Science.gov

Sample records for acid resistance system

  1. The acid-base resistant zone in three dentin bonding systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2009-11-01

    An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.

  2. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway.

    PubMed

    Zhang, Wei; Yang, Xiufen; Qiu, Dewen; Guo, Lihua; Zeng, Hongmei; Mao, Jianjun; Gao, Qiufeng

    2011-04-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.

  3. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  4. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  5. Is Salicylic Acid a Translocated Signal of Systemic Acquired Resistance in Tobacco?

    PubMed Central

    Shulaev, V.; Leon, J.; Raskin, I.

    1995-01-01

    Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites. PMID:12242358

  6. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  7. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  8. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.

    PubMed

    Ding, Pingtao; Rekhter, Dmitrij; Ding, Yuli; Feussner, Kirstin; Busta, Lucas; Haroth, Sven; Xu, Shaohua; Li, Xin; Jetter, Reinhard; Feussner, Ivo; Zhang, Yuelin

    2016-10-01

    Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ(1)-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.

  9. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato.

    PubMed

    Mariutto, Martin; Fauconnier, Marie-Laure; Ongena, Marc; Laloux, Morgan; Wathelet, Jean-Paul; du Jardin, Patrick; Thonart, Philippe; Dommes, Jacques

    2014-03-01

    The rhizobacterium Pseudomonas putida BTP1 stimulates induced systemic resistance (ISR) in tomato. A previous work showed that the resistance is associated in leaves with the induction of the first enzyme of the oxylipin pathway, the lipoxygenase (LOX), leading to a faster accumulation of its product, the free 13-hydroperoxy octadecatrienoic acid (13-HPOT), 2 days after Botrytis cinerea inoculation. In the present study, we further investigated the stimulation of the oxylipin pathway: metabolites and enzymes of the pathway were analyzed to understand the fate of the 13-HPOT in ISR. Actually the stimulation began upstream the LOX: free linolenic acid accumulated faster in P. putida BTP1-treated plants than in control. Downstream, the LOX products 13-fatty acid hydroperoxides esterified to galactolipids and phospholipids were more abundant in bacterized plants than in control before infection. These metabolites could constitute a pool that will be used after pathogen attack to produce free fungitoxic metabolites through the action of phospholipase A2, which is enhanced in bacterized plants upon infection. Enzymatic branches which can use as substrate the fatty acid hydroperoxides were differentially regulated in bacterized plants in comparison to control plants, so as to lead to the accumulation of the most fungitoxic compounds against B. cinerea. Our study, which is the first to demonstrate the accumulation of an esterified defense metabolite during rhizobacteria-mediated induced systemic resistance, showed that the oxylipin pathway is differentially regulated. It suggests that this allows the plant to prepare to a future infection, and to respond faster and in a more effective way to B. cinerea invasion.

  10. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  11. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems provide against oxidative stress, the addition of diamide or hydrogen peroxide were used concomitant with acid challenge at pH 2.5 to determine bacterial survival. Diamide and hydrogen peroxide both de...

  12. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms may simultaneously encounter multiple stresses in their environment. To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems might provide against both oxidative and acid stress, the addition of diamide, a membrane-permeable thiol-specific ox...

  13. Acid resistant zirconium phosphate for the long term application of (68)Ge/(68)Ga generator system.

    PubMed

    Lee, Jun Young; Vyas, Chirag K; Kim, Bo-Ram; Kim, Hee Jung; Hur, Min Goo; Yang, Seung Dae; Park, Jeong Hoon; Kim, Sang Wook

    2016-12-01

    The (68)Ge/(68)Ga generator system is an excellent source for producing ready-to-use Ga-68 in clinical Positron Emission Tomography (PET) applications. The column adsorbent is the key component for the (68)Ge/(68)Ga generator system. Therefore, several studies have been conducted to identify column materials with a stable and superior elution yield in an acidic eluent (0.1 N HCl solution). In this study, four different zirconium phosphates were synthesized with a particle size of 200-800nm, pore-size of 55∼190Å and surface area of 0.72-268m(2)g(-1). Synthesized and studied amorphous zirconium phosphate (ZrP-1) exhibited excellent acid resistant properties for the 0.1 N HCl eluent and a large surface area of 268m(2)g(-1). Amorphous ZrP-1 showed a good Ga-68 elution yield of 74% in 0.1 N HCl eluent accompanying extraordinary low breakthrough of Ge-68 (0.007%).

  14. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system

    PubMed Central

    Ohno, Misa; Kimura, Masahiro; Miyazaki, Haruko; Okawa, Kazuaki; Onuki, Riho; Nemoto, Chiyuki; Tabata, Eri; Wakita, Satoshi; Kashimura, Akinori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Nukina, Nobuyuki; Bauer, Peter O.; Oyama, Fumitaka

    2016-01-01

    Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy. PMID:27883045

  15. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids.

    PubMed

    Agut, Blas; Gamir, Jordi; Jaques, Josep A; Flors, Victor

    2016-10-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.

  16. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids

    PubMed Central

    Agut, Blas; Gamir, Jordi; Jaques, Josep A.; Flors, Victor

    2016-01-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. PMID:27683726

  17. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Neela, Kishore Babu; Pasupulati, Anil Kumar; Pallu, Reddanna; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2016-06-01

    Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants.

  18. Progress in engineering acid stress resistance of lactic acid bacteria.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  19. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance.

    PubMed

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-04-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the collapse of powdery mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants' defense machinery via local and systemic induction of pathogenesis-related1 (PR1) and plant defensin1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well.

  20. Biochemical and spectroscopic properties of Brucella microti glutamate decarboxylase, a key component of the glutamate-dependent acid resistance system

    PubMed Central

    Grassini, Gaia; Pennacchietti, Eugenia; Cappadocio, Francesca; Occhialini, Alessandra; De Biase, Daniela

    2015-01-01

    In orally acquired bacteria, the ability to counteract extreme acid stress (pH ⩽ 2.5) ensures survival during transit through the animal host stomach. In several neutralophilic bacteria, the glutamate-dependent acid resistance system (GDAR) is the most efficient molecular system in conferring protection from acid stress. In Escherichia coli its structural components are either of the two glutamate decarboxylase isoforms (GadA, GadB) and the antiporter, GadC, which imports glutamate and exports γ-aminobutyrate, the decarboxylation product. The system works by consuming protons intracellularly, as part of the decarboxylation reaction, and exporting positive charges via the antiporter. Herein, biochemical and spectroscopic properties of GadB from Brucella microti (BmGadB), a Brucella species which possesses GDAR, are described. B. microti belongs to a group of lately described and atypical brucellae that possess functional gadB and gadC genes, unlike the most well-known “classical” Brucella species, which include important human pathogens. BmGadB is hexameric at acidic pH. The pH-dependent spectroscopic properties and activity profile, combined with in silico sequence comparison with E. coli GadB (EcGadB), suggest that BmGadB has the necessary structural requirements for the binding of activating chloride ions at acidic pH and for the closure of its active site at neutral pH. On the contrary, cellular localization analysis, corroborated by sequence inspection, suggests that BmGadB does not undergo membrane recruitment at acidic pH, which was observed in EcGadB. The comparison of GadB from evolutionary distant microorganisms suggests that for this enzyme to be functional in GDAR some structural features must be preserved. PMID:25853037

  1. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid.

    PubMed

    Vos, Irene A; Verhage, Adriaan; Schuurink, Robert C; Watt, Lewis G; Pieterse, Corné M J; Van Wees, Saskia C M

    2013-01-01

    In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

  2. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata.

    PubMed

    Nair, A; Kolet, S P; Thulasiram, H V; Bhargava, S

    2015-05-01

    Tomato plants colonised with the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum show systemic induced resistance to the foliar pathogen Alternaria alternata, as observed in interactions of other AM-colonised plants with a range of pathogens. The role of jasmonic (JA) and salicylic (SA) acid in expression of this mycorrhiza-induced resistance (MIR) against A. alternata was studied by measuring: (i) activity of enzymes reported to be involved in their biosynthesis, namely lipoxygenase (LOX) and phenylammonia lyase (PAL); and (ii) levels of methyl jasmonate (MeJA) and SA. Transcript abundance of some defence genes associated with JA and SA response pathways were also studied. Both LOX and PAL activity increased twofold in response to pathogen application to control plants. AM-colonised plants had three-fold higher LOX activity compared to control plants, but unlike controls, this did not increase further in response to pathogen application. Higher LOX activity in AM-colonised plants correlated with four-fold higher MeJA in leaves of AM-colonised plants compared to controls. Treatment of plants with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM) led to 50% lower MeJA in both control and AM-colonised plants and correlated with increased susceptibility to A. alternata, suggesting a causal role for JA in expression of MIR against the pathogen. Genes involved in JA biosynthesis (OPR3) and response (COI1) showed six- and 42-fold higher expression, respectively, in leaves of AM-colonised plants compared to controls. AM-colonised plants also showed increased expression of the SA response gene PR1 and that of the wound-inducible polypeptide prosystemin. Our results suggest that the systemic increase in JA in response to AM colonisation plays a key role in expression of MIR against A. alternata.

  3. [Regulating acid stress resistance of lactic acid bacteria--a review].

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  4. Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants

    SciTech Connect

    Best M.; Fowler J.; Best, M.; Gifford, A.N.; Kim, S.W.; Babst, B.; Piel, M.; Roesch, F.; Fowler, J.S.

    2011-11-25

    A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relative to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.

  5. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different.

    PubMed

    Price, Stuart B; Wright, James C; DeGraves, Fred J; Castanie-Cornet, Marie-Pierre; Foster, John W

    2004-08-01

    Escherichia coli O157:H7 is a highly acid-resistant food-borne pathogen that survives in the bovine and human gastrointestinal tracts and in acidic foods such as apple cider. This property is thought to contribute to the low infectious dose of the organism. Three acid resistance (AR) systems are expressed in stationary-phase cells. AR system 1 is sigma(S) dependent, while AR systems 2 and 3 are glutamate and arginine dependent, respectively. In this study, we sought to determine which AR systems are important for survival in acidic foods and which are required for survival in the bovine intestinal tract. Wild-type and mutant E. coli O157:H7 strains deficient in AR system 1, 2, or 3 were challenged with apple cider and inoculated into calves. Wild-type cells, adapted at pH 5.5 in the absence of glucose (AR system 1 induced), survived well in apple cider. Conversely, the mutant deficient in AR system 1, shown previously to survive poorly in calves, was susceptible to apple cider (pH 3.5), and this sensitivity was shown to be caused by low pH. Interestingly, the AR system 2-deficient mutant survived in apple cider at high levels, but its shedding from calves was significantly decreased compared to that of wild-type cells. AR system 3-deficient cells survived well in both apple cider and calves. Taken together, these results indicate that E. coli O157:H7 utilizes different acid resistance systems based on the type of acidic environment encountered.

  6. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system.

    PubMed

    Alonso-Hernando, Alicia; Alonso-Calleja, Carlos; Capita, Rosa

    2009-12-01

    Data on the ability of chemical poultry decontaminants to induce an acid stress response in pathogenic bacteria are lacking. This study was undertaken in order to compare the survival rates in acid broths of Listeria monocytogenes and Salmonella enterica strains, both exposed to and not exposed to decontaminants. The contribution of the glutamate decarboxylase (GAD) acid resistance system to the survival of bacteria in acid media was also examined. Four strains (L. monocytogenes serovar 1/2, L. monocytogenes serovar 4b, S. enterica serotype Typhymurium and S. enterica serotype Enteritidis) were tested before (control) and after exposure to trisodium phosphate, acidified sodium chlorite, citric acid, chlorine dioxide and peroxyacids (strains were repeatedly passed through media containing increasing concentrations of a compound). Stationary-phase cells (10(8) cfu/ml) were inoculated into tryptic soy broth (TSB) acidified with citric acid (pH 2.7 and 5.0) with or without glutamate (10 mM) added, and incubated at 37 degrees C for 15 min. Survival percentages (calculated from viable colonies) varied from 2.47 +/- 0.67% to 91.93 +/- 5.83%. L. monocytogenes cells previously exposed to acid decontaminants (citric acid and peroxyacids) showed, when placed in acid TSB, a higher (P < 0.05) percentage of survival (average 38.80 +/- 30.52%) than control and pre-exposed to non-acidic decontaminants strains (22.82 +/- 23.80%). Similar (P > 0.05) survival percentages were observed in previously exposed to different decontaminants and control Salmonella strains. The GAD acid resistance system did not apparently play any role in the survival of L. monocytogenes or S. enterica at a low pH. This study demonstrates for the first time that prior exposure to acidic poultry decontaminants increases the percentage of survival of L. monocytogenes exposed to severe acid stress. These results have important implications for the meat industry when considering which decontaminant treatment to

  7. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in Escherichia coli▿

    PubMed Central

    Yu, Zhong; Bekker, Martijn; Tramonti, Angela; Cook, Gregory M.; van Ulsen, Peter; Scheffers, Dirk-Jan; de Mattos, Joost Teixeira; De Biase, Daniela; Luirink, Joen

    2011-01-01

    The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting. PMID:21216990

  8. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  9. AMINO ACID CROSS RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Amino acid cross resistance in Agrobacterium tumefaciens. J. Bacteriol. 84:1237–1240. 1962.—Resistant clones selected on medium supplemented with glycine were also resistant to d-methionine, d-valine, dl-norleucine, and dl-serine. Cross resistance was similarly exhibited by clones selected on d-methionine, d-valine, or dl-norleucine. Two types of resistant organisms were observed. One produced colonies containing normal rods on selection medium. The other produced translucent colonies containing L forms. Both grew as typical rods in unsupplemented medium. Some resistant clones did not produce a temperate phage carried by the parental strain, but these retained immunity to homologous phage. The toxicity of d-methionine and d-valine for nonresistant bacteria is not reversed by the l isomers. The lethal effects of toxic amino acids are additive. PMID:13969951

  10. Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems.

    PubMed

    Mizoguchi, Tadashi; Tsukatani, Yusuke; Harada, Jiro; Takasaki, Shin; Yoshitomi, Taichi; Tamiaki, Hitoshi

    2013-07-01

    Green photosynthetic bacteria have unique light-harvesting antenna systems called chlorosomes. Chlorobaculum tepidum, a model organism of the bacteria, biosynthesized monogalactosyl- and rhamnosylgalactosyldiacylglycerides possessing a methylene-bridged palmitoleyl group characterized by a cis-substituted cyclopropane ring as the dominant glycolipids of its chlorosome surface. The formation of the cyclopropane ring was chemically inhibited by supplementation of sinefungin, an analog of S-adenosyl-L-methionine, into the bacterial cultivation. The presence of the cyclopropane ring reinforced acid resistance of the light-harvesting chlorosomes and suppressed acidic demetalation (pheophytinization) of bacteriochlorophyll-c pigments constructing the core part of chlorosomes. The ring-formation would represent direct and post-synthetic modifications of chlorosome membrane properties and was tolerant of acidic environments.

  11. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  12. Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance.

    PubMed

    Jovel, Juan; Walker, Melanie; Sanfaçon, Hélène

    2011-06-01

    Tomato ringspot virus (ToRSV, a Nepovirus sp.) systemically infects many herbaceous plants. Viral RNA accumulates in symptomatic leaves and in young, asymptomatic leaves that emerge late in infection. Here, we show that systemic infection by ToRSV is restricted in tobacco. After an initial hypersensitive response in inoculated leaves, only a few plants showed limited systemic symptoms. Viral RNA did not usually accumulate to detectable levels in asymptomatic leaves. ToRSV-derived small-interfering RNAs and PR1a transcripts were only detected in tissues that contained viral RNA, indicating local induction of RNA silencing and salicylic acid (SA)-dependent defense responses. Lesion size and viral systemic spread were reduced with SA pretreatment but enhanced in NahG transgenic lines deficient in SA accumulation, suggesting that SA-dependent mechanisms play a key role in limiting ToRSV spread in tobacco. Restriction of virus infection was enhanced in transgenic lines expressing the P1-HC-Pro suppressor of silencing. Knocking down the SA-inducible RNA-dependent RNA polymerase 1 exacerbated the necrotic reaction but did not affect viral systemic spread. ToRSV-infected tobacco plants were susceptible to reinoculation by ToRSV or Tobacco mosaic virus, although a small reduction in lesion size was observed. This moderate systemic resistance suggests inefficient induction or spread of RNA silencing and systemic acquired resistance signal molecules.

  13. Interference of the CadC regulator in the arginine-dependent acid resistance system of Shigella and enteroinvasive E. coli.

    PubMed

    Casalino, Mariassunta; Prosseda, Gianni; Barbagallo, Marialuisa; Iacobino, Angelo; Ceccarini, Paolo; Latella, Maria Carmela; Nicoletti, Mauro; Colonna, Bianca

    2010-06-01

    A typical pathoadaptive mutation of Shigella and enteroinvasive Escherichia coli (EIEC) is the inactivation of the cad locus which comprises the genes necessary for lysine decarboxylation, an enzyme involved in pH homoeostasis. In E. coli, the cadBA operon, encoding lysine decarboxylase (CadA) and a lysine cadaverine antiporter (CadB), is submitted to the control of CadC, a positive activator whose gene maps upstream the operon, and is transcribed independently from the same strand. CadC is an integral inner membrane protein which acts both, as signal sensor and as transcriptional regulator responding to the low pH and lysine signals. Analysis of the molecular rearrangements responsible for the loss of lysine decarboxylase activity in Shigella and EIEC has revealed that the inactivation of the cadC gene is a common feature. The 3 major adaptive acid resistance (AR) systems - AR1, AR2, and AR3 - are known to be activated at low pH by Shigella and E. coli, allowing them to withstand extremely acid conditions. In this study, evaluating the survival of S. flexneri, S. sonnei, and EIEC strains complemented with a functional cadC gene and challenged at low pH, we present evidence that CadC negatively regulates the expression of the arginine-dependent adaptive acid-resistance system (AR3), encoded by the adi locus while it has no effect on the expression of AR1 and AR2 systems. Moreover, since our results indicate that in enteroinvasive strains the presence of CadC reduces the expression of the arginine decarboxylase encoding gene adiA, it is possible to hypothesize that the loss of functionality of lysine decarboxylase is counterbalanced by a higher expression of the adi system, and that CadC, besides specifically affecting the regulation of the cadBA operon, is also relevant to other systems responding to low pH.

  14. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  15. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  16. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1.

    PubMed

    Kojima, Hanae; Hossain, Md Motaher; Kubota, Mayumi; Hyakumachi, Mitsuro

    2013-01-01

    Plant growth-promoting fungi (PGPF) are effective biocontrol agents for a number of soil-borne diseases and are known for their ability to trigger induced systemic resistance (ISR). In this study, we investigated the mechanisms triggered by PGPF Fusarium equiseti GF19-1, which is known to increase pathogen resistance in plants, by using GF19-1 spores and the culture filtrate (CF) to treat the roots of Arabidopsis thaliana. Subsequently, the leaves were challenged with Pseudomonas syringae pv tomato DC3000 (Pst) bacteria. Arabidopsis plants treated with GF19-1 spores or the CF elicited ISR against the Pst pathogen, resulting in a restriction of disease severity and suppression of pathogen proliferation. Examination of ISR in various signaling mutants and transgenic plants showed that GF19-1-induced protection was observed in the jasmonate response mutant jar1 and the ethylene response mutant etr1, whereas it was blocked in Arabidopsis plants expressing the NahG transgene or demonstrating a disruption of the NPR1 gene (npr1). Analysis of systemic gene expression revealed that GF19-1 modulates the expression of salicylic acid (SA)-responsive PR-1, PR-2, and PR-5 genes. Moreover, transient accumulation of SA was observed in GF19-1-treated plant, whereas the level was further enhanced after Pst infection of GF19-1-pretreated plants, indicating that accumulation of SA was potentiated when Arabidopsis plants were primed for disease resistance by GF19-1. In conclusion, these findings imply that the induced protective effect conferred by F. equiseti GF19-1 against the leaf pathogen Pst requires responsiveness to an SA-dependent pathway.

  17. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  18. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  19. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    NASA Astrophysics Data System (ADS)

    Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.

  20. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  1. Oxidation-resistant acidic resins prepared by partial carbonization as cocatalysts in synthesis of adipic acid.

    PubMed

    Wei, Huijuan; Li, Hongbian; Liu, Yangqing; Jin, Peng; Wang, Xiangyu; Li, Baojun

    2012-08-01

    The oxidation-resistant acidic resins are of great importance for the catalytic oxidation systems. In this paper, the oxidatively stable acidic resins are obtained from the cation ion exchange resins (CIERs) through the thermal treatment in N(2) atmosphere. The structure and properties of the thermally treated CIERs were characterized by chemical analysis, Fourier transform infrared (FT-IR) spectra, acid capacity measurement and scanning electron microscope (SEM). The thermally treated CIERs possess high acid capacity up to 4.09 mmol g(-1). A partial carbonization is observed in the thermal treatment process of CIERs, but the morphology of resin spheres maintains well. The as-prepared CIERs are used as solid acids to assist the hydrogen peroxide oxidation of cyclohexene to adipic acid (ADA) with tungstic acid as the catalyst precursor. The improved yields of ADA in the recycling reaction are obtained in the presence of acidic CIERs. Meanwhile, the unproductive decomposition of H(2)O(2) is effectively suppressed. The high yields of ADA (about 81%) are kept by the thermally treated CIERs even after the fifth cycle. The thermally treated CIERs exhibit excellent acid-catalytic performance and possess remarkable oxidation-resistant capability.

  2. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  3. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  4. Diffusion of acid from resist to Si-hardmask layer

    NASA Astrophysics Data System (ADS)

    Shirai, Masamitsu; Takeda, Hiroki; Hatsuse, Tatsuya; Okamura, Haruyuki; Wakayama, Hiroyuki; Nakajima, Makoto

    2012-03-01

    In a chemically amplified (CA) resist process, photochemically generated acid can diffuse in the resist matrix, inducing the de-protection reactions. The concentration of acid in resist matrix should be constant during the post-exposure-bake (PEB) treatment. In the practical resist processes, bottom anti-reflective coating (BARC) is essentially important to provide reflectivity control for resist patterning. In some cases, however, the photochemically generated acid in resist layer can diffuse into BARC layer, which causes the footing for resist patterns. In this work, we have studied the diffusion of acid from CA resist layer to Si-hardmask (Si-HM) layer. The Si-HM is essential for the multi-layer patterning process. The acid concentration in the resist layer was estimated based on the de-protection reaction kinetics for the CA resist using rapid scan FT-IR spectroscopy. It was found that the acid in resist layer diffused into the Si-HM layer. The diffusion efficiency of the acid was dependent on the crosslinking density of the Si-HM and the chemical structure of the resist.

  5. Increased Amoxicillin–Clavulanic Acid Resistance in Escherichia coli Blood Isolates, Spain

    PubMed Central

    Oteo, Jesús; Lázaro, Edurne; Cuevas, Óscar; García-Cobos, Silvia; Pérez-Vázquez, María; de Abajo, F. J.

    2008-01-01

    To determine the evolution and trends of amoxicillin–clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006. PMID:18680650

  6. Increased amoxicillin-clavulanic acid resistance in Escherichia coli blood isolates, Spain.

    PubMed

    Oteo, Jesús; Campos, José; Lázaro, Edurne; Cuevas, Oscar; García-Cobos, Silvia; Pérez-Vázquez, María; de Abajo, F J

    2008-08-01

    To determine the evolution and trends of amoxicillin-clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006.

  7. Photodynamic therapy using systemic administration of 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode for methicillin-resistant Staphylococcus aureus-infected ulcers in mice.

    PubMed

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.

  8. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.

    PubMed

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

    2013-11-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.

  9. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  10. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test....

  11. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test....

  12. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test....

  13. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response.

    PubMed

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A H M; Höfte, Monica

    2008-12-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  14. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins.

    PubMed

    Eschen-Lippold, Lennart; Altmann, Simone; Rosahl, Sabine

    2010-05-01

    Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-beta-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid-derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.

  15. Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice.

    PubMed

    Li, Yunfeng; Zhang, Zhihui; Nie, Yanfang; Zhang, Lianhui; Wang, Zhenzhong

    2012-08-01

    To probe salicylic acid (SA)-induced sequential events at translational level and factors associated with SA response, we conducted virulence assays and proteomic profiling analysis on rice resistant and susceptible cultivars against Magnaporthe oryzae at various time points after SA treatment. The results showed that SA significantly enhanced rice resistance against M. oryzae. Proteomic analysis of SA-treated leaves unveiled 36 differentially expressed proteins implicated in various functions, including defense, antioxidative enzymes, and signal transduction. Majority of these proteins were induced except three antioxidative enzymes, which were negatively regulated by SA. Consistent with the above findings, SA increased the level of reactive oxygen species (ROS) with resistant cultivar C101LAC showing faster response to SA and producing higher level of ROS than susceptible cultivar CO39. Furthermore, we showed that nucleoside diphosphate kinase 1, which is implicated in regulation of ROS production, was strongly induced in C101LAC but not in CO39. Taken together, the findings suggest that resistant rice cultivar might possess a more sensitive SA signaling system or effective pathway than susceptible cultivar. In addition, our results indicate that SA also coordinates other cellular activities such as photosynthesis and metabolism to facilitate defense response and recovery, highlighting the complexity of SA-induced resistance mechanisms.

  16. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  17. Acid resistance contributes to the high-pressure carbon dioxide resistance of Escherichia coli K-12.

    PubMed

    Furukawa, Soichi; Shimazaki, Junji; Kawaharada, Kazumichi; Matsuda, Tsukasa; Aoyagi, Hiroki; Wakabayashi, Hidekazu; Ogihara, Hirokazu; Yamasaki, Makari; Morinaga, Yasushi

    2015-01-01

    Effect of deletion of acid resistant genes of E. coli on the high-pressure carbon dioxide (HPC) resistance was investigated. Genes coding amino acid decarboxylases, such as lysine, arginine, and glutamate decarboxylase, were found to contribute to HPC resistance. Protonophore-treated cells showed hypersensitivity to HPC, confirming that HPC induced cytoplasm acidification and exerted severe damage on cells by intrusion of gaseous carbon dioxide into cytoplasm.

  18. Systems biology of diuretic resistance

    PubMed Central

    Knepper, Mark A.

    2015-01-01

    Diuretics are commonly used to treat hypertension and extracellular fluid volume expansion. However, the development of compensatory responses in the kidney limits the benefit of this class of drugs. In this issue of the JCI, Grimm and colleagues use a systems biology approach in mice lacking the kinase SPAK and unravel a complex mechanism that explains thiazide diuretic resistance. The overall process involves interactions among six different cell types in the kidney. PMID:25893597

  19. The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations.

    PubMed

    Janckila, A J; Li, C Y; Lam, K W; Yam, L T

    1978-07-01

    Cytochemical demonstration of tartrate-resistant acid phosphatase activity is essential for the diagnosis of leukemic reticuloendotheliosis. In order to perform this test correctly and to interpret the results propertly, it is necessary to understand the technical details of the cytochemical methods thoroughly. The method using naphthol--ASBI phosphoric acid--fast garnet GBC is recommended for this purpose, and factors crucial to the cytochemical study, such as fixation, substrate, coupler, pH and temperature of incubation buffer, counterstains, and mounting media are examined and discussed. Conventional methods for acid phosphatase in the presence and absence of L(+) tartaric acid are also critically examined. The naphthol--ASBI phosphoric acid--fast garnet GBC method is sensitive, technically simple and easily reproducible. Its reaction product is highly chromogenic and is most suitable for cytochemical demonstration of acid phosphatase and tartrate-resistant acid phosphatase activity in cytologic preparations. The naphthol--ASBI phosphoric acid--pararosaniline method is highly specific and is best for histochemical demonstration of acid phosphatase and tartrate-resistant acid phosphatase in tissue sections.

  20. Associations of erythrocyte fatty acid patterns with insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  1. Free radicals mediate systemic acquired resistance.

    PubMed

    Wang, Caixia; El-Shetehy, Mohamed; Shine, M B; Yu, Keshun; Navarre, Duroy; Wendehenne, David; Kachroo, Aardra; Kachroo, Pradeep

    2014-04-24

    Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azelaic acid (AzA), which in turn induces production of the SAR inducer glycerol-3-phosphate (G3P). Notably, this NO/ROS→AzA→G3P-induced signaling functions in parallel with salicylic acid-derived signaling. We propose that the parallel operation of NO/ROS and SA pathways facilitates coordinated regulation in order to ensure optimal induction of SAR.

  2. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

  3. Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies.

    PubMed

    Gesche, Joanna; Khanevski, Marina; Solberg, Carl; Beier, Christoph Patrick

    2017-04-01

    This study aimed at defining clinical predictors of drug resistance in adults with genetic generalized epilepsy (GGE) who were treated with a broad spectrum of antiepileptic drugs. Of a cohort of 137 unselected adult GGE patients with long-term follow up, clinical and demographic data, putative prognostic factors (e.g., psychiatric comorbidities, electroencephalography [EEG]), treatment response, and data indicative of social status were collected. Fifty-eight patients had seizures within the past year. Thirty-three patients met the definition of "drug-resistant epilepsy" according to the International League Against Epilepsy (ILAE) definition. Psychiatric comorbidities, age at first diagnosis, and absences were associated with worse seizure control, whereas focal changes in EEG remained without prognostic impact. Resistance to valproic acid was the most important prognostic factor for refractory seizures. Resistance to valproic acid had a specificity of 100% to identify patients with drug resistance and correlated strongly with bad social outcome and seizure burden. Conversely, 21.2% of all patients with refractory seizures according to the ILAE definition later became seizure free (mainly with valproic acid). Our data suggest that "drug resistant GGE" must not be declared unless patients were adequately treated with valproic acid, and advocate resistance to valproic acid as a new clinical biomarker for drug-resistant GGE. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.

  4. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage.

  5. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  6. Resistance of geopolymer materials to acid attack

    SciTech Connect

    Bakharev, T

    2005-04-01

    This article presents an investigation into durability of geopolymer materials manufactured using a class F fly ash (FA) and alkaline activators when exposed to 5% solutions of acetic and sulfuric acids. The main parameters studied were the evolution of weight, compressive strength, products of degradation and microstructural changes. The degradation was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The performance of geopolymer materials when exposed to acid solutions was superior to ordinary Portland cement (OPC) paste. However, significant degradation of strength was observed in some geopolymer materials prepared with sodium silicate and with a mixture of sodium hydroxide and potassium hydroxide as activators. The deterioration observed was connected to depolymerisation of the aluminosilicate polymers in acidic media and formation of zeolites, which in some cases lead to a significant loss of strength. The best performance was observed in the geopolymer material prepared with sodium hydroxide and cured at elevated temperature, which was attributed to a more stable cross-linked aluminosilicate polymer structure formed in this material.

  7. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  8. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    PubMed

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  9. Modeling of free fatty acid dynamics: insulin and nicotinic acid resistance under acute and chronic treatments.

    PubMed

    Andersson, Robert; Kroon, Tobias; Almquist, Joachim; Jirstrand, Mats; Oakes, Nicholas D; Evans, Neil D; Chappel, Michael J; Gabrielsson, Johan

    2017-02-21

    Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.

  10. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment.

    PubMed

    Guazzaroni, María-Eugenia; Morgante, Verónica; Mirete, Salvador; González-Pastor, José E

    2013-04-01

    Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions.

  11. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.

    PubMed

    Pangesti, Nurmi; Reichelt, Michael; van de Mortel, Judith E; Kapsomenou, Eleni; Gershenzon, Jonathan; van Loon, Joop J A; Dicke, Marcel; Pineda, Ana

    2016-12-01

    Beneficial soil microbes can promote plant growth and induce systemic resistance (ISR) in aboveground tissues against pathogens and herbivorous insects. Despite the increasing interest in microbial-ISR against herbivores, the underlying molecular and chemical mechanisms of this phenomenon remain elusive. Using Arabidopsis thaliana and the rhizobacterium Pseudomonas simiae WCS417r (formerly known as P. fluorescens WCS417r), we here evaluate the role of the JA-regulated MYC2-branch and the JA/ET-regulated ORA59-branch in modulating rhizobacteria-ISR to Mamestra brassicae by combining gene transcriptional, phytochemical, and herbivore performance assays. Our data show a consistent negative effect of rhizobacteria-mediated ISR on the performance of M. brassicae. Functional JA- and ET-signaling pathways are required for this effect, as shown by investigating the knock-out mutants dde2-2 and ein2-1. Additionally, whereas herbivory mainly induces the MYC2-branch, rhizobacterial colonization alone or in combination with herbivore infestation induces the ORA59-branch of the JA signaling pathway. Rhizobacterial colonization enhances the synthesis of camalexin and aliphatic glucosinolates (GLS) compared to the control, while it suppresses the herbivore-induced levels of indole GLS. These changes are associated with modulation of the JA-/ET-signaling pathways. Our data show that the colonization of plant roots by rhizobacteria modulates plant-insect interactions by prioritizing the JA/ET-regulated ORA59-branch over the JA-regulated MYC2-branch. This study elucidates how microbial plant symbionts can modulate the plant immune system to mount an effective defense response against herbivorous plant attackers.

  12. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    PubMed

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing.

  13. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of...

  14. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  15. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  16. Organic acids make Escherichia coli more resistant to pulsed electric fields at acid pH.

    PubMed

    Somolinos, M; García, D; Mañas, P; Condón, S; Pagán, R

    2010-01-01

    Stationary growth phase cells of Escherichiacoli were more pulsed electric fields (PEF) resistant in citrate-phosphate McIlvaine buffer at pH 4.0 than at pH 7.0. The greater PEF resistance was also confirmed in fruit juices of similar acid pH. In this work we studied whether the higher PEF resistance of E. coli at acid pH was due to the low pH itself or to the interaction of the components of the treatment medium with the cells. The protective effect on E. coli cells was due to the presence of organic acids such as citric, acetic, lactic or malic at pH 4.0. The protective effect of citric acid at pH 4.0 depended on its concentration. A linear relationship was observed between the Log(10) of the citric acid concentration and the degree of inactivation. Organic acids contained in laboratory treatment media (citrate-phosphate buffer) or in fruit juices did not sensitize E. coli cells to PEF but, on the contrary, they induced a protective effect that made E. coli cells more resistant at pH 4.0 than at neutral pH. This work could be useful for improving food preservation by PEF technology and it contributes to the knowledge of the mechanism of microbial inactivation by PEF.

  17. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    PubMed

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for resistance in cultured hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  18. The role of abscisic acid and water stress in root herbivore-induced leaf resistance.

    PubMed

    Erb, Matthias; Köllner, Tobias G; Degenhardt, Jörg; Zwahlen, Claudia; Hibbard, Bruce E; Turlings, Ted C J

    2011-01-01

    • Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.

  19. [Metabolic engineering of wild acid-resistant yeast for L-lactic acid production].

    PubMed

    Zhang, Qin; Zhang, Liang; Ding, Zhongyang; Wang, Zhengxiang; Shi, Guiyang

    2011-07-01

    In order to obtain a yeast strain able to produce L-lactic acid under the condition of low pH and high lactate content, one wild acid-resistant yeast strain isolated from natural samples, was found to be able to grow well in YEPD medium (20 g/L glucose, 20 g/L tryptone, 10 g/L yeast extract, adjusted pH 2.5 with lactic acid) without consuming lactic acid. Based on further molecular biological tests, the strain was identified as Candida magnolia. Then, the gene ldhA, encoding a lactate dehydrogenase from Rhizopus oryzae, was cloned into a yeast shuttle vector containing G418 resistance gene. The resultant plasmid pYX212-kanMX-ldhA was introduced into C. magnolia by electroporation method. Subsequently, a recombinant L-lactic acid producing yeast C. magnolia-2 was obtained. The optimum pH of the recombinant yeast is 3.5 for lactic acid production. Moreover, the recombinant strain could grow well and produce lactic acid at pH 2.5. This recombinant yeast strain could be useful for producing L-lactic acid.

  20. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    PubMed

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  1. Dumb and dumber--the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus.

    PubMed

    Howden, Benjamin P; Grayson, M Lindsay

    2006-02-01

    Fusidic acid has activity against a range of pathogens but has mainly been used to treat staphylococcal infections. Fusidic acid monotherapy, especially topical preparations, has been strongly associated with the emergence of fusidic acid resistance among both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus. Key resistance determinants include mutations in the fusA gene, which encodes elongation factor G, and plasmid-mediated resistance (i.e., acquisition of resistance gene fusB). Clonal outbreaks of fusidic acid-resistant S. aureus have been noted throughout the United Kingdom and Europe, such that the efficacy of fusidic acid is threatened. Fusidic acid in combination with other agents, such as rifampicin, has proven effective for difficult-to-treat MRSA infections and provides a convenient oral alternative to oxazolidinones. Ensuring that systemic fusidic acid is always used in combination and that the use of topical fusidic acid is either abolished or restricted will be vital if we are to prevent the loss of this potentially useful agent.

  2. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis.

    PubMed Central

    Riccardi, G; Sora, S; Ciferri, O

    1981-01-01

    Mutants of Spirulina platensis resistant to 5-fluorotryptophan, beta-3-thienyl-alanine, ethionine, p-fluorophenylalanine, or azetidine-2-carboxylic acid were isolated. Some of these mutants appeared to be resistant to more than one analog and to overproduce the corresponding amino acids. A second group was composed of mutants that were resistant to one analog only. Of the latter mutants, one resistant to azetidine-2-carboxylic acid was found to overproduce proline only, whereas one resistant to fluorotryptophan and one resistant to ethionine did not overproduce any of the tested amino acids. PMID:6792182

  3. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  4. Studies of acid resistance characteristics in multiple drug resistant Salmonella species isolated from tomatoes.

    PubMed

    Naushad, Z; Mishra, S H; Musaddiq, M; Ali, Y A

    2013-04-01

    Salmonella species found to have a great potential of causing a variety of diseases ranging from gastroenteritis to enteric fever. Salmonella have been isolated from all food, animals and also found in the vegetables such as tomatoes, spinach etc. Several out breaks of Salmonellosis have been associated with the consumption of raw tomatoes. This is because of the fact that Salmonella attaches to the surface of tomatoes and also present in the interior part due to geotropic transmission via contaminated soil irrigated with contaminated water. .During the life cycle, Salmonella encounters the various environments such as acidic environment (low pH). To overcome such factors, Salmonella has certain adaptable mechanisms. In present 'study total 200 samples of tomatoes were analyzed out of which 10 samples were found to contain Salmonella. All the 10 isolates were then subjected to the antibiotic susceptibility testing and were found to be resistant against several antibiotics. These were subjected to acid resistant tolerance study.

  5. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  6. Fates of acid-resistant and non-acid-resistant Shiga toxin-producing Escherichia coli strains in ruminant digestive contents in the absence and presence of probiotics.

    PubMed

    Chaucheyras-Durand, Frédérique; Faqir, Fahima; Ameilbonne, Aurélie; Rozand, Christine; Martin, Christine

    2010-02-01

    Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination.

  7. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  8. Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae.

    PubMed

    Suzuki, Toshihiro; Sakamoto, Takatoshi; Sugiyama, Minetaka; Ishida, Nobuhiro; Kambe, Hiromi; Obata, Shusei; Kaneko, Yoshinobu; Takahashi, Haruo; Harashima, Satoshi

    2013-05-01

    To create strains that have high productivity of lactic acid without neutralization, a genome-wide screening for strains showing hyper-resistance to 6% l-lactic acid (pH 2.6) was performed using the gene deletion collection of Saccharomyces cerevisiae. We identified 94 genes whose disruption led to resistance to 6% lactic acid in rich medium. We also found that multiple combinations of Δdse2, Δscw11, Δeaf3, and/or Δsed1 disruption led to enhanced resistance to lactic acid depending upon their combinations. In particular, the quadruple disruptant Δdse2Δscw11Δeaf3Δsed1 grew well in 6% lactic acid with the shortest lag phase. We then introduced an exogenous lactate dehydrogenase gene (LDH) into those single and multiple disruptants to evaluate their productivity of lactic acid. It was found that the quadruple disruptant displaying highest lactic-acid resistance showed a 27% increase of lactic-acid productivity as compared with the LDH-harboring wild-type strain. These observations suggest that disruption of multiple genes whose deletion leads to lactic-acid resistance is an effective way to enhance resistance to lactic acid, leading to high lactic-acid productivity without neutralization.

  9. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  10. Induced systemic resistance (ISR) in plants: mechanism of action.

    PubMed

    Choudhary, Devendra K; Prakash, Anil; Johri, B N

    2007-12-01

    Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a

  11. National Antimicrobial Resistance Monitoring System (NARMS) Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Antimicrobial Resistance Monitoring System (NARMS) – Enteric Bacteria is a national public health surveillance system in the United States that tracks changes in the susceptibility of certain enteric bacteria to antimicrobial agents of human and veterinary medical importance. The NARMS ...

  12. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii☆

    PubMed Central

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Novodvorska, Michaela; Hayer, Kimran; Archer, David B.

    2013-01-01

    Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~ 3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to < 1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~ 100% cross-resistance to other weak-acid preservatives. Tests using 14C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH 5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors

  13. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Novodvorska, Michaela; Hayer, Kimran; Archer, David B

    2013-08-16

    Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to <1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~100% cross-resistance to other weak-acid preservatives. Tests using (14)C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors.

  14. Effect of acid labile ether protecting groups on the oxide etch resistance and lithographic performance of 248-nm resists

    NASA Astrophysics Data System (ADS)

    Varanasi, Pushkara R.; Cornett, Kathleen M.; Lawson, Margaret C.

    2000-06-01

    In our attempts to develop etch resistance 248 nm positive resists, we have designed and synthesized thermally stable and acid sensitive methylbenzyl ether (MBE) protected poly(hydroxystyrene) derivatives. Results presented in this paper clearly illustrate that the MBE protecting group provides superior etch resistance to conventional carbonate, ester and acetal/ketal based protecting groups. It is also shown that the MBE protecting group is thermally stable and undergoes acid catalyzed deprotection leading to preferential rearrangement products due to electrophilic ring substitution. Such a rearrangement is shown to provide a unique mechanism to reduce/eliminate resist shrinkage and improve lithographic performance.

  15. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    PubMed

    Yu, Jingling; Yang, Lei; Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  16. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis

    PubMed Central

    Liu, Xiaobing; Tang, Renjie; Wang, Yuan; Ge, Haiman; Wu, Mengting; Zhang, Jiang; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2016-01-01

    Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1)/ PYRL (PYR-Like)/ RCAR (Regulatory Component of ABA Receptor) (PYR/PYL/RCAR) ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa) (PtPYRLs) function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants. PMID:27992471

  17. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.

  18. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions.

    PubMed

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel; De Biase, Daniela; Occhialini, Alessandra

    2015-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.

  19. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  20. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  1. Rapid development of glutathione-S-transferase-dependent drug resistance in vitro and its prevention by ethacrynic acid.

    PubMed

    Caffrey, P B; Zhu, M; Zhang, Y; Chinen, N; Frenkel, G D

    1999-02-08

    Exposure of A2780 human ovarian tumor cells to a low concentration of melphalan in vitro for 7 days resulted in the development of melphalan resistance. This resistance was not a stable characteristic of the cells since it was lost after 2 weeks in culture in the absence of drug. The melphalan-resistant cells exhibited significant cross-resistance to cisplatin but only minor cross-resistance to doxorubicin. The resistant cells had elevated levels of glutathione-S-transferase activity and mRNA. Exposure of the cells to the ethacrynic acid resulted in a decrease in enzyme activity as well as a reversal of their drug-resistant phenotype, indicating that the enzyme is involved in the resistance. When ethacrynic acid was present during the 7-day exposure of the cells to melphalan, the development of drug resistance was prevented. This system may serve as a useful preliminary step in screening for agents which can prevent the development of chemotherapy-induced drug resistance in human cancer.

  2. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    PubMed

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  3. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    PubMed Central

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. Conclusion Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity. PMID:18320034

  4. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings.

    PubMed

    Song, Weiwei; Ma, Xinrong; Tan, Hong; Zhou, Jinyan

    2011-07-01

    The plant hormone abscisic acid (ABA) is an important regulator in many aspects of plant growth and development, as well as stress resistance. Here, we investigated the effects of exogenous ABA application on the interaction between tomato (Solanum lycopersicon L.) and Alternaria solani (early blight). Foliar spraying of 7.58 μM ABA was effective in reducing disease severity in tomato plants. Previously, increased activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) were observed in exogenous ABA-treated tomato leaves. Moreover, these enzyme activities were maintained at higher levels in ABA-pretreated and A. solani challenged tomato plants. Tomato defense genes, such as PR1, β-1, 3-glucanase (GLU), PPO, POD, and superoxide dismutase (SOD), were rapidly and significantly up-regulated by exogenous ABA treatment. Furthermore, a subsequent challenge of ABA-pretreated plants with the pathogen A. solani resulted in higher expression of defense genes, compared to water-treated or A. solani inoculated plants. Therefore, our results suggest that exogenous ABA could enhance disease resistance against A. solani infection in tomato through the activation of defense genes and via the enhancement of defense-related enzymatic activities.

  5. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis▿

    PubMed Central

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L. lactis and to evaluate the contribution of efflux-based mechanisms in this process, the drug-sensitive L. lactis NZ9000 ΔlmrCD strain was challenged with cholate. A resistant strain was obtained that, compared to the parental strain, showed (i) significantly improved resistance toward several bile acids but not to drugs, (ii) morphological changes, and (iii) an altered susceptibility to antimicrobial peptides. Transcriptome and transport analyses suggest that the acquired resistance is unrelated to elevated transport activity but, instead, results from a multitude of stress responses, changes to the cell envelope, and metabolic changes. In contrast, wild-type cells induce the expression of lmrCD upon exposure to cholate, whereupon the cholate is actively extruded from the cells. Together, these data suggest a central role for an efflux-based mechanism in bile acid resistance and implicate LmrCD as the main system responsible in L. lactis. PMID:18790870

  6. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    PubMed Central

    2012-01-01

    Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms. PMID:22360800

  7. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  8. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance

    PubMed Central

    Li, Wenjing; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wu, Yaogong; Bian, Fang; Wu, Guangjie; Li, Ye; Li, Juyi; Bai, Xiangli; Wu, Dan; Jia, Xiong; Wang, Ling; Zhu, Lin; Jin, Si

    2017-01-01

    Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance. PMID:28304381

  9. Battery Resistance Analysis of ISS Power System

    NASA Technical Reports Server (NTRS)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  10. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  11. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  12. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  13. Is modulating virus virulence by induced systemic resistance realistic?

    PubMed

    Faoro, Franco; Gozzo, Franco

    2015-05-01

    Induction of plant resistance, either achieved by chemicals (systemic acquired resistance, SAR) or by rhizobacteria (induced systemic resistance, ISR) is a possible and/or complementary alternative to manage virus infections in crops. SAR mechanisms operating against viruses are diverse, depending on the pathosystem, and may inhibit virus replication as well as cell-to-cell and long-distance movement. Inhibition is often mediated by salicylic acid with the involvement of alternative oxidase and reactive oxygen species. However, salicylate may also stimulate a separate downstream pathway, leading to the induction of an additional mechanism, based on RNA-dependent RNA polymerase 1-mediated RNA silencing. Thus, SAR and RNA silencing would closely cooperate in the defence against virus infection. Despite tremendous recent progress in the knowledge of SAR mechanisms, only a few compounds, including benzothiadiazole and chitosan have been shown to reduce the severity of systemic virus disease in controlled environment and, more modestly, in open field. Finally, ISR induction, has proved to be a promising strategy to control virus disease, particularly by seed bacterization with a mixture of plant growth-promoting rhizobacteria. However, the use of any of these treatments should be integrated with cultivation practices that reduce vector pressure by the use of insecticides, or by Bt crops.

  14. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  15. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.

  16. Analysis of acid-generating action of PAG in an EUV resist using acid-sensitive dyes

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko; Biafore, John J.

    2013-03-01

    Researchers are currently examining various methods for determining the quantity of acid generated by a photoacid generator (PAG) and for analyzing acid-generating reactions using acid-sensitive dyes that react with acid and generate a color. Adding an acid-sensitive dye to the resist gives a clear grasp of the acid-generating action. The process involves applying a resist containing an acid-sensitive dye to a quartz substrate; exposing the substrate; and measuring and evaluating the absorbance of a chromogenic substance near 530 nm using a spectroscope. The method determines the rate constant for acid generation (Dill C parameter) during exposure based on the relationship between transmissivity at 530 nm and exposure dose. Using this method, we obtained and compared rate constants for acid generation (C parameters) as part of our study of dependence on the quantity of quencher in the EUV resist. Our results indicate a new model that accounts for the quencher concentration parameter would be useful in analyzing dependence on the quantity of quencher. This paper presents these findings, together with the results of studies of profile simulations using the quencher concentration parameter obtained in the experiments.

  17. [Acid and osmotic erythrocyte resistance in workers at a petroleum factory].

    PubMed

    Shakirov, D F; Samsonov, V M; Kudriavtsev, V P; Gil'manov, A Zh

    2003-07-01

    Data on the impact exerted by industrial products, i.e. pyromellitic dianhydride, on the acidic and osmotic resistance of erythrocytes in workers are described. The influence of hazardous factors of the oil-and-chemical production was found to result in a changing erythrocytes' resistance (of workers) to the osmotic and acidic hemolytics with regard for a labor record and duration of contact with toxicants. The shifts in acidic and osmotic resistance can serve as an early marker of changes in the functional erythron's status in workers occupied under hazardous industrial factors.

  18. Induced systemic resistance by beneficial microbes.

    PubMed

    Pieterse, Corné M J; Zamioudis, Christos; Berendsen, Roeland L; Weller, David M; Van Wees, Saskia C M; Bakker, Peter A H M

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.

  19. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  20. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets

    PubMed Central

    Shin, John J.; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A.; Poon, Tak; Li, Shu Chen; Young, Barry P.; Roskelley, Calvin D.

    2016-01-01

    ABSTRACT A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C–COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial

  1. Facile preparation of acid-resistant magnetite particles for removal of Sb(Ⅲ) from strong acidic solution

    PubMed Central

    Wang, Dong; Guan, Kaiwen; Bai, Zhiping; Liu, Fuqiang

    2016-01-01

    Abstract A new facile coating strategy based on the hydrophobicity of methyl groups was developed to prevent nano-sized magnetite particles from strong acid corrosion. In this method, three steps of hydrolysis led to three layers of protection shell coating Fe3O4 nanoparticles. Filled with hydrophobic methyl groups, the middle layer mainly prevented the magnetic core from strong acid corrosion. These magnetite particles managed to resist 1 M HCl solution and 2.5 M H2SO4 solution. The acid resistant ability was higher than those reported previously. After further modification with amino-methylene-phosphonic groups, these magnetite particles successfully adsorbed Sb(III) in strong acid solution. This new strategy can also be applied to protect other materials from strong acid corrosion. PMID:27877860

  2. Hepatocytes isolated from preneoplastic rat livers are resistant to ethacrynic acid cytotoxicity.

    PubMed

    Parody, Juan Pablo; Alvarez, María de Luján; Quiroga, Ariel; Ronco, María Teresa; Francés, Daniel; Carnovale, Cristina; Carrillo, María Cristina

    2007-08-01

    Glutathione S-transferases (GSTs) are involved in the detoxification of xenobiotics, such as several cytostatic drugs, through conjugation with glutathione (GSH). Pi class GST (GST P) liver expression is associated with preneoplastic and neoplastic development and contributes with the drug-resistance phenotype. Ethacrynic acid (EA) is an inhibitor of rat and human GSTs. In addition, causes lipid peroxidation in isolated rat hepatocytes. Therefore, we decided to evaluate the role of the GST/GSH system in isolated hepatocytes from preneoplastic rat livers (IP) in the presence of EA and determine the cytotoxicity of the drug. Our results showed a resistance to the toxic effects of EA since viability and cellular integrity values were significantly higher than control. Initial levels of thiobarbituric acid reactive substances (TBARS) in IP hepatocytes were significantly higher than control and the presence of EA did not change TBARS levels. A diminution in intracellular total GSH was observed by treating with EA isolated hepatocytes from both groups. However, the initial total GSH levels were higher in IP hepatocytes than in control. Immunoblotting analysis showed the presence of GST P in IP animals only. Although alpha and mu class isoenzymes levels were decreased in IP hepatocytes, total GST activity was 1.5-fold higher than in control. In addition, multidrug-resistance protein 2 (Mrp2) showed fivefold decreased levels in IP hepatocytes. In conclusion, increased total GSH, decreased Mrp2 levels and the presence of GST P could be critical factors involved in the resistance of IP hepatocytes to the toxicity of EA.

  3. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  4. Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii

    PubMed Central

    Yoon, Eun-Jeong; Nait Chabane, Yassine; Goussard, Sylvie; Snesrud, Erik; Courvalin, Patrice; Dé, Emmanuelle

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. PMID:25805730

  5. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section...

  6. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section...

  7. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic acid test system. 862.1450 Section...

  8. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  9. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base...

  10. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana

    PubMed Central

    Rudrappa, Thimmaraju; Biedrzycki, Meredith L; Kunjeti, Sridhara G; Donofrio, Nicole M; Czymmek, Kirk J; Paré, Paul W

    2010-01-01

    The majority of plant growth promoting rhizobacteria (PGPR) confer plant immunity against a wide range of foliar diseases by activating plant defences that reduce a plant’s susceptibility to pathogen attack. Here we show that Arabidopsis thaliana (Col-0) plants exposed to Bacillus subtilis strain FB17 (hereafter FB17), results in reduced disease severity against Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000) compared to plants without FB17 treatment. Exogenous application of the B. subtilis derived elicitor, acetoin (3-hydroxy-2-butanone), was found to trigger induced systemic resistance (ISR) and protect plants against DC3000 pathogenesis. Moreover, B. subtilis acetoin biosynthetic mutants that emitted reduced levels of acetoin conferred reduced protection to A. thaliana against pathogen infection. Further analysis using FB17 and defense-compromised mutants of A. thaliana indicated that resistance to DC3000 occurs via NPR1 and requires salicylic acid (SA)/ethylene (ET) whereas jasmonic acid (JA) is not essential. This study provides new insight into the role of rhizo-bacterial volatile components as elicitors of defense responses in plants. PMID:20585504

  11. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves.

  12. Modeling acid transport in chemically amplified resist films

    NASA Astrophysics Data System (ADS)

    Patil, Abhijit A.; Doxastakis, Manolis; Stein, Gila E.

    2014-03-01

    The acid-catalyzed deprotection of glassy poly(4-hydroxystyrene-co-tert butyl acrylate) films was studied with infrared absorbance spectroscopy and stochastic simulations. Experimental data were interpreted with a simple description of subdiffusive acid transport coupled to second-order acid loss. This model predicts key attributes of observed deprotection rates, such as fast reaction at short times, slow reaction at long times, and a non-linear dependence on acid loading. The degree of anomalous character is reduced by increasing the post-exposure bake temperature or adding plasticizing agents to the polymer resin. These findings indicate that the acid mobility and overall deprotection kinetics are coupled to glassy matrix dynamics. Furthermore, the acid diffusion lengths were calculated from the anomalous transport model and compared with nanopattern line widths. The consistent scaling between experiments and simulations suggests that the anomalous diffusion model could be further developed into a predictive lithography tool.

  13. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  14. Response to oxalic acid as a resistance assay for Sclerotinia minor in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Response to oxalic acid was evaluated as a potential assay for screening peanut breeding lines for resistance to Sclerotinia blight caused by Sclerotinia minor. Detached stems of seven Spanish- and six runner-type peanut cultivars and advanced breeding lines, varying in resistance to Sclerotinia bl...

  15. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria.

    PubMed

    Macwana, Sunita; Muriana, Peter M

    2012-01-01

    A practical system was devised for grouping bacteriocins of lactic acid bacteria (LAB) based on mode of action as determined by changes in inhibitory activity to spontaneously-acquired bacteriocin resistance (Bac(R)). Wild type Listeria monocytogenes 39-2 was sensitive to five bacteriocins produced by 3 genera of LAB: pediocin PA-1 and pediocin Bac3 (Pediococcus), lacticin FS97 and lacticin FS56 (Lactococcus), and curvaticin FS47 (Lactobacillus). A spontaneous Bac(R) derivative of L. monocytogenes 39-2 obtained by selective recovery against lacticin FS56 provided complete resistance to the bacteriocin made by Lactococcus lactis FS56. The lacticin FS56-resistant strain of L. monocyotgenes 39-2 was also cross-resistant to curvaticin FS47 and pediocin PA-1, but not to lacticin FS97 or pediocin Bac3. The same pattern of cross-resistance was also observed with Bac(R) isolates obtained with L. monocytogenes Scott A-2. A spontaneous mutation that renders a strain cross-resistant to different bacteriocins indicates that they share a common mechanism of resistance due to similar modes of action of the bacteriocins. Spontaneous resistance was acquired to other bacteriocins (in aggregate) by following the same procedure against which the Bac(R) strain was still sensitive. In subsequent challenge assays, mixtures of bacteriocins of different modes of action provided greater inhibition than mixtures of bacteriocins of the same mode of action (as determined by our screening method). This study identifies a methodical approach to classify bacteriocins into functional groups based on mechanism of resistance (i.e., mode of action) that could be used for identifying the best mixture of bacteriocins for use as biopreservatives.

  16. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    PubMed

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations.

  17. Arginine-dependent acid-resistance pathway in Shigella boydii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...

  18. Prediction of Bacillus weihenstephanensis acid resistance: the use of gene expression patterns to select potential biomarkers.

    PubMed

    Desriac, N; Postollec, F; Coroller, L; Sohier, D; Abee, T; den Besten, H M W

    2013-10-01

    Exposure to mild stress conditions can activate stress adaptation mechanisms and provide cross-resistance towards otherwise lethal stresses. In this study, an approach was followed to select molecular biomarkers (quantitative gene expressions) to predict induced acid resistance after exposure to various mild stresses, i.e. exposure to sublethal concentrations of salt, acid and hydrogen peroxide during 5 min to 60 min. Gene expression patterns of unstressed and mildly stressed cells of Bacillus weihenstephanensis were correlated to their acid resistance (3D value) which was estimated after exposure to lethal acid conditions. Among the twenty-nine candidate biomarkers, 12 genes showed expression patterns that were correlated either linearly or non-linearly to acid resistance, while for the 17 other genes the correlation remains to be determined. The selected genes represented two types of biomarkers, (i) four direct biomarker genes (lexA, spxA, narL, bkdR) for which expression patterns upon mild stress treatment were linearly correlated to induced acid resistance; and (ii) nine long-acting biomarker genes (spxA, BcerKBAB4_0325, katA, trxB, codY, lacI, BcerKBAB4_1716, BcerKBAB4_2108, relA) which were transiently up-regulated during mild stress exposure and correlated to increased acid resistance over time. Our results highlight that mild stress induced transcripts can be linearly or non-linearly correlated to induced acid resistance and both approaches can be used to find relevant biomarkers. This quantitative and systematic approach opens avenues to select cellular biomarkers that could be incremented in mathematical models to predict microbial behaviour.

  19. PROTEOMIC ANALYSIS OF B-AMINOBUTYRIC ACID-PRIMED DROUGHT RESISTANCE IN CRABAPPLE SEEDLINGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and some model plant species, the non-protein, amino acid, DL-B-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt and drought tolerance, through sensitization, and not direct induction of defense genes. This process is referred to a...

  20. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  1. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.

  2. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo.

  3. The role of uric acid in the insulin resistance in children and adolescents with obesity

    PubMed Central

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-01-01

    Objective: To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Methods: Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8-18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. Results: The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40-2.62; p<−0.001). Conclusions: The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. PMID:26300523

  4. 14 CFR 27.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  5. 14 CFR 29.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  6. 14 CFR 29.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system crash resistance. 29.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  7. 14 CFR 27.952 - Fuel system crash resistance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system crash resistance. 27.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  8. Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae.

    PubMed

    Bayly, A M; Berglez, J M; Patel, O; Castelli, L A; Hankins, E G; Coloe, P; Hopkins Sibley, C; Macreadie, I G

    2001-11-13

    Saccharomyces cerevisiae mutants deficient in folate synthesis have been constructed and employed to study the utilisation of exogenous folates in yeast. One mutant specifically lacked dihydropteroate synthase while the second lacked dihydrofolate synthase. Exogenous folinic acid restored optimal growth to both strains. Folic acid did not generally rescue growth but spontaneous isolates capable of utilising folic acid were selected. The folic acid synthesis pathway in the folate utilising isolates was restored via transformation with FOL1 or FOL3 expression plasmids and transformants were tested for resistance to sulfamethoxazole (SMX). The presence of elevated levels of folic acid led to greatly reduced SMX sensitivity regardless of whether strains were folate utilisers or not.

  9. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  10. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    NASA Astrophysics Data System (ADS)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  11. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  12. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  13. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-02

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.

  14. Exploring the diversity of arsenic resistance genes from acid mine drainage microorganisms.

    PubMed

    Morgante, Verónica; Mirete, Salvador; de Figueras, Carolina G; Postigo Cacho, Marina; González-Pastor, José E

    2015-06-01

    The microbial communities from the Tinto River, a natural acid mine drainage environment, were explored to search for novel genes involved in arsenic resistance using a functional metagenomic approach. Seven pentavalent arsenate resistance clones were selected and analysed to find the genes responsible for this phenotype. Insights about their possible mechanisms of resistance were obtained from sequence similarities and cellular arsenic concentration. A total of 19 individual open reading frames were analysed, and each one was individually cloned and assayed for its ability to confer arsenic resistance in Escherichia coli cells. A total of 13 functionally active genes involved in arsenic resistance were identified, and they could be classified into different global processes: transport, stress response, DNA damage repair, phospholipids biosynthesis, amino acid biosynthesis and RNA-modifying enzymes. Most genes (11) encode proteins not previously related to heavy metal resistance or hypothetical or unknown proteins. On the other hand, two genes were previously related to heavy metal resistance in microorganisms. In addition, the ClpB chaperone and the RNA-modifying enzymes retrieved in this work were shown to increase the cell survival under different stress conditions (heat shock, acid pH and UV radiation). Thus, these results reveal novel insights about unidentified mechanisms of arsenic resistance.

  15. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  16. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  17. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  18. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  19. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  20. Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance.

    PubMed

    Zimic, Mirko; Fuentes, Patricia; Gilman, Robert H; Gutiérrez, Andrés H; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Pyrazinamide is one of the most important drugs in the treatment of latent Mycobacterium tuberculosis infection. The emergence of strains resistant to pyrazinamide represents an important public health problem, as both first- and second-line treatment regimens include pyrazinamide. The accepted mechanism of action states that after the conversion of pyrazinamide into pyrazinoic acid by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. The pyrazinoic acid is protonated in the extracellular environment and then re-enters the mycobacterium, releasing the proton and causing a lethal disruption of the membrane. Although it has been shown that mutations causing significant loss of pyrazinamidase activity significantly contribute to pyrazinamide resistance, the mechanism of resistance is not completely understood. The pyrazinoic acid efflux rate may depend on multiple factors, including pyrazinamidase activity, intracellular pyrazinamidase concentration, and the efficiency of the efflux pump. Whilst the importance of the pyrazinoic acid efflux rate to the susceptibility to pyrazinamide is recognized, its quantitative effect remains unknown. Thirty-four M. tuberculosis clinical isolates and a Mycobacterium smegmatis strain (naturally resistant to PZA) were selected based on their susceptibility to pyrazinamide, as measured by Bactec 460TB and the Wayne method. For each isolate, the initial velocity at which pyrazinoic acid is released from the bacteria and the initial velocity at which pyrazinamide enters the bacteria were estimated. The data indicated that pyrazinoic acid efflux rates for pyrazinamide-susceptible M. tuberculosis strains fell within a specific range, and M. tuberculosis strains with a pyrazinoic acid efflux rate below this range appeared to be resistant. This finding contrasts with the high pyrazinoic acid efflux rate for M. smegmatis, which is innately resistant to pyrazinamide: its pyrazinoic acid efflux

  1. Unravelling the resistance mechanisms to 2,4-D (2,4-dichlorophenoxyacetic acid) in corn poppy (Papaver rhoeas).

    PubMed

    Rey-Caballero, Jordi; Menéndez, Julio; Giné-Bordonaba, Jordi; Salas, Marisa; Alcántara, Ricardo; Torra, Joel

    2016-10-01

    In southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) the resistance response to these two herbicides, (2) the cross-resistant pattern to other synthetic auxins and (3) the physiological basis of the auxin resistance in two R (F-R213 and D-R703) populations. R plants were resistant to both 2,4-D and tribenuron-methyl (F-R213) or just to 2,4-D (D-R703) and both R populations were also resistant to dicamba and aminopyralid. Results from absorption and translocation experiment revealed that R plants translocated less [14C]-2,4-D than S plants at all evaluation times. There was between four and eight-fold greater ethylene production in S plants treated with 2,4-D, than in R plants. Overall, these results suggest that reduced 2,4-D translocation is the resistance mechanism in synthetic auxins R corn poppy populations and this likely leads to less ethylene production and greater survival in R plants.

  2. Insect eggs induce a systemic acquired resistance in Arabidopsis.

    PubMed

    Hilfiker, Olivier; Groux, Raphaël; Bruessow, Friederike; Kiefer, Karin; Zeier, Jürgen; Reymond, Philippe

    2014-12-01

    Although they constitute an inert stage of the insect's life, eggs trigger plant defences that lead to egg mortality or attraction of egg parasitoids. We recently found that salicylic acid (SA) accumulates in response to oviposition by the Large White butterfly Pieris brassicae, both in local and systemic leaves, and that plants activate a response that is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here we discovered that natural oviposition by P. brassicae or treatment with egg extract inhibit growth of different Pseudomonas syringae strains in Arabidopsis through the activation of a systemic acquired resistance (SAR). This egg-induced SAR involves the metabolic SAR signal pipecolic acid, depends on ALD1 and FMO1, and is accompanied by a stronger induction of defence genes upon secondary infection. Although P. brassicae larvae showed a reduced performance when feeding on Pseudomonas syringae-infected plants, this effect was less pronounced when infected plants had been previously oviposited. Altogether, our results indicate that egg-induced SAR might have evolved as a strategy to prevent the detrimental effect of bacterial pathogens on feeding larvae.

  3. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway.

    PubMed

    Yun, Ze; Zhu, Feng; Liu, Ping; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2015-04-20

    To clarify the mechanism of fruit disease resistance activated by sweating treatment, 'Guoqing NO.1' Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two-dimensional gel electrophoresis (2-DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC-MS) and high-performance liquid chromatography/electrospray ionization-time of flight-mass spectrometry (HPLC-qTOF-MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2 O2 ) and salicylic acid (SA) were significantly accumulated in the sweating-treated fruit. Thereafter, some stress-response proteins and metabolites [such as ascorbate peroxidase (APX), β-1,3-glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating-treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA-induced resistance pathway, which can induce the stress-response proteins and metabolites that can directly inhibit pathogen development.

  4. Growth and Survival of Acid-Resistant and Non-Acid-Resistant Shiga-Toxin-Producing Escherichia coli Strains during the Manufacture and Ripening of Camembert Cheese

    PubMed Central

    Montet, M. P.; Jamet, E.; Ganet, S.; Dizin, M.; Miszczycha, S.; Dunière, L.; Thevenot, D.; Vernozy-Rozand, C.

    2009-01-01

    Growth and survival of acid-resistant (AR) and non-acid-resistant (NAR) Shiga-toxin-producing Escherichia coli (STEC) strains were investigated during the manufacture and ripening of microfiltered milk Camembert cheeses. The induction of acid resistance of the STEC strains in cheeses was also studied. Six different mixtures of AR and/or NAR STEC strains were inoculated separately into microfiltered milk at a level of 103 CFU mL−1. The STEC counts (AR and NAR) initially increased by 1 to 2 log10 CFU g−1 during cheese-making. Thereafter, the populations stabilized during salting/drying and then decreased during the early stages of ripening. Exposing the STEC strains in artificially inoculated cheeses to simulated gastric fluid (SGF - pH: 2.0) reduced the number of NAR strains to undetectable levels within 40 minutes, versus 120 minutes for the AR STEC strains. AR and NAR STEC were able to survive during the manufacture and ripening of Camembert cheese prepared from microfiltered milk with no evidence of induced acid tolerance in NAR STEC strains. PMID:20016668

  5. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis.

    PubMed

    Kwon, Sun Jae; Jin, Hak Chul; Lee, Soohyun; Nam, Myung Hee; Chung, Joo Hee; Kwon, Soon Il; Ryu, Choong-Min; Park, Ohkmae K

    2009-04-01

    Systemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola, Erwinia carotovora and Pseudomonas syringae, and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2-inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s).

  6. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    SciTech Connect

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  7. [Enamel resistance to acid dissolution and its correlation with dental caries].

    PubMed

    Sánchez-Pérez, T L; Sáenz-Martínez, L P; Gómez-López, M E; Pérez-Quiroz, J

    1995-01-01

    Enamel resistance to acid dissolution is a factor which has an influence upon dental caries susceptibility. The objectives of this study were to determine enamel resistance to acid dissolution by applying the RM technique, and to correlate data obtained to the prevalence of dental caries. Two hundred and seventy one children between seven and nine years of age were chosen by non probabilistic sampling in two city districts, (six public schools in Mexico City). These children's central permanent incisives had already erupted. The DMF-T and dmf-t indexes were recorded, and the RM enamel resistance test was performed on them. A total of 56.4% of the subjects in the sample had very resistant enamel and 27.3%, less resistant enamel. A proportion of 57.9% was free of dental caries on the permanent dentition and 10% in the temporary dentition. The average obtained for the DMF-T index was 0.93 +/- 1.34 and that for dmf-t was 4.7 +/- 3.1. Data suggest that enamel resistance distribution is not homogeneous and this increases proportionally in relation to the eruption third (p < 0.05.) Spearman's correlation coefficient was found to be negative and statistically significant at p < 0.05. The RM technique showed the presence of individuals with different enamel resistance to acid dissolution.

  8. The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli.

    PubMed

    Lease, Richard A; Smith, Dorie; McDonough, Kathleen; Belfort, Marlene

    2004-09-01

    DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (sigmas), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.

  9. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  10. The HIVdb system for HIV-1 genotypic resistance interpretation.

    PubMed

    Tang, Michele W; Liu, Tommy F; Shafer, Robert W

    2012-01-01

    The Stanford HIV Drug Resistance Database hosts a freely available online genotypic resistance interpretation system called HIVdb to help clinicians and laboratories interpret HIV-1 genotypic resistance tests. These tests are designed to assess susceptibility to nucleoside and nonnucleoside reverse transcriptase inhibitors (NRTI and NNRTI), protease inhibitors and integrase inhibitors. The HIVdb genotypic resistance interpretation system output consists of (1) a list of penalty scores for each antiretroviral (ARV) resistance mutation in a submitted sequence, (2) estimates of decreased NRTI, NNRTI, protease and integrase inhibitor susceptibility, and (3) comments about each ARV resistance mutation in the submitted sequence. The application's strengths are its convenience for submitting sequences, its quality control analysis, its transparency and its extensive comments. The Sierra Web service is an extension that enables laboratories analyzing many sequences to individualize the format of their results. The algorithm specification interface compiler makes it possible for HIVdb to provide results using a variety of different HIV-1 genotypic resistance interpretation algorithms.

  11. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  12. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    PubMed

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  13. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  14. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  15. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    NASA Astrophysics Data System (ADS)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  16. Relationship between insulin resistance and amino acids in women and men.

    PubMed

    Seibert, Ryan; Abbasi, Fahim; Hantash, Feras M; Caulfield, Michael P; Reaven, Gerald; Kim, Sun H

    2015-05-01

    Insulin resistance has been associated with higher plasma amino acid (AA) concentrations, but majority of studies have used indirect measures of insulin resistance. Our main objective was to define the relationship between plasma AA concentrations and a direct measure of insulin resistance in women and men. This was a cross-sectional study of 182 nondiabetic individuals (118 women and 64 men) who had measurement of 24 AAs and steady-state plasma glucose (SSPG) concentration (insulin resistance) using the insulin suppression test. Fourteen out of 24 AA concentrations were significantly (P < 0.05) higher in men than women; only glycine was lower in men. Majority of these AAs were positively associated with SSPG; only glycine concentration was negatively associated. Glutamic acid, isoleucine, leucine, and tyrosine concentrations had the strongest correlation with SSPG (r ≥ 0.4, P < 0.001). The degree of association was similar in women and men, independent of obesity, and similar to traditional markers of insulin resistance (e.g., glucose, triglyceride, high-density lipoprotein cholesterol). Compared with women, men tended to have a more unfavorable AA profile with higher concentration of AAs associated with insulin resistance and less glycine. However, the strength of association between a direct measurement of insulin resistance and AA concentrations were similar between sexes and equivalent to several traditional markers of insulin resistance.

  17. Induction of systemic resistance in different varieties of Solanum tuberosum by pure and crude elicitor treatment.

    PubMed

    Bariya, Himanshu S; Thakkar, Vasudev R; Thakkar, Amit N; Subramanian, R B

    2011-02-01

    A 10 kD elicitor protein (infestin) produced by Phytopthora infestans was purified and its efficacy for induction of systemic resistance in resistant and susceptible varieties of Solanum tuberosum was studied. Culture filtrates from P. infestans with and without purified elicitor (infestin) were used as elicitors to understand the effect of purified elicitor (infestin) on development of systemic resistance. Culture filtrate and purified elicitor (infestin) were found to induce hypersensitive reaction on the leaves of resistant varieties, but not on susceptible varieties after 48 h. Culture filtrate devoid of purified elicitor (infestin) did not induce any necrotic spots even on resistant variety. Purified elicitor (infestin) was found to induce glucose oxidase, NADPH oxidase, superoxide dismutase, glutathione reductase, catalase and peroxidase enzymes in resistant S. tuberosum plants, however the induction of these enzymes was low in susceptible varieties. The oxidative enzymes were found to induce earlier than antioxidative enzymes and there was negative correlation between these two groups of enzymes. Levels of salicylic acid, phenylalanine ammonia lyase (PAL), beta-1, 3 glucanase and chitinase activities were also found higher in resistant than in susceptible varieties. It was observed that purified elicitor (infestin) was superior to crude culture filtrate, but was not capable of inducing systemic resistance in susceptible varieties.

  18. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].

    PubMed

    Chen, Yongbo; Jiang, Qiaolong

    2008-05-01

    Reversed-phase high performance liquid chromatography was used to analyze water-soluble amino acids in the normal Amorphophallus Konjac, Amorphophallus albus, Amorphophallus bulbifer, and the soft rot Amorphophallus Konjac, to determine the relationship of the different soft-rot resistant Konjac varieties and the proportion and content of the multiple water-soluble amino acids. The results showed that there are remarkable differences in the content and proportion of water-soluble amino acids in different resistant varieties and the same variety of normal and diseased leaves of Amorphophallus. In this study, the bank of fingerprint 15 chromatogram was established and can be used to analyze the related characteristic peaks and the resistance of Amorphophallus.

  19. Uric Acid Nephrolithiasis: A Systemic Metabolic Disorder

    PubMed Central

    Moe, Orson W.

    2014-01-01

    Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world. Uric acid stones form primarily due to an unduly acid urine; less deciding factors are hyperuricosuria and a low urine volume. The vast majority of uric acid stone formers have the metabolic syndrome, and not infrequently, clinical gout is present as well. A universal finding is a low baseline urine pH plus insufficient production of urinary ammonium buffer. Persons with gastrointestinal disorders, in particular chronic diarrhea or ostomies, and patients with malignancies with a large tumor mass and high cell turnover comprise a less common but nevertheless important subset. Pure uric acid stones are radiolucent but well visualized on renal ultrasound. A 24 h urine collection for stone risk analysis provides essential insight into the pathophysiology of stone formation and may guide therapy. Management includes a liberal fluid intake and dietary modification. Potassium citrate to alkalinize the urine to a goal pH between 6 and 6.5 is essential, as undissociated uric acid deprotonates into its much more soluble urate form. PMID:25045326

  20. Mutation of G234 amino acid residue in Candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport

    PubMed Central

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca2+ did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  1. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    PubMed

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport.

  2. Amino acid substitutions in gyrA and parC associated with quinolone resistance in nalidixic acid-resistant Salmonella isolates

    PubMed Central

    2013-01-01

    This study was undertaken to identify and characterize amino acid substitutions in gyrA and parC related with quinolone resistance of 27 nalidixic acid-resistant (NaR) Salmonella isolates collected in poultry slaughterhouses in Korea. A total of 51 Salmonella isolates were detected from 44.8% (47/105) of the total samples from 15 poultry slaughterhouses examined, among which 27 (52.9%) NaR isolates were detected while ciprofloxacin (Cip) resistance was not present in the isolates. These 27 NaR isolates of DNA sequencing revealed that it contained three types of gyrA mutations in only D87 codon. Mutations in the D87 codon resulted in substitutions to G in most of the isolates, but D87Y and D87N exchanges were also detected. Although Cip resistance was absent, reduced susceptibility characterized by mutations in gyrA was apparent among Salmonella isolates from poultry slaughterhouses in Korea. PMID:24237626

  3. Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Yang, Xiaomin; Ren, Junxiao; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Wang, Yongchao; Zhang, Zhenzhong

    2016-01-01

    Multifunctional nanosheets (HA-GO/Pluronic) with targeted chemo-photothermal properties were successfully developed for controlled delivery of mitoxantrone (MIT) to overcome multidrug resistance (MDR). In vitro release profiles displayed that both an acidic environment and a NIR laser could trigger and accelerate the release of a drug, which ensured nanosheets were stable in blood circulation and released MIT within tumor cells under laser irradiation. HA-GO/Pluronic nanosheets were taken up into MCF-7/ADR cells via receptor-mediated endocytosis, which further facilitated escapement of P-gp efflux. Compared with MIT solution, MIT/HA-GO/Pluronic showed greater cytotoxicity and increase in cellular MIT accumulation in MCF-7/ADR cells. Cell apoptosis and cell cycle arrest studies also revealed that MIT/HA-GO/Pluronic was more potent than MIT/GO/Pluronic and MIT solution. The anticancer efficacy in vivo was evaluated in MCF-7 and MCF-7/ADR-bearing mice, and inhibition of tumors by MIT/HA-GO/Pluronic with NIR laser irradiation was the most effective among all MIT formulations. In summary, the MIT/HA-GO/Pluronic system had striking functions such as P-gp reversible inhibitor and anticancer efficacy, and could present a promising platform for drug-resistant cancer treatment.

  4. Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials

    PubMed Central

    Morvan, Claire; Halpern, David; Kénanian, Gérald; Hays, Constantin; Anba-Mondoloni, Jamila; Brinster, Sophie; Kennedy, Sean; Trieu-Cuot, Patrick; Poyart, Claire; Lamberet, Gilles; Gloux, Karine; Gruss, Alexandra

    2016-01-01

    The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. PMID:27703138

  5. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus.

    PubMed

    O'Neill, A J; Larsen, A R; Skov, R; Henriksen, A S; Chopra, I

    2007-05-01

    Resistance to the antibiotic fusidic acid in European strains of Staphylococcus aureus causing impetigo has increased in recent years. This increase appears to have resulted from clonal expansion of a strain we have designated the epidemic European fusidic acid-resistant impetigo clone (EEFIC), which carries the fusidic acid resistance determinant fusB on its chromosome. To understand better the properties of the EEFIC responsible for its success, we have performed detailed phenotypic and genotypic characterization of this clone. Molecular typing revealed the EEFIC to be ST123, spa type t171, and agr type IV and therefore unrelated to earlier prevalent fusB(+) strains found in the United Kingdom. EEFIC strains exhibited resistance to fusidic acid, penicillin, and, in some cases, erythromycin, which are all used in the treatment of impetigo. PCR analysis of the EEFIC and complete DNA sequencing of the 39.3 Kb plasmid it harbors identified genes encoding several toxins previously implicated in impetigo (exfoliative toxins A and B and EDIN-C). The location of fusB was mapped on the chromosome and found to be associated with a novel 16.6-kb genomic island integrated downstream of groEL. Although this element is related to classical staphylococcal pathogenicity islands, it does not encode any known virulence factors and consequently has been designated SaRI(fusB) (for "S. aureus resistance island carrying fusB").

  6. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures.

    PubMed

    Kapulnik, Y; Yalpani, N; Raskin, I

    1992-12-01

    Cyanide-resistant, alternative respiration in Nicotiana tabacum L. cv Xanthi-nc was analyzed in liquid suspension cultures using O(2) uptake and calorimetric measurements. In young cultures (4-8 d after transfer), cyanide inhibited O(2) uptake by up to 40% as compared to controls. Application of 20 mum salicylic acid (SA) to young cells increased cyanide-resistant O(2) uptake within 2 h. Development of KCN resistance did not affect total O(2) uptake, but was accompanied by a 60% increase in the rate of heat evolution from cells as measured by calorimetry. This stimulation of heat evolution by SA was not significantly affected by 1 mm cyanide, but was reduced by 10 mm salicylhydroxamic acid (SHAM), an inhibitor of cyanide-resistant respiration. Treatment of SA-induced or uninduced cells with a combination of cyanide and SHAM blocked most of the O(2) consumption and heat evolution. Fifty percent of the applied SA was taken up within 10 min, with most of the intracellular SA metabolized in 2 h. 2,6-Dihydroxybenzoic and 4-hydroxybenzoic acids also induced cyanide-resistant respiration. These data indicate that in tobacco cell-suspension culture, SA induces the activity and the capacity of cyanide-resistant respiration without affecting the capacity of the cytochrome c respiration pathway.

  7. Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions

    NASA Astrophysics Data System (ADS)

    Polyakov, I. A.; Lenivtseva, O. G.; Samoylenko, V. V.; Colkovski, M. G.; Ivanchik, I. S.

    2016-11-01

    In this study corrosion resistance of Ti-Ta-Zr coatings fabricated on VT14 titanium alloy workpieces using a high-energy electron beam injected in the atmosphere was investigated. Estimation of corrosion resistance of surface alloyed layers was carried out by the weight-change method. Boiling solution of 65 % nitric acid in water and 5 % of sulfuric acid in water were used as the corrosive environments. Investigation of samples after corrosion tests was carried out using a Carl Zeiss EVO 50 XVP scanning electron microscope.

  8. Factors Governing the Emergence of Resistance to Nalidixic Acid in Treatment of Urinary Tract Infection

    PubMed Central

    Greenwood, David; O'Grady, Francis

    1977-01-01

    Cultures of Escherichia coli were exposed to nalidixic acid in an in vitro model in which the conditions of drug-organism interaction resembled those of bacterial cystitis treatment. Results obtained in this way suggested that emergence of bacterial resistance should not be a major problem in treatment of uncomplicated urinary infection; such cases might indeed respond to a less intensive course of treatment than is usual. More prolonged, high-dosage therapy with nalidixic acid may be required for patients with more complicated infections if the risk of failure from the emergence of bacterial resistance is to be minimized. PMID:337890

  9. Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony.

    PubMed

    de Azevedo, Alana Freire; Dutra, Jorge Luís de Lisboa; Santos, Micheli Luize Barbosa; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; de Moura, Tatiana Rodrigues; de Almeida, Roque Pacheco; Fernandes, Marcelo Ferreira; Scher, Ricardo; Fernandes, Roberta Pereira Miranda

    2014-01-01

    Fatty acids, especially those from phospholipids (PLFA), are essential membrane components that are present in relatively constant proportions in biological membranes under natural conditions. However, under harmful growth conditions, such as diseases, environmental changes, and chemical exposure, the fatty acid proportions might vary. If such changes could be identified and revealed to be specific for adverse situations, they could be used as biomarkers. Such biomarkers could facilitate the identification of virulence and resistance mechanisms to particular chemotherapeutic agents. Therefore, specific biomarkers could lead to better therapeutic decisions that would, in turn, enhance treatment effectiveness. The objective of this study was to compare the fatty acid profiles of trivalent antimony and nitric oxide (NO)-resistant and -sensitive Leishmania chagasi and Leishmania amazonensis isolates. Fatty acid methyl esters (FAMEs) were obtained from total lipids (MIDI), ester-linked lipids (ELFA), and ester-linked phospholipids (PLFA). FAMEs were analyzed by chromatography and mass spectrometry. Species- or resistance-associated differences in FAME profiles were assessed by nonmetric multidimensional scaling, multiresponse permutation procedures, and indicator species analyses. The isolate groups had different MIDI-FAME profiles. However, neither the ELFA nor PLFA profiles differed between the sensitive and resistant isolates. Levels of the fatty acid 18:1 Δ9c were increased in sensitive isolates (p < 0,001), whereas the fatty acid 20:4 Δ5,8,11,14 showed the opposite trend (p < 0.01). We conclude that these two fatty acids are potential biomarkers for NO and antimony resistance in L. chagasi and L. amazonensis and that they could be helpful in therapeutic diagnoses.

  10. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  11. Characterization of Resistances of a Capacitive Deionization System.

    PubMed

    Qu, Yatian; Baumann, Theodore F; Santiago, Juan G; Stadermann, Michael

    2015-08-18

    Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figures of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. Lastly, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.

  12. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; López, Mercedes; Bernardo, Ana

    2009-05-01

    This study evaluates the adaptative response to heat (63 degrees C) and the modifications in membrane fatty acid composition of Salmonella senftenberg after its growth in an acidified medium and after its exposure to combinations of acid and cold stresses. Cells were grown in Brain Heart Infusion (BHI) buffered at pH 7.0 and acidified up to pH 4.5 (fresh cultures) and kept at refrigeration temperature (4 degrees C) for 7 days (refrigerated cultures). The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, but combinations of sublethal stresses reduced S. senftenberg heat tolerance, specially when the growth medium pH was decreased. Acid-adapted cells showed D(63)-values ranging from 3.10 to 6.27 min, while non-acid-adapted cells showed D(63)-values of 1.07 min. As pH decreased, over the pH range studied (7.4-4.5), D(63)-values of the resulting cells increased. However, refrigerated acid-adapted cells showed lower D(63)-values, which ranged from 0.95 to 0.49 min. A linear relationship between the thermotolerance of S. senftenberg cells and the previous growth medium pH was found in both fresh and refrigerated cultures, which allowed us to predict changes in heat resistance of S. senftenberg that occur at any pH value within the range used in the present study in which most foodstuffs are included. Both acidification of the growth medium and refrigeration storage of cells induced modifications in membrane fatty acid composition, which were clearly linked to their heat resistance. Acid-adapted cells, regardless of the pH value of the growth medium, showed the lowest UFA/SFA ratio and a CFA content 1.5-2-fold higher than that observed for non-acid-adapted cells. On the other hand, the UFA/SFA ratio found for S. senftenberg cells exposed to a cold stress was 1.2-1.8-fold higher than that observed for non-refrigerated cultures. This increase in the UFA/SFA ratio was specially high for acid-adapted cells. The highest

  13. Analysis of Pneumocystis jirovecii DHPS alleles implicated in sulfamethoxazole resistance using an Escherichia coli model system.

    PubMed

    Iliades, Peter; Meshnick, Steven R; Macreadie, Ian G

    2005-01-01

    Pneumocystis jirovecii is a major opportunistic pathogen that causes Pneumocystis pneumonia (PCP). Drug treatment failure has been associated epidemiologically with point mutations in the gene for dihydropteroate synthase which is part of a gene that encodes three covalently linked enzymes involved in folic acid synthesis (FAS). The evaluation of whether mutations found in P. jirovecii FAS lead to sulfa drug resistance is hampered by the lack of a culture system for P. jirovecii as well as the failure of P. jirovecii FAS to complement in a heterologous system. Therefore, we chose to model the P. jirovecii mutations in the Saccharomyces cerevisiae FAS protein (encoded by FOL1) via its expression in Escherichia coli. An optimized drug diffusion assay was used to evaluate the FAS mutants against 15 sulfa drugs. It was established that the single amino acid substitution, P599S, in the (DHPS) domain of FAS led to sulfa drug resistance, whereas the T597A substitution led to increased sensitivity. The presence of both mutations (T597A and P599S) was cooperative and led to increased sulfa drug resistance. Analysis of a novel double mutant, (T597V P599S) was found to have significantly higher sulfa drug resistance than the T597A P599S mutant. These data suggest that further amino acid substitutions may lead to the evolution of higher sulfa drug resistance. Two sulfa drugs (sulfachloropyridazine and sulfathiazole) were identified that had higher inhibitory potential than sulfamethoxazole, which is currently the preferred treatment for PCP.

  14. Generation and characterization of isolates of Peronophythora litchii resistant to carboxylic acid amide fungicides.

    PubMed

    Wang, Hancheng; Sun, Haiyan; Stammler, Gerd; Ma, Jianxia; Zhou, Mingguo

    2010-05-01

    Four isolates of Peronophythora litchii with resistance to carboxylic acid amide (CAA) fungicides were selected on fungicide-amended agar. These isolates had various levels of resistance, as evidenced by their resistance factor (RF), which is the 50% effective concentration (EC(50)) value of a particular isolate divided by that of the wild-type parent. RF values to dimethomorph for the four isolates were 15, 24, 141, and >1,500. Resistance was stable for two isolates, while the EC(50) values decreased for the other two after repeated subculturing on fungicide-free medium. Cross-resistance occurred with all CAAs tested here (dimethomorph, mandipropamid, flumorph, and pyrimorph), but not with strobilurins (azoxystrobin and famoxadone) or other fungicides (metalaxyl, cymoxanil, and mancozeb). Studies on fitness parameters (mycelial growth, sporulation, spore germination, zoospore formation, aggressiveness, and temperature tolerance) in the parent wild-type and resistant isolates demonstrated that penalties in different parameters may be associated with CAA resistance, depending on the isolate. These studies show that Peronophythora litchii is able to express CAA resistance under laboratory conditions but it is not known if resistant strains could become established in the field and sensitivity monitoring studies are recommended.

  15. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  16. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  17. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  18. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  19. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to measure pyruvic acid (an intermediate compound in the metabolism of carbohydrate) in plasma....

  20. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ascorbic acid test system. 862.1095 Section 862....1095 Ascorbic acid test system. (a) Identification. An ascorbic acid test system is a device intended to measure the level of ascorbic acid (vitamin C) in plasma, serum, and urine. Ascorbic...

  1. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  2. Microwave zero-resistance states in a bilayer electron system.

    PubMed

    Wiedmann, S; Gusev, G M; Raichev, O E; Bakarov, A K; Portal, J C

    2010-07-09

    Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.

  3. Type IV resistant starch increases cecum short chain fatty acids level in rats.

    PubMed

    Le Thanh-Blicharz, Joanna; Anioła, Jacek; Kowalczewski, Przemysław; Przygoński, Krzysztof; Zaborowska, Zofia; Lewandowicz, Grażyna

    2014-01-01

    Resistant starches are type of dietary fibers. However, their physiological effects depend on the way they resist digestion in the gastrointestinal tract. The objective of this study was to examine the hypothesis that new type of RS4 preparations, of in vitro digestibility of about 50%, obtained by cross-linking and acetylation, acts as a prebiotic by increasing short chain fatty acids content in cecum digesta. The rats were fed with diet containing pregelatinized, cross-linked and acetylated starches as a main carbohydrate source. Pregelatinized, but not chemically modified, potato starch was used in the composition of the control diet. After two weeks of experiment the increase of short chain fatty acids contents in ceceum digesta was observed. The intake of starch A, cross-linked only with adipic acid, resulted in increase of about 40% of short chain fatty acids content, whereas starch PA cross-linked with sodium trimetaphosphate and adipic acid of about 50%. The utmost twofold increase was observed in the case of the production of propionic acid. In contrast, the content of butyric acid increased (12%) only as an effect of consumption of starch PA and even decreased (about 30%) in case of starch A. Both RS4 starches caused an increase of the production of acetic acid by more than 40%. No changes in serum biochemistry, liver cholesterol and organ weights of rats were stated.

  4. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  5. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  6. Incidence and mechanisms of resistance to the combination of amoxicillin and clavulanic acid in Escherichia coli.

    PubMed Central

    Stapleton, P; Wu, P J; King, A; Shannon, K; French, G; Phillips, I

    1995-01-01

    Among Escherichia coli organisms isolated at St. Thomas's Hospital during the years 1990 to 1994, the frequency of resistance to amoxicillin-clavulanic acid (tested by disk diffusion in a ratio of 2:1) remained constant at about 5% of patient isolates (10 to 15% of the 41 to 45% that were amoxicillin resistant). Mechanisms of increased resistance were determined for 72 consecutively collected such amoxicillin-clavulanic acid-resistant isolates. MICs of the combination were 16-8 micrograms/ml for 51 (71%) of these and > or = 32-16 micrograms/ml for the remainder. The predominant mechanism was hyperproduction of enzymes isoelectrically cofocusing with TEM-1 (beta-lactamase activities, > 200 nmol of nitrocefin hydrolyzed per min per mg of protein) which was found in 44 isolates (61%); two isolates produced smaller amounts (approximately 150 nmol/min/mg) of such enzymes, and two isolates hyperproduced enzymes cofocusing with TEM-2. Eleven isolates produced enzymes cofocusing with OXA-1 beta-lactamase, which has previously been associated with resistance to amoxicillin-clavulanic acid. Ten isolates produced increased amounts of chromosomal beta-lactamase, and four of these additionally produced TEM-1 or TEM-2. Three isolates produced inhibitor-resistant TEM-group enzymes. In one of the enzymes (pI, 5.4), the amino acid sequence change was Met-67-->Val, and thus the enzyme is identical to TEM-34. Another (pI, 5.4) had the substitution Met-67-->Ile and is identical to IRT-I67, which we propose now be given the designation TEM-40. The third (pI, 5.2) had the substitution Arg-241-->Thr; this enzyme has not been reported previously and should be called TEM-41. The rarity and diversity of inhibitor-resistant TEM-group enzymes suggest that they are the result of spontaneous mutations that have not yet spread. PMID:8585729

  7. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.

    PubMed

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-12-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.

  8. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  9. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    PubMed Central

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  10. Diets Containing α-Linolenic (ω3) or Oleic (ω9) Fatty Acids Rescues Obese Mice From Insulin Resistance.

    PubMed

    Oliveira, V; Marinho, R; Vitorino, D; Santos, G A; Moraes, J C; Dragano, N; Sartori-Cintra, A; Pereira, L; Catharino, R R; da Silva, A S R; Ropelle, E R; Pauli, J R; De Souza, C T; Velloso, L A; Cintra, D E

    2015-11-01

    Subclinical systemic inflammation is a hallmark of obesity and insulin resistance. The results obtained from a number of experimental studies suggest that targeting different components of the inflammatory machinery may result in the improvement of the metabolic phenotype. Unsaturated fatty acids exert antiinflammatory activity through several distinct mechanisms. Here, we tested the capacity of ω3 and ω9 fatty acids, directly from their food matrix, to exert antiinflammatory activity through the G protein-coupled receptor (GPR)120 and GPR40 pathways. GPR120 was activated in liver, skeletal muscle, and adipose tissues, reverting inflammation and insulin resistance in obese mice. Part of this action was also mediated by GPR40 on muscle, as a novel mechanism described. Pair-feeding and immunoneutralization experiments reinforced the pivotal role of GPR120 as a mediator in the response to the nutrients. The improvement in insulin sensitivity in the high-fat substituted diets was associated with a marked reduction in tissue inflammation, decreased macrophage infiltration, and increased IL-10 levels. Furthermore, improved glucose homeostasis was accompanied by the reduced expression of hepatic gluconeogenic enzymes and reduced body mass. Thus, our data indicate that GPR120 and GPR40 play a critical role as mediators of the beneficial effects of dietary unsaturated fatty acids in the context of obesity-induced insulin resistance.

  11. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine. The identification of methylmalonic acid in urine is used in the diagnosis and treatment...

  12. Corrosion-Resistant Roof with Integrated Photovoltaic Power System

    DTIC Science & Technology

    2014-02-01

    system as attached to a metal-panel roof that is protected with a high-performance, corrosion -resistant coating . 1.3 Approach A severely corroded...fluoride (PVF) and polyvinylidene fluoride (PVDF) can pro- vide excellent corrosion protection in corrosive environments such as KMC. Sustainable...systems on the corrosion resistance of coated metal roofing systems is not known. Potential corro- sion mechanisms include moisture trapped between the

  13. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    PubMed

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates.

  14. National Antimicrobial Resistance Monitoring System (NARMS) 2010 Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to prospectively monitor the emergence of antimicrobial resistance in zoonotic pathogens, the National Antimicrobial Resistance Monitoring System (NARMS) was established in 1996 by the Food and Drug Administration’s Center for Veterinary Medicine in collaboration with the Centers for Di...

  15. Proteomic analysis of drought resistance in crabapple seedlings primed by the xenobiotic Beta-aminobutyric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and model plants, the xenobiotic DL-Beta-aminobutyric acid (BABA) has been shown to enhance disease resistance and increase salt, drought and thermotolerance. BABA does not activate stress genes directly, but sensitizes plants to respond more quickly and strongly to biot...

  16. Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.

    PubMed

    Wang, Xin; Wang, Chunyan; Zhang, Longjiang; Li, Yanjun; Wang, Shouju; Wang, Jiandong; Yuan, Caiyun; Niu, Jia; Wang, Chengsheng; Lu, Guangming

    2015-02-01

    Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment.

  17. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  18. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application.

  19. A single amino acid change in acetolactate synthase confers resistance to valine in tobacco.

    PubMed

    Hervieu, F; Vaucheret, H

    1996-05-23

    The metabolic control of branches chain amino acid (BCAA) biosynthesis involves allosteric regulation of acetolactate synthase (ALS) by the end-products of the pathway, valine, leucine and isoleucine. We describe here the molecular basis of valine resistance. We cloned and sequenced an ALS gene from the tobacco mutant Valr-1 and found a single basepair substitution relative to the wild-type allele. This mutation causes a serine to leucine change in the amino acid sequence of ALS at position 214. We then mutagenized the wild-type allele of the ALS gene of Arabidopsis and found that it confers valine resistance when introduced into tobacco plants. Taken together, these results suggest that the serine to leucine change at position 214 of ALS is responsible for valine resistance in tobacco.

  20. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    PubMed

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  1. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance.

    PubMed

    Talbot, Nicola A; Wheeler-Jones, Caroline P; Cleasby, Mark E

    2014-08-05

    Obesity and saturated fatty acid (SFA) treatment are both associated with skeletal muscle insulin resistance (IR) and increased macrophage infiltration. However, the relative effects of SFA and unsaturated fatty acid (UFA)-activated macrophages on muscle are unknown. Here, macrophages were treated with palmitic acid, palmitoleic acid or both and the effects of the conditioned medium (CM) on C2C12 myotubes investigated. CM from palmitic acid-treated J774s (palm-mac-CM) impaired insulin signalling and insulin-stimulated glycogen synthesis, reduced Inhibitor κBα and increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in myotubes. p38 MAPK inhibition or siRNA partially ameliorated these defects, as did addition of tumour necrosis factor-α blocking antibody to the CM. Macrophages incubated with both FAs generated CM that did not induce IR, while palmitoleic acid-mac-CM alone was insulin sensitising. Thus UFAs may improve muscle insulin sensitivity and counteract SFA-mediated IR through an effect on macrophage activation.

  2. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  3. Segmental pulmonary vascular resistances during oleic acid lung injury in rabbits.

    PubMed

    Maarek, J M; Grimbert, F

    1994-10-01

    We studied in isolated rabbit lungs the effects of oleic acid (OA) injury on the segmental distribution of vascular resistance. Vascular occlusion pressures were measured in control and OA-injured preparations over 90 min. Capillary filtration coefficient KF,C increased from 0.61 (+/- 0.10) to 0.91 (+/- 0.14) g.min-1.mmHg-1.(100 g)-1 in OA-injured lungs whereas it remained constant in control lungs. Total pulmonary vascular resistance changed little in both control and OA-injured lungs. OA injury resulted in a 15% increase of the double occlusion capillary pressure. In addition, the contribution of the microvascular to the total vascular resistance rose from 8% to 22%. The increase in microvascular resistance was significant 15 min after OA on the arteriolar side and became significant 30 min later on the venular side. Oleic acid injury does not change the total pulmonary vascular resistance but alters the distribution of segmental resistances in the isolated rabbit lung, thereby contributing to the accumulation of lung water in this model of low pressure permeability edema.

  4. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila

    PubMed Central

    Seong, Keon Mook; Sun, Weilin; Clark, John M.; Pittendrigh, Barry R.

    2016-01-01

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R. PMID:27003579

  5. Novel Nickel Resistance Genes from the Rhizosphere Metagenome of Plants Adapted to Acid Mine Drainage▿ †

    PubMed Central

    Mirete, Salvador; de Figueras, Carolina G.; González-Pastor, Jose E.

    2007-01-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. PMID:17675438

  6. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.

    PubMed

    Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R

    2016-03-22

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.

  7. Characterization of nalidixic acid-resistant and fluoroquinolone-reduced susceptible Salmonella Typhimurium in swine.

    PubMed

    Lee, K E; Jung, J H; Jung, B Y; Park, Y H; Lee, Y H

    2011-04-01

    From 2001 to 2008, a total of 27 isolates of Salmonella enterica serovar Typhimurium were obtained from 930 swine. All 27 isolates were resistant to streptomycin and tetracycline. Seventeen isolates were multidrug resistant to more than three antimicrobial agents. Seven of these multidrug-resistant isolates were pentaresistant to ampicillin, chloramphenicol, streptomycin, tetracycline, and nalidixic acid. Among 27 isolates, 14 isolates (51.8 %) were nalidixic acid resistant (MIC, ≥128 μg/ml) and had reduced susceptibility to various quinolones (MIC, 0.125 to 2 μg/ml). When quinolone resistance-determining regions in the gyrA and gyrB genes of these isolates were sequenced, 13 isolates had Asp87→Tyr mutations and 1 isolate had Asp87→Gly mutation in the quinolone resistance-determining region of gyrA, whereas no mutation was found in gyrB. Genes for qnrA, qnrB, and qnrS were not detected by PCR with specific primers. Pulsed-field gel electrophoresis of genomic DNA digested with Xba I showed two patterns suggesting a clonal spread of Salmonella Typhimurium in swine in Korea.

  8. Systemic acquired resistance (50 years after discovery): moving from the lab to the field.

    PubMed

    Gozzo, Franco; Faoro, Franco

    2013-12-26

    Induction of plant defense(s) against pathogen challenge(s) has been the object of progressively more intense research in the past two decades. Insights on mechanisms of systemic acquired resistance (SAR) and similar, alternative processes, as well as on problems encountered on moving to their practical application in open field, have been carefully pursued and, as far as possible, defined. In reviewing the number of research works published in metabolomic, genetic, biochemical, and crop protection correlated disciplines, the following outline has been adopted: 1, introduction to the processes currently considered as models of the innate immunity; 2, primary signals, such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), involved with different roles in the above-mentioned processes; 3, long-distance signals, identified from petiole exudates as mobile signaling metabolites during expressed resistance; 4, exogenous inducers, including the most significant chemicals known to stimulate the plant resistance induction and originated from both synthetic and natural sources; 5, fungicides shown to act as stimulators of SAR in addition to their biocidal action; 6, elusive mechanism of priming, reporting on the most recent working hypotheses on the pretranscriptional ways through which treated plants may express resistance upon pathogen attack and how this resistance can be transmitted to the next generation; 7, fitness costs and benefits of SAR so far reported from field application of induced resistance; 8, factors affecting efficacy of induced resistance in the open field, indicating that forces, unrevealed under controlled conditions, may be operative in the field; 9, concluding remarks address the efforts required to apply the strategy of crop resistance induction according to the rules of integrated pest management.

  9. Surgical Stress Resistance Induced by Single Amino Acid Deprivation Requires Gcn2 in Mice

    PubMed Central

    Peng, Wei; Robertson, Lauren; Gallinetti, Jordan; Mejia, Pedro; Vose, Sarah; Charlip, Allison; Chu, Timothy; Mitchell, James R.

    2012-01-01

    Dietary restriction, or reduced food intake without malnutrition, increases life span, health span, and acute stress resistance in model organisms from yeast to nonhuman primates. Although dietary restriction is beneficial for human health, this treatment is not widely used in the clinic. Here, we show that short-term, ad libitum feeding of diets lacking essential nutrients increased resistance to surgical stress in a mouse model of ischemia reperfusion injury. Dietary preconditioning by 6 to 14 days of total protein deprivation, or removal of the single essential amino acid tryptophan, protected against renal and hepatic ischemic injury, resulting in reduced inflammation and preserved organ function. Pharmacological treatment with halofuginone, which activated the amino acid starvation response within 3 days by mimicking proline deprivation, was also beneficial. Both dietary and pharmacological interventions required the amino acid sensor and eIF2α (eukaryotic translation initiation factor 2α) kinase Gcn2 (general control nonderepressible 2), implicating the amino acid starvation response and translational control in stress protection. Thus, short-term dietary or pharmacological interventions that modulate amino acid sensing can confer stress resistance in models of surgical ischemia reperfusion injury. PMID:22277968

  10. Use of Ekibastuzsk coal ash as a filler for acid resistant plaster

    SciTech Connect

    Korsakov, F.F.; Isichenko, I.I.; Kabanov, G.A.

    1981-01-01

    Acid resistant plasters are used extensively at thermal power plants for protection of gas conduits, ash traps with spouts and hydraulic valves, and the internal surfaces of smoke pump housings. The surface being protected is preliminarily cleaned and a No. 16-20 steel grid attached to the surface by electrial welding. In producing the acid resistant plaster, 14-17 parts by weight of sodium silicofluoride are added to 100 parts by weight of sodium water glass; the remainder consists of andesite or diabase meal to the required consistency. The water glass fulfills the role of a binder; the sodium silicofluoride accelerates solidification of the water glass and the andesite and diabase meal serve as fillers. We found, tested in the laboratory and used successfully (under experimental-industrial conditions) a substitute for andesite and diabase meal. This substitute was ash of Ekibastuzsk coal, which was not only comparable to the meal in regard to quality of the acid resistant plaster, but even exceeded andesite and diabase meal in regard to several qualitative indicators. At the present time, a formula is being developed for an acid resistant plaster produced on the basis of water glass, sodium silicofluoride and ash of Ekibastuzsk coal. In order to verify the possibility of using other ashes instead of andesite and diabase meal, we also tested, under laboratory conditions, acid resistant plasters using ash from thermal power plants (TPP's) also burning Karagandinsk, Kuuchekinsk, Kuznetsk and Kansko-Achinsk coals. In compositions produced with polymer binders, Kansko-Achinsk coal ash was one of the best fillers, providing the most favorable physico-mechanical properties of the composition.

  11. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39.

    PubMed

    Harel, Yael Meller; Mehari, Zeraye Haile; Rav-David, Dalia; Elad, Yigal

    2014-02-01

    Gray mold (Botrytis cinerea) is an important disease of tomato (Solanum lycopersicum). This study examined defense-related gene expression involved in the resistance to B. cinerea that is induced in tomato plants by benzothiadiazole and Trichoderma harzianum T39 soil drench. In whole plants, transcriptional changes related to salicylic acid and ethylene were induced by the application of a 0.01% benzothiadiazole solution, whereas changes related to jasmonic acid were induced by the application of a 0.4% T39 suspension. On detached leaves, soil treatment by T39 led to enhanced resistance to B. cinerea infection that was proportional to the concentration of the T39 suspension. By 5 days after pathogen inoculation, the plants that had received the 0.04% T39 drench exhibited 62% less severe disease than the untreated plants. The 0.4% T39 drench led to an 84% reduction in disease severity. Observations of B. cinerea infection in leaves harvested from plants grown in the treated soils revealed that drenching with a T39 suspension induces systemic resistance against B. cinerea and primes salicylic acid- and ethylene-related gene expression in a manner proportional to the concentration of the biocontrol agent. Benzothiadiazole treatment induced resistance to gray mold independently of salicylic acid and led to strong priming of two genes known to be involved in defense against B. cinerea, Pti5 and PI2.

  12. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, andMetSrisk and whether plasma fatty acids,...

  13. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  14. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  15. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  16. Effects of calcium phosphate precipitation method on acid resistance to apatite powder and bovine tooth.

    PubMed

    Suge, Toshiyuki; Kawasaki, Akiko; Ishikawa, Kunio; Matsuo, Takashi; Ebisu, Shigeyuki

    2008-07-01

    The aims of this study were to evaluate the effects of CPP method on the crystallinity of apatite powder and on the acid resistance of bovine enamel. Crystallinity degrees of apatite powder before and after CPP treatment were measured by powder X-ray diffraction analysis. Polished bovine enamel specimens treated with CPP method or NaF were immersed in a lactic acid solution for up to five days. The demineralized depth of enamel was measured with a surface roughness analyzer. XRD peaks became sharper after the CPP treatment, indicating an increased crystallinity of the apatite powder. The demineralized depth of bovine enamel treated with CPP method was shallower than that of enamel treated with NaF. Results of this study revealed that the CPP method increased the crystallinity of apatite powder and the acid resistance of enamel. Therefore, the CPP method would be useful not only for treating dentin hypersensitivity, but also for the prevention of dental caries.

  17. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana.

    PubMed

    Koo, Yeon Jong; Kim, Myeong Ae; Kim, Eun Hye; Song, Jong Tae; Jung, Choonkyun; Moon, Joon-Kwan; Kim, Jeong-Han; Seo, Hak Soo; Song, Sang Ik; Kim, Ju-Kon; Lee, Jong Seob; Cheong, Jong-Joo; Choi, Yang Do

    2007-05-01

    We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.

  18. Antiplatelet Effect of Sequential Administration of Cilostazol in Patients with Acetylsalycilic Acid Resistance

    PubMed Central

    Cakmak, Muzaffer; Demircelik, Bora; Cetin, Mustafa; Cetin, Zehra; Isık, Serhat; Cıcekcıoglu, Hulya; Ulusoy, Feridun Vasfi; Eryonucu, Beyhan

    2016-01-01

    Background Acetylsalicylic acid (ASA) resistance in patients with coronary artery disease is an important medical problem that can affect treatment decision-making and outcomes. Cilostazol has been investigated to determine its effectiveness in patients with acetylsalicylic acid resistance. The aim of this study was to evaluate the antiplatelet efficacy of sequential administration of CLZ in patients with ASA resistance. Methods A total of 180 patients were enrolled in our study. Patients with stable coronary artery disease were first given orally ASA 100 for 10 days, followed by collagen/epinephrine induced closure time (CTCEPI) measurements. Those who were found to be resistant to orally 100 mg of ASA were given orally 300 mg of ASA for an additional 10 days after which we repeated CTCEPI measurements. Those patients with resistance to orally 300 mg ASA were then given CLZ at a daily dose of orally 200 mg for 10 days followed by a final CTCEPI measurement. Results The rate of resistance to 100 mg ASA was 81/180 (45%) compared to a rate of 35/81 (43.2%) with 300 mg ASA. Of the 35 patients found to be resistant to 300 mg ASA, 22 (62.9%) also failed to respond to CLZ treatment. Overall, sequential administration of 300 mg ASA and 200 mg CLZ resulted in a reduction in the number of non-responders from 45% to 12.2%. Conclusions Initiation of CLZ could be of benefit in some patients with ASA-resistance for whom an effective anti-aggregant effect is of clinical importance. PMID:27274173

  19. 76 FR 4120 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... HUMAN SERVICES Food and Drug Administration The National Antimicrobial Resistance Monitoring System... public comment of a document for The National Antimicrobial Resistance Monitoring System (NARMS) entitled... systems monitoring antimicrobial resistance in other countries. Foodborne diseases are an important...

  20. Evolution of internal resistance during formation of flooded lead-acid batteries

    NASA Astrophysics Data System (ADS)

    White, Chris; Deveau, Justin; Swan, Lukas G.

    2016-09-01

    This study employs experimental techniques to measure the changing internal resistance of flooded, flat-plate lead-acid batteries during container formation, revealing a novel indicator of formation completeness. In order to measure internal resistance during formation, d.c. current pulses are superimposed over the constant formation current at set intervals, while change in voltage is measured. The resulting "pulsed" internal resistance is divided into ohmic and interfacial components by measuring the ohmic resistance with short d.c. pulses as well as with a.c. injection. Various constant-current container formations are carried out using different current levels, plate thicknesses, and pulsing techniques, yielding an array of resistance trends which are explained using Butler-Volmer kinetic theory. Ohmic and interfacial resistance trends are shown both theoretically and experimentally to eventually decay to a predictable steady-state value as the formation proceeds, suggesting that this internal resistance method can be used to detect the completion of the formation. The same principles are shown to apply to recharge cycles as well, but with potentially limited practical implications in comparison to formation.

  1. Degradation in the fatigue crack growth resistance of human dentin by lactic acid.

    PubMed

    Orrego, Santiago; Xu, Huakun; Arola, Dwayne

    2017-04-01

    The oral cavity frequently undergoes localized changes in chemistry and level of acidity, which threatens the integrity of the restorative material and supporting hard tissue. The focus of this study was to evaluate the changes in fatigue crack growth resistance of dentin and toughening mechanisms caused by lactic acid exposure. Compact tension specimens of human dentin were prepared from unrestored molars and subjected to Mode I opening mode cyclic loads. Fatigue crack growth was achieved in samples from mid- and outer-coronal dentin immersed in either a lactic acid solution or neutral conditions. An additional evaluation of the influence of sealing the lumens by dental adhesive was also conducted. A hybrid analysis combining experimental results and finite element modeling quantified the contribution of the toughening mechanisms for both environments. The fatigue crack growth responses showed that exposure to lactic acid caused a significant reduction (p≤0.05) of the stress intensity threshold for cyclic crack extension, and a significant increase (p≤0.05) in the incremental fatigue crack growth rate for both regions of coronal dentin. Sealing the lumens had negligible influence on the fatigue resistance. The hybrid analysis showed that the acidic solution was most detrimental to the extrinsic toughening mechanisms, and the magnitude of crack closure stresses operating in the crack wake. Exposing dentin to acidic environments contributes to the development of caries, but it also increases the chance of tooth fractures via fatigue-related failure and at lower mastication forces.

  2. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  3. Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    PubMed Central

    Gallay, Philippe A.; Ptak, Roger G.; Bobardt, Michael D.; Dumont, Jean-Maurice; Vuagniaux, Grégoire; Rosenwirth, Brigitte

    2013-01-01

    DEB025 (alisporivir) is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV). It binds to cyclophilin A (CypA) and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA) region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96), as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent. PMID:23524389

  4. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    NASA Astrophysics Data System (ADS)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  5. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    PubMed Central

    Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen

    2014-01-01

    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848

  6. Synthesis of photobleachable deep UV resists based on single component nonchemically amplified resist system

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Seon; Kim, Su-Min; Park, Ji-Young; Kim, Jin-Baek

    2006-03-01

    In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

  7. Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella.

    PubMed

    Liu, Qianhong; Liu, Xingyu; Yan, Feng; He, Yuhua; Wei, Jie; Zhang, Yuanyuan; Liu, Lu; Sun, Youpeng

    2016-02-01

    Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.

  8. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea.

    PubMed

    Jia, Haifeng; Zhang, Cheng; Pervaiz, Tariq; Zhao, Pengcheng; Liu, Zhongjie; Wang, Baoju; Wang, Chen; Zhang, Lin; Fang, Jinggui; Qian, Jianpu

    2016-01-01

    Fruit ripening is a complex process that is regulated by a signal network. Whereas the regulatory mechanism of abscisic acid has been studied extensively in non-climacteric fruit, little is know about other signaling pathways involved in this process. In this study, we performed that plant hormone jasmonic acid plays an important role in grape fruit coloring and softening by increasing the transcription levels of several ripening-related genes, such as the color-related genes PAL1, DFR, CHI, F3H, GST, CHS, and UFGT; softening-related genes PG, PL, PE, Cell, EG1, and XTH1; and aroma-related genes Ecar, QR, and EGS. Lastly, the fruit anthocyanin, phenol, aroma, and cell wall materials were changed. Jasmonic acid positively regulated its biosynthesis pathway genes LOS, AOS, and 12-oxophytodienoate reductase (OPR) and signal pathway genes COI1 and JMT. RNA interference of grape jasmonic acid pathway gene VvAOS in strawberry fruit appeared fruit un-coloring phenotypes; exogenous jasmonic acid rescued this phenotypes. On the contrary, overexpression of grape jasmonic acid receptor VvCOI1 in the strawberry fruit accelerated the fruit-ripening process and induced some plant defense-related gene expression level. Furthermore, jasmonic acid treatment or strong jasmonic acid signal pathway in strawberry fruit make the fruit resistance against Botrytis cinerea.

  9. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms.

    PubMed

    Terruzzi, Ileana; Allibardi, Sonia; Bendinelli, Paola; Maroni, Paola; Piccoletti, Roberta; Vesco, Flavio; Samaja, Michele; Luzi, Livio

    2002-04-25

    Lipids compete with glucose for utilization by the myocardium. Amino acids are an important energetic substrate in the heart but it is unknown whether they reduce glucose disposal. The molecular mechanisms by which lipids and amino acids impair insulin-mediated glucose disposal in the myocardium are unknown. We evaluated the effect of lipids and amino acids on the insulin stimulated glucose uptake in the isolated rat heart and explored the involved target proteins. The hearts were perfused with 16 mM glucose alone or with 6% lipid or 10% amino acid solutions at the rate of 15 ml/min. After 1 h of perfusion (basal period), insulin (240 nmol/l) was added and maintained for an additional hour. Both lipids and amino acids blocked the insulin effect on glucose uptake (P<0.01) and reduced the activity of the IRSs/PI 3-kinase/Akt/GSK3 axis leading to the activation of glucose transport and glycogen synthesis. Amino acids, but not lipids, increased the activity of the p70 S6 kinase leading to the stimulation of protein synthesis. Amino acids induce myocardial insulin resistance recruiting the same molecular mechanisms as lipids. Amino acids retain an insulin-like stimulatory effect on p70 S6 kinase, which is independent from the PI 3-Kinase downstream effectors.

  10. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  11. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    PubMed Central

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  12. Influence of acetic, citric, and lactic acids on Escherichia coli O157:H7 membrane lipid composition, verotoxin secretion, and acid resistance in simulated gastric fluid.

    PubMed

    Yuk, Hyun-Gyun; Marshall, Douglas L

    2005-04-01

    The effect of organic acid (acetic, citric, and lactic acids) adaptation at equivalent initial pH values (6.4 and 5.4) on changes in membrane lipid composition, verotoxin concentration, and acid resistance in simulated gastric fluid (pH 1.5, 37 degrees C) was determined for Escherichia coli O157:H7 ATCC 43895 (HEC) and an rpoS mutant of E. coli O157:H7 ATCC 43895 (RM, FRIK 816-3). For HEC, lactic acid-adapted (pH 5.4) cells had the greatest D-value (32.2 min) and acetic acid-adapted (pH 5.4) cells had the smallest D-value (16.6 min) in simulated gastric fluid. For RM, D-values of citric and acetic acid-adapted cells were similar to those for nonadapted cells grown at pH 7.3, but D-values increased from 13.1 to 27.9 min in lactic acid-adapted cells (from pH 7.3 to pH 5.4). For both strains, the ratio of cis-vaccenic to palmitic acids decreased for citric and lactic acid-adapted cells, but the ratio increased for acetic acid-adapted cells at pH 5.4. Organic acid-adapted cells produced less total verotoxin than did nonadapted cells at approximately 10(8) CFU/ml. Extracellular verotoxin concentration proportionally decreased with decreasing pH for both HEC and RM. Changes in membrane lipid composition, verotoxin concentration, and acid resistance in HEC and RM were dependent on both pH and organic acid. Deletion of the rpoS gene did not affect these changes but did decrease acid resistance in citric acid-adapted cells. Results indicate that decreased membrane fluidity may have caused increased acid resistance and decreased verotoxin secretion.

  13. Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection.

    PubMed

    Herrmann, Sven; Kostrzewa, Monika; Wierschem, Andreas; Streb, Carsten

    2014-12-01

    Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate-based ionic liquids (POM-ILs). Copper metal disks were coated with room-temperature POM-ILs composed of transition-metal functionalized Keggin anions [SiW11 O39 TM(H2 O)](n-) (TM=Cu(II) , Fe(III) ) and quaternary alkylammonium cations (Cn H2 n+1 )4 N(+) (n=7-8). The corrosion resistance against acetic acid vapors and simulated "acid rain" was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM-IL coating is self-repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents.

  14. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro

    2015-03-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.

  15. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  16. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  17. Eco-friendly Rot and Crease Resistance Finishing of Jute Fabric using Citric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Bagchi, A.

    2013-03-01

    Citric acid (CA) along with chitosan was used on bleached jute fabrics to impart anti crease and rot resistance properties in one step. The treatment was carried out by pad-dry-cure method in presence of sodium hypophosphite monohydrate catalyst. Curing at 150° Centigrade for 5 min delivered good crease resistant property (dry crease recovery angle is 244°) and high rot resistance simultaneously by a single treatment, which are durable for five washings with distilled water. Strength retention of jute fabric after 21 days soil burial was found to be 81 % and the loss (%) in strength due to this treatment was 15-18 %. The results showed that chitosan and CA treated-fabric exhibited higher rot resistance (as indicated by soil burial test) when compared to either CA or chitosan by individual treatment. The effect of CA and chitosan combination on the resistance to rotting of jute fabric was found to be synergistic which is higher than the sum of the effects of individual chemicals. CA possibly reacts with hydroxyl groups in cellulose or chitosan to form ester. The CA and chitosan finished fabric has adverse effect on stiffness. Thermal studies showed that final residue left at 500° C was much higher for CA and chitosan treated fabric than untreated jute fabric. FTIR spectroscopy suggested the formation of ester cross-linkage between the jute fibre, CA and chitosan and hence it is understood that this rot resistant finish on jute fabric become durable by this mechanism.

  18. Amino acid substitutions at position 95 in GyrA can add fluoroquinolone resistance to Mycobacterium leprae.

    PubMed

    Yokoyama, Kazumasa; Kim, Hyun; Mukai, Tetsu; Matsuoka, Masanori; Nakajima, Chie; Suzuki, Yasuhiko

    2012-02-01

    Amino acid substitutions at position 89 or 91 in GyrA of fluoroquinolone-resistant Mycobacterium leprae clinical isolates have been reported. In contrast, those at position 94 in M. tuberculosis, equivalent to position 95 in M. leprae, have been identified most frequently. To verify the possible contribution of amino acid substitutions at position 95 in M. leprae to fluoroquinolone resistance, we conducted an in vitro assay using wild-type and mutant recombinant DNA gyrases. Fluoroquinolone-mediated supercoiling activity inhibition assay and DNA cleavage assay revealed the potent contribution of an amino acid substitution of Asp to Gly or Asn at position 95 to fluoroquinolone resistance. These results suggested the possible future emergence of quinolone-resistant M. leprae isolates with these amino acid substitutions and the usefulness of detecting these mutations for the rapid identification of fluoroquinolone resistance in leprosy.

  19. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system.

    PubMed

    Kjos, Morten; Nes, Ingolf F; Diep, Dzung B

    2011-05-01

    The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.

  20. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin; Hao, Jingcheng

    2017-03-01

    A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  1. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems.

    PubMed

    Nakka, Sridevi; Qi, Mingsheng; Zhao, Youfu

    2010-10-20

    The PhoPQ system is a pleiotropic two-component signal transduction system that controls many pathogenic properties in several mammalian and plant pathogens. Three different cues have been demonstrated to activate the PhoPQ system including a mild acidic pH, antimicrobial peptides, and low Mg(2+). In this study, our results showed that phoPQ mutants were more resistant to strong acidic conditions (pH 4.5 or 5) than that of the wild-type (WT) strain, suggesting that this system in Erwinia amylovora may negatively regulate acid resistance gene expression. Furthermore, the PhoPQ system negatively regulated gene expression of two novel type III secretion systems in E. amylovora. These results are in contrast to those reported for the PhoPQ system in Salmonella and Xanthomonas, where it positively regulates type III secretion system and acid resistance. In addition, survival of phoPQ mutants was about 10-fold lower than that of WT when treated with cecropin A at pH 5.5, suggesting that the PhoPQ system renders the pathogen more resistant to cecropin A.

  2. Antiestrogen Resistance and the Application of Systems Biology

    PubMed Central

    Bouker, Kerrie B.; Wang, Yue; Xuan, Jianhua; Clarke, Robert

    2012-01-01

    Understanding the molecular changes that drive an acquired antiestrogen resistance phenotype is of major clinical relevance. Previous methodologies for addressing this question have taken a single gene/pathway approach and the resulting gains have been limited in terms of their clinical impact. Recent systems biology approaches allow for the integration of data from high throughput “-omics” technologies. We highlight recent advances in the field of antiestrogen resistance with a focus on transcriptomics, proteomics and methylomics. PMID:23539064

  3. MIG1 Regulates Resistance of Candida albicans against the Fungistatic Effect of Weak Organic Acids

    PubMed Central

    Cottier, Fabien; Tan, Alrina Shin Min; Xu, Xiaoli; Wang, Yue

    2015-01-01

    Candida albicans is the leading cause of fungal infections; but it is also a member of the human microbiome, an ecosystem of thousands of microbial species potentially influencing the outcome of host-fungal interactions. Accordingly, antibacterial therapy raises the risk of candidiasis, yet the underlying mechanism is currently not fully understood. We hypothesize the existence of bacterial metabolites that normally control C. albicans growth and of fungal resistance mechanisms against these metabolites. Among the most abundant microbiota-derived metabolites found on human mucosal surfaces are weak organic acids (WOAs), such as acetic, propionic, butyric, and lactic acid. Here, we used quantitative growth assays to investigate the dose-dependent fungistatic properties of WOAs on C. albicans growth and found inhibition of growth to occur at physiologically relevant concentrations and pH values. This effect was conserved across distantly related fungal species both inside and outside the CTG clade. We next screened a library of transcription factor mutants and identified several genes required for the resistance of C. albicans to one or more WOAs. A single gene, MIG1, previously known for its role in glucose repression, conferred resistance against all four acids tested. Consistent with glucose being an upstream activator of Mig1p, the presence of this carbon source was required for WOA resistance in wild-type C. albicans. Conversely, a MIG1-complemented strain completely restored the glucose-dependent resistance against WOAs. We conclude that Mig1p plays a central role in orchestrating a transcriptional program to fight against the fungistatic effect of this class of highly abundant metabolites produced by the gastrointestinal tract microbiota. PMID:26297702

  4. Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults1

    PubMed Central

    Sabaté, Joan

    2016-01-01

    Background: There is emerging evidence of the beneficial effects of n–3 (ω-3) fatty acids (FAs) on cardiometabolic risk factors. Nevertheless, not much is known about the association between adipose tissue α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and insulin resistance. Objective: We determined the association between adipose tissue n–3 FAs (total n–3 FAs, ALA, and EPA plus DHA) and insulin resistance in healthy adults. Design: In this cross-sectional study, multivariable analyses were used to assess the association between adipose tissue FAs (ALA, EPA plus DHA, and total n–3 FAs) and the homeostasis model assessment of insulin resistance (HOMA-IR) in a subset of adult participants (n = 716; mean age: 58 y) from the Adventist Health Study-2 (AHS-2) cohort. Results: Compared with the lowest tertile, the third tertile (β = −0.13; 95% CI: −0.24, −0.01) of adipose tissue ALA was inversely associated with the HOMA-IR. When stratified by waist circumference, ALA continued to be inversely associated [third tertile: β = −0.17 (95% CI: −0.31, −0.02)] with the HOMA-IR in subjects with a waist circumference ≤88 cm in women or ≤102 cm in men but not in those with a larger waist circumference. No significant association was noted between adipose tissue EPA plus DHA and HOMA-IR. Conclusions: Higher adipose tissue ALA was inversely associated with insulin resistance in this cohort of healthy adult men and women. This finding appears to be more pronounced in individuals with a normal waist circumference. PMID:26912497

  5. Application of hydroalcoholic solutions of formaldehyde in preparation of acetylsalicylic acid gastro-resistant capsules.

    PubMed

    Pina, M E; Sousa, A T

    2002-04-01

    Enteric coating of hard gelatin capsules by application of hydroalcoholic solutions of formaldehyde was studied and developed in accordance with previous publications. It is possible to affirm that this coating constitutes a simple, stable, reproducible, and inexpensive method, being a valid alternative to those which have been proposed. The aim of the present investigation is the preparation of acetylsalicylic acid gelatin capsules with good conditions of gastro-resistance and enteros solubility.

  6. A unique data acquisition system for electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Zonge, K.

    1996-01-04

    Unique capabilities are needed in instrumentation used for acquiring data to do electrical resistance tomography (ERT). A data acquisition system is described which has a good combination of the required capabilities and yet is field rugged and user friendly. The system is a multichannel detector for high data rates, can operate over a wide range of load conditions, will measure both in phase and quadrature resistance at frequencies between 0.0007 Hz and 8 kHz. The system has been used in both the field and laboratory to collect data with a typical accuracy between 1 and 10%.

  7. Acetylome and phosphoproteome modifications in imatinib resistant chronic myeloid leukaemia cells treated with valproic acid.

    PubMed

    Buchi, Francesca; Pastorelli, Roberta; Ferrari, Germano; Spinelli, Elena; Gozzini, Antonella; Sassolini, Francesca; Bosi, Alberto; Tombaccini, Donatella; Santini, Valeria

    2011-07-01

    Chronic myeloid leukaemia has a specific therapy: BCR/ABL inhibitor imatinib. Resistance due to BCR/ABL dependent and independent mechanisms is partially reversible by histone deacetylase inhibitors. We analysed by 2D-electrophoresis and anti-pan-acetylated and anti-phosphotyrosine immunoblots, followed by spot-matching and MALDI-TOF mass spectrometry, which proteome modifications would parallel restoration of sensitivity to imatinib by valproic acid (VPA). VPA plus imatinib significantly increased acetylation of HSP90 and hnRNP L and decreased phosphorylation of HSPs and hnRNPs in imatinib resistant cells. VPA was able to modify profoundly acetylome and phosphoproteome of CML cells, while reverting resistance to imatinib.

  8. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xiufang; Li, Qingfen; Li, Ying; Wang, Fuhui; Jin, Guo; Ding, Minghui

    2008-12-01

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  9. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  10. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  11. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations.

    PubMed Central

    ffrench-Constant, R H; Steichen, J C; Rocheleau, T A; Aronstein, K; Roush, R T

    1993-01-01

    Resistance to cyclodiene insecticides, documented in at least 277 species, is perhaps the most common kind of resistance to any pesticide. By using cyclodiene resistance to localize the responsible gene, a gamma-aminobutyric acid type A receptor/chloride ion-channel gene was previously cloned and sequenced from an insecticide-susceptible Drosophila melanogaster strain. We now describe the molecular genetics of the resistance allele. A single-base-pair mutation, causing a single-amino acid substitution (Ala-->Ser) within the second membrane-spanning region of the channel, was found to be the only consistent difference between resistant and susceptible strains of D. melanogaster. Some resistant strains of Drosophila simulans show the same mutation, whereas others show an alternative single-base-pair mutation in the same codon, resulting in the substitution of a different amino acid (glycine). These constitute single-box-pair mutations in insects that confer high levels of resistance to insecticides. The presence of the resistance mutations was then tested in a much larger set of strains by the PCR and subsequent digestion with a diagnostic restriction endonuclease. Both resistance-associated mutations cause the loss of a Hae II site. This site was invariably present in 122 susceptible strains but absent in 58 resistant lines of the two species sampled from five continents. PCR/restriction endonuclease treatment was also used to examine linkage of an EcoRI polymorphism in a neighboring intron in D. melanogaster, which was found associated with resistance in all but 3 of 48 strains examined. These PCR-based techniques are widely applicable to examination of the uniqueness of different resistance alleles in widespread populations, the identification of resistance mechanisms in different species, and the determination of resistance frequencies in monitoring. Images Fig. 3 Fig. 4 Fig. 6 PMID:8095336

  12. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice.

    PubMed

    Cheng, Licai; Yu, Yinghua; Szabo, Alexander; Wu, Yizhen; Wang, Hongqin; Camer, Danielle; Huang, Xu-Feng

    2015-05-01

    The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.

  13. β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

    PubMed Central

    Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu

    2013-01-01

    Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957

  14. [Apoptosis of retinoic acid resistant NB4-R1 cells induced with curcumin and its mechanism].

    PubMed

    Zhang, Zhang-Lin; Kong, Yun-Yuan; Wan, La-Gen

    2010-04-01

    This study was purposed to explore the inhibitory effect of Curcumin on growth of retinoic acid-resistant acute promyelocytic leukemia (APL) cells and its mechanism. The NB4-R1, an APL cell line resistant to retinoic acid, was used as a model. The growth level of NB4-R1 was detected by MTT assay, the morphologic features of cells were observed by light microscopy, the mitochondrial transmembrane potential was determined by flow cytometry, the expressions of apoptosis-related proteins procaspase 3, caspase 3, PARP and BCL-XL were measured by Western blot. The results indicated that the sensitivity of NB4-R1 to Curcumin was consistent with NB4 though NB4-R1 was resistant to retinoic acid, Curcumin displayed inhibitory effect on growth of NB4-R1 in time-and concentration-dependent manners. The morphologic observation showed existence of apoptotic bodies in NB4-R1 cells treated with 20 micromol/L of Curcumin. The flow cytometry indicated that the mitochondrial transmembrane potential in NB4-R1 cells treated with 20 micromol/L of Curcumin obviously decreased. The Western blot detection revealed that expressions of pro-caspase 3 and BCL-XL were down-regulated, expressions of caspase 3 and sheared PAPP were up-regulated in NB4-R1 cells treated with 20 micromol/L of Curcumin. It is concluded that the Curcumin can inhibit the growth and induce the apoptosis of NB4-R1.

  15. Minimum permissible leakage resistance established for instrumentation systems

    NASA Technical Reports Server (NTRS)

    Perrin, J. L.

    1966-01-01

    Mathematical formulas are used to determine if, and to what extent, an instrumentation system that has been exposed to the elements should be dried out to restore minimum permissible leakage resistance to ground. Formulas are also derived and used for an intermediate number of systems that are exposed to moisture penetration.

  16. Fusidic acid-resistant Staphylococcus aureus in impetigo contagiosa and secondarily infected atopic dermatitis.

    PubMed

    Alsterholm, Mikael; Flytström, Ingela; Bergbrant, Ing-Marie; Faergemann, Jan

    2010-01-01

    Fusidic acid-resistant Staphylococcus aureus (FRSA) has been identified as a causative agent in outbreaks of impetigo and its emergence has been associated with increased use of topical fusidic acid. The frequency of FRSA in atopic dermatitis (AD) has been less extensively investigated. The aim of this study was to investigate the bacterial spectrum and frequency of FRSA in patients with impetigo or secondarily infected AD. A prospective study in our clinic in 2004 to 2008 included 38 patients with impetigo and 37 with secondarily infected AD. S. aureus was the predominant finding in all groups (bullous impetigo 92% (12/13), impetigo 76% (19/25) and secondarily infected AD 89% (33/37)). Seventy-five percent of S. aureus were fusidic acid resistant in bullous impetigo, 32% in impetigo and 6.1% in secondarily infected AD (bullous impetigo vs. AD p < 0.0001, impetigo vs. AD p < 0.05). We then performed a retrospective patient record review including all patients with impetigo or secondarily infected AD seen at the clinic during the first and last year of the prospective study. In the first year 33% (19/58) of the S. aureus isolates were fusidic acid-resistant in impetigo and 12% (5/43) in secondarily infected AD (p < 0.05). In the last year corresponding values were 24% (6/25) for impetigo and 2.2% (1/45) for AD (p < 0.01). In summary, the prospective study and the patient record review both showed higher FRSA levels in impetigo than in AD. FRSA levels were persistently low in AD. Continued restrictive use of topical fusidic acid is advised to limit an increase in FRSA levels in dermatology patients.

  17. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance

    PubMed Central

    Baranzoni, Gian Marco; Reichenberger, Erin R.; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  18. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Reichenberger, Erin R; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-07-28

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here.

  19. Complete genome sequences of Escherichia coli O157:H7 strains SRCC 1675 and 28RC that vary in acid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented....

  20. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    PubMed

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  1. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    PubMed Central

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  2. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  3. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen.

    PubMed

    Sundset, Monica A; Kohn, Alexandra; Mathiesen, Svein D; Praesteng, Kirsti E

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer (Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 x 2.0-3.5 microm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  4. Earthquake Resistant Submarine Drydock Block System Design

    DTIC Science & Technology

    1988-05-01

    acceleration time history. It Is observed that the block on block surfaces for this system had been painted. According to Rabinowicz (1987) [13J, a...Maryland, 1982, p. 272. 166 13. Rabinowicz , Ernest, Lecture, "Tribology", M.I.T., Course 2.800, Fall 1987. 14. Telephone conversation between Tingley

  5. Induced Systemic Resistance by Beneficial Microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic esistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathog...

  6. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance.

    PubMed

    Shihabudeen, Mohamed Sham; Roy, Debasish; James, Joel; Thirumurugan, Kavitha

    2015-10-15

    Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines.

  7. An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor

    PubMed Central

    González-Cabrera, Joel; Davies, T. G. Emyr; Field, Linda M.; Kennedy, Peter J.; Williamson, Martin S.

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed. PMID:24367572

  8. Acid generation mechanism in anion-bound chemically amplified resists used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro

    2014-11-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.

  9. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    NASA Astrophysics Data System (ADS)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  10. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    PubMed

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent.

  11. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Zheng, Dao-Qiong; Wu, Xue-Chang; Wang, Pin-Mei; Chi, Xiao-Qin; Tao, Xiang-Lin; Li, Ping; Jiang, Xin-Hang; Zhao, Yu-Hua

    2011-03-01

    Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.

  12. Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria.

    PubMed

    Clementi, Francesca; Aquilanti, Lucia

    2011-12-01

    The worldwide use, and misuse, of antibiotics for about sixty years in the so-called antibiotic era, has been estimated in some one to ten million tons, a relevant part of which destined for non-therapeutic purposes such as growth promoting treatments for livestock or crop protection. As highly adaptable organisms, bacteria have reacted to this dramatic change in their environment by developing several well-known mechanisms of antibiotic resistance and are becoming increasingly resistant to conventional antibiotics. In recent years, commensal bacteria have become a cause of concern since they may act as reservoirs for the antibiotic resistance genes found in human pathogens. In particular, the food chain has been considered the main route for the introduction of animal and environment associated antibiotic resistant bacteria into the human gastrointestinal tract (GIT) where these genes may be transferred to pathogenic and opportunistic bacteria. As fundamental microbial communities in a large variety of fermented foods and feed, the anaerobe facultative, aerotolerant lactic acid bacteria (LAB) are likely to play a pivotal role in the resistance gene exchange occurring in the environment, food, feed and animal and human GIT. Therefore their antibiotic resistance features and their genetic basis have recently received increasing attention. The present article summarises the results of the latest studies on the most typical genera belonging to the low G + C branch of LAB. The evolution of the criteria established by European regulatory bodies to ensure a safe use of microorganisms in food and feed, including the assessment of their antibiotic resistance is also reviewed.

  13. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  14. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato.

    PubMed

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J; Jung, Sabine C; Pascual, Jose A; Pozo, María J

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development.

  15. Mechanism of Bacillus subtilis Spore Inactivation by and Resistance to Supercritical CO2 plus Peracetic Acid

    PubMed Central

    Setlow, Barbara; Korza, George; Blatt, Kelly M.S.; Fey, Julien P.; Setlow, Peter

    2015-01-01

    Aims Determine how supercritical CO2 (scCO2) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2-PAA, and if spores inactivated by scCO2-PAA are truly dead. Methods and Results Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2-PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2-PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2-PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2-PAA sensitive. Conclusions These findings suggest that scCO2-PAA inactivates spores by damaging spores’ inner membrane. The spore coat provided scCO2-PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2-PAA resistance only for dry spores. Significance and Impact of Study These results provide information on mechanisms of spore inactivation of and resistance to scCO2-PAA, an agent with increasing use in sterilization applications. PMID:26535794

  16. Amino acids in Tobamovirus coat protein controlling pepper L(1a) gene-mediated resistance.

    PubMed

    Mizumoto, Hiroyuki; Nakamura, Ikumi; Shimomoto, Yoshifumi; Sawada, Hiromasa; Tomita, Reiko; Sekine, Ken-Taro; Kiba, Akinori; Nishiguchi, Masamichi; Kobayashi, Kappei; Hikichi, Yasufumi

    2012-10-01

    In pepper plants (genus Capsicum), the resistance against Tobamovirus spp. is conferred by L gene alleles. The recently identified L variant L(1a) can recognize coat proteins (CPs) of Tobacco mild green mosaic virus Japanese strain (TMGMV-J) and Paprika mild mottle virus Japanese strain (PaMMV-J), but not of Pepper mild mottle virus (PMMoV), as the elicitor to induce resistance at 24 °C. Interestingly, L(1a) gene-mediated resistance against TMGMV-J, but not PaMMV-J, is retained at 30 °C. This observation led us to speculate that L(1a) can discriminate between CPs of TMGMV-J and PaMMV-J. In this study, we aimed to determine the region(s) in CP by which L(1a) distinguishes TMGMV-J from PaMMV-J. By using chimeric CPs consisting of TMGMV-J and PaMMV-J, we found that the chimeric TMGMV-J CP, whose residues in the β-sheet domain were replaced by those of PaMMV-J, lost its ability to induce L(1a) gene-mediated resistance at 30 °C. In contrast, the chimeric PaMMV-J CP with the β-sheet domain replaced by TMGMV-J CP was able to induce L(1a) gene-mediated resistance at 30 °C. Furthermore, viral particles were not detected in the leaves inoculated with either chimeric virus. These observations indicated that the amino acids within the β-sheet domain were involved in both the induction of L(1a) gene-mediated resistance and virion formation. Further analyses using chimeric CPs of TMGMV-J and PMMoV indicated that amino acids within the β-sheet domain alone were not sufficient for the induction of L(1a) gene-mediated resistance by TMGMV-J CP. These results suggest that multiple regions in Tobamovirus CP are implicated in the induction of L(1a) gene-mediated resistance.

  17. [Fluorescein transport and antioxidant systems in the yeast Saccharomyces cerevisiae under acid stress].

    PubMed

    Abrat, O B; Semchyshyn, H M; Miedzobrodski, J; Lushchak, V I

    2008-01-01

    The influence of acetic acid induced stress on the activity of fluorescein extrusion system and cell survival in the yeast Saccharomyces cerevisiae has been studied. It was shown that acetic acid caused the inhibition of fluorescein efflux from the cells of both parental strain and its derivative defective in the transcriptional factor War1 which regulates the system of acetate efflux from the cell. The stress induced by 200 mM CH3COOH decreased almost 10 times the survival of strains deficient in the regulatory proteins War1 and Yap1 as compared with respective wild strains. However, pretreatment of the yeast by sublethal concentrations of hydrogen peroxide resulted in the increased resistance to acid stress. Thus it may be supposed that several systems exist which are responsible for acetate extrusion from the yeast cells. Regulatory proteins War1 and Yap1 are involved in the yeast adaptation to the stress induced by acetic acid.

  18. Resistance to the anti-human immunodeficiency virus type 1 compound L-chicoric acid results from a single mutation at amino acid 140 of integrase.

    PubMed

    King, P J; Robinson, W E

    1998-10-01

    L-Chicoric acid is an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase in vitro and of HIV-1 replication in tissue culture. Following 3 months of selection in the presence of increasing concentrations of L-chicoric acid, HIV-1 was completely resistant to the compound. Introduction of the mutant integrase containing a single glycine-to-serine amino acid change at position 140 into the native, L-chicoric acid-sensitive virus demonstrated that this change was sufficient to confer resistance to L-chicoric acid. These results confirm through natural selection previous biochemical studies showing that L-chicoric acid inhibits integrase and that the drug is likely to interact at residues near the catalytic triad in the integrase active site.

  19. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay.

    PubMed

    Kamphee, Hatairat; Chaiprasert, Angkana; Prammananan, Therdsak; Wiriyachaiporn, Natpapas; Kanchanatavee, Airin; Dharakul, Tararaj

    2015-01-01

    Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.

  20. Acute promyelocytic leukemia and differentiation therapy: molecular mechanisms of differentiation, retinoic acid resistance and novel treatments.

    PubMed

    Özpolat, Bülent

    2009-06-05

    Incorporation of all-trans-retinoic acid (ATRA) into the treatment of acute promyelocytic leukemia (APL), a type of acute myeloid leukemia (AML), revolutionized the therapy of cancer in the last decade and introduced the concept of differentiation therapy. ATRA, a physiological metabolite of vitamin A (retinol), induces complete clinical remissions (CRs) in about 90% of patients with APL. In contrast to the cytotoxic chemotherapeutics, ATRA can selectively induce terminal differentiation of promyelocytic leukemic cells into normal granulocytes without causing bone marrow hypoplasia or exacerbation of the frequently occurring fatal hemorrhagic syndromes in patients with APL. However, remissions induced by ATRA alone are transient and the patients commonly become resistant to the therapy, leading to relapses in most patients and thus limiting the use of ATRA as a single agent. Therefore, ATRA is currently combined with anthracycline-based chemotherapy, and this regimen dramatically improves patient survival compared to chemotherapy alone, curing about 70% of the patients. However, 30% of APL patients still relapse and die in five years. Recently, arsenic trioxide (As2O3) was proven to be highly effective in inducing CRs not only in APL patients relapsed after ATRA treatment and conventional chemotherapy but also in primary APL patients. Despite the well-documented clinical efficacy of ATRA, molecular mechanisms responsible for development of ATRA resistance are not well understood. Based on in vitro and clinical observations, several mechanisms, including induction of accelerated metabolism of ATRA, decreased bioavailability and plasma drug levels, point mutations in the ATRA-binding domain of promyelocytic leukemia (PML)-retinoic acid receptor-alpha (RARα) and other molecular events have been proposed to explain ATRA resistance. In this review, the molecular mechanisms of ATRA-induced myeloid cell differentiation and resistance are discussed, together with novel

  1. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.

    PubMed

    Saá Ibusquiza, P; Herrera, J J R; Cabo, M L

    2011-05-01

    Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified.

  2. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  3. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  4. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  5. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    PubMed

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  6. Resistance Training in Type 2 Diabetic Patients Improves Uric Acid levels

    PubMed Central

    Sousa, Moisés S.S.R.; Saavedra, Francisco J.F.; Neto, Gabriel R.; Novaes, Giovanni S.; Souza, Antonio C. R.; Salerno, Verônica P.; Novaes, Jefferson S.

    2014-01-01

    Resistance training (RT) can provide several benefits for individuals with Type 2 diabetes. The aim of this study was to investigate the effects of resistance training on the strength levels and uric acid (UA) concentration in individuals with Type 2 diabetes. The study included 68 patients (57.7±9.0 years) that participated in an organized program of RT for 12 weeks. The volunteers were divided into two groups: an experimental group (EG; n=34) that performed the resistance training program consisting of seven exercises executed in an alternating order based on segments; and a control group (CG; n=34) that maintained their normal daily life activities. Muscle strength and uric acid were measured both pre- and post-experiment. The results showed a significant increase in strength of the subjects in the EG for all exercises included in the study (p<0.001). Comparing the strength levels of the post-test, intergroup differences were found in supine sitting (p<0.001), leg extension (p<0.001), shoulder press (p<0.001), leg curl (p=0.001), seated row (p<0.001), leg press (p=0.001) and high pulley (p<0.001). The measured uric acid was significantly increased in both experimental and control groups (p<0.001 and p=0.001, respectively). The intergroup comparison showed a significant increase for the EG (p=0.024). We conclude that the training program was effective for strength gains despite an increase in uric acid in Type 2 diabetics. PMID:25713640

  7. Boric/sulfuric acid anodizing of aluminum alloys 2024 and 7075: Film growth and corrosion resistance

    SciTech Connect

    Thompson, G.E.; Zhang, L.; Smith, C.J.E.; Skeldon, P.

    1999-11-01

    The influence of boric acid (H{sub 3}BO{sub 3}) additions to sulfuric acid (H{sub 2}SO{sub 4}) were examined for the anodizing of Al 2024-T3 (UNS A92024) and Al 7075-T6 (UNS A97075) alloys at constant voltage. Alloys were pretreated by electropolishing, by sodium dichromate (Na{sub 2}Cr{sub 2}O{sub 7})/H{sub 2}SO{sub 4} (CSA) etching, or by alkaline etching. Current-time responses revealed insignificant dependence on the concentration of H{sub 3}BO{sub 3} to 50 g/L. Pretreatments affected the initial film development prior to the establishment of the steady-state morphology of the porous film, which was related to the different compositions and morphologies of pretreated surfaces. More detailed studies of the Al 7075-T6 alloy indicated negligible effects of H{sub 3}BO{sub 3} on the coating weight, morphology of the anodic film, and thickening rate of the film, or corrosion resistance provided by the film. In salt spray tests, unsealed films formed in H{sub 2}SO{sub 4} or mixed acid yielded similar poor corrosion resistances, which were inferior to that provided by anodizing in chromic acid (H{sub 2}CrO{sub 4}). Sealing of films in deionized water, or preferably in chromate solution, improved corrosion resistance, although not matching the far superior performance provided by H{sub 2}CrO{sub 4} anodizing and sealing.

  8. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.

  9. Contribution of mdr1b-type P-glycoprotein to okadaic acid resistance in rat pituitary GH3 cells.

    PubMed

    Ritz, V; Marwitz, J; Sieder, S; Ziemann, C; Hirsch-Ernst, K I; Quentin, I; Steinfelder, H J

    1999-08-01

    Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.

  10. Further characterization of three Yersinia enterocolitica strains with a nalidixic acid-resistant phenotype isolated from humans with diarrhea.

    PubMed

    Drummond, Niall; Stephan, Roger; Haughton, Pippa; Murphy, Brenda P; Fanning, Séamus

    2013-08-01

    Antimicrobial-resistant bacteria pose a threat to public health. Three Yersinia enterocolitica strains cultured from patients presenting with diarrhea and resistant to nalidixic acid were studied. Target gene mutations in gyrA alone were identified as part of the genetic basis for this phenotype. Efflux activity was also noted, since the presence of the efflux pump inhibitor, phenylalanine-arginine-β-naphthylamide, increased susceptibility to nalidixic acid.

  11. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  12. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    PubMed

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  13. Biofilm formation by lactic acid bacteria and resistance to environmental stress.

    PubMed

    Kubota, Hiromi; Senda, Shouko; Nomura, Nobuhiko; Tokuda, Hajime; Uchiyama, Hiroo

    2008-10-01

    We investigated the formation of biofilms by 3 type strains of lactic acid bacteria (LAB), Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus fructivorans, as representatives of LAB that cause food deterioration or contamination. Lactobacillus plantarum subsp. plantarum JCM1149 and Lactobacillus brevis JCM1059 appeared to adhere and accumulate on glass cover slips. Lactobacillus fructivorans JCM1117 cells made thin cellophane-like biofilms, and most of the biofilm cells became longer than the planktonic cells. We tested the resistance of biofilm and planktonic L. plantarum subsp. plantarum JCM1149 cells to acetic acid and ethanol, which strongly inhibit the growth of bacteria and are important in food preservation. The biofilm cells were more resistant than the planktonic cells and the surfaces of the treated planktonic cells were badly damaged, whereas those of the biofilm cells were only slightly damaged. We isolated 43 LAB from onions and the biofolm cells of an isolate, L. plantarum M606 also had high resistance. These results demonstrate the significance of studying biofilms of LAB in the food industry.

  14. PENICILLIN RESISTANCE OF COMPETENT CELLS IN DEOXYRIBONUCLEIC ACID TRANSFORMATION OF BACILLUS SUBTILIS.

    PubMed

    NESTER, E W

    1964-04-01

    Nester, E. W. (University of Washington, Seattle). Penicillin resistance of competent cells in deoxyribonucleic acid transformation of Bacillus subtilis. J. Bacteriol. 87:867-875. 1964.-Transformants are resistant to penicillin killing for several hours after deoxyribonucleic acid (DNA) addition. The present study indicates that this resistance is a consequence of such cells still remaining competent and is not the result of any interaction of donor DNA with the recipient cell. The following data support this conclusion: (i) the frequency of transformation can be increased five- to tenfold if penicillin acts on a competent culture prior to DNA addition; (ii) the percentage of competent cells in such a penicillin-treated culture calculated on the basis of a random coincidence of DNA molecules entering the same cell increases some 25-fold over that of a penicillin-nontreated population; (iii) the kinetics of penicillin killing of a recipient culture are identical whether or not transforming DNA has been added; (iv) the extent of killing by penicillin is related to the level of competence of the recipient culture; and (v) the kinetics of appearance and disappearance of competence in a population as well as in individual cells indicate that a cell may remain competent for 3 to 4 hr.

  15. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    PubMed Central

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  16. A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

    PubMed Central

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-01-01

    Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  17. Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants.

    PubMed

    García, Tania; Gutiérrez, Jorge; Veloso, Javier; Gago-Fuentes, Raquel; Díaz, José

    2015-03-15

    Cotyledon wounding in pepper caused the early generation of hydrogen peroxide both locally (cotyledons) and systemically (upper true leaves). However, 72 h later there is a different wound response between local and systemic organs, as shown by resistance to the pathogenic fungus Botrytis cinerea, that increased locally and decreased systemically. Signaling by ethylene and jasmonic acid was assessed by using two inhibitors: 1-methylcyclopropene (MCP, inhibitor of ethylene receptors) and ibuprofen (inhibitor of jasmonate biosynthesis). MCP did not affect the modulation of resistance levels to Botrytis by wounding, ruling out the involvement of ethylene signaling. Ibuprofen did not inhibit wound-induced resistance at the local level, but inhibited wound-induced systemic susceptibility. Moreover, changes of biochemical and structural defenses in response to wounding were studied. Peroxidase activity and the expression of a peroxidase gene (CAPO1) increased locally as a response to wounding, but no changes were observed systemically. Lignin deposition was induced in wounded cotyledons, but was repressed in systemic leaves of wounded plants, whereas soluble phenolics did not change locally and decreased systemically. The expression of two other genes involved in plant defense (CABPR1 and CASC1) was also differentially regulated locally and systemically, pointing to a generalized increase in plant defenses at the local level and a systemic decrease as a response to wounding. Wound-induced defenses at the local level coincided with resistance to the necrotroph fungus B. cinerea, whereas depleted defenses in systemic leaves of wounded plants correlated to induced susceptibility against this pathogen. It may be that the local response acts as a sink of energy resources to mount a defense against pathogens, whereas in systemic organs the resources for defense are lower.

  18. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.

    PubMed

    Levasseur, Anthony; Bekliz, Meriem; Chabrière, Eric; Pontarotti, Pierre; La Scola, Bernard; Raoult, Didier

    2016-03-10

    Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection.

  19. Genome Sequence of Rhizobacterium Serratia marcescens Strain 90-166, Which Triggers Induced Systemic Resistance and Plant Growth Promotion.

    PubMed

    Jeong, Haeyoung; Kloepper, Joseph W; Ryu, Choong-Min

    2015-06-18

    The rhizobacterium Serratia marcescens strain 90-166 elicits induced systemic resistance against plant pathogens and herbivores and promotes plant growth under greenhouse and field conditions. Strain 90-166 secretes volatile compounds, siderophores, salicylic acid, and quorum-sensing autoinducers as bacterial determinants toward plant health. Herein, we present its draft genome sequence.

  20. Retinoic acid therapy resistance progresses from unilineage to bilineage in HL-60 leukemic blasts.

    PubMed

    Jensen, Holly A; Bunaciu, Rodica P; Ibabao, Christopher N; Myers, Rebecca; Varner, Jeffrey D; Yen, Andrew

    2014-01-01

    Emergent resistance can be progressive and driven by global signaling aberrations. All-trans retinoic acid (RA) is the standard therapeutic agent for acute promyelocytic leukemia, but 10-20% of patients are not responsive, and initially responsive patients relapse and develop retinoic acid resistance. The patient-derived, lineage-bipotent acute myeloblastic leukemia (FAB M2) HL-60 cell line is a potent tool for characterizing differentiation-induction therapy responsiveness and resistance in t(15;17)-negative cells. Wild-type (WT) HL-60 cells undergo RA-induced granulocytic differentiation, or monocytic differentiation in response to 1,25-dihydroxyvitamin D3 (D3). Two sequentially emergent RA-resistant HL-60 cell lines, R38+ and R38-, distinguishable by RA-inducible CD38 expression, do not arrest in G1/G0 and fail to upregulate CD11b and the myeloid-associated signaling factors Vav1, c-Cbl, Lyn, Fgr, and c-Raf after RA treatment. Here, we show that the R38+ and R38- HL-60 cell lines display a progressive reduced response to D3-induced differentiation therapy. Exploiting the biphasic dynamic of induced HL-60 differentiation, we examined if resistance-related defects occurred during the first 24 h (the early or "precommitment" phase) or subsequently (the late or "lineage-commitment" phase). HL-60 were treated with RA or D3 for 24 h, washed and retreated with either the same, different, or no differentiation agent. Using flow cytometry, D3 was able to induce CD38, CD11b and CD14 expression, and G1/G0 arrest when present during the lineage-commitment stage in R38+ cells, and to a lesser degree in R38- cells. Clustering analysis of cytometry and quantified Western blot data indicated that WT, R38+ and R38- HL-60 cells exhibited decreasing correlation between phenotypic markers and signaling factor expression. Thus differentiation induction therapy resistance can develop in stages, with initial partial RA resistance and moderate vitamin D3 responsiveness (unilineage

  1. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    PubMed

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses.

  2. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  3. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana.

    PubMed

    Nakano, Masahito; Nishihara, Masahiro; Yoshioka, Hirofumi; Takahashi, Hirotaka; Sawasaki, Tatsuya; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2013-01-01

    Nicotianabenthamiana is susceptible to Ralstonia solanacearum. To analyze molecular mechanisms for disease susceptibility, we screened a gene-silenced plant showing resistance to R. solanacearum, designated as DS1 (Disease suppression 1). The deduced amino acid sequence of DS1 cDNA encoded a phosphatidic acid phosphatase (PAP) 2. DS1 expression was induced by infection with a virulent strain of R. solanacearum in an hrp-gene-dependent manner. DS1 rescued growth defects of the temperature-sensitive ∆lpp1∆dpp1∆pah1 mutant yeast. Recombinant DS1 protein showed Mg(2+)-independent PAP activity. DS1 plants showed reduced PAP activity and increased phosphatidic acid (PA) content. After inoculation with R. solanacearum, DS1 plants showed accelerated cell death, over-accumulation of reactive oxygen species (ROS), and hyper-induction of PR-4 expression. In contrast, DS1-overexpressing tobacco plants showed reduced PA content, greater susceptibility to R. solanacearum, and reduced ROS production and PR-4 expression. The DS1 phenotype was partially compromised in the plants in which both DS1 and NbCoi1 or DS1 and NbrbohB were silenced. These results show that DS1 PAP may affect plant immune responses related to ROS and JA cascades via regulation of PA levels. Suppression of DS1 function or DS1 expression could rapidly activate plant defenses to achieve effective resistance against Ralstonia solanacearum.

  4. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Methylmalonic acid (nonquantitative) test system. 862.1509 Section 862.1509 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification....

  5. Optimization of a Nucleic Acid-Based Reporter System To Detect Mycobacterium tuberculosis Antibiotic Sensitivity

    PubMed Central

    Lemmon, Margaret; Rotter, Stephanie; Lees, Jonathan; Einck, Leo; Nacy, Carol A.

    2014-01-01

    We previously reported the development of a prototype antibiotic sensitivity assay to detect drug-resistant Mycobacterium tuberculosis using infection by mycobacteriophage to create a novel nucleic acid transcript, a surrogate marker of mycobacterial viability, detected by reverse transcriptase PCR (M. C. Mulvey et al., mBio 3:e00312-11, 2012). This assay detects antibiotic resistance to all drugs, even drugs for which the resistance mechanism is unknown or complex: it is a phenotypic readout using nucleic acid detection. In this report, we describe development and characteristics of an optimized reporter system that directed expression of the RNA cyclase ribozyme, which generated circular RNA through an intramolecular splicing reaction and led to accumulation of a new nucleic acid sequence in phage-infected bacteria. These modifications simplified the assay, increased the limit of detection from 104 to <102 M. tuberculosis cells, and correctly identified the susceptibility profile of M. tuberculosis strains exposed for 16 h to either first-line or second-line antitubercular drugs. In addition to phenotypic drug resistance or susceptibility, the assay reported streptomycin MICs and clearly detected 10% drug-resistant cells in an otherwise drug-susceptible population. PMID:25367910

  6. Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2016-04-01

    Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.

  7. Acidic pH resistance of grafted chitosan on dental implant.

    PubMed

    Campos, Doris M; Toury, Bérengère; D'Almeida, Mélanie; Attik, Ghania N; Ferrand, Alice; Renoud, Pauline; Grosgogeat, Brigitte

    2015-05-01

    Over the last decade, access to dental care has increasingly become a service requested by the population, especially in the case of dental implants. However, the major cause of implant failure is an inflammatory disease: peri-implantitis. Currently, the adhesion strength of antibacterial coatings at implant surfaces remains a problem to solve. In order to propose a functionalized implant with a resistant antibacterial coating, a novel method of chitosan immobilization at implant surface has been investigated. Functionalization of the pre-active titanium (Ti) surface was performed using triethoxysilylpropyl succinic anhydride (TESPSA) as a coupling agent which forms a stable double peptide bond with chitosan. The chitosan presence and the chemical resistibility of the coating under acid pH solutions (pH 5 and pH 3) were confirmed by FTIR-ATR and XPS analyses. Furthermore, peel test results showed high adhesive resistance of the TESPSA/chitosan coating at the substrate. Cytocompatibility was evaluated by cell morphology with confocal imaging. Images showed healthy morphology of human gingival fibroblasts (HGF-1). Finally, the reported method for chitosan immobilization on Ti surface via peptide bindings allows for the improvement of its adhesive capacities and resistibility while maintaining its cytocompatibility. Surface functionalization using the TESPSA/chitosan coupling method is noncytotoxic and stable even in drastic environments as found in oral cavity, thus making it a valuable candidate for clinical implantology applications.

  8. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  9. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  10. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  11. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  12. Improvement of daptomycin production via increased resistance to decanoic acid in Streptomyces roseosporus.

    PubMed

    Lee, Sung-Kwon; Kim, Hong Rip; Jin, Ying-Yu; Yang, Seung Hwan; Suh, Joo-Won

    2016-10-01

    Daptomycin, a cyclic anionic lipopeptide compound produced by Streptomyces roseosporus, is used to treat skin infections caused by multi-drug resistant gram-positive pathogens. The biosynthesis of daptomycin is initiated by the condensation of decanoic acid (DA, a 10-carbon unit fatty acid) and the N-terminal l-tryptophan. So, the addition of DA to the fermentation medium is essential for increasing daptomycin production. However, increasing of DA concentration in the fermentation medium was not possible due to the high toxicity of DA. The previous studies reported that the cell growth of S. roseosporus was halted from 1 mM DA. In order to improve daptomycin production with increasing DA concentration in the medium, the DA-resistant S. roseosporus was developed via a sequential-adaptation method. The DA-resistant strain (DAR) showed complete resistance to 1 mM DA, and the daptomycin production was increased 1.4-fold (40.5 ± 0.7 mg/L) compared with the wild-type (28.5 ± 0.8 mg/L) at 1 mM DA. Additionally, the initial step of the daptomycin biosynthesis was enhanced by the overexpression of dptE and dptF in DAR. The dptEF overexpression DAR showed 3.9-fold (156.3 ± 8.2 mg/L) increase in the daptomycin production compared with DAR (40.1 ± 2.6 mg/L) at 1 mM DA.

  13. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    PubMed Central

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  14. Dietary docosahexaenoic acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet.

    PubMed

    de Castro, Gabriela Salim; Deminice, Rafael; Simões-Ambrosio, Livia Maria Cordeiro; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-04-01

    This study aimed to examine the benefits of different amounts of omega-3 (n-3) polyunsaturated fatty acids from fish oil (FO) on lipid metabolism, insulin resistance and gene expression in rats fed a high-fructose diet. Male Wistar rats were separated into two groups: Control (C, n = 6) and Fructose (Fr, n = 32), the latter receiving a diet containing 63% by weight fructose for 60 days. After this period, 24 animals from Fr group were allocated to three groups: FrFO2 (n = 8) receiving 63% fructose and 2% FO plus 5% soybean oil; FrFO5 (n = 8) receiving 63% fructose and 5% FO plus 2% soybean oil; and FrFO7 (n = 8) receiving 63% fructose and 7% FO. Animals were fed these diets for 30 days. Fructose led to an increase in liver weight, hepatic and serum triacylglycerol, serum alanine aminotransferase and HOMA1-IR index. These alterations were reversed by 5% and 7% FO. FO had a dose-dependent effect on expression of genes related to hepatic β-oxidation (increased) and hepatic lipogenesis (decreased). The group receiving the highest FO amount had increased markers of oxidative stress. It is concluded that n-3 fatty acids may be able to reverse the adverse metabolic effects induced by a high fructose diet.

  15. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus].

    PubMed

    Sopina, V A

    2002-01-01

    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  16. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  17. Water soluble and heat resistant polymers by free radical polymerization of lactic acid-based monomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Hitoshi; Kibayashi, Tatsuya; Niwa, Miki

    2013-08-01

    Tactic heat resistant polymer was prepared by free radical polymerization of lactic acid-based monomers, i.e. chiral 2-isopropyl-5-methylene-1,3-dioxolan-4-ones (1). The polymerization of 1 proceeded smoothly without ring-opening to give a polymer with high isotacticity (mm) of 29.7~100% and glass transition temperature (Tg) of 172~213°C. 1 also showed high reactivity in the copolymerization with styrene and methyl methacrylate, and the incorporation of 1 unit in the copolymer structure increased Tg of each polymer. In addition, hydrolysis of poly(1) produced a new type of water soluble poly(lactic acid), i.e. poly(α-hydroxy acrylate), and poly(α-hydroxy acrylate-co-divinyl benzene) hydrogel absorbed water as high as 1000 times of the original polymer weight.

  18. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  19. Fast food, central nervous system insulin resistance, and obesity.

    PubMed

    Isganaitis, Elvira; Lustig, Robert H

    2005-12-01

    Rates of obesity and insulin resistance have climbed sharply over the past 30 years. These epidemics are temporally related to a dramatic rise in consumption of fast food; until recently, it was not known whether the fast food was driving the obesity, or vice versa. We review the unique properties of fast food that make it the ideal obesigenic foodstuff, and elucidate the mechanisms by which fast food intake contributes to obesity, emphasizing its effects on energy metabolism and on the central regulation of appetite. After examining the epidemiology of fast food consumption, obesity, and insulin resistance, we review insulin's role in the central nervous system's (CNS) regulation of energy balance, and demonstrate the role of CNS insulin resistance as a cause of leptin resistance and in the promotion of the pleasurable or "hedonic" responses to food. Finally, we analyze the characteristics of fast food, including high-energy density, high fat, high fructose, low fiber, and low dairy intake, which favor the development of CNS insulin resistance and obesity.

  20. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter.

    PubMed

    Zhen, Hongmin; Nakamura, Koichi; Kitaura, Yasuyuki; Kadota, Yoshihiro; Ishikawa, Takuya; Kondo, Yusuke; Xu, Minjun; Shimomura, Yoshiharu

    2015-01-01

    Plasma concentrations of amino acids reflect the intracellular amino acid pool in mammals. However, the regulatory mechanism requires clarification. In this study, we examined the effect of leucine administration on plasma amino acid profiles in mice with and without the treatment of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) or rapamycin as an inhibitor of system L or mammalian target of rapamycin complex 1, respectively. The elevation of plasma leucine concentration after leucine administration was associated with a significant decrease in the plasma concentrations of isoleucine, valine, methionine, phenylalanine, and tyrosine; BCH treatment almost completely blocked the leucine-induced decrease in plasma amino acid concentrations. Rapamycin treatment had much less effects on the actions of leucine than BCH treatment. These results suggest that leucine regulates the plasma concentrations of branched-chain amino acids, methionine, phenylalanine, and tyrosine, and that system L amino acid transporters are involved in the leucine action.

  1. Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea.

    PubMed

    Sherwood, Patrick; Bonello, Pierluigi

    2013-08-01

    The molecular basis of the systemic induced resistance (SIR) phenotype known to occur in Austrian pine (Pinus nigra J.F. Arnold) in response to the tip blight and canker pathogen Diplodia pinea (Desm.) remains unclear. Specialized metabolites such as phenolics are considered to be an important component of plant defense, including SIR, but the antimicrobial activity of many of these putative defensive chemicals remains untested at realistic concentrations and in conjunction with each other. Here, we examined the anti-Diplodia activity of several previously identified Austrian pine phenolics associated with SIR by comparing the diameters of fungal colonies grown on media amended with ferulic acid, coumaric acid, taxifolin, pinosylvin, pinosylvin monomethyl ether and lignin. All of the compounds were tested both individually and as clusters (combinations) previously determined to occur in planta in a co-regulated fashion. Both the individual compounds and clusters were tested at constitutive concentrations and pathogen-induced concentrations linked to an SIR phenotype. Lignin possessed the strongest antifungal activity individually, and clusters at the SIR concentrations had the greatest antifungal effects, achieving fungistasis. This study exemplifies the value of evaluating potential biomarkers of resistance at in planta concentrations that are associated with the systemically resistant phenotype, and provides strong evidence that co-regulation of chemical defenses potentiates such a phenotype.

  2. Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select.

    PubMed

    Porsby, Cisse Hedegaard; Webber, Mark A; Nielsen, Kristian Fog; Piddock, Laura J V; Gram, Lone

    2011-04-01

    The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.

  3. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  4. Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard To Select▿ †

    PubMed Central

    Porsby, Cisse Hedegaard; Webber, Mark A.; Nielsen, Kristian Fog; Piddock, Laura J. V.; Gram, Lone

    2011-01-01

    The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable. PMID:21263047

  5. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    PubMed

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films.

  6. An amino acid mixture improves glucose tolerance and lowers insulin resistance in the obese Zucker rat.

    PubMed

    Bernard, Jeffrey R; Liao, Yi-Hung; Ding, Zhenping; Hara, Daisuke; Kleinert, Maximilian; Nelson, Jeffrey L; Ivy, John L

    2013-07-01

    The purpose of this investigation was to test an amino acid mixture on glucose tolerance in obese Zucker rats [experiment (Exp)-1] and determine whether differences in blood glucose were associated with alterations in muscle glucose uptake [experiment (Exp)-2]. Exp-1 rats were gavaged with either carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1), carbohydrate plus amino acid mixture with increased leucine concentration (OB-AA-2) or water (OB-PLA). The glucose response in OB-AA-1 and OB-AA-2 were similar, and both were lower compared to OB-CHO. This effect of the amino acid mixtures did not appear to be solely attributable to an increase in plasma insulin. Rats in Exp-2 were gavaged with carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1) or water (OB-PLA). Lean Zuckers were gavaged with carbohydrate (LN-CHO). Fifteen minutes after gavage, a radiolabeled glucose analog was infused through a catheter previously implanted in the right jugular vein. Blood glucose was significantly lower in OB-AA-1 compared to OB-CHO while the insulin responses were similar. Glucose uptake was greater in OB-AA-1 compared with OB-CHO, and similar to that in LN-CHO in red gastrocnemius muscle (5.15 ± 0.29, 3.8 ± 0.27, 5.18 ± 0.34 µmol/100 g/min, respectively). Western blot analysis showed that Akt substrate of 160 kDa (AS160) phosphorylation was enhanced for OB-AA-1 and LN-CHO compared to OB-CHO. These findings suggest that an amino acid mixture improves glucose tolerance in an insulin resistant model and that these improvements are associated with an increase in skeletal muscle glucose uptake possibly due to improved intracellular signaling.

  7. Fracture resistance of roots obturated with novel hydrophilic obturation systems

    PubMed Central

    Hegde, Vibha; Arora, Shashank

    2015-01-01

    Aim: Comparative assessment of fracture resistance of roots obturated with three hydrophilic systems — novel CPoint system, Resilon/Epiphany system, and EndoSequence BC sealer; and one hydrophobic gold standard gutta-percha/AHPlus system. Materials and Methods: Ninety freshly extracted, human, single-rooted mandibular premolars were selected. The specimens were decoronated and standardized to a working length of 13 mm. The teeth were randomly divided into six groups (n = 15). In Group A, teeth were left unprepared and unfilled (negative control). Rest of the groups were prepared by using ProTaper system up to a master apical file F3; followed by which Group B was left unobturated (positive control); Group C, novel CPoint System; group D, Resilon/Epiphany system, Group E EndoSequence BC sealer, and Group F gutta-percha and AH Plus. Specimens were stored for 2 weeks at 100% humidity. Each group was then subjected to fracture testing by using a universal testing machine. The force required to fracture each specimen was recorded and the data was analyzed statistically using analysis of variance (ANOVA) test and Tukey's post-hoc test. Results: The hydrophilic obturation systems have shown to exhibit significantly higher fracture resistance as shown by the values in Groups C, D, and E (P < 0.05) when compared with Group F. Within hydrophilic groups there was significant difference between Group D and Groups C and E (P < 0.05), while Groups C and E had no significant difference (P > 0.05). Conclusion: In contrast to hydrophobic systems, hydrophilic systems showed higher fracture resistance in a single-rooted premolar. PMID:26069417

  8. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  9. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    PubMed

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  10. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  11. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus

    PubMed Central

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV. PMID:27777581

  12. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  13. Investigation of carbon storage regulation network (csr genes) and phenotypic differences between acid sensitive and resistant Escherichia coli O157:H7 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Escherichia coli O157:H7 and related serotype strains have previously been shown to vary in acid resistance, however, little is known about strain specific mechanisms of acid resistance. We examined sensitive and resistant E. coli strains to determine the effects of growth in minimal and...

  14. Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain.

    PubMed

    Jiang, Yunyun; Ren, Fazheng; Liu, Songling; Zhao, Liang; Guo, Huiyuan; Hou, Caiyun

    2016-03-01

    Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10(th), 20(th), 30(th), 40(th), and 50(th) repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wildtype strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68.

  15. The Loss Of Macrophage Fatty Acid Oxidation Does Not Potentiate Systemic Metabolic Dysfunction.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Collins, Samuel L; Horton, Maureen R; Wolfgang, Michael J

    2017-02-21

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase 2 (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation deficient CPT2 Mϕ-KO bone marrow derived macrophages (BMDM) displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although alternatively activated macrophages up-regulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative rather than causative role in systemic metabolic dysfunction.

  16. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; López, Mercedes; Arenas, Ricardo; Bernardo, Ana

    2008-04-30

    The effects of growth temperature (in the range 10-45 degrees C) and acidification up to pH 4.5 of the culture medium (Brain Heart Infusion, BHI) with different organic acids (acetic, citric and lactic) and hydrochloric acid on membrane fatty acid composition and heat resistance of Salmonella typhimurium CECT 443 were studied. The heat resistance was maximal in cells grown at 45 degrees C (cells grown in non-acidified BHI showed a D58-value of 0.90 min) and decreased with decreasing growth temperature up to 10 degrees C (D58-value of 0.09 min). The growth of cells in acidified media caused an increase in their heat resistance. In general, acid adapted cells showed D-values of between 1.5 and 2 times higher than the corresponding for non-acid adapted control cells. This cross-protection response, which has important implications in food processing, was not dependent on the pH value and the acid used to acidify the growth medium. A membrane adaptation corresponding to an increase in the unsaturated to saturated fatty acids ratio (UFA/SFA) and membrane fluidity was observed at low growth temperature. Moreover, the acidification of the growth medium caused a decrease in UFA/SFA ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in cyc19 relative concentration. Thus, acid adapted cells showed CFA levels 1.5 times higher than non-acid adapted control cells. A significant proportion of unsaturated fatty acids were converted to their cyclopropane derivatives during acid adaptation. These changes in membrane fatty acid composition result in cells with decreased membrane fluidity. A clear relation between membrane fatty acid composition and heat resistance was observed. In general, D-values were maximum for cells with low UFA/SFA ratio, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting acid adapted cells from heat inactivation. However

  17. Extracellular Fatty Acid Synthase: A Possible Surrogate Biomarker of Insulin Resistance

    PubMed Central

    Fernandez-Real, Jose Manuel; Menendez, Javier A.; Moreno-Navarrete, Jose Maria; Blüher, Matthias; Vazquez-Martin, Alejandro; Vázquez, María Jesús; Ortega, Francisco; Diéguez, Carlos; Frühbeck, Gema; Ricart, Wifredo; Vidal-Puig, Antonio

    2010-01-01

    CONTEXT Circulating fatty acid synthase (FASN) is a biomarker of metabolically demanding human diseases. The aim of this study was to determine whether circulating FASN could be a biomarker of overnutrition-induced metabolic stress and insulin resistance in common metabolic disorders. RESEARCH DESIGN AND METHODS Circulating FASN was evaluated in two cross-sectional studies in association with insulin sensitivity and in four longitudinal studies investigating the effect of diet- and surgery-induced weight loss, physical training, and adipose tissue expansion using peroxisome proliferator–activated receptor agonist rosiglitazone on circulating FASN. RESULTS Age- and BMI-adjusted FASN concentrations were significantly increased in association with obesity-induced insulin resistance in two independent cohorts. Both visceral and subcutaneous FASN expression and protein levels correlated inversely with extracellular circulating FASN (P = −0.63; P < 0.0001), suggesting that circulating FASN is linked to depletion of intracellular FASN. Improved insulin sensitivity induced by therapeutic strategies that decreased fat mass (diet induced, surgery induced, or physical training) all led to decreased FASN levels in blood (P values between 0.02 and 0.04). To discriminate whether this was an effect related to insulin sensitization, we also investigated the effects of rosiglitazone. Rosiglitazone did not lead to significant changes in circulating FASN concentration. CONCLUSIONS Our results suggest that circulating FASN is a biomarker of overnutrition-induced insulin resistance that could provide diagnostic and prognostic advantages by providing insights on the individualized metabolic stress. PMID:20299470

  18. An additional Meyerozyma guilliermondii IMH3 gene confers mycophenolic acid resistance in fungal CTG clade species.

    PubMed

    Defosse, Tatiana A; Mélin, Céline; Clastre, Marc; Besseau, Sébastien; Lanoue, Arnaud; Glévarec, Gaëlle; Oudin, Audrey; Dugé de Bernonville, Thomas; Vandeputte, Patrick; Linder, Tomas; Bouchara, Jean-Philippe; Courdavault, Vincent; Giglioli-Guivarc'h, Nathalie; Papon, Nicolas

    2016-09-01

    The fungal CTG clade comprises a number of well-known yeasts that impact human health or with high biotechnological potential. To further extend the set of molecular tools dedicated to these microorganisms, the initial focus of this study was to develop a mycophenolic acid (MPA) resistance cassette. Surprisingly, while we were carrying out preliminary susceptibility testing experiments in a set of yeast species, Meyerozyma guilliermondii, although not being a MPA producer, was found to be primarily resistant toward this drug, whereas a series of nine related species were susceptible to MPA. Using comparative and functional genomic approaches, we demonstrated that all MPA-susceptible CTG clade species display a single gene, referred to as IMH3.1, encoding the MPA target inosine monophosphate dehydrogenase (IMPDH) and that MPA resistance relies on the presence in the M. guilliermondii genome of an additional IMPDH-encoding gene (IMH3.2). The M. guilliermondii IMH3.2 gene displays marked differences compared to IMH3.1 including the lack of intron, a roughly 160-fold higher transcription level and a serine residue at position 251. Placed under the control of the M. guilliermondii actin 1 gene promoter, IMH3.2 was successfully used to transform Lodderomyces elongisporus, Clavispora lusitaniae, Scheffersomyces stipitis and Candida parapsilosis.

  19. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  20. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified.

  1. Cross-Species Functional Genomic Analysis Identifies Resistance Genes of the Histone Deacetylase Inhibitor Valproic Acid

    PubMed Central

    Forthun, Rakel Brendsdal; SenGupta, Tanima; Skjeldam, Hanne Kim; Lindvall, Jessica Margareta; McCormack, Emmet; Gjertsen, Bjørn Tore; Nilsen, Hilde

    2012-01-01

    The mechanisms of successful epigenetic reprogramming in cancer are not well characterized as they involve coordinated removal of repressive marks and deposition of activating marks by a large number of histone and DNA modification enzymes. Here, we have used a cross-species functional genomic approach to identify conserved genetic interactions to improve therapeutic effect of the histone deacetylase inhibitor (HDACi) valproic acid, which increases survival in more than 20% of patients with advanced acute myeloid leukemia (AML). Using a bidirectional synthetic lethality screen revealing genes that increased or decreased VPA sensitivity in C. elegans, we identified novel conserved sensitizers and synthetic lethal interactors of VPA. One sensitizer identified as a conserved determinant of therapeutic success of HDACi was UTX (KDM6A), which demonstrates a functional relationship between protein acetylation and lysine-specific methylation. The synthetic lethal screen identified resistance programs that compensated for the HDACi-induced global hyper-acetylation, and confirmed MAPKAPK2, HSP90AA1, HSP90AB1 and ACTB as conserved hubs in a resistance program for HDACi that are drugable in human AML cell lines. Hence, these resistance hubs represent promising novel targets for refinement of combinatorial epigenetic anti-cancer therapy. PMID:23155442

  2. Impact of restricted amoxicillin/clavulanic acid use on Escherichia coli resistance--antibiotic DU90% profiles with bacterial resistance rates: a visual presentation.

    PubMed

    Mimica Matanovic, Suzana; Bergman, Ulf; Vukovic, Dubravka; Wettermark, Björn; Vlahovic-Palcevski, Vera

    2010-10-01

    High use of amoxicillin/clavulanic acid (AMC) at the University Hospital Osijek (Croatia) contributed to high rates of resistance in Enterobacteriaceae, in particular Escherichia coli (50%). Thus, in order to decrease bacterial resistance, AMC use was restricted. We present results of the restriction on resistance amongst antibiotics accounting for 90% of antibiotic use [drug utilisation 90% (DU90%)]. Data were analysed on antibiotic use and microbiological susceptibility of E. coli during two 9-month periods, before and after the restriction of AMC use. Drug use was presented as numbers of defined daily doses (DDDs) and DDDs/100 bed-days. Resistance of E. coli to antibiotics was presented as percentages of isolated strains in the DU90% segment. Use of AMC was 16 DDDs/100 bed-days or 30% of all antibiotics before the intervention. Use of AMC fell to 2 DDDs/100 bed-days or 4% after the intervention, and resistance of E. coli fell from 37% to 11%. In conclusion, restricted use of AMC resulted in a significant decrease of E. coli resistance. DU90% resistance profiles are simple and useful tools in highlighting problems in antibiotic use and resistance but may also be useful in long-term follow-up of antibiotic policy.

  3. Human immunodeficiency virus type 1 (HIV-1) integrase: resistance to diketo acid integrase inhibitors impairs HIV-1 replication and integration and confers cross-resistance to L-chicoric acid.

    PubMed

    Lee, Deborah J; Robinson, W E

    2004-06-01

    The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3'-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.

  4. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance.

    PubMed

    Singh, Vijayata; Roy, Shweta; Giri, Mrunmay Kumar; Chaturvedi, Ratnesh; Chowdhury, Zulkarnain; Shah, Jyoti; Nandi, Ashis Kumar

    2013-09-01

    Localized infection in plants often induces systemic acquired resistance (SAR), which provides long-term protection against subsequent infections. A signal originating in the SAR-inducing organ is transported to the distal organs, where it stimulates salicylic acid (SA) accumulation and priming, a mechanism that results in more robust activation of defenses in response to subsequent pathogen infection. In recent years, several metabolites that promote long-distance SAR signaling have been identified. However, the mechanism or mechanisms by which plants perceive and respond to the SAR signals are largely obscure. Here, we show that, in Arabidopsis thaliana, the FLOWERING LOCUS D (FLD) is required for responding to the SAR signals leading to the systemic accumulation of SA and enhancement of disease resistance. Although the fld mutant was competent in accumulating the SAR-inducing signal, it was unable to respond to the SAR signal that accumulates in petiole exudates of wild-type leaves inoculated with a SAR-inducing pathogen. Supporting FLD's role in systemic SAR signaling, we observed that dehydroabietinal and azelaic acid, two metabolites that, in wild-type plants, promote SAR-associated systemic accumulation of SA and priming, respectively, were unable to promote SAR in the fld mutant. FLD also participates in flowering, where it functions to repress expression of the flowering repressor FLOWERING LOCUS C (FLC). However, epistasis analysis indicates that FLD's function in SAR is independent of FLC.

  5. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  6. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  7. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  8. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study

    PubMed Central

    Moghadam, Sajjad Khalili; Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2016-01-01

    In the current study, we investigated the longitudinal association between dietary acid load and the risk of insulin resistance (IR) in the Tehranian adult population. This longitudinal study was conducted on 925 participants, aged 22~80 years old, in the framework of the third (2006~2008) and fourth (2009~2011) phases of the Tehran Lipid and Glucose Study. At baseline, the dietary intake of subjects was assessed using a validated semi-quantitative food frequency questionnaire, and the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores were calculated at baseline. Fasting serum insulin and glucose were measured at baseline and again after a 3-year of follow-up; IR was defined according to optimal cut-off values. Multiple logistic regression models were used to estimate the risk of IR according to the PRAL and NEAP quartile categories. Mean age and body mass index of the participants were 40.3 years old of 26.4 kg/m2, respectively. Mean PRAL and NEAP scores were −11.2 and 35.6 mEq/d, respectively. After adjustment for potential confounders, compared to the lowest quartile of PRAL and NEAP, the highest quartile was accompanied with increased risk of IR [odds ratio (OR)=2.81, 95% confidence interval (CI)=1.32~5.97 and OR=2.18, 95% CI=1.03 ~4.61, respectively]. Our findings suggest that higher acidic dietary acid-base load, defined by higher PRAL and NEAP scores, may be a risk factor for the development of IR and related metabolic disorders. PMID:27390726

  9. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase

    PubMed

    Chivasa; Carr

    1998-09-01

    Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase (AOX), blocks salicylic acid-induced resistance to tobacco mosaic virus (TMV) but does not inhibit pathogenesis-related PR-1 protein synthesis or resistance to fungal and bacterial pathogens. We found that the synthetic resistance-inducing chemical 2, 6-dichloroisonicotinic acid also induced Aox transcript accumulation and SHAM-sensitive resistance to TMV. The respiratory inhibitors antimycin A and KCN also induced Aox transcript accumulation and resistance to TMV but did not induce PR-1 accumulation. Tobacco plants of the TMV-resistant cultivar Samsun NN transformed with the salicylic acid hydroxylase (nahG) gene could no longer restrict virus to the inoculation site, resulting in spreading necrosis instead of discrete necrotic lesions. Treatment with KCN restored TMV localization and normal lesion morphology. SHAM antagonized this effect, allowing virus escape and spreading necrosis to resume. The results demonstrate the importance of the SHAM-sensitive (potentially AOX-dependent) signal transduction pathway in mediating virus localization early in the hypersensitive response.

  10. Acid resistance and verocytotoxin productivity of enterohemorrhagic Escherichia coli O157:H7 exposed to microwave.

    PubMed

    Tsuji, Makiko; Yokoigawa, Kumio

    2011-08-01

    We examined the acid resistance and verocytotoxin (VT) productivity of enterohemorrhagic Escherichia coli O157:H7 irradiated by microwave with a domestic microwave oven and a commercial microwave radiator equipped with a thermo-regulator. When the cell suspension (5 mL) chilled at 0 °C was treated with a domestic microwave oven at weak power (2.45 GHz, 100 W) for 60 s, the living cell number was reduced by 2 orders (final temperature, about 65 °C). The surviving cells showed lower acid resistance and VT productivity than nonirradiated cells. To examine the nonthermal effect of microwave on acid resistance and VT productivity, the cells in Luria-Bertani medium were intermittently irradiated to keep the culture temperature at 37 °C with the microwave radiator (2.45 GHz, 0.6 W/mL). The intermittent radiation slightly reduced the acid resistance, but clearly suppressed the VT productivity. Microwave oven is probably useful for reducing not only the living cell number but also the acid resistance and VT productivity of EHEC O157:H7.

  11. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system.

    PubMed

    Lastra, Guido; Dhuper, Sonal; Johnson, Megan S; Sowers, James R

    2010-10-01

    Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.

  12. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    PubMed Central

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimulated with different phospholipids and phospholipid precursors derived from soy and egg sources. The ratio of phosphorylated p70 (P-p70-389) to total p70 was then used as readout for mTOR signaling. In phase two, resistance trained subjects (n = 28, 21 ± 3 years, 77 ± 4 kg, 176 ± 9 cm) consumed either 750 mg PA daily or placebo and each took part in an 8 week periodized resistance training program. Results In phase one, soy-phosphatidylserine, soy-Lyso-PA, egg-PA, and soy-PA stimulated mTOR signaling, and the effects of soy-PA (+636%) were significantly greater than egg-PA (+221%). In phase two, PA significantly increased lean body mass (+2.4 kg), cross sectional area (+1.0 cm), and leg press strength (+51.9 kg) over placebo. Conclusion PA significantly activates mTOR and significantly improved responses in skeletal muscle hypertrophy, lean body mass, and maximal strength to resistance exercise. PMID:24959196

  13. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay; Marappan, Nathiya; Gajendran, Sabari Srinivasan; Viswanathan, Vinodhini

    2016-01-01

    Aim/Background: Medicinal plants have ability to resist microorganisms by synthesizing secondary metabolites such as phenols. Rosmarinic acid (RA) is a phenylpropanoid widely distributed in plants and well known as therapeutic and cosmetic agent. Methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to all kinds of β-lactams, threatens even most potent antibiotics. To improve the efficiency of antibiotics against multi-drug resistant bacteria and to reduce the antibiotic dose, the antibacterial activity and the synergistic effect of RA with standard antibiotics against S. aureus and MRSA was investigated. Materials and Methods: Antibacterial activity of RA against S. aureus and a clinical isolate of MRSA was evaluated by agar well diffusion method. Minimum inhibitory concentration (MIC) of RA was determined by broth dilution method. Synergism of RA with various antibiotics against S. aureus and MRSA was studied by broth checkerboard method and time-kill kinetic assay. Effect of RA on microbial surface components recognizing adhesive matrix molecules (MSCRAMM’s) of S. aureus and MRSA was studied using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Results: MIC of RA was found to be 0.8 and 10 mg/ml against S. aureus and MRSA, respectively. RA was synergistic with vancomycin, ofloxacin, and amoxicillin against S. aureus and only with vancomycin against MRSA. The time-kill analysis revealed that synergistic combinations were a more effective than individual antibiotics. MSCRAMM’s protein expression of S. aureus and MRSA was markedly suppressed by RA + vancomycin combination rather than RA alone. Conclusion: The synergistic effects of RA with antibiotics were observed against S. aureus and MRSA. RA showed inhibitory effect on the surface proteins MSCRAMM’s. Even though RA was shown to exhibit a synergistic effect with antibiotics, the MIC was found to be higher. Thus, further studies on increasing the efficacy of RA can develop it

  14. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  15. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    PubMed

    Barton, Michael D; Delneri, Daniela; Oliver, Stephen G; Rattray, Magnus; Bergman, Casey M

    2010-08-17

    Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental conditions, we conclude that

  16. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein.

  17. Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products.

    PubMed

    Scaramuzza, Nicoletta; Berni, Elettra

    2014-01-03

    Products containing sugar or fruit derivatives are usually subjected to a pasteurization process that can anyway be ineffective to kill ascospores from heat-resistant molds. Although the most occurring and economically relevant heat-resistant species belong to Byssochlamys, Neosartorya, Talaromyces, and Eupenicillium genera, an increasing number of uncommon heat-resistant isolates have been recently detected as spoiling microorganisms in such products. Since Hamigera spp. and Thermoascus spp. were those more frequently isolated at SSICA, heat resistance of Hamigera avellanea and Thermoascus crustaceus strains from pasteurized acid products was studied in apple juice, in blueberry and grape juice and in a buffered glucose solution. Data obtained from thermal death curves and statistical elaboration of raw data showed that D values of H. avellanea may vary between 11.11 and 66.67 min at 87°C, between 4.67 and 13.51 at 90°C, and between 0.43 and 1.52 min at 95°C. Similarly, D values of T. crustaceus may vary between 18.52 and 90.91 min at 90°C, between 2.79 and 19.23 at 93°C, and between 1.11 and 2.53 min at 95°C. For both strains studied, the z-values calculated from the decimal reduction time curves did not prove to be significantly influenced by the heating medium, that being 4.35°C, 5.39°C or 5.27°C for H. avellanea and 4.42°C, 3.69°C or 3.37°C for T. crustaceus, respectively in apple juice, in blueberry and grape juice or in the buffered glucose solution. Considering the pasteurization treatments industrially applied to fruit-based foods, the variation of thermal parameters does not seem to be a possible way to avoid product spoilage by these two species and only good practices applied to reduce the original load of heat-resistant fungi can help producers to prevent losses in contaminated finished products, as usually happens for other heat resistant molds.

  18. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance

    NASA Astrophysics Data System (ADS)

    Graziani, Gabriela; Sassoni, Enrico; Franzoni, Elisa; Scherer, George W.

    2016-04-01

    Hydroxyapatite (HAP) has a much lower dissolution rate and solubility than calcite, especially in an acidic environment, so it has been proposed for the protection of marble against acidic rain corrosion. Promising results were obtained, but further optimization is necessary as the treated layer is often incomplete, cracked and/or porous. In this paper, several parameters were investigated to obtain a coherent, uncracked layer, and to avoid the formation of metastable, soluble phases instead of HAP: the role of the pH of the starting solution; the effect of organic and inorganic additions, and in particular that of ethanol, as it is reported to adsorb on calcite, hence possibly favoring the growth of the HAP layer. Finally, a double application of the treatment was tested. Results were compared to those obtained with ammonium oxalate treatment, widely investigated for marble protection. Results indicate that adding small amounts of ethanol to the formulation remarkably increases the acid resistance of treated samples, and yields better coverage of the surface without crack formation. The effectiveness of the treatment is further enhanced when a second treatment is applied. The efficacy of ethanol-doped DAP mixtures was found to be remarkably higher than that of ammonium oxalate based treatments.

  19. Synergistic action of fatty acids, sulphides and stilbene against acaricide-resistant Rhipicephalus microplus ticks.

    PubMed

    Arceo-Medina, G N; Rosado-Aguilar, J A; Rodríguez-Vivas, R I; Borges-Argaez, R

    2016-09-15

    Six compounds in a methanolic extract of Petiveria alliacea stem (cis-stilbene; benzyl disulphide; benzyl trisulphide; and methyl esters of hexadecanoic acid, octadecadienoic acid and octadecenoic acid) are known to exercise acaricide activity against cattle tick Rhipicephalus microplus larvae and adults. The synergistic effect of 57 combinations of these six compounds on acaricide activity against R. microplus was evaluated. Larvae immersion tests produced the lethal concentrations needed to kill 50% (LC50) and 99% (LC99) of the population. Adult immersion tests produced rates (%) for mortality, oviposition inhibition and eclosion inhibition. Individually, none of the compounds (1% concentration) exhibited acaricide activity (mortality ≤2.3%). When combined, however, nine mixtures exhibited a synergistic increase in activity, with high mortality rates (≥92%) in larvae. Values for LC50 ranged from 0.07 to 0.51% and those for LC99 from 0.66 to 5.16%. Thirty six compound mixtures had no significant activity (mortality ≤30%) against larvae. Two mixtures exhibited synergism against adults, with high rates (≥92%) of oviposition inhibition. The mixtures based on the benzyl disulphide+benzyl trisulphide pairing produced a synergistic effect against acaricide-resistant R. microplus larva and adults, and are therefore the most promising combination for controlling this ubiquitous ectoparasite.

  20. The application of artificial neural networks for phenotypic drug resistance prediction: evaluation and comparison with other interpretation systems.

    PubMed

    Pasomsub, Ekawat; Sukasem, Chonlaphat; Sungkanuparph, Somnuek; Kijsirikul, Boonserm; Chantratita, Wasun

    2010-03-01

    Although phenotypic resistance testing provides more direct measurement of antiretroviral drug resistance than genotypic testing, it is costly and time-consuming. However, genotypic resistance testing has the advantages of being simpler and more accessible, and it might be possible to use the data obtained for predicting quantitative drug susceptibility to interpret complex mutation combinations. This study applied the Artificial Neural Network (ANN) system to predict the HIV-1 resistance phenotype from the genotype. A total of 7,598 pairs of HIV-1 sequences, with their corresponding phenotypic fold change values for 14 antiretroviral drugs, were trained, validated, and tested in ANN modeling. The results were compared with the HIV-SEQ and Geno2pheno interpretation systems. The prediction performance of the ANN models was measured by 10-fold cross-validation. The results indicated that by using the ANN, with an associated set of amino acid positions known to influence drug resistance for individual antiretroviral drugs, drug resistance was accurately predicted and generalized for individual HIV-1 subtypes. Therefore, high correlation with the experimental phenotype may help physicians choose optimal therapeutic regimens that might be an option, or supporting system, of FDA-approved genotypic resistance testing in heavily treatment-experienced patients.

  1. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    PubMed

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+).

  2. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery

    PubMed Central

    Feuille, Catherine M.; Starke, Carly Elizabeth C.; Bhagwat, Arvind A.; Stibitz, Scott; Kopecko, Dennis J.

    2016-01-01

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain. PMID:27673328

  3. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... HUMAN SERVICES Food and Drug Administration The National Antimicrobial Resistance Monitoring System... National Antimicrobial Resistance Monitoring System (NARMS) entitled ``NARMS Strategic Plan 2011-2015... obtain documents at either...

  4. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  5. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  6. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants.

    PubMed

    El-Shetehy, Mohamed; Wang, Caixia; Shine, M B; Yu, Keshun; Kachroo, Aardra; Kachroo, Pradeep

    2015-01-01

    Systemic acquired resistance (SAR) is a form of broad-spectrum disease resistance that is induced in response to primary infection and that protects uninfected portions of the plant against secondary infections by related or unrelated pathogens. SAR is associated with an increase in chemical signals that operate in a collective manner to confer protection against secondary infections. These include, the phytohormone salicylic acid (SA), glycerol-3-phosphate (G3P), azelaic acid (AzA) and more recently identified signals nitric oxide (NO) and reactive oxygen species (ROS). NO, ROS, AzA and G3P function in the same branch of the SAR pathway, and in parallel to the SA-regulated branch. NO and ROS function upstream of AzA/G3P and different reactive oxygen species functions in an additive manner to mediate chemical cleavage of the C9 double bond on C18 unsaturated fatty acids to generate AzA. The parallel and additive functioning of various chemical signals provides important new insights in the overlapping pathways leading to SAR.

  7. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  8. CTRP5 ameliorates palmitate-induced apoptosis and insulin resistance through activation of AMPK and fatty acid oxidation.

    PubMed

    Yang, Won-Mo; Lee, Wan

    2014-09-26

    Lipotoxicity resulting from a high concentration of saturated fatty acids is closely linked to development of insulin resistance, as well as apoptosis in skeletal muscle. CTRP5, an adiponectin paralog, is known to activate AMPK and fatty acid oxidation; however, the effects of CTRP5 on palmitate-induced lipotoxicity in myocytes have not been investigated. We found that globular domain of CTRP5 (gCTRP5) prevented palmitate-induced apoptosis and insulin resistance in myocytes by inhibiting the activation of caspase-3, reactive oxygen species accumulation, and IRS-1 reduction. These beneficial effects of gCTRP5 are mainly attributed to an increase in fatty acid oxidation through phosphorylation of AMPK. These results provide a novel function of CTRP5, which may have preventive and therapeutic potential in management of obesity, insulin resistance, and type 2 diabetes mellitus.

  9. Escherichia coli genes involved in resistance to pyrazinoic acid, the active component of the tuberculosis drug pyrazinamide.

    PubMed

    Schaller, Alain; Guo, Ming; Gisanrin, Oluwatosin; Zhang, Ying

    2002-06-04

    The natural resistance of Escherichia coli to pyrazinoic acid (POA), the active derivative of pyrazinamide, was investigated. The TolC mutant was found to be more susceptible to POA and other weak acids than the wild-type strain. Mutation in EmrB but not AcrB efflux protein slightly increased POA susceptibility. Two transposon mutants with increased susceptibility to POA were found to harbor mutations in acnA encoding aconitase-1 and ygiY encoding a putative two-component sensor protein. Complementation of the AcnA and YgiY mutants conferred resistance to POA, whereas the complemented TolC mutant became resistant to POA and other weak acids.

  10. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.

    PubMed

    Mackey, Jon; Dynys, Frederick; Sehirlioglu, Alp

    2014-08-01

    This work establishes the level of uncertainty for electrical measurements commonly made on thermoelectric samples. The analysis targets measurement systems based on the four probe method. Sources of uncertainty for both electrical resistivity and Seebeck coefficient were identified and evaluated. Included are reasonable estimates on the magnitude of each source, and cumulative propagation of error. Uncertainty for the Seebeck coefficient includes the cold-finger effect which has been quantified with thermal finite element analysis. The cold-finger effect, which is a result of parasitic heat transfer down the thermocouple probes, leads to an asymmetric over-estimation of the Seebeck coefficient. A silicon germanium thermoelectric sample has been characterized to provide an understanding of the total measurement uncertainty. The electrical resistivity was determined to contain uncertainty of ±7.0% across any measurement temperature. The Seebeck coefficient of the system is +1.0%/-13.1% at high temperature and ±1.0% near room temperature. The power factor has a combined uncertainty of +7.3%/-27.0% at high temperature and ±7.5% near room temperature. These ranges are calculated to be typical values for a general four probe Seebeck and resistivity measurement configuration.

  11. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments.

    PubMed Central

    Sousa, M J; Miranda, L; Côrte-Real, M; Leão, C

    1996-01-01

    Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion. PMID:8795203

  12. Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Elo, Hannu; Matikainen, Jorma; Pelttari, Eila

    2007-06-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci, most notably methicillin-resistant Staphylococcus aureus (MRSA), are serious clinical problems. The antibiotic arsenal available against them is limited, and new mutants worsen the situation. We studied the activity of (+)-usnic acid, an old lichen-derived drug, and its sodium salt against clinical isolates of VRE and MRSA using the agar diffusion and minimal inhibitory concentration (MIC) methods. The acid and, especially, the sodium salt had potent antimicrobial activity against all clinical isolates of VRE and MRSA studied. The MIC values of the sodium salt against VRE strains ranged between 4 and 16 μg/ml (1-day test) and between 4 and 31 μg/ml (2-day test), being below 8 μg/ml for most strains. The salt had potent activity even against those strains that were not inhibited by ampicillin (125 μg/ml), and it never lost its activity after 24 h, in contrast to ampicillin. Thus, in spite of the fact that usnic acid can in some cases cause serious toxicity, it and its salts may be worth considering in clinical practice in cases where other therapies have failed or the microbe is resistant toward other agents.

  13. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum

    PubMed Central

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens. PMID:28045929

  14. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    PubMed

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  15. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    PubMed

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4.

  16. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  17. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  18. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  19. Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures.

    PubMed

    Uno, Naoki; Suzuki, Hiromichi; Yamakawa, Hiromi; Yamada, Maiko; Yaguchi, Yuji; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji; Misawa, Shigeki; Yanagihara, Katsunori

    2015-12-01

    The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy.

  20. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  1. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death.

    PubMed

    Lim, Sung-Chul; Han, Song Iy

    2015-09-01

    Carcinoma cells that have acquired drug resistance often exhibit cross-resistance to various other cytotoxic stimuli. Here, we investigated the effects of ursodeoxycholic acid (UDCA), a gastrointestinal tumor-suppressor, on a cisplatin‑resistant SNU601 gastric cancer subline (SNU601/R). While other anticancer drugs, including L-OHP, etoposide, and death ligand TRAIL, had minimal effects on the viability of these resistant cells, they were sensitive to UDCA. The UDCA‑induced reduction in the viability of the SNU601/R cells was accomplished through autophagy while the primary means of cell death in the parental SNU601 cells (SNU601/WT) was apoptosis. Previously, we demonstrated that the UDCA-triggered apoptosis of gastric cancer cells was regulated by a cell surface death receptor, TRAIL-R2/DR5, which was upregulated and re-distributed on lipid rafts. The UDCA stimulation of TRAIL-R2/DR5 also occurred in the SNU601/R cells despite the lack of apoptosis. In the present study, we found that CD95/Fas, another cell surface death receptor, was also translocated into lipid rafts in response to UDCA although it was not involved in the decrease in cell viability. Specifically, raft relocalization of CD95/Fas was triggered by UDCA in the SNU601/WT cells in which apoptosis occurred, but not in the SNU601/R cells where autophagic death occurred. Notably, UDCA reduced ATG5 levels, an essential component of autophagy, in the SNU601/WT, but not in the SNU601/R cell line. Moreover, in CD95/Fas-silenced SNU601/WT cells, UDCA did not decrease ATG5 levels and induced autophagic cell death rather than apoptosis. These results imply that raft‑distributed CD95/Fas may support UDCA-induced apoptosis via downregulation of ATG5 levels, preventing the autophagic pathway. Taken together, these results suggest that UDCA induces both apoptotic and autophagic cell death depending on the intracellular signaling environment, thereby conferring the advantage to overcome drug resistance

  2. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  3. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  4. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  5. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  6. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  7. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus

    PubMed Central

    López-Gresa, M. Pilar; Lisón, Purificación; Yenush, Lynne; Conejero, Vicente; Rodrigo, Ismael; Bellés, José María

    2016-01-01

    Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants. PMID:27893781

  8. Identification of an amino acid residue required for differential recognition of a viral movement protein by the Tomato mosaic virus resistance gene Tm-2(2).

    PubMed

    Kobayashi, Michie; Yamamoto-Katou, Ayako; Katou, Shinpei; Hirai, Katsuyuki; Meshi, Tetsuo; Ohashi, Yuko; Mitsuhara, Ichiro

    2011-07-01

    The Tm-2 gene of tomato and its allelic gene, Tm-2(2), confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-2(2), Tm-2(2) confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-2(2). Although resistance induced by Tm-2 and Tm-2(2) is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-2(2) induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-2(2) but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-2(2) is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-2(2) are involved in HR cell death.

  9. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    PubMed

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  10. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway

    PubMed Central

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-01-01

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192

  11. [The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919)].

    PubMed

    Zinov'eva, S V; Vasiukova, N I; Udalova, Zh V; Gerasimova, N G

    2013-01-01

    Salicylic (SA) and jasmonic (JA) acids are the best known mediators of signal systems in plants. In this investigation the participation and character of interactions between SA- and JA-signals under the induced and genetic resistance of plants to nematodes was investigated on the model system tomato (Lycopersicon esculentum) and the root-knot nematode Meloidogyne incognita. This study demonstrates that application of JA and SA to tomato foliage induces systemic effects that suppress root-knot nematode infestation, inhibition of nematode reproduction, and also increased activity of LOX and PAL, the enzymes of biosynthesis of JA and SA. JA treatment did not inhibit Mz-mediated resistance, which suggests a lack of signaling conflicts between these two forms of defense.

  12. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    PubMed

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  13. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva.

    PubMed

    Huang, Her-Hsiung

    2003-09-15

    The purpose of this study was to investigate the corrosion resistance of stressed NiTi and stainless steel orthodontic wires using cyclic potentiodynamic and potentiostatic tests in acid artificial saliva at 37 degrees C. An atomic force microscope was used to measure the 3-D surface topography of as-received wires. Scanning electron microscope observations were carried out before and after the cyclic potentiodynamic tests. The surface chemical analysis was characterized using X-ray photoelectron spectroscopy and Auger electron spectroscopy after the potentiostatic tests. The cyclic potentiodynamic test results showed that the pH had a significant influence on the corrosion parameters of the stressed NiTi and stainless steel wires (p < 0.05). The pitting potential, protection potential, and passive range of stressed NiTi and stainless steel wires decreased on decreasing pH, whereas the passive current density increased on decreasing pH. The load had no significant influence on the above corrosion parameters (p > 0.05). For all pH and load conditions, stainless steel wire showed higher pitting potential and wider passive range than NiTi wire (p < 0.001), whereas NiTi wire had lower passive current density than stainless steel wire (p < 0.001). The corrosion resistance of the stressed NiTi and stainless steel wires was related to the surface characterizations, including surface defect and passive film.

  14. Acyl Ghrelin Induces Insulin Resistance Independently of GH, Cortisol, and Free Fatty Acids

    PubMed Central

    Vestergaard, Esben T.; Jessen, Niels; Møller, Niels; Jørgensen, Jens Otto Lunde

    2017-01-01

    Ghrelin produced in the gut stimulates GH and ACTH secretion from the pituitary and also stimulates appetite and gastric emptying. We have shown that ghrelin also induces insulin resistance via GH-independent mechanisms, but it is unknown if this effect depends on ambient fatty acid (FFA) levels. We investigated the impact of ghrelin and pharmacological antilipolysis (acipimox) on insulin sensitivity and substrate metabolism in 8 adult hypopituitary patients on stable replacement with GH and hydrocortisone using a 2 × 2 factorial design: Ghrelin infusion, saline infusion, ghrelin plus short-term acipimox, and acipimox alone. Peripheral and hepatic insulin sensitivity was determined with a hyperinsulinemic euglycemic clamp in combination with a glucose tracer infusion. Insulin signaling was assayed in muscle biopsies. Peripheral insulin sensitivity was reduced by ghrelin independently of ambient FFA concentrations and was increased by acipimox independently of ghrelin. Hepatic insulin sensitivity was increased by acipimox. Insulin signaling pathways in skeletal muscle were not consistently regulated by ghrelin. Our data demonstrate that ghrelin induces peripheral insulin resistance independently of GH, cortisol, and FFA. The molecular mechanisms remain elusive, but we speculate that ghrelin is a hitherto unrecognized direct regulator of substrate metabolism. We also suggest that acipimox per se improves hepatic insulin sensitivity. PMID:28198428

  15. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    PubMed

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections.

  16. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves

    SciTech Connect

    Poschenrieder, C.; Gunse, B.; Barcelo, J. )

    1989-08-01

    Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed.

  17. Transfer of Antibiotic Resistance Marker Genes between Lactic Acid Bacteria in Model Rumen and Plant Environments▿

    PubMed Central

    Toomey, Niamh; Monaghan, Áine; Fanning, Séamus; Bolton, Declan

    2009-01-01

    Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model. All transconjugants were confirmed by Etest, PCR, pulsed-field gel electrophoresis, and Southern blotting. The in vitro filter mating method demonstrated high transfer frequencies between all LAB pairs, ranging from 1.8 × 10−5 to 2.2 × 10−2 transconjugants per recipient. Transconjugants were detected in the rumen model for all mating pairs tested; however, the frequencies of transfer were low and inconsistent over 48 h (ranging from 1.0 × 10−9 to 8.0 × 10−6 transconjugants per recipient). The plant model provided an environment that appeared to promote comparatively higher transfer frequencies between all LAB pairs tested over the 9-day period (transfer frequencies ranged from 4.7 × 10−4 to 3.9 × 10−1 transconjugants per recipient). In our test models, dairy cultures of LAB can act as a source of mobile genetic elements encoding antibiotic resistance that can spread to other LAB. This observation could have food safety and public health implications. PMID:19270126

  18. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis

    PubMed Central

    Song, Geun Cheol; Choi, Hye Kyung; Ryu, Choong-Min

    2013-01-01

    Background and Aims The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathogen in tobacco has been reported previously. Methods In the present study, para-aminobenzoic acid (PABA, also referred to as vitamin Bx) was selected owing to its effect on the induction of SAR against Xanthomonas axonopodis pv. vesicatoria in pepper plants through greenhouse screening. Key Results Dipping of pepper seedlings in a 1 mm PABA solution in field trials induced SAR against artificially infiltrated X. axonopodis pv. vesicatoria and naturally occurring cucumber mosaic virus. Expression of the Capsicum annuum pathogenesis-related 4 gene was primed in response to pathogen infection as assessed by quantitative real-time PCR. The accumulation of cucumber mosaic virus RNA was reduced in PABA-treated pepper plants at 40 and 105 d post-treatment. Unexpectedly, fruit yield was increased in PABA-treated plants, indicating that PABA-mediated SAR successfully protected pepper plants from infection by bacterial and viral pathogens without significant fitness allocation costs. Conclusions The present study is the first to demonstrate the effective elicitation of SAR by a folate precursor under field conditions. PMID:23471007

  19. A simplified reaction-diffusion system of chemically amplified resist process modeling for OPC

    NASA Astrophysics Data System (ADS)

    Fan, Yongfa; Jeongb, Moon-Gyu; Ser, Junghoon; Lee, Sung-Woo; Suh, Chunsuk; Koo, Kyo-Il; Lee, Sooryong; Su, Irene; Zavyalova, Lena; Falch, Brad; Huang, Jason; Schmoeller, Thomas

    2010-04-01

    As semiconductor manufacturing moves to 32nm and 22nm technology nodes with 193nm water immersion lithography, the demand for more accurate OPC modeling is unprecedented to accommodate the diminishing process margin. Among all the challenges, modeling the process of Chemically Amplified Resist (CAR) is a difficult and critical one to overcome. The difficulty lies in the fact that it is an extremely complex physical and chemical process. Although there are well-studied CAR process models, those are usually developed for TCAD rigorous lithography simulators, making them unsuitable for OPC simulation tasks in view of their full-chip capability at an acceptable turn-around time. In our recent endeavors, a simplified reaction-diffusion model capable of full-chip simulation was investigated for simulating the Post-Exposure-Bake (PEB) step in a CAR process. This model uses aerial image intensity and background base concentration as inputs along with a small number of parameters to account for the diffusion and quenching of acid and base in the resist film. It is appropriate for OPC models with regards to speed, accuracy and experimental tuning. Based on wafer measurement data, the parameters can be regressed to optimize model prediction accuracy. This method has been tested to model numerous CAR processes with wafer measurement data sets. Model residual of 1nm RMS and superior resist edge contour predictions have been observed. Analysis has shown that the so-obtained resist models are separable from the effects of optical system, i.e., the calibrated resist model with one illumination condition can be carried to a process with different illumination conditions. It is shown that the simplified CAR system has great potential of being applicable to full-chip OPC simulation.

  20. Alpha-linolenic acid supplementation and resistance training in older adults.

    PubMed

    Cornish, Stephen M; Chilibeck, Philip D

    2009-02-01

    Increased inflammation with aging has been linked to sarcopenia. The purpose of this study was to evaluate the effects of supplementing older adults with alpha-linolenic acid (ALA) during a resistance training program, based on the hypothesis that ALA decreases the plasma concentration of the inflammatory cytokine tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, which in turn would improve muscle size and strength. Fifty-one older adults (65.4 +/- 0.8 years) were randomized to receive ALA in flax oil (~14 g.day-1) or placebo for 12 weeks while completing a resistance training program (3 days a week). Subjects were evaluated at baseline and after 12 weeks for muscle thickness of knee and elbow flexors and extensors (B-mode ultrasound), muscle strength (1 repetition maximum), body composition (dual energy X-ray absorptiometry), and concentrations of TNF-alpha and IL-6. Males supplementing with ALA decreased IL-6 concentration over the 12 weeks (62 +/- 36% decrease; p = 0.003), with no other changes in inflammatory cytokines. Chest and leg press strength, lean tissue mass, muscle thickness, hip bone mineral content and density, and total bone mineral content significantly increased, and percent fat and total body mass decreased with training (p < 0.05), with the only benefit of ALA being a significantly greater increase in knee flexor muscle thickness in males (p < 0.05). Total-body bone mineral density improved in the placebo group, with no change in the ALA group (p = 0.05). ALA supplementation lowers the IL-6 concentration in older men but not women, but had minimal effect on muscle mass and strength during resistance training.

  1. Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringae in Arabidopsis

    PubMed Central

    2013-01-01

    Background Plants have evolved an array of constitutive and inducible defense strategies to restrict pathogen ingress. However, some pathogens still manage to invade plants and impair growth and productivity. Previous studies have revealed several key regulators of defense responses, and efforts have been made to use this information to develop disease resistant crop plants. These efforts are often hampered by the complexity of defense signaling pathways. To further elucidate the complexity of defense responses, we screened a population of T-DNA mutants in Colombia-0 background that displayed altered defense responses to virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Results In this study, we demonstrated that the Arabidopsis Purple Acid Phosphatse5 (PAP5) gene, induced under prolonged phosphate (Pi) starvation, is required for maintaining basal resistance to certain pathogens. The expression of PAP5 was distinctly induced only under prolonged Pi starvation and during the early stage of Pst DC3000 infection (6 h.p.i). T-DNA tagged mutant pap5 displayed enhanced susceptibility to the virulent bacterial pathogen Pst DC3000. The pap5 mutation greatly reduced the expression of pathogen inducible gene PR1 compared to wild-type plants. Similarly, other defense related genes including ICS1 and PDF1.2 were impaired in pap5 plants. Moreover, application of BTH (an analog of SA) restored PR1 expression in pap5 plants. Conclusion Taken together, our results demonstrate the requirement of PAP5 for maintaining basal resistance against Pst DC3000. Furthermore, our results provide evidence that PAP5 acts upstream of SA accumulation to regulate the expression of other defense responsive genes. We also provide the first experimental evidence indicating the role PAP5 in plant defense responses. PMID:23890153

  2. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  3. The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces NPR1-Dependent and NPR1-Independent Mechanisms of Disease Resistance in Arabidopsis1[W][OA

    PubMed Central

    Knoth, Colleen; Salus, Melinda S.; Girke, Thomas; Eulgem, Thomas

    2009-01-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis. PMID:19304930

  4. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis.

    PubMed

    Knoth, Colleen; Salus, Melinda S; Girke, Thomas; Eulgem, Thomas

    2009-05-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis.

  5. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems.

    PubMed

    Jacobs, Liezl; Chenia, Hafizah Y

    2007-03-20

    An increasing incidence of multidrug resistance amongst Aeromonas spp. isolates, which are both fish pathogens and emerging opportunistic human pathogens, has been observed worldwide. This can be attributed to the horizontal transfer of mobile genetic elements, viz.: plasmids and class 1 integrons. The antimicrobial susceptibilities of 37 Aeromonas spp. isolates, from tilapia, trout and koi aquaculture systems, were determined by disc-diffusion testing. The plasmid content of each isolate was examined using the alkaline lysis protocol. Tet determinant type was determined by amplification using two degenerate primer sets and subsequent HaeIII restriction. The presence of integrons was determined by PCR amplification of three integrase genes, as well as gene cassettes, and the qacEDelta1-sulI region. Thirty-seven Aeromonas spp. isolates were differentiated into six species by aroA PCR-RFLP, i.e., A. veronii biovar sobria, A. hydrophila, A. encheleia, A. ichtiosoma, A. salmonicida, and A. media. High levels of resistance to tetracycline (78.3%), amoxicillin (89.2%), and augmentin (86.5%) were observed. Decreased susceptibility to erythromycin was observed for 67.6% of isolates. Although 45.9% of isolates displayed nalidixic acid resistance, majority of isolates were susceptible to the fluoroquinolones. The MAR index ranged from 0.12 to 0.59, with majority of isolates indicating high-risk contamination originating from humans or animals where antibiotics are often used. Plasmids were detected in 21 isolates, with 14 of the isolates displaying multiple plasmid profiles. Single and multiple class A family Tet determinants were observed in 27% and 48.7% of isolates, respectively, with Tet A being the most prevalent Tet determinant type. Class 1 integron and related structures were amplified and carried different combinations of the antibiotic resistance gene cassettes ant(3'')Ia, aac(6')Ia, dhfr1, oxa2a and/or pse1. Class 2 integrons were also amplified, but the

  6. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance.

    PubMed

    Dupuis, Marie-Ève; Villion, Manuela; Magadán, Alfonso H; Moineau, Sylvain

    2013-01-01

    Bacteria have developed a set of barriers to protect themselves against invaders such as phage and plasmid nucleic acids. Different prokaryotic defence systems exist and at least two of them directly target the incoming DNA: restriction-modification (R-M) and CRISPR-Cas systems. On their own, they are imperfect barriers to invasion by foreign DNA. Here, we show that R-M and CRISPR-Cas systems are compatible and act together to increase the overall phage resistance of a bacterial cell by cleaving their respective target sites. Furthermore, we show that the specific methylation of phage DNA does not impair CRISPR-Cas acquisition or interference activities. Taken altogether, both mechanisms can be leveraged to decrease phage contaminations in processes relying on bacterial growth and/or fermentation.

  7. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  8. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  9. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  10. Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    PubMed Central

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Bottai, Daria; Levillain, Florence; Dumas, Alexia; Wallach, Joshua B.; Caire-Brandli, Irène; de Chastellier, Chantal; Wu, Ting-Di; Poincloux, Renaud; Brosch, Roland; Guerquin-Kern, Jean-Luc; Schnappinger, Dirk; Sório de Carvalho, Luiz Pedro; Poquet, Yannick; Neyrolles, Olivier

    2014-01-01

    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. PMID:24586151

  11. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  12. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  13. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  14. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  15. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  16. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  17. Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina1[W

    PubMed Central

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-01-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  18. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  19. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    PubMed

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-02

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.

  20. Impact of the E540V amino acid substitution in GyrB of Mycobacterium tuberculosis on quinolone resistance.

    PubMed

    Kim, Hyun; Nakajima, Chie; Yokoyama, Kazumasa; Rahim, Zeaur; Kim, Youn Uck; Oguri, Hiroki; Suzuki, Yasuhiko

    2011-08-01

    Amino acid substitutions conferring resistance to quinolones in Mycobacterium tuberculosis have generally been found within the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase (GyrA) rather than the B subunit of DNA gyrase (GyrB). To clarify the contribution of an amino acid substitution, E540V, in GyrB to quinolone resistance in M. tuberculosis, we expressed recombinant DNA gyrases in Escherichia coli and characterized them in vitro. Wild-type and GyrB-E540V DNA gyrases were reconstituted in vitro by mixing recombinant GyrA and GyrB. Correlation between the amino acid substitution and quinolone resistance was assessed by the ATP-dependent DNA supercoiling assay, quinolone-inhibited supercoiling assay, and DNA cleavage assay. The 50% inhibitory concentrations of eight quinolones against DNA gyrases bearing the E540V amino acid substitution in GyrB were 2.5- to 36-fold higher than those against the wild-type enzyme. Similarly, the 25% maximum DNA cleavage concentrations were 1.5- to 14-fold higher for the E540V gyrase than for the wild-type enzyme. We further demonstrated that the E540V amino acid substitution influenced the interaction between DNA gyrase and the substituent(s) at R-7, R-8, or both in quinolone structures. This is the first detailed study of the contribution of the E540V amino acid substitution in GyrB to quinolone resistance in M. tuberculosis.

  1. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  2. Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus.

    PubMed

    Romano, Andrea; Ladero, Victor; Alvarez, Miguel A; Lucas, Patrick M

    2014-04-03

    Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production.

  3. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    PubMed Central

    Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV

    2006-01-01

    Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite

  4. Correlation between the Circadian Rhythm of Resistance to Extreme Temperatures and Changes in Fatty Acid Composition in Cotton Seedlings.

    PubMed Central

    Rikin, A.; Dillwith, J. W.; Bergman, D. K.

    1993-01-01

    Fluctuations in fatty acid composition were examined in cotton (Gossypium hirsutum L. cv Deltapine 50) leaves during light-dark cycles of 12:12 h and under continuous light and were correlated to the rhythmic changes in chilling (5[deg]C) resistance (CR) and heat (53[deg]C) resistance (HR). The chilling-resistant and chilling-sensitive phases developed in the dark or the light period, respectively, and this rhythm persisted under continuous light for three cycles. The heat-resistant phase developed in the light period and an additional peak of HR occurred in the middle of the dark period. Under continuous light, only one peak of HR developed, lasting from the middle of the subjective night to the middle of the subjective day. The amounts of palmitic and oleic acids were constant during the light-dark cycle and under continuous light, but those of linoleic and linolenic acids fluctuated, attaining a high level in the middle of the dark period or the subjective night, and a low level in the middle of the light period or the subjective day. A low temperature of 20[deg]C induced CR and affected changes in fatty acid composition similar to those that occurred during the daily CR phase. A high temperature of 40[deg]C induced HR but did not affect changes in fatty acid composition. The results in their entirety show that the CR that develops rhythmically as well as the low-temperature-induced CR coincide with increased levels of polyunsaturated fatty acids. No correlation is found between changes in fatty acid composition and the HR that develops rhythmically or the high-temperature-induced HR. PMID:12231662

  5. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  6. Glyphosate-resistant and conventional canola (Brassica napus L.) responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  7. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar resistant maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses against insect herbivores frequently depend on the biosynthesis and action of jasmonic acid (JA) and its conjugates. To better understand JA signaling pathways in maize (Zea mays L.), we have examined two maize genotypes, Mp708 and Tx601. Mp708 is resistant to feeding by le...

  8. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  9. Loss of function of fatty acid desturase7 in tomato enhances basal aphid resistance in a salicylate-dependent manner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid (JA) and its derivatives mediate induced resistance against caterpillars and other herbivores that cause tissue disruption. Far less is known about the role of jasmonates in plant interactions with phloem-feeding insects such as aphids. This study compared responses in tomato (Solanu...

  10. D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density

    PubMed Central

    Saar-Dover, Ron; Bitler, Arkadi; Nezer, Ravit; Shmuel-Galia, Liraz; Firon, Arnaud; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2012-01-01

    Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance. PMID:22969424

  11. Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens.

    PubMed

    Kröner, Alexander; Marnet, Nathalie; Andrivon, Didier; Val, Florence

    2012-08-01

    Physiological and molecular mechanisms underlying quantitative resistance of plants to pathogens are still poorly understood, but could depend upon differences in the intensity or timing of general defense responses. This may be the case for the biosynthesis of phenolics which are known to increase after elicitation by pathogens. We thus tested the hypothesis that differences in quantitative resistance were related to differential induction of phenolics by pathogen-derived elicitors. Five potato cultivars (Solanum tuberosum, L.) spanning a range of quantitative resistance were treated with a concentrated culture filtrate (CCF) of Phytophthora infestans or purified lipopolysaccharides (LPS) from Pectobacterium atrosepticum. The kinetic of phenolics accumulation was followed and a set of typical phenolics was identified: chlorogenic acid, phenolamides and flavonols including rutin (quercetin-3-O-rutinoside) and nicotiflorin (kaempferol-3-O-rutinoside). Our results showed that CCF but not LPS induced differential accumulation of major phenolics among cultivars. Total phenolics were related with resistance to P. atrosepticum but not to P. infestans. However, nicotiflorin was inversely related with resistance to both pathogens. Rutin, but not nicotiflorin, inhibited pathogen growth in vitro at physiological concentrations. These data therefore suggest that (i) several phenolics are candidate markers for quantitative resistance in potato, (ii) some of these are pathogen specific although they are produced by a general defense pathway, (iii) resistance marker molecules do not necessarily have antimicrobial activity, and (iv) the final content of these target molecules-either constitutive or induced-is a better predictor of resistance than their inducibility by pathogen elicitors.

  12. D-Amino Acids in the Nervous and Endocrine Systems

    PubMed Central

    Kiriyama, Yoshimitsu

    2016-01-01

    Amino acids are important components for peptides and proteins and act as signal transmitters. Only L-amino acids have been considered necessary in mammals, including humans. However, diverse D-amino acids, such as D-serine, D-aspartate, D-alanine, and D-cysteine, are found in mammals. Physiological roles of these D-amino acids not only in the nervous system but also in the endocrine system are being gradually revealed. N-Methyl-D-aspartate (NMDA) receptors are associated with learning and memory. D-Serine, D-aspartate, and D-alanine can all bind to NMDA receptors. H2S generated from D-cysteine reduces disulfide bonds in receptors and potentiates their activity. Aberrant receptor activity is related to diseases of the central nervous system (CNS), such as Alzheimer's disease, amyotrophic lateral sclerosis, and schizophrenia. Furthermore, D-amino acids are detected in parts of the endocrine system, such as the pineal gland, hypothalamus, pituitary gland, pancreas, adrenal gland, and testis. D-Aspartate is being investigated for the regulation of hormone release from various endocrine organs. Here we focused on recent findings regarding the synthesis and physiological functions of D-amino acids in the nervous and endocrine systems. PMID:28053803

  13. 76 FR 37356 - 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... Resistance Monitoring System; Public Meeting; Request for Comments AGENCY: Food and Drug Administration, HHS... announcing a public meeting entitled: ``2011 Scientific Meeting of the National Antimicrobial Resistance... Antimicrobial Resistance Monitoring System (NARMS). Date and Time: The public meeting will be held on July...

  14. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank-head puncture-resistance systems. 179.16... FOR TANK CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance...

  15. A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice

    PubMed Central

    Lee, Gunsup; Yu, Jaelim; Cho, Seungchan; Byun, Sung-June; Kim, Dae Hyun; Lee, Taek-Kyun; Kwon, Myung-Hee; Lee, Sukchan

    2014-01-01

    Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system. PMID:24968358

  16. Role of extra-cellular fatty acids in vancomycin induced biofilm formation by vancomycin resistant Staphylococcus aureus.

    PubMed

    Mirani, Zulfiqar Ali; Jamil, Nusrat

    2013-03-01

    In the present study a vancomycin resistant Staphylococcus aureus (S. aureus) (VRSA) (Labeled as CP2) was isolated from the blood of a post-operative cardiac patient is described. It harbors a plasmid which carry vanA gene and exhibited low-level vancomycin resistance (MIC 16μg/mL), was sensitive to teicoplanin. It has been observed that sub-lethal dose of vancomycin induced biofilm formation by CP2 on nylon and silicon indwelling. The results divulge new insights into associations between vancomycin induced biofilms and extra-cellular fatty acids. Gas chromatography coupled with mass spectrometry (GC-MS) revealed that biofilm matrix of CP2 contains a variety of saturated and un-saturated fatty acids, especially, diverse species of octadecanoic (C18:0) and octadecenoic acids (C18:1). A large difference in fatty acids composition was noticed in biofilms, isolated from hydrophobic and hydrophilic surfaces. CP2 produced thicker layer of biofilms on hydrophobic silicon and nylon surfaces which contains variety of saturated, un-saturated and cyclic fatty acids. Contrary to this on hydrophilic glass surfaces it produced thinner layer of biofilm which contains only straight chain saturated fatty acids. These fatty acid components seem to play a crucial role in cell-cell communication and in the establishment of biofilms, consequently, advantageous for pathogens to survive in hospital environment under enormous antibiotics pressure.

  17. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase

    PubMed Central

    Topalis, D.; Gillemot, S.; Snoeck, R.; Andrei, G.

    2016-01-01

    Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged. PMID:27694307

  18. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  19. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    PubMed Central

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  20. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis.

    PubMed

    Rashid, Md Harun-Or-; Khan, Ajmal; Hossain, Mohammad T; Chung, Young R

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 10(7) CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis.

  1. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway

    PubMed Central

    Weech, Marie-Hélène; Chapleau, Mélanie; Pan, Li; Ide, Christine; Bede, Jacqueline C.

    2008-01-01

    Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR–) or systemic acquired resistance (SAR–) were used to characterize the roles of these pathways in plant–herbivore interactions. Molecular and biochemical markers of IR were analysed in plants subject to herbivory by caterpillars of the beet armyworm, Spodoptera exigua Hübner, which had either intact or impaired salivary secretions since salivary enzymes, such as glucose oxidase, have been implicated in the ability of caterpillars to circumvent induced plant defences. Transcript expression of genes encoding laccase-like multicopper oxidase [AtLMCO4 (polyphenol oxidase)] and defensin (AtPDF1.2) showed salivary-specific patterns which were disrupted in the SAR– mutant plants. The activity of octadecanoid-associated anti-nutritive proteins, such as LMCO and trypsin inhibitor, showed similar patterns. Gene and protein changes parallel plant hormone levels where elevated jasmonic acid was observed in wild-type plants fed upon by caterpillars with impaired salivary secretions compared with plants subject to herbivory by normal caterpillars. This salivary-specific difference in jasmonic acid levels was alleviated in SAR– mutants. These results support the model that caterpillar saliva interferes with jasmonate-dependent plant defences by activating the SAR pathway. PMID:18487634

  2. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice.

    PubMed

    Chen, Si; Li, Xingxing; Lavoie, Michel; Jin, Yujian; Xu, Jiahui; Fu, Zhengwei; Qian, Haifeng

    2017-01-01

    Diclofop-methyl (DM), a widely used herbicide in food crops, may partly contaminate the soil surface of natural ecosystems in agricultural area and exert toxic effects at low dose to nontarget plants. Even though rhizosphere microorganisms strongly interact with root cells, little is known regarding their potential modulating effect on herbicide toxicity in plants. Here we exposed rice seedlings (Xiushui 63) to 100μg/L DM for 2 to 8days and studied the effects of DM on rice rhizosphere microorganisms, rice systemic acquired resistance (SAR) and rice-microorganisms interactions. The results of metagenomic 16S rDNA Illumina tags show that DM increases bacterial biomass and affects their community structure in the rice rhizosphere. After DM treatment, the relative abundance of the bacterium genera Massilia and Anderseniella increased the most relative to the control. In parallel, malate and oxalate exudation by rice roots increased, potentially acting as a carbon source for several rhizosphere bacteria. Transcriptomic analyses suggest that DM induced SAR in rice seedlings through the salicylic acid (but not the jasmonic acid) signal pathway. This response to DM stress conferred resistance to infection by a pathogenic bacterium, but was not influenced by the presence of bacteria in the rhizosphere since SAR transcripts did not change significantly in xenic and axenic plant roots exposed to DM. The present study provides new insights on the response of rice and its associated microorganisms to DM stress.

  3. A single amino acid substitution in isozyme GST mu in Triclabendazole resistant Fasciola hepatica (Sligo strain) can substantially influence the manifestation of anthelmintic resistance.

    PubMed

    Fernández, V; Estein, S; Ortiz, P; Luchessi, P; Solana, V; Solana, H

    2015-12-01

    The helminth parasite Fasciola hepatica causes fascioliasis in human and domestic ruminants. Economic losses due to this infection are estimated in U$S 2000-3000 million yearly. The most common method of control is the use of anthelmintic drugs. However, there is an increased concern about the growing appearance of F. hepatica resistance to Triclabendazole (TCBZ), an anthelmintic with activity over adult and young flukes. F. hepatica has eight Glutathione S-Transferase (GST) isozymes, which are enzymes involved in the detoxification of a wide range of substrates through chemical conjugation with glutathione. In the present work we identified and characterized the GST mu gene isolated from the TCBZ-susceptible and TCBZ-resistant F. hepatica strains. Total RNA was transcribed into cDNA by reverse transcription and a 657 bp amplicon corresponding to the GST mu gene was obtained. The comparative genetic analysis of the GST mu gene of the TCBZ susceptible strain (Cullompton) and TCBZ resistant strain (Sligo) showed three nucleotide changes and one amino acid change at position 143 in the GST mu isozyme of the TCBZ-resistant strain. These results have potential relevance as they contribute better understand the mechanisms that generate resistance to anthelmintics.

  4. Systemic Injection of Kainic Acid Differently Affects LTP Magnitude Depending on its Epileptogenic Efficiency

    PubMed Central

    Suárez, Luz M.; Cid, Elena; Gal, Beatriz; Inostroza, Marion; Brotons-Mas, Jorge R.; Gómez-Domínguez, Daniel

    2012-01-01

    Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function and plasticity depending on its epileptogenic efficiency. PMID:23118939

  5. Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri

    PubMed Central

    Vaccaro, Brian J.; Lancaster, W. Andrew; Thorgersen, Michael P.; Zane, Grant M.; Younkin, Adam D.; Kazakov, Alexey E.; Wetmore, Kelly M.; Deutschbauer, Adam; Arkin, Adam P.; Novichkov, Pavel S.; Wall, Judy D.

    2016-01-01

    ABSTRACT Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu2+ and Zn2+ resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu2+ and Zn2+ resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu2+ and Zn2+ resistance in strain RCH2. The results not only considerably expand what is known about well-established metal ion exporters (CzcCBA, CzcD, and CusCBA) and their accessory proteins (CzcI and CusF), they also reveal that isolates with mutations in some predicted Cu2+ resistance systems do not show decreased fitness relative to the wild type when exposed to Cu2+. In addition, new genes are identified that have no known connection to Zn2+ (corB, corC, Psest_3226, Psest_3322, and Psest_0618) or Cu2+ resistance (Mrp antiporter subunit gene, Psest_2850, and Psest_0584) but are crucial for resistance to these metal cations. Growth of individual deletion mutants lacking corB, corC, Psest_3226, or Psest_3322 confirmed the observed Zn-dependent phenotypes. Notably, to our knowledge, this is the first time a bacterial homolog of TMEM165, a human gene responsible for a congenital glycosylation disorder, has been deleted and the resulting strain characterized. Finally, the fitness values indicate Cu2+- and Zn2+-based inhibition of nitrite reductase and interference with molybdenum cofactor biosynthesis for nitrate reductase. These results extend the current understanding of Cu2+ and Zn2+ efflux and resistance and their effects on denitrifying metabolism. IMPORTANCE In this study, genome-wide mutant fitness data in P. stutzeri RCH2 combined with regulon predictions identify several proteins of unknown function that are involved

  6. MyD88 signaling in the CNS is required for development of fatty acid induced leptin resistance and diet-induced obesity

    PubMed Central

    Kleinridders, André; Schenten, Dominik; Könner, A. Christine; Belgardt, Bengt F.; Mauer, Jan; Okamura, Tomoo; Wunderlich, F. Thomas; Medzhitov, Ruslan; Brüning, Jens C.

    2014-01-01

    Summary Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR-4 signaling by fatty acids. Here we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat-3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88ΔCNS). Compared to control mice, MyD88ΔCNS mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo. PMID:19808018

  7. Expert systems help design cementing and acidizing jobs

    SciTech Connect

    Onan, D.D.; Kulakofsky, D.; Van Domelen, M.S.; Ford, W.G.F. )

    1993-04-19

    Knowledge-based expert information systems can help train less-experienced designers and orient seasoned designers at new locations. These systems are playing an increased role in completion and production operations. Expert systems help: design treatments based on an accumulation of knowledge from experts; provide technical information and guidelines on the proper use of additives; and serve as a training tool for less-experienced personnel. The paper describes expert systems design; practical applications; and details about a cement job and acidizing.

  8. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.

    PubMed

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J; Kenny, John G; McCarthy, Alan J; Allison, Heather E

    2015-12-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.

  9. Adaptation of Salmonella spp. in juice stored under refrigerated and room temperature enhances acid resistance to simulated gastric fluid.

    PubMed

    Yuk, H G; Schneider, K R

    2006-10-01

    The objective of this study was to evaluate the acid resistance of Salmonella spp. adapted in juices stored under refrigeration and room temperatures to simulated gastric fluid (SGF, pH 1.5). Five Salmonella serovars, Agona, Gaminara, Michigan, Montevideo, and Poona were used in this study. Apple, orange, and tomato juices inoculated with five serovars were stored at refrigeration (7 degrees C) and room temperature (20 degrees C) for 24 h for adaptation. Acid resistances of serovars adapted in juice were determined in SGF at 37 degrees C. All acid-adapted Salmonella serovars in juices displayed enhanced survival time compared to non-adapted controls. Among serovars, S. Poona adapted in apple at 20 degrees C and orange juices at 7 and 20 degrees C showed >2.0 log cfu/ml survivors, while the other serovars decreased to non-detectable level or <2.0 log cfu/ml for 100 s in SGF. Unlike apple and orange juices, all serovars adapted in tomato juice survived with >2.0 log cfu/ml for 100 s. For D-values, all Salmonella serovars adapted in apple and tomato juice enhanced their acid resistances compared to orange juices. S. Agona adapted in tomato juice at 7 degrees C and S. Poona in apple juice at 20 degrees C had the highest D-values with 82.9 and 82.5s, respectively. Results showed that the adaptation in juice increased acid resistance in SGF and varied by serovar, juice type, and adaptation temperature. Therefore, this study indicates that the introduction of Salmonella spp. to an acidic juice environment during processing can enhance their ability to survive in a human stomach, possibly increasing the risk of a Salmonella outbreak by juice.

  10. Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system

    PubMed Central

    Habazettl, Judith; Allan, Martin; Jensen, Pernille Rose; Sass, Hans-Jürgen; Thompson, Charles J.; Grzesiek, Stephan

    2014-0