sodium iodide in the presence of acidic ion exchange resin.

    PubMed

    Suthagar, Kajitha; Fairbanks, Antony J

    2017-01-05

    Organic azides are readily reduced to the corresponding amines by treatment with sodium iodide in the presence of acidic ion exchange resin. The process, optimal when performed at 40 °C and 200 mbar pressure on a rotatory evaporator, is extremely efficient, clean, and tolerant of a variety of functional groups.

  4. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins.

    PubMed

    Gerbeth, Kathleen; Hüsch, Jan; Fricker, Gert; Werz, Oliver; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2013-01-01

    Boswellia serrata gum resin extracts (BSE) revealed potent anti-inflammatory actions in preclinical and clinical studies. In 2002 BSE was assigned an orphan drug status by the European Medicines Agency (EMA) for the treatment of peritumoral edema. In the past pharmacological effects of BSE were mainly attributed to 11-keto-β-boswellic acid (KBA) and 3-acetyl-11-keto-β-boswellic acid (AKBA). Therefore pharmacokinetic and pharmacodynamic studies focused mainly on these two boswellic acids (BAs). However, other BAs, like β-boswellic acid (βBA), might also contribute to the anti-inflammatory actions of BSE. Here, we determined the metabolic stability, permeability and brain availability of six major BAs, that is, KBA, AKBA, βBA, 3-acetyl-β-boswellic acid (AβBA), α-boswellic acid (αBA), and 3-acetyl-α-boswellic acid (AαBA). For permeability studies, the Caco-2 model was adapted to physiological conditions by the addition of bovine serum albumin (BSA) to the basolateral side and the use of modified fasted state simulated intestinal fluid (FaSSIF) on the apical side. Under these conditions the four BAs lacking the 11-keto moiety revealed moderate permeability. Furthermore the permeability of AKBA and KBA was improved compared to earlier studies. In contrast to Aα- and AβBA, βBA and αBA were intensively metabolized after incubation with human and rat liver microsomes. Finally, the availability of all six major BAs could be confirmed in rat brain 8h after oral administration of 240mg/kg BSE to rats showing mean concentrations of 11.6ng/g for KBA, 37.5ng/g for AKBA, 485.1ng/g for αBA, 1066.6ng/g for βBA, 43.0ng/g for AαBA and 163.7ng/g for AβBA.

  5. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    unreacted) acid in the VE system [10]. Approximately 1 g of the VE reaction mixture was dissolved in 5 g acetone.Fig. 1. The reaction of methacrylic acid...free acid, was the maximum allowable acid number. If the acid number was too high, the methacrylation reaction was allowed to continue until future acid...Epon with two bisphenol units (nZ1) while the large peak at 15.5 min represents the Epon with one bisphenol unit (nZ0). After reaction with methacrylic

  6. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  7. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min.

  8. Effect of experimental acid/base conditioner on microtensile bond strength of 4-META/MMA-TBB resin to dentin after long-term water immersion.

    PubMed

    Soeno, Kohyoh; Taira, Yohsuke; Ito, Shuichi

    2012-01-01

    An experimental conditioner (Exp), which was an aqueous solution of 10% ascorbic acid and 5% ferric chloride, was prepared in this study. This study evaluated the effect of Exp on the microtensile bond strength between a self-curing resin and dentin after long-term water immersion. Flat human dentin surfaces were sequentially pretreated with 40% phosphoric acid, 10% sodium hypochlorite, and Exp. Surface pretreatment with an aqueous solution of 10% citric and 3% ferric chloride (10-3) was used as a control. Composite resin rods were bonded to pretreated dentin surfaces using 4-META/MMA-TBB resin. Microtensile bond strengths were evaluated after water immersion at 24 h, 12 months, 24 months, and 36 months. At each immersion period, the bond strength of Exp was significantly higher than that of 10-3. After 36 months, Exp showed no significant decrease in microtensile bond strength, but 10-3 showed significant reductions. Pretreatment with experimental acid/base conditioner markedly improved the bonding durability of 4-META/MMA-TBB resin to human dentin when compared against the conventional 10-3 treatment.

  9. Biocatalytic Synthesis of Epoxy Resins from Fatty Acids as a Versatile Route for the Formation of Polymer Thermosets with Tunable Properties.

    PubMed

    Torron, Susana; Semlitsch, Stefan; Martinelle, Mats; Johansson, Mats

    2016-12-12

    The work herein presented describes the synthesis and polymerization of series of bio-based epoxy resins prepared through lipase catalyzed transesterification. The epoxy-functional polyester resins with various architectures (linear, tri-branched, and tetra-branched) were synthesized through condensation of fatty acids derived from epoxidized soybean oil and linseed oil with three different hydroxyl cores under bulk conditions. The selectivity of the lipases toward esterification/transesterification reactions allowed the formation of macromers with up to 12 epoxides in the backbone. The high degree of functionality of the resins resulted in polymer thermosets with Tg values ranging from -25 to over 100 °C prepared through cationic polymerization. The determining parameters of the synthesis and the mechanism for the formation of the species were determined through kinetic studies by (1)H NMR, SEC, and molecular modeling studies. The correlation between macromer structure and thermoset properties was studied through real-time FTIR measurements, DSC, and DMA.

  10. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  11. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  12. Efficiency of macroporous poly(vinylphosphoramidic acid) resin adsorbing of selected elements and determination of trace dysprosium, holmium, erbium, and ytterbium in waste water by inductively coupled plasma optical emission spectrometry

    SciTech Connect

    Zhan Guangyao; Su Zhixing; Lou Xingyin; Chang Xijun )

    1992-03-01

    A macroporous poly(vinylphosphoramidic acid) resin is synthesized through the reaction of macroporous poly(vinylethylenediamine) resin with formaldehyde and phosphorus acid. The adsorption efficiency of the resin to selected elements is determined. An ICP-OES method has been established for the resin enrichment and separation of trace Dy, Ho, Er and Yb ions in waste water. The ability of the Na-form resin to adsorb Dy, Ho, Er, and Yb ions is far better than the H-form resin. The IR spectra of the resin before and after adsorbing Dy are shown. The mechanism of resin adsorption of Dy is explored. The results of resin enriched waste water analysis from a smelter plant are 31.0 ng/ml for dy, 41.1 ng/ml for Hl, 20.6 ng/ml for Er and 20.2 ng/ml for Yb ions. The recovery of standard additions of Dy, Ho, Er, and Yb to the waste water is in the range of 97.0-98.5%.

  13. Determination of resin acids during production of wood pellets--a comparison of HPLC/ESI-MS with the GC/FID MDHS 83/2 method.

    PubMed

    Axelsson, Sara; Eriksson, Kåre; Nilsson, Ulrika

    2011-10-01

    Resin acids are constituents of natural and technical products of widespread use. Exposure is known to cause health effects in the airways and on the skin. Liquid chromatography/positive ion electrospray-mass spectrometry (HPLC/pos ESI-MS) was investigated for determination of 7-oxodehydroabietic (7-OXO), dehydroabietic (DHAA) and abietic acid (AA) in wood dust-containing air samples as a derivatisation-free alternative to the GC/FID HSE method 83/2, developed by the Health and Safety Executive UK. The resin acid 7-OXO was measured as a marker for oxidised resin acids, which are known to be the main contact allergens in colophonium. The found detection limits were 0.42 ng m(-3) for 7-OXO, 5.2 ng m(-3) for DHAA and 9.4 ng m(-3) for AA, respectively, which are considerably lower than with the GC/FID method (24, 115 and 89 ng m(-3)). The two methods correlated well, although consistently and significantly lower concentrations of 7-OXO were detected with LC/MS. The higher concentration of this compound with MDHS 83/2 is suggested to be an artefact from the derivatisation step in the presence of soluble wood dust remains.

  14. Statins, fibrates, nicotinic acid, cholesterol absorption inhibitors, anion-exchange resins, omega-3 fatty acids: which drugs for which patients?

    PubMed

    Drexel, Heinz

    2009-12-01

    Classes of lipid lowering drugs differ strongly with respect to the types of lipids or lipoproteins they predominantly affect. Statins inhibit the de-novo synthesis of cholesterol. Consequently, the liver produces less VLDL, and the serum concentration primarily of LDL cholesterol (but, to a lesser extent, also of triglycerides) is lowered. Further, statins somewhat increase HDL cholesterol. There is abundant evidence that statins lower the rate of cardiovascular events. Cardiovascular risk reduction is the better, the lower the LDL cholesterol values achieved with statin therapy are. Some evidence is available that anion exchange resins which also decrease LDL cholesterol decrease vascular risk, too. This is not the case for the ezetimibe, which strongly lowers LDL cholesterol: its potential to decrease vascular risk remains to be proven. In contrast evidence for cardiovascular risk reduction through the mainly triglyceride lowering fibrates as well as for niacin is available. Niacin is the most potent HDL increasing drug currently available and besides increasing HDL cholesterol efficaciously lowers triglycerides and LDL cholesterol. Large ongoing trials address the decisive question whether treatment with fibrates and niacin provides additional cardiovascular risk reduction when given in addition to statin treatment.

  15. Enhancing the functionality of biobased polyester coating resins through modification with citric acid.

    PubMed

    Noordover, Bart A J; Duchateau, Robbert; van Benthem, Rolf A T M; Ming, Weihua; Koning, Cor E

    2007-12-01

    Citric acid (CA) was evaluated as a functionality-enhancing monomer in biobased polyesters suitable for coating applications. Model reactions of CA with several primary and secondary alcohols and diols, including the 1,4:3,6-dianhydrohexitols, revealed that titanium(IV) n-butoxide catalyzed esterification reactions involving these compounds proceed at relatively low temperatures, often via anhydride intermediates. Interestingly, the facile anhydride formation from CA at temperatures around CA's melting temperature ( T m = 153 degrees C) proved to be crucial in modifying sterically hindered secondary hydroxyl end groups. OH-functional polyesters were reacted with CA in the melt between 150 and 165 degrees C, yielding slightly branched carboxylic acid functional materials with strongly enhanced functionality. The acid/epoxy curing reaction of the acid-functional polymers was simulated with a monofunctional glycidyl ether. Finally, the CA-modified polyesters were applied as coatings, using conventional cross-linking agents. The formulations showed rapid curing, resulting in chemically and mechanically stable coatings. These results demonstrate that citric acid can be applied in a new way, making use of its anhydride formation to functionalize OH-functional polyesters, which is an important new step toward fully biobased coating systems.

  16. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  17. Bisphenol-A modified hyper-cross-linked polystyrene resin for salicylic acid removal from aqueous solution: adsorption equilibrium, kinetics and breakthrough studies.

    PubMed

    Hu, Huanxiao; Wang, Xiaomei; Li, Shengyong; Huang, Jianhan; Deng, Shuguang

    2012-04-15

    In this study, a series of bisphenol-A modified hyper-cross-linked polystyrene resins labeled as HJ-L00, HJ-L02, HJ-L04, HJ-L06 and HJ-L08 were synthesized, characterized and evaluated for adsorptive removal of salicylic acid from aqueous solutions. The structural characterization results indicated that the resins possessed predominant micropores/mesopores, moderate specific surface area and a few bisphenol-A groups on the surface. All the bisphenol-A modified hyper-cross-linked resins were effective for removing salicylic acid from aqueous solutions, and sample HJ-L02 had the largest adsorption capacity. The adsorption equilibrium data were correlated by the Freundlich isotherm model, and a positive adsorption enthalpy was obtained. The kinetic data were analyzed with two diffusion models and indicated that the intra-particle diffusion was the sole rate-controlling step in the first stage. The dynamic experimental results showed that the breakthrough point of the HJ-L02 adsorbent was at 90.2 BV (bed volume, 1 BV=10 mL) for a feed concentration of 500.0mg/L of salicylic acid, and 14.0 BV of 1% of sodium hydroxide could completely regenerate the HJ-L02 adsorbent column.

  18. Acetyl-11-keto-beta-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis.

    PubMed

    Krieglstein, C F; Anthoni, C; Rijcken, E J; Laukötter, M; Spiegel, H U; Boden, S E; Schweizer, S; Safayhi, H; Senninger, N; Schürmann, G

    2001-04-01

    The gum resin extract from Boswellia serrata (H15), an herbal product, was recently shown to have positive therapeutic effects in inflammatory bowel disease (IBD). However, the mechanisms and constituents responsible for these effects are poorly understood. This study examined the effect of the Boswellia extract and its single constituent acetyl-11-keto-beta-boswellic acid (AKBA) on leukocyte-endothelial cell interactions in an experimental model of IBD. Ileitis was induced by two subcutaneous injections of indomethacin (7.5 mg/kg) in Sprague-Dawley rats 24 h apart. Rats also received oral treatment with the Boswellia extract (H15) or AKBA at two different doses (low and high) equivalent to recommendations in human disease over 2 days. Controls received only the carriers NaHCO3 (subcutaneously) and tylose (orally). Effects of treatment were assessed by intravital microscopy in ileal submucosal venules for changes in the number of rolling and adherent leukocytes and by macroscopic and histological scoring. Increased leukocyte-endothelial cell adhesive interactions and severe tissue injury accompanied indomethacin-induced ileitis. Treatment with the Boswellia extract or AKBA resulted in a dose-dependent decrease in rolling (up to 90%) and adherent (up to 98%) leukocytes. High-dose Boswellia extract as well as both low- and high-dose AKBA significantly attenuated tissue injury scores. Oral therapy with the Boswellia extract or AKBA significantly reduces macroscopic and microcirculatory inflammatory features normally associated with indomethacin administration, indicating that the anti-inflammatory actions of the Boswellia extract in IBD may be due in part to boswellic acids such as AKBA.

  19. Fractionation and utilization of gossypol resin

    SciTech Connect

    Tursunov, A.K.; Dzhailov, A.T.; Fatkhullaev, E.; Sadykov, A.A.

    1985-10-01

    Gossypol resin is formed as a secondary waste product during distillation of fatty acides isolated from cottonseed oil soap stocks; it is insoluble in water but soluble in products of petroleum distillation. For fractionation, gossypol resin was saponified with caustic soda or caustic potash. Using this method, the resin was separated into unsaponifiable (21-24%) and saponifiable (76-79%) parts. Details of the individual fractions of gossypol resin are presented. The unsaponifiable fraction contains hydrocarbons, alcohols, beta-sito-sterol, beta-amyrin, and vitamin E. The fatty acid fraction of the resin is a mixture of fatty acids and lactones.

  20. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone... thermosetting resins subcategory. 414.50 Section 414.50 Protection of Environment ENVIRONMENTAL PROTECTION... Thermosetting Resins § 414.50 Applicability; description of the thermosetting resins subcategory. The...

  1. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  2. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer`s specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  3. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer's specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  4. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  5. Effect of the Acidic Dental Resin Monomer 10-methacryloyloxydecyl Dihydrogen Phosphate on Odontoblastic Differentiation of Human Dental Pulp Cells.

    PubMed

    Kim, Eun-Cheol; Park, Haejin; Lee, Sang-Im; Kim, Sun-Young

    2015-11-01

    Although 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) is frequently used as an acidic resin monomer in dental adhesives, its effect on dental pulp cells (DPCs) has been rarely reported. The purpose of this study was to examine the effects of 10-MDP on the inflammatory response and odontoblastic differentiation of DPCs at minimally toxic concentrations. We found that 10-MDP caused the release of inflammatory cytokines including NO, PGE2, iNOS, COX-2, TNF-α, IL-1β, IL-6 and IL-8 in a concentration-dependent manner. In addition, 10-MDP reduced alkaline phosphatase activity, mineralization nodule formation and mRNA expression of odontoblastic differentiation markers such as dentin sialophosphoprotein, dentin matrix protein-1, osterix and Runx2 in a concentration-dependent manner with low toxicity. In addition, 10-MDP induced activation of nuclear factor-E2-related factor 2 (Nrf2) and its target gene, haeme oxygenase-1 (HO-1). We evaluated whether the effect of 10-MDP was related to the induction of HO-1 and found that treatment with a selective inhibitor of HO-1 reversed the production of 10-MDP-mediated pro-inflammatory cytokines and the inhibition of differentiation markers. Pre-treatment with either a GSH synthesis inhibitor or antioxidants blocked 10-MDP-induced mitogen-activated protein kinases (MAPKs), Nrf2 and NF-κB pathways. Taken together, the results of this study showed that minimally toxic concentrations of 10-MDP promoted an inflammatory response and suppressed odontoblastic differentiation of DPCs by activating Nrf2-mediated HO-1 induction through MAPK and NF-κB signalling.

  6. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  7. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin.

    PubMed

    Küsters, Markus; Gerhartz, Michael

    2010-04-01

    For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.

  8. Effect of acid etching duration on tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet laser-prepared dentine. Preliminary study.

    PubMed

    Chousterman, M; Heysselaer, D; Dridi, S M; Bayet, F; Misset, B; Lamard, L; Peremans, A; Nyssen-Behets, C; Nammour, S

    2010-11-01

    The purpose of this study was to compare the tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet (Er:YAG) laser-prepared dentine after different durations of acid etching. The occlusal third of 68 human third molars was removed in order to expose the dentine surface. The teeth were randomly divided into five groups: group B (control group), prepared with bur and total etch system with 15 s acid etching [37% orthophosphoric acid (H(3)PO(4))]; group L15, laser photo-ablated dentine (200 mJ) (laser irradiation conditions: pulse duration 100 micros, air-water spray, fluence 31.45 J/ cm(2), 10 Hz, non-contact hand pieces, beam spot size 0.9 mm, irradiation speed 3 mm/s, and total irradiation time 2 x 40 s); group L30, laser prepared, laser conditioned and 30 s acid etching; group L60, laser prepared, laser conditioned and 60 s acid etching; group L90, laser prepared, laser conditioned and 90 s acid etching. A plot of composite resin was bonded onto each exposed dentine and then tested for tensile bond strength. The values obtained were statistically analysed by analysis of variance (ANOVA) coupled with the Tukey-Kramer test at the 95% level. A 90 s acid etching before bonding showed the best bonding value (P < 0.05) when compared with all the other groups including the control group. There is no significance difference between other groups, nor within each group and the control group. There was a significant increase in tensile bond strength of the samples acid etched for 90 s.

  9. Liquid Resins With Low VOC Emissions

    DTIC Science & Technology

    2004-12-01

    titrated with the perchloric acid / peracetic acid solution (Aldrich) until the indicator, 0.1% crystal violet in acetic acid (Aldrich), changed color from...method of reducing styrene emissions from vinyl ester (VE) resins is to replace some or all of the styrene with fatty acid -based monomers. Fatty acid ...renewable resources. VE resins with no more than 20 wt% styrene were prepared using methacrylate terminated lauric acid . The viscosities of these

  10. Acylated glycosides of hydroxy fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol.

    PubMed

    Ono, Masateru; Takigawa, Ayako; Mineno, Tomoko; Yoshimitsu, Hitoshi; Nohara, Toshihiro; Ikeda, Tsuyoshi; Fukuda-Teramachi, Emiko; Noda, Naoki; Miyahara, Kazumoto

    2010-11-29

    Treatment of the crude ether-insoluble resin glycoside (convolvulin) from seeds of Pharbitis nil (Pharbitis Semen), called pharbitin, with indium(III) chloride in methanol provided seven oligoglycosides of hydroxy fatty acid methyl esters partially acylated by 2-methyl-3-hydroxybutyric (nilic) and 2S-methylbutyric acids. Their structures were elucidated on the basis of NMR and MS data and chemical conversions.

  11. Improved wet bonding of methyl methacrylate-tri-n-butylborane resin to dentin etched with ten percent phosphoric acid in the presence of ferric ions.

    PubMed

    Iwasaki, Yasuhiko; Toida, Tetsuya; Nakabayashi, Nobuo

    2004-03-01

    The objective of this study was to determine the influence of dissolved dentinal substances in demineralized dentin on the hybridization of resin for bonding to dentin. It was hypothesized that these substances, including polyelectrolytes, significantly change the substrates, which could then be assessed by the addition of Na(+), Ca(2+), or Fe(3+) in 10% phosphoric acid. Bovine dentin specimens were etched for 10 s with a solution of 10% phosphoric acid (control) or of 22.0 mM dissolved sodium chloride (10P-Na), calcium chloride (10P-Ca), or ferric chloride (10P-Fe). The specimens were then rinsed, blot-dried, and primed three times with 5% 4-methacryloyloxyethyl trimellitate anhydride in acetone for 60 s. Methyl methacrylate-tri-n-butylborane resin was then applied. The tensile bond strength of each of the dumbbell-shaped specimens was then measured. The fractured surfaces and modified cross-sections were examined by scanning electron microscopy. The cross-sections were soaked in 6N HCl for 10 s and then in 1% sodium hypochlorite for 30 min to determine the resin content in the hybridized specimens. Shrinkage of the demineralized dentins upon drying was assessed by atomic force microscopy. The tensile bond strengths were 10.8 +/- 4.5 (control), 15.0 +/- 7.0 (10P-Na), 19.3 +/- 5.5 (10P-Ca), and 27.8 +/- 8.1 (10P-Fe) MPa. The atomic force microscopy studies showed that Fe(3+) minimized the shrinkage by drying for 10 s but Ca(2+) and Na(+) did not decrease the shrinkage the same as the control. The results support the hypothesis that the monomer permeability of wet demineralized dentin is effectively improved by dissolving ferric ions in the phosphoric acid, resulting in a greater bond strength and higher resin content in the hybridized dentin. The dissolved dentinal substances, including the polyelectrolytes, had a significant influence on the characteristics of the demineralized dentin, changing the degree of hybridization and bonding.

  12. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent.

  13. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water.

    PubMed

    McKenzie, M A; Linden, R W A; Nicholson, J W

    2003-10-01

    Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects.

  14. Multilayer Hydrophilic Poly(phenol-formaldehyde resin)-Coated Magnetic Graphene for Boronic Acid Immobilization as a Novel Matrix for Glycoproteome Analysis.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2015-07-29

    Capturing glycopeptides selectively and efficiently from mixed biological samples has always been critical for comprehensive and in-depth glycoproteomics analysis, but the lack of materials with superior capture capacity and high specificity still makes it a challenge. In this work, we introduce a way first to synthesize a novel boronic-acid-functionalized magnetic graphene@phenolic-formaldehyde resin multilayer composites via a facile process. The as-prepared composites gathered excellent characters of large specific surface area and strong magnetic responsiveness of magnetic graphene, biocompatibility of resin, and enhanced affinity properties of boronic acid. Furthermore, the functional graphene composites were shown to have low detection limit (1 fmol) and good selectivity, even when the background nonglycopeptides has a concentration 100 fold higher. Additionally, enrichment efficiency of the composites was still retained after being used repeatedly (at least three times). Better yet, the practical applicability of this approach was evaluated by the enrichment of human serum with a low sample volume of 1 μL. All the results have illustrated that the magG@PF@APB has a great potential in glycoproteome analysis of complex biological samples.

  15. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    PubMed

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  16. Evolution of Diterpene Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of Conifer Defense against Insects1[C][W][OA

    PubMed Central

    Hamberger, Björn; Ohnishi, Toshiyuki; Hamberger, Britta; Séguin, Armand; Bohlmann, Jörg

    2011-01-01

    Diterpene resin acids (DRAs) are specialized (secondary) metabolites of the oleoresin defense of conifers produced by diterpene synthases and cytochrome P450s of the CYP720B family. The evolution of DRA metabolism shares common origins with the biosynthesis of ent-kaurenoic acid, which is highly conserved in general (primary) metabolism of gibberellin biosynthesis. Transcriptome mining in species of spruce (Picea) and pine (Pinus) revealed CYP720Bs of four distinct clades. We cloned a comprehensive set of 12 different Sitka spruce (Picea sitchensis) CYP720Bs as full-length cDNAs. Spatial expression profiles, methyl jasmonate induction, and transcript enrichment in terpenoid-producing resin ducts suggested a role of CYP720B4 in DRA biosynthesis. CYP720B4 was characterized as a multisubstrate, multifunctional enzyme by the formation of oxygenated diterpenoids in metabolically engineered yeast, yeast in vivo transformation of diterpene substrates, in vitro assays with CYP720B4 protein produced in Escherichia coli, and alteration of DRA profiles in RNA interference-suppressed spruce seedlings. CYP720B4 was active with 24 different diterpenoid substrates, catalyzing consecutive C-18 oxidations in the biosynthesis of an array of diterpene alcohols, aldehydes, and acids. CYP720B4 was most active in the formation of dehydroabietic acid, a compound associated with insect resistance of Sitka spruce. We identified patterns of convergent evolution of CYP720B4 in DRA metabolism and ent-kaurene oxidase CYP701 in gibberellin metabolism and revealed differences in the evolution of specialized and general diterpene metabolism in a gymnosperm. The genomic and functional characterization of the gymnosperm CYP720B family highlights that the evolution of specialized metabolism involves substantial diversification relative to conserved, general metabolism. PMID:21994349

  17. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  18. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  19. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  20. Effect of a self-etching primer and phosphoric acid etching on the bond strength of 4-META/MMA-TBB resin to human enamel.

    PubMed

    Nogawa, Hiroshi; Koizumi, Hiroyasu; Saiki, Osamu; Hiraba, Haruto; Nakamura, Mitsuo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the shear bond strength and durability of 4-META/MMA-TBB resin to human enamel. A self-etching primer that contained 4-META (Teeth Primer, TP) and 35-45% or 60-65% concentrations of phosphoric acid (K-Etchant Gel, KE, and Super Bond C&B Red Activator, RA) were used as the surface treatment agents. A methyl methacrylate (MMA)-based self-polymerizing resin (Super-Bond C&B) was used as a luting agent. The shear bond strength was determined both pre and post thermocycling. The results were statistically analyzed with a non-parametric procedure. The post-thermocycling shear bond strength of the TP group was significantly higher than that of other groups, and that of the KE group was significantly higher compared with the RA group. These results demonstrated that 4-META was effective. Furthermore, when the degree of tooth demineralization was compared, surface treatment with less demineralization using TP was the most effective treatment.

  1. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption.

  2. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  3. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    international treaties). Environmental testing is performed in a chemical laboratory setting, with the test compounds being exposed to environmental soil or......when it is no longer needed. Do not return it to the originator. ARL-SR-0323 ● JUNE 2015 US Army Research Laboratory Resin

  4. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    PubMed

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  5. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion

    SciTech Connect

    Simoneit, B.R.T. ); Rogge, W.F.; Cass, G.R. ); Mazurek, M.A. ); Standley, L.J. ); Hildemann, L.M. )

    1993-11-01

    Biomass smoke aerosols contain thermally unaltered and partially altered biomarker compounds from major vegetation taxa. These compounds range from C[sub 8] to C[sub 31] and include phytosterols, lignans, phenolic products from lignin, and diterpenoids from resins. Certain of the higher molecular weight biomarkers are vaporized from the parent plant material and subsequently condense unaltered into the particle phase. Other compounds undergo pyrolytic alteration and possibly dimerization. In both cases it is possible to assign many of these compounds to the plant taxa of the unburned fuel. The diterpenoids are good indicators for smoke from burning of gymnosperm wood. The relative distribution of the OH/OCH[sub 3] substituent patterns on the phenolic products indicates the plant class of the biomass that was burned. Application of these relationships to the interpretation of ambient smoke aerosols may permit further evaluation of the sources that contribute to regional biomass burning. 80 refs., 5 figs., 1 tab.

  6. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  7. Processing large-diameter poly(L-lactic acid) microfiber mesh/mesenchymal stromal cell constructs via resin embedding: an efficient histologic method.

    PubMed

    D'Alessandro, Delfo; Pertici, Gianni; Moscato, Stefania; Metelli, Maria Rita; Danti, Sabrina; Nesti, Claudia; Berrettini, Stefano; Petrini, Mario; Danti, Serena

    2014-08-01

    In this study, we performed a complete histologic analysis of constructs based on large diameter ( >100 μm) poly-L-lactic acid (PLLA) microfibers obtained via dry-wet spinning and rat Mesenchymal Stromal Cells (rMSCs) differentiated towards the osteogenic lineage, using acrylic resin embedding. In many synthetic polymer-based microfiber meshes, ex post processability of fiber/cell constructs for histologic analysis may face deterring difficulties, leading to an incomplete investigation of the potential of these scaffolds. Indeed, while polymeric nanofiber (fiber diameter = tens of nanometers)/cell constructs can usually be embedded in common histologic media and easily sectioned, preserving the material structure and the antigenic reactivity, histologic analysis of large polymeric microfiber/cell constructs in the literature is really scant. This affects microfiber scaffolds based on FDA-approved and widely used polymers such as PLLA and its copolymers. Indeed, for such constructs, especially those with fiber diameter and fiber interspace much larger than cell size, standard histologic processing is usually inefficient due to inhomogeneous hardness and lack of cohesion between the synthetic and the biological phases under sectioning. In this study, the microfiber/MSC constructs were embedded in acrylic resin and the staining/reaction procedures were calibrated to demonstrate the possibility of successfully employing histologic methods in tissue engineering studies even in such difficult cases. We histologically investigated the main osteogenic markers and extracellular matrix molecules, such as alkaline phosphatase, osteopontin, osteocalcin, TGF-β1, Runx2, Collagen type I and the presence of amorphous, fibrillar and mineralized matrix. Biochemical tests were employed to confirm our findings. This protocol permitted efficient sectioning of the treated constructs and good penetration of the histologic reagents, thus allowing distribution and expression of almost

  8. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  9. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  10. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  11. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  12. A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Wang, Xiaomei; Li, Guoqiang; Guo, Deping; Zhang, Yaling; Huang, Jianhan

    2016-05-15

    Improving the surface polarity is of significance for the post-cross-linked resins to enhance their adsorption to polar aromatic compounds. In the present study, we prepared a novel polar-modified post-cross-linked PDEpc_D by the Friedel-Crafts alkylation reaction and the amination reaction, the Brunauer-Emmett-Teller (BET) surface area and pore volume increased significantly after the Friedel-Crafts alkylation reaction and the surface polarity improved greatly after the amination reaction. Batch adsorption showed that PDEpc_D possessed a much enhanced adsorption to salicylic acid as compared the precursors PDE and PDEpc as well as the non-polar post-cross-linked PDVBpc. The equilibrium data was characterized by the Freundlich model, π-π stacking, hydrogen bonding and static interaction were the possible driving forces. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. Column adsorption-desorption experiments suggested that PDEpc_D was a potential candidate for adsorptive removal of salicylic acid from aqueous solution.

  13. Speciation analysis of Sb(III) and Sb(V) in antileishmaniotic drug using Dowex 1 x 4 resin from hydrochloric acid solution.

    PubMed

    Łukaszczyk, L; Zyrnicki, W

    2010-09-05

    A new and simple method for the direct and simultaneous determination of Sb(III) and Sb(V) in meglumine antimoniate, the first-choice drug for leishmaniasis treatment, was developed. Speciation analysis was carried out using the quantitative separation of inorganic trivalent and pentavalent antimony on Dowex 1 x 4 resin from 1.5 mol l(-1) hydrochloric acid solution. The inductively coupled plasma optical emission spectrometry (ICP-OES) was used for determination of antimony. The interfering effects of As, Bi, Cd, Cu, Mn, Pb and Zn were examined and only Bi was found to be a significant interferent. The liberation of Sb(V) and Sb(III) from organoantimonial compounds without changing of oxidation state was carried out by means of 1.5 mol l(-1) hydrochloric acid solution. The spike recovery values obtained for Sb(III) in pharmaceutical sample varied from 92 to 100%. The method was successfully applied for the direct determination of antimony(III) and of antimony(V) in meglumine antimoniate.

  14. The adsorption of TcO{sub 4}- on Reillex{sup TM}-HPQ anion exchange resin from nitric acid solution

    SciTech Connect

    Ashley, K.R.; Pinkerton, A.; Abney, K.D.; Schroeder, N.C.

    1993-12-31

    The determination of K{sub d} (defined as ([RTcO{sub 4}{sup {minus}}]/[TcO{sub 4}{sub {minus}}]{sub total})mL/g) for TcO{sub 4}{sup {minus}} and the nitrate form of Reilex {trademark}. HPQ has been determined in nitric acid solutions between 8.9 and 9.8 x 10{sup {minus}4}M at 20{degrees}C. Equilibrium is attained between the resin and the TcO{sub 4{minus}} solutions in 30 min or less. The values of K{sub d} and 8.88, 4.43, and 1.33 M HNO{sub 3} are 21.6 {+-} 2.3, 84.1 {+-} 4.9, and 280 {+-} 33 mL/g, respectively. These are the averages of two determinations and the uncertainty is one standard deviation of the two values. The value of K{sub d} between 9.2 and 0.01 M nitric acid can be described by the empirical equation K{sub d} = 568[HNO{sub 3}]{sup {minus}1.435} mL/g. The value of K{sub d} for Reilex {trademark}-HPQ at 5.0 M HNO{sub 3} is four times that of Dowex{trademark}-1x8.

  15. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    PubMed

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  16. Stability Of A Carbon-Dioxide-Removing Resin

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter

    1990-01-01

    Report describes experiments determing long-term chemical stability of IRA-45, commerical ion-exchange resin candidate for use in removing CO2 from atmosphere of Space Station. In proposed system, cabin air passes through resin, and acidic CO2 absorbed by weakly-basic hydrated diethylenetriamine bonded to porous resin substrate. When resin absorbs all CO2, disconnects from airstream and heated with steam to desorb CO2. Resin reuseable. Removed by post-treating process air with phosphoric acid on charcoal. Other chemicals removed by trace-contaminant-control subsystem of Space Station.

  17. Determining resin/fiber content of laminates

    NASA Technical Reports Server (NTRS)

    Garrard, G. G.; Houston, D. W.

    1979-01-01

    Article discusses procedure where hydrazine is used to extract graphite fibers from cured polyimide resin. Method does not attack graphite fibers and is faster than hot-concentrated-acid digestion process.

  18. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    PubMed

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  19. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.

    PubMed

    Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

    2012-04-01

    The aim of this study was to test the microtensile bond strength (μTBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The μTBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (α = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in μTBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine.

  20. Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth

    PubMed Central

    Khosravanifard, Behnam; Rakhshan, Vahid; Araghi, Solmaz; Parhiz, Hadi

    2012-01-01

    Background and aims Bleaching can considerably reduce shear bond strength (SBS) of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on composite-to-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glass-ionomer cement (RMGIC) has not been studied, which was the aim of this study. Materials and methods Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI). Sodium ascorbate 10% was applied to the experimental specimens (n=25). All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent) and bonded using RMGIC (Fuji Ortho LC, GC). The specimens were subjected to incubation (37°C, 24h) and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min). The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magni-fication. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’sexact test (α=0.05). Results The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The dif-ference was statistically significant (P=0.000 by t-test). SBS of both control (P=0.014) and experimental (P=0.000) groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments), which de-serves further studies. PMID:22991638

  1. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  2. Hydrolyzable polyester resins, varnishes and coating compositions containing the same

    DOEpatents

    Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi

    1984-01-01

    Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.

  3. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  4. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  5. Cloning and expression of a CYP720B orthologue involved in the biosynthesis of diterpene resin acids in Pinus brutia.

    PubMed

    Semiz, Asli; Sen, Alaattin

    2015-03-01

    Cytochrome P450 monooxygenases mediate a broad range of oxidative reactions involved in the biosynthesis of both primary and secondary metabolites in plants. Until now, only two P450 genes, CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, have been functionally characterised and described in the literature. The purpose of this study was to describe the cloning and expression of CYP720B from Pinus brutia due to its suggested role in the synthesis of bioactive compounds used for chemical defence against insects. A PCR product of the P. brutia CYP720B gene was cloned into the pCR8/GW/TOPO cloning vector. After optimising the sequence for codon usage in yeast, it was transferred into the inducible expression vector pYES-DEST52 and transfected into the S. cerevisiae INVSc1 strain. Sequence analysis showed that the P. brutia CYP720B gene contains an open reading frame of 1,464 nucleotides, which encodes a 53,570 Da putative protein of 487 amino acid residues. The putative protein contains the classic heme-binding sequence motif that is conserved in all P450 enzymes. It shares 99 and 61% identity with the deduced amino acid sequences of CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, respectively. Recombinant CYP720B protein expression was confirmed using western blot analysis. Furthermore, recombinant CYP720B was functionally active, showing a Soret peak at approximately 448 nm in the reduced CO difference spectra. These data suggest that the cloned gene is an orthologue of CYP720B in P. brutia and might be involved in DRA biosynthesis.

  6. Morphology of resin-dentin interfaces after Er,Cr:YSGG laser and acid etching preparation and application of different bonding systems.

    PubMed

    Beer, Franziska; Buchmair, Alfred; Körpert, Wolfram; Marvastian, Leila; Wernisch, Johann; Moritz, Andreas

    2012-07-01

    The goal of this study was to show the modifications in the ultrastructure of the dentin surface morphology following different surface treatments. The stability of the adhesive compound with dentin after laser preparation compared with conventional preparation using different bonding agents was evaluated. An Er,Cr:YSGG laser and 36% phosphoric acid in combination with various bonding systems were used. A total of 100 caries-free human third molars were used in this study. Immediately after surgical removal teeth were cut using a band saw and 1-mm thick dentin slices were created starting at a distance of 4 mm from the cusp plane to ensure complete removal of the enamel. The discs were polished with silicon carbide paper into rectangular shapes to a size of 6 × 4 mm (±0,2 mm).The discs as well as the remaining teeth stumps were stored in 0.9% NaCl at room temperature. The specimens were divided into three main groups (group I laser group, group II etch group, group III laser and etch group) and each group was subdivided into three subgroups which were allocated to the different bonding systems (subgroup A Excite, subgroup B Scotchbond, subgroup C Syntac). Each disc and the corresponding tooth stump were treated in the same way. After preparation the bonding composite material was applied according to the manufacturers' guidelines in a hollow tube of 2 mm diameter to the disc as well as to the corresponding tooth stump. Shear bond strength testing and environmental scanning electron microscopy were used to assess the morphology and stability of the resin-dentin interface. The self-etching bonding system showed the highest and the most constant shear values in all three main groups, thus enabling etching with phosphoric acid after laser preparation to be avoided. Thus we conclude that laser preparation creates a surface texture that allows prediction of the quality of the restoration without the risk of negative influences during the following treatment steps. This

  7. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  8. A mechanism for enhancing ionic accessibility into selective ion exchange resins

    SciTech Connect

    Alexandratos, S.D.; Shelley, C.A.; Horwitz, E.P.; Chiarizia, R.

    1998-07-01

    A bifunctional monophosphonic/sulfonic acid ion exchange resin with high capacity has been synthesized. Metal ion studies have been carried out with europium, americium, and ferric nitrate in solutions of varying acidity, with and without sodium nitrate added. The bifunctional resin complexes far higher levels of Eu(III) from 0.5 and 1 N nitric acid than the monofunctional phosphonic acid resin. It is postulated that the sulfonic acid ligand provides an access mechanism for the metal ions into the polymer matrix by hydrating the matrix and preventing its collapse in high ionic strength solutions thus allowing for rapid ionic complexation by the selective phosphonic acid ligands. The bifunctional monophosphonic/sulfonic acid resin has both ligands bound to a polystyrene support. It complexes higher levels of metal ions than a comparable resin differing only by having the monophosphonic acid ligand directly bound to the C-C backbone. Results are compared to a diphosphonic/sulfonic acid resin.

  9. Extraction chromatography of neodymium by an organophosphorous extractant supported on various polymeric resins

    SciTech Connect

    Takigawa, D.Y.

    1993-04-01

    Fifteen resins coated with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (CMP) were studied for their extraction of neodymium (Nd) in 4.0 and 7.0 M nitric acid. Resin properties, such as chemical composition and physical morphology, which can influence Nd extraction as well as subsequent resin regeneration (Nd stripping), were identified. Hydrophilic or polar resins coated with CMP efficiently extracted the Nd. Resins initially washed free of residual monomer and solvent before CMP coating outperformed their untreated counterparts. The macroporous styrene-divinylbenzene hydrophobic resins that were high in surface area were less effective supports compared with hydrophilic microporous Aurorez, polybenzimidazole (PBI) and macroporous Amberlite polyacrylic resins. Only one resin, Duolite C-467, showed no measurable improvement in Nd extraction with CMP coating. CMP-coated Aurorez PBI, a microporous and hydrophilic polymeric resin with an average surface area, showed the best overall efficiency for Nd removal and resin regeneration.

  10. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  11. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  12. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys.

    PubMed

    Ikemura, Kunio; Fujii, Toshihide; Negoro, Noriyuki; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    The effect of metal primers on adhesion of a resin composite to dental metal alloys was investigated. Experimental primers containing a dithiooctanoate monomer [10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) or 6-methacryloyloxyhexyl 6,8-dithiooctanoate (6-MHDT)] and a phosphonic acid monomer [6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) or 6-methacryloyloxyhexyl 3-phosphonopropionate (6-MHPP)] were prepared. After treating Au, Au alloy, Ag alloy, Au-Ag-Pd alloy, and Ni-Cr alloy with the experimental primers, their shear bond strengths (SBSs) with a prosthetic light-curing resin composite (Solidex, Shofu Inc., Japan) were measured after 1-day storage followed by 5,000 thermal cycles. The SBSs between Solidex and the primer-treated metals which were incubated in air at 50°C for 2 months were further measured. Results showed that the SBSs [mean (SD)] of all metal adherends treated with primer DT-PA-1 (5.0 wt% 10-MDDT, 1.0 wt% 6-MHPA) ranged between 31.2 (5.2) and 34.5 (5.8) MPa. The SBSs of the primer-treated metals did not degrade after 2-month incubation at 50°C. Therefore, a combined primer application consisting of a dithiooctanoate monomer and a phosphonic acid monomer provided efficacious bonding to Au as well as precious and non-precious metal alloys.

  13. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  14. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  15. 21 CFR 177.2415 - Poly(aryletherketone) resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... basic resins identified in paragraph (a) may contain optional adjuvant substances used in their... finished basic resin. (c) Extractive limitations. The finished food contact article, when extracted at...: Distilled water, 50 percent (by volume) ethanol in distilled water, 3 percent acetic acid in distilled...

  16. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consist of basic resin produced by reacting polyphenylene sulfide with peracetic acid such that the... sulfide used to manufacture polyphenylene sulfone is prepared by the reaction of sodium sulfide and p... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfone resins. 177.2500 Section...

  17. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  18. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  19. Cleanup of TMI-2 demineralizer resins

    SciTech Connect

    Bond, W.D.; King, L.J.; Knauer, J.B.; Hofstetter, K.J.; Thompson, J.D.

    1985-01-01

    Radiocesium is being removed from Demineralizers A and B (DA and DB by a process that was developed from laboratory tests on small samples of resin from the demineralizers. The process was designed to elute the radiocesium from the demineralizer resins and then to resorb it onto the zeolite ion exchangers contained in the Submerged Demineralizer System (SDS). The process was also required to limit the maximum cesium activities in the resin eluates (SDS feeds) so that the radiation field surrounding the pipelines would not be excessive. The process consists of 17 stages of batch elution. In the initial stage, the resin is contacted with 0.18 M boric acid. Subsequent stages subject the resin to increasing concentrations of sodium in NaH/sub 2/BO/sub 3/-H/sub 3/BO/sub 3/ solution (total B = 0.35 M) and then 1 M sodium hydroxide in the final stages. Results on the performance of the process in the cleanup of the demineralizers at TMI-2 are compared to those obtained from laboratory tests with small samples of the DA and DB resins. To date, 15 stages of batch elution have been completed on the demineralizers at TMI-2 which resulted in the removal of about 750 Ci of radiocesium from DA and about 3300 Ci from DB.

  20. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  1. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  2. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  3. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  4. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  5. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  6. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  7. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  8. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  9. Benzonorbornadiene end caps for PMR resins

    NASA Technical Reports Server (NTRS)

    Panigot, Michael J.; Waters, John F.; Varde, Uday; Sutter, James K.; Sukenik, Chaim N.

    1992-01-01

    Several ortho-disubstituted benzonorbornadiene derivatives are described. These molecules contain acid, ester, or anhydride functionality permitting their use as end caps in PMR (polymerization of monomer reactants) polyimide systems. The replacement of the currently used norbornenyl end caps with benzonorbornadienyl end caps affords resins of increased aromatic content. It also allows evaluation of some mechanistic aspects of PMR cross-linking. Initial testing of N-phenylimide model compounds and of actual resin formulations using the benzonorbornadienyl end cap reveals that they undergo efficient thermal crosslinking to give oligomers with physical properties and thermal stability comparable to commercial norbornene-end-capped PMR systems.

  10. Conversion of ion exchange resin to various functional resins and the application in the field of pharmaceutical sciences

    NASA Astrophysics Data System (ADS)

    Nakayama, Morio

    Ion exchange resins are widely used for separating ions in the solution, desalination, removal of impurities, and etc. Giving a new function to these ion exchange resins enables the application in more various fields. Until now, we carried out the research work about the following 5 project.: (1) Conversion of ion exchange resins into selective adsorbents by using low molecular reagents, which possess capabilities of a selective reaction with target ions, ion exchange reaction with the ion exchange resin and strong physical adsorption to the ion exchange resin. (2) Synthesis of resins for ion exchange high performance liquid chromatography (IEHPLC) and the analysis of biomaterials. (3) Development of insoluble macromolecular Sn(II) complex based on the aminophosphonic acid type ion exchange resin and its application to the 99mTc labeling of proteins. (4) Development of a new 68Ge-68Ga generator using N-methylglucamine type organic polymer as the adsorbent for 68Ge and production of 68Ga for PET. (5) Preparation of an ion-exchangeable polymer bead wrapped with bilayer membrane structures. In this paper, the application of various functional resins prepared based on ion exchange resin in the field of pharmaceutical sciences has been summarized.

  11. Four Pentasaccharide Resin Glycosides from Argyreia acuta.

    PubMed

    Yu, Bang-Wei; Sun, Jing-Jing; Pan, Jie-Tao; Wu, Xiu-Hong; Yin, Yong-Qin; Yan, You-Shao; Hu, Jia-Yan

    2017-03-11

    Four pentasaccharide resin glycosides, acutacoside F-I (1-4), were isolated from the aerial parts of Argyreia acuta. These compounds were characterized as a group of macrolactones of operculinic acid A, and their lactonization site of 11S-hydroxyhexadecanoic acid was esterified at the second saccharide moiety (Rhamnose) at C-2. The absolute configuration of the aglycone was S. Their structures were elucidated by established spectroscopic and chemical methods.

  12. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  13. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  14. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    PubMed

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.

  15. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    PubMed

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  16. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  17. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  18. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  19. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    PubMed

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  20. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  1. The effects of ionizing radiation on Reillex trademark HPQ, a new macroporous polyvinylpyridine resin, and on four conventional polystyrene anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1990-11-01

    This study compares the effects of ionizing radiation on Reillex{trademark} HPQ, a recently available macroporous copolymer of 1-methyl-4-vinylpyridine/divinylbenzene, and on four conventional strong-base polystyrene anion exchange resins. The polystyrene resins investigated included one gel type, Dowex{trademark} 1 {times} 4, and three macroporous resins: Dow{trademark} MSA-1, Amberlite{trademark} IRA-900, and Lewatit{trademark} MP-500-FK. Each resin, in 7 M nitric acid, was subjected to seven different levels of {sup 60}Co gamma radiation ranging from 100 to 1000 megarads. Irradiated resins were measured for changes in dry weight, wet volume, chloride and Pu(IV) exchange capacities, and thermal stability. In separate experiments, each resin was subjected to approximately 340 megarads of in situ alpha particles from sorbed plutonium. Resin damage from alpha particles was less than half that caused by gamma rays, which may be a consequence of different production rates of radiolytic nitrite and nitro radicals in the two systems. Reillex{trademark} HPQ resin provided the greatest radiation stability, whereas Lewatit{trademark} MP-500-FK was the least stable of the resins tested. Thermogravimetric analyses of dry, nitrate-form resin revealed that dry Reillex{trademark} HPQ resin offered the best thermal stability for absorbed gamma doses to 370 megarads, but the worst thermal stability after exposures of 550 megarads or more. 25 refs., 11 figs., 13 tabs.

  2. VALIDATION FOR THE PERMANGANATE DIGESTION OF REILLEX HPQ ANION RESIN

    SciTech Connect

    Kyser, E.

    2009-09-23

    The flowsheet for the digestion of Reillex{trademark} HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO{sub 3}. Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion of the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex{trademark} HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount (<5%). The length of digestion time at 70 C remains unchanged at 15 hours. These parameters are not optimized but are expected to be adequate for the conditions. The flowsheet generates a significant amount of fine manganese dioxide (MnO{sub 2}) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.

  3. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  4. Alternate Methods For Eluting Cesium From Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-01-01

    A Small Column Ion Exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high level waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST) an inorganic, non-regenerable sorbent or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The standard method for eluting the cesium from the RF resin uses 15-20 bed volumes (BV) of 0.5 M nitric acid (HNO3). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks, and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid generated by the standard elution method exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing conditions in the glass melt. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 bed volumes of 0.5 M nitric acid are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the standard elution method removes a very small quantity of cesium from the resin. The resin was loaded with 9.5 g Cs/L of resin prior to elution, which is the maximum expected loading for RF resin treating the actual dissolved salt waste at SRS. For the baseline elution method, 465 g of nitrate is used per liter of resin, and >99.9999% of the cesium is removed from the resin. An alternative method that used 4 bed volumes of 0.5 M HNO3 followed by 11 bed volumes of 0.05 M HNO3, used 158 g of nitrate per liter of resin (66% less nitrate than used for the standard elution) and removed >99.998% of the cesium. A staccato flow mode using 0.5 M HNO3 (1 hr on at 1 BV/hr, followed by 3 hrs off) after the resin had been titrated using a continuous

  5. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  6. A Preliminary Evaluation of the Phosphazene Resin PPZ

    DTIC Science & Technology

    1993-10-01

    hardcoating for various substrates such as poly (ethylene terephthalate) (PET), poly(vinyl chloride) (PVC), poly(methylmethacryate) ( PMMA ), polycarbonate...resin is observed to be harder and more abrasion resistant than PMMA and PC. The phosphazene resin is also reported to be chemically resistant to...detergents, bleach, solvents, dilute acid, and alkaline solutions (1,2). PC is widely used in the Army for transparent armor applications such as lenses and

  7. Imide Modified Epoxy Matrix Resin.

    DTIC Science & Technology

    1981-02-01

    the bisimide amine cured epoxies (IME’s) were considerably lower than the state-of-the-art epoxies . The strain-to-failure of the control resin system ...nine epoxy resin systems which were prepared from tetraglycidyl methylenedianiline (MY 720) cured with a stoichiometric quantity of bisimide-amine and...graphite imide modified cured epoxy resin composites. The designation for each material is also listed in Table 1. The composition of each resin system

  8. Components of the ether-insoluble resin glycoside-like fraction from Cuscuta chinensis.

    PubMed

    Du, X M; Kohinata, K; Kawasaki, T; Guo, Y T; Miyahara, K

    1998-07-01

    A trisaccharide and four new glycosidic acids, named cuscutic acids A-D, along with known organic acids, acetic acid, propionic acid, (2S)-2-methylbutyric acid, tiglic acid, (2R, 3 R)-nilic acid, (11S) convolvulinolic acid and (11S)-jalapinolic acid have been isolated from the alkaline hydrolysate of the ether-insoluble resin glycoside-like fraction of the seeds of Cuscuta chinensis. The compounds were characterized on the basis of chemical and physical data.

  9. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  10. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  11. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  12. Enlightening the past: analytical proof for the use of Pistacia exudates in ancient Egyptian embalming resins.

    PubMed

    Nicholson, Tim M; Gradl, Manuela; Welte, Beatrix; Metzger, Michael; Pusch, Carsten M; Albert, Klaus

    2011-12-01

    Mastic, the resinous exudate of the evergreen shrub Pistacia lentiscus, is frequently discussed as one of the ingredients used for embalming in ancient Egypt. We show the identification of mastic in ancient Egyptian embalming resins by an unambiguous assignment of the mastic triterpenoid fingerprint consisting of moronic acid, oleanonic acid, isomasticadienonic and masticadienonic acid through the consolidation of NMR and GC/MS analysis. Differences in the observed triterpenoid fingerprints between mummy specimens suggest that more than one plant species served as the triterpenoid resin source. Analysis of the triterpenoid acids of ancient embalming resin samples in the form of their methyl- and trimethylsilyl esters is compared. In addition we show a simple way to differentiate between residues of mastic from its use as incense during embalming or from direct mastic application in the embalming resin.

  13. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOEpatents

    Maxwell, III, Sherrod L.; Nichols, Sheldon T.

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  14. Management of Spent Organic Ion-Exchange Resins by Photochemical Oxidation

    SciTech Connect

    Srinivas, C.; Sugilal, S.; Wattal, P. K.

    2003-02-26

    Management of spent ion-exchange resin waste arising from nuclear reactor operations by traditional practice of encapsulation in cement is associated with problems such as swelling and disintegration. Complete oxidation (mineralization) is an attractive alternative option. This paper reports the development of photochemical mineralization process for organic ion-exchange resins of poly (styrene-divinyl benzene) type with sulfonic acid and quaternary ammonium functional groups. It is a two-step process consisting of dissolution (conversion of solid resin into water-soluble reaction products) and photo-Fenton mineralization of the dissolved resin. Cation and anion resin dissolution was effected by reaction of the resin with H2O2 at 50-60 C in the presence of ferrous/copper sulphate catalyst. Direct dissolution of mixed resin was not efficient. However, the cation resin portion in the mixed resin could be selectively dissolved without affecting the anion portion. The solid anion resin after separation from the cation resin solution could be dissolved. About 0.5 liters of 50% H2O2 was required for dissolution of one kg of wet resin. The reaction time was 4-5 hours. Dissolution experiments were conducted on up to 8 liters of wet resin. The second step, viz., photo-Fenton mineralization of the dissolved resin was effected at ambient temperature(25-35 C). Kinetic results of laboratory scale experiments in immersion type photo-reactor and pilot scale experiments in tubular flow photo-reactor were presented. These results clearly demonstrated the photo-Fenton mineralization of dissolved resin at ambient temperature with stoichiometric quantity of H2O2 as against 70-200% excess H2O2 requirement in chemical mineralization experiments under Fenton oxidation conditions at 90-95 C. Based on these studies, a treatment scheme was developed and presented in this paper.

  15. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  16. New Low Cost Resin Systems

    DTIC Science & Technology

    2006-05-31

    difference between resins 1 and 2 was the type of phosphorous containing compound, where resin 3 was the same as resin 1 with the addition of melamine ...SBIR N03-120 New Low Cost Resin Systems Applied Poleramic, Inc. Final Report Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Feb 2004 4. TITLE AND SUBTITLE New Low Cost Resin Systems 5a. CONTRACT NUMBER N00014-03-M-0304 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  17. Two new triterpenoids from the resin of Boswellia carterii.

    PubMed

    Wang, Feng; Li, Zhan-Lin; Cui, Hong-Hua; Hua, Hui-Ming; Jing, Yong-Kui; Liang, Sheng-Wang

    2011-03-01

    Two new triterpenoids, 3-oxotirucalla-7,9(11),24-trien-21-oic acid (1) and 18Hα,3β,20β-ursanediol (2), along with 15 known triterpenes, α-amyrin, α-boswellic acid, β-boswellic acid, acetyl α-boswellic acid, acetyl β-boswellic acid, 9,11-dehydro-β-boswellic acid, 9,11-dehydro-α-boswellic acid, acetyl 11α-methoxy-β-boswellic acid, 11-keto-β-boswellic acid, acetyl 11-keto-β-boswellic acid, acetyl α-elemolic acid, 3β-hydroxytirucalla-8,24-dien-21-oic acid, elemonic acid, 3α-hydroxytirucalla-7,24-dien-21-oic acid, and 3α-hydroxytirucall-24-en-21-oic acid, were isolated from the resin of Boswellia carterii Birdw.

  18. Effects of the addition of fluoride to a 4-META/MMA-TBB-based resin adhesive on fluoride release, acid resistance of enamel and shear bond strength in vitro.

    PubMed

    Iijima, Masahiro; Ito, Shuichi; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Saito, Takashi; Mizoguchi, Itaru

    2013-01-01

    This study investigated fluoride release, acid resistance and shear bond strength (SBS) of new 4-META/MMA-TBB-based fluoride-containing resin adhesive (Super-Bond/F3). Super-Bond, Transbond Plus and Fuji Ortho LC were selected for comparison. Fluoride release into distilled water during 6-month period was measured using disk-shaped specimens. Brackets were bonded to human premolars with each material and then the specimens for the nanoindentation test were subjected to alternating immersion (demineralizing and remineralizing solutions); the hardness and elastic modulus of the enamel around bracket were determined. Rest of the specimens was subjected to examine the SBS. Super-Bond/F3 and Fuji Ortho LC showed significantly greater fluoride release compared with the other materials. The reductions in hardness and the elastic modulus for Super-Bond/F3 and Fuji Ortho LC were lower than those for the other materilas. Super-Bond and Super-Bond/F3 showed significantly greater SBS than Fuji Ortho FC. In conclusion, Super-Bond/F3 showed high fluoride-release, cariostatic potential and equivalent SBS.

  19. Composition of asphaltenes and resins of west Siberian petroleums

    SciTech Connect

    Goncharov, I.V.; Babicheva, T.A.; Bodak, A.N.; Nemirovskaya, G.B.; Mashigorov, A.A.

    1985-01-01

    ESR and X-ray diffraction analysis was used to examine asphaltene and resin samples of West Siberia. Experiments were carried out to simulate the effect of catagenesis on resin and asphaltene composition. Processes of thermocatalytic transformations of crude oil in the deposit were found to have no marked effect on asphaltene and resin composition. Transformation of the organic input at sedimentation was assumed to be the main factor determining the qualitative and quantitative composition of crude oil resins and asphaltenes of West Siberia. Petroleums formed from organic matter, accumulating under reducing conditions, contain more asphaltenes and resins, they include much tetravalent vanadium and the asphaltenes have abundant paramagnetic centres. Petroleums formed from oxidized organic matter contain very little asphaltene low concentrations of paramagnetic centers, and little tetravalent vanadium. Resins of these petroleums are rich in oxygen. High levels of asphalt-resin matter in petroleums is related to the presence in the initial organic progenitors of polyunsaturated fatty acids and various nitrogen- and sulfur-containing compounds.

  20. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  1. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  2. Use of epichlorohydrin-treated chitosan resin as an adsorbent to isolate kappa-casein glycomacropeptide from sweet whey.

    PubMed

    Nakano, Takuo; Ikawa, Noriaki; Ozimek, Lech

    2004-12-15

    This study was undertaken to develop a method to isolate glycomacropeptide (GMP), a bioactive compound, from sweet whey by using chitosan resins as anion exchangers. Shrimp shells were used to prepare two chitosan (polyglucosamine) resins, one with the primary amine (-NH(2)) (resin A) and the other with the secondary amine (-NH-) (resin B) as the major functional group. These resins were tested as adsorbents for the isolation of GMP from sweet whey, and the results obtained were compared with those obtained with commercial anion exchangers. The most important finding in this experiment was that the GMP binding capacity of resin A was much higher than that of resin B. Resin A may be the anion exchanger to be tested for industrial scale production of GMP. Amino acid analysis of the GMP-depleted whey fraction suggests that this product can replace sweet whey as an ingredient in various food products including infant formulas, bakery products, and beverages.

  3. Decomposition of Rare Earth Loaded Resin Particles

    SciTech Connect

    Voit, Stewart L; Rawn, Claudia J

    2010-09-01

    resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

  4. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... room temperature. Dimerized vegetable oil or tall oil acids containing not more than 20 percent of... vegetable oil acids (containing not more than 20% of monomer acids) and ethylenediamine, as the basic resin... dimerized vegetable oil acids (containing not more than 10 percent of monomer acids), ethylenediamine, and...

  5. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... room temperature. Dimerized vegetable oil or tall oil acids containing not more than 20 percent of... vegetable oil acids (containing not more than 20% of monomer acids) and ethylenediamine, as the basic resin... dimerized vegetable oil acids (containing not more than 10 percent of monomer acids), ethylenediamine, and...

  6. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... room temperature. Dimerized vegetable oil or tall oil acids containing not more than 20 percent of... vegetable oil acids (containing not more than 20% of monomer acids) and ethylenediamine, as the basic resin... dimerized vegetable oil acids (containing not more than 10 percent of monomer acids), ethylenediamine, and...

  7. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... room temperature. Dimerized vegetable oil or tall oil acids containing not more than 20 percent of... vegetable oil acids (containing not more than 20% of monomer acids) and ethylenediamine, as the basic resin... dimerized vegetable oil acids (containing not more than 10 percent of monomer acids), ethylenediamine, and...

  8. Effects of Resin Hydrophilicity on Dentin Bond Strength

    PubMed Central

    Nishitani, Y.; Yoshiyama, M.; Donnelly, A.M.; Agee, K.A.; Sword, J.; Tay, F.R.; Pashley, D.H.

    2008-01-01

    The purpose of this study was to determine if hydrophobic resins can be coaxed into dentin wet with ethanol instead of water. The test hypothesis was that dentin wet with ethanol would produce higher bond strengths for hydrophobic resins than would dentin wet with water. This study examined the microtensile bond strength of 5 experimental adhesives (50 wt% ethanol/50% comonomers) of various degrees of hydrophilicity to acid-etched dentin that was left moist with water, moist with ethanol, or air-dried. Following composite buildups, hourglass-shaped slabs were prepared from the bonded teeth for microtensile testing. For all 3 types of dentin surfaces, higher bond strengths were achieved with increased resin hydrophilicity. The lowest bond strengths were obtained on dried dentin, while the highest bond strengths were achieved when dentin was bonded moist with ethanol. Wet-bonding with ethanol achieved higher bond strengths with hydrophobic resins than were possible with water-saturated matrices. PMID:17062742

  9. Quantitative analysis of PMR-15 polyimide resin by HPLC

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  10. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  11. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  12. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides.

  13. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  14. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  15. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  16. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  17. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  18. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Polyethylene *Polyethylene—Ethyl Acrylate Resins *Polyethylene—Polyvinyl Acetate Copolymers Polyethylene Resin (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W.) Polyethylene Resin, Latex Polyethylene Resins *Polyethylene Resins, Compounded *Polyethylene,...

  19. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation.

    PubMed

    de Jong, Jeroen; Schoemann, Véronique; Lannuzel, Delphine; Tison, Jean-Louis; Mattielli, Nadine

    2008-08-15

    In the present paper we describe a robust and simple method to measure dissolved iron (DFe) concentrations in seawater down to <0.1 nmol L(-1) level, by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using a (54)Fe spike and measuring the (57)Fe/(54)Fe ratio. The method provides for a pre-concentration step (100:1) by micro-columns filled with the resin NTA Superflow of 50 mL seawater samples acidified to pH 1.9. NTA Superflow is demonstrated to quantitatively extract Fe from acidified seawater samples at this pH. Blanks are kept low (grand mean 0.045+/-0.020 nmol L(-1), n=21, 3 x S.D. limit of detection per session 0.020-0.069 nmol L(-1) range), as no buffer is required to adjust the sample pH for optimal extraction, and no other reagents are needed than ultrapure nitric acid, 12 mM H(2)O(2), and acidified (pH 1.9) ultra-high purity (UHP) water. We measured SAFe (sampling and analysis of Fe) reference seawater samples Surface-1 (0.097+/-0.043 nmol L(-1)) and Deep-2 (0.91+/-0.17 nmol L(-1)) and obtained results that were in excellent agreement with their DFe consensus values: 0.118+/-0.028 nmol L(-1) (n=7) for Surface-1 and 0.932+/-0.059 nmol L(-1) (n=9) for Deep-2. We also present a vertical DFe profile from the western Weddell Sea collected during the Ice Station Polarstern (ISPOL) ice drift experiment (ANT XXII-2, RV Polarstern) in November 2004-January 2005. The profile shows near-surface DFe concentrations of approximately 0.6 nmol L(-1) and bottom water enrichment up to 23 nmol L(-1) DFe.

  20. On-resin synthesis of an acylated and fluorescence-labeled cyclic integrin ligand for modification of poly(lactic-co-glycolic acid).

    PubMed

    Hassert, Rayk; Hoffmeister, Peter-Georg; Pagel, Mareen; Hacker, Michael; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2012-11-01

    Cyclic Arg-Gly-Asp (RGD) peptides show remarkable affinity and specificity to integrin receptors and mediate important physiological effects in tumor angiogenesis. Additionally, they are one of the keyplayers in improving the biocompatibility of biomaterials. The fully biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) is frequently used for biomedical implants and can be applied as nanoparticles for drug delivery. The aim of this work was the generation of a lipidated c[RGDfK] peptide including a second functionality for coating of hydrophobic PLGA. Therefore, we established a general and straightforward strategy for the introduction of two different modifications into the same c[RGDfK] peptide. This allowed the generation of a palmitoylated integrin-binding lipopeptide that shows high affinity to PLGA. Additionally, we coupled 5(6)-carboxyfluorescein to the second site for modification to enable sensitive quantification of the immobilized lipopeptide on PLGA. In conclusion, we present a synthesis protocol that enables the preparation of c[RGDfK] lipopeptides with a strong affinity to PLGA and an additional site for modifications. This will provide the opportunity to introduce a variety of effector molecules site-specifically to the c[RGDfK] lipopeptide, which will enable the introduction of multifunctionality into c[RGDfK]-coated PLGA devices or nanoparticles.

  1. A mass transfer model for the fixed-bed adsorption of ferulic acid onto a polymeric resin: axial dispersion and intraparticle diffusion.

    PubMed

    Davila-Guzman, Nancy E; Cerino-Córdova, Felipe J; Soto-Regalado, Eduardo; Loredo-Cancino, Margarita; Loredo-Medrano, José A; García-Reyes, Refugio B

    2016-08-01

    In this study, amberlite XAD-16 (XAD-16) bed column system was used to remove ferulic acid (FA) from aqueous solutions. Laboratory-scale column experiments were conducted in downflow fixed bed at initial FA concentration of 1 g/L, initial pH 3, and 25°C. The performance of the adsorbent bed under different flow rates (1.3-7.7 mL/min) was studied. The bed utilization efficiency was in the range of 64.64-72.21% at the studied flow rates. A mass transfer model considering both axial dispersion and intraparticle diffusion was developed to predict the breakthrough curves of FA adsorption on XAD-16. This model predicted the experimental data better than Bohart-Adams model and Thomas model, based on the low deviation between predicted and experimental data. The axial dispersion coefficient value varied from 6.45 × 10(-6) to 1.10 × 10(-6) m(2)/s at flow rate from 1.3 to 7.7 mL/min, whereas the intraparticle diffusion coefficient was 1.04 × 10(-10) m(2)/s, being this last resistance the rate-limiting step. In conclusion, axial dispersion and intraparticle diffusion phenomena play the major role in predicting the adsorption of FA onto XAD-16 in fixed-bed columns.

  2. Uranium removal from contaminated groundwater by synthetic resins.

    PubMed

    Phillips, D H; Gu, B; Watson, D B; Parmele, C S

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g(-1) before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 m L of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L(-1) uranium, the uranium concentrations ranged from 0.95 mg L(-1) at 1-h equilibrium to 0.08 mg L(-1) at 24-h equilibrium for Diphonix and 0.17 mg L(-1) at 1-h equilibrium to 0.03 mg L(-1) at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100mL of acidic-(pH 5)-high-nitrate-containing groundwater ( approximately 5 mg L(-1) uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  3. Uranium Removal from Contaminated Groundwater by Synthetic Resins

    SciTech Connect

    Phillips, Debra H.; Gu, Baohua; Watson, David B; Parmele, C. S.

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing ground waters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex{trademark} 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g{sup -1} before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L{sup -1} uranium, the uranium concentrations ranged from 0.95 mg L{sup -1} at 1-h equilibrium to 0.08 mg L{sup -1} at 24-h equilibrium for Diphonix and 0.17 mg L{sup -1} at 1-h equilibrium to 0.03 mg L{sup -1} at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (5 mg L{sup -1} uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kinetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  4. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1992-01-01

    The combined XAD-8 and XAD-4 resin procedure for the isolation of dissolved organic solutes from water was found to isolate 85% or more of the organic solutes from Lake Skjervatjern in Norway. Approximately 65% of the dissolved organic carbon (DOC) was first removed on XAD-8 resin, and then an additional 20% of the DOC was removed on XAD-4 resin. Approximately 15% of the DOC solutes (primarily hydrophilic neutrals) were not sorbed or concentrated by the procedure. Of the 65% of the solutes removed on XAD-8 resin, 40% were fulvic acids, 16% were humic acids, and 9% were hydrophobic neutrals. Approximately 20% of the hydrophilic solutes that pass through the XAD-8 resin were sorbed solutes on the second resin, XAD-4 (i.e., they were hydrophobic relative to the XAD-4 resin). The fraction sorbed on XAD-4 resin was called XAD-4 acids because it represented approximately 85-90% of the hydrophilic XAD-8 acid fraction according to the original XAD-8 fractionation procedure. The recovery of hydrophobic acids (fulvic acids and humic acids) and the hydrophobic neutral fraction from XAD-8 resin was essentially quantitative at 96%, 98%, and 86%, respectively. The recovery of XAD-4 acids from the XAD-4 resin was only about 50%. The exact reason for this moderately low recovery is unknown, but could result from ??-?? bonding between these organic solutes and the aromatic matrix of XAD-4. The hydrophobic/hydrophilic solute separation on XAD-8 resin for water from background Side A and Side B of the lake was almost identical at 65 and 67%, respectively. This result suggested that both sides of the lake are similar in organic chemical composition even though the DOC variation from side to side is 20%.

  5. 21 CFR 175.320 - Resinous and polymeric coatings for polyolefin films.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contact food at temperatures not to exceed room temperature. Dimerized vegetable oil or tall oil acids... Polyamide resins, derived from dimerized vegetable oil acids (containing not more than 20% of monomer acids... and a maximum amine value of 8.5 derived from dimerized vegetable oil acids (containing not more...

  6. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems.

    PubMed

    Martin, Diane; Tholl, Dorothea; Gershenzon, Jonathan; Bohlmann, Jörg

    2002-07-01

    Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.

  7. Modified melamine resins for optical applications

    NASA Astrophysics Data System (ADS)

    Mahler, Joachim; Rafler, Gerald

    1999-06-01

    A new four-step synthetic-route for combining chromophores with melamine resins was developed and their use for optical applications was demonstrated. Despite other melamine resins, the basic molecule of this system is the 2,4,6-trichloro-1,3,5-triazine, the cyanuric chloride. In the first step, the azochromophore was bonded to the s-triazine-ring. Then the residual chlorines of this triazine-chromophore were substituted by ammonia or primary amines. In the third step formaldehyde was added, leading to melamine-chromophore precondensates. For increasing the stability and the solubility of these precondensates, the reactive methylolgroups were etherificated with methyl or butyl alcohol. One example of such a crosslinkable melamine-chromophore was illustrated and characterized by NMR- and mass-spectroscopy. The mass-spectrum gives evidence that the modified melamine precondensates are monomers and not a mixture of different oligomers like else in melamine-aldehyde prepolymers. The result of these systems is a crosslinkable melamine-chromophore monomer which is converted in a resin by thermal treating or by acids. It is remarkable that these polymers show an excellent thermal stability with a de-composition temperature beyond 300°C, a great advantage for using them as optical materials. Their usability as second-order nonlinear optical material was investigated by corona poling.

  8. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  9. Cure shrinkage in casting resins

    SciTech Connect

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  10. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  11. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.

    PubMed

    Baraka, Ahmad; Hall, P J; Heslop, M J

    2007-02-09

    A new chelating resin was synthesised by anchoring nitrilotriacetic acid (NTA) to melamine during the melamine-formaldehyde gelling reaction in the presence of water, using acetone and guaiacol as a porogen mixture. This technique gives a porous chelating gel resin capable of removing heavy metals from wastewater. FT-IR, XRD, elemental analysis, surface area and water regain measurements were conducted for characterization of the new chelating gel resin. A comprehensive adsorption study (kinetics isotherm, and thermodynamics) of Cu(II) removal from synthetic acidic aqueous solutions by adsorption on this resin was conducted regarding the effects of time, temperature, initial pH and copper(II) initial concentration.

  12. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    SciTech Connect

    Birdwell Jr, Joseph F; Lee, Denise L; Taylor, Paul Allen; Collins, Robert T; Hunt, Rodney Dale

    2010-09-01

    , quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).

  13. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  14. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  15. How to increase the durability of resin-dentin bonds.

    PubMed

    Pashley, David H; Tay, Franklin R; Imazato, Satoshi

    2011-09-01

    Resin-dentin bonds are not as durable as was previously thought. Microtensile bond strengths often fall 30% to 40% in 6 to 12 months. The cause of this poor durability is a combination of the activation of matrix metalloproteinases (MMPs) by weak acids such as lactic acid released by caries-producing bacteria, and acid-etchants used in adhesive bonding systems. These acids uncover and activate matrix-bound MMPs. The other contributing factor is incomplete resin infiltration. If all exposed collagen fibrils were enveloped by resin, the MMPs would not have free access to water, an obligatory requirement of these enzymes. Recently, several inhibitors of MMPs have been added to adhesive primers. Examples include chlorhexidine (CHX), benzalkonium chloride (BAC), and MDPB, an antibacterial monomer used in a two-step self-etching primer adhesive. The advantage of MDPB over CHX and BAC is that it polymerizes with adhesive resins and cannot leach from the hybrid layer. This is an example of what can be termed a "therapeutic adhesive system" that provides anti-MMP activity along with antibacterial qualities.

  16. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.5 Acrylate-acrylamide resins... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium... sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed...

  17. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  18. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins

    PubMed Central

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G.

    2014-01-01

    Background: Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). Materials and Methods: In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. Results: The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. Conclusion: This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite

  19. Four new triterpenoids isolated from the resin of Garcinia hanburyi.

    PubMed

    Wang, Hong-Min; Liu, Qun-Fang; Zhao, Yi-Wu; Liu, Shuang-Zhu; Chen, Zhen-Hua; Zhang, Ru-Jun; Wang, Zhen-Zhong; Xiao, Wei; Zhao, Wei-Min

    2014-01-01

    Four new triterpenoids, 2-O-acetyl-3-O-(4'-O-acetyl)-α-l-arabinopyranosylmaslinic acid (1), 2-O-acetyl-3-O-(3'-O-acetyl)-α-l-arabinopyranosylmaslinic acid (2), 2-O-acetyl-3-O-(3',4'-O-diacetyl)-α-l-arabinopyranosylmaslinic acid (3), and 3-O-(3'-O-acetyl)-α-l-arabinopyranosyloleanolic acid (4), together with six known triterpenoids, 3-O-(4'-O-acetyl)-α-l-arabinopyranosyloleanolic acid (5), maslinic acid (6), 2-O-acetylmaslinic acid (7), 3-O-acetylmaslinic acid (8), betulinic acid (9), and 2α-hydroxy-3β-O-acetylbetulinic acid (10), were isolated from the EtOAc extract of Garcinia hanburyi resin. Their structures were elucidated by analysis of the spectroscopic data and chemical methods.

  20. The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1991-01-01

    The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

  1. Carbon dioxide capture using resin-wafer electrodeionization

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  2. Extractive-scintillating resin produced by radiation polymerization

    NASA Astrophysics Data System (ADS)

    Vincze, Á.; Solymosi, J.; Kása, I.; Sáfrány, Á.

    2007-08-01

    The characterization of a resin material is presented, which contains selective complexing and scintillating molecules in chemically bound form. The resin material is produced via radiation polymerization of the solution of 2-(4-allyloxy-phenyl)-5-phenyl oxazole, 5-(allyloxy-phenyl)-2-[4-(5-phenyl-oxazole-2-il)-phenyl] oxazole, diethylene glycol dimethacrylate (DEGMA), styrene and the allyl derivative of a 18C6 crown ether-dicarbolic acid complexing agent. The product is a macroporous polymer matrix, which shows both excellent scintillation properties and ion binding capacity for radioanalytical purposes.

  3. Reactive Additives for Phenylethynyl-Containing Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G., Jr.; Hergenrother, Paul M.; Rommel, Monica L.

    2005-01-01

    Phenylethynyl-containing reactive additive (PERA) compounds and mixtures have been found to be useful for improving the processability of oligomers, polymers, co-oligomers, and copolymers that contain phenylethynyl groups. The additives can be incorporated in different forms: A solution of an amide acid or an imide of a PERA can be added to a solution of phenylethynyl-containing oligomer, polymer, co-oligomer, or copolymer; or An imide powder of a PERA can be mixed with a dry powder of a phenylethynyl-containing oligomer, polymer, co-oligomer, or copolymer. The effect of a given PERA on the processability and other properties of the resin system depends on whether the PERA is used in the amide acid or an imide form. With proper formulation, the PERA reduces the melt viscosity of the resin and thereby reduces the processing pressures needed to form the adhesive bonds, consolidate filled or unfilled moldings, or fabricate fiber-reinforced composite laminates. During thermal cure, a PERA reacts with itself as well as with the phenylethynyl-containing host resin and thereby becomes chemically incorporated into the resin system. The effects of the PERA on mechanical properties, relative to those of the host resin, depend on the amount of PERA used. Typically, the incorporation of the PERA results in (1) increases in the glass-transition temperature (Tg), modulus of elasticity, and parameters that characterize behavior under compression, and (2) greater retention of the aforementioned mechanical properties at elevated temperatures without (3) significant reduction of toughness or damage tolerance. Of the formulations tested thus far, the ones found to yield the best overall results were those for which the host resin was the amide acid form of a phenylethynyl-terminated imide (PETI) co-oligomer having a molecular weight of 5,000 g/mole [hence, designated PETI-5] and a PERA denoted as PERA-1. PETI-5 was made from 3,3',4'4'-biphenyltetracarboxylic dianhydride, 3

  4. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  5. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  6. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  7. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  10. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  11. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    PubMed

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  12. Allergic contact dermatitis from formaldehyde textile resins.

    PubMed

    Reich, Hilary C; Warshaw, Erin M

    2010-01-01

    Formaldehyde-based resins have been used to create permanent-press finishes on fabrics since the 1920s. These resins have been shown to be potent sensitizers in some patients, leading to allergic contact dermatitis. This review summarizes the history of formaldehyde textile resin use, the diagnosis and management of allergic contact dermatitis from these resins, and current regulation of formaldehyde resins in textiles.

  13. Preirradiation grafting of ethylene vinyl acetate copolymer resins

    NASA Astrophysics Data System (ADS)

    Ringrose, B. J.; Kronfli, E.

    1999-07-01

    Acrylic acid was graft copolymerised on to EVA powdered resins containing 9%, 18% and 28% vinyl acetate. A preirradiation grafting method was used and the effect on graft level of varying the parameters of gamma irradiation dose (2-50 kGy), dose rate (0.5-5 kGy h -1), monomer concentration (2.5-25%) and grafting time (1-4 h) and temperature (35-98°C) was investigated. The graft copolymer resins were converted into film and characterised in terms of their hydrophilicity and electrolytic resistance in alkaline solutions. Depending on the vinyl acetate content and rheological properties of the base EVA copolymer, high graft weight resins can be converted into semipermeable films suitable for a range of applications including battery separator membranes and topical medical dressings.

  14. Alkyd-amino resins based on waste PET for coating applications

    SciTech Connect

    Torlakoglu, A.; Gueclue, G.

    2009-01-15

    Waste polyethylene terephthalate (PET) flakes were depolymerized by using propylene glycol (PG) in the presence of zinc acetate as catalyst. Glycolysis reaction products of waste PET obtained by using PET/glycol molar ratio 1/2. Two short oil alkyd resins of high acid values (30-40 mgKOH/g) were prepared from phthalic anhydride (PA), glycerin (G), coconut oil fatty acids (COFA) and glycolyzed products of waste PET (PET-based alkyd resins) or glycols (PG) (reference alkyd resins). These alkyd resins were blended with 30%, 40%, and 50% of a commercial urea-formaldehyde, melamine-formaldehyde and urea-formaldehyde/melamine-formaldehyde mixture (1/1 weight ratio) and heated at 140 deg. C. The physical and chemical properties such as drying time, hardness, abrasion resistance, adhesion strength, water resistance, alkaline resistance, acid resistance, gelation time, and thermal oxidative degradation resistance (with thermogravimetric analysis, TGA) of these alkyd-amino resins were investigated. The properties of the waste PET-based resins were found to be compatible with the properties of the reference resins.

  15. The biological properties of a novel ethyl methacrylate resin.

    PubMed

    Suzuki, T; Jinno, S; Hattori, N; Okeya, H; Ishikawa, A; Deguchi, M; Ohno, Y; Kawai, T; Noguchi, T

    2006-01-01

    A novel ethyl methacrylate (EMA) resin was developed to overcome the tissue, organ and systemic damage associated with the residual monomer of conventional methyl methacrylate (MMA) resin bone cement. EMA resin is a chemical/ photopolymerizable material and is easy to handle during clinical procedures. The biocompatibility of EMA was evaluated in accordance with ISO10993-6. No inflammatory response was observed 1 and 9 weeks after implantation in the dorsal subcutaneous tissue of ddY mice. EMA resin also demonstrated better biocompatibility when compared with conventional bone cements. Poly-L-lactic acid (PLLA) was used as a carrier for bone morphogenetic protein (BMP) and added to the EMA slurry. The EMA-PLLA composite membrane was sticky and BMP readily adhered to its surface. The EMA-PLLA-BMP composite membrane induced new bone formation, the new bone growing in the shape of the EMA in the thigh muscle pouch of ddY mice. This novel EMA resin has many potential clinical applications.

  16. Dissolution of ion exchange resin by hydrogen peroxide

    SciTech Connect

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe/sup 2 +/, or Fe/sup 3 +/, and 3 vol % H/sub 2/O/sub 2/ in 0.1M HNO/sub 3/ is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99/sup 0/C. The recommended dissolution temperature range is 85 to 90/sup 0/C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH/sub 4/ OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly.

  17. Cariogenic Bacteria Degrade Dental Resin Composites and Adhesives

    PubMed Central

    Bourbia, M.; Ma, D.; Cvitkovitch, D.G.; Santerre, J.P.; Finer, Y.

    2013-01-01

    A major reason for dental resin composite restoration replacement is related to secondary caries promoted by acid production from bacteria including Streptococcus mutans (S. mutans). We hypothesized that S. mutans has esterase activities that degrade dental resin composites and adhesives. Standardized specimens of resin composite (Z250), total-etch (Scotchbond Multipurpose, SB), and self-etch (Easybond, EB) adhesives were incubated with S. mutans UA159 or uninoculated culture medium (control) for up to 30 days. Quantification of the BisGMA-derived biodegradation by-product, bishydroxy-propoxy-phenyl-propane (BisHPPP), was performed by high-performance liquid chromatography. Surface analysis of the specimens was performed by scanning electron microscopy (SEM). S. mutans was shown to have esterase activities in levels comparable with those found in human saliva. A trend of increasing BisHPPP release throughout the incubation period was observed for all materials and was more elevated in the presence of bacteria vs. control medium for EB and Z250, but not for SB (p < .05). SEM confirmed the increased degradation of all materials with S. mutans UA159 vs. control. S. mutans has esterase activities at levels that degrade resin composites and adhesives; degree of degradation was dependent on the material’s chemical formulation. This finding suggests that the resin-dentin interface could be compromised by oral bacteria that contribute to the progression of secondary caries. PMID:24026951

  18. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  19. Phthalonitrile Resins and Preparation Thereof.

    DTIC Science & Technology

    The present invention pertains generally to organic synthesis and in particular to a rapid synthesis of a diether-linked polyphthalonitrile resin by polymerizing a phthalonitrile monomer with a primary amine.

  20. Identification and quantitative determination of lignans in Cedrus atlantica resins using 13C NMR spectroscopy.

    PubMed

    Nam, Anne-Marie; Paoli, Mathieu; Castola, Vincent; Casanova, Joseph; Bighelli, Ange

    2011-03-01

    Identification and quantitative determination of individual components of resin collected on the trunk of 28 Cedrus atlantica trees, grown in Corsica, has been carried out using 13C NMR spectroscopy. Eight resin acids bearing either the pimarane or abietane skeleton, two monoterpene hydrocarbons and four oxygenated neutral diterpenes have been identified, as well as three lignans, scarcely found in resins. Three groups could be distinguished within the 28 resin samples. The nine samples of Group I had their composition dominated by diterpene acids (33.7-45.8%), with abietic acid (6.2-18.7%) and isopimaric acid (5.1-12.6%) being the major components. The four samples of Group II contained resin acids (main components) and lignans in moderate amounts (up to 10.3%). Conversely, lignans (38.8-63.8%) were by far the major components of the 15 samples of Group III. Depending on the sample, the major component was pinoresinol (18.1-38.9%), lariciresinol (17.2-33.7%) or lariciresinol 9'-acetate (16.9-29.1%). Finally, due to the high biological interest in lignans, a rapid procedure, based on 1H NMR spectroscopy, was developed for quantification of lignans in resins of C. atlantica.

  1. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation.

    PubMed

    Andrikopoulos, Nikolaos K; Kaliora, Andriana C; Assimopoulou, Andreana N; Papapeorgiou, Vassilios P

    2003-05-01

    Naturally occurring gums and resins with beneficial pharmaceutical and nutraceutical properties were tested for their possible protective effect against copper-induced LDL oxidation in vitro. Chiosmastic gum (CMG) (Pistacia lentiscus var. Chia resin) was the most effective in protecting human LDL from oxidation. The minimum and maximum doses for the saturation phenomena of inhibition of LDL oxidation were 2.5 mg and 50 mg CMG (75.3% and 99.9%, respectively). The methanol/water extract of CMG was the most effective compared with other solvent combinations. CMG when fractionated in order to determine a structure-activity relationship showed that the total mastic essential oil, collofonium-like residue and acidic fractions of CMG exhibited a high protective activity ranging from 65.0% to 77.8%. The other natural gums and resins (CMG resin 'liquid collection', P. terebinthus var. Chia resin, dammar resin, acacia gum, tragacanth gum, storax gum) also tested as above, showed 27.0%-78.8% of the maximum LDL protection. The other naturally occurring substances, i.e. triterpenes (amyrin, oleanolic acid, ursolic acid, lupeol, 18-a-glycyrrhetinic acid) and hydroxynaphthoquinones (naphthazarin, shikonin and alkannin) showed 53.5%-78.8% and 27.0%-64.1% LDL protective activity, respectively. The combination effects (68.7%-76.2% LDL protection) of ursolic-, oleanolic- and ursodeoxycholic- acids were almost equal to the effect (75.3%) of the CMG extract in comparable doses.

  2. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  3. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  4. Technical Task and Quality Assurance Plan in Support of BNFL Part B: Studies of Ion Exchange Resin Integrity under Flowsheet Extremes: Part II

    SciTech Connect

    Nash, C.A.

    2000-08-23

    This task will address four items related to ion exchange stability: (1) process upset evaluation of resin in contact with 1 molar sodium permanganate at 25 and 40 degrees C, (2) accelerated aging with nitric acid solution used during normal regeneration operations, (3) prolonged contacting of SuperLig 644 resin with 5 molar nitric acid at room temperature, and (4) prolonged contacting of SuperLig 644 resin with deionized water at 60 plus/minus 5 degrees C.

  5. K Basin sludge/resin bead separation test report

    SciTech Connect

    Squier, D.M.

    1998-08-25

    The K Basin sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt and minor amounts of other organic material. The sludge will be collected and treated for storage and eventual disposal. This process will remove the large solid materials by a 1/4 inch screen. The screened material will be subjected to nitric acid in a chemical treatment process. The organic ion exchange resin beads produce undesirable chemical reactions with the nitric acid. The resin beads must be removed from the bulk material and treated by another process. An effective bead separation method must extract 95% of the resin bead mass without entraining more than 5% of the other sludge component mass. The test plan I-INF-2729, ``Organic Ion Exchange Resin Separation Methods Evaluation,`` proposed the evaluation of air lift, hydro cyclone, agitated slurry and elutriation resin bead separation methods. This follows the testing strategy outlined in section 4.1 of BNF-2574, ``Testing Strategy to Support the Development of K Basins Sludge Treatment Process``. Engineering study BNF-3128, ``Separation of Organic Ion Exchange Resins from Sludge,`` Rev. 0, focused the evaluation tests on a method that removed the fine sludge particles by a sieve and then extracted the beads by means of a elutriation column. Ninety-nine percent of the resin beads are larger than 125 microns and 98.5 percent are 300 microns and larger. Particles smaller than 125 microns make up the largest portion of sludge in the K Basins. Eliminating a large part of the sludge`s non-bead component will reduce the quantity that is lifted with the resin beads in the elutriation column. Resin bead particle size distribution measurements are given in Appendix A The Engineering Testing Laboratory conducted measurements of a elutriation column`s ability to extract resin beads from a sieved, non-radioactive sludge

  6. Bond strengths of lingual orthodontic brackets bonded with light-cured composite resins cured by transillumination.

    PubMed

    King, L; Smith, R T; Wendt, S L; Behrents, R G

    1987-04-01

    A method of curing light-cured composite resins by transillumination to cement acid-etched fixed partial dentures was adapted to bond solid mesh-backed lingual orthodontic brackets. Results of this investigation showed that the bond strengths of the orthodontic brackets bonded with light-cured composite resins were significantly less (P less than 0.05) than the bond strengths of the orthodontic brackets cemented with traditional adhesives and orthodontic composite resins. Notwithstanding, the bond strengths achieved with the transilluminated light-cured composite resins should be adequate to withstand the forces of mastication and orthodontic movements. There was no correlation of bond strengths of the brackets cemented with the transilluminated light-cured composite resins when compared to the faciolingual widths of the teeth.

  7. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  8. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOEpatents

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  9. Natural amber, copal resin and colophony investigated by UV-VIS, infrared and Raman spectrum

    NASA Astrophysics Data System (ADS)

    Rao, ZhiFan; Dong, Kun; Yang, XiaoYun; Lin, JinChang; Cui, XiaoYing; Zhou, RongFeng; Deng, Qing

    2013-08-01

    Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distinguish the natural amber, copal resin and colophony, we have successfully used the nondestructive examination (NDE) technology. The results show that UV-VIS could not distinguish these compositions. The infrared spectra can distinguish them, but the technology may destroy the specimen. The Raman spectra show three characteristic peaks of vibration near position 932 cm-1 and position 1179 cm-1 of copal resin, which confirm the existence of terpenes compounds in it. In the Raman spectra of colophony, the vibration characteristic peak at position 1589 cm-1, caused by the conjugate double bond of internal unsaturated resin acid, is the basis of the characteristic difference between colophony and natural amber. The advantages of the distinguished technology by Raman spectroscopy are convenient and nondestructive examination for natural amber, copal resin and colophony.

  10. Methane production using resin-wafer electrodeionization

    DOEpatents

    Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

    2014-03-25

    The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

  11. Demineralizer operation with morpholine and boric acid

    SciTech Connect

    Siegwarth, D.P.

    1992-07-01

    The effect on condensate and blowdown deep bed demineralizer performance of morpholine and boric acid are examined. The high concentration of morpholine required to reduce corrosion product transport exhausts demineralizer cation resin too fast to allow hydrogen cycle demineralizer operation. Extremely efficient resin separation and high crosslinked cation resins will be required to minimize sodium leakage during demineralizer morpholine cyde operation. Organic anions formed by morpholine decomposition tend to leak through demineralizers during amine cycle operation. Concentrations of these species vary markedly between plants. The anion resin selectivity coefficient for borate is low, and only a fraction of hydroxide form anion resin is converted to the borate form. Borate has little effect on condensate demineralizer sodium, chloride and sulfate leakage during hydrogen/borate cycle operation. However, sodium leakage increases during amine/borate cycle resin operation. In addition, silica is not effectively removed by anion resin in the presence of boric acid.

  12. The adsorption of lead and copper from aqueous solution on modified peat-resin particles.

    PubMed

    Sun, Q Y; Lu, P; Yang, L Z

    2004-01-01

    Raw peat was modified with sulfuric acid, then mixed modified with resin to prepare the modified peat-resin particles. Using the batch experimental systems, the removal of heavy metals (copper and lead) on the modified peat-resin particles was investigated. The data of the adsorption isotherm could be fitted by the Langmuir equation well. The adsorption rate of heavy metals on modified peat-resin particles was very swift. The removal processes of heavy metals on modified peat-resin particles could be well described by pseudo-second order model. The adsorption rate of lead was affected by the initial heavy metal concentration, initial pH, particle size, agitation speed and particle mass. In the adsorption of heavy metals (lead and copper) on the modified peat-resin particles, ion exchange was the major reaction mechanism. Desorption data showed that the lead adsorbed by modified peat-resin particle could be desorbed by 0.5 N or 1.0 N HNO3. The desorption rate was swift. The experiments indicated that the modified peat-resin particles have great potential for the removal of heavy metals from wastewater.

  13. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  14. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  15. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  16. Adsorption of saponin compound in Carica papaya leaves extract using weakly basic ion exchanger resin

    NASA Astrophysics Data System (ADS)

    Abidin, Noraziani Zainal; Janam, Anathasia; Zubairi, Saiful Irwan

    2016-11-01

    Adsorption of saponin compound in papaya leaves juice extract using Amberlite® IRA-67 resin was not reported in previous studies. In this research, Amberlite® IRA-67 was used to determine the amount of saponin that can be adsorbed using different weights of dry resin (0.1 g and 0.5 g). Peleg model was used to determine the maximum yield of saponin (43.67 mg) and the exhaustive time (5.7 days) prior to a preliminary resin-saponin adsorption study. After adsorption process, there was no significant difference (p>0.05) in total saponin content (mg) for sample treated with 0.1 g (3.79 ± 0.55 mg) and sample treated with 0.5 g (3.43 ± 0.51 mg) dry weight resin. Long-term kinetic adsorption of resin-saponin method (>24 hours) should be conducted to obtain optimum freed saponin extract. Besides that, sample treated with 0.1 g dry weight resin had high free radical scavenging value of 50.33 ± 2.74% compared to sample treated with 0.5 g dry weight resin that had low free radical scavenging value of 24.54 ± 1.66% dry weights. Total saponin content (mg), total phenolic content (mg GAE) and free radical scavenging activity (%) was investigated to determine the interaction of those compounds with Amberlite® IRA-67. The RP-HPLC analysis using ursolic acid as standard at 203 nm showed no peak even though ursolic acid was one of the saponin components that was ubiquitous in plant kingdom. The absence of peak was due to weak solubility of ursolic acid in water and since it was only soluble in solvent with moderate polarity. The Pearson's correlation coefficient for total saponin content (mg) versus total phenolic content (mg GAE) and radical scavenging activity (%) were +0.959 and +0.807. Positive values showed that whenever there was an increase in saponin content (mg), the phenolic content (mg GAE) and radical scavenging activity (%) would also increase. However, as the resin-saponin adsorption was carried out, there was a significant decrease of radical scavenging activity

  17. Aromatic resin characterisation by gas chromatography-mass spectrometry. Raw and archaeological materials.

    PubMed

    Modugno, Francesca; Ribechini, Erika; Colombini, Maria Perla

    2006-11-17

    An analytical procedure based on alkaline hydrolysis, solvent extraction and trimethyl-silylation followed by gas chromatography-mass spectrometry (GC-MS) analysis was used to study the chemical composition of benzoe and storax resins, water-insoluble exudates of trees of the Styrax and Liquidambar genus. They are chemically characterised by having aromatic acids, alcohols and esters as their main components and are thus known as aromatic and/or balsamic resins. This analytical procedure allowed us to characterise the main components of the two resins and, even though cinnamic acid is the main component of both the resins, the presence of other characteristic aromatic compounds and triterpenes permitted us to distinguish between the two materials. All the compounds identified in benzoe resin were detected in an archaeological organic residue from an Egyptian ceramic censer (fifth to seventh centuries a.d.), thus proving that this resin was used as one of the components of the mixture of organic materials burned as incense. These results provide the first chemical evidence of the presence of benzoe resin in an archaeological material from Mediterranean area.

  18. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition.

  19. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  20. Analysis of potential hazards associated with 241Am loaded resins from nitrate media

    SciTech Connect

    Schulte, Louis D.; Rubin, Jim; Fife, Keith William; Ricketts, Thomas Edgar; Tappan, Bryce C.; Chavez, David E.

    2016-02-19

    LANL has been contacted to provide possible assistance in safe disposition of a number of 241Am-bearing materials associated with local industrial operations. Among the materials are ion exchange resins which have been in contact with 241Am and nitric acid, and which might have potential for exothermic reaction. The purpose of this paper is to analyze and define the resin forms and quantities to the extent possible from available data to allow better bounding of the potential reactivity hazard of the resin materials. An additional purpose is to recommend handling procedures to minimize the probability of an uncontrolled exothermic reaction.

  1. Comparison of cation exchange resins for recovering americium and plutonium from chloride wastes

    SciTech Connect

    Silva, R.A.; Smith, C.M.; Navratil, J.D.; Thompson, G.H.

    1984-04-25

    Macroreticular and microreticular cation exchange resins were compared for their capability of recovering americium and plutonium from solutions of calcium, magnesium, potassium, and sodium chlorides. Americium and plutonium breakthrough capacity and elution behavior of the resins were determined. Of the resins tested, Dowex MSC-1 was selected as the most efficient because of its favorable capacity and excellent elution behavior. Actinide eluting agents were also studied. More concentrated (9.0M) nitric acid was found to elute plutonium faster than 7.0M HNO/sub 3/ used previously, while 7.0M HNO/sub 3/-0.1M NANO/sub 2/ eluted americium fastest.

  2. Effect of solution concentration and aging conditions on PMR-15 resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Vannucci, R. D.

    1986-01-01

    High performance liquid chromatography is utilized to evaluate the effect of temperature, solution concentration, and aging time on PMR-15 resin solutions. Fifty- and 70-wt percent PMR-15 resin solutions were prepared from the mixture of 5-norbornene-2,3-dicarboxylic ester (NE) acid, 4.4'-methylenedianiline (MDA), methanol, and 3,3',4.4.-benzophenonetetracarboxylic dimethyl ester (BTDE) acid solution. It is observed that in PMR-15 resin solution aged for 35 days at room temperature NE and MDA react to form amide and imide intermediates. The precipitation data reveal that in the 70-wt percent solution precipitation occurs after 12 days and in the 50-wt percent solution after 20 days; however, at lower temperatures (-11 C, and 2 C) no precipitation is detected. It is concluded that storage of resin solutions and powders at reduced temperatures extends shelf life by reducing the rate of imide formation.

  3. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  4. Marginal adaptation of composite resins under two adhesive techniques.

    PubMed

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin-22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.

  5. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.

  6. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intrinsic viscosity of the polyestercarbonate resins shall be a minimum of 0.44 deciliter per gram, as determined by a method entitled “Intrinsic Viscosity (IV) of Lexan ® Polyestercarbonate Resin by a...

  7. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOEpatents

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  8. Alternate Methods for Eluting Cesium from Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-02-01

    A small-column ion exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high-level-waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST), an inorganic, non-regenerable sorbent, or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The baseline method for eluting the cesium from the RF resin uses 15 bed volumes (BV) of 0.5 M nitric acid (HNO{sub 3}). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid that would be used to elute the RF resin, using the current elution protocol, exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing environment in the glass melt. Installing a denitration evaporator at SRS is technically feasible but would add considerable cost to the project. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 BV of 0.5 M HNO{sub 3} are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the baseline elution method removes a very small quantity of cesium from the resin. A summary of the elution methods that have been tested are listed.

  9. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    PubMed

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  10. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  11. Control of resin production in Araucaria angustifolia, an ancient South American conifer.

    PubMed

    Perotti, J C; da Silva Rodrigues-Corrêa, K C; Fett-Neto, A G

    2015-07-01

    Araucaria angustifolia is an ancient slow-growing conifer that characterises parts of the Southern Atlantic Forest biome, currently listed as a critically endangered species. The species also produces bark resin, although the factors controlling its resinosis are largely unknown. To better understand this defence-related process, we examined the resin exudation response of A. angustifolia upon treatment with well-known chemical stimulators used in fast-growing conifers producing both bark and wood resin, such as Pinus elliottii. The initial hypothesis was that A. angustifolia would display significant differences in the regulation of resinosis. The effect of Ethrel(®) (ET - ethylene precursor), salicylic acid (SA), jasmonic acid (JA), sulphuric acid (SuA) and sodium nitroprusside (SNP - nitric oxide donor) on resin yield and composition in young plants of A. angustifolia was examined. In at least one of the concentrations tested, and frequently in more than one, an aqueous glycerol solution applied on fresh wound sites of the stem with one or more of the adjuvants examined promoted an increase in resin yield, as well as monoterpene concentration (α-pinene, β-pinene, camphene and limonene). Higher yields and longer exudation periods were observed with JA and ET, another feature shared with Pinus resinosis. The results suggest that resinosis control is similar in Araucaria and Pinus. In addition, A. angustifolia resin may be a relevant source of valuable terpene chemicals, whose production may be increased by using stimulating pastes containing the identified adjuvants.

  12. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 10. (i) Polyestercarbonate resins, when extracted with distilled water at reflux temperature for 6... water at reflux temperature for 6 hours, shall yield total nonvolatile extractives not to exceed 0.005 percent by weight of the resins. (iii) Polyestercarbonate resins, when extracted with n-heptane at...

  13. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  14. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  15. SRM filament wound case resin characterization studies

    NASA Technical Reports Server (NTRS)

    Chou, L. W.

    1985-01-01

    The amine cured epoxy wet winding resin used in fabrication of the SRM filament wound case is analyzed. High pressure liquid chromatography (HPSC) is utilized extensively to study lot-to-lot variation in both resin and curing agent. The validity of quantitative hplc methodology currently under development in-process resin/catalyst assay is assessed.

  16. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  17. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  18. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  19. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  20. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  1. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  2. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  3. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography

    SciTech Connect

    Schmidt, L.W.

    1993-07-01

    Polystyrene divinylbenzene was modified by acetyl, sulfonic acid, and quaternary ammonium groups. A resin functionalized with an acetyl group was impregnated in a PTFE membrane and used to extract and concentrate phenolic compounds from aqueous samples. The acetyl group created a surface easily wetted, making it an efficient adsorbent for polar compounds in water. The membrane stabilized the resin bed. Partially sulfonated high surface area resins are used to extract and group separate an aqueous mixture of neutral and basic organics; the bases are adsorbed electrostatically to the sulfonic acid groups, while the neutraons are adsorbed hydrophobically. A two-step elution is then used to separate the two fractions. A partially functionalized anion exchange resin is used to separate organic acids and phenols from neutrals in a similar way. Carboxylic acids are analyzed by HPLC and phenols by GC.

  4. Method of recovering hazardous waste from phenolic resin filters

    DOEpatents

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  5. Properties of magnetically attractive experimental resin composites.

    PubMed

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  6. Devices using resin wafers and applications thereof

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.; St. Martin, Edward; Arora, Michelle; de la Garza, Linda

    2009-03-24

    Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60.degree. C. to about 170.degree. C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.

  7. High Temperature VARTM of Phenylethynyl Terminated Imides (PETI) Resins

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Britton, Sean M.; Watson, Kent A.; Jensen, Brian J.; Connell, John W.

    2010-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications a void fraction of less than 2% is desired. In the current study, two PETI resins, LARCTM PETI-330 and LARCTM PETI-8 have been used to fabricate test specimens using HT-VARTM. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Modifications to the thermal cycle used in the laminate fabrication have reduced the void content significantly (typically < 3%) for carbon fiber biaxially woven fabric. Photomicrographs of the panels were taken and void contents were determined by acid digestion. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein.

  8. Bond strength of Epiphany sealer prepared with resinous solvent.

    PubMed

    Rached-Junior, Fuad Jacob Abi; Souza-Gabriel, Aline Evangelista; Alfredo, Edson; Miranda, Carlos Eduardo Saraiva; Silva-Sousa, Yara Teresinha Correa; Sousa-Neto, Manoel Damião

    2009-02-01

    This study evaluated in vitro the bond strength of Epiphany sealer prepared with resinous solvent of Epiphany system (Thinning resin) by using a push-out test. Forty maxillary canines were sectioned transversally below the cementoenamel junction to provide 4-mm-thick dentin disks that were centered in aluminum rings and embedded in acrylic resin. Root canals were prepared with tapered diamond bur. Intraradicular dentin was treated with 1% NaOCl for 30 minutes, 17% ethylenediaminetetraacetic acid for 5 minutes, and flushed with distilled water for 1 minute. The specimens were randomly distributed into 4 groups (n = 10) according to the filling material: GI, Epiphany without photoactivation; GII, Epiphany prepared with solvent without photoactivation; GIII, Epiphany followed by photoactivation; and GIV, Epiphany prepared with solvent followed by photoactivation. After the setting time, the specimens were submitted to the push-out test. The highest mean value (14.91 +/- 2.82 MPa) was obtained with Epiphany prepared with solvent followed by photoactivation (GIV), which was statistically different (P < .01) from the other groups. Groups I (8.15 +/- 2.47 MPa), II (9.46 +/- 2.38 MPa), and III (9.80 +/- 2.51 MPa) had inferior bond strength values and were statistically similar among themselves (P > .01). The resinous solvent of Epiphany system increased the bond strength of Epiphany sealer to dentin walls when followed by photoactivation.

  9. Effect of dissolved organic matter on nitrate-nitrogen removal by anion exchange resin and kinetics studies.

    PubMed

    Song, Haiou; Yao, Zhijian; Wang, Mengqiao; Wang, Jinnan; Zhu, Zhaolian; Li, Aimin

    2013-01-01

    The effects of dissolved organic matter (DOM) on the removal of nitrate-nitrogen from the model contaminated water have been investigated utilizing the strong base anion exchange resins. With the increase of gallic acid concentration from 0 to 400 mg/L, the adsorption amount of nitrate-nitrogen on the commercial resins, including D201, Purolite A 300 (A300) and Purolite A 520E (A520E), would significantly decrease. However, the presence of tannin acid has little impact on nitrate-nitrogen adsorption on them.Compared to D201 and A300 resins, A520E resin exhibited more preferable adsorption ability toward nitrate-nitrogen in the presence of competing organic molecules, such as gallic acid and tannin acid at greater levels in aqueous solution. Attractively, the equilibrium data showed that the adsorption isotherm of nitrate-nitrogen on A520E resin was in good agreement with Langmuir and Freundlich equations. The rate parameters for the intra particle diffusion have been estimated for the different initial concentrations. In batch adsorption processes, nitrate-nitrogen diffuse in porous adsorbent and rate process usually depends on t1/2 rather than the contact time. The pseudo first- and the second-order kinetic models fit better for nitrate-nitrogen adsorption onto A520E resin. The observations reported herein illustrated that A520E resin will be an excellent adsorbent for enhanced removal of nitrate-nitrogen from contaminated groundwater.

  10. An investigation of the applicability of the new ion exchange resin, Reillex{trademark}-HPQ, in ATW separations. Milestone 4, Final report

    SciTech Connect

    Ashley, K.R.; Ball, J.; Grissom, M.; Williamson, M.; Cobb, S.; Young, D.; Wu, Yen-Yuan J.

    1993-09-07

    The investigations with the anion exchange resin Reillex{trademark}-HPQ is continuing along several different paths. The topics of current investigations that are reported here are: The sorption behavior of chromium(VI) on Reillex{trademark}-HPQ from nitric acid solutions and from sodium hydroxide/sodium nitrate solutions; sorption behavior of F{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Cl{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Br{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; and the Honors thesis by one of the students is attached as Appendix II (on ion exchange properties of a new macroperous resin using bromide as the model ion in aqueous nitrate solutions).

  11. The use of Diphonix{sup {trademark}} ion exchange resin as a preconcentration step for the lanthanides and actinides in analytical applications

    SciTech Connect

    Rollins, A.N.; Thakkar, A.H.; Fern, M.J.

    1995-12-01

    Diphonix ion exchange resin is a chelating ion exchange resin containing sulfonic and gemdiphosphonic acid groups. This resin has a high specificity for the lanthanides and actinides, especially at acidities below pH = 3. Currently, we are investigating new ways to use Diphonix resin as a preconcentration step to separate the lanthanides and actinides from interfering elements present in a variety of environmental matrices. Once the lanthanides and actinides have been separated from the interfering matrix constituents, the elements are removed from the resin and passed through subsequent separation schemes. This presentation will outline the use of Diphonix resin with a variety of problem matrices, and demonstrate its usefulness for analysis of the lanthanides and actinides.

  12. A Method for Characterizing PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Lauver, R. W.

    1986-01-01

    Quantitative analysis technique based on reverse-phase, highperformance liquid chromatography (HPLC) and paired-ion chromatography (PIC) developed for PMR-15 resins. In reverse-phase HPLC experiment, polar solvent containing material to be analyzed passed through column packed with nonpolar substrate. Composition of PMR-15 Resin of 50 weight percent changes as resin ages at room temperature. Verification of proper resin formulation and analysis of changes in resin composition during storage important to manufacturers of PMR-15 polymer matrix composite parts. Technique especially suitable for commercial use by manufacturers of high-performance composite components.

  13. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  14. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  15. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  16. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins.

    PubMed

    Gu, Baohua; Ku, Yee-Kyoung; Brown, Gilbert M

    2005-02-01

    This study investigated the sorption affinity and capacity of six strong-base anion-exchange (SBA) resins for both uranium [U(VI)] and perchlorate (ClO4-) in simulated groundwater containing varying concentrations of sulfate (SO4(2-)). Additionally, desorption of U(VI) from spent resins was studied to separate U(VI) from resins with sorbed ClO4- for waste segregation and minimization. Results indicate that all SBA resins investigated in this study strongly sorb U(VI). The gel-type polyacrylic resin (Purolite A850) showed the highest sorption affinity and capacityfor U(VI) butwasthe least effective in sorbing ClO4-. The presence of SO4(2-) had little impact on the sorption of U(VI) but significantly affected the sorption of ClO4-, particularly on monofunctional SBA resins. A dilute acid wash was found to be effective in desorbing U(VI) but ineffective in desorbing ClO4- from bifunctional resins (Purolite A530E and WBR109). A single wash removed approximately 75% of sorbed U(VI) but only approximately 0.1% of sorbed ClO4- from the bifunctional resins. On the other hand, only 21.4% of sorbed U(VI) but approximately 34% of sorbed ClO4- was desorbed from the Purolite A850 resin. This study concludes that bifunctional resins could be used effectively to treatwater contaminated with ClO4- and traces of U(VI), and dilute acid washes could minimize hazardous wastes by separating sorbed U(VI) from ClO4- prior to the regeneration of the spent resin loaded with ClO4-.

  17. Synthesis and swelling properties of β-cyclodextrin-based superabsorbent resin with network structure.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Fang, Guizhen; Zhang, Bin

    2013-02-15

    A biodegradable, β-cyclodextrin-based superabsorbent resin was synthesized by the inverse suspension method. The microstructure, chemical structure, and thermal performance of the resin were characterized by scanning electron microscopy, Fourier transform-infrared spectroscopy, and differential scanning calorimetry. The effects of the synthesis conditions (dosage of cross-linking agent, mass ratios of acrylic acid to acrylamide, mass ratios of β-cyclodextrin to total monomer, neutralization degree, initiator dosage, and reaction time) were optimized to achieve a resin with a maximum swelling capacity. The water absorbency of the optimized resin in distilled water was 1544.76 g/g and that in 0.9 wt.% NaCl was 144.52 g/g. The resin, which is thermoplastic as well as pH-sensitive, had good salt resistance and underwent a maximum in swelling with time in CaCl(2) and AlCl(3) solutions. The fracture surface of the dry resin contained many pores. After swelling, the internal hydrogel showed a typical three-dimensional network structure. The biodegradation of the resin reached 71.2% after 18 days treatment at 30 °C with Lentinus edodes.

  18. Markers, Reactions, and Interactions during the Aging of Pinus Resin Assessed by Raman Spectroscopy.

    PubMed

    Beltran, Victoria; Salvadó, Nati; Butí, Salvador; Cinque, Gianfelice; Pradell, Trinitat

    2017-03-30

    The resin extracted from the species of the Pinus genus (Pinaceae family) is a widely used material. Primarily, resins are made up of two types of diterpenoids: abietanes and pimaranes. Their composition changes with aging, affecting their chemical and physical properties; however, the chemical changes that occur during aging are not yet fully known. Understanding the evolution of pimaranes and abietanes and the chemical composition of the aged resins is essential to make the most of this substance and of its derivatives. A systematic study of the aging of Pinus resin with Raman complemented with infrared (IR) spectroscopy was carried out. This study provided new information about the interactions among the constituting molecules in resins aged over many years. In particular the formation of intermolecular hydrogen bonds in aged samples was detected for the first time, and the formation of acid anhydrides from the reaction between pimaranes was demonstrated. Furthermore, Raman and IR spectra band assignments are proposed, and the specific markers of the main compounds of the resin are tagged. This will facilitate the qualitative analysis of resin compounds.

  19. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  20. Extraction of high quality DNA from seized Moroccan cannabis resin (Hashish).

    PubMed

    El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa

    2013-01-01

    The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances.

  1. Extraction of High Quality DNA from Seized Moroccan Cannabis Resin (Hashish)

    PubMed Central

    El Alaoui, Moulay Abdelaziz; Melloul, Marouane; Alaoui Amine, Sanaâ; Stambouli, Hamid; El Bouri, Aziz; Soulaymani, Abdelmajid; El Fahime, Elmostafa

    2013-01-01

    The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish) free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004) adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR) amplification of tetrahydrocannabinolic acid (THCA) synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish) resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances. PMID:24124454

  2. Diphonix{trademark} Resin: A review of its properties and applications

    SciTech Connect

    Chiarizia, R.; Horwitz, E.P.; Alexandratos, S.D.; Gula, M.J.

    1995-12-31

    The recently developed Diphonix{trademark} resin is a new multifunctional chelating ion exchange resin containing seminally substituted diphosphonic acid ligands chemically bonded to a styrene-based polymeric matrix. Diphonix can be regarded as a dual mechanism polymer, with a sulfonic acid cation exchange group allowing for rapid access, mostly non-specific, of ions into the polymeric network, and the diphosphonic acid group responsible for specificity (recognition) for a number of metal cations. The Diphonix resin exhibits an extraordinarily strong affinity for actinides, especially in the tetra- and hexavalent oxidation states. It has potential applications in TRU and mixed waste treatment and characterization, and in the development of new procedures for rapid actinide preconcentration and separation from environmental samples. Metal uptake studies have been extended to alkaline earth cations, to transition and post transition metal species, and to metal sorption from neutral or near neutral solutions. Also the kinetic behavior of the resin has been investigated in detail. Influence of the most commonly occurring matrix constituents (Na, Ca, Al, Fe, hydrofluoric, sulfuric, oxalic and phosphoric acids) on the uptake of actinide ions has been measured. This review paper summarizes the most important results studies on the Diphonix resin and gives an overview of the applications already in existence or under development in the fields of mixed waste treatment, actinide separation procedures, treatment of radwaste from nuclear power plants, and removal of iron from copper electrowinning solutions.

  3. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.).

    PubMed

    Taniguchi, Yoshimasa; Yamada, Makiko; Taniguchi, Harumi; Matsukura, Yasuko; Shindo, Kazutoshi

    2015-11-25

    The bitter taste of beer originates from resins in hops (Humulus lupulus L.), which are classified into two subtypes (soft and hard). Whereas the nature and reactivity of soft-resin-derived compounds, such as α-, β-, and iso-α-acids, are well studied, there is only a little information on the compounds in hard resin. For this work, hard resin was prepared from stored hops and investigated for its compositional changes in an experimental model of beer aging. The hard resin contained a series of α-acid oxides. Among them, 4'-hydroxyallohumulinones were unstable under beer storage conditions, and their transformation induced primary compositional changes of the hard resin during beer aging. The chemical structures of the products, including novel polycyclic compounds scorpiohumulinols A and B and dicyclohumulinols A and B, were determined by HRMS and NMR analyses. These compounds were proposed to be produced via proton-catalyzed cyclization reactions of 4'-hydroxyallohumulinones. Furthermore, they were more stable than their precursor 4'-hydroxyallohumulinones during prolonged storage periods.

  4. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.

    PubMed

    Tang, Li-rong; Huang, Biao; Ou, Wen; Chen, Xue-rong; Chen, Yan-dan

    2011-12-01

    Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box-Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 °C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10-40 nm, and the length was 100-400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H2SO4-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.

  5. Oxidative decomposition properties of cationic exchange resins producing SO4(2-) in power plants.

    PubMed

    Zhu, Zhiping; Dai, Chenlin; Liu, Sen; Tian, Ye

    2015-01-01

    The sulphate content of a system increases when strong-acid cationic exchange resins leak into a system or when sulphonic acid groups on the resin organic chain detach. To solve this problem, a dynamic cycle method was used in dissolution experiments of several resins under H2O2 or residual chlorine conditions. Results show that after performing dynamic cycle experiments for 120 hours under oxidizing environments, the SO4(2-) and total organic carbon (TOC) released by four kinds of resins increased with time, contrary to their release velocity. The quantity of released SO4(2-) increased as the oxidizing ability of oxidants was enhanced. Results showed that the quantity and velocity of released SO4(2-) under residual chlorine condition were larger than those under H2O2 condition. Data analysis of SO4(2-) and TOC released from the four kinds of resins by the dynamic cycle experiment revealed that the strength of oxidation resistance of the four resins were as follows: 650C>1500H>S200>SP112H.

  6. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    PubMed

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism.

  7. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).

    PubMed

    Schmidt, Axel; Nagel, Raimund; Krekling, Trygve; Christiansen, Erik; Gershenzon, Jonathan; Krokene, Paal

    2011-12-01

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

  8. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin. [Lewatit MP-500-FK; Pu/sup +/

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs.

  9. Analysis of the components of hard resin in hops (Humulus lupulus L.) and structural elucidation of their transformation products formed during the brewing process.

    PubMed

    Taniguchi, Yoshimasa; Taniguchi, Harumi; Yamada, Makiko; Matsukura, Yasuko; Koizumi, Hideki; Furihata, Kazuo; Shindo, Kazutoshi

    2014-11-26

    The resins from hops (Humulus lupulus L.), which add the bitter taste to beer, are classified into two main sub-fractions, namely, soft and hard resins. α- and β-Acids in soft resin and their transformation during the wort boiling process are well-studied; however, other constituents in resins, especially hard resin, have been unidentified. In this study, we identified humulinones and hulupones as soft-resin components, in addition to 4'-hydroxyallohumulinones and tricyclooxyisohumulones A and B as hard-resin components. These compounds are all oxidation products derived from α- or β-acids. We also investigated compositional changes in the hard resin during the wort boiling process, which has a significant effect on the taste of the beer, by using model boiling experiments. The major changes were identified to be isomerization of 4'-hydroxyallohumulinones into 4'-hydroxyallo-cis-humulinones, followed by decomposition into cis-oxyhumulinic acids. These findings will be helpful in systematically evaluating and optimizing the effect of the hard resin on beer quality.

  10. Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin.

    PubMed

    Elwakeel, Khalid Z; Atia, Asem A; Guibal, Eric

    2014-05-01

    Chitosan was cross-linked using glutaraldehyde in the presence of magnetite. The resin was chemically modified through the reaction with tetraethylenepentamine (TEPA) to produce amine bearing chitosan. The resin showed a higher affinity towards the uptake of UO2(2+) ions from aqueous medium: maximum sorption capacity reached 1.8 mmol g(-1) at pH 4 and 25 °C. The nature of interaction of UO2(2+) ions with the resin was identified. Kinetics were carried out at different temperatures and thermodynamic parameters were evaluated. Breakthrough curves for the removal of UO2(2+) were studied at different flow rates, bed heights and after 3 regeneration cycles. Hydrochloric acid (0.5 M) was used for desorbing UO2(2+) from loaded resin: desorption yield as high as 98% was obtained.

  11. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    DOEpatents

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  12. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  13. Analysis of diterpenoic compounds in natural resins applied as binders in museum objects by capillary electrophoresis.

    PubMed

    Findeisen, Anna; Kolivoska, Viliam; Kaml, Isabella; Baatz, Wolfgang; Kenndler, Ernst

    2007-07-20

    The exudates of conifers consist mainly of diterpenoic acids of the abietane and pimarane type (abietic, neoabietic, dehydroabietic, palustric, pimaric, isopimaric, levopimaric and sandaracopimaric acid) and larixol acetate. These natural resins were used as adhesives, coatings, varnishes or plasticizers in artistic and historic works since ancient times. For the purpose of conservation and restoration and for art historic examination of such museum objects the identification of the binding media used is undoubtedly of paramount importance. In the present paper, the characterization of these resins based on the pattern of their diterpenoid constituents is carried out by capillary electrophoresis. For separation a background electrolyte which has been initially introduced for the analysis of chlorinated and natural resin acids in waste water was modified and the experimental conditions were adjusted in terms of resolution and analysis time. Separation was carried out in borate buffer at pH 9.25 (ionic strength 20 mmol L(-1)) with methyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin as additives to increase selectivity and enhance the solubility of the analytes. With this electrophoretic system the resin acids of interest and larixol acetate--all as anionic cyclodextrin complexes--were separated within 5 min and detected at 200, 250 and 270 nm with a diode array detector. The electrophoretic patterns served for the characterisation of the relevant diterpenoic resins, balsams and copals. Sample pre-treatment was limited to sonication in methanol at 55 degrees C for 30 min. This enables the identification of the resins in mixtures with other binders like plant gums, animal glues or drying oils, even when these media are present in excess. Colophony was identified as resinous constituent of a modelling mass for gilded frames originating from the 19th century.

  14. Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent.

    PubMed

    Bassandeh, Mojgan; Antony, Alice; Le-Clech, Pierre; Richardson, Desmond; Leslie, Greg

    2013-01-01

    In this study, the efficiency of six ion exchange resins to reduce the dissolved organic matter (DOM) from a biologically treated newsprint mill effluent was evaluated and the dominant removal mechanism of residual organics was established using advanced organic characterisations techniques. Among the resins screened, TAN1 possessed favourable Freundlich parameters, high resin capacity and solute affinity, closely followed by Marathon MSA and Marathon WBA. The removal efficiency of colour and lignin residuals was generally good for the anion exchange resins, greater than 50% and 75% respectively. In terms of the DOM fractions removal measured through liquid chromatography-organic carbon and nitrogen detector (LC-OCND), the resins mainly targeted the removal of humic and fulvic acids of molecular weight ranging between 500 and 1000 g mol(-1), the portion expected to contribute the most to the aromaticity of the effluent. For the anion exchange resins, physical adsorption operated along with ion exchange mechanism assisting to remove neutral and transphilic acid fractions of DOM. The column studies confirmed TAN1 being the best of those screened, exhibited the longest mass transfer zone and maximum treatable volume of effluent. The treatable effluent volume with 50% reduction in dissolved organic carbon (DOC) was 4.8 L for TAN1 followed by Marathon MSA - 3.6L, Marathon 11 - 2.0 L, 21K-XLT - 1.5 L and Marathon WBA - 1.2 L. The cation exchange resin G26 was not effective in DOM removal as the maximum DOC removal obtained was only 27%. The resin capacity could not be completely restored for any of the resins; however, a maximum restoration up to 74% and 93% was achieved for TAN1 and Marathon WBA resins. While this feasibility study indicates the potential option of using ion exchange resins for the reclamation of paper mill effluent, the need for improving the regeneration protocols to restore the resin efficiency is also identified. Similarly, care should be taken

  15. Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography.

    PubMed

    Zhang, Shaojie; Iskra, Tim; Daniels, William; Salm, Jeffrey; Gallo, Christopher; Godavarti, Ranga; Carta, Giorgio

    2016-12-20

    Weak partitioning chromatography (WPC) has been proposed for the purification of monoclonal antibodies using an anion exchange (AEX) resin to simultaneously remove both acidic and basic protein impurities. Despite potential advantages, the relationship between resin structure and WPC performance has not been evaluated systematically. In this work, we determine the structure of representative AEX resins (Fractogel® EMD TMAE HiCap, Q Sepharose FF, and POROS 50 HQ) using transmission electron microscopy and inverse size exclusion chromatography and characterize protein interactions while operating these resins under WPC conditions using two mAb monomers, a mAb dimer, mAb multimers, and BSA as model products and impurities. We determine the isocratic elution behavior of the weakly bound monomer and dimer species and the adsorptive and mass transfer properties of the strongly bound multimers and BSA by confocal laser scanning microscopy. The results show that for each resin, using the product Kp value as guidance, salt, and pH conditions can be found where mAb multimers and BSA are simultaneously removed. Isocratic elution and adsorption mechanisms are, however, different for each resin and for the different components. Under WPC conditions, the Fractogel resin exhibited very slow diffusion of both mAb monomer and dimer species but fast adsorption for both mAb multimers and BSA with high capacity for BSA, while the Sepharose resin, because of its small pore size, was unable to effectively remove mAb multimers. The POROS resin was instead able to bind both multimers and BSA effectively, while exhibiting a greater resolution of mAb monomer and dimer species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2017.

  16. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia.

    PubMed

    Assimopoulou, A N; Papageorgiou, V P

    2005-10-01

    Pistacia species contain oleoresins with bioactive triterpenes. In this study triterpenes, including minor components, were identified and quantified in both neutral and acidic fractions of Pistacia terebinthus var. Chia resin, grown exclusively in Chios island (Greece), collected traditionally, as well as using stimulating agents (liquid collection). It was proved that these two resin samples were composed of several different minor triterpenes, while major constituents were similar but in different proportions. Compounds that differentiated two resin samples of P. lentiscus and P. terebinthus var. Chia, both traditionally collected, were detected, in order to identify the nature of resins present in archaeological materials. In the traditionally collected resin, 37 triterpenes were identified, 12 in the acidic and 25 in the neutral fraction. In the liquid collection resin 10 compounds were identified in the acidic and 23 in the neutral fraction, while 16 compounds were not contained in the traditionally collected resin. The main triterpenes in both resin samples collected traditionally and using stimulating agents were: isomasticadienonic acid (23.6 and 26.3% w[sol ]w of the triterpenic fraction, respectively), 28-norolean-17-en-3-one (16.3 and 17.5% w[sol ]w of the triterpenic fraction, respectively) and masticadienonic acid (5.8 and 6.0% w[sol ]w of the triterpenic fraction). In this study the qualitative and quantitative composition of triterpenes was compared in the Pistacia lentiscus and P. terebinthus var. Chia resin samples collected with the traditional and new liquid techniques, and also triterpenes in resins of P. terebinthus obtained by the traditional technique and using stimulating agents. The aim of the study was also to examine whether the collection technique influenced the triterpenes contained in P. terebinthus var. Chia resin samples.

  17. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  18. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b)...

  19. Petroleum resins and their production

    SciTech Connect

    Luvinh, Q.

    1989-04-25

    A process is described for the production of petroleum resins compatible with base polymers in hot melt formulations and having a softening point of from about 60/sup 0/C. to about 120/sup 0/C. and Gardner color of about 4 or less, comprising copolymerizing using a Friedel-Crafts catalyst. The mixture is substantially free form cyclopentadiene and dicyclopentadiene. This patent also describes a resin consisting essentially of a copolymer containing from 5 to 80 wt. % of units derived from an olefinically unsaturated aromatic compound form 5 to 80 wt. % of units derived from C/sub 5/ olefines or diolefines or C/sub 6/ olefines diolefines or a mixture of C/sub 5/ and C/sub 6/ olefines or diolefines and from 7 to 45 wt. % of units derived from a terpene.

  20. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.

  1. Synthesis of Improved Polyester Resins.

    DTIC Science & Technology

    1979-07-05

    peroxides as initiator. The peroxides used were benzoyl peroxide , cumene hydroperoxide, t-butyl peroxybenzoate and 2,5... benzoyl peroxide , while allyl type polyester resins require a higher temperature cure and use a peroxide such as dicumyl peroxide . Numerous other peroxides ...using MEKP (methylethylketone peroxide ) or BZP ( benzoyl peroxide ) catalysts. 47 01 "I 4 C C~ >~> .0 00 Q) . x> x (. C. a, 0 + 0) 0. 0 0 a,. E S- >0>

  2. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  3. Modified resin--intermediate processing of perovskite powders:Part I. Optimization of polymeric precursors

    SciTech Connect

    Tai, L. ); Lessing, P.A. )

    1992-02-01

    The formation of a polyester between citric acid (CA) and ethylene glycol (EG) was found to be a decisive factor for the foaming of resin intermediates in a Pechini-type powder process. This process was modified by changing the organic mass ratio of CA/EG which results in ceramic powders with different morphologies. The most porous resin intermediate (with or without chelated cations) was prepared using a polymeric gel made of equimolar citric acid and ethylene glycol. It was also found that a premixing of organic components, prior to adding constituent nitrate solutions, makes the whole process more controllable.

  4. Seasonal variation and resin composition in the Andean tree Austrocedrus chilensis.

    PubMed

    Olate, Verónica Rachel; Soto, Alex; Schmeda-Hirschmann, Guillermo

    2014-05-21

    Little is known about the changes in resin composition in South American gymnosperms associated with the different seasons of the year. The diterpene composition of 44 resin samples from seven Austrocedrus chilensis (Cupressaceae) trees, including male and female individuals, was investigated in three different seasons of the year (February, June and November). Twelve main diterpenes were isolated by chromatographic means and identified by gas chromatography-mass spectrometry and nuclear magnetic resonance (NMR). The diterpene composition was submitted to multivariate analysis to find possible associations between chemical composition and season of the year. The principal component analysis showed a clear relation between diterpene composition and season. The most characteristic compounds in resins collected in summer were Z-communic acid (9) and 12-oxo-labda-8(17),13E-dien-19 oic acid methyl ester (10) for male trees and 8(17),12,14-labdatriene (7) for female trees. For the winter samples, a clear correlation of female trees with torulosic acid (6) was observed. In spring, E-communic acid (8) and Z-communic acid (9) were correlated with female trees and 18-hydroxy isopimar-15-ene (1) with male tree resin. A comparison between percent diterpene composition and collection time showed p < 0.05 for isopimara-8(9),15-diene (2), sandaracopimaric acid (4), compound (7) and ferruginol (11).

  5. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  6. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  7. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin.

    PubMed

    Lee, I Hsien; Kuan, Yu-Chung; Chern, Jia-Ming

    2006-12-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 degrees C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results.

  8. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  9. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  10. Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA

    DTIC Science & Technology

    2012-12-01

    Nitric Acid 6 months Langelier Saturation Index/ Corrosivity ** SM 2330B HDPE < 4 oC 14 days Nitrosamines EPA 521 Amber Glass < 4 oC 365 days Total... concentration , and treated water alkalinity. The amount of acid required to achieve operating pH is directly proportional to feed water alkalinity...Perchlorate concentration directly affects the amount of scavenger resin required, which can also increase cost. The amount of acid used in

  11. Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI)

    PubMed Central

    2013-01-01

    Background Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. Results Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. Conclusions Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. PMID:23363052

  12. [Contact allergy to epoxy resins plastics based on materials collected by the Nofer Institute of Occupational Medicine].

    PubMed

    Kieć-Swierczyńska, Marta; Krecisz, Beata

    2003-01-01

    Of the 5604 patients examined in 1984-2001 for suspected occupational dermatitis, 160 persons (2.8%) showed allergy to epoxy resins plastics. Allergy was more frequent in men (4.9%) than in women (1.2%); in 154 persons, allergy was of occupational etiology (in a group of 160 patients with allergy to epoxy resins, the following proportions were observed: bricklayers, platelayers--17.5%; fitters, turners, machinist millers--13.8%; plastics molders--13.1%; laminators--11.3%; electrical equipment assemblers--10.6%; painters--10.0%). Having compared the frequency of allergy to components of epoxy resins in the years 1984-1993 and 1994-2001, it was found that allergy to resin, reactive diluents and plasticizers was on increase, whereas allergy to amines and acid anhydrides hardeners was on decrease. In a group of 13 chemical compounds entering into the composition of epoxy resins, epoxy resin contributed to the largest number of positive patch tests (77.5% of epoxy-allergic persons). This was followed by triethylenetetramine (23.1%), ethylenediamine (13.1%), phthalic anhydride (8.1%), diethylenetetramine (6.9%) and phenylglycidylether (6.2%). In addition, three patients reacted to both epoxy resin and cycloaliphatic resin.

  13. Sand control with resin and explosive

    SciTech Connect

    Dees, J.M.; Begnaud, W.J.; Sahr, N.L.

    1992-09-08

    This patent describes a method for treating a well having perforated casing to prevent solids movement through the perforations and into the wellbore. It comprises positioning a quantity of liquid resin solution such that the solution occupies the interval of the casing having perforations; positioning an explosive in proximity with the liquid resin solution; detonating the explosive; displacing the liquid resin solution remaining in the wellbore after step (c) through the perforations with a displacing fluid; and injecting a chemical solution through the perforations to cause the resin to polymerize to form a consolidated permeable matrix.

  14. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  15. Sulfate ion (SO4(2-)) release from old and new cation exchange resins used in condensate polishing systems for power plants.

    PubMed

    Zhu, Zhi-Ping; Tang, Xue-Ying; Yin, Zhao-Hui; Yu, Wei-Wei

    2014-01-01

    In this study, a dynamic cycle test, a static immersion method and a pyrolysis experiment were combined to examine the characteristics of SO4(2-) released from several new and old cation exchange resins used in condensate polishing systems for power plants. The results show that the quantity and velocity of SO4(2-) released from new and old resins tend to balance in a short time during the dynamic cycle experiment. SO4(2-) is released by 1500H (monosphere super gel type cation exchange resins) and 001 × 7 (gel type cation exchange resins) new and old cation exchange resins, the quantity of which increases according to immersion time. In the pyrolysis experiment, the quantity of SO4(2-) released from resins increases and the pH of the pyrolysis solution transforms from alkaline to acidic with an increase in temperature.

  16. Characterization Studies of Fluorinated Epoxy Resins: Naval Experimental Resin C8/1SA as a Structural Material and for Use in Blends and Composites

    DTIC Science & Technology

    1990-06-01

    temperature 4 relaxations of DGEBA type epoxy resins by Pangrle, Wu and Geil 1 2 Pangrle, et. al, found several relaxations, labeled r, A’ AOH’ t1’ and Ji...precautions have been taken during cure. This is consistant with the 19 interaction of water assigned to a similar peak in DGEBA resins. High Temperature...thin layer was stripped with polyacrylic acid (PAA) and mounted with no further treatment. 33 bottom surface (against the silicone mold), and fast and

  17. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    PubMed

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  18. Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin.

    PubMed

    Lin, Chin Jung; Lo, Shang-Lien; Liou, Ya Hsuan

    2005-06-01

    Nanoscale zerovalent copper supported on a cation resin was successfully synthesized to enhance the removal of carbon tetrachloride (CCl(4)) from contaminated water. The use of the cation resin as a support prevents the reduction of surface area due to agglomeration of nanoscale zerovalent copper particles. Moreover, the cation resin recycles the copper ions resulting from the reaction between CCl(4) and Cu(0) by simultaneous ion exchange. The decline in the amount of CCl(4) in aqueous solution results from the combined effects of degradation by nanoscale zerovalent copper and sorption by the cation resin; thus the amount of CCl(4) both in aqueous solution and sorbed onto the resin were measured. The pseudo-first-order rate constant normalized by the surface-area and the mass concentration of nanoscale zerovalent copper (k(SA)) was 2.1+/-0.1 x 10(-2)lh(-1)m(-2), approximately twenty times that of commercial powdered zerovalent copper (0.04 mm). Due to the exchange between Cu(2+) and the strongly acidic ions (H(+) or Na(+)), the pH was between 3 and 4 in unbuffered solution and Cu(2+) at the concentration of less than 0.1 mg l(-1) was measured after the dechlorination reaction. In the above-ground application, resin as a support would facilitate the development of a process that could be designed for convenient emplacement and regeneration of porous reductive medium.

  19. Hybrid layer seals the cementum/4-META/MMA-TBB resin interface.

    PubMed

    Tanaka, Saori; Sugaya, Tsutomu; Kawanami, Masamitsu; Nodasaka, Yoshinobu; Yamamoto, Toshiki; Noguchi, Hiroshi; Tanaka, Yuko; Ikeda, Takatsumi; Sano, Hidehiko; Sidhu, Sharanbir K

    2007-01-01

    Although 4-META/MMA-TBB resin has adhesive properties to dentin, and has been clinically used for the bonding treatment of vertically fractured roots and apicoectomy, there has not been any investigation on the adhesion of 4-META/MMA-TBB resin to cementum. The purpose of this in vitro study was to evaluate the bonding and the sealing ability of 4-META/MMA-TBB resin to cementum. Bovine root cementum and dentin surfaces were treated with a citric acid and ferric chloride solution, and the 4-META/MMA-TBB resin was applied on the treated surfaces before testing. The microtensile bond strength and the leakage levels obtained for the cementum were almost equal to those for the dentin. In SEM and TEM observations, a hybrid layer approximately 2-3 microm in thickness was observed at the interface between the resin and the cementum. It is concluded that 4-META/MMA-TBB resin adhered to cementum via a hybrid layer on cementum, as previously reported for dentin.

  20. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia.

    PubMed

    Assimopoulou, A N; Papageorgiou, V P

    2005-05-01

    Pistacia species contain oleoresins with bioactive triterpenes. In this study triterpenes, including minor components, were identified and quantified in both neutral and acidic fraction of Pistacia lentiscus var. Chia resin, grown exclusively in Chios island (Greece), collected traditionally, as well as by the use of stimulating agents (liquid collection). It was proved that these two resin samples were composed of several different minor triterpenes. In the traditional collection of the resin, 36 triterpenes were identified, 23 of which are new minor compounds (five in the acidic and eighteen in the neutral fraction). In the liquid collection resin eight compounds were identified in the acidic and 11 in the neutral fraction, while seven compounds were not contained in resin traditionally collected. The main triterpenes in both resin samples collected traditionally and by use of stimulating agents were in the following order: isomasticadienonic acid (24 and 22.5% w/w of triterpenic fraction respectively), masticadienonic acid (9.3 and 14.7% w/w of triterpenic fraction) and 28-norolean-17-en-3-one (19 and 36% w/w of triterpenic fraction respectively). The aim of this study was to compare the qualitative and quantitative composition of triterpenes in the resin samples collected using the traditional and new liquid techniques, and examine whether the collection technique influences the contained triterpenes in P. lentiscus var. Chia resin samples. Finally, since there is confusion on interpreting mass spectra of triterpenes we present an analytical review on the base peaks, main fragments and fragmentation mechanism/pattern of several skeleton penta- and tetra- cyclic triterpenes reported in P. lentiscus resin. Also, a biosynthetic route for triterpene skeletons contained in P. lentiscus resin was approached.

  1. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to... include resins produced by the condensation of allyl ether of mono-, di-, or trimethylol phenol and...

  2. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface.

    PubMed

    Sauro, Salvatore; Osorio, Raquel; Watson, Timothy F; Toledano, Manuel

    2012-06-01

    This study aimed in evaluating the effects of two experimental resin bonding systems containing conventional Bioglass 45S5 (BAG) or Zinc-polycarboxylated bioactive glass (BAG-Zn) micro-fillers on the resin-bonded dentine interface after storage in a simulated body fluid solution (SBFS). Three resin bonding systems were formulated: Resin-A: (BAG containing); Resin-B; (BAG-Zn containing); Resin-C (no filler). The ability of the experimental resins to evoke apatite formation was evaluated using confocal Raman spectroscopy. Acid-etched dentine specimens were bonded, and prepared for AFM/nano-indentation analysis in a fully-hydrated status to evaluate the modulus of elasticity (Ei) and hardness (Hi) across the interface at different SBFS storage periods. Further resin-dentine specimens were tested for microtensile bond strength after 24 h or 3 months of SBFS storage. SEM examination was performed after de-bonding and confocal laser microscopy was used to evaluate the ultramorphology of the interfaces and micropermeability. The resin A and B showed a consistent presence of apatite (967 cm(-1)), reduced micropermeability within the resin-dentine interface and a significant increase of the Ei and Hi along the bonded-dentine interface after prolonged SBFS storage. Bond strength values were affected by the resin system (P < 0.0001) and by storage time (P < 0.0001) both after 24 h and 3 months of SBFS storage. In conclusion, resin bonding systems containing bioactive fillers may a have therapeutic effect on the nano-mechanical properties and sealing ability of mineral-depleted resin-dentine interface.

  3. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  4. Chemical affinities between the solvent extractable and the bulk organic matter of fossil resin associated with an extinct podocarpaceae

    USGS Publications Warehouse

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.

    1989-01-01

    Analyses by GC-MS and GC-IR of resin associated to Dacridiumites mawsonii deposits, an extinct species of Podocarpaceae occurring on the South Island of New Zealand during the Bortonian (Middle Eocene), have revealed that dehydroabietic acid is the predominant component of the solvent soluble fraction. Accordingly, this diterpenoid has been selected as the principal component material for spectroscopic comparison with the bulk resin using IR and CP/MAS 13C NMR. ?? 1989.

  5. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  6. Coupling Agents - HME Resin System.

    DTIC Science & Technology

    1977-12-01

    and test results of the sized fiber impregnated with lIME 5803—53 resin and laminated are shown in Table 2. The slig htl y improved SBS strength of...inherent in the 9 - - -~~~~ . ~~~~~~~~~~~~~~~~ ~~- % . - ~, - • - - - ~~~~~~~~~~~~ — — ~~~~~~~~ free radical—induced crosslink cures. As this shrinkage

  7. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.

  8. Rapid determination of alpha emitters using Actinide resin.

    PubMed

    Navarro, N; Rodriguez, L; Alvarez, A; Sancho, C

    2004-01-01

    The European Commission has recently published the recommended radiological protection criteria for the clearance of building and building rubble from the dismantling of nuclear installations. Radionuclide specific clearance levels for actinides are very low (between 0.1 and 1 Bq g(-1)). The prevalence of natural radionuclides in rubble materials makes the verification of these levels by direct alpha counting impossible. The capability of Actinide resin (Eichrom Industries, Inc.) for extracting plutonium and americium from rubble samples has been tested in this work. Besides a strong affinity for actinides in the tri, tetra and hexavalent oxidation states, this extraction chromatographic resin presents an easy recovery of absorbed radionuclides. The retention capability was evaluated on rubble samples spiked with certified radionuclide standards (239Pu and 241Am). Samples were leached with nitric acid, passed through a chromatographic column containing the resin and the elution fraction was measured by LSC. Actinide retention varies from 60% to 80%. Based on these results, a rapid method for the verification of clearance levels for actinides in rubble samples is proposed.

  9. Experience with NuResin, a mobile ion exchange resin reprocessing system

    SciTech Connect

    Palazzi, K.R.; Bell, M.J.; Concklin, J.R.

    1995-12-31

    Ion exchange resin used in condensate polishing, steam generator blowdown, and radwaste systems is a major contributor to the volume of low-level waste (LLW) at operating nuclear plants. Plant regeneration systems for resins use large quantities of demineralized water for cleaning, separating, and regenerating resins. These systems generate a tremendous volume of LLW from boiling water reactors (BWRs) and those pressurized water reactors (PWRs) that have experienced steam generator tube leaks. At essentially all BWRs and those PWRs that replace rather than regenerate condensate polishing resin, the LLW volume contribution from the resin alone is significant. This report describes a process for the treatment of resins with the objective of returning the resin to service.

  10. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  11. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  12. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.

  13. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  14. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  15. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  16. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not less than.../federal_register/code_of_federal_regulations/ibr_locations.html. The melt viscosity of the...

  17. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Nylon resins Specific gravity Melting point(degrees Fahrenheit) Solubilityin boiling 4.2N HC1 Viscosity... by 100. (5) Viscosity number (VN). (i) The viscosity number (VN) for Nylon 6/12 resin in a 96 percent... ISO 307-1984(E), “Plastics-Polyamides-Determination of Viscosity Number,” which is incorporated...

  18. The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

    PubMed Central

    Lee, In-Su; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ×20 magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (α=.05). RESULTS Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin. PMID:24353889

  19. Release and toxicity of dental resin composite.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  20. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  1. Chemoviscosity modeling for thermosetting resins, 2

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  2. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  3. Zoledronate and Ion-releasing Resins Impair Dentin Collagen Degradation

    PubMed Central

    Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Tay, F.R.; Watson, T.F.; Pashley, D.H.; Sauro, S.

    2014-01-01

    This study analyzed the amounts of solubilized telopeptides cross-linked carboxyterminal telopeptide of type I collagen (ICTP) and C-terminal crosslinked telopeptide of type I collagen (CTX) derived from matrix-metalloproteinases (MMPs) and cysteine cathepsins (CTPs) subsequent to application of a filler-free (Res.A) or an ion-releasing resin (Res.B) to ethylenediaminetetraacetic acid (EDTA)-demineralized dentin with or without zoledronate-containing primer (Zol-primer) pre-treatment. The chemical modification induced following treatments and artificial saliva (AS) storage was also analyzed through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Totally EDTA-demineralized specimens were infiltrated with Res.A or Res.B with or without Zol-primer pre-treatment, light-cured, and immersed in AS for up to 4 wk. ICTP release was reduced following infiltration with Res.B and further reduced when Res.B was used with Zol-primer; remarkable phosphate mineral uptake was attained after AS storage. CTX release was increased in Res.A- and Res.B-treated dentin. However, when Zol-primer was used with Res.A, the CTX release fell significantly compared to the other tested resin-infiltration methods. In conclusion, zoledronate offers an additional inhibitory effect to the ion-releasing resins in MMP-mediated collagen degradation. However, Zol-primer induces a modest reduction in CTX release only when used with resin-based systems containing no ion-releasing fillers. PMID:25074494

  4. Synthesis and characterization of amphoteric resins and its use for treatment of radioactive liquid waste

    SciTech Connect

    Siyam, T.; El-Naggar, I.M.; Aly, H.F.

    1996-12-31

    Amphoteric resins such as poly (acrylamide-acrylic acid-diallylamine-hydrochloride) {open_quotes}P(AH-AA-DAA){sup +}Cl{close_quotes} and poly (acrylamide-acrylic acid-dially-ethylamine-hydrochloride) {open_quotes}P(AM-AA-DAEA){sup +} Cl{close_quotes} were prepared by gamma radiation-induced polymerization of acrylic acid {open_quotes}AA{close_quotes} in the presence of poly(amidoamines) such as poly(acryl-amide-diallyamine-hydrochloride) {open_quotes}P(AM- DAAH){sup +}Cl{close_quotes} and poly(acrylamide-dially-ethylamine-hydrochloride){close_quotes}P(AM-DAEAH){sup +} Cl{sup -}{close_quotes} it as template polymers using a template polymerization technique. Spectroscopic studies showed that resins contain both amide- and carboxylic groups, and the peak of {r_angle}NH of amine salts at (3000-2700 cm{sup {minus}1}) and (2700-2500 cm{sup {minus}1}) is disappeared. This indicates that the addition of acrylic acid monomer on ammonium groups. These ammonium groups in template polymers are converted into acrylic acid chain ends in the obtained resins accordingly, the probability of the polymer degradation of decreases may be attributed to the high radiation stability of these chain ends of acrylic acid units. The capacities of the obtained resins increase by increasing the absorbed doses of about {approximately}20 kGy, but at high doses the capacities decrease. On increasing the amines ratio in template polymers the capacities of resins for cation decreased but increased for anions. The capacities of the product materials to some heavy metal ions decrease with increasing the hydrogen ion concentrations and the selectivity is decreased in the order Cu{sup 2+} > Co{sup 2+} > Cs{sup +}.

  5. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  6. Terpenoid Oligomers of Dammar Resin.

    PubMed

    Bonaduce, Ilaria; Di Girolamo, Francesca; Corsi, Iacopo; Degano, Ilaria; Tinè, Maria Rosaria; Colombini, Maria Perla

    2016-04-22

    Dammar is a triterpenoid resin containing a volatile fraction, a monomeric fraction, and a high-molecular weight fraction. Although the low-molecular-weight components comprising sesquiterpenoids and triterpenoids have been extensively studied, the nature of the macromolecular components is still not fully understood, and different and sometimes contradictory theories have been proposed. The aim of this paper is to clarify the nature of the macromolecular components of dammar resin. A multianalytical approach was adopted based on thermoanalytical-thermogravimetric analysis (TGA), and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR)--and mass spectrometric techniques-direct exposure mass spectrometry (DE/MS), pyrolysis coupled to gas chromatography and mass spectrometry (Py/GC/MS), flow injection analysis electrospray ionization mass spectrometry (FIA/ESI/MS), and gas chromatography/mass spectrometry (GC/MS). The data indicate that the oligomeric fraction comprises triterpenoids bound through ester bonds, and that these triterpenoids are the same as those found in the free terpenoid fraction. The oligomeric fraction also includes triterpenoids containing carbonyl moieties, such as formyl groups, thus suggesting that these are involved in the esters in their corresponding enolic form.

  7. Adsorption of pesticides on resins.

    PubMed

    Kyriakopoulos, Grigorios; Hourdakis, Adamadia; Doulia, Danae

    2003-03-01

    The objective of this work was to assess the capability of organic hydrophobic polymeric resins Amberlite XAD-4 and XAD-7 to remove the pesticides alachlor and amitrole from water. The pesticides adsorption on the two different adsorbents was measured by batch equilibrium technique and isotherm types and parameters were estimated. Two theoretical models were applied based on a Freundlich and a Langmuir isotherms. The effect of pesticides chemical composition and structure as well as the nature of solid surface on the efficiency of adsorption was evaluated. The influence of pH also was studied. In low pH solutions adsorption of amitrole was higher upon the nonionic aliphatic acrylic ester copolymer XAD-7 in comparison to the nonionic, crosslinked macroreticular copolymer of styrene divinylbenzene XAD-4. In neutral and intermediate pH solutions the polar acrylic ester copolymer XAD-7 was more effective to the retention of alachlor. The acrylic ester copolymer showed at pH 3 the lower effectiveness in alachlor removal from water. The data of the adsorption isotherms of pesticides upon the examined polymeric resins seemed to conform to both the Freundlich and the Langmuir isotherm models.

  8. Design, Construction and Performance of Resin Modified Pavement at Fort Campbell Army Airfield, Kentucky

    DTIC Science & Technology

    1994-03-01

    similar to a PCC pavement that had been treated with muriatic acid . The shot blasting took approximately 3 days and cost $16,000. The unit cost was $2.75...October 1992. 14. SUBJECT TERMS 15. NUMBER OF PAGES Airfield pavement Open-graded asphalt 66 Cement grout Resin-modified pavement 16. PRICE CODE Fuel

  9. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  10. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  11. Refined Spruce Resin to Treat Chronic Wounds: Rebirth of an Old Folkloristic Therapy

    PubMed Central

    Jokinen, Janne J.; Sipponen, Arno

    2016-01-01

    Significance: The treatment of chronic wounds results in an enormous drain on healthcare resources in terms of workload, costs, frustration, and impaired quality of life, and it presents a clinical challenge for physicians worldwide. Effective local treatment of a chronic wound has an important role, particularly in patients who are—because of their poor general condition, diminished life expectancy, or unacceptable operative risk—outside of surgical treatment. Recent Advances: Since 2002, our multidisciplinary research group has investigated the properties of Norway spruce (Picea abies) resin in wound healing and its therapeutic applications in wound care. Resin is a complex mixture of resin acids (e.g., abietic, neoabietic, dehydroabietic, pimaric, isopimaric, levopimaric, sandrakopimaric, and palustric acids) and lignans (e.g., pino-, larici-, matairesinol, and p-hydroxycinnamic acid) having substantial antimicrobial, wound-healing, and skin regeneration enhancing properties. Critical Issues: The cornerstone in successful wound care is an efficient causal treatment of the underlying co-morbidities, for example, diabetes, malnutrition, vascular- or certain systemic diseases. However, definitive diagnosis and specific therapy of a chronic wound is often difficult, because the etiology is practically always multi-factorial, and in the chronic phase, confounding factors such as infections invariably impede wound healing. Future Directions: To study the exact molecular mechanism of actions by which resin promotes cellular regeneration and epithelialization during the wound-healing process. To investigate potential antimicrobial properties of resin against the most ominous multidrug-resistant beta-lactamase (including carbapenemases and metallo-β-lactamases) producing bacteria, and to individualize those pharmacologically active compounds which are responsible for the antimicrobial activity of resin. PMID:27134764

  12. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  13. Restorative resins: abrasion vs. mechanical properties.

    PubMed

    Jørgensen, K D

    1980-12-01

    The purpose of the present work was to examine whether it is possible by simple and reliable laboratory tests to evaluate the abrasion by food of Class 1 restorative resins. The results point to the following main conclusions: for the smooth-surface resins, i.e. the micro-filled composite and the unfilled resins, the Wallace hardness test appears to be a valid parameter for abrasion; the greater the depth of penetration of the Vickers diamond of this apparatus, the more severe abrasion is to be expected. The mode of abrasion in this type of resin is scratching. Porosity in the resins strongly enhances the abrasion. For the rough-surface resins, i.e. the conventional composites, a dual effect of the filler particles was concluded. The filler particles on the one hand protect the matrix against abrasion, but cause, on the other hand, in time an increase of the surface roughness of the composite and thereby via increased friction an increase of the abrasion. Considerations on possible ways to improve the present-day restorative resins are presented. It is stressed that the results obtained refer only to abrasion of Class 1 fillings by food.

  14. Versatile On-Resin Synthesis of High Mannose Glycosylated Asparagine with Functional Handles

    PubMed Central

    Chen, Rui; Pawlicki, Mark A.; Tolbert, Thomas J.

    2013-01-01

    Here we present a synthetic route for solid phase synthesis of N-linked glycoconjugates containing high mannose oligosaccharides which allows the incorporation of useful functional handles on the N-terminus of asparagine. In this strategy, the C-terminus of an Fmoc protected aspartic acid residue is first attached to a solid phase support. The side chain of aspartic acid is protected by a 2-phenylisopropyl protecting group, which allows selective deprotection for the introduction of glycosylation. By using a convergent on-resin glycosylamine coupling strategy, an N-glycosidic linkage is successfully formed on the free side chain of the resin bound aspartic acid with a large high mannose oligosaccharide, Man8GlcNAc2, to yield N-linked high mannose glycosylated asparagine. The use of on-resin glycosylamine coupling provides excellent glycosylation yield, can be applied to couple other types of oligosaccharides, and also makes it possible to recover excess oligosaccharides conveniently after the on-resin coupling reaction. Useful functional handles including an alkene (p-vinylbenzoic acid), an alkyne (4-pentynoic acid), biotin, and 5-carboxyfluorescein are then conjugated onto the N-terminal amine of asparagine on-resin after the removal of the Fmoc protecting group. In this way, useful functional handles are introduced onto the glycosylated asparagine while maintaining the structural integrity of the reducing end of the oligosaccharide. The asparagine side chain also serves as a linker between the glycan and the functional group and preserves the native presentation of N-linked glycan which may aid in biochemical and structural studies. As an example of a biochemical study using functionalized high mannose glycosylated asparagine, a fluorescence polarization assay has been utilized to study the binding of the lectin Concanavalin A (ConA) using 5-carboxyfluorescein labeled high mannose glycosylated asparagine. PMID:24326091

  15. Development of (126)Sn separation method by means of anion exchange resin and gamma spectroscopy.

    PubMed

    Dulanská, Silvia; Remenec, Boris; Bilohuščin, Ján; Mátel, Ľubomír; Bujdoš, Marek

    2017-05-01

    This paper describes a method employing anion exchange resin for determination of (126)Sn in radioactive waste. The method is suitable for the separation of (126)Sn isotope from hydrochloric and hydrofluoric acid solution. The separation is based on precipitation of tin with ammonium sulfide in 0.5molL(-1) HCl, dissolution of the precipitate in concentrated HCl, loading in 2molL(-1) HCl onto anion exchange resin column and elution with 2molL(-1) HNO3. (126)Sn was measured by gamma spectrometry.

  16. Use of cation-exchange resin for the detection of alkylpyridines in beer.

    PubMed

    Peppard, T L; Halsey, S A

    1980-12-19

    A method has been devised whereby trace amounts of certain basic compounds, such as pyridines, may be detected and semi-quantified in beer in the presence of an excess of other flavour constituents including pyrazines. The method involves steam distillation of beer under reduced pressure and subsequent passage of the distillate through a column of weakly acidic Zerolit cation-exchange resin. The resin is eluted with aqueous sodium chloride, the eluate extracted with organic solvent and the concentrated extract analysed by gas chromatography coupled with mass spectrometry. Using this technique with multiple ion detection, a series of alkylpyridines was readily detectable in beers and worts at levels below 1 ppb.

  17. Synthesis of Hydrophobic, Crosslinkable Resins.

    DTIC Science & Technology

    1984-12-01

    Vilsmeyer formylation,using a secondary amine with formic acid and phosphorous oxychloride [471. d. Probably the most convenient method utilises... acid terminated by norbornylene groups. On heating, a maleimide type prepolymer and cyclopentadiene are formed which thermally crosslink...insoluble products, in reactions analogous to the preparation of polyimides from polyamic acids . Examples fron7 the recent literature are provided by the

  18. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  19. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  20. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  1. Improved microbial-check-valve resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1980-01-01

    Improved microbial-check-valve resins have been tested for their microbicidal effectiveness and long-term stability. Resins give more-stable iodine concentrations than previous preparations and do not impart objectionable odor or taste to treated water. Microbial check valve is small cylindrical device, packed with iodide-saturated resin, that is installed in water line where contamination by micro-organisms is to be prevented. Prototype microbial check valve was tested for stability and performance under harsh environmental conditions. Effectiveness was 100 percent at 35 deg, 70 deg, and 160 deg F (2 deg, 21 deg, and 71 deg C).

  2. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  3. SEM and elemental analysis of composite resins

    SciTech Connect

    Hosoda, H.; Yamada, T.; Inokoshi, S. )

    1990-12-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use.

  4. Properties of a nanodielectric cryogenic resin

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  5. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite.

  6. Method development for thermal analyses testing on Reillex HPQ resin using the advanced reactive system screening tool (ARSST)

    SciTech Connect

    Best, D.

    2016-03-01

    Reillex™ HPQ resin was developed by Los Alamos Laboratory and Reilly Industries Inc. in an effort to increase safety and process efficiency during the recovery and purification of plutonium. Ionac™ A-641, another strong base macroporous anion exchange resin used in the nuclear industry, was known to undergo a runaway reaction in hot nitric acid solutions. Because of this, an extensive amount of thermal analyses testing on the Reillex™ HPQ resin in SRNL was performed in 1999-2001 prior to use. A report on the thermal stability qualification of the Reillex™ HPQ resin in 8M (35%) and 12M (53%) HNO3 was reported in 2000. In 2001, the reactivity of Reillex™ HPQ resin in 14.4M (64%) HNO3 was evaluated. In January of 2001, thermal stability scoping tests were performed on irradiated Reillex™ HPQ resin in 14.4M (64%) HNO3 (as a worst case scenario) and the results sent to Fauske and Associates to calculate a rupture disk size for the HB-Line resin column. A technical report by Fauske and Associates was issued in February 2001 recommending a 2.0” vent line with a rupture disk set pressure of 60 psig. This calculation was based on ARSST thermal analyses scoping tests at SRNL in which 4 grams of dried resin and 6.0 grams of 64% nitric acid in a 10 gram test cell, produced a maximum pressure rate (dP/dt) of 720 psi/min (12 psi/sec) and a maximum temperature of 250 °C. In 2015, a new batch of Reillex™ HPQ resin was manufactured by Vertellus Industries. A test sample of the resin was sent to SRNL to perform acceptance and qualification thermal stability testing using the ARSST. During these tests, method development was performed to ensure that a representative resin to acid ratios were used while running the tests in the ARSST. Fauske and Associates recommended to either use a full test cell representative of the HB-Line column or a 10 gram sample in the test cell that was representative of the ratios of resin to nitric acid in

  7. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  8. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  9. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant...

  10. Repair bond strength of dual-cured resin composite core buildup materials

    PubMed Central

    El-Deeb, Heba A.; Ghalab, Radwa M.; Elsayed Akah, Mai M.; Mobarak, Enas H.

    2015-01-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers’ instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm2) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64–86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage. PMID:26966567

  11. Repair bond strength of dual-cured resin composite core buildup materials.

    PubMed

    El-Deeb, Heba A; Ghalab, Radwa M; Elsayed Akah, Mai M; Mobarak, Enas H

    2016-03-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers' instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm(2)) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64-86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage.

  12. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    SciTech Connect

    Okamoto, Y.; Shintani, H.; Yamaki, M. )

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy.

  13. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  14. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  15. Controlled methyl-esterification of pectin catalyzed by cation exchange resin.

    PubMed

    Peng, Xiaoxia; Yang, Guang; Fan, Xingchen; Bai, Yeming; Ren, Xiaomeng; Zhou, Yifa

    2016-02-10

    This study developed a new method to methyl-esterify pectin using a cation exchange resin. Homogalacturonan (HG)-type pectin (WGPA-3-HG) and rhamnogalacturonan (RG)-I-type pectin (AHP-RG) obtained from the roots of Panax ginseng and sunflower heads, respectively, were used as models. Compared to commonly used methyl-esterification methods that use either methyl iodide or acidified methanol, the developed method can methyl-esterify both HG- and RG-I-type pectins without degrading their structures via β-elimination or acid hydrolysis. In addition, by modifying reaction conditions, including the mass ratio of resin to pectin, reaction time, and temperature, the degree of esterification can be controlled. Moreover, the resin and methanol can be recycled to conserve resources, lower costs, and reduce environmental pollution. This new methodology will be highly useful for industrial esterification of pectin.

  16. Effects of solvent on solution prepregging of the resin system LaRC{trademark}-IAX-2

    SciTech Connect

    Cano, R.J.; Massey, C.P.; St. Clair, T.L.

    1996-12-31

    This work assesses the feasibility of using an alternative solvent for the production of composites from polyimide resin systems via solution prepregging. Previous work on solution prepregging of polyimide systems at NASA Langley Research Center has concentrated on the use of the solvent N-methylpyrrolidinone. An alternative solvent with a similar boiling point, -{gamma}-Butyrolactone, was used to prepare the poly(amide acid) version of LaRC{trademark}-IAX-2. These solutions were subsequently used to prepare prepreg and graphite-reinforced composites. Mechanical properties are presented for the resin system LaRC{trademark}-IAX-2 (4% and 5% offset in stoichiometry and endcapped with phthalic anhydride) impregnated onto Hercules IM7 carbon fiber. Results from this work were compared to data obtained on the same resin system which had been solution prepregged with the solvent N-methylpyrrolidinone.

  17. Migration of formaldehyde and melamine from melaware and other amino resin tableware in real life service.

    PubMed

    Mannoni, Veruscka; Padula, Giorgio; Panico, Oronzo; Maggio, Antonino; Arena, Claudio; Milana, Maria-Rosaria

    2017-01-01

    The migration of formaldehyde and melamine monomers has been measured on 90 samples of plastic tableware in three different situations - new articles, already used articles and artificially aged articles - by using simulant, contact times and temperatures prescribed by Commission Regulation (EU) No. 10/2011. Formaldehyde was determined by ultraviolet spectroscopy analysis of the coloured complex obtained by reaction with chromotropic acid. Melamine was measured by an ultra high performance liquid chromatography method. Fourier Transformed - Infrared Analysis was applied to characterise the plastic. The results highlighted the presence of different amino resins based on formaldehyde-melamine, urea-formaldehyde or melamine-urea-formaldehyde with different migration behaviour. The migration of monomers was related to progressive degradation of the resins. Ageing studies demonstrated that the potential degradation of the resins and the consequent migration of the monomers may continue throughout the service life of the product. The specific migration limit (SML) of melamine was exceeded after ageing.

  18. Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin

    SciTech Connect

    Marsh, S.F.; Mann, M.J.

    1987-05-01

    For almost 30 years, Los Alamos National Laboratory has used anion exchange in nitric acid as the major aqueous process or the recovery and purification of plutonium. One of the few disadvantages of this system is the particularly slow rate at which the anionic nitrato complex of Pu(IV) equilibrates with the resin. The Nuclear Materials Process Technology Group at Los Alamos recently completed an ion exchange development program that focused on improving the slow sorption kinetics that limits this process. A comprehensive investigation of modern anion exchange resins identified porosity and bead size as the properties that most influence plutonium sorption kinetics. Our study found that small beads of macroporous resin produced a dramatic increase in plutonium process efficiency. The Rocky Flats Plant has already adopted this improved ion exchange technology, and it currently is being evaluated for use in other DOE plutonium-processing facilities.

  19. Comparison of cation exchange resins for recovering americium and plutonium from chloride salts

    SciTech Connect

    Silva, R.A.; Navratil, J.D.

    1983-01-01

    Macroreticular and microreticular cation exchange resins were compared for their capability of recovering americium and plutonium from solutions of calcium, magnesium, potassium, and sodium chlorides. Americium and plutonium breakthrough capacity and elution behavior of the resins were determined. Of the resins tested, Dowex MSC-1 was selected as the most efficient because of its favorable capacity and excellent elution behavior. Actinide eluting agents were also studied. More concentrated (9.0M) nitric acid was found to elute plutonium faster than 7.0M HNO/sub 3/ used previously while 7.0M HNO/sub 3/-0.1M NaNO/sub 2/ eluted americium fastest. 4 tables.

  20. Resin Flow Analysis in the Injection Cycle of a Resin Transfer Molded Radome

    NASA Astrophysics Data System (ADS)

    Golestanian, Hossein; Poursina, Mehrdad

    2007-04-01

    Resin flow analysis in the injection cycle of an RTM process was investigated. Fiberglass and carbon fiber mats were used as reinforcements with EPON 826 epoxy resin. Numerical models were developed in ANSYS finite element software to simulate resin flow behavior into a mold of conical shape. Resin flow into the woven fiber mats is modeled as flow through porous media. The injection time for fiberglass/epoxy composite is found to be 4407 seconds. Required injection time for the carbon/epoxy composite is 27022 seconds. Higher injection time for carbon/epoxy part is due to lower permeability value of the carbon fibers compared to glass fiber mat.

  1. Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1985-01-01

    Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds.

  2. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  3. Application of 2-chlorotrityl resin in solid phase synthesis of (Leu15)-gastrin I and unsulfated cholecystokinin octapeptide. Selective O-deprotection of tyrosine.

    PubMed

    Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q

    1991-12-01

    The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.

  4. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    SciTech Connect

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme are 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.

  5. Determination of radionuclide levels in rainwater using ion exchange resin and gamma-spectrometry.

    PubMed

    Jungck, Matthias H A; Andrey, Jean-Louis; Froidevaux, Pascal

    2009-04-01

    The evaluation of radioactivity accidentally released into the atmosphere involves determining the radioactivity levels of rainwater samples. Rainwater scavenges atmospheric airborne radioactivity in such a way that surface contamination can be deduced from rainfall rate and rainwater radioactivity content. For this purpose, rainwater is usually collected in large surface collectors and then measured by gamma-spectrometry after such treatments as evaporation or iron hydroxide precipitation. We found that collectors can be adapted to accept large surface (diameter 47mm) cartridges containing a strongly acidic resin (Dowex AG 88) which is able to quantitatively extract radioactivity from rainwater, even during heavy rainfall. The resin can then be measured by gamma-spectrometry. The detection limit is 0.1Bq per sample of resin (80g) for (137)Cs. Natural (7)Be and (210)Pb can also be measured and the activity ratio of both radionuclides is comparable with those obtained through iron hydroxide precipitation and air filter measurements. Occasionally (22)Na has also been measured above the detection limit. A comparison between the evaporation method and the resin method demonstrated that 2/3 of (7)Be can be lost during the evaporation process. The resin method is simple and highly efficient at extracting radioactivity. Because of these great advantages, we anticipate it could replace former rainwater determination methods. Moreover, it does not necessitate the transportation of large rainwater volumes to the laboratory.

  6. Influence of microhybrid resin and etching times on bleached enamel for the bonding of ceramic brackets.

    PubMed

    Firoozmand, Leily Macedo; Brandão, Juliana Viana Pereira; Fialho, Melissa Proença Nogueira

    2013-01-01

    The aim of this study was to evaluate the shear bond strength (SBS) of polycrystalline ceramic brackets (PCB) bonded after bleaching treatment using different composite resins and enamel etching times. A total of 144 bovine incisors were randomly divided into two study groups (n = 72, each) as follows: G1, enamel bleached with 35% hydrogen peroxide, and G2 (control group), enamel unbleached. After the bleaching treatment, the samples were stored in artificial saliva for 14 days. These groups were further divided into two subgroups (n = 36, each) as follows: GA, brackets bonded with Transbond XT (3M) and GB, brackets bonded with Filtek Z250 (3M). For each resin used, three different etching times with 37% phosphoric acid (15, 30 and 60 seconds) were tested. SBS tests were performed using a universal testing machine (EMIC), and the adhesive remnant index (ARI) score was verified. Significant differences among the three experimental conditions and interactions between the groups were observed. The type of composite resin accounted for 24% of the influence on the bond strength, whereas the etching time and bleaching treatment accounted for 14.5% and 10% of the influence on bond strength, respectively. The ARI revealed that the most common area of adhesion failure was at the composite resin-bracket interface. The type of composite resin, etching time and external bleaching significantly influenced the SBS of PCB on enamel, even after 14 days of saliva storage.

  7. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.

    PubMed

    Li, Huanwen; Ye, Zhiping; Lin, Ying; Wang, Fengying

    2012-01-01

    Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.

  8. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  9. An update on resin-bonded bridges.

    PubMed

    Barber, M W; Preston, A J

    2008-03-01

    Since the introduction of the 'Rochette' bridge in the 1970s the resin-bonded bridge has undergone a number of developments to become a commonly used technique for replacement of a missing tooth, especially in a minimally restored dentition. One of the major advantages of the resin-bonded bridge is that it requires less tooth preparation than conventional bridgework, with some authorities advising no preparation at all. Some reports have suggested poor long-term success rates, however, if used in appropriate clinical situations, this treatment modality can be extremely successful. The aim of this paper is to review the literature relating to resin-bonded bridges and suggest recommendations for clinicalpractice concerning the provision of resin-bonded bridges.

  10. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  11. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  12. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  13. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  14. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  15. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  16. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  17. Resins for Advanced Reentry Systems Applications.

    DTIC Science & Technology

    strengths of 3,000 to 6,000 psi. The strength values increased to 7,000 to 10,000 psi after the samples were reimpregnated with a furfuryl alcohol resin and repyrolyzed. The pyrolysis results are discussed.

  18. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  19. Clinical applications of preheated hybrid resin composite.

    PubMed

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  20. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  1. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  2. Accurate determination of ¹²⁹I concentrations and ¹²⁹I/¹³⁷Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry.

    PubMed

    Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bourlès, Didier; Arnold, Maurice; Bertaux, Maité

    2014-04-01

    Determining long-lived radionuclide concentrations in radioactive waste has fundamental implications for the long-term management of storage sites. This paper focuses on the measurement of low (129)I contents in ion exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). Iodine-129 concentrations were successfully determined using Accelerator Mass Spectrometry (AMS) following a chemical procedure which included (1) acid digestion of resin samples in HNO3/HClO4, (2) radioactive decontamination by selective iodine extraction using a new chromatographic resin (CL Resin), and (3) AgI precipitation. Measured (129)I concentrations ranged from 4 to 12 ng/g, i.e. from 0.03 to 0.08 Bq/g. The calculation of (129)I/(137)Cs activity ratios used for routine waste management produced values in agreement with the few available data for PWR resin samples.

  3. Resin characterization by electro-acoustic measurements.

    PubMed

    Müller, Egbert; Mann, Christian

    2007-03-09

    The electro-acoustic effects, namely the ion vibration potential (IVP) and the colloidal vibration current (CVI), colloidal vibration potential (CVP) first described by P. Debye [P. Debye, J. Chem. Phys. 1 (1933) 13], are a result of charge separation of bound or free ions at different degrees by ultrasonic waves. Today commercial instruments are available to investigate liquid homogeneous and heterogeneous systems. In the present paper the application of this technique for the characterization of salts, protein solutions and resins for biochromatography is shown and valuable information about resins can be derived in a short time. Various resins were investigated with the following results: (1) the CVI magnitude is dependent of several parameters (such as particle size distribution, volume fraction, density difference); (2) the CVI is influenced by the surface modification of the resins. Polymeric modifications decrease the value of CVI. The CVI is generally lower for high capacity resins; (3) the measurement of the electro-acoustic effects can be used to detect small changes in resins. The CVI is dependent of the amount of adsorbed protein in "native" and denatured state.

  4. Use of ion exchange resins in the analysis of rocks and minerals: Separation of sodium and potassium

    USGS Publications Warehouse

    Reichen, L.E.

    1958-01-01

    This procedure was developed primarily for analyses in which limited amounts of sample are available. Sodium and potassium can be separated from the other constituents of silicate rocks by cation exchange resin (Amberlite IR-120). The sample is decomposed with hydrofluoric and sulfuric acids and passed through the resin bed after expulsion of the fluorine. The column is eluted with 0.12N hydrochloric acid at a fast flow rate of 4 ml. per sq. cm. per minute and the sodium and potassium are recovered together within a reasonable time. Other constituents of the sample, except silica, can be determined on the same portion of sample.

  5. Large-Scale Demonstration of Perchlorate Removal Using Weak Base Anion Resin at Well No. 3 in Rialto, California

    DTIC Science & Technology

    2012-12-01

    groundwater concentration , and treated water alkalinity. The amount of acid required to achieve operating pH is directly proportional to feed water...alkalinity. Perchlorate concentration directly affects the amount of scavenger resin required, which can also increase cost. The amount of acid used in...perchlorate concentration , sulfate concentration , and treated water alkalinity affect cost and performance. The amount of acid required to achieve

  6. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  7. Influence of contamination on resin bond strength to nano-structured alumina-coated zirconia ceramic.

    PubMed

    Zhang, Shanchuan; Kocjan, Andraz; Lehmann, Frank; Kosmac, Tomaz; Kern, Matthias

    2010-08-01

    The purpose of this study was to evaluate the influence of contamination and subsequent cleaning on the bond strength and durability of an adhesive resin to nano-structured alumina-coated zirconia ceramic. Zirconia ceramic disks were coated with nano-structured alumina, utilizing the hydrolysis of aluminum nitride powder. After immersion in saliva or the use of a silicone disclosing agent, specimens were cleaned with phosphoric acid etching or with tap water rinsing only. Uncontaminated specimens served as controls. Plexiglas tubes filled with composite resin were bonded with a phosphate monomer [10-methacryloxydecyl-dihydrogenphosphate (MDP)]-containing resin (Panavia 21). Subgroups of eight specimens each were stored in distilled water at 37 degrees C, either for 3 d without thermal cycling (TC) or for 150 d with 37,500 thermal cycles from 5 to 55 degrees C. The tensile bond strength (TBS) was determined using a universal testing machine at a crosshead speed of 2 mm min(-1). The topography of the debonded surface was scrutinized for fractographic features, utilizing both optical and scanning electron microscopy. The TBS to uncontaminated nano-structured alumina-coated zirconia ceramic was durable, while contamination significantly reduced the TBS. Phosphoric acid cleaning was effective in removal of saliva contamination from the coated bonding surface but was not effective in removal of the silicone disclosing agent. Nano-structured alumina coating improves resin bonding to zirconia ceramic and eliminates the need for air-abrasion before bonding.

  8. Thermal rearrangement of novolak resins used in microlithography

    NASA Astrophysics Data System (ADS)

    Hardy, Ricky; Zampini, Anthony; Monaghan, Michael J.; O'Leary, Michael J.; Cardin, William J.; Eugster, Timothy J.

    1995-06-01

    Changes in phenolic-formaldehyde resin properties are described in terms of thermal exposure. At high temperature, resin molecular weight, dissolution properties and chemical composition change depending on the presence or absence of monomers. Without monomer in the resin melt at 220 degree(s)C, resin molecular weight increases with a corresponding decrease in dissolution rate. In the presence of monomer, molecular weight generally decreases. Dissolution rate may fluctuate depending on the monomer mixture. Three,five- Xylenol and 2,3,5-trimethylphenol co-monomers induced the most extreme changes in resin properties with thermal treatment. Resin degradation-recombination processes suggest a classical Friedel-Craft rearrangement mechanism.

  9. Plastination of decalcified bone by a new resin technique

    PubMed Central

    Rabiei, Abbas Ali; Esfandiary, Ebrahim; Hajian, Morteza; Shamosi, Atefe; Mardani, Mohammad; Rashidi, Bahman; Setayeshmehr, Mohsen

    2014-01-01

    Background: The scope of this study was to preserve whole detailed structure of dissected and decalcified bones, taken from used cadavers, by a new plastination technique. Materials and Methods: Specimens we used in this study were sheep femurs and human bones including pelvis, femur, tibia, and fibula. Bones, at first, fixed with 5% formalin and were decalcified with 5% nitric acid, and then were fixed again and washed under the tap water. The resulted flexible bones were dehydrated in −25°C acetone and degreased them in +25°C acetone. Then, the experimental and control specimen were placed in the vacuum chamber for forced impregnation with our new flexible unsaturated polyester resin (UP89 method) and silicon resin (S10 method), respectively. Finally, the strength and flexibility of plastinated decalcified specimens were investigated by tensometer, and the weight diversity was measured by digital balance. Results: Plastinated bones prepared by this technique were found to be dried, non-fragile, durable, odorless, non-greasy, and demonstrating all detailed structures of the bones. Tensile and weight tests results indicated that plastinated decalcified femurs have owned higher flexibility and strength but lesser weight than plastinated undecalcified femurs. The characteristics of both experimental and control groups of plastinated decalcified specimens were found to have no significant difference. Conclusions: Our synthesized resin found to be much more economical than conventional plastination method. In more details, properties of these new products were the same as, S10 method, from points of strength, flexibility and weight, but, since the money cost for producing them was about one fifth that of S10 method. PMID:24592368

  10. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  11. Resin flow monitoring in vacuum-assisted resin transfer molding using optical fiber distributed sensor

    NASA Astrophysics Data System (ADS)

    Eum, Soohyun; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu; Uzawa, Kiyoshi; Kanai, Makoto; Igawa, Hirotaka

    2007-04-01

    In this study, we implemented resin flow monitoring by using an optical fiber sensor during vacuum assisted resin transfer molding (VaRTM).We employed optical frequency domain reflectometry (OFDR) and fiber Bragg grating (FBG) sensor for distributed sensing. Especially, long gauge FBGs (about 100mm) which are 10 times longer than an ordinary FBG were employed for more effective distributed sensing. A long gauge FBG was embedded in GFRP laminates, and other two ones were located out of laminate for wavelength reference and temperature compensation, respectively. During VaRTM, the embedded FBG could measure how the preform affected the sensor with vacuum pressure and resin was flowed into the preform. In this study, we intended to detect the gradient of compressive strain between impregnated part and umimpregnated one within long gauge FBG. If resin is infused to preform, compressive strain which is generated on FBG is released by volume of resin. We could get the wavelength shift due to the change of compressive strain along gauge length of FBG by using short-time Fourier transformation for signal acquired from FBG. Therefore, we could know the resin flow front with the gradient of compressive strain of FBG. In this study, we used silicon oil which has same viscosity with resin substitute for resin in order to reuse FBG. In order to monitor resin flow, the silicon oil was infused from one edge of preform, the silicon oil was flowed from right to left. Then, we made dry spot within gauge length by infusing silicon oil to both sides of preform to prove the ability of dry spot monitoring with FBG. We could monitor resin flow condition and dry spot formation successfully using by FBG based on OFDR.

  12. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    PubMed

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  13. Clinical evaluation of a flowable resin composite and flowable compomer for preventive resin restorations.

    PubMed

    Qin, Man; Liu, HongSheng

    2005-01-01

    This clinical study evaluated the retention and caries protection of a flowable resin composite (Flow Line) and a flowable compomer (Dyract Flow) used in preventive resin restorations as compared to the conventional preventive resin technique which uses a resin composite (Brilliant) and a sealant (Concise). This study observed 205 permanent molars with small carious cavities less than 1.5 mm in width, which were obtained from 165 children aged 7 to 15 years. Flowable resin composite was used to treat 75 teeth, and 71 teeth were treated with flowable compomer in both cavities and caries-free fissures. For the control group, 59 teeth were treated with resin composite in cavities and sealant in caries-free fissures. The teeth were evaluated at 3, 6, 12, 18 and 24-month intervals. After three months, all 205 treated teeth were completely intact. After six months, 66 of the 71 teeth treated with flowable resin composite and 65 of the 70 teeth treated with flowable compomer were complete, compared to 57 of the 58 teeth treated with the conventional preventive resin technique. After 12 months, 60 of the 67 teeth treated with flowable resin composite and 61 of the 67 teeth treated with flowable compomer were complete, compared to 51 of the 55 teeth treated with the conventional preventive resin technique. After 18 months, 53 of the 61 teeth treated with flowable resin composite and 54 of the 62 teeth treated with flowable compomer were complete, compared to 47 of the 53 teeth treated with the conventional preventive resin technique. After 24 months, 49 of the 58 teeth treated with flowable resin composite and 45 of the 57 teeth treated with flowable compomer were complete, compared to 42 of the 52 teeth treated with the conventional preventive resin technique. There were no statistically significant differences in retention rates among all groups after 3, 6, 12, 18 or 24-months (p>0.05). One tooth treated with flowable resin composite and one tooth treated with flowable

  14. Treatment of chromium plating process effluents with ion exchange resins.

    PubMed

    Tenório, J A; Espinosa, D C

    2001-01-01

    The surface treatment industry deals with various heavy metals, including the elements Cr, Zn, Ni, Cd, and Cu. Conventional treatments of effluents generate class I solid residue. The aim of this investigation was to study the viability of ion exchange as an alternative process for treatment of rinse water and to determine the efficacy of two ion exchange systems, System 1: "strong" cationic resin-"strong" anionic resin and System 2: "strong" cationic resin-"weak" anionic resin. Commercial resins and solutions taken from rinse tanks of chromium plating companies were used in this investigation. A two-column system, one for the cationic resin and another for the anionic resin, both with 150 ml capacity was mounted. The solution was percolated at a rate of 10 ml/min. The following solutions were used for regeneration of the resins: 2% H2SO4 for the cationic and 4% NaOH for the anionic. The percolated solutions revealed chromium contents of less than 0.25 mg/l, independent of the system used. The "strong" cationic resin-"weak" anionic resin gave excellent regeneration results. The "strong" cationic-"strong" anionic resin presented problems during regeneration, and did not release the retained ions after percolation of 2000 ml of 4% NaOH solution. It is concluded that for this type of treatment, the system composed of "strong" cationic resin and "weak" anionic resin is more appropriate.

  15. Selectivity evaluation and separation of human immunoglobulin G, Fab and Fc fragments with mixed-mode resins.

    PubMed

    Luo, Ying-Di; Zhang, Qi-Lei; Yuan, Xiao-Ming; Shi, Wei; Yao, Shan-Jing; Lin, Dong-Qiang

    2017-01-01

    Adsorption selectivity is critical important for mixed-mode chromatography with specially-designed ligands. Human immunoglobulin G (hIgG), Fc and Fab fragments were used in the present work to evaluate adsorption behavior and binding selectivity of four mixed-mode resins with the ligands of 4-mercatoethyl-pyridine (MEP), 2-mercapto-1-methylimidazole (MMI), 5-aminobenzimidazole (ABI) and tryptophan-5-aminobenzimidazole (W-ABI), respectively. The resins showed an obvious pH-dependent adsorption behavior. High adsorption capacities were found at neutral pH for hIgG, Fc and Fab, and almost no adsorption happened under acidic conditions. An adsorption selectivity index was proposed to evaluate separation efficiency. High specificity of hIgG/Fc was found at pH 8.9 for MEP resin, and for W-ABI resin at pH 8.0 and 8.9. In addition, isothermal titration calorimetry was used to evaluate ligand-protein interactions. Finally, the separation of hIgG and Fc (1:1) was optimized with mixed-mode resins, and the best separation performance was obtained with W-ABI-based resin. Loading at pH 8.0 resulted in the flow through of Fc with purity of 90.4% and recovery of 98.8%, while elution at pH 3.6 provided hIgG with purity of 99.7% and recovery of 86.5%.

  16. Preparation of polymer-coated, scintillating ion-exchange resins for monitoring of 99Tc in groundwater.

    PubMed

    Seliman, Ayman F; Samadi, Azadeh; Husson, Scott M; Borai, Emad H; DeVol, Timothy A

    2011-06-15

    The present study was oriented to prepare new scintillating anion-exchange resins for measurement of (99)TcO(4)(-) in natural waters. The organic fluor 2-(1-naphthyl)-5-phenyloxazole was diffused into (chloromethyl)polystyrene resin. Thereafter, a thin layer of poly[[2-(methacryloyloxy)ethyl]trimethylammonium chloride] was grafted from the resin surface by surface-initiated atom transfer radical polymerization as an attempt to overcome potential problems related to the leaching of fluor molecules during usage. The residual chloromethyl groups of the polymer-coated resin were aminated by reaction with two different tertiary amines, triethylamine (TEA) and methyldioctylamine (MDOA). Off- and on-line quantification of (99)Tc was achieved with high detection efficiencies of 60.72 ± 1.93% and 72.83 ± 0.81% for resin with TEA and MDOA functional groups, respectively. The detection limit was determined to be less than the maximum contaminant level (33 Bq L(-1)) established under the Safe Drinking Water Act. The two functionalized resins were demonstrated to be selective for pertechnetate from synthetic groundwater containing up to 1000 ppm Cl(-), SO(4)(2-), and HCO(3)(-) and up to 1200 ppb Cr(2)O(7)(2-) in an acidic medium.

  17. Multi-podant diglycolamides and room temperature ionic liquid impregnated resins: An excellent combination for extraction chromatography of actinides.

    PubMed

    Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K

    2016-05-27

    Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions.

  18. Ponderosa pine resin defenses and growth: metrics matter.

    PubMed

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  19. Diffusion of residual monomer in polymer resins.

    PubMed Central

    Piver, W T

    1976-01-01

    A simplified mathematical model which made use of Fick's laws of diffusion written in spherical coordinates was developed to describe the rate of diffusion of residual monomers from polymer resins. The properties of the monomer-polymer system which influenced the amount of monomer remaining in the polymer as a function of time were the diffusivity and solubility of the monomer in the polymer, and the particle size of the polymer resin. This model was used to analyze literature data on the diffusion of residual vinyl chloride monomer in polyvinyl chloride resins made by the suspension process. It was concluded that particle size of the resin was a significant parameter which should be taken advantage of in process equipment designed to remove residual monomer from PVC resins. The diffusivity of the monomer in the polymer was a function of the solubility of the monomer in the polymer. Monomer solubility can be determined from Henry's law. It was suggested that this model could be adapted to describe diffusion of monomers from any monomer-polymer system, and would be a useful approach to modeling the transport of nonreactive chemical additives from plastics. PMID:1026410

  20. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.