Science.gov

Sample records for acid resistance system

  1. The acid-base resistant zone in three dentin bonding systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2009-11-01

    An acid-base resistant zone has been found to exist after acid-base challenge adjacent to the hybrid layer using SEM. The aim of this study was to examine the acid-base resistant zone using three different bonding systems. Dentin disks were applied with three different bonding systems, and then a resin composite was light-cured to make dentin disk sandwiches. After acid-base challenge, the polished surfaces were observed using SEM. For both one- and two-step self-etching primer systems, an acid-base resistant zone was clearly observed adjacent to the hybrid layer - but with differing appearances. For the wet bonding system, the presence of an acid-base resistant zone was unclear. This was because the self-etching primer systems etched the dentin surface mildly, such that the remaining mineral phase of dentin and the bonding agent yielded clear acid-base resistant zones. In conclusion, the acid-base resistant zone was clearly observed when self-etching primer systems were used, but not so for the wet bonding system.

  2. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  3. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  4. ArF negative resist system using androsterone structure with δ-hydroxy acid for 100-nm phase shifting lithography

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiyuki; Hattori, Takashi; Kimura, Kaori; Tanaka, Toshihiko P.; Shiraishi, Hiroshi

    2001-08-01

    A negative resist system utilizing acid-catalyzed intramolecular esterification of (delta) -hydroxy acid has been developed for ArF phase-shifting lithography. The system is made up of an acrylate polymer with pendant structure of androsterone derivative with (delta) -hydroxy acid and a photo-acid generator. We investigated the effect of the comonomer and found that it changes the affinity of the resist polymer to the aqueous base developer. The change of the polarity of the comonomer was found to drastically affect the dissolution properties and the resolution capability. Optimization of the (delta) -hydroxy acid content and the developer concentration prevented pattern deformation such as winding lines and scum between the lines. The improved resist formulation combined with an ArF excimer-laser stepper with a phase-shifting mask produced a clearly resolved 100-nm line-and-space patterns.

  5. Morphological categorization of acid-base resistant zones with self-etching primer adhesive systems.

    PubMed

    Inoue, Go; Nikaido, Toru; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study investigated the influence of the composition of self-etching primer adhesive systems on the morphology of acid-base resistant zones (ABRZs). One-step self-etching primer systems (Clearfil Tri-S Bond, G-Bond, and One-Up Bond F Plus) and two-step self-etching primer systems (Clearfil SE Bond, Clearfil Protect Bond, UniFil Bond, and Mac Bond II) were used in this study. Each adhesive was applied on prepared dentin disk surfaces, and a resin composite was placed between two dentin disks. All resin-bonded specimens were subjected to acid-base challenge. Observation under a scanning electron microscope (SEM) revealed the creation of an ABRZ adjacent to the hybrid layer for all the self-etch primer adhesive systems, even when non-fluoride releasing adhesives were used. The presence of fluoride in two-step self-etching adhesive significantly increased the thickness of ABRZ created. Results suggested that an ABRZ was created with the use of self-etching primer adhesive systems, but its morphology differed between one-and two-step self-etching primer adhesive systems and was influenced by fluoride release activity.

  6. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids

    PubMed Central

    Agut, Blas; Gamir, Jordi; Jaques, Josep A.; Flors, Victor

    2016-01-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. PMID:27683726

  7. Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

    PubMed Central

    Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-01-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

  8. The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance1[C][W

    PubMed Central

    Buxdorf, Kobi; Rahat, Ido; Gafni, Aviva; Levy, Maggie

    2013-01-01

    Pseudozyma spp. are yeast-like fungi, classified in the Ustilaginales, which are mostly epiphytic or saprophytic and are not pathogenic to plants. Several Pseudozyma species have been reported to exhibit biological activity against powdery mildews. However, previous studies have reported that Pseudozyma aphidis, which can colonize plant surfaces, is not associated with the ‎‎collapse of powdery ‎mildew colonies. In this report, we describe a novel P. aphidis strain and study its interactions with its plant host and the plant pathogen Botrytis cinerea. This isolate was found to secrete extracellular metabolites that inhibit various fungal pathogens in vitro and significantly reduce B. cinerea infection in vivo. Moreover, P. aphidis sensitized Arabidopsis (Arabidopsis thaliana) plants’ defense machinery via local and systemic induction of PATHOGENESIS-RELATED1 (PR1) and PLANT DEFENSIN1.2 (PDF1.2) expression. P. aphidis also reduced B. cinerea infection, locally and systemically, in Arabidopsis mutants impaired in jasmonic acid (JA) or salicylic acid (SA) signaling. Thus, in addition to direct inhibition, P. aphidis may inhibit B. cinerea infection via induced resistance in a manner independent of SA, JA, and Nonexpressor of PR1 (NPR1). P. aphidis primed the plant defense machinery and induced stronger activation of PDF1.2 after B. cinerea infection. Finally, P. aphidis fully or partially reconstituted PR1 and PDF1.2 expression in npr1-1 mutant and in plants with the SA hydroxylase NahG transgene, but not in a jasmonate resistant1-1 mutant, after B. cinerea infection, suggesting that P. aphidis can bypass the SA/NPR1, but not JA, pathway to activate PR genes. Thus, either partial gene activation is sufficient to induce resistance, or the resistance is not directed solely through PR1 and PDF1.2 but probably through other pathogen-resistance genes or pathways as well. PMID:23388119

  9. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    PubMed Central

    Vos, Irene A.; Verhage, Adriaan; Schuurink, Robert C.; Watt, Lewis G.; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2013-01-01

    In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis. PMID:24416038

  10. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata.

    PubMed

    Nair, A; Kolet, S P; Thulasiram, H V; Bhargava, S

    2015-05-01

    Tomato plants colonised with the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum show systemic induced resistance to the foliar pathogen Alternaria alternata, as observed in interactions of other AM-colonised plants with a range of pathogens. The role of jasmonic (JA) and salicylic (SA) acid in expression of this mycorrhiza-induced resistance (MIR) against A. alternata was studied by measuring: (i) activity of enzymes reported to be involved in their biosynthesis, namely lipoxygenase (LOX) and phenylammonia lyase (PAL); and (ii) levels of methyl jasmonate (MeJA) and SA. Transcript abundance of some defence genes associated with JA and SA response pathways were also studied. Both LOX and PAL activity increased twofold in response to pathogen application to control plants. AM-colonised plants had three-fold higher LOX activity compared to control plants, but unlike controls, this did not increase further in response to pathogen application. Higher LOX activity in AM-colonised plants correlated with four-fold higher MeJA in leaves of AM-colonised plants compared to controls. Treatment of plants with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM) led to 50% lower MeJA in both control and AM-colonised plants and correlated with increased susceptibility to A. alternata, suggesting a causal role for JA in expression of MIR against the pathogen. Genes involved in JA biosynthesis (OPR3) and response (COI1) showed six- and 42-fold higher expression, respectively, in leaves of AM-colonised plants compared to controls. AM-colonised plants also showed increased expression of the SA response gene PR1 and that of the wound-inducible polypeptide prosystemin. Our results suggest that the systemic increase in JA in response to AM colonisation plays a key role in expression of MIR against A. alternata.

  11. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Anand, Ajith; Uppalapati, Srinivasa Rao; Ryu, Choong-Min; Allen, Stacy N; Kang, Li; Tang, Yuhong; Mysore, Kirankumar S

    2008-02-01

    We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity. PMID:18156296

  12. Rapid radiosynthesis of [11C] and [14C]azelaic, suberic, and sebacic acids for in vivo mechanistic studies of systemic acquired resistance in plants

    SciTech Connect

    Best M.; Fowler J.; Best, M.; Gifford, A.N.; Kim, S.W.; Babst, B.; Piel, M.; Roesch, F.; Fowler, J.S.

    2011-11-25

    A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relative to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.

  13. Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in Escherichia coli▿

    PubMed Central

    Yu, Zhong; Bekker, Martijn; Tramonti, Angela; Cook, Gregory M.; van Ulsen, Peter; Scheffers, Dirk-Jan; de Mattos, Joost Teixeira; De Biase, Daniela; Luirink, Joen

    2011-01-01

    The function of the essential inner membrane protein (IMP) YidC in Escherichia coli has been studied for a limited number of model IMPs and primarily using targeted approaches. These studies suggested that YidC acts at the level of insertion, folding, and quality control of IMPs, both in the context of the Sec translocon and as a separate entity. To further our understanding of YidC's role in IMP biogenesis, we screened a random overexpression library for factors that rescued the growth of cells upon YidC depletion. We found that the overexpression of the GadX and GadY regulators of the glutamate-dependent acid resistance system complemented the growth defect of YidC-depleted cells. Evidence is presented that GadXY overexpression counteracts the deleterious effects of YidC depletion on at least two fronts. First, GadXY prepares the cells for the decrease in respiratory capacity upon the depletion of YidC. Most likely, GadXY-regulated processes reduce the drop in proton-motive force that impairs the fitness of YidC-depleted cells. Second, in GadXY-overproducing cells increased levels of the general chaperone GroEL cofractionate with the inner membranes, which may help to keep newly synthesized inner membrane proteins in an insertion-competent state when YidC levels are limiting. PMID:21216990

  14. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  15. Free fatty acids are associated with metabolic syndrome and insulin resistance but not inflammation in systemic lupus erythematosus.

    PubMed

    Ormseth, M J; Swift, L L; Fazio, S; Linton, M F; Raggi, P; Solus, J F; Oeser, A; Bian, A; Gebretsadik, T; Shintani, A; Stein, C M

    2013-01-01

    Free fatty acids (FFAs) are implicated in the pathogenesis of insulin resistance and atherosclerosis. Inflammatory cytokines promote lipolysis and increase FFAs, a cause of endothelial dysfunction and increased atherosclerosis risk. We hypothesized that increased inflammation is associated with increased FFAs, resulting in insulin resistance and atherosclerosis in patients with systemic lupus erythematosus (SLE). We measured clinical variables, serum FFAs, homeostasis model assessment for insulin resistance (HOMA), inflammatory cytokines, markers of endothelial activation, cholesterol concentrations and coronary artery calcium in 156 patients with SLE and 90 controls. We compared FFAs in patients with SLE and controls using Wilcoxon rank sum tests and further tested for the independent association between FFAs and disease status with adjustment for age, race and sex using multivariable regression models. We assessed the relationship between FFAs and continuous variables of interest using Spearman correlation and multivariable regression analysis. Levels of FFAs were higher in patients with SLE than controls (0.55 mmol/l (0.37-0.71) vs 0.44 mmol/l (0.32-0.60), P = 0.02). Levels of FFAs remained significantly higher among patients with SLE after adjustment for age, race and sex (P = 0.03) but not after further adjustment for body mass index (P = 0.13). FFA levels did not differ according to the usage of current immunosuppressive medications in univariate and adjusted analysis (all P > 0.05). Among patients with SLE, concentrations of FFAs were higher among those with metabolic syndrome compared to those without (0.66 mmol/l (0.46-0.81) vs 0.52 mmol/l (0.35-0.66), P < 0.001). FFAs were positively correlated with insulin resistance (HOMA) (rho = 0.23, P = 0.004, P adjusted = 0.006) and triglyceride levels (rho = 0.22, P = 0.01, P adjusted = 0.004). FFAs were not associated with inflammatory cytokines (IL-6, TNF

  16. Flame and acid resistant polymide fibers

    NASA Technical Reports Server (NTRS)

    Stringham, R. S.; Toy, M. S.

    1977-01-01

    Economical process improves flame resistance and resistance to acids of polyamide fibers, without modifying colors of mechanical properties. Process improves general safety of garments and other items made from polyamide fibers and makes them suitable for applications requiring exposure to oxygen-rich atmosphere or corrosive acids. Halo-olefins are added to surface of fibers by photoadditon in sealed chamber. Process could be used with films and other forms of polyamide.

  17. Systemic Acquired Resistance

    PubMed Central

    2006-01-01

    Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR. PMID:19521483

  18. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  19. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors

    PubMed Central

    Zhang, Yaxi; Xu, Shaohua; Ding, Pingtao; Wang, Dongmei; Cheng, Yu Ti; He, Jing; Gao, Minghui; Xu, Fang; Li, Yan; Zhu, Zhaohai; Li, Xin; Zhang, Yuelin

    2010-01-01

    Salicylic acid (SA) is a defense hormone required for both local and systemic acquired resistance (SAR) in plants. Pathogen infections induce SA synthesis through up-regulating the expression of Isochorismate Synthase 1 (ICS1), which encodes a key enzyme in SA production. Here we report that both SAR Deficient 1 (SARD1) and CBP60g are key regulators for ICS1 induction and SA synthesis. Whereas knocking out SARD1 compromises basal resistance and SAR, overexpression of SARD1 constitutively activates defense responses. In the sard1-1 cbp60g-1 double mutant, pathogen-induced ICS1 up-regulation and SA synthesis are blocked in both local and systemic leaves, resulting in compromised basal resistance and loss of SAR. Electrophoretic mobility shift assays showed that SARD1 and CBP60g represent a plant-specific family of DNA-binding proteins. Both proteins are recruited to the promoter of ICS1 in response to pathogen infections, suggesting that they control SA synthesis by regulating ICS1 at the transcriptional level. PMID:20921422

  20. Evaluation of dentin bonding performance and acid-base resistance of the interface of two-step self-etching adhesive systems.

    PubMed

    IIda, Yasuhiro; Nikaido, Toru; Kitayama, Shuzo; Takagaki, Tomohiro; Inoue, Go; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji

    2009-07-01

    The purpose of this study was to evaluate dentin bond strengths and to observe the adhesive-dentin interface after acid-base challenge using fluoride-free and fluoride-releasing self-etching adhesive systems; Clearfil SE Bond (SE), FL-Bond (FL) and FL-Bond II(FL II). Fifteen dentin surfaces from human molars were ground and bonded with one of three adhesive systems. The microtensile bond strength (muTBS) test was performed at a crosshead speed of 1 mm/min. The interface of the bonded specimens after acid-base challenge were also examined by a SEM. The muTBS of SE were significantly higher than those of FL and FL II (p<0.05), however, there were no significant differences between FL and FL II (p>0.05). An acid-base resistant zone (ABRZ) was observed in all the groups, however, formation of the ABRZ was material dependent. Fluoride-release from the adhesive is a key factor to create thick ABRZ.

  1. Evaluation of in vitro resistance of titanium and resorbable (poly-L-DL-lactic acid) fixation systems on the mandibular angle fracture.

    PubMed

    Bregagnolo, L A; Bertelli, P F; Ribeiro, M C; Sverzut, C E; Trivellato, A E

    2011-03-01

    The purpose of this study was to compare, by mechanical in vitro testing, a 2.0-mm system made with poly-L-DL-lactide acid with an analogue titanium-based system. Mandible replicas were used as a substrate and uniformly sectioned on the left mandibular angle. The 4-hole plates were adapted and stabilized passively in the same site in both groups using four screws, 6.0mm long. During the resistance-to-load test, the force was applied perpendicular to the occlusal plane at three different points: first molar at the plated side; first molar at the contralateral side; and between the central incisors. At 1mm of displacement, no statistically significant difference was found. At 2mm displacement, a statistically significant difference was observed when an unfavourable fracture was simulated and the load was applied in the contralateral first molar and when a favourable fracture was simulated and the load was applied between the central incisors. At the failure displacement, a statistically significant difference was observed only when the favourable fracture was simulated and the load was applied on the first molar at the plated side. In conclusion, despite more failure, the poly-L-DL-lactic acid-based system was effective.

  2. A Second Two-Component Regulatory System of Bordetella bronchiseptica Required for Bacterial Resistance to Oxidative Stress, Production of Acid Phosphatase, and In Vivo Persistence

    PubMed Central

    Jungnitz, Heidrun; West, Nicholas P.; Walker, Mark J.; Chhatwal, Gursharan S.; Guzmán, Carlos A.

    1998-01-01

    Random minitransposon mutagenesis was used to identify genes involved in the survival of Bordetella bronchiseptica within eukaryotic cells. One of the mutants which exhibited a reduced ability to survive intracellularly harbored a minitransposon insertion in a locus (ris) which displays a high degree of homology to two-component regulatory systems. This system exhibited less than 25% amino acid sequence homology to the only other two-component regulatory system described in Bordetella spp., the bvg locus. A risA′-′lacZ translational fusion was constructed and integrated into the chromosome of B. bronchiseptica. Determination of β-galactosidase activity under different environmental conditions suggested that ris is regulated independently of bvg and is optimally expressed at 37°C, in the absence of Mg2+, and when bacteria are in the intracellular niche. This novel regulatory locus, present in all Bordetella spp., is required for the expression of acid phosphatase by B. bronchiseptica. Although catalase and superoxide dismutase production were unaffected, the ris mutant was more sensitive to oxidative stress than the wild-type strain. Complementation of bvg-positive and bvg-negative ris mutants with the intact ris operon incorporated as a single copy into the chromosome resulted in the reestablishment of the ability of the bacterium to produce acid phosphatase and to resist oxidative stress. Mouse colonization studies demonstrated that the ris mutant is cleared by the host much earlier than the wild-type strain, suggesting that ris-regulated products play a significant role in natural infections. The identification of a second two-component system in B. bronchiseptica highlights the complexity of the regulatory network needed for organisms with a life cycle requiring adaptation to both the external environment and a mammalian host. PMID:9746560

  3. The central nervous system convulsant pentylenetetrazole stimulates gamma-aminobutyric acid (GABA)-activated current in picrotoxin-resistant GABA(A) receptors in HEK293 cells.

    PubMed

    Dibas, M I; Dillon, G H

    2000-05-19

    We tested the ability of the central nervous system convulsant pentylenetetrazole (PTZ) to inhibit gamma-aminobutyric acid (GABA)-gated current in receptors expressing a mutation that rendered them resistant to picrotoxin. Consistent with previous reports, receptors expressing beta2(T246F), along with alpha3 and gamma2 subunits, resulted in a greatly diminished sensitivity to picrotoxin. Sensitivity to PTZ was completely abolished in the mutant receptor, confirming the hypothesis that PTZ acts at the picrotoxin site. Quite unexpected, however, was our finding that PTZ elicited marked stimulation (up to 400% of control) in the mutated receptors. This stimulatory effect was not mediated via an interaction with the benzodiazepine site, as preincubation with the benzodiazepine antagonist flumazenil did not block the PTZ-induced stimulation. Our results reveal the existence of a novel stimulatory domain of PTZ in GABA(A) receptors.

  4. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  5. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  6. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone.

    PubMed

    Nikaido, Toru; Ichikawa, Chiaki; Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Yoshida, Yasuhiro; Suzuki, Kazuomi; Tagami, Junji

    2011-01-01

    This study aimed at evaluating the effect of functional monomers in all-in-one adhesive systems on formation of acid-base resistant zone (ABRZ) in enamel and dentin. Experimental adhesive systems containing one of three functional monomers; MDP, 3D-SR and 4-META were applied to enamel or dentin surface and light-cured. A universal resin composite was then placed. The specimens were subjected to a demineralizing solution (pH 4.5) and 5% NaClO for acid-base challenge and then observed by SEM. The ABRZ was clearly observed in both enamel and dentin interfaces. However, enamel ABRZ was thinner than dentin ABRZ in all adhesives. Morphology of the ABRZ was different between enamel and dentin, and also among the adhesives. Funnel-shaped erosion was observed only in the enamel specimen with the 4-META adhesive. The formation of enamel/dentin ABRZ was confirmed in all adhesives, but the morphology was influenced by the functional monomers.

  7. Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease Caused by Agrobacterium tumefaciens1[W][OA

    PubMed Central

    Anand, Ajith; Uppalapati, Srinivasa Rao; Ryu, Choong-Min; Allen, Stacy N.; Kang, Li; Tang, Yuhong; Mysore, Kirankumar S.

    2008-01-01

    We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity. PMID:18156296

  8. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  9. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  10. Increased amoxicillin-clavulanic acid resistance in Escherichia coli blood isolates, Spain.

    PubMed

    Oteo, Jesús; Campos, José; Lázaro, Edurne; Cuevas, Oscar; García-Cobos, Silvia; Pérez-Vázquez, María; de Abajo, F J

    2008-08-01

    To determine the evolution and trends of amoxicillin-clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006. PMID:18680650

  11. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.

    PubMed

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

    2013-11-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.

  12. Photodynamic therapy using systemic administration of 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode for methicillin-resistant Staphylococcus aureus-infected ulcers in mice.

    PubMed

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.

  13. Photodynamic Therapy Using Systemic Administration of 5-Aminolevulinic Acid and a 410-nm Wavelength Light-Emitting Diode for Methicillin-Resistant Staphylococcus aureus-Infected Ulcers in Mice

    PubMed Central

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds. PMID:25140800

  14. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  15. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  16. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  17. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Acid resistance test. 7.48 Section 7.48 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a... solution of sulfuric acid (H2 SO4) by mixing 853 ml of water with 199 ml of sulfuric acid (H2 SO4) with...

  18. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum

    PubMed Central

    2014-01-01

    Background Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. Results QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. Conclusions Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were

  19. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  20. Pseudomonas fluorescens WCS374r-Induced Systemic Resistance in Rice against Magnaporthe oryzae Is Based on Pseudobactin-Mediated Priming for a Salicylic Acid-Repressible Multifaceted Defense Response1[C][OA

    PubMed Central

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A.H.M.; Höfte, Monica

    2008-01-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  1. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response.

    PubMed

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A H M; Höfte, Monica

    2008-12-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  2. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  3. Silylated Acid Hardened Resist [SAHR] Technology: Positive, Dry Developable Deep UV Resists

    NASA Astrophysics Data System (ADS)

    Thackeray, James W.; Bohland, John F.; Pavelchek, , Edward K.; Orsula, George W.; McCullough, Andrew W.; Jones, Susan K.; Bobbio, Stephen M.

    1990-01-01

    This paper describes continuing efforts in the development of Acid Hardened Resist (AHR) systems for use in deep UV photolithography. The Silylated AHR (SAHR) process treats a highly absorbing resist, such as XP-8928, with trimethylsilyldiethylamine. The exposed, crosslinked areas show virtually no reactivity with the silylating agent, and the unexposed areas incorporate 10 to 12% by weight silicon in the film. The silicon appears to incorporate from the exterior in a constant concentration, consistent with Case II diffusion. Subsequent dry etching leads to a positive tone image. The contrast is 5, and the photospeed is ~10 mJ/cm2. Resolution of 0.5 μm line/space pairs has been demonstrated, although substantial proximity effects are encountered.

  4. Systems biology of diuretic resistance

    PubMed Central

    Knepper, Mark A.

    2015-01-01

    Diuretics are commonly used to treat hypertension and extracellular fluid volume expansion. However, the development of compensatory responses in the kidney limits the benefit of this class of drugs. In this issue of the JCI, Grimm and colleagues use a systems biology approach in mice lacking the kinase SPAK and unravel a complex mechanism that explains thiazide diuretic resistance. The overall process involves interactions among six different cell types in the kidney. PMID:25893597

  5. Associations of erythrocyte fatty acid patterns with insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  6. Habituation to organic acid anions induces resistance to acid and bile in Listeria monocytogenes.

    PubMed

    Zhang, Yimin; Carpenter, Charles E; Broadbent, Jeff R; Luo, Xin

    2014-03-01

    We evaluated the intrinsic and inducible resistance of four human pathogenic strains of Listeria monocytogenes to acid and bile, factors associated with virulence. Cells were grown in media at pH 7.4, or in media at pH 6.0 containing 0 (HCl control) or 4.75 mM of different organic acids, harvested at stationary or mid log phase, and challenged for 1h in acid or bile. Stationary phase cells were intrinsically more resistant to either challenge than log phase cells, and large differences between strains were evident among the latter. Compared to the HCl control, habituation to log phase with organic acids induced significant (p<0.05) and meaningful (≥1 log) increases in acid resistance of three of four strains tested, and in bile resistance of two strains suggesting that exposure to organic acid anions may enhance virulence in L. monocytogenes.

  7. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    PubMed Central

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-01-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

  8. Resistance of yeasts to weak organic acid food preservatives.

    PubMed

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell. PMID:22050823

  9. Resistance of yeasts to weak organic acid food preservatives.

    PubMed

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.

  10. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage. PMID:26656902

  11. Resistance of geopolymer materials to acid attack

    SciTech Connect

    Bakharev, T

    2005-04-01

    This article presents an investigation into durability of geopolymer materials manufactured using a class F fly ash (FA) and alkaline activators when exposed to 5% solutions of acetic and sulfuric acids. The main parameters studied were the evolution of weight, compressive strength, products of degradation and microstructural changes. The degradation was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The performance of geopolymer materials when exposed to acid solutions was superior to ordinary Portland cement (OPC) paste. However, significant degradation of strength was observed in some geopolymer materials prepared with sodium silicate and with a mixture of sodium hydroxide and potassium hydroxide as activators. The deterioration observed was connected to depolymerisation of the aluminosilicate polymers in acidic media and formation of zeolites, which in some cases lead to a significant loss of strength. The best performance was observed in the geopolymer material prepared with sodium hydroxide and cured at elevated temperature, which was attributed to a more stable cross-linked aluminosilicate polymer structure formed in this material.

  12. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. PMID:26416641

  13. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii.

    PubMed

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A; Olsson, Lisbeth; Bettiga, Maurizio

    2016-04-01

    Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic-acid-tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo-lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin-treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress.

  14. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  15. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    PubMed

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-01

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production.

  16. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii

    PubMed Central

    Lindahl, Lina; Genheden, Samuel; Eriksson, Leif A.; Olsson, Lisbeth

    2015-01-01

    ABSTRACT Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingo­lipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26416641

  17. 30 CFR 7.48 - Acid resistance test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.48 Acid resistance test. (a) Test procedures. (1) Prepare one sample each of the insulated surfaces of the battery box and of the... insulation plus the battery cover or box material. The insulation thickness shall be representative of...

  18. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.

    PubMed

    Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

    2009-07-01

    We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance.

  19. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  20. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance.

    PubMed

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E; Lecker, Stewart H; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-04-01

    Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  1. The role of abscisic acid and water stress in root herbivore-induced leaf resistance.

    PubMed

    Erb, Matthias; Köllner, Tobias G; Degenhardt, Jörg; Zwahlen, Claudia; Hibbard, Bruce E; Turlings, Ted C J

    2011-01-01

    • Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.

  2. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    PubMed

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  3. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    SciTech Connect

    Lee, E.H. )

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  4. Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis.

    PubMed Central

    Riccardi, G; Sora, S; Ciferri, O

    1981-01-01

    Mutants of Spirulina platensis resistant to 5-fluorotryptophan, beta-3-thienyl-alanine, ethionine, p-fluorophenylalanine, or azetidine-2-carboxylic acid were isolated. Some of these mutants appeared to be resistant to more than one analog and to overproduce the corresponding amino acids. A second group was composed of mutants that were resistant to one analog only. Of the latter mutants, one resistant to azetidine-2-carboxylic acid was found to overproduce proline only, whereas one resistant to fluorotryptophan and one resistant to ethionine did not overproduce any of the tested amino acids. PMID:6792182

  5. Studies of acid resistance characteristics in multiple drug resistant Salmonella species isolated from tomatoes.

    PubMed

    Naushad, Z; Mishra, S H; Musaddiq, M; Ali, Y A

    2013-04-01

    Salmonella species found to have a great potential of causing a variety of diseases ranging from gastroenteritis to enteric fever. Salmonella have been isolated from all food, animals and also found in the vegetables such as tomatoes, spinach etc. Several out breaks of Salmonellosis have been associated with the consumption of raw tomatoes. This is because of the fact that Salmonella attaches to the surface of tomatoes and also present in the interior part due to geotropic transmission via contaminated soil irrigated with contaminated water. .During the life cycle, Salmonella encounters the various environments such as acidic environment (low pH). To overcome such factors, Salmonella has certain adaptable mechanisms. In present 'study total 200 samples of tomatoes were analyzed out of which 10 samples were found to contain Salmonella. All the 10 isolates were then subjected to the antibiotic susceptibility testing and were found to be resistant against several antibiotics. These were subjected to acid resistant tolerance study.

  6. A role for Lon protease in the control of the acid resistance genes of Escherichia coli.

    PubMed

    Heuveling, Johanna; Possling, Alexandra; Hengge, Regine

    2008-07-01

    Lon protease is a major protease in cellular protein quality control, but also plays an important regulatory role by degrading various naturally unstable regulators. Here, we traced additional such regulators by identifying regulons with co-ordinately altered expression in a lon mutant by genome-wide transcriptional profiling. Besides many members of the RcsA regulon (which validates our approach as RcsA is a known Lon substrate), many genes of the sigmaS-dependent general stress response were upregulated in the lon mutant. However, the lon mutation did not affect sigmaS levels nor sigmaS activity in general, suggesting specific effects of Lon on secondary regulators involved in the control of subsets of sigmaS-controlled genes. Lon-affected genes also included the major acid resistance genes (gadA, gadBC, gadE, hdeAB and hdeD), which led to the discovery that the essential acid resistance regulator GadE (whose expression is sigmaS-controlled) is degraded in vivo in a Lon-dependent manner. GadE proteolysis is constitutive as it was observed even under conditions that induce the system (i.e. at low pH or during entry into stationary phase). GadE degradation was found to rapidly terminate the acid resistance response upon shift back to neutral pH and to avoid overexpression of acid resistance genes in stationary phase.

  7. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  8. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  9. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  10. Upconversion nanoparticles with a strong acid-resistant capping

    NASA Astrophysics Data System (ADS)

    Recalde, Ileana; Estebanez, Nestor; Francés-Soriano, Laura; Liras, Marta; González-Béjar, María; Pérez-Prieto, Julia

    2016-03-01

    Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases.Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases. Electronic supplementary information (ESI) available: Additional spectra and data of HEMA, AMPS, COP, UCNP@oleate, UCNP@COP, and UCNP@COP@MB. See DOI: 10.1039/c5nr06653k

  11. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  12. Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines

    PubMed Central

    Ge, Dong-zheng; Sheng, Yan; Cai, Xun

    2014-01-01

    All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines. PMID:24769642

  13. Skeletal muscle fatty acid handling in insulin resistant men.

    PubMed

    van Hees, Anneke M J; Jans, Anneke; Hul, Gabby B; Roche, Helen M; Saris, Wim H M; Blaak, Ellen E

    2011-07-01

    Disturbances in skeletal muscle lipid metabolism may precede or contribute to the development of whole body insulin resistance. In this study, we examined fasting and postprandial skeletal muscle fatty acid (FA) handling in insulin resistant (IR) men. Thirty men with the metabolic syndrome (MetS) (National Cholesterol Education Program-Adult Treatment Panel III) were included in this sub-study to the LIPGENE study, and divided in two groups (IR and control) based on the median of insulin sensitivity (S(I) = 2.06 (mU/l(-1))·min(-1)·10(-4)). Fasting and postprandial skeletal muscle FA handling were examined by combining the forearm balance technique with stable isotopes of palmitate. [(2)H(2)]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free FAs (FFAs) in the circulation and [U-(13)C]-palmitate was incorporated in a high-fat mixed meal (2.6 MJ, 61 E% fat) to label chylomicron-TAG. Muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid (PL) content, their fractional synthetic rates (FSRs) and degree of saturation, as well as messenger RNA (mRNA) expression of genes involved in lipid metabolism. In the first 2 h after meal consumption, forearm muscle [(2)H(2)]-labeled TAG extraction was higher in IR vs. control (P = 0.05). Fasting percentage saturation of muscle DAG was higher in IR vs. control (P = 0.016). No differences were observed for intramuscular TAG, DAG, FFA, and PL content, FSR, and muscle mRNA expression. In conclusion, increased muscle (hepatically derived) TAG extraction during postprandial conditions and increased saturation of intramuscular DAG are associated with insulin resistance, suggesting that disturbances in skeletal muscle FA handling could play a role in the development of whole body insulin resistance and type 2 diabetes. PMID:21331063

  14. Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Stratford, Malcolm; Steels, Hazel; Nebe-von-Caron, Gerhard; Novodvorska, Michaela; Hayer, Kimran; Archer, David B

    2013-08-16

    Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to <1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~100% cross-resistance to other weak-acid preservatives. Tests using (14)C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors.

  15. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat.

    PubMed Central

    Görlach, J; Volrath, S; Knauf-Beiter, G; Hengy, G; Beckhove, U; Kogel, K H; Oostendorp, M; Staub, T; Ward, E; Kessmann, H; Ryals, J

    1996-01-01

    Systemic acquired resistance is an important component of the disease resistance repertoire of plants. In this study, a novel synthetic chemical, benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), was shown to induce acquired resistance in wheat. BTH protected wheat systemically against powdery mildew infection by affecting multiple steps in the life cycle of the pathogen. The onset of resistance was accompanied by the induction of a number of newly described wheat chemically induced (WCI) genes, including genes encoding a lipoxygenase and a sulfur-rich protein. With respect to both timing and effectiveness, a tight correlation existed between the onset of resistance and the induction of the WCI genes. Compared with other plant activators, such as 2,6-dichloroisonicotinic acid and salicylic acid, BTH was the most potent inducer of both resistance and gene induction. BTH is being developed commercially as a novel type of plant protection compound that works by inducing the plant's inherent disease resistance mechanisms. PMID:8624439

  16. Hybrid resist systems based on α-substituted acrylate copolymers

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Sundberg, Linda K.; Bozano, Luisa; Lofano, Elizabeth M.; Yamanaka, Kazuhiro; Terui, Yoshiharu; Fujiwara, Masaki

    2009-03-01

    Classical electron-beam resists such as poly(methyl methacrylate) (PMMA) and Nippon Zeon's ZEP function as high resolution and low roughness positive resists on the basis of radiation induced main chain scission to reduce the molecular weight while chemical amplification resists utilized in device manufacturing function on the basis of acidcatalyzed deprotection to change the polarity. In an attempt to increase the resolution and reduce the line roughness of chemical amplification resists, we prepared copolymers that undergo radiation induced main chain scission and acidcatalyzed deprotection. In another word, we wanted to increase the sensitivity of the PMMA resist by incorporating the acid-catalyzed deprotection mechanism in polymers that undergo main chain scission, maintaining the high resolution and low roughness of PMMA. To synthesize such hybrid resist polymers, we selected α-substituted acrylates and α- substituted styrenes. The former included methyl methacrylate (MMA), t-butyl methacrylate (TBMA), methyl α- fluoroacrylate (MFA), t-butyl α-fluoroacrylate (TBFA), and t-butyl α-trifluoromethylacrylate (TBTFMA) and the latter α-methylstyrene (αMEST), α-methyleneindane (αMEIN), and α-methylenetetralin (αMETL). The α-substituted tbutyl acrylic esters were copolymerized with the methyl esters and also with α-substituted styrenic monomers using 2, 2'-azobis(isobutyronitrile) (AIBN). Hybrid resists were formulated by adding a photochemical acid generator and a base quencher to the copolymers and developers were selected by studying the dissolution behavior of unexposed and 254 nm exposed resist films using a quartz crystal microbalance (QCM). In addition to the difference in the imaging mechanism, PMMA and ZEP differ from the chemical amplification resists in developers; organic solvent vs. aqueous base. We were interested in looking also into the influence of the developer on the lithographic performance. Contrast curves were generated by exposing

  17. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    PubMed

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. PMID:27264339

  18. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  19. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  20. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. PMID:24447914

  1. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  2. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings.

    PubMed

    Song, Weiwei; Ma, Xinrong; Tan, Hong; Zhou, Jinyan

    2011-07-01

    The plant hormone abscisic acid (ABA) is an important regulator in many aspects of plant growth and development, as well as stress resistance. Here, we investigated the effects of exogenous ABA application on the interaction between tomato (Solanum lycopersicon L.) and Alternaria solani (early blight). Foliar spraying of 7.58 μM ABA was effective in reducing disease severity in tomato plants. Previously, increased activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) were observed in exogenous ABA-treated tomato leaves. Moreover, these enzyme activities were maintained at higher levels in ABA-pretreated and A. solani challenged tomato plants. Tomato defense genes, such as PR1, β-1, 3-glucanase (GLU), PPO, POD, and superoxide dismutase (SOD), were rapidly and significantly up-regulated by exogenous ABA treatment. Furthermore, a subsequent challenge of ABA-pretreated plants with the pathogen A. solani resulted in higher expression of defense genes, compared to water-treated or A. solani inoculated plants. Therefore, our results suggest that exogenous ABA could enhance disease resistance against A. solani infection in tomato through the activation of defense genes and via the enhancement of defense-related enzymatic activities.

  3. Eradication of Drug Resistant Staphylococcus aureus by Liposomal Oleic Acids

    PubMed Central

    Huang, Chun-Ming; Chen, Chao-Hsuan; Pornpattananangkul, Dissaya; Zhang, Li; Chan, Michael; Hsieh, Ming-Fa; Zhang, Liangfang

    2010-01-01

    Staphylococcus aureus (S. aureus) represents a major threat to a broad range of healthcare and community associated infections. This bacterium has rapidly evolved resistance to multiple drugs throughout its antibiotic history and thus it is imperative to develop novel antimicrobial strategies to enrich the currently shrinking therapeutic options against S. aureus. This study evaluated the antimicrobial activity and therapeutic efficacy of oleic acid (OA) in a liposomal formulation as an innate bactericide against methicillin-resistant S. aureus (MRSA). In vitro studies showed that these OA-loaded liposomes (LipoOA) could rapidly fuse into the bacterial membranes, thereby significantly improving the potency of OA to kill MRSA compared with the use of free OA. Further in vivo tests demonstrated that LipoOA were highly effective in curing skin infections caused by MRSA bacteria and preserving the integrity of the infected skin using a mouse skin model. Moreover, a preliminary skin toxicity study proved high biocompatibility of LipoOA to normal skin tissues. These findings suggest that LipoOA hold great potential to become a new, effective, and safe antimicrobial agent for the treatment of MRSA infections. PMID:20880576

  4. Phytic acid interactions in food systems.

    PubMed

    Cheryan, M

    1980-01-01

    Phytic acid is present in many plant systems, constituting about 1 to 5% by weight of many cereals and legumes. Concern about its presence in food arises from evidence that it decreases the bioavailability of many essential minerals by interacting with multivalent cations and/or proteins to form complexes that may be insoluble or otherwise unavailable under physiologic conditions. The precise structure of phytic acid and its salts is still a matter of controversy and lack of a good method of analysis is also a problem. It forms fairly stable chelates with almost all multivalent cations which are insoluble about pH 6 to 7, although pH, type, and concentration of cation have a tremendous influence on their solubility characteristics. In addition, at low pH and low cation concentration, phytate-protein complexes are formed due to direct electrostatic interaction, while at pH > 6 to 7, a ternary phytic acid-mineral-protein complex is formed which dissociates at high Na+ concentrations. These complexes appear to be responsible for the decreased bioavailability of the complexed minerals and are also more resistant to proteolytic digestion at low pH. Development of methods for producing low-phytate food products must take into account the nature and extent of the interactions between phytic acid and other food components. Simple mechanical treatment, such as milling, is useful for those seeds in which phytic acid tends to be localized in specific regions. Enzyme treatment, either directly with phytase or indirectly through the action of microorganisms, such as yeast during breadmaking, is quite effective, provided pH and other environmental conditions are favorable. It is also possible to produce low-phytate products by taking advantage of some specific interactions. For example, adjustment of pH and/or ionic strength so as to dissociate phytate-protein complexes and then using centrifugation or ultrafiltration (UF) has been shown to be useful. Phytic acid can also

  5. A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance

    PubMed Central

    Tomlinson, Jennifer H.; Thompson, Gary S.; Kalverda, Arnout P.; Zhuravleva, Anastasia; O’Neill, Alex J.

    2016-01-01

    Antibiotic resistance in clinically important bacteria can be mediated by proteins that physically associate with the drug target and act to protect it from the inhibitory effects of an antibiotic. We present here the first detailed structural characterization of such a target protection mechanism mediated through a protein-protein interaction, revealing the architecture of the complex formed between the FusB fusidic acid resistance protein and the drug target (EF-G) it acts to protect. Binding of FusB to EF-G induces conformational and dynamic changes in the latter, shedding light on the molecular mechanism of fusidic acid resistance. PMID:26781961

  6. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2006-01-01

    Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.

  7. Battery Resistance Analysis of ISS Power System

    NASA Technical Reports Server (NTRS)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  8. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  9. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  10. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Reverses Trans-10, Cis-12 Conjugated Linoleic Acid Induced Insulin Resistance in Mice1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: t10, c12-Conjugated linoleic acid (CLA) induces insulin resistance and fatty liver in mice which can be reversed by fish oils. We determined if it is eicospentaenoic acid (20:5n-3, EPA) or docoshexaenoic acid (22:6n-3, DHA) that reverses these adverse effects of CLA. Research Design and M...

  11. Resistance to β-Lactamase Inhibitor Protein Does Not Parallel Resistance to Clavulanic Acid in TEM β-Lactamase Mutants

    PubMed Central

    Schroeder, William A.; Locke, Troy R.; Jensen, Susan E.

    2002-01-01

    In order to compare patterns of resistance to inhibition by clavulanic acid with patterns of resistance to inhibition by a β-lactamase inhibitor protein (BLIP), R164S, R244S, and R164S/R244S mutant forms of TEM β-lactamase were prepared by site-directed mutagenesis. When kinetic parameters were determined for these mutant and wild-type forms of TEM, the single mutants showed properties that were similar to those in the literature but the double mutant showed properties that were very different. The R164S/R244S double mutant form of TEM retained its resistance to inhibition by clavulanic acid (characteristic of the R244S mutation) but lost all its ability to hydrolyze ceftazidime (characteristic of the R164S mutation). While these characteristics are contrary to those previously reported for an R164S/R244S double mutant, this discrepancy resulted from the use of a defective mutant in the earlier study. Both the single and double mutant forms of TEM remained highly sensitive when tested for inhibition by BLIP, showing only slightly increased resistance compared to that of the wild type; this pattern of resistance is quite different from the pattern of clavulanic acid resistance. The slight increases in resistance to inhibition by BLIP seen in the mutants may have been related to the fact that all of the mutations effected changes in the net charge on the TEM protein that could impede interactions with BLIP. PMID:12384366

  12. Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola

    PubMed Central

    Guerreiro, Ana; Figueiredo, Joana; Figueiredo, Andreia

    2016-01-01

    Plant resistance to biotrophic pathogens is classically believed to be mediated through salicylic acid (SA) signaling leading to hypersensitive response followed by the establishment of Systemic Acquired Resistance. Jasmonic acid (JA) signaling has extensively been associated to the defense against necrotrophic pathogens and insects inducing the accumulation of secondary metabolites and PR proteins. Moreover, it is believed that plants infected with biotrophic fungi suppress JA-mediated responses. However, recent evidences have shown that certain biotrophic fungal species also trigger the activation of JA-mediated responses, suggesting a new role for JA in the defense against fungal biotrophs. Plasmopara viticola is a biotrophic oomycete responsible for the grapevine downy mildew, one of the most important diseases in viticulture. In this perspective, we show recent evidences of JA participation in grapevine resistance against P. viticola, outlining the hypothesis of JA involvement in the establishment of an incompatible interaction with this biotroph. We also show that in the first hours after P. viticola inoculation the levels of OPDA, JA, JA-Ile, and SA increase together with an increase of expression of genes associated to JA and SA signaling pathways. Our data suggests that, on the first hours after P. viticola inoculation, JA signaling pathway is activated and the outcomes of JA–SA interactions may be tailored in the defense response against this biotrophic pathogen. PMID:27200038

  13. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  14. Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae

    PubMed Central

    Ravichandran, Sridhar; Stone, Sophia L.; Benkel, Bernhard; Zhang, Junzeng; Berrue, Fabrice; Prithiviraj, Balakrishnan

    2015-01-01

    Plants possess an exceedingly complex innate immune system to defend against most pathogens. However, a relative proportion of the pathogens overcome host's innate immunity and impair plant growth and productivity. We previously showed that mutation in purple acid phosphatase (PAP5) lead to enhanced susceptibility of Arabidopsis to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Here, we report that an optimal level of PAP5 is crucial for mounting complete basal resistance. Overexpression of PAP5 impaired ICS1, PR1 expression and salicylic acid (SA) accumulation similar to pap5 knockout mutant plants. Moreover, plant overexpressing PAP5 was impaired in H2O2 accumulation in response to Pst DC3000. PAP5 is localized in to peroxisomes, a known site of generation of reactive oxygen species for activation of defense responses. Taken together, our results demonstrate that optimal levels of PAP5 is required for mounting resistance against Pst DC3000 as both knockout and overexpression of PAP5 lead to compromised basal resistance. PMID:26300891

  15. Immunomodulation and hormonal disruption without compromised disease resistance in perfluorooctanoic acid (PFOA) exposed Japanese quail.

    PubMed

    Smits, Judit E G; Nain, Sukhbir

    2013-08-01

    This study evaluated the impact of oral perfluorooctanoic acid (PFOA) on Japanese quail at concentrations found in American and Belgian workers at PFOA manufacturing facilities. Three arms of the immune system were tested; T cell, B cell, and innate immunity. After 6 weeks exposure, quail were challenged with E. coli infection to test the ultimate measure of immunotoxicity, disease resistance. The T cell response was lower in the high exposure groups. Antibody mediated, and innate immune responses were not different. Growth rate was higher, whereas thyroid hormone levels were lower in PFOA-exposed birds. Morbidity/mortality from disease challenge was not different among the control and PFOA-exposed groups, and no overt PFOA toxicity was observed pre-disease challenge. Although PFOA at 'worst case scenario' levels caused T cell immunosuppression, this did not translate into increased disease susceptibility, demonstrating that immunotoxicity testing must be interpreted with caution since disease resistance is the ultimate concern. PMID:23639742

  16. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  17. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone.

  18. Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse.

    PubMed

    Leung, Kit-Yi; De Castro, Sandra C P; Savery, Dawn; Copp, Andrew J; Greene, Nicholas D E

    2013-09-01

    Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone. PMID:23935126

  19. Analysis of acid-generating action of PAG in an EUV resist using acid-sensitive dyes

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi; Matsumoto, Yoko; Biafore, John J.

    2013-03-01

    Researchers are currently examining various methods for determining the quantity of acid generated by a photoacid generator (PAG) and for analyzing acid-generating reactions using acid-sensitive dyes that react with acid and generate a color. Adding an acid-sensitive dye to the resist gives a clear grasp of the acid-generating action. The process involves applying a resist containing an acid-sensitive dye to a quartz substrate; exposing the substrate; and measuring and evaluating the absorbance of a chromogenic substance near 530 nm using a spectroscope. The method determines the rate constant for acid generation (Dill C parameter) during exposure based on the relationship between transmissivity at 530 nm and exposure dose. Using this method, we obtained and compared rate constants for acid generation (C parameters) as part of our study of dependence on the quantity of quencher in the EUV resist. Our results indicate a new model that accounts for the quencher concentration parameter would be useful in analyzing dependence on the quantity of quencher. This paper presents these findings, together with the results of studies of profile simulations using the quencher concentration parameter obtained in the experiments.

  20. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  1. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.

    PubMed

    Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J

    1999-01-19

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.

  2. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.

    PubMed

    Konings, W N; Lolkema, J S; Bolhuis, H; van Veen, H W; Poolman, B; Driessen, A J

    1997-02-01

    Lactic acid bacteria play an essential role in many food fermentation processes. They are anaerobic organisms which obtain their metabolic energy by substrate phosphorylation. In addition three secondary energy transducing processes can contribute to the generation of a proton motive force: proton/substrate symport as in lactic acid excretion, electrogenic precursor/product exchange as in malolactic and citrolactic fermentation and histidine/histamine exchange, and electrogenic uniport as in malate and citrate uptake in Leuconostoc oenos. In several of these processes additional H+ consumption occurs during metabolism leading to the generation of a pH gradient, internally alkaline. Lactic acid bacteria have also developed multidrug resistance systems. In Lactococcus lactis three toxin excretion systems have been characterized: cationic toxins can be excreted by a toxin/proton antiport system and by an ABC-transporter. This cationic ABC-transporter has surprisingly high structural and functional analogy with the human MDR1-(P-glycoprotein). For anions an ATP-driven ABC-like excretion systems exist.

  3. Induced Systemic Resistance and the Rhizosphere Microbiome

    PubMed Central

    Bakker, Peter A.H.M.; Doornbos, Rogier F.; Zamioudis, Christos; Berendsen, Roeland L.; Pieterse, Corné M.J.

    2013-01-01

    Microbial communities that are associated with plant roots are highly diverse and harbor tens of thousands of species. This so-called microbiome controls plant health through several mechanisms including the suppression of infectious diseases, which is especially prominent in disease suppressive soils. The mechanisms implicated in disease suppression include competition for nutrients, antibiosis, and induced systemic resistance (ISR). For many biological control agents ISR has been recognized as the mechanism that at least partly explains disease suppression. Implications of ISR on recruitment and functioning of the rhizosphere microbiome are discussed. PMID:25288940

  4. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain

  5. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets

    PubMed Central

    Shin, John J.; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A.; Poon, Tak; Li, Shu Chen; Young, Barry P.; Roskelley, Calvin D.

    2016-01-01

    ABSTRACT A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C–COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial

  6. Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes

    PubMed Central

    Hung, Wei-Chun; Chen, Hsiao-Jan; Lin, Yu-Tzu; Tsai, Jui-Chang; Chen, Chiao-Wei; Lu, Hsiao-Hung; Tseng, Sung-Pin; Jheng, Yao-Yu; Leong, Kin Hong; Teng, Lee-Jene

    2015-01-01

    We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PMID:26581090

  7. Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes.

    PubMed

    Hung, Wei-Chun; Chen, Hsiao-Jan; Lin, Yu-Tzu; Tsai, Jui-Chang; Chen, Chiao-Wei; Lu, Hsiao-Hung; Tseng, Sung-Pin; Jheng, Yao-Yu; Leong, Kin Hong; Teng, Lee-Jene

    2015-01-01

    We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes.

  8. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  9. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  10. Novel Chemical Amplification System in Azide/Phenolic Resin-Based Negative Resist

    NASA Astrophysics Data System (ADS)

    Aoki, Emiko; Shiraishi, Hiroshi; Hashimoto, Michiaki; Hayashi, Nobuaki

    1989-08-01

    A novel chemical amplification system based on an azide/phenolic resin-based negative resist is described. The new resist, which consists of an azide, a phenolic resin matrix, and a carboxylic acid, can be developed in aqueous alkaline solutions. Electron-beam exposure of this resist results in the production of a primary amine. In a subsequent post-exposure baking step, the primary amine catalyzes decarboxylation of the carboxylic acid. Additionally, the decarboxylation product acts as an aqueous alkaline dissolution inhibitor in the exposed areas. On the other hand, the carboxylic acid remaining in the unexposed areas promotes the dissolution rate of those areas. The new resist shows non-swelling pattern-formation by using the aqueous alkaline developer, and the sensitivity to electron beams is about three times higher than that of MRS.

  11. Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii

    PubMed Central

    Yoon, Eun-Jeong; Nait Chabane, Yassine; Goussard, Sylvie; Snesrud, Erik; Courvalin, Patrice; Dé, Emmanuelle

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. PMID:25805730

  12. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. PMID:27139585

  13. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  14. Response to oxalic acid as a resistance assay for Sclerotinia minor in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Response to oxalic acid was evaluated as a potential assay for screening peanut breeding lines for resistance to Sclerotinia blight caused by Sclerotinia minor. Detached stems of seven Spanish- and six runner-type peanut cultivars and advanced breeding lines, varying in resistance to Sclerotinia bl...

  15. Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone-sialic acid hybrids.

    PubMed

    Aoki, Yusuke; Tanimoto, Shuho; Takahashi, Daisuke; Toshima, Kazunobu

    2013-02-11

    The anthraquinone-sialic acid hybrids designed effectively degraded not only non-drug-resistant neuraminidase but also drug-resistant neuraminidase, which is an important target of anti-influenza therapy. Degradation was achieved using long-wavelength UV radiation in the absence of any additives and under neutral conditions. Moreover, the hybrids efficiently inhibited neuraminidase activities upon photo-irradiation. PMID:23282898

  16. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section...

  17. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section...

  18. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section...

  19. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic acid test system. 862.1450 Section...

  20. Recent advances in systemic acquired resistance research--a review.

    PubMed

    Hunt, M D; Neuenschwander, U H; Delaney, T P; Weymann, K B; Friedrich, L B; Lawton, K A; Steiner, H Y; Ryals, J A

    1996-11-01

    Little is known about the signal transduction events that lead to the establishment of the broad-spectrum, inducible plant immunity called systemic acquired resistance (SAR). Salicylic acid (SA) accumulation has been shown to be essential for the expression of SAR and plays a key role in SAR signaling. Hydrogen peroxide has been proposed to serve as a second messenger of SA. However, our results do not support such a role in the establishment of SAR. Further elucidation of SAR signal transduction has been facilitated by the identification and characterization of mutants. The lesions simulating disease (lsd). resistance response mutant class exhibits spontaneous lesions similar to those that occur during the hypersensitive response. Interestingly, some lsd mutants lose their lesioned phenotype when SA accumulation is prevented by expression of the nahG gene (encoding salicylate hydroxylase), thereby providing evidence for a feedback loop in SAR signal transduction. Characterization of a mutant non-responsive to SAR activator treatments has provided additional evidence for common signaling components between SAR and gene-for-gene resistance.

  1. Arginine-dependent acid-resistance pathway in Shigella boydii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...

  2. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.

    PubMed

    Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr

    2013-03-01

    Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations.

  3. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  4. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  5. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  6. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  7. PROTEOMIC ANALYSIS OF B-AMINOBUTYRIC ACID-PRIMED DROUGHT RESISTANCE IN CRABAPPLE SEEDLINGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and some model plant species, the non-protein, amino acid, DL-B-aminobutyric acid (BABA), has been shown to enhance disease resistance and increase salt and drought tolerance, through sensitization, and not direct induction of defense genes. This process is referred to a...

  8. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.

  9. The role of uric acid in the insulin resistance in children and adolescents with obesity

    PubMed Central

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-01-01

    Objective: To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Methods: Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8-18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. Results: The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40-2.62; p<−0.001). Conclusions: The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. PMID:26300523

  10. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice.

    PubMed

    Nair, Hareesh B; Huffman, Steven; Veerapaneni, Poornachand; Kirma, Nameer B; Binkley, Peter; Perla, Rao P; Evans, Dean B; Tekmal, Rajeshwar R

    2011-05-01

    Letrozole is a potent aromatase inhibitor and superior to other defined selective estrogen receptor modulators such as tamoxifen in treating hormone-responsive postmenopausal breast cancer patients. Patients who receive this drug may become insensitive to the effects of estrogen deprivation induced by letrozole. Letrozole has known side effects on bone metabolism due to systemic ablation of estrogen production. The purpose of this study was to examine the therapeutic efficacy of hyaluronic acid-bound letrozole nanoparticles (HA-Letr-NPs) in restoring sensitivity to letrozole-resistant (LTLT-Ca) cells. To target letrozole to LTLT-Ca cells, hyaluronic acid-bound letrozole nanoparticles were prepared by nanoprecipitation using biodegradable PLGA-PEG co-polymer. Binding specificity of HA to CD44 on the cell surface was analyzed in vitro using FITC-CD44 Ab and CD44 siRNA by flow cytometry. Effects on in vitro cytotoxicity and aromatase enzymatic activity of HA-Letr-NPs were performed in MCF-7 breast cancer cells, MCF-7 cells over-expressing aromatase (MCF-7/Aro), and LTLT-Ca cells resistant to letrozole. Preclinical efficacy of HA-Letr-NPs was examined in mice using LTLT-Ca xenograft tumors. HA-Letr-NPs were restricted to a maximum size of 100 nm. The in vitro drug release assay showed that the highest released concentration of letrozole occurred after 23 hours at 37 degrees C in phosphate-buffered saline. HA-Letr-NPs on MCF-7/Aro and LTLT-Ca cells showed an IC50 of 2 microM and 5 microM, respectively. HA-Letr-NPs were more efficacious in inhibiting tumor growth, reducing in vitro cellular and in vivo tumor aromatase enzyme activity more than the corresponding Letr-NPs or letrozole. HA-Letr-NPs restored and maintained a prolonged sensitivity and targeted delivery of letrozole in letrozole-resistant tumors in vivo. PMID:21780370

  11. Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae.

    PubMed

    Bayly, A M; Berglez, J M; Patel, O; Castelli, L A; Hankins, E G; Coloe, P; Hopkins Sibley, C; Macreadie, I G

    2001-11-13

    Saccharomyces cerevisiae mutants deficient in folate synthesis have been constructed and employed to study the utilisation of exogenous folates in yeast. One mutant specifically lacked dihydropteroate synthase while the second lacked dihydrofolate synthase. Exogenous folinic acid restored optimal growth to both strains. Folic acid did not generally rescue growth but spontaneous isolates capable of utilising folic acid were selected. The folic acid synthesis pathway in the folate utilising isolates was restored via transformation with FOL1 or FOL3 expression plasmids and transformants were tested for resistance to sulfamethoxazole (SMX). The presence of elevated levels of folic acid led to greatly reduced SMX sensitivity regardless of whether strains were folate utilisers or not.

  12. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    PubMed

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  13. Investigation of Nalidixic Acid Resistance Mechanism in Salmonella enterica Using Molecular Simulation Techniques.

    PubMed

    Preethi, B; Shanthi, V; Ramanathan, K

    2015-09-01

    The emergence of nalidixic acid-resistant strains of Salmonella typhimurium remains to be a major public health problem. In particular, the substitution of Asn in place of Asp at the 87 loci in the GyrA of S. typhimurium was experimentally stated for nalidixic acid resistance. However, the data on the possible mechanism of nalidixic acid resistance are limited. In this study, I-Mutant2.0 and DUET program were employed to explore the impact of mutation on the stability of GyrA protein. Subsequently, molecular simulation techniques were employed to provide detailed information on the nalidixic acid-resistant associates with the D87N mutation in the GyrA of S. typhimurium. The binding free energy data depicts that nalidixic acid forms stable complex only with native-type GyrA than mutant (D87N) type GyrA protein. Moreover, our results theoretically suggest that hydrogen bonding formed by the Arg91 is certainly responsible for the GyrA of S. typhimurium drug selectivity. It is hoped that these evidences are immensely important for the development of new antibiotic and to overcome the nalidixic acid resistance in the near future. PMID:26208690

  14. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro; Horinouchi, Sueharu

    2004-06-15

    Acetobacter spp. are used for industrial vinegar production because of their high ability to oxidize ethanol to acetic acid and high resistance to acetic acid. Two-dimensional gel electrophoretic analysis of a soluble fraction of Acetobacter aceti revealed the presence of several proteins whose production was enhanced, to various extents, in response to acetic acid in the medium. A protein with an apparent molecular mass of 100 kDa was significantly enhanced in amount by acetic acid and identified to be aconitase by NH2-terminal amino acid sequencing and subsequent gene cloning. Amplification of the aconitase gene by use of a multicopy plasmid in A. aceti enhanced the enzymatic activity and acetic acid resistance. These results showed that aconitase is concerned with acetic acid resistance. Enhancement of the aconitase activity turned out to be practically useful for acetic acid fermentation, because the A. aceti transformant harboring multiple copies of the aconitase gene produced a higher concentration of acetic acid with a reduced growth lag-time.

  15. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  16. The role of dietary acid load and mild metabolic acidosis in insulin resistance in humans.

    PubMed

    Williams, Rebecca S; Kozan, Pinar; Samocha-Bonet, Dorit

    2016-05-01

    Type 2 diabetes is increasingly being recognised as a global health crisis (World Health Organisation). Insulin resistance is closely associated with obesity and precedes the development of type 2 diabetes. However, there is now increasing evidence to suggest that diet itself may independently be associated with type 2 diabetes risk. A diet with a high acid load (or high potential renal net acid load, PRAL) can result in a decrease in pH towards the lower end of the normal physiological range, which may in turn lead to the development of insulin resistance. Conversely, reducing dietary acid load (the so called 'alkaline diet') may be protective and prevent the onset of type 2 diabetes. Here, we explore the influence of dietary acid load on the development of mild metabolic acidosis and induction of insulin resistance. Whilst large prospective cohort studies link high dietary acid load or low serum bicarbonate with the development of type 2 diabetes, the effect of a diet with a low acid (or high alkaline) load remains unclear. Further interventional studies are required to investigate the influence of dietary composition on the body's acid/base balance, insulin resistance and incidence of type 2 diabetes. PMID:26363101

  17. Effect of folic acid on homocysteine and insulin resistance of overweight and obese children and adolescents

    PubMed Central

    Dehkordi, Elham Hashemi; Sedehi, Morteza; Shahraki, Zohre Gholipour; Najafi, Reza

    2016-01-01

    Background: Considering the increasing trend of childhood obesity and subsequent burden of the disease in Iran and other countries and importance of early life intervention for achieving sustained effect on health of children and adolescents, this study aimed to investigate the effect of two different dose of folic acid on homocysteine (Hcy) level and insulin resistance of obese children. Materials and Methods: In this randomized, double-blind controlled clinical trial study, 60 obese and overweight children aged 5–12 years were enrolled. Selected obese children randomly allocated in two interventional (1 mg/day folic acid and 5 mg/day folic acid, for 8 weeks) and one control groups. Biochemical measurements including folic acid, Hcy, insulin and insulin resistance were measured between and within groups before and after trial. Results: In each group, 20 obese children were studied. The three groups were age and sex matched. After folic acid administration, mean of Hcy, insulin resistance and insulin decreased significantly in two groups which folic acid administrated with two different doses (P < 0.05). The reduction in studied biochemical variables was similar in two interventional groups (1 and 5 mg folic acid daily) (P > 0.05). Mean differences for Hcy, insulin resistance and insulin, in two intervention groups were significantly higher than the control group (P < 0.0001). Mean differences of Hcy, insulin resistance and insulin, in two intervention groups were not different significantly (P > 0.05). Conclusion: The findings of current trial showed that folic acid in two studied doses could be a safe and effective supplement for obese children to reduce Hcy level and insulin resistance, which consequently could prevent obesity-related complications including cardiovascular and metabolic disorders. PMID:27274503

  18. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-01

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery. PMID:21085119

  19. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  20. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  1. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  2. Induced resistance against the Asian citrus psyllid, Diaphorina citri, by β-aminobutyric acid in citrus.

    PubMed

    Tiwari, Siddharth; Meyer, Wendy L; Stelinski, Lukasz L

    2013-10-01

    β-Aminobutyric acid (BABA) is known to induce resistance to microbial pathogens, nematodes and insects in several host plant/pest systems. The present study was undertaken to determine whether a similar effect of BABA occurred against the Asian citrus psyllid, Diaphorina citri Kuwayama, in citrus. A 25 mM drench application of BABA significantly reduced the number of eggs/plant as compared with a water control, whereas 200 and 100 mM applications of BABA reduced the numbers of nymphs/plant and adults/plants, respectively. A 5 mM foliar application of BABA significantly reduced the number of adults but not eggs or nymphs when compared with a water control treatment. In addition, leaf-dip bioassays using various concentrations (25–500 mM) of BABA indicated no direct toxic effect on 2nd and 5th instar nymphs or adult D. citri. BABA-treated plants were characterized by significantly lower levels of iron, magnesium, phosphorus, sodium, sulfur and zinc as compared with control plants. The expression level of the PR-2 gene (β-1,3-glucanase) in BABA-treated plants that were also damaged by D. citri adult feeding was significantly higher than in plants exposed to BABA, D. citri feeding alone or control plants. Our results indicate the potential for using BABA as a systemic acquired resistance management tool for D. citri.

  3. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection

    PubMed Central

    Zhou, Tao; Murphy, Alex M.; Lewsey, Mathew G.; Westwood, Jack H.; Zhang, Heng-Mu; González, Inmaculada; Canto, Tomás

    2014-01-01

    The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1. PMID:24633701

  4. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  5. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Folic acid test system. 862.1295 Section 862.1295....1295 Folic acid test system. (a) Identification. A folic acid test system is a device intended to measure the vitamin folic acid in plasma and serum. Folic acid measurements are used in the diagnosis...

  6. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    SciTech Connect

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  7. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Wang, Chao-Min; Jhan, Yun-Lian; Tsai, Shang-Jie; Chou, Chang-Hung

    2016-07-07

    (1) BACKGROUND: Several triterpenoids were found to act synergistically with classes of antibiotic, indicating that plant-derived chemicals have potential to be used as therapeutics to enhance the activity of antibiotics against multidrug-resistant pathogens. However, the mode of action of triterpenoids against bacterial pathogens remains unclear. The objective of this study is to evaluate the interaction between ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA); (2) METHODS: The ability of ursolic acid to damage mammalian and bacterial membranes was examined. The proteomic response of methicillin-resistant S. aureus in ursolic acid treatment was investigated using two-dimensional (2D) proteomic analysis; (3) RESULTS: Ursolic acid caused the loss of staphylococcal membrane integrity without hemolytic activity. The comparison of the protein pattern of ursolic acid-treated and normal MRSA cells revealed that ursolic acid affected a variety of proteins involved in the translation process with translational accuracy, ribonuclease and chaperon subunits, glycolysis and oxidative responses; (4) CONCLUSION: The mode of action of ursolic acid appears to be the influence on the integrity of the bacterial membrane initially, followed by inhibition of protein synthesis and the metabolic pathway. These findings reflect that the pleiotropic effects of ursolic acid against MRSA make it a promising antibacterial agent in pharmaceutical research.

  8. The Pleiotropic Antibacterial Mechanisms of Ursolic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Wang, Chao-Min; Jhan, Yun-Lian; Tsai, Shang-Jie; Chou, Chang-Hung

    2016-01-01

    (1) BACKGROUND: Several triterpenoids were found to act synergistically with classes of antibiotic, indicating that plant-derived chemicals have potential to be used as therapeutics to enhance the activity of antibiotics against multidrug-resistant pathogens. However, the mode of action of triterpenoids against bacterial pathogens remains unclear. The objective of this study is to evaluate the interaction between ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA); (2) METHODS: The ability of ursolic acid to damage mammalian and bacterial membranes was examined. The proteomic response of methicillin-resistant S. aureus in ursolic acid treatment was investigated using two-dimensional (2D) proteomic analysis; (3) RESULTS: Ursolic acid caused the loss of staphylococcal membrane integrity without hemolytic activity. The comparison of the protein pattern of ursolic acid-treated and normal MRSA cells revealed that ursolic acid affected a variety of proteins involved in the translation process with translational accuracy, ribonuclease and chaperon subunits, glycolysis and oxidative responses; (4) CONCLUSION: The mode of action of ursolic acid appears to be the influence on the integrity of the bacterial membrane initially, followed by inhibition of protein synthesis and the metabolic pathway. These findings reflect that the pleiotropic effects of ursolic acid against MRSA make it a promising antibacterial agent in pharmaceutical research. PMID:27399657

  9. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health.

  10. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Ramler, Ivan P; Holder, Edith; Hayes, Gina

    2015-01-01

    Forty-two percent of Escherichia coli and 58% of Enterococcus spp. isolated from cattle feedlot runoff and associated infiltration basin and constructed wetland treatment system were resistant to at least one antibiotic of clinical importance; a high level of multidrug resistance (22% of E. coli and 37% of Enterococcus spp.) was observed. Hierarchical clustering revealed a closely associated resistance cluster among drug-resistant E. coli isolates that included cephalosporins (ceftiofur, cefoxitin, and ceftriaxone), aminoglycosides (gentamycin, kanamycin, and amikacin), and quinolone nalidixic acid; antibiotics from these classes were used at the study site, and cross-resistance may be associated with transferrable multiple-resistance elements. For Enterococcus spp., co-resistance among vancomycin, linezolid, and daptomycin was common; these antibiotics are reserved for complicated clinical infections and have not been approved for animal use. Vancomycin resistance (n = 49) only occurred when isolates were resistant to linezolid, daptomycin, and all four of the MLSB (macrolide-lincosamide-streptogramin B) antibiotics tested (tylosin, erythromycin, lincomycin, and quinipristin/dalfopristin). This suggests that developing co-resistance to MLSB antibiotics along with cyclic lipopeptides and oxazolidinones may result in resistance to vancomycin as well. Effects of the treatment system on antibiotic resistance were pronounced during periods of no rainfall and low flow (long residence time). Increased hydraulic loading (short residence time) under the influence of rain caused antibiotic-resistant bacteria to be flushed through the treatment system. This presents concern for environmental discharge of multidrug-resistant organisms relevant to public health. PMID:25504186

  11. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit.

  12. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  13. Mutation of G234 amino acid residue in Candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport

    PubMed Central

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca2+ did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  14. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    PubMed

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport.

  15. Mutation of G234 amino acid residue in candida albicans drug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport.

    PubMed

    Zhang, Shi-Qun; Miao, Qi; Li, Li-Ping; Zhang, Lu-Lu; Yan, Lan; Jia, Yu; Cao, Yong-Bing; Jiang, Yuan-Ying

    2015-01-01

    Widespread and repeated use of azoles has led to the rapid development of drug resistance in Candida albicans. Our previous study found Rta2p, a membrane protein with 7 transmembrane domains, was involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Conserved amino acids in the transmembrane domain of Rta2p were subjected to site-directed mutagenesis. The sensitivity of C. albicans to fluconazole in vitro was examined by minimum inhibitory concentration and killing assay, and the therapeutic efficacy of fluconazole in vivo was performed by systemic mice candidiasis model. Furthermore, dihydrosphingosine transport activity was detected by NBD labeled D-erythro-dihydrosphingosine uptake and release assay, and the sensitivity to sphingolipid biosynthesis inhibitors. We successfully constructed 14 mutant strains of Rta2p, screened them by minimum inhibitory concentration and found Ca(2+) did not completely induce fluconazole resistance with G158E and G234S mutations. Furthermore, we confirmed that G234S mutant enhanced the therapeutic efficacy of fluconazole against systemic candidiasis and significantly increased the accumulation of dihydrosphingosine by decreasing its release. However, G158E mutant didn't affect drug therapeutic efficacy in vivo and dihydrosphingosine transport in C. albicans. G234 of Rta2p in C. albicans is crucial in calcineurin-mediated fluconazole resistance and dihydrosphingosine transport. PMID:26220356

  16. Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials

    PubMed Central

    Morvan, Claire; Halpern, David; Kénanian, Gérald; Hays, Constantin; Anba-Mondoloni, Jamila; Brinster, Sophie; Kennedy, Sean; Trieu-Cuot, Patrick; Poyart, Claire; Lamberet, Gilles; Gloux, Karine; Gruss, Alexandra

    2016-01-01

    The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. PMID:27703138

  17. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer

    PubMed Central

    Johansson, Henrik J.; Sanchez, Betzabe C.; Mundt, Filip; Forshed, Jenny; Kovacs, Aniko; Panizza, Elena; Hultin-Rosenberg, Lina; Lundgren, Bo; Martens, Ulf; Máthé, Gyöngyvér; Yakhini, Zohar; Helou, Khalil; Krawiec, Kamilla; Kanter, Lena; Hjerpe, Anders; Stål, Olle; Linderholm, Barbro K.; Lehtiö, Janne

    2013-01-01

    About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen. PMID:23868472

  18. Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Yang, Xiaomin; Ren, Junxiao; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Wang, Yongchao; Zhang, Zhenzhong

    2016-01-01

    Multifunctional nanosheets (HA-GO/Pluronic) with targeted chemo-photothermal properties were successfully developed for controlled delivery of mitoxantrone (MIT) to overcome multidrug resistance (MDR). In vitro release profiles displayed that both an acidic environment and a NIR laser could trigger and accelerate the release of a drug, which ensured nanosheets were stable in blood circulation and released MIT within tumor cells under laser irradiation. HA-GO/Pluronic nanosheets were taken up into MCF-7/ADR cells via receptor-mediated endocytosis, which further facilitated escapement of P-gp efflux. Compared with MIT solution, MIT/HA-GO/Pluronic showed greater cytotoxicity and increase in cellular MIT accumulation in MCF-7/ADR cells. Cell apoptosis and cell cycle arrest studies also revealed that MIT/HA-GO/Pluronic was more potent than MIT/GO/Pluronic and MIT solution. The anticancer efficacy in vivo was evaluated in MCF-7 and MCF-7/ADR-bearing mice, and inhibition of tumors by MIT/HA-GO/Pluronic with NIR laser irradiation was the most effective among all MIT formulations. In summary, the MIT/HA-GO/Pluronic system had striking functions such as P-gp reversible inhibitor and anticancer efficacy, and could present a promising platform for drug-resistant cancer treatment.

  19. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    PubMed

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures.

  20. 21 CFR 862.1795 - Vanilmandelic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vanilmandelic acid test system. 862.1795 Section... Systems § 862.1795 Vanilmandelic acid test system. (a) Identification. A vanilmandelic acid test system is a device intended to measure vanilmandelic acid in urine. Measurements of vanilmandelic...

  1. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid.

    PubMed Central

    Collart, F R; Huberman, E

    1987-01-01

    The regulation of IMP dehydrogenase (IMPDH) was analyzed in Chinese hamster V79 cell variants that exhibit different degrees of resistance to the cytotoxic effect of mycophenolic acid, a specific inhibitor of IMPDH. Western blot (immunoblot) analysis with an IMPDH antiserum revealed a 14- to 27-fold increase in the amount of enzyme in the mycophenolic acid-resistant cells. The antiserum was also used to screen for a phage containing the IMPDH cDNA sequence from a lambda gt11 expression library. Northern blot (RNA blot) analyses of total cellular and poly(A)+ RNA showed that an IMPDH cDNA probe hybridized to a 2.2-kilobase transcript, the amount of which was associated with increased resistance. Southern blotting with the probe indicated an amplification of the IMPDH gene in the mycophenolic acid-resistant cells. Our findings suggest that the acquired mycophenolic acid resistance of the V79 cell variants is associated with increases in the amount and activity of IMPDH and the number of IMPDH gene copies. Images PMID:2890098

  2. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus.

    PubMed

    O'Neill, A J; Larsen, A R; Skov, R; Henriksen, A S; Chopra, I

    2007-05-01

    Resistance to the antibiotic fusidic acid in European strains of Staphylococcus aureus causing impetigo has increased in recent years. This increase appears to have resulted from clonal expansion of a strain we have designated the epidemic European fusidic acid-resistant impetigo clone (EEFIC), which carries the fusidic acid resistance determinant fusB on its chromosome. To understand better the properties of the EEFIC responsible for its success, we have performed detailed phenotypic and genotypic characterization of this clone. Molecular typing revealed the EEFIC to be ST123, spa type t171, and agr type IV and therefore unrelated to earlier prevalent fusB(+) strains found in the United Kingdom. EEFIC strains exhibited resistance to fusidic acid, penicillin, and, in some cases, erythromycin, which are all used in the treatment of impetigo. PCR analysis of the EEFIC and complete DNA sequencing of the 39.3 Kb plasmid it harbors identified genes encoding several toxins previously implicated in impetigo (exfoliative toxins A and B and EDIN-C). The location of fusB was mapped on the chromosome and found to be associated with a novel 16.6-kb genomic island integrated downstream of groEL. Although this element is related to classical staphylococcal pathogenicity islands, it does not encode any known virulence factors and consequently has been designated SaRI(fusB) (for "S. aureus resistance island carrying fusB").

  3. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  4. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors.

    PubMed

    Piao, Ji-Gang; Gao, Feng; Yang, Lihua

    2016-01-13

    How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients. PMID:26654626

  5. Development of a SCAR (sequence-characterised amplified region) marker for acid resistance-related gene in Lactobacillus plantarum.

    PubMed

    Liu, Shu-Wen; Li, Kai; Yang, Shi-Ling; Tian, Shu-Fen; He, Ling

    2015-03-01

    A sequence characterised amplified region marker was developed to determine an acid resistance-related gene in Lactobacillus plantarum. A random amplified polymorphic DNA marker named S116-680 was reported to be closely related to the acid resistance of the strains. The DNA band corresponding to this marker was cloned and sequenced with the induction of specific designed PCR primers. The results of PCR test helped to amplify a clear specific band of 680 bp in the tested acid-resistant strains. S116-680 marker would be useful to explore the acid-resistant mechanism of L. plantarum and to screen desirable malolactic fermentation strains.

  6. Observations on high levels of fusidic acid resistant Staphylococcus aureus in Harrogate, North Yorkshire, UK.

    PubMed

    Ravenscroft, J C; Layton, A; Barnham, M

    2000-06-01

    A retrospective study was carried out to investigate possible reasons for a marked increase in fusidic acid-resistant Staphylococcus aureus (FusR S. aureus) identified by our routine hospital microbiology service. Information was obtained on a sample of 64 consecutive patients from whom resistant S. aureus had been cultured. The source of isolates was found to be diffuse within the hospital and community. The site of sample was most frequently chronic cutaneous infections (68%). All the S. aureus isolates were resistant to both fusidic acid and penicillin and many were resistant to multiple antibiotics. Topical fusidic acid had been used by 40% of patients in the preceding 6 months and none had received oral fusidic acid (sodium fusidate). Most (80%) had received an oral antibiotic in the preceding 2 years. Information from the Prescriptions Pricing Authority revealed that the total number of prescriptions for fusidic acid-containing preparations for the period September 1997 to August 1998 was markedly higher in Harrogate than in five other local areas where increases in (FusR) S. aureus have not been observed.

  7. Fatty acid composition analyses of the DCMU resistant mutants of Nannochloropsis oculata (eustigmatophyceae)

    NASA Astrophysics Data System (ADS)

    Jimin, Zhang; Shuang, Liu; Xue, Sun; Guanpin, Yang; Xuecheng, Zhang; Zhenhui, Gao

    2003-04-01

    Ultraviolet mutagenesis was applied to Nannochloropsis oculata and three mutants resistant to 3-(3, 4-dichlorophenyl)-1,1-dimethylurea (DCMU) were isolated. The cellular chlorophyll a and total lipid content of the wild are higher in the medium supplemented with DCMU than in the control without DCMU. Without DCMU, the growth rates and chlorophyll a contents of the mutants are similar to those of the wild. Significant changes of fatty acid content and composition have occurred in DCMU-resistant mutants growing in the medium supplemented with DCMU. The total lipid, palmitic acid (16:0), palmitoleic acid (16:1ω9) and oleic (18:1ω9) contents decrease significantly, while the vaccenic acid (18:1ω11) increases significantly and the EPA content of dried powder increases slightly in the mutants. The study may provide a basis to improve EPA content in Nannochloropsis oculata in the future.

  8. Long-Term Control of Human Immunodeficiency Virus-1 Replication Despite Extensive Resistance to Current Antiretroviral Regimens: Clonal Analysis of Resistance Mutations in Proviral Deoxyribonucleic Acid

    PubMed Central

    Stella-Ascariz, Natalia; Montejano, Rocio; Martin-Vicente, María; Mingorance, Jesús; Pérez-Valero, Ignacio; Bernardino, José I.; Arribas, Jose R.

    2016-01-01

    Archived resistance mutations compromise antiretroviral treatment. We have investigated 3 selected aviremic patients who had extensive historical resistance to their current regimen. All 3 patients underwent unstructured treatment interruptions associated to the re-emergence of wild-type virus before starting their current suppressive regimes. Almost all historical resistance mutations detected in plasma were found in circulating proviral deoxyribonucleic acid. None of the clones analyzed was fully resistant to the current antiretroviral regimen. PMID:27006965

  9. Characterization of Resistances of a Capacitive Deionization System.

    PubMed

    Qu, Yatian; Baumann, Theodore F; Santiago, Juan G; Stadermann, Michael

    2015-08-18

    Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figures of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. Lastly, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.

  10. The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance.

    PubMed

    Bijlsma, Jetta J E; Waidner, Barbara; Vliet, Arnoud H M van; Hughes, Nicky J; Häg, Stephanie; Bereswill, Stefan; Kelly, David J; Vandenbroucke-Grauls, Christina M J E; Kist, Manfred; Kusters, Johannes G

    2002-02-01

    The only known niche of the human pathogen Helicobacter pylori is the gastric mucosa, where large fluctuations of pH occur, indicating that the bacterial response and resistance to acid are important for successful colonization. One of the few regulatory proteins in the H. pylori genome is a homologue of the ferric uptake regulator (Fur). In most bacteria, the main function of Fur is the regulation of iron homeostasis. However, in Salmonella enterica serovar Typhimurium, Fur also plays an important role in acid resistance. In this study, we determined the role of the H. pylori Fur homologue in acid resistance. Isogenic fur mutants were generated in three H. pylori strains (1061, 26695, and NCTC 11638). At pH 7 there was no difference between the growth rates of mutants and the parent strains. Under acidic conditions, growth of the fur mutants was severely impaired. No differences were observed between the survival of the fur mutant and parent strain 1061 after acid shock. Addition of extra iron or removal of iron from the growth medium did not improve the growth of the fur mutant at acidic pH. This indicates that the phenotype of the fur mutant at low pH was not due to increased iron sensitivity. Transcription of fur was repressed in response to low pH. From this we conclude that Fur is involved in the growth at acidic pH of H. pylori; as such, it is the first regulatory protein implicated in the acid resistance of this important human pathogen. PMID:11796589

  11. Resistance to freshwater exposure in White Sea Littorina spp. II: Acid-base regulation.

    PubMed

    Sokolova, I M; Bock, C; Pörtner, H O

    2000-03-01

    Parameters of acid-base and energy status were studied by in vivo 31P-nuclear magnetic resonance spectroscopy in three White Sea Littorina spp. (L. littorea, L. saxatilis and L. obtusata) during prolonged anaerobiosis in freshwater. Intracellular pH decreased significantly, especially during the early period of anaerobiosis, but later the decrease in intracellular pH slowed down considerably, suggesting a capacity for intracellular pH regulation in all three species. There was a trend for intracellular pH to fall most rapidly in the least freshwater-resistant species, L. obtusata, as compared to the most resistant, L. littorea. Non-bicarbonate, non-phosphate buffer values estimated by the homogenate technique were similar in the three studied species (28-37 mmol pH(-1) kg(-1) wet weight) and did not change during freshwater exposure. The CaCO3 buffer value of the foot tissues was considerably higher (171-218 mmol pH(-1) kg(-1) wet weight) and decreased significantly during freshwater exposure. The contribution of the multiple tissue buffering systems to intracellular pH regulation in Littorina spp. shifts between different stages of freshwater exposure. Initially, the non-bicarbonate, non-phosphate tissue buffering system seems to be of major importance for metabolic proton buffering at intracellular pH between 7.5 and 7.0. During later stages of anaerobiosis and at lower intracellular pH, the CaCO3 buffer is involved in proton buffering. Decrease in the CaCO3 buffer value during freshwater exposure was in quantitative agreement with the amount of metabolic protons buffered, thus suggesting that CaCO3 tissue stores may serve as a major buffering system during prolonged anaerobiosis in Littorina spp. PMID:10791570

  12. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  13. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  14. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  15. Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5.

    PubMed

    Ruiz, Jimena A; Bernar, Evangelina M; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  16. Effect of citric acid irrigation on the fracture resistance of endodontically treated roots

    PubMed Central

    Arslan, Hakan; Barutcigil, Cagatay; Karatas, Ertugrul; Topcuoglu, Huseyin Sinan; Yeter, Kubra Yesildal; Ersoy, Ibrahim; Ayrancı, Leyla Benan

    2014-01-01

    Objective: The aim of this study was to evaluate the effect of citric acid irrigation on root fracture in different concentrations and at various time exposures on root fracture. Materials and Methods: Forty-eight human mandibular incisors with similar dimensions were selected. The specimens were decoronated, then divided into 6 groups as follows: A group without instrumentation and filling (G1) and the 5 other groups with canal preparation and irrigation of distilled water (G2), 10% citric acid for 1 min (G3), 50% citric acid for 1 min (G4), 10% citric acid for 10 min (G5), and 50% citric acid for 10 min (G6). In the experimental groups, the canals were obturated and subjected to the strength test. Statistical analysis was performed using Kruskal-Wallis test (P = 0.05). Results: G6 showed the highest fracture resistance (629.97 N), and G3 showed the lowest fracture resistance (507.76 N). However, there was no statistically significant difference among the groups. Conclusions: The results of this study suggest that use of citric acid is safe in terms of fracture resistance. PMID:24966750

  17. Incidence and mechanisms of resistance to the combination of amoxicillin and clavulanic acid in Escherichia coli.

    PubMed Central

    Stapleton, P; Wu, P J; King, A; Shannon, K; French, G; Phillips, I

    1995-01-01

    Among Escherichia coli organisms isolated at St. Thomas's Hospital during the years 1990 to 1994, the frequency of resistance to amoxicillin-clavulanic acid (tested by disk diffusion in a ratio of 2:1) remained constant at about 5% of patient isolates (10 to 15% of the 41 to 45% that were amoxicillin resistant). Mechanisms of increased resistance were determined for 72 consecutively collected such amoxicillin-clavulanic acid-resistant isolates. MICs of the combination were 16-8 micrograms/ml for 51 (71%) of these and > or = 32-16 micrograms/ml for the remainder. The predominant mechanism was hyperproduction of enzymes isoelectrically cofocusing with TEM-1 (beta-lactamase activities, > 200 nmol of nitrocefin hydrolyzed per min per mg of protein) which was found in 44 isolates (61%); two isolates produced smaller amounts (approximately 150 nmol/min/mg) of such enzymes, and two isolates hyperproduced enzymes cofocusing with TEM-2. Eleven isolates produced enzymes cofocusing with OXA-1 beta-lactamase, which has previously been associated with resistance to amoxicillin-clavulanic acid. Ten isolates produced increased amounts of chromosomal beta-lactamase, and four of these additionally produced TEM-1 or TEM-2. Three isolates produced inhibitor-resistant TEM-group enzymes. In one of the enzymes (pI, 5.4), the amino acid sequence change was Met-67-->Val, and thus the enzyme is identical to TEM-34. Another (pI, 5.4) had the substitution Met-67-->Ile and is identical to IRT-I67, which we propose now be given the designation TEM-40. The third (pI, 5.2) had the substitution Arg-241-->Thr; this enzyme has not been reported previously and should be called TEM-41. The rarity and diversity of inhibitor-resistant TEM-group enzymes suggest that they are the result of spontaneous mutations that have not yet spread. PMID:8585729

  18. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    PubMed

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  19. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases.

    PubMed

    Saikia, R; Kumar, R; Arora, D K; Gogoi, D K; Azad, P

    2006-01-01

    Three isolates of Pseudomonas aeruginosa were used for seed treatment of rice; all showed plant growth promoting activity and induced systemic resistance in rice against Rhizoctonia solani G5 and increased seed yield. Production of salicylic acid (Sal) by P. aeruginosa both in vitro and in vivo was quantified with high performance liquid chromatography. All three isolates produced more Sal in King's B broth than in induced roots. Using a split root system, more Sal accumulated in root tissues of bacterized site than in distant roots on the opposite site of the root system after 1 d, but this difference decreased after 3 d. Sal concentration 0-200 g/L showed no inhibition of mycelial growth of R. solani in vitro, while at > or =300 g/L it inhibited it. P. aeruginosa-pretreated rice plants challenged inoculation with R. solani (as pathogen), an additional increase in the accumulation of peroxidase was observed. Three pathogenesis-related peroxidases in induced rice plants were detected; molar mass of these purified peroxidases was 28, 36 and 47 kDa. Purified peroxidase showed antifungal activity against phytopathogenic fungi R. solani, Pyricularia oryzae and Helminthosporium oryzae. PMID:17176755

  20. Docosahexaenoic acid in neural signaling systems.

    PubMed

    Crawford, Michael A

    2006-01-01

    Docosahexaenoic acid has been conserved in neural signalling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates and humans. This extreme conservation, despite wide genomic changes over 500 million years, testifies to a uniqueness of this molecule in the brain. The brain selectively incorporates docosahexaenoic acid and its rate of incorporation into the developing brain has been shown to be greater than ten times more efficient than its synthesis from the omega 3 fatty acids of land plant origin. Data has now been published demonstrating a significant influence of dietary omega 3 fatty acids on neural gene expression. As docosahexaenoic acid is the only omega 3 fatty acid in the brain, it is likely that it is the ligand involved. The selective uptake, requirement for function and stimulation of gene expression would have conferred an advantage to a primate which separated from the chimpanzees in the forests and woodlands and sought a different ecological niche. In view of the paucity of docosahexaenoic acid in the land food chain it is likely that the advantage would have been gained from a lacustrine or marine coastal habitat with access to food rich in docosahexaenoic acid and the accessory micronutrients, such as iodine, zinc, copper, manganese and selenium, of importance in brain development and protection against peroxidation. Land agricultural development has, in recent time, come to dominate the human food chain. The decline in use and availability of aquatic resources is not considered important by Langdon (2006) as he considers the resource was not needed for human evolution and can be replaced from the terrestrial food chain. This notion is not supported by the biochemistry nor the molecular biology. He misses the point that the shoreline hypothesis is not just dependent on docosahexaenoic acid but also on the other accessory nutrients specifically required by the brain. Moreover he neglects the basic principle of Darwinian

  1. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification. A methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Methylmalonic acid (nonquantitative) test...

  2. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification. A methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Methylmalonic acid (nonquantitative) test...

  3. 21 CFR 862.1509 - Methylmalonic acid (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Test Systems § 862.1509 Methylmalonic acid (nonquantitative) test system. (a) Identification. A methylmalonic acid (nonquantitative) test system is a device intended to identify methylmalonic acid in urine... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Methylmalonic acid (nonquantitative) test...

  4. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  5. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uric acid test system. 862.1775 Section 862.1775....1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to measure uric acid in serum, plasma, and urine. Measurements obtained by this device are used in the...

  6. Diets Containing α-Linolenic (ω3) or Oleic (ω9) Fatty Acids Rescues Obese Mice From Insulin Resistance.

    PubMed

    Oliveira, V; Marinho, R; Vitorino, D; Santos, G A; Moraes, J C; Dragano, N; Sartori-Cintra, A; Pereira, L; Catharino, R R; da Silva, A S R; Ropelle, E R; Pauli, J R; De Souza, C T; Velloso, L A; Cintra, D E

    2015-11-01

    Subclinical systemic inflammation is a hallmark of obesity and insulin resistance. The results obtained from a number of experimental studies suggest that targeting different components of the inflammatory machinery may result in the improvement of the metabolic phenotype. Unsaturated fatty acids exert antiinflammatory activity through several distinct mechanisms. Here, we tested the capacity of ω3 and ω9 fatty acids, directly from their food matrix, to exert antiinflammatory activity through the G protein-coupled receptor (GPR)120 and GPR40 pathways. GPR120 was activated in liver, skeletal muscle, and adipose tissues, reverting inflammation and insulin resistance in obese mice. Part of this action was also mediated by GPR40 on muscle, as a novel mechanism described. Pair-feeding and immunoneutralization experiments reinforced the pivotal role of GPR120 as a mediator in the response to the nutrients. The improvement in insulin sensitivity in the high-fat substituted diets was associated with a marked reduction in tissue inflammation, decreased macrophage infiltration, and increased IL-10 levels. Furthermore, improved glucose homeostasis was accompanied by the reduced expression of hepatic gluconeogenic enzymes and reduced body mass. Thus, our data indicate that GPR120 and GPR40 play a critical role as mediators of the beneficial effects of dietary unsaturated fatty acids in the context of obesity-induced insulin resistance. PMID:26280128

  7. [Biological profile of tartrate-resistant acid phosphatase as a marker of bone resorption].

    PubMed

    Rico, H; Iritia, M; Arribas, I; Revilla, M

    1990-12-01

    Tartrate-resistant serum acid phosphatase was measured in 123 subjects, 80 of which were normal and the rest pathologic, in order to define the profile and value of this parameter as a biological marker of osteoclastic activity. Normal subjects were divided into age groups based on the period where skeletal growth ends (under 20 years), at the age of menopause in women (50 years, between 20 and 50 years) and those over 50 years. There was an increase in tartrate-resistant serum acid phosphatase coinciding with puberty and no sex differences were observed after the 50 year mark, when women showed higher values than men (p less than 0.001). Such tartrate-resistant serum acid phosphatase increase, is reflected as higher values in the 50 year group than in the 20 to 50 year group (p less than 0.001), the only age limit where a negative significant correlation between tartrate-resistant serum acid phosphatase values and age could be observed (p less than 0.05). Values were higher up to the age of 20 years (p less than 0.001) than in any other older age group. Levels increased significantly (p less than 0.001 for both groups) in post-menopausal osteoporosis (n = 20) and in Paget's disease of bone (n = 15), and decreased significantly (p less than 0.05) in imperfect osteogenesis (n = 8), thus revealing its value as a biological marker of osteoclastic activity. PMID:2099535

  8. Analysis of the Loss in Heat and Acid Resistance during Germination of Spores of Bacillus Species

    PubMed Central

    Luu, Stephanie

    2014-01-01

    A major event in the nutrient germination of spores of Bacillus species is release of the spores' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed. PMID:24563034

  9. Proteomic analysis of drought resistance in crabapple seedlings primed by the xenobiotic Beta-aminobutyric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a variety of annual crops and model plants, the xenobiotic DL-Beta-aminobutyric acid (BABA) has been shown to enhance disease resistance and increase salt, drought and thermotolerance. BABA does not activate stress genes directly, but sensitizes plants to respond more quickly and strongly to biot...

  10. Combustion waves in hydraulically resisted systems.

    PubMed

    Brailovsky, I; Kagan, L; Sivashinsky, G

    2012-02-13

    The effects of hydraulic resistance on the burning of confined/obstacle-laden gaseous and gas-permeable solid explosives are discussed on the basis of recent research. Hydraulic resistance is found to induce a new powerful mechanism for the reaction spread (diffusion of pressure) allowing for both fast subsonic as well as supersonic propagation. Hydraulic resistance appears to be of relevance also for the multiplicity of detonation regimes as well as for the transitions from slow conductive to fast convective, choked or detonative burning. A quasi-one-dimensional Fanno-type model for premixed gas combustion in an obstructed channel open at the ignition end is discussed. It is shown that, similar to the closed-end case studied earlier, the hydraulic resistance causes a gradual precompression and preheating of the unburned gas adjacent to the advancing deflagration, which leads (after an extended induction period) to a localized autoignition that triggers an abrupt transition from deflagrative to detonative combustion. In line with the experimental observations, the ignition at the open end greatly encumbers the transition (compared with the closed-end case), and the deflagration practically does not accelerate up to the very transition point. Shchelkin's effect, that ignition at a small distance from the closed end of a tube facilitates the transition, is described. PMID:22213662

  11. Combustion waves in hydraulically resisted systems.

    PubMed

    Brailovsky, I; Kagan, L; Sivashinsky, G

    2012-02-13

    The effects of hydraulic resistance on the burning of confined/obstacle-laden gaseous and gas-permeable solid explosives are discussed on the basis of recent research. Hydraulic resistance is found to induce a new powerful mechanism for the reaction spread (diffusion of pressure) allowing for both fast subsonic as well as supersonic propagation. Hydraulic resistance appears to be of relevance also for the multiplicity of detonation regimes as well as for the transitions from slow conductive to fast convective, choked or detonative burning. A quasi-one-dimensional Fanno-type model for premixed gas combustion in an obstructed channel open at the ignition end is discussed. It is shown that, similar to the closed-end case studied earlier, the hydraulic resistance causes a gradual precompression and preheating of the unburned gas adjacent to the advancing deflagration, which leads (after an extended induction period) to a localized autoignition that triggers an abrupt transition from deflagrative to detonative combustion. In line with the experimental observations, the ignition at the open end greatly encumbers the transition (compared with the closed-end case), and the deflagration practically does not accelerate up to the very transition point. Shchelkin's effect, that ignition at a small distance from the closed end of a tube facilitates the transition, is described.

  12. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    PubMed

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates.

  13. Antimicrobial Resistance Profiles of Salmonella spp. from Agricultural Environments in Fruit Production Systems.

    PubMed

    Gomba, Annancietar; Chidamba, Lizyben; Korsten, Lise

    2016-09-01

    Foodborne disease outbreaks involving fresh produce have increased in recent years. The risk of infection from contaminated food is worsened by the increased prevalence of antibiotic-resistant strains. This study evaluated the prevalence of antibiotic resistance in Salmonella isolates (n = 263) from agricultural production systems through to the final packed product. Salmonella isolates were preliminarily identified by matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy (MALDI-TOF MS) and API 20E and identities confirmed by invA gene polymerase chain reaction. Antimicrobial susceptibility was performed with 15 antimicrobial agents using the Kirby-Bauer disk diffusion test. Of the 263 Salmonella isolates assessed, 59.3% were resistant to one or more antimicrobials. The most frequently detected resistance was against chloramphenicol and kanamycin (46.7%), trimethoprim-sulfamethoxazole (28%), and streptomycin (14%), and the less frequently detected resistance was toward ampicillin (1.14%), amikacin (0.76%), and amoxicillin-clavulanic acid (0.38%). Multiple antimicrobial resistance (MAR) (resistance to ≥3 antibiotics) was found in 48.7% (76/156) isolates. The most common MAR phenotype was to chloramphenicol and trimethoprim/sulfamethoxazole-kanamycin (43.6%). Resistance to chloramphenicol, kanamycin, or trimethoprim/sulfamethoxazole was only observed in MAR phenotypes. All isolates were susceptible to ceftiofur, cefoxitin, ceftriaxone, ciprofloxacin, nalidixic acid, gentamicin, and tetracycline. This study confirms the importance of fresh produce production environments as potential reservoirs and fresh produce as carriers of antibiotic-resistant Salmonella spp. with significant clinical importance. Further studies to evaluate the actual level of health risk from these pathogens should include characterization of the antibiotic resistance determinant genes among the isolates. PMID:27294335

  14. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

  15. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application.

  16. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  17. Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Hazreek, Z. A. M.; Aziman, M.; Haimi, D. S.; Hafiz, Z. M.

    2016-04-01

    Recently, non-destructive method such as the electrical resistivity technique has become increasingly popular in engineering, environmental, mining and archeological studies nowadays. This method was popular in subsurface profiling due to its ability to replicate the images of the subsurface indirectly. The soil slope found in Batu Pahat, specifically in Ayer Hitam, is known to be problematic due to its barren condition. This location is believed to contain futile soil due to its difficulty in supporting the growth of vegetations. In the past, acidic barren slope assessment using non-destructive method was rarely being used due to several reasons related to the equipment and knowledge constraints. Hence, this study performed an electrical resistivity imaging using ABEM Terrameter LS in order to investigate the acidic barren slope conditions. Field data acquisition was based on Schlumberger and Wenner arrays while RES2DINV software was used to analyze and generate a 2-D model of the problematic subsurface profile. Based on electrical resistivity results, it was found that the acidic barren slope studied consists of two main zones representing residual soil (electrical resistivity value = 10 - 600 Ωm) and shale (electrical resistivity value = 20 - 2000 Ωm). The results of resistivity value were correlated with the physical mapping and the in situ mackintosh probe test for verification purposes. It was found that the maximum depth of the mackintosh probe test was 1.8 m due to its ground penetration limitation. However, the results of the resistivity section managed to achieve greater depth up to 40 m. Hence, the correlation between electrical resistivity and mackintosh probe results can only be performed at certain depth of the acidic barren slope profile in contrast with the physical mapping which able to define the whole section of the barren soil slope structure. Finally, a good match of electrical resistivity results calibrated with mackintosh and physical

  18. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    PubMed

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  19. National Antimicrobial Resistance Monitoring System (NARMS) 2010 Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to prospectively monitor the emergence of antimicrobial resistance in zoonotic pathogens, the National Antimicrobial Resistance Monitoring System (NARMS) was established in 1996 by the Food and Drug Administration’s Center for Veterinary Medicine in collaboration with the Centers for Di...

  20. Novel Nickel Resistance Genes from the Rhizosphere Metagenome of Plants Adapted to Acid Mine Drainage▿ †

    PubMed Central

    Mirete, Salvador; de Figueras, Carolina G.; González-Pastor, Jose E.

    2007-01-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment. PMID:17675438

  1. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila

    PubMed Central

    Seong, Keon Mook; Sun, Weilin; Clark, John M.; Pittendrigh, Barry R.

    2016-01-01

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R. PMID:27003579

  2. Use of Ekibastuzsk coal ash as a filler for acid resistant plaster

    SciTech Connect

    Korsakov, F.F.; Isichenko, I.I.; Kabanov, G.A.

    1981-01-01

    Acid resistant plasters are used extensively at thermal power plants for protection of gas conduits, ash traps with spouts and hydraulic valves, and the internal surfaces of smoke pump housings. The surface being protected is preliminarily cleaned and a No. 16-20 steel grid attached to the surface by electrial welding. In producing the acid resistant plaster, 14-17 parts by weight of sodium silicofluoride are added to 100 parts by weight of sodium water glass; the remainder consists of andesite or diabase meal to the required consistency. The water glass fulfills the role of a binder; the sodium silicofluoride accelerates solidification of the water glass and the andesite and diabase meal serve as fillers. We found, tested in the laboratory and used successfully (under experimental-industrial conditions) a substitute for andesite and diabase meal. This substitute was ash of Ekibastuzsk coal, which was not only comparable to the meal in regard to quality of the acid resistant plaster, but even exceeded andesite and diabase meal in regard to several qualitative indicators. At the present time, a formula is being developed for an acid resistant plaster produced on the basis of water glass, sodium silicofluoride and ash of Ekibastuzsk coal. In order to verify the possibility of using other ashes instead of andesite and diabase meal, we also tested, under laboratory conditions, acid resistant plasters using ash from thermal power plants (TPP's) also burning Karagandinsk, Kuuchekinsk, Kuznetsk and Kansko-Achinsk coals. In compositions produced with polymer binders, Kansko-Achinsk coal ash was one of the best fillers, providing the most favorable physico-mechanical properties of the composition.

  3. Systemic acquired resistance (50 years after discovery): moving from the lab to the field.

    PubMed

    Gozzo, Franco; Faoro, Franco

    2013-12-26

    Induction of plant defense(s) against pathogen challenge(s) has been the object of progressively more intense research in the past two decades. Insights on mechanisms of systemic acquired resistance (SAR) and similar, alternative processes, as well as on problems encountered on moving to their practical application in open field, have been carefully pursued and, as far as possible, defined. In reviewing the number of research works published in metabolomic, genetic, biochemical, and crop protection correlated disciplines, the following outline has been adopted: 1, introduction to the processes currently considered as models of the innate immunity; 2, primary signals, such as salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), involved with different roles in the above-mentioned processes; 3, long-distance signals, identified from petiole exudates as mobile signaling metabolites during expressed resistance; 4, exogenous inducers, including the most significant chemicals known to stimulate the plant resistance induction and originated from both synthetic and natural sources; 5, fungicides shown to act as stimulators of SAR in addition to their biocidal action; 6, elusive mechanism of priming, reporting on the most recent working hypotheses on the pretranscriptional ways through which treated plants may express resistance upon pathogen attack and how this resistance can be transmitted to the next generation; 7, fitness costs and benefits of SAR so far reported from field application of induced resistance; 8, factors affecting efficacy of induced resistance in the open field, indicating that forces, unrevealed under controlled conditions, may be operative in the field; 9, concluding remarks address the efforts required to apply the strategy of crop resistance induction according to the rules of integrated pest management.

  4. A Novel Silicon-Containing Resist For A Bi-Layer Resist System

    NASA Astrophysics Data System (ADS)

    Noguchi, Tsutomu; Nito, Keiichi; Seto, Jun'etsu; Hata, Izumi; Sato, Hiroshi; Tsumori, Toshirou

    1988-01-01

    A new positive working photoresist which is applicable to the bi-layer resist system using a current g-line stepper has been developed. This resist consists of a naphthoquinone diazide photoactive compound and a silicon containing novolak resin, which is synthesised from phenols with siloxane groups(-Si-O-), and formaldehyde by condensation reaction. The Si-containing resist has a resolution capability of 0.5μm L/S with a g-line sensitivity about 250 mJ/cm2, and a high resistance to oxygen plasma, with an etching rate ratio of 61:1(photoresist/Si resist). 0.5μm L/S pattern was precisely transferred to the bottom layer by 02 RIE with vertical side walls.

  5. Gene-related strain variation of Staphylococcus aureus for homologous resistance response to acid stress.

    PubMed

    Lee, Soomin; Ahn, Sooyeon; Lee, Heeyoung; Kim, Won-Il; Kim, Hwang-Yong; Ryu, Jae-Gee; Kim, Se-Ri; Choi, Kyoung-Hee; Yoon, Yohan

    2014-10-01

    This study investigated the effect of adaptation of Staphylococcus aureus strains to the acidic condition of tomato in response to environmental stresses, such as heat and acid. S. aureus ATCC 13565, ATCC 14458, ATCC 23235, ATCC 27664, and NCCP10826 habituated in tomato extract at 35°C for 24 h were inoculated in tryptic soy broth. The culture suspensions were then subjected to heat challenge or acid challenge at 60°C and pH 3.0, respectively, for 60 min. In addition, transcriptional analysis using quantitative real-time PCR was performed to evaluate the expression level of acid-shock genes, such as clpB, zwf, nuoF, and gnd, from five S. aureus strains after the acid habituation of strains in tomato at 35°C for 15 min and 60 min in comparison with that of the nonhabituated strains. In comparison with the nonhabituated strains, the five tomato-habituated S. aureus strains did not show cross protection to heat, but tomato-habituated S. aureus ATCC 23235 showed acid resistance. In quantitative real-time-PCR analysis, the relative expression levels of acid-shock genes (clpB, zwf, nuoF, and gnd) were increased the most in S. aureus ATCC 23235 after 60 min of tomato habituation, but there was little difference in the expression levels among the five S. aureus strains after 15 min of tomato habituation. These results indicate that the variation of acid resistance of S. aureus is related to the expression of acid-shock genes during acid habituation. PMID:25285500

  6. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  7. Antiplatelet Effect of Sequential Administration of Cilostazol in Patients with Acetylsalycilic Acid Resistance

    PubMed Central

    Cakmak, Muzaffer; Demircelik, Bora; Cetin, Mustafa; Cetin, Zehra; Isık, Serhat; Cıcekcıoglu, Hulya; Ulusoy, Feridun Vasfi; Eryonucu, Beyhan

    2016-01-01

    Background Acetylsalicylic acid (ASA) resistance in patients with coronary artery disease is an important medical problem that can affect treatment decision-making and outcomes. Cilostazol has been investigated to determine its effectiveness in patients with acetylsalicylic acid resistance. The aim of this study was to evaluate the antiplatelet efficacy of sequential administration of CLZ in patients with ASA resistance. Methods A total of 180 patients were enrolled in our study. Patients with stable coronary artery disease were first given orally ASA 100 for 10 days, followed by collagen/epinephrine induced closure time (CTCEPI) measurements. Those who were found to be resistant to orally 100 mg of ASA were given orally 300 mg of ASA for an additional 10 days after which we repeated CTCEPI measurements. Those patients with resistance to orally 300 mg ASA were then given CLZ at a daily dose of orally 200 mg for 10 days followed by a final CTCEPI measurement. Results The rate of resistance to 100 mg ASA was 81/180 (45%) compared to a rate of 35/81 (43.2%) with 300 mg ASA. Of the 35 patients found to be resistant to 300 mg ASA, 22 (62.9%) also failed to respond to CLZ treatment. Overall, sequential administration of 300 mg ASA and 200 mg CLZ resulted in a reduction in the number of non-responders from 45% to 12.2%. Conclusions Initiation of CLZ could be of benefit in some patients with ASA-resistance for whom an effective anti-aggregant effect is of clinical importance. PMID:27274173

  8. Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan.

    PubMed

    Ishihara, Kanako; Nakajima, Kumiko; Kishimoto, Satoko; Atarashi, Fumiaki; Muramatsu, Yasukazu; Hotta, Akitoyo; Ishii, Satomi; Takeda, Yasuyuki; Kikuchi, Masanori; Tamura, Yutaka

    2013-10-01

    To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses.

  9. Fate of acid-resistant and non-acid resistant Shiga toxin-producing Escherichia coli strains in experimentally contaminated French fermented raw meat sausages.

    PubMed

    Montet, M P; Christieans, S; Thevenot, D; Coppet, V; Ganet, S; Muller, M L Delignette; Dunière, L; Miszczycha, S; Vernozy-Rozand, C

    2009-02-28

    Both pathogenic and nonpathogenic E. coli exhibit a stress response to sublethal environmental stresses. Several studies have reported acid tolerance and survival characteristics of E. coli O157:H7 in foodstuffs, but there are few reports about the tolerance of non-O157 serogroups (STEC) to organic acids in foods. The purpose of this study was to examine the effect of the manufacturing process of French fermented raw meat sausages on the growth and survival of acid-resistant (AR) and non-acid resistant (NAR) STEC strains. The six strains, 3 AR and 3 NAR, were inoculated separately into raw sausage mixture at a level of 10(4)-10(5) CFU/g. A total of 19 batches of sausages were manufactured. A rapid and similar decrease in the number of both AR and NAR STEC strains, from less than 1 to 1.5 log(10) CFU/g, was observed during the first 5 days of fermentation at 20-24 degrees C. This rapid decrease was followed by a more gradual but continuous decrease in STEC counts after drying at 13-14 degrees C, up to day 35. The STEC counts were <10 CFU/g after 35 days for the NAR strains and the same concentration for the AR strains on the best before date (day 60). It was not possible to detect any NAR STEC after 60 days. The present study shows that the process used in the manufacture of French sausages results in a complete destruction of NAR STEC strains after 60 days, but it does not have the same effect on the AR STEC strains.

  10. Evolution of internal resistance during formation of flooded lead-acid batteries

    NASA Astrophysics Data System (ADS)

    White, Chris; Deveau, Justin; Swan, Lukas G.

    2016-09-01

    This study employs experimental techniques to measure the changing internal resistance of flooded, flat-plate lead-acid batteries during container formation, revealing a novel indicator of formation completeness. In order to measure internal resistance during formation, d.c. current pulses are superimposed over the constant formation current at set intervals, while change in voltage is measured. The resulting "pulsed" internal resistance is divided into ohmic and interfacial components by measuring the ohmic resistance with short d.c. pulses as well as with a.c. injection. Various constant-current container formations are carried out using different current levels, plate thicknesses, and pulsing techniques, yielding an array of resistance trends which are explained using Butler-Volmer kinetic theory. Ohmic and interfacial resistance trends are shown both theoretically and experimentally to eventually decay to a predictable steady-state value as the formation proceeds, suggesting that this internal resistance method can be used to detect the completion of the formation. The same principles are shown to apply to recharge cycles as well, but with potentially limited practical implications in comparison to formation.

  11. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  12. 21 CFR 862.1775 - Uric acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uric acid test system. 862.1775 Section 862.1775...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1775 Uric acid test system. (a) Identification. A uric acid test system is a device intended to...

  13. A West Nile virus mutant with increased resistance to acid-induced inactivation.

    PubMed

    Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2011-04-01

    West Nile virus (WNV) is a mosquito-borne flavivirus responsible for epidemics of febrile illness, meningitis, encephalitis and flaccid paralysis. WNV gains entry into host cells through endocytosis. The acid pH inside endosomes triggers rapid conformational rearrangements of the flavivirus envelope (E) glycoprotein that result in fusion of the endosomal membrane with the virion envelope. Conformational rearrangements of the E glycoprotein can be induced by acid exposure in solution in the absence of target membranes, thus causing a loss of infectivity. Following a genetic approach to study this process, a WNV mutant with increased resistance to acid-induced inactivation was isolated and its complete genome was sequenced. A single amino acid substitution, T70I, in the E glycoprotein was found to be responsible for the increased acid resistance, which was linked to an increase in the sensitivity of infection to the chemical rise of endosomal pH, suggesting that the mutant required a more acid pH inside the endosomes for fusion. No alterations in viral infection kinetics, plaque size or induced mortality rates in mice of the mutant were noted. However, by means of virus competition assays, a reduction in viral fitness under standard culture conditions was observed for the mutant. These results provide new evidence of the adaptive flexibility to environmental factors--pH variation in this case--of WNV populations. Implications of the T70I replacement on the E glycoprotein structure-function relationship are discussed.

  14. Bilayer resist system utilizing alkali-developable organosilicon positive photoresist

    NASA Astrophysics Data System (ADS)

    Nate, Kazuo; Mizushima, Akiko; Sugiyama, Hisashi

    1991-06-01

    A bi-layer resist system utilizing an alkali-developable organosilicon positive photoresist (OSPR) has been developed. The composite prepared from an alkali-soluble organosilicon polymer, poly(p- hydroxybenzylsilsesquioxane) and naphthoquinone diazide becomes a alkali-developable positive photoresist which is sensitive to UV (i line - g line) region, and exhibited high oxygen reactive ion etching (O2 RIE) resistance. The sensitivity and the resolution of OSPR are almost the same as those of conventional novolac-based positive photoresists. The bi-layer resist system utilizing OSPR as the top imaging layer gave fine patterns of underlayers with high aspect ratio easily.

  15. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  16. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile

    PubMed Central

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens1. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens2. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhea, greatly increases morbidity and mortality in hospitalized patients3. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. By treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile, we correlated loss of specific bacterial taxa with development of infection. Mathematical modeling augmented by microbiota analyses of hospitalized patients identified resistance-associated bacteria common to mice and humans. Using these platforms, we determined that Clostridium scindens, a bile acid 7-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid-dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses and mathematical modeling, we identified a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk for C. difficile infection. PMID:25337874

  17. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.

    PubMed

    Buffie, Charlie G; Bucci, Vanni; Stein, Richard R; McKenney, Peter T; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R M; Jenq, Robert R; Taur, Ying; Sander, Chris; Cross, Justin R; Toussaint, Nora C; Xavier, Joao B; Pamer, Eric G

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  18. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    NASA Astrophysics Data System (ADS)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  19. Nucleic acid detection systems for enteroviruses.

    PubMed Central

    Rotbart, H A

    1991-01-01

    The enteroviruses comprise nearly 70 human pathogens responsible for a wide array of diseases including poliomyelitis, meningitis, myocarditis, and neonatal sepsis. Current diagnostic tests for the enteroviruses are limited in their use by the slow growth, or failure to grow, of certain serotypes in culture, the antigenic diversity among the serotypes, and the low titer of virus in certain clinical specimens. Within the past 6 years, applications of molecular cloning techniques, in vitro transcription vectors, automated nucleic acid synthesis, and the polymerase chain reaction have resulted in significant progress toward nucleic acid-based detection systems for the enteroviruses that take advantage of conserved genomic sequences across many, if not all, serotypes. Similar approaches to the study of enteroviral pathogenesis have already produced dramatic advances in our understanding of how these important viruses cause their diverse clinical spectra. PMID:1649002

  20. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance. PMID:27255930

  1. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance.

  2. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    PubMed Central

    Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen

    2014-01-01

    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848

  3. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution.

    PubMed

    Ai, Chenbing; McCarthy, Samuel; Eckrich, Valerie; Rudrappa, Deepak; Qiu, Guanzhou; Blum, Paul

    2016-10-01

    Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78 % more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features support a model for increased acid resistance arising from enhanced control over cytoplasmic pH. PMID:27520549

  4. Cloning of genes responsible for acetic acid resistance in Acetobacter aceti.

    PubMed

    Fukaya, M; Takemura, H; Okumura, H; Kawamura, Y; Horinouchi, S; Beppu, T

    1990-04-01

    Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.

  5. Synthesis of photobleachable deep UV resists based on single component nonchemically amplified resist system

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Seon; Kim, Su-Min; Park, Ji-Young; Kim, Jin-Baek

    2006-03-01

    In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

  6. Meropenem-clavulanic acid has high in vitro activity against multidrug-resistant Mycobacterium tuberculosis.

    PubMed

    Davies Forsman, L; Giske, C G; Bruchfeld, J; Schön, T; Juréen, P; Ängeby, K

    2015-01-01

    We investigated the activity of meropenem-clavulanic acid (MEM-CLA) against 68 Mycobacterium tuberculosis isolates. We included predominantly multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) isolates, since the activity of MEM-CLA for resistant isolates has previously not been studied extensively. Using Middlebrook 7H10 medium, all but four isolates showed an MIC distribution of 0.125 to 2 mg/liter for MEM-CLA, below the non-species-related breakpoint for MEM of 2 mg/liter defined by EUCAST. MEM-CLA is a potential treatment option for MDR/XDR-TB.

  7. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea.

    PubMed

    Jia, Haifeng; Zhang, Cheng; Pervaiz, Tariq; Zhao, Pengcheng; Liu, Zhongjie; Wang, Baoju; Wang, Chen; Zhang, Lin; Fang, Jinggui; Qian, Jianpu

    2016-01-01

    Fruit ripening is a complex process that is regulated by a signal network. Whereas the regulatory mechanism of abscisic acid has been studied extensively in non-climacteric fruit, little is know about other signaling pathways involved in this process. In this study, we performed that plant hormone jasmonic acid plays an important role in grape fruit coloring and softening by increasing the transcription levels of several ripening-related genes, such as the color-related genes PAL1, DFR, CHI, F3H, GST, CHS, and UFGT; softening-related genes PG, PL, PE, Cell, EG1, and XTH1; and aroma-related genes Ecar, QR, and EGS. Lastly, the fruit anthocyanin, phenol, aroma, and cell wall materials were changed. Jasmonic acid positively regulated its biosynthesis pathway genes LOS, AOS, and 12-oxophytodienoate reductase (OPR) and signal pathway genes COI1 and JMT. RNA interference of grape jasmonic acid pathway gene VvAOS in strawberry fruit appeared fruit un-coloring phenotypes; exogenous jasmonic acid rescued this phenotypes. On the contrary, overexpression of grape jasmonic acid receptor VvCOI1 in the strawberry fruit accelerated the fruit-ripening process and induced some plant defense-related gene expression level. Furthermore, jasmonic acid treatment or strong jasmonic acid signal pathway in strawberry fruit make the fruit resistance against Botrytis cinerea. PMID:26498957

  8. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea.

    PubMed

    Jia, Haifeng; Zhang, Cheng; Pervaiz, Tariq; Zhao, Pengcheng; Liu, Zhongjie; Wang, Baoju; Wang, Chen; Zhang, Lin; Fang, Jinggui; Qian, Jianpu

    2016-01-01

    Fruit ripening is a complex process that is regulated by a signal network. Whereas the regulatory mechanism of abscisic acid has been studied extensively in non-climacteric fruit, little is know about other signaling pathways involved in this process. In this study, we performed that plant hormone jasmonic acid plays an important role in grape fruit coloring and softening by increasing the transcription levels of several ripening-related genes, such as the color-related genes PAL1, DFR, CHI, F3H, GST, CHS, and UFGT; softening-related genes PG, PL, PE, Cell, EG1, and XTH1; and aroma-related genes Ecar, QR, and EGS. Lastly, the fruit anthocyanin, phenol, aroma, and cell wall materials were changed. Jasmonic acid positively regulated its biosynthesis pathway genes LOS, AOS, and 12-oxophytodienoate reductase (OPR) and signal pathway genes COI1 and JMT. RNA interference of grape jasmonic acid pathway gene VvAOS in strawberry fruit appeared fruit un-coloring phenotypes; exogenous jasmonic acid rescued this phenotypes. On the contrary, overexpression of grape jasmonic acid receptor VvCOI1 in the strawberry fruit accelerated the fruit-ripening process and induced some plant defense-related gene expression level. Furthermore, jasmonic acid treatment or strong jasmonic acid signal pathway in strawberry fruit make the fruit resistance against Botrytis cinerea.

  9. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis.

    PubMed

    Chandra-Shekara, A C; Venugopal, Srivathsa C; Barman, Subhankar Roy; Kachroo, Aardra; Kachroo, Pradeep

    2007-04-24

    In Arabidopsis, resistance to Turnip Crinkle Virus (TCV) depends on the resistance (R) gene, HRT, and the recessive locus rrt. Resistance also depends on salicylic acid (SA), EDS1, and PAD4. Exogenous application of SA confers resistance in RRT-containing plants by increasing HRT transcript levels in a PAD4-dependent manner. Here we report that reduction of oleic acid (18:1) can also induce HRT gene expression and confer resistance to TCV. However, the 18:1-regulated pathway is independent of SA, rrt, EDS1, and PAD4. Reducing the levels of 18:1, via a mutation in the SSI2-encoded stearoyl-acyl carrier protein-desaturase, or by exogenous application of glycerol, increased transcript levels of HRT as well as several other R genes. Second-site mutations in the ACT1-encoded glycerol-3-phosphate acyltransferase or GLY1-encoded glycerol-3-phosphate dehydrogenase restored 18:1 levels in HRT ssi2 plants and reestablished a dependence on rrt. Resistance to TCV and HRT gene expression in HRT act1 plants was inducible by SA but not by glycerol, whereas that in HRT pad4 plants was inducible by glycerol but not by SA. The low 18:1-mediated induction of R gene expression was also dependent on ACT1 but independent of EDS1, PAD4, and RAR1. Intriguingly, TCV inoculation did not activate this 18:1-regulated pathway in HRT plants, but instead resulted in the induction of several genes that encode 18:1-synthesizing isozymes. These results suggest that the 18:1-regulated pathway may be specifically targeted during pathogen infection and that altering 18:1 levels may serve as a unique strategy for promoting disease resistance.

  10. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    PubMed Central

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  11. Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection.

    PubMed

    Herrmann, Sven; Kostrzewa, Monika; Wierschem, Andreas; Streb, Carsten

    2014-12-01

    Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate-based ionic liquids (POM-ILs). Copper metal disks were coated with room-temperature POM-ILs composed of transition-metal functionalized Keggin anions [SiW11 O39 TM(H2 O)](n-) (TM=Cu(II) , Fe(III) ) and quaternary alkylammonium cations (Cn H2 n+1 )4 N(+) (n=7-8). The corrosion resistance against acetic acid vapors and simulated "acid rain" was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM-IL coating is self-repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents.

  12. Marked resistance of RAR gamma-deficient mice to the toxic effects of retinoic acid.

    PubMed

    Look, J; Landwehr, J; Bauer, F; Hoffmann, A S; Bluethmann, H; LeMotte, P

    1995-07-01

    Excessive intake of retinol or of retinoic acid causes a syndrome of characteristic toxic effects known as hypervitaminosis A. To test the role of the nuclear retinoic acid receptor (RAR gamma) in this process we produced mice with a targeted disruption of the RAR gamma gene and examined toxic effects of repeated doses of retinoic acid and two other synthetic retinoids, Ro 15-1570 and Ro 40-6055. Surprisingly, homozygous mutant mice were resistant to fourfold higher doses of retinoic acid than wild-type mice as well as to elevated doses of the synthetic retinoids, indicating that RAR gamma may have a major role in mediating retinoid toxicity, a finding that possibly has practical implications for reducing the toxicity of synthetic retinoids in clinical use.

  13. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  14. Variation in Resistance of Mycobacterium paratuberculosis to Acid Environments as a Function of Culture Medium

    PubMed Central

    Sung, Nackmoon; Collins, Michael T.

    2003-01-01

    Acid resistance of Mycobacterium paratuberculosis was examined as a function of growth conditions (i.e., in vitro growth medium and pH). M. paratuberculosis was cultured in either fatty acid-containing medium (7H9-OADC) or glycerol-containing medium (WR-GD or 7H9-GD) at two culture pHs (pHs 6.0 and 6.8). Organisms produced in these six medium and pH conditions were then tested for resistance to acetate buffer at pHs 3, 4, 5, and 6 at 20°C. A radiometric culture method (BACTEC) was used to quantify viable M. paratuberculosis cell data at various acid exposure times, and D values (decimal reduction times, or the times required to kill a 1-log10 concentration of bacteria) were determined. Soluble proteins of M. paratuberculosis grown under all six conditions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to identify proteins that may be associated with acid resistance or susceptibility. The culture medium affected growth rate and morphology: thin floating sheets of cells were observed in 7H9-OADC versus confluent, thick, waxy, and wrinkled pellicles in WR-GD. Culture medium pH affected growth rate (which was highest at pH 6.0), but it had little or no effect on D values for M. paratuberculosis at any test pH. When grown in 7H9-OADC, M. paratuberculosis was more acid resistant at all test pHs (higher D values) than when grown in WR-GD. Glycerol appeared to be the culture medium component most responsible for lower levels of M. paratuberculosis acid resistance. When glycerol was substituted for OADC in the 7H9 medium, D values were significantly lower than those of 7H9-OADC-grown M. paratuberculosis and were approximately the same as those for M. paratuberculosis grown in WR-GD medium. Comparison of the SDS-PAGE protein profiles for M. paratuberculosis cultures grown in 7H9-OADC, WR-GD, or 7H9-GD medium revealed that increased expression of 34.2- and 14.0-kDa proteins was associated with higher levels of acid resistance of M

  15. Omega-3 Fatty Acids Reduce Adipose Tissue Macrophages in Human Subjects With Insulin Resistance

    PubMed Central

    Spencer, Michael; Finlin, Brian S.; Unal, Resat; Zhu, Beibei; Morris, Andrew J.; Shipp, Lindsey R.; Lee, Jonah; Walton, R. Grace; Adu, Akosua; Erfani, Rod; Campbell, Marilyn; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2013-01-01

    Fish oils (FOs) have anti-inflammatory effects and lower serum triglycerides. This study examined adipose and muscle inflammatory markers after treatment of humans with FOs and measured the effects of ω-3 fatty acids on adipocytes and macrophages in vitro. Insulin-resistant, nondiabetic subjects were treated with Omega-3-Acid Ethyl Esters (4 g/day) or placebo for 12 weeks. Plasma macrophage chemoattractant protein 1 (MCP-1) levels were reduced by FO, but the levels of other cytokines were unchanged. The adipose (but not muscle) of FO-treated subjects demonstrated a decrease in macrophages, a decrease in MCP-1, and an increase in capillaries, and subjects with the most macrophages demonstrated the greatest response to treatment. Adipose and muscle ω-3 fatty acid content increased after treatment; however, there was no change in insulin sensitivity or adiponectin. In vitro, M1-polarized macrophages expressed high levels of MCP-1. The addition of ω-3 fatty acids reduced MCP-1 expression with no effect on TNF-α. In addition, ω-3 fatty acids suppressed the upregulation of adipocyte MCP-1 that occurred when adipocytes were cocultured with macrophages. Thus, FO reduced adipose macrophages, increased capillaries, and reduced MCP-1 expression in insulin-resistant humans and in macrophages and adipocytes in vitro; however, there was no measureable effect on insulin sensitivity. PMID:23328126

  16. Eco-friendly Rot and Crease Resistance Finishing of Jute Fabric using Citric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Samanta, A. K.; Bagchi, A.

    2013-03-01

    Citric acid (CA) along with chitosan was used on bleached jute fabrics to impart anti crease and rot resistance properties in one step. The treatment was carried out by pad-dry-cure method in presence of sodium hypophosphite monohydrate catalyst. Curing at 150° Centigrade for 5 min delivered good crease resistant property (dry crease recovery angle is 244°) and high rot resistance simultaneously by a single treatment, which are durable for five washings with distilled water. Strength retention of jute fabric after 21 days soil burial was found to be 81 % and the loss (%) in strength due to this treatment was 15-18 %. The results showed that chitosan and CA treated-fabric exhibited higher rot resistance (as indicated by soil burial test) when compared to either CA or chitosan by individual treatment. The effect of CA and chitosan combination on the resistance to rotting of jute fabric was found to be synergistic which is higher than the sum of the effects of individual chemicals. CA possibly reacts with hydroxyl groups in cellulose or chitosan to form ester. The CA and chitosan finished fabric has adverse effect on stiffness. Thermal studies showed that final residue left at 500° C was much higher for CA and chitosan treated fabric than untreated jute fabric. FTIR spectroscopy suggested the formation of ester cross-linkage between the jute fibre, CA and chitosan and hence it is understood that this rot resistant finish on jute fabric become durable by this mechanism.

  17. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance.

    PubMed

    Kok, Bernard P C; Brindley, David N

    2012-10-01

    Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed. PMID:22999246

  18. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  19. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women

    PubMed Central

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    Objective To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. Methods: In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to assess the association between uric acid and birth weights regarding to insulin resistance. Results: The means of the mid-gestational serum uric acid concentrations were not significantly different in women with and without insulin resistance. But stratification analysis showed that there was a significant difference between uric acid concentration and macrosomic birth in diabetic women without insulin resistance. Conclusions: Higher mid – gestation serum uric acid concentration, even if it does not exceed the normal range, is accompanied by lower birth weight only in non-insulin resistance women. Insulin resistance could have a negative confounding effect on hyperuriemia and birth weight. PMID:25810959

  20. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  1. Insulin Resistance is Associated With Total Bile Acid Level in Type 2 Diabetic and Nondiabetic Population

    PubMed Central

    Sun, Wanwan; Zhang, Di; Wang, Zhengyi; Sun, Jichao; Xu, Baihui; Chen, Ying; Ding, Lin; Huang, Xiaolin; Lv, Xiaofei; Lu, Jieli; Bi, Yufang; Xu, Qinyi

    2016-01-01

    Abstract Bile acid metabolism was reported to be involved in glucose metabolism homeostasis. However, the exact relationship between bile acid and glucose metabolism as well as insulin sensitivity is not clarified. Therefore, we sought to investigate the association between insulin sensitivity and hyperbileacidemia in type 2 diabetic and nondiabetic population. This community-based cross-sectional study included 9603 residents from Jiading, Shanghai, China, who were 40 years and older. Standardized questionnaire, anthropometric measurements and laboratory tests were conducted. Homeostasis model assessment of insulin resistance (HOMA-IR) ≥ 2.7 was defined as insulin resistance and fasting TBA ≥ 10 mmol/L was defined as hyperbileacidemia. Multivariate stepwise regression analysis revealed that HOMA-IR, age, and male sex were positively associated with hyperbileacidemia in both nondiabetic and diabetic participants. In multivariate logistic models, participants with insulin resistance had significantly higher risk of hyperbileacidemia compared to those who have no insulin resistance, in both nondiabetic and diabetic population (nondiabetic: OR = 1.76; 95% CI 1.42–2.19; P < 0.001; diabetic: OR = 1.56; 95% CI 1.06 – 2.31; P = 0.025, respectively). Further adjustment for the HbA1c level in diabetic population did not change the significant association (OR = 1.59; 95% CI 1.06 − 2.40; P = 0.024). In nondiabetic participants, each 1-unit increment of HOMA-IR conferred an 18% higher risk of hyperbileacidemia (95% CI 1.04–1.35; P = 0.013), whereas in diabetic participants, this association was similar but not significant (95% CI 0.95–1.59; P = 0.117). Insulin resistance was positively associated with hyperbileacidemia in both nondiabetic and diabetic population. The increase in the bile acid level in insulin-resistant population regardless of status of diabetes and glucose level indicated the important role of insulin resistance

  2. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans

    PubMed Central

    Underwood, Patricia C

    2012-01-01

    Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone. PMID:23242734

  3. MIG1 Regulates Resistance of Candida albicans against the Fungistatic Effect of Weak Organic Acids.

    PubMed

    Cottier, Fabien; Tan, Alrina Shin Min; Xu, Xiaoli; Wang, Yue; Pavelka, Norman

    2015-10-01

    Candida albicans is the leading cause of fungal infections; but it is also a member of the human microbiome, an ecosystem of thousands of microbial species potentially influencing the outcome of host-fungal interactions. Accordingly, antibacterial therapy raises the risk of candidiasis, yet the underlying mechanism is currently not fully understood. We hypothesize the existence of bacterial metabolites that normally control C. albicans growth and of fungal resistance mechanisms against these metabolites. Among the most abundant microbiota-derived metabolites found on human mucosal surfaces are weak organic acids (WOAs), such as acetic, propionic, butyric, and lactic acid. Here, we used quantitative growth assays to investigate the dose-dependent fungistatic properties of WOAs on C. albicans growth and found inhibition of growth to occur at physiologically relevant concentrations and pH values. This effect was conserved across distantly related fungal species both inside and outside the CTG clade. We next screened a library of transcription factor mutants and identified several genes required for the resistance of C. albicans to one or more WOAs. A single gene, MIG1, previously known for its role in glucose repression, conferred resistance against all four acids tested. Consistent with glucose being an upstream activator of Mig1p, the presence of this carbon source was required for WOA resistance in wild-type C. albicans. Conversely, a MIG1-complemented strain completely restored the glucose-dependent resistance against WOAs. We conclude that Mig1p plays a central role in orchestrating a transcriptional program to fight against the fungistatic effect of this class of highly abundant metabolites produced by the gastrointestinal tract microbiota. PMID:26297702

  4. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism

    PubMed Central

    Kain, Vasundhara; Kapadia, Bandish; Misra, Parimal; Saxena, Uday

    2015-01-01

    Statins are a class of oral drugs that are widely used for treatment of hypercholesterolemia. Recent clinical data suggest that chronic use of these drugs increases the frequency of new onset diabetes. Studies to define the risks of statin-induced diabetes and its underlying mechanisms are clearly necessary. We explored the possible mechanism of statin induced insulin resistance using a well-established cell based model and simvastatin as a prototype statin. Our data show that simvastatin induces insulin resistance in a cholesterol biosynthesis inhibition independent fashion but does so by a fatty acid mediated effect on insulin signaling pathway. These data may help design strategies for prevention of statin induced insulin resistance and diabetes in patients with hypercholesterolemia. PMID:26345110

  5. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  6. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. PMID:26002560

  7. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  8. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  9. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance

    PubMed Central

    Yew Tan, Chong; Virtue, Samuel; Murfitt, Steven; Robert, Lee D.; Phua, Yi Hui; Dale, Martin; Griffin, Julian L.; Tinahones, Francisco; Scherer, Philipp E.; Vidal-Puig, Antonio

    2015-01-01

    The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue. PMID:26679101

  10. Immunocytochemical localization of a tartrate-resistant and vanadate-sensitive acid nucleotide tri- and diphosphatase.

    PubMed

    Andersson, G N; Ek-Rylander, B; Hammarström, L E; Lindskog, S; Toverud, S U

    1986-03-01

    Purified rabbit antiserum to a tartrate-resistant and vanadate-sensitive acid phosphatase (nucleotide tri- and diphosphatase) prepared from rat bone was used in immunocytochemical studies. The antigen was localized in sections of fixed, decalcified tissue (head from rat) using the peroxidase-antiperoxidase bridge (PAP) or the avidin-biotin-peroxidase complex (ABC) technique. Both techniques resulted in similar and specific immunostaining in the following cells and tissues: osteoclasts situated in resorption lacunae, epithelium overlying enamel-free areas of tips of cusps of unerupted molars, cilia of respiratory epithelium, and tissue macrophages. This distribution corresponds to the cellular sites of tartrate-resistant acid phosphatase activity, as revealed by enzyme histochemistry. With the ABC method, staining in osteoclasts was obtained with antiserum dilutions of up to 1:10,000. Biochemical studies revealed that vanadate-sensitive acid ATPase activity in liver subcellular fractions was almost exclusively confined to lysosomes. Thus, the immunostaining has revealed the presence of the tartrate-resistant and vanadate-sensitive nucleotide phosphatase in many cells associated with tissue resorption and phagocytosis.

  11. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    PubMed

    Venugopal, Srivathsa C; Jeong, Rae-Dong; Mandal, Mihir K; Zhu, Shifeng; Chandra-Shekara, A C; Xia, Ye; Hersh, Matthew; Stromberg, Arnold J; Navarre, DuRoy; Kachroo, Aardra; Kachroo, Pradeep

    2009-07-01

    Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  12. A unique data acquisition system for electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Zonge, K.

    1996-01-04

    Unique capabilities are needed in instrumentation used for acquiring data to do electrical resistance tomography (ERT). A data acquisition system is described which has a good combination of the required capabilities and yet is field rugged and user friendly. The system is a multichannel detector for high data rates, can operate over a wide range of load conditions, will measure both in phase and quadrature resistance at frequencies between 0.0007 Hz and 8 kHz. The system has been used in both the field and laboratory to collect data with a typical accuracy between 1 and 10%.

  13. Fusidic acid-resistant Staphylococcus aureus in impetigo contagiosa and secondarily infected atopic dermatitis.

    PubMed

    Alsterholm, Mikael; Flytström, Ingela; Bergbrant, Ing-Marie; Faergemann, Jan

    2010-01-01

    Fusidic acid-resistant Staphylococcus aureus (FRSA) has been identified as a causative agent in outbreaks of impetigo and its emergence has been associated with increased use of topical fusidic acid. The frequency of FRSA in atopic dermatitis (AD) has been less extensively investigated. The aim of this study was to investigate the bacterial spectrum and frequency of FRSA in patients with impetigo or secondarily infected AD. A prospective study in our clinic in 2004 to 2008 included 38 patients with impetigo and 37 with secondarily infected AD. S. aureus was the predominant finding in all groups (bullous impetigo 92% (12/13), impetigo 76% (19/25) and secondarily infected AD 89% (33/37)). Seventy-five percent of S. aureus were fusidic acid resistant in bullous impetigo, 32% in impetigo and 6.1% in secondarily infected AD (bullous impetigo vs. AD p < 0.0001, impetigo vs. AD p < 0.05). We then performed a retrospective patient record review including all patients with impetigo or secondarily infected AD seen at the clinic during the first and last year of the prospective study. In the first year 33% (19/58) of the S. aureus isolates were fusidic acid-resistant in impetigo and 12% (5/43) in secondarily infected AD (p < 0.05). In the last year corresponding values were 24% (6/25) for impetigo and 2.2% (1/45) for AD (p < 0.01). In summary, the prospective study and the patient record review both showed higher FRSA levels in impetigo than in AD. FRSA levels were persistently low in AD. Continued restrictive use of topical fusidic acid is advised to limit an increase in FRSA levels in dermatology patients.

  14. Microswelling-free negative resists for ArF excimer laser lithography utilizing acid-catalyzed intramolecular esterification

    NASA Astrophysics Data System (ADS)

    Hattori, Takashi; Tsuchiya, Yuko; Yokoyama, Yoshiyuki; Oizumi, Hiroaki; Morisawa, Taku; Yamaguchi, Atsuko; Shiraishi, Hiroshi

    1999-06-01

    We have examined alicyclic polymers with a (gamma) -hydroxy acid structure in order to investigate the properties of (gamma) -hydroxy acid and (gamma) -lactone as function groups of ArF negative resist materials. From the viewpoint of transparency and dry-etching resistance, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable for ArF negative resists materials. Surprisingly, the reactivity of the acid-catalyzed reaction of (gamma) -hydroxy acid is affected by the polymer structure. Using ArF excimer laser stepper, 0.20-micrometers line-and-space patterns without micro-swelling distortion were obtained from a negative resist consisting of alicyclic polymer with the (gamma) - hydroxy acid structure and a photoacid generator. Distortion was avoided because the number of carboxyl groups decreased drastically in the exposed area by the acid-catalyzed intramolecular esterification of (gamma) -hydroxy acid to (gamma) -lactone. As a result, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable function groups for ArF negative resist materials.

  15. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    PubMed

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  16. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance

    PubMed Central

    Baranzoni, Gian Marco; Reichenberger, Erin R.; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  17. Complete genome sequences of Escherichia coli O157:H7 strains SRCC 1675 and 28RC that vary in acid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented....

  18. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Reichenberger, Erin R; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  19. Salicylic Acid Induces Resistance to Alternaria solani in Hydroponically Grown Tomato.

    PubMed

    Spletzer, M E; Enyedi, A J

    1999-09-01

    ABSTRACT Alternaria solani is the causal agent of early blight disease in tomato and is responsible for significant economic losses sustained by tomato producers each year. Because salicylic acid (SA) is an important signal molecule that plays a critical role in plant defense against pathogen invasion, we investigated if the exogenous application of SA would activate systemic acquired resistance (SAR) against A. solani in tomato leaves. The addition of 200 muM SA to the root system significantly increased the endogenous SA content of leaves. Free SA levels increased 65-fold over basal levels to 5.85 mug g(-1) fresh weight (FW) after 48 h. This level of SA had no visible phytotoxic effects. Total SA content (free SA + SA-glucose conjugate) increased to 108 mug g(-1) FW after 48 h. Concomitant with elevated SA levels, expression of the tomato pathogenesis-related (PR)-1B gene was strongly induced within 24 h of the addition of 200 muM SA. PR-1B expression was still evident after 48 h; however, PR-1B induction was not observed in plants not receiving SA treatment. Challenge inoculation of SA-treated tomato plants using conidia of A. solani resulted in 83% fewer lesions per leaf and a 77% reduction in blighted leaf area as compared with control plants not receiving SA. Our data indicate that root feeding 200 muM SA to tomato plants can (i) significantly elevate foliar SA levels, (ii) induce PR-1B gene expression, and (iii) activate SAR that is effective against A. solani.

  20. The importance of active efflux systems in the quinolone resistance of clinical isolates of Salmonella spp.

    PubMed

    Escribano, Isabel; Rodríguez, Juan Carlos; Cebrian, Laura; Royo, Gloria

    2004-11-01

    The aim of this study was to determine the importance of the active elimination of antibiotics by active efflux systems, in the decrease in fluoroquinolone sensitivity of clinical isolates of Salmonella spp. as well as the intrinsic antibiotic activity of certain active efflux system inhibitors. The effect of the active efflux system on the decrease in sensitivity to nalidixic acid, ciprofloxacin, ofloxacin and sparfloxacin was studied by investigating the variation in the in vitro activity of these compounds when assayed in association with reserpine and MC 207.110. The active efflux systems inhibited by reserpine displayed low activity in the elimination of these compounds, whereas those inhibited by MC 207.110 showed high activity in the elimination of nalidixic acid and sparfloxacin, but were less effective in the elimination of ofloxacin and ciprofloxacin. These two compounds did not exhibit intrinsic inhibitory activity against Salmonella spp. at the concentrations assayed. These mechanisms of resistance to antibiotics are complex and vary depending on the chemical composition of the antibiotics used, and perhaps the inhibitors of these systems, although they do not exhibit any intrinsic antibiotic activity, may be used as adjuvants to increase the activity of certain antibiotics. These mechanisms complement the mutations in the gyrA gene and this supports the thesis that it is necessary to lower the breakpoint established by the NCCLS for ciprofloxacin, since the strains studied have resistance mechanisms that reduce the activity of this drug and may favour the emergence of resistant mutants during treatment.

  1. Holmium:YAG laser: effects of various treatments on root surface topography and acid resistance

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1996-04-01

    The effects of Holmium:YAG laser energy with and without a topical fluoride mixture (resin to NaF) was compared with two types of topical fluorides on surface topography and resistance to acid destruction of root surfaces. Scanning electron microscopy (SEM) was used to evaluate the effects of the selected treatments on surface topography before acid exposure. Toluidine blue dye was used to test the permeability of root surfaces after acid exposures. SEM examinations of the dentinal root surfaces showed consistently smooth surfaces with tubule closures when using topical resin to fluoride and HO:YAG laser treatment; in contrast, HO:YAG laser energy treatment alone exhibited increased roughness of root surfaces. Topical fluoride applications alone presented surfaces similar to untreated control sites. Toluidine blue dye penetration into root surfaces of the fluoride/laser-treated root surfaces showed significantly less dye penetration after acid exposures than controls and other treatment protocols. The results of this study indicate that the resin-fluoride application and holmium:YAG irradiation effectively produced increased smoothness and increased resistance to destruction of root surfaces in human extracted teeth under these in vitro conditions.

  2. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Kohn, Alexandra; Mathiesen, Svein D.; Præsteng, Kirsti E.

    2008-08-01

    Reindeer are able to eat and utilize lichens as an important source of energy and nutrients. In the current study, the activities of antibiotic secondary metabolites including usnic, antranoric, fumarprotocetraric, and lobaric acid commonly found in lichens were tested against a collection of 26 anaerobic rumen bacterial isolates from reindeer ( Rangifer tarandus tarandus) using the agar diffusion method. The isolates were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequences. Usnic acid had a potent antimicrobial effect against 25 of the isolates, belonging to Clostridiales, Enterococci, and Streptococci. Isolates of Clostridia and Streptococci were also susceptible to atranoric and lobaric acid. However, one isolate (R3_91_1) was found to be resistant to usnic, antranoric, fumarprotocetraric, and lobaric acid. R3_91_1 was also seen invading and adhering to lichen particles when grown in a liquid anaerobic culture as demonstrated by transmission electron microscopy. This was a Gram-negative, nonmotile rod (0.2-0.7 × 2.0-3.5 μm) with a deoxyribonucleic acid G + C content of 47.0 mol% and main cellular fatty acids including 15:0 anteiso-dimethyl acetal (DMA), 16:0 iso-fatty acid methyl ester (FAME), 13:0 iso-3OH FAME, and 17:0 anteiso-FAME, not matching any of the presently known profiles in the MIDI database. Combined, the phenotypic and genotypic traits including the 16S rRNA gene sequence show that R3_91_1 is a novel species inside the order Clostridiales within the family Lachnospiraceae, for which we propose the name Eubacterium rangiferina. This is the first record of a rumen bacterium able to tolerate and grow in the presence of usnic acid, indicating that the rumen microorganisms in these animals have adapted mechanisms to deal with lichen secondary metabolites, well known for their antimicrobial and toxic effects.

  3. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor.

    PubMed

    González-Cabrera, Joel; Davies, T G Emyr; Field, Linda M; Kennedy, Peter J; Williamson, Martin S

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.

  4. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products

    PubMed Central

    Gad, Gamal Fadl M.; Abdel-Hamid, Ahmed M.; Farag, Zeinab Shawky H.

    2014-01-01

    A total of 244 lactic acid bacteria (LAB) strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7%) followed by Streptococcus spp. (65, 36.1%) and Lactococcus spp. (27, 15%). Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast) were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus, 8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M) and/or erm(B)]. PCR assays shows that some resistant strains harbor tet(M) and/or erm(B) resistance genes. PMID:24948910

  5. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    NASA Astrophysics Data System (ADS)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  6. A possible mechanism of acquired acid resistance of human dental enamel by laser irradiation.

    PubMed

    Oho, T; Morioka, T

    1990-01-01

    A possible mechanism of acquired acid resistance of lased enamel was proposed on the basis of the investigations of optical properties, compositional and structural changes and permeability of lased and unlased human dental enamel. Lased enamel showed a high positive birefringence, suggesting the formation of 'microspaces' in enamel. No new products were found, though a decrease of lattice strain and a slight a-axis contraction were recognized in lased enamel compared with unlased enamel. The contents of water, carbonate and organic substances were reduced in lased enamel. Gradual changes of birefringence were observed in lased enamel during treatment with acid solutions, and this change was attributed to mineralization of the microspaces. The ions released by an acid decalcification would be trapped in the microspaces in lased enamel, whereas such ions diffuse to the surrounding solution in unlased enamel.

  7. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    PubMed

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent.

  8. Hyaluronic Acid-Modified Multifunctional Q-Graphene for Targeted Killing of Drug-Resistant Lung Cancer Cells.

    PubMed

    Luo, Yanan; Cai, Xiaoli; Li, He; Lin, Yuehe; Du, Dan

    2016-02-17

    Considering the urgent need to explore multifunctional drug delivery system for overcoming multidrug resistance, we prepared a new nanocarbon material Q-Graphene as a nanocarrier for killing drug-resistant lung cancer cells. Attributing to the introduction of hyaluronic acid and rhodamine B isothiocyanate (RBITC), the Q-Graphene-based drug delivery system was endowed with dual function of targeted drug delivery and fluorescence imaging. Additionally, doxorubicin (DOX) as a model drug was loaded on the surface of Q-Graphene via π-π stacking. Interestingly, the fluorescence of DOX was quenched by Q-Graphene due to its strong electron-accepting capability, and a significant recovery of fluorescence was observed, while DOX was released from Q-Graphene. Because of the RBITC labeling and the effect of fluorescence quenching/restoring of Q-Graphene, the uptake of nanoparticles and intracellular DOX release can be tracked. Overall, a highly promising multifunctional nanoplatform was developed for tracking and monitoring targeted drug delivery for efficiently killing drug-resistant cancer cells. PMID:26785717

  9. Emerging resistance to aminoglycosides in lactic acid bacteria of food origin-an impending menace.

    PubMed

    Jaimee, G; Halami, P M

    2016-02-01

    Aminoglycosides are the most preferred choice of therapy against serious infections in humans. Therefore, its use in animal husbandry has been strictly regulated in the EU, UK, and USA to avoid the hazards of aminoglycoside resistance in gut microflora. Nevertheless, aminoglycosides are recommended for prophylaxis and therapeutics in food animals and agriculture owing to its bactericidal nature. In the recent past, the global surge in aminoglycoside-resistant lactic acid bacteria (LAB) from food sources has been noticed that might question its continued use in animal husbandry. Upon antibiotic administration, a selective pressure is created in the gut environment; in such instances, LAB could act as reservoirs of antibiotic resistance which may facilitate their transfer to pathogenic organisms contradicting its probiotic and industrial significance. This may be a risk to human health as the presence of one aminoglycoside resistance gene renders the bacteria tolerant to almost all antibiotics of the same class, thereby challenging its therapeutic efficacy. Low doses of aminoglycosides are recommended in farm animals due to its toxic nature and insolubility in blood. However, recent investigations indicate that use of aminoglycosides in sub-lethal concentrations can trigger the selection and conjugal transfer of aminoglycoside resistance in probiotic LAB. Resistance to erythromycin, tetracyclines, and fluoroquinolones in LAB were reported earlier to which immediate regulatory measures were adopted by some countries. Paradoxically, lack of regulations on antibiotic use in farms in most developing countries makes them a potential source of antibiotic resistance and its uncontrolled spread around the globe. The prevalence of aminoglycoside resistance was observed in enterococci from food origin earlier; however, its emergence in lactobacilli and pediococci suggests its spread in probiotic cultures which prompts immediate precautionary methods. This review highlights the

  10. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies

    SciTech Connect

    Jackman, A.L.; Alison, D.L.; Calvert, A.H.; Harrap, K.R.

    1986-06-01

    The properties are described of a mutant L1210 cell line (L1210:C15) with acquired resistance (greater than 200-fold) to the thymidylate synthase (TS) inhibitor N10-propargyl-5,8-dideazafolic acid. TS was overproduced 45-fold and was accompanied by a small increase in the activity of dihydrofolate reductase (2.6-fold). Both the level of resistance and enzyme activities were maintained in drug-free medium (greater than 300 generations). Failure of N10-propargyl-5,8-dideazafolic acid to suppress the (/sup 3/H)-2'-deoxyuridine incorporation into the acid-precipitable material of the resistant line supported the evidence that TS overproduction was the mechanism of resistance; consequently the L1210:C15 cells were largely cross-resistant to another (but weaker) TS inhibitor, 5,8-dideazafolic acid. Minimal cross-resistance was observed to the dihydrofolate reductase inhibitors methotrexate and 5-methyl-5,8-dideazaaminopterin (5- and 2-fold, respectively). L1210 and L1210:C15 cells were, however, equally sensitive to 5-fluorodeoxyuridine (FdUrd), an unexpected finding since a metabolite, 5-fluorodeoxyuridine monophosphate, is a potent TS inhibitor; however, this cytotoxicity against the L1210:C15 cells was antagonized by coincubation with 5 microM folinic acid although folinic acid potentiated the cytotoxicity of FdUrd to the N10-propargyl-5,8-dideazafolic acid-sensitive L1210 line. Thymidine was much less effective as a FdUrd protecting agent in the L1210:C15 when compared with the L1210 cells; however, a combination of thymidine plus hypoxanthine was without any additional effect (compared with thymidine alone) against the sensitive line but effectively protected L1210:C15 cells.

  11. Boric/sulfuric acid anodizing of aluminum alloys 2024 and 7075: Film growth and corrosion resistance

    SciTech Connect

    Thompson, G.E.; Zhang, L.; Smith, C.J.E.; Skeldon, P.

    1999-11-01

    The influence of boric acid (H{sub 3}BO{sub 3}) additions to sulfuric acid (H{sub 2}SO{sub 4}) were examined for the anodizing of Al 2024-T3 (UNS A92024) and Al 7075-T6 (UNS A97075) alloys at constant voltage. Alloys were pretreated by electropolishing, by sodium dichromate (Na{sub 2}Cr{sub 2}O{sub 7})/H{sub 2}SO{sub 4} (CSA) etching, or by alkaline etching. Current-time responses revealed insignificant dependence on the concentration of H{sub 3}BO{sub 3} to 50 g/L. Pretreatments affected the initial film development prior to the establishment of the steady-state morphology of the porous film, which was related to the different compositions and morphologies of pretreated surfaces. More detailed studies of the Al 7075-T6 alloy indicated negligible effects of H{sub 3}BO{sub 3} on the coating weight, morphology of the anodic film, and thickening rate of the film, or corrosion resistance provided by the film. In salt spray tests, unsealed films formed in H{sub 2}SO{sub 4} or mixed acid yielded similar poor corrosion resistances, which were inferior to that provided by anodizing in chromic acid (H{sub 2}CrO{sub 4}). Sealing of films in deionized water, or preferably in chromate solution, improved corrosion resistance, although not matching the far superior performance provided by H{sub 2}CrO{sub 4} anodizing and sealing.

  12. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion.

    PubMed

    Liu, Qingsheng; Li, Wenchen; Wang, Hua; Newby, Bi-Min Zhang; Cheng, Fang; Liu, Lingyun

    2016-08-01

    The surfaces or coatings that can effectively suppress bacterial adhesion in the long term are of critical importance for biomedical applications. Herein, a group of amino acid-based zwitterionic polymers (pAAZ) were investigated for their long-term resistance to bacterial adhesion. The polymers were derived from natural amino acids including serine, ornithine, lysine, aspartic acid, and glutamic acid. The pAAZ brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Results show that the pAAZ coatings highly suppressed adsorption from the undiluted human serum and plasma. Long-term bacterial adhesion on these surfaces was investigated, using two kinds of representative bacteria [Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa] as the model species. Results demonstrate that the pAAZ surfaces were highly resistant to bacterial adhesion after culturing for 1, 5, 9, or even 14 days, representing at least 95% reduction at all time points compared to the control unmodified surfaces. The bacterial accumulation on the pAAZ surfaces after 9 or 14 days was even lower than on the surfaces grafted with poly[poly(ethyl glycol) methyl ether methacrylate] (pPEGMA), one of the most common antifouling materials known to date. The pAAZ brushes also exhibited excellent structural stability in phosphate-buffered saline after incubation for 4 weeks. The bacterial resistance and stability of pAAZ polymers suggest they have good potential to be used for those applications where long-term suppression to bacterial attachment is desired. PMID:27397718

  13. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  14. Lysophosphatidic Acid signaling in the nervous system.

    PubMed

    Yung, Yun C; Stoddard, Nicole C; Mirendil, Hope; Chun, Jerold

    2015-02-18

    The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. PMID:25695267

  15. Contribution of mdr1b-type P-glycoprotein to okadaic acid resistance in rat pituitary GH3 cells.

    PubMed

    Ritz, V; Marwitz, J; Sieder, S; Ziemann, C; Hirsch-Ernst, K I; Quentin, I; Steinfelder, H J

    1999-08-01

    Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.

  16. Development of a Landslide Monitoring System using Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hen-Jones, R. M.; Hughes, P. N.; Glendinning, S.; Gunn, D.; Chambers, J.; Stirling, R.

    2015-12-01

    Current assessments of slope stability rely on the use of point sensors, the results of which are often difficult to interpret, have relatively high associated installation and maintenance costs, and do not provide large-area coverage. A new system is currently under development, based on the use of integrated geophysical - geotechnical sensors to monitor ground water conditions via electrical resistivity tomography. This study presents the results of an in-situ electrical resistivity tomography survey, gathered over a two year investigation period at a full-scale clay test embankment in Northumberland, UK. The 3D resistivity array comprised 288 electrodes, at 0.7m grid spacing, covering an area of approximately 90 m2. The first year of investigation involved baseline data collection, followed by a second year which saw a series of deliberate interventions targeted at weakening the slope, to determine whether corresponding geotechnical property changes would be reflected in resistivity images derived from ERT. These interventions included the manual extension of four tension cracks already present in the slope, and the installation of a sprinkler system, eight months later. Laboratory methods were employed to derive a system of equations for relating resistivity to geotechnical parameters more directly relevant to slope stability, including moisture content, suction and shear strength. These equations were then applied to resistivity data gathered over the baseline and intervention periods, yielding geotechnical images of the subsurface which compared well with in-situ geotechnical point sensors. During the intervention period, no slope movement was recorded, however, tensiometers at 0.5 m and 1.0 m depths showed elevated pore pressures, with positive pressures being recorded at depths less than 0.5 m. Resistivity images were successful in capturing the extension of the tension cracks, and in identifying the development of a potential shear failure plane as water

  17. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease.

    PubMed

    Llorens, Eugenio; Fernández-Crespo, Emma; Vicedo, Begonya; Lapeña, Leonor; García-Agustín, Pilar

    2013-01-15

    In addition to basal defense mechanisms, plants are able to develop enhanced defense mechanisms such as induced resistance (IR) upon appropriate stimulation. We recently described the means by which several carboxylic acids protect Arabidopsis and tomato plants against fungi. In this work, we demonstrate the effectiveness of hexanoic acid (Hx) in the control of Alternaria brown spot (ABS) disease via enhancement of the immune system of Fortune mandarin. The application of 1mM Hx in irrigation water to 2-year-old Fortune plants clearly reduced the incidence of the disease and led to smaller lesions. We observed that several of the most important mechanisms involved in induced resistance were affected by Hx application. Our results demonstrate enhanced callose deposition in infected plants treated with Hx, which suggests an Hx priming mechanism. Plants treated with the callose inhibitor 2-DDG were more susceptible to the fungus. Moreover, polygalacturonase-inhibiting protein (PGIP) gene expression was rapidly and significantly upregulated in treated plants. However, treatment with Hx decreased the levels of reactive oxygen species (ROS) in infected plants. Hormonal and gene analyses revealed that the jasmonic acid (JA) pathway was activated due to a greater accumulation of 12-oxo-phytodienoic acid (OPDA) and JA along with a rapid accumulation of JA-isoleucine (JA-Ile). Furthermore, we observed a more rapid accumulation of abscisic acid (ABA), which could act as a positive regulator of callose deposition. Thus, our results support the hypothesis that both enhanced physical barriers and the JA signaling pathway are involved in hexanoic acid-induced resistance (Hx-IR) to Alternaria alternata.

  18. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    PubMed

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  19. A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

    PubMed Central

    Jang, Cholsoon; Oh, Sungwhan F; Wada, Shogo; Rowe, Glenn C; Liu, Laura; Chan, Mun Chun; Rhee, James; Hoshino, Atsushi; Kim, Boa; Ibrahim, Ayon; Baca, Luisa G; Kim, Esl; Ghosh, Chandra C; Parikh, Samir M; Jiang, Aihua; Chu, Qingwei; Forman, Daniel E.; Lecker, Stewart H.; Krishnaiah, Saikumari; Rabinowitz, Joshua D; Weljie, Aalim M; Baur, Joseph A; Kasper, Dennis L; Arany, Zoltan

    2016-01-01

    Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.1–3 Insulin resistance in skeletal muscle stems from excess accumulation of lipid species4, a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. PMID:26950361

  20. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  1. [Generation of nalidixic acid-resistant strains and signature-tagged mutants of Actinobacillus pleuropneumoniae].

    PubMed

    Shang, Lin; Li, Wei; Li, Liangjun; Li, Lu; Zhang, Sihua; Li, Tingting; Li, Yaokun; Liu, Lei; Guo, Zhiwei; Zhou, Rui; Chen, Huanchun

    2008-01-01

    Actinobacillus pleuropneumoniae is a very important respiratory pathogen for swine and causes great economic losses in pig industry worldwide. Signature-tagged mutagenesis (STM) is an effective method to identify virulence genes in bacteria. In this study, we selected nalidixic acid-resistant strains of APP serotypes 1 and 3 by in vitro cultivation, and used as receipt strains for constructing transposon mutants by mating with E. coli CC 118 lambdapir or S17-1 lambdapir containing mini-Tn10 tag plasmids pLOF/TAG1-48, with or without the help of E. coli DH5alpha (pRK2073). We screened mutant strains by antibiotics selection, PCR and Southern blot identification. Our data revealed that nalidixic acid-resistance of APP strains could easily be induced in vitro and the resistance was due to the mutation in the DNA gyrase A subunit gene gyrA. In the mating experiments, the bi-parental mating was more effective and easier than tri-parental mating. Different APP strains showed a different mating and transposon efficiency in the bi-parental mating, with the strains of serotype 1 much higher than serotype 3 and the reference strain of serotype 3 higher than the field strains. These data were helpful for the construction of STM mutants and pickup of virulence genes of APP. PMID:18338580

  2. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.).

    PubMed

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al(3+) resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley.

  3. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    PubMed Central

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  4. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    PubMed

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail. PMID:27376324

  5. Hydroxybenzoic acid isomers and the cardiovascular system

    PubMed Central

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  6. Hydroxybenzoic acid isomers and the cardiovascular system.

    PubMed

    Juurlink, Bernhard H J; Azouz, Haya J; Aldalati, Alaa M Z; AlTinawi, Basmah M H; Ganguly, Paul

    2014-01-01

    Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates' dictum of 'Let food be your medicine and medicine your food' can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets. PMID:24943896

  7. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium

    NASA Astrophysics Data System (ADS)

    Lu, Chen-En; Pu, Nen-Wen; Hou, Kung-Hsu; Tseng, Chun-Chieh; Ger, Ming-Der

    2013-10-01

    Different concentrations of formic acid were added into a trivalent chromium electroplating solution to produce chromium carbide (Crsbnd C) coatings. The influence of the formic acid concentration on chemical composition, microstructure, surface morphology, corrosion resistance, conductivity and carbon content of the resulting Crsbnd C coatings was studied. Formic acid was found to increase the carbon content in the coatings so as to form Crsbnd C films. These coatings had a nearly amorphous structure containing Cr, Cr2O3, and various Crsbnd C compounds with carbon content uniformly distributed throughout the coatings. The carbon content and the conductivity of the Crsbnd C layer were correlated with formic acid concentration. For a formic acid concentration of 2 M, the Crsbnd C layer had the highest carbon content (∼28%), the lowest contact resistance, and the best corrosion resistance along with a corrosion current density of ∼6.4 × 10-7 A/cm2.

  8. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens.

    PubMed

    Peterson, S W; Martin, I; Demczuk, W; Bharat, A; Hoang, L; Wylie, J; Allen, V; Lefebvre, B; Tyrrell, G; Horsman, G; Haldane, D; Garceau, R; Wong, T; Mulvey, M R

    2015-11-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  9. Molecular Assay for Detection of Ciprofloxacin Resistance in Neisseria gonorrhoeae Isolates from Cultures and Clinical Nucleic Acid Amplification Test Specimens

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    We developed a real-time PCR assay to detect single nucleotide polymorphisms associated with ciprofloxacin resistance in specimens submitted for nucleic acid amplification testing (NAAT). All three single nucleotide polymorphism (SNP) targets produced high sensitivity and specificity values. The presence of ≥2 SNPs was sufficient to predict ciprofloxacin resistance in an organism. PMID:26292300

  10. Self-assembling nanoparticles encapsulating zoledronic acid revert multidrug resistance in cancer cells

    PubMed Central

    Gazzano, Elena; Salzano, Giuseppina; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; Caraglia, Michele; De Rosa, Giuseppe; Riganti, Chiara

    2015-01-01

    The overexpression of ATP binding cassette (ABC) transporters makes tumor cells simultaneously resistant to several cytotoxic drugs. Impairing the energy metabolism of multidrug resistant (MDR) cells is a promising chemosensitizing strategy, but many metabolic modifiers are too toxic in vivo. We previously observed that the aminobisphosphonate zoledronic acid inhibits the activity of hypoxia inducible factor-1α (HIF-1α), a master regulator of cancer cell metabolism. Free zoledronic acid, however, reaches low intratumor concentration. We synthesized nanoparticle formulations of the aminobisphosphonate that allow a higher intratumor delivery of the drug. We investigated whether they are effective metabolic modifiers and chemosensitizing agents against human MDR cancer cells in vitro and in vivo. At not toxic dosage, nanoparticles carrying zoledronic acid chemosensitized MDR cells to a broad spectrum of cytotoxic drugs, independently of the type of ABC transporters expressed. The nanoparticles inhibited the isoprenoid synthesis and the Ras/ERK1/2-driven activation of HIF-1α, decreased the transcription and activity of glycolytic enzymes, the glucose flux through the glycolysis and tricarboxylic acid cycle, the electron flux through the mitochondrial respiratory chain, the synthesis of ATP. So doing, they lowered the ATP-dependent activity of ABC transporters, increasing the chemotherapy efficacy in vitro and in vivo. These effects were more pronounced in MDR cells than in chemosensitive ones and were due to the inhibition of farnesyl pyrophosphate synthase (FPPS), as demonstrated in FPPS-silenced tumors. Our work proposes nanoparticle formulations of zoledronic acid as the first not toxic metabolic modifiers, effective against MDR tumors. PMID:26372812

  11. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice.

    PubMed Central

    Su, W J; Waechter, M J; Bourlioux, P; Dolegeal, M; Fourniat, J; Mahuzier, G

    1987-01-01

    Clostridium difficile is an agent involved in the development of antibiotic-associated pseudomembranous colitis. The purpose of this work was to investigate the role of volatile fatty acids (VFAs) in resistance to colonization by C. difficile by using a gnotobiotic animal model. Accordingly, germfree mice were associated with different hamster flora, and the VFAs in their cecal contents were measured by gas chromatography. The results showed that VFAs were produced mainly by the intestinal flora, especially by the strictly anaerobic bacteria. In these associated mice, the concentrations of acetic, propionic, and butyric acids were higher than those of other acids, but at pH 6.8 the MICs of these three acids in vitro for C. difficile were more than 200 mu eq/ml. In gnotobiotic mice monoassociated with C. difficile and in the isolated ceca of these mice, VFAs did not inhibit the growth of C. difficile. In gnotobiotic mice which were diassociated with C. difficile and C. butyricum and given drinking water with a lactose concentration of 20%, the cecal contents included about the same amount of butyric acid as did those of the monoassociated mice, although the population of C. difficile remained the same. Therefore, it is suggested that VFAs alone cannot inhibit intestinal colonization by C. difficile and that, consequently, other inhibitory mechanisms are also present. PMID:3596806

  12. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens.

    PubMed

    Pittman, Joseph R; Kline, La'Kesha C; Kenyon, William J

    2015-10-26

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H₂O₂). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  13. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  14. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  15. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones.

    PubMed

    Kirihara, Masaru; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2013-01-01

    This study aimed to investigate the effect of fluoride concentration in adhesives on morphology of acid-base resistant zone (ABRZ). Seven experimental adhesives with different concentrations of NaF (0 wt%; F0 to 100 wt%: F100) were prepared based on the formulation of a commercially available adhesive (Clearfil Protect Bond, F100). The resin-dentin interface of the bonded specimen was subjected to demineralizing solution and NaOCl, sectioned, polished and argon-ion etched for SEM observation. Fluoride release from each adhesive was measured using an ion-selective electrode. Fluoride ion release from the adhesive linearly increased with higher NaF concentration. The ABRZ area increased significantly with higher NaF concentration except for F0, F10, and F20 (p<0.05). F100 showed the largest ABRZ, where a slope of acid-resistant dentin was clearly observed at the bottom of the ABRZ. The concentration of NaF in the two-step self-etching adhesive resin influenced the amount of dentin structure remaining after acid-challenge.

  16. Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties.

    PubMed

    Sun, Jianyun; Cui, Jin; Luo, Chunling; Gao, Lu; Chen, Yahua; Shen, Zhenguo

    2013-02-01

    To study possible cadmium (Cd) resistance mechanisms in cabbage (Brassica oleracea L.), several parameters of metal uptake, distribution, and complexation were compared between two varieties Chunfeng [CF (Cd-tolerant)] and Lvfeng [LF (Cd-sensitive)]. Results showed that CF contained significantly lower Cd concentrations in leaves and higher Cd concentrations in roots than LF. Approximately 70 to 74 % and 66 to 68 % of Cd taken up by LF and CF, respectively, was transported to shoots. More Cd was bound to the cell walls of leaves, stems, and roots in CF than in LF. The higher capacity of CF to limit Cd uptake into shoots could be explained by immobilization of Cd in root cell walls. Compared with control groups, Cd treatment also significantly increased concentrations of nonprotein thiols, phytochelatins (PCs), and citric acid in the leaves and roots of the two varieties; the increases were more pronounced in CF than in LF. Taken together, the results suggest that the greater Cd resistance in CF than in LF may be attributable to the greater capacity of CF to limit Cd uptake into shoots and complex Cd in cell walls and metal binding ligands, such as PCs and citric acid. However, the contributions of PCs and citric acid to Cd detoxification might be smaller than those in cell walls.

  17. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism.

    PubMed

    Tabasco, Raquel; Sánchez-Patán, Fernando; Monagas, María; Bartolomé, Begoña; Victoria Moreno-Arribas, M; Peláez, Carmen; Requena, Teresa

    2011-10-01

    Food polyphenols are able to selectively modify the growth of susceptible micro-organisms. This study describes the effect of a flavan-3-ol enriched grape seed extract (GSE) on the growth of several lactic acid bacteria (LAB) and bifidobacteria and the ability of the resistant strains to metabolize these compounds. Streptococcus thermophilus, Lactobacillus fermentum, Lactobacillus acidophilus and Lactobacillus vaginalis strains showed a remarkable sensitivity to the phenolic extracts assayed, including a GSE fraction consisting mainly in (+)-catechin and (-)-epicatechin (GSE-M). On the other hand, Lactobacillus plantarum, Lactobacillus casei, and Lactobacillus bulgaricus strains reached maximal growth with the GSE fractions, including a rich-oligomeric (GSE-O) fraction. Within bifidobacteria, Bifidobacterium lactis BB12 showed the highest sensitivity to the phenolic extracts assayed, whereas Bifidobacterium breve 26M2 and Bifidobacterium bifidum HDD541 reached maximum growth in presence of GSE-O and GSE-M fractions. Metabolism of flavan-3-ols by LAB and bifidobacteria resistant strains was investigated in vitro. The results revealed that only L. plantarum IFPL935 was able to metabolize the polyphenols studied by means of galloyl-esterase, decarboxylase and benzyl alcohol dehydrogenase activities that led to the formation of gallic acid, pyrogallol and catechol, respectively. An unknown metabolite that does not exhibit a phenolic-acid-type structure was also detected, which suggests a new enzyme activity in L. plantarum IFPL935 able to degrade flavan-3-ol monomers. PMID:21839384

  18. Evaluation of Interferon Resistance in Newly Established Genotype 1b Hepatitis C Virus Cell Culture System

    PubMed Central

    Taniguchi, Miki; Tasaka-Fujita, Megumi; Nakagawa, Mina; Watanabe, Takako; Kawai-Kitahata, Fukiko; Otani, Satoshi; Goto, Fumio; Nagata, Hiroko; Kaneko, Shun; Nitta, Sayuri; Murakawa, Miyako; Nishimura-Sakurai, Yuki; Azuma, Seishin; Itsui, Yasuhiro; Mori, Kenichi; Yagi, Shintaro; Kakinuma, Sei; Asahina, Yasuhiro; Watanabe, Mamoru

    2016-01-01

    Background and Aims: The hepatitis C virus (HCV) genotype 1b is known to exhibit treatment resistance with respect to interferon (IFN) therapy. Substitution of amino acids 70 and 91 in the core region of the 1b genotype is a significant predictor of liver carcinogenesis and poor response to pegylated-IFN-α and ribavirin therapy. However, the molecular mechanism has not yet been clearly elucidated because of limitations of the HCV genotype 1b infectious model. Recently, the TPF1-M170T HCV genotype 1b cell culture system was established, in which the clone successfully replicates and infects Huh-7-derived Huh7-ALS32.50 cells. Therefore, the purpose of this study was to compare IFN resistance in various HCV clones using this system. Methods: HCV core amino acid substitutions R70Q and L91M were introduced to the TPF1-M170T clone and then transfected into Huh7-ALS32.50 cells. To evaluate the production of each virus, intracellular HCV core antigens were measured. Results were confirmed with Western blot analysis using anti-NS5A antibodies, and IFN sensitivity was subsequently measured. Results: Each clone was transfected successfully compared with JFH-1, with a significant difference in intracellular HCV core antigen (p < 0.05), an indicator of continuous HCV replication. Among all clones, L91M showed the highest increase in the HCV core antigen and HCV protein. There was no significant resistance against IFN treatment in core substitutions; however, IFN sensitivity was significantly different between the wildtype core and JFH-1 (p < 0.05). Conclusions: A novel genotype 1b HCV cell culture was constructed with core amino acid substitutions, which demonstrated IFN resistance of genotype 1b. This system will be useful for future analyses into the mechanisms of HCV genotype 1b treatment. PMID:27047766

  19. Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance

    PubMed Central

    2012-01-01

    Background The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation. Results In this study we identified a previously undescribed 73.5 kDa cell wall-anchored protein of S. saprophyticus, encoded on plasmid pSSAP2 of strain MS1146, which we termed S. saprophyticus surface protein F (SssF). The sssF gene is highly prevalent in S. saprophyticus clinical isolates and we demonstrate that the SssF protein is expressed at the cell surface. However, unlike all other characterised cell wall-anchored proteins of S. saprophyticus, we were unable to demonstrate a role for SssF in adhesion. SssF shares moderate sequence identity to a surface protein of Staphylococcus aureus (SasF) recently shown to be an important mediator of linoleic acid resistance. Using a heterologous complementation approach in a S. aureus sasF null genetic background, we demonstrate that SssF is associated with resistance to linoleic acid. We also show that S. saprophyticus strains lacking sssF are more sensitive to linoleic acid than those that possess it. Every staphylococcal genome sequenced to date encodes SssF and SasF homologues. Proteins in this family share similar predicted secondary structures consisting almost exclusively of α-helices in a probable coiled-coil formation. Conclusions Our data indicate that SssF is a newly described and highly prevalent surface-localised protein of S. saprophyticus that contributes to resistance against the antibacterial effects of linoleic acid. SssF is a member of a protein family widely disseminated

  20. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance.

    PubMed

    Minato, Yusuke; Thiede, Joshua M; Kordus, Shannon Lynn; McKlveen, Edward J; Turman, Breanna J; Baughn, Anthony D

    2015-09-01

    para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB.

  1. Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance

    PubMed Central

    Minato, Yusuke; Thiede, Joshua M.; Kordus, Shannon Lynn; McKlveen, Edward J.; Turman, Breanna J.

    2015-01-01

    para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB. PMID:26033719

  2. Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2016-04-01

    Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.

  3. Peptide nucleic acid probe detection of mutations in Mycobacterium tuberculosis genes associated with drug resistance.

    PubMed

    Bockstahler, L E; Li, Z; Nguyen, N Y; Van Houten, K A; Brennan, M J; Langone, J J; Morris, S L

    2002-03-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a serious public health problem. Many of the specific gene mutations that cause drug resistance in M. tuberculosis are point mutations. We are developing a PCR-peptide nucleic acid (PNA)-based ELISA as a diagnostic method to recognize point mutations in genes associated with isoniazid and rifampin resistance in M. tuberculosis. Specific point mutation-containing sequences and wild-type sequences of cloned mycobacterial genes were PCR-amplified, denatured, and hybridized with PNA probes bound to microplate wells. Using 15-base PNA probes, we established the hybridization temperatures (50 degrees C-55 degrees C) and other experimental conditions suitable for detecting clinically relevant point mutations in the katG and rpoB genes. Hybridization of PCR-amplified sequences that contained these point mutations with complementary mutation-specific PNAs resulted in significant increases in ELISA response compared with hybridization using wild-type-specific PNAs. Conversely, PCR-amplified wild-type sequences hybridized much more efficiently with wild-type PNAs than with the mutation-specific PNAs. Using the M. tuberculosis cloned genes and PCR-PNA-ELISA format developed here, M. tuberculosis sequences containing point mutations associated with drug resistance can be identified in less than 24 h. PMID:11926172

  4. Redox control of retinoic acid receptor activity: a novel mechanism for retinoic acid resistance in melanoma cells.

    PubMed

    Demary, K; Wong, L; Liou, J S; Faller, D V; Spanjaard, R A

    2001-06-01

    Retinoic acid (RA) slows growth and induces differentiation of tumor cells through activation of RA receptors (RARs). However, melanoma cell lines display highly variable responsiveness to RA, which is a poorly understood phenomenon. By using Northern and Western blot analyses, we show that RA-resistant A375 and RA-responsive S91 melanoma cells express comparable levels of major components of RAR-signaling pathways. However, A375 cells have substantially higher intracellular reactive oxygen species (ROS) levels than S91 cells. Lowering ROS levels in A375 cells through hypoxic culture conditions restores RAR-dependent trans-activity, which could be further enhanced by addition of the antioxidant N-acetyl-cysteine. Hypoxia also enhances RAR activity in the moderately RA-responsive C32 cells, which have intermediate ROS levels. Conversely, increasing oxidative stress in highly RA-responsive S91 and B16 cells, which have low ROS levels, by treatment with H(2)O(2) impairs RAR activity. Consistent with these observations, RA more potently inhibited the proliferation of hypoxic A375 cells than that of normoxic cells. Oxidative states diminish, whereas reducing conditions enhance, DNA binding of retinoid X receptor/RAR heterodimers in vitro, providing a molecular basis for the observed inverse correlation between RAR activity and ROS levels. The redox state of melanoma cells provides a novel, epigenetic control mechanism of RAR activity and RA resistance. PMID:11356710

  5. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis.

    PubMed

    Slayden, R A; Lee, R E; Barry, C E

    2000-11-01

    Genetic and biochemical evidence has implicated two different target enzymes for isoniazid (INH) within the unique type II fatty acid synthase (FAS) system involved in the production of mycolic acids. These two components are an enoyl acyl carrier protein (ACP) reductase, InhA, and a beta-ketoacyl-ACP synthase, KasA. We compared the consequences of INH treatment of Mycobacterium tuberculosis (MTB) with two inhibitors having well-defined targets: triclosan (TRC), which inhibits InhA; and thiolactomycin (TLM), which inhibits KasA. INH and TLM, but not TRC, upregulate the expression of an operon containing five FAS II components, including kasA and acpM. Although all three compounds inhibit mycolic acid synthesis, treatment with INH and TLM, but not with TRC, results in the accumulation of ACP-bound lipid precursors to mycolic acids that were 26 carbons long and fully saturated. TLM-resistant mutants of MTB were more cross-resistant to INH than TRC-resistant mutants. Overexpression of KasA conferred more resistance to TLM and INH than to TRC. Overexpression of InhA conferred more resistance to TRC than to INH and TLM. Co-overexpression of both InhA and KasA resulted in strongly enhanced levels of INH resistance, in addition to cross-resistance to both TLM and TRC. These results suggest that these components of the FAS II complex are not independently regulated and that alterations in the expression level of InhA affect expression levels of KasA. Nonetheless, INH appeared to resemble TLM more closely in overall mode of action, and KasA levels appeared to be tightly correlated with INH sensitivity. PMID:11069675

  6. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  7. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  8. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.

    PubMed

    Levasseur, Anthony; Bekliz, Meriem; Chabrière, Eric; Pontarotti, Pierre; La Scola, Bernard; Raoult, Didier

    2016-03-10

    Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection. PMID:26934229

  9. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.

    PubMed

    Levasseur, Anthony; Bekliz, Meriem; Chabrière, Eric; Pontarotti, Pierre; La Scola, Bernard; Raoult, Didier

    2016-03-10

    Since their discovery, giant viruses have revealed several unique features that challenge the conventional definition of a virus, such as their large and complex genomes, their infection by virophages and their presence of transferable short element transpovirons. Here we investigate the sensitivity of mimivirus to virophage infection in a collection of 59 viral strains and demonstrate lineage specificity in the resistance of mimivirus to Zamilon, a unique virophage that can infect lineages B and C of mimivirus but not lineage A. We hypothesized that mimiviruses harbour a defence mechanism resembling the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system that is widely present in bacteria and archaea. We performed de novo sequencing of 45 new mimivirus strains and searched for sequences specific to Zamilon in a total of 60 mimivirus genomes. We found that lineage A strains are resistant to Zamilon and contain the insertion of a repeated Zamilon sequence within an operon, here named the 'mimivirus virophage resistance element' (MIMIVIRE). Further analyses of the surrounding sequences showed that this locus is reminiscent of a defence mechanism related to the CRISPR-Cas system. Silencing the repeated sequence and the MIMIVIRE genes restores mimivirus susceptibility to Zamilon. The MIMIVIRE proteins possess the typical functions (nuclease and helicase) involved in the degradation of foreign nucleic acids. The viral defence system, MIMIVIRE, represents a nucleic-acid-based immunity against virophage infection.

  10. D-Erythroascorbic acid activates cyanide-resistant respiration in Candida albicans.

    PubMed

    Huh, Won-Ki; Song, Yong Bhum; Lee, Young-Seok; Ha, Cheol Woong; Kim, Seong-Tae; Kang, Sa-Ouk

    2008-05-01

    Higher plants, protists and fungi possess cyanide-resistant respiratory pathway, which is mediated by alternative oxidase (AOX). The activity of AOX has been found to be dependent on several regulatory mechanisms including gene expression and posttranslational regulation. In the present study, we report that the presence of cyanide in culture medium remarkably retarded the growth of alo1/alo1 mutant of Candida albicans, which lacks d-arabinono-1,4-lactone oxidase (ALO) that catalyzes the final step of d-erythroascorbic acid (EASC) biosynthesis. Measurement of respiratory activity and Western blot analysis revealed that increase in the intracellular EASC level induces the expression of AOX in C. albicans. AOX could still be induced by antimycin A, a respiratory inhibitor, in the absence of EASC, suggesting that several factors may act in parallel pathways to induce the expression of AOX. Taken together, our results suggest that EASC plays important roles in activation of cyanide-resistant respiration in C. albicans.

  11. Inactivation of pqq Genes of Enterobacter Intermedium 60-2G Reduces Antifungal Activity and Induction of Systemic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacter intermedium 60-2G, a phosphate solubilizing bacterium, has the ability to induce systemic resistance in plants against soft rot pathogen Erwinia carotovora. Phosphate solubilization is mediated by the production of organic acids. Glucose dehydrogenase, an enzyme which utilizes pyrroloq...

  12. Genome Sequence of Rhizobacterium Serratia marcescens Strain 90-166, Which Triggers Induced Systemic Resistance and Plant Growth Promotion

    PubMed Central

    Kloepper, Joseph W.

    2015-01-01

    The rhizobacterium Serratia marcescens strain 90-166 elicits induced systemic resistance against plant pathogens and herbivores and promotes plant growth under greenhouse and field conditions. Strain 90-166 secretes volatile compounds, siderophores, salicylic acid, and quorum-sensing autoinducers as bacterial determinants toward plant health. Herein, we present its draft genome sequence. PMID:26089427

  13. Genome Sequence of Rhizobacterium Serratia marcescens Strain 90-166, Which Triggers Induced Systemic Resistance and Plant Growth Promotion.

    PubMed

    Jeong, Haeyoung; Kloepper, Joseph W; Ryu, Choong-Min

    2015-06-18

    The rhizobacterium Serratia marcescens strain 90-166 elicits induced systemic resistance against plant pathogens and herbivores and promotes plant growth under greenhouse and field conditions. Strain 90-166 secretes volatile compounds, siderophores, salicylic acid, and quorum-sensing autoinducers as bacterial determinants toward plant health. Herein, we present its draft genome sequence.

  14. Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats.

    PubMed

    Ghafoorunissa; Ibrahim, Ahamed; Rajkumar, Laxmi; Acharya, Vani

    2005-11-01

    This study was designed to determine the effect of substituting (n-3) long-chain PUFAs (LCPUFAs) for linoleic acid and hence decreasing the (n-6):(n-3) fatty acid ratio on sucrose-induced insulin resistance in rats. Weanling male Wistar rats were fed casein-based diets containing 100 g/kg fat for 12 wk. Insulin resistance was induced by replacing starch (ST) with sucrose (SU). The dietary fats were formulated with groundnut oil, palmolein, and fish oil to provide the following ratios of (n-6):(n-3) fatty acids: 210 (ST-210, SU-210), 50 (SU-50), 10 (SU-10), and 5 (SU-5). Compared with starch (ST-210), sucrose feeding (SU-210) significantly increased the plasma insulin and triglyceride concentrations and the plasma insulin area under the curve (AUC) in response to an oral glucose load. Adipocytes isolated from rats fed SU-210 had greater lipolytic rate, lower insulin stimulated glucose transport, and lower insulin-mediated antilipolysis than those from rats fed ST-210. Decreasing the dietary (n-6):(n-3) ratio in sucrose-fed rats (SU-10 and SU-5) normalized the plasma insulin concentration and the AUC of insulin after a glucose load. The sucrose-induced increase in plasma triglyceride concentration was normalized in rats fed SU-50, SU-10 and SU-5. Further, sucrose-induced alterations in adipocyte lipolysis and antilipolysis were partially reversed and glucose transport improved in rats fed diets SU-5 and SU-10. In diaphragm phospholipids, decreasing the (n-6):(n-3) ratio in the diet increased the concentration of (n-3) LCPUFAs with concomitant decreases in the concentration of (n-6) LCPUFAs. These results suggest that (n-3) LCPUFAs at a level of 2.6 g/kg diet [0.56% energy (n-3) LCPUFAs, (n-6):(n-3) ratio = 10] may prevent sucrose-induced insulin resistance by improving peripheral insulin sensitivity.

  15. Systemic acquired resistance delays race shifts to major resistance genes in bell pepper.

    PubMed

    Romero, A M; Ritchie, D F

    2004-12-01

    ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.

  16. Dietary docosahexaenoic acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet.

    PubMed

    de Castro, Gabriela Salim; Deminice, Rafael; Simões-Ambrosio, Livia Maria Cordeiro; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-04-01

    This study aimed to examine the benefits of different amounts of omega-3 (n-3) polyunsaturated fatty acids from fish oil (FO) on lipid metabolism, insulin resistance and gene expression in rats fed a high-fructose diet. Male Wistar rats were separated into two groups: Control (C, n = 6) and Fructose (Fr, n = 32), the latter receiving a diet containing 63% by weight fructose for 60 days. After this period, 24 animals from Fr group were allocated to three groups: FrFO2 (n = 8) receiving 63% fructose and 2% FO plus 5% soybean oil; FrFO5 (n = 8) receiving 63% fructose and 5% FO plus 2% soybean oil; and FrFO7 (n = 8) receiving 63% fructose and 7% FO. Animals were fed these diets for 30 days. Fructose led to an increase in liver weight, hepatic and serum triacylglycerol, serum alanine aminotransferase and HOMA1-IR index. These alterations were reversed by 5% and 7% FO. FO had a dose-dependent effect on expression of genes related to hepatic β-oxidation (increased) and hepatic lipogenesis (decreased). The group receiving the highest FO amount had increased markers of oxidative stress. It is concluded that n-3 fatty acids may be able to reverse the adverse metabolic effects induced by a high fructose diet.

  17. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus].

    PubMed

    Sopina, V A

    2002-01-01

    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  18. Corrosive Resistant Diamond Coatings for the Acid Based Thermo-Chemical Hydrogen Cycles

    SciTech Connect

    Mark A. Prelas

    2009-06-25

    This project was designed to test diamond, diamond-like and related materials in environments that are expected in thermochemical cycles. Our goals were to build a High Temperature Corrosion Resistance (HTCR) test stand and begin testing the corrosive properties of barious materials in a high temperature acidic environment in the first year. Overall, we planned to test 54 samples each of diamond and diamond-like films (of 1 cm x 1 cm area). In addition we use a corrosion acceleration method by treating the samples at a temperature much larger than the expected operating temperature. Half of the samples will be treated with boron using the FEDOA process.

  19. Optimization of a Nucleic Acid-Based Reporter System To Detect Mycobacterium tuberculosis Antibiotic Sensitivity

    PubMed Central

    Lemmon, Margaret; Rotter, Stephanie; Lees, Jonathan; Einck, Leo; Nacy, Carol A.

    2014-01-01

    We previously reported the development of a prototype antibiotic sensitivity assay to detect drug-resistant Mycobacterium tuberculosis using infection by mycobacteriophage to create a novel nucleic acid transcript, a surrogate marker of mycobacterial viability, detected by reverse transcriptase PCR (M. C. Mulvey et al., mBio 3:e00312-11, 2012). This assay detects antibiotic resistance to all drugs, even drugs for which the resistance mechanism is unknown or complex: it is a phenotypic readout using nucleic acid detection. In this report, we describe development and characteristics of an optimized reporter system that directed expression of the RNA cyclase ribozyme, which generated circular RNA through an intramolecular splicing reaction and led to accumulation of a new nucleic acid sequence in phage-infected bacteria. These modifications simplified the assay, increased the limit of detection from 104 to <102 M. tuberculosis cells, and correctly identified the susceptibility profile of M. tuberculosis strains exposed for 16 h to either first-line or second-line antitubercular drugs. In addition to phenotypic drug resistance or susceptibility, the assay reported streptomycin MICs and clearly detected 10% drug-resistant cells in an otherwise drug-susceptible population. PMID:25367910

  20. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence

    PubMed Central

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-01-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. ‘Carigane’ (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. PMID:27702992

  1. Development Induction Mechanism In Novolak Based Resist Systems For Submicron Optical Lithography

    NASA Astrophysics Data System (ADS)

    Toukhy, Medhat A.

    1987-08-01

    Novolaks are phenolic polymers prepared by the condensation of phenols or substituted phenols with aldehydes in acidic reaction medium. Because of their many favorable characteristics, novolaks are the polymer most widely used in commercial positive photoresists. The non-swelling aqueous alkali solubility behavior of novolaks is a key property required to produce high resolution resist images. Novolak dissolution rates and development induction can be altered by changes made in their chemical composition, structure and molecular weight. The relationship of some novolak chemical compositions and their aqueous alkali solubility behavior is discussed in this paper. Positive photoresist solutions formulated with relatively high dissolution rate novolaks resolved submicron images with unique profiles, provided higher photosensitivities and plasma etch resistance than lower dissolution rate systems. Although this conclusion was confined to specific cresol novolaks investigated in this work, it is believed that many other novolak compositions show similar correlations. This behavior was attributed to the presence of a protective surface layer or "skin" on top of the resist film. This "skin" was formed during the softbaking of the resist coating and has a sufficiently different dissolution rate than the resist bulk. Detailed DRM studies provided evidence of development induction on the resist surface caused by the "skin". This effect may also be viewed as a surface contrast enhancement effect during the development. Resist systems requiring more aggressive developers due to their lower dissolution rates exhibited total or partial removal of the "skin" or micro peeling in some cases as observed by scanning electron microscopy. The resist thickness and softbaking conditions were found to affect the thickness of the "skin". On the other hand, the removal or preservation of that layer depended largely on the resist composition and the developing process. The exact chemical

  2. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  3. Fatty acid-dependent globotriaosyl ceramide receptor function in detergent resistant model membranes.

    PubMed

    Mahfoud, Radhia; Manis, Adam; Lingwood, Clifford A

    2009-09-01

    Glycosphingolipid (GSL) fatty acid strictly regulates verotoxin 1 (VT1) and the HIV adhesin, gp120 binding to globotriaosyl ceramide within Gb(3)/cholesterol detergent resistant membrane (DRM) vesicle constructs and in Gb(3) water-air interface monolayers in a similar manner. VT2 bound Gb(3)/cholesterol vesicles irrespective of fatty acid composition, but VT1 bound neither C18 nor C20Gb(3)vesicles. C18/C20Gb(3) were dominant negative in mixed Gb(3) fatty acid isoform vesicles, but including C24:1Gb(3) gave maximal binding. VT1 bound C18Gb(3) vesicles after cholesterol removal, but C20Gb(3)vesicles required sphingomyelin in addition for binding. HIV-1gp120 also bound C16, C22, and C24, but neither C18 nor C20Gb(3) vesicles. C18 and C20Gb(3) were, in mixtures without C24:1Gb(3), dominant negative for gp120 vesicle binding. Gp120/VT1bound C18 and C24:1Gb(3) mixtures, although neither isoform bound alone. Monolayer surface pressure measurement showed VT1, but not VT2, bound Gb(3) at cellular DRM surface pressures, and confirmed loss of VT1 and gp120 (but not VT2) specific C18Gb(3) binding. We conclude fatty-acid mediated fluidity within simple model GSL/cholesterol DRM can selectively regulate GSL carbohydrate-ligand binding.

  4. Amino acid isotopic analysis in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A relatively new approach to stable isotopic analysis—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino acids (glutamic acid and phenylalanine). CSIA has recently been used to generate trophic position estimates among anima...

  5. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    PubMed

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  6. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  7. Dentin bonding performance using Weibull statistics and evaluation of acid-base resistant zone formation of recently introduced adhesives.

    PubMed

    Guan, Rui; Takagaki, Tomohiro; Matsui, Naoko; Sato, Takaaki; Burrow, Michael F; Palamara, Joseph; Nikaido, Toru; Tagami, Junji

    2016-07-30

    Dentin bonding durability of recently introduced dental adhesives: Clearfil SE Bond 2 (SE2), Optibond XTR (XTR), and Scotchbond Universal (SBU) was investigated using Weibull analysis as well as analysis of the micromorphological features of the acid-base resistant zone (ABRZ) created for the adhesives. The bonding procedures of SBU were divided into three subgroups: self-etch (SBS), phosphoric acid (PA) etching on moist (SBM) or dry dentin (SBD). All groups were thermocycled for 0, 5,000 and 10,000 cycles followed by microtensile bond strength testing. Acid-base challenge was undertaken before SEM and TEM observations of the adhesive interface. The etch-and-rinse method with SBU (SBM and SBD) created inferior interfaces on the dentin surface which resulted in reduced bond durability. ABRZ formation was detected with the self-etch adhesive systems; SE2, XTR and SBS. In the PA etching protocols of SBM and SBD, a thick hybrid layer but no ABRZ was detected, which might affect dentin bond durability. PMID:27335136

  8. Fracture resistance of roots obturated with novel hydrophilic obturation systems

    PubMed Central

    Hegde, Vibha; Arora, Shashank

    2015-01-01

    Aim: Comparative assessment of fracture resistance of roots obturated with three hydrophilic systems — novel CPoint system, Resilon/Epiphany system, and EndoSequence BC sealer; and one hydrophobic gold standard gutta-percha/AHPlus system. Materials and Methods: Ninety freshly extracted, human, single-rooted mandibular premolars were selected. The specimens were decoronated and standardized to a working length of 13 mm. The teeth were randomly divided into six groups (n = 15). In Group A, teeth were left unprepared and unfilled (negative control). Rest of the groups were prepared by using ProTaper system up to a master apical file F3; followed by which Group B was left unobturated (positive control); Group C, novel CPoint System; group D, Resilon/Epiphany system, Group E EndoSequence BC sealer, and Group F gutta-percha and AH Plus. Specimens were stored for 2 weeks at 100% humidity. Each group was then subjected to fracture testing by using a universal testing machine. The force required to fracture each specimen was recorded and the data was analyzed statistically using analysis of variance (ANOVA) test and Tukey's post-hoc test. Results: The hydrophilic obturation systems have shown to exhibit significantly higher fracture resistance as shown by the values in Groups C, D, and E (P < 0.05) when compared with Group F. Within hydrophilic groups there was significant difference between Group D and Groups C and E (P < 0.05), while Groups C and E had no significant difference (P > 0.05). Conclusion: In contrast to hydrophobic systems, hydrophilic systems showed higher fracture resistance in a single-rooted premolar. PMID:26069417

  9. Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p.

    PubMed

    Pereira Rangel, Luciana; Fritzen, Márcio; Yunes, Rosendo Augusto; Leal, Paulo César; Creczynski-Pasa, Tânia Beatriz; Ferreira-Pereira, Antônio

    2010-05-01

    Overexpression of the Saccharomyces cerevisiae ABC transporter Pdr5p confers resistance to a range of structurally unrelated xenobiotics. This property allows Pdr5p to be used as a target for novel multidrug resistance reversal reagents or chemosensitizers. Herein, we report the effects of gallic acid derivatives with substitutions either on the ester moiety or in the benzene ring on the activity of Pdr5p. Compounds with a longer side chain (8-16 carbons) resulted in greater inhibition of Pdr5p ATPase. Derivatives with side chains of 8-12 carbons that retained hydroxyl groups on the benzene ring extensively inhibited Pdr5p ATPase activity. These compounds almost completely inhibited the efflux of the Pdr5p fluorescent substrate Rhodamine 6G and at 25 muM chemosensitized the Pdr5p-overexpressing strain AD124567 to fluconazole (0.4 mg mL(-1)). Gallic acid derivatives may be a new class of Pdr5p inhibitors.

  10. Investigation of carbon storage regulation network (csr genes) and phenotypic differences between acid sensitive and resistant Escherichia coli O157:H7 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Escherichia coli O157:H7 and related serotype strains have previously been shown to vary in acid resistance, however, little is known about strain specific mechanisms of acid resistance. We examined sensitive and resistant E. coli strains to determine the effects of growth in minimal and...

  11. High levels of stearic acid, palmitoleic acid, and dihomo-γ-linolenic acid and low levels of linoleic acid in serum cholesterol ester are associated with high insulin resistance.

    PubMed

    Kurotani, Kayo; Sato, Masao; Ejima, Yuko; Nanri, Akiko; Yi, Siyan; Pham, Ngoc Minh; Akter, Shamima; Poudel-Tandukar, Kalpana; Kimura, Yasumi; Imaizumi, Katsumi; Mizoue, Tetsuya

    2012-09-01

    The association of fatty acid composition with insulin resistance and type 2 diabetes has been reported in Western populations, but there is limited evidence of this association among the Japanese, whose populace consume large amounts of fish. To test the hypothesis that high palmitic, palmitoleic, and dihomo-γ-linolenic acids and low levels of linoleic and n-3 fatty acids are associated with higher insulin resistance among the Japanese, the authors investigated the relationship between serum fatty acid composition and serum C-peptide concentrations in 437 Japanese employees aged 21 to 67 years who participated in a workplace health examination. Serum cholesterol ester and phospholipid fatty acid compositions were measured by gas-liquid chromatography. Desaturase activity was estimated by fatty acid product-to-precursor ratios. A multiple regression was used to assess the association between fatty acid and C-peptide concentrations. C-peptide concentrations were associated inversely with linoleic acid levels in cholesterol ester and phospholipid (P for trend = .01 and .02, respectively) and positively with stearic and palmitoleic acids in cholesterol ester (P for trend =.02 and .006, respectively) and dihomo-γ-linolenic acid in cholesterol ester and phospholipid (P for trend < .0001 for both). C-peptide concentrations were not associated with n-3 polyunsaturated fatty acids. C-peptide concentrations significantly increased as δ-9-desaturase (16:1 n-7/16:0) and δ-6-desaturase (18:3 n-6/18:2 n-6) increased (P for trend = .01 and .03, respectively) and δ-5-desaturase (20:4 n-6/20:3 n-6) decreased (P for trend = .004). In conclusion, a fatty acid pattern with high levels of serum stearic, palmitoleic, or dihomo-γ-linolenic acids; δ-9-desaturase (16:1 n-7/16:0) or δ-6-desaturase (18:3 n-6/18:2 n-6) activities; and low levels of serum linoleic acid or δ-5-desaturase (20:4 n-6/20:3 n-6) activity might be associated with higher insulin resistance in Japanese adults.

  12. Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants.

    PubMed Central

    Meuwly, P.; Molders, W.; Buchala, A.; Metraux, J. P.

    1995-01-01

    Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance. PMID:12228656

  13. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  14. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified.

  15. Significant effect of Ca2+ on improving the heat resistance of lactic acid bacteria.

    PubMed

    Huang, Song; Chen, Xiao Dong

    2013-07-01

    The heat resistance of lactic acid bacteria (LAB) has been extensively investigated due to its highly practical significance. Reconstituted skim milk (RSM) has been found to be one of the most effective protectant wall materials for microencapsulating microorganisms during convective drying, such as spray drying. In addition to proteins and carbohydrate, RSM is rich in calcium. It is not clear which component is critical in the RSM protection mechanism. This study investigated the independent effect of calcium. Ca(2+) was added to lactose solution to examine its influence on the heat resistance of Lactobacillus rhamnosus ZY, Lactobacillus casei Zhang, Lactobacillus plantarum P8 and Streptococcus thermophilus ND03. The results showed that certain Ca(2+) concentrations enhanced the heat resistance of the LAB strains to different extents, that is produced higher survival and shorter regrowth lag times of the bacterial cells. In some cases, the improvements were dramatic. More scientifically insightful and more intensive instrumental study of the Ca(2+) behavior around and in the cells should be carried out in the near future. In the meantime, this work may lead to the development of more cost-effective wall materials with Ca(2+) added as a prime factor. PMID:23617813

  16. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds.

    PubMed

    Anisha, B S; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2013-11-01

    The aim of this work was to develop an antimicrobial sponge composed of chitosan, hyaluronic acid (HA) and nano silver (nAg) as a wound dressing for diabetic foot ulcers (DFU) infected with drug resistant bacteria. nAg (5-20 nm) was prepared and characterized. The nanocomposite sponges were prepared by homogenous mixing of chitosan, HA and nAg followed by freeze drying to obtain a flexible and porous structure. The prepared sponges were characterized using SEM and FT-IR. The porosity, swelling, biodegradation and haemostatic potential of the sponges were also studied. Antibacterial activity of the prepared sponges was analysed using Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia. Chitosan-HA/nAg composite sponges showed potent antimicrobial property against the tested organisms. Sponges containing higher nAg (0.005%, 0.01% and 0.02%) concentrations showed antibacterial activity against MRSA. Cytotoxicity and cell attachment studies were done using human dermal fibroblast cells. The nanocomposite sponges showed a nAg concentration dependent toxicity towards fibroblast cells. Our results suggest that this nanocomposite sponges could be used as a potential material for wound dressing for DFU infected with antibiotic resistant bacteria if the optimal concentration of nAg exhibiting antibacterial action with least toxicity towards mammalian cells is identified. PMID:24060281

  17. Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus

    PubMed Central

    Vitti, Antonella; Pellegrini, Elisa; Nali, Cristina; Lovelli, Stella; Sofo, Adriano; Valerio, Maria; Scopa, Antonio; Nuzzaci, Maria

    2016-01-01

    Understanding the induction of plant defenses against viruses using biocontrol agents is essential for developing new strategies against these pathogens, given the ineffectiveness of chemical treatments. The ability of Trichoderma harzianum, strain T-22 (T22) to control Cucumber mosaic virus (CMV) in Solanum lycopersicum var. cerasiforme plants and the changes in the physiology of tomato treated/infected with T22/CMV were examined. Plant growth-promoting effects, photosynthetic performance, reactive oxygen species scavenging enzymes, and phytohormones were investigated. T22 improved tomato growth in terms of plant height and improved photosynthesis, total chlorophyll content and plant gas exchange. In contrast, CMV induced a negative effect on dry matter accumulation and inhibited the photosynthetic capacity. The analysis of plant hormones demonstrated that treating with T22 before or simultaneously to CMV infection, led to a systemic resistance by jasmonic acid/ethylene and salicylic acid signaling pathways. Conversely, systemic resistance was abscissic acid-dependent when T22 treatment was administered after the CMV infection. In conclusion, the data reported here indicate that the T22-based strategy may be the most effective measure against CMV. PMID:27777581

  18. Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichome density and oviposition by Helicoverpa armigera (Lepidoptera: Noctuidae)

    PubMed Central

    War, Abdul Rashid; Hussain, Barkat; Sharma, Hari C.

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) are important phytohormones involved in plant resistance against insect herbivory and pathogen infection. Application of JA and SA induces several defensive traits in plants. Here we investigated the effect of JA and SA on trichome density in five groundnut genotypes [ICGV 86699, ICGV 86031, ICG 2271, ICG 1697 (resistant) and JL 24 (susceptible)]. The effect of JA- and SA-induced resistance on the oviposition behaviour of Helicoverpa armigera on different groundnut genotypes was also studied. Pre-treatment with JA increased numbers of trichomes in the insect-resistant genotypes, ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697. The induction was greater at 10 days after treatment. Jasmonic acid- and SA-treated plants showed a substantial effect on the oviposition behaviour of H. armigera. Jasmonic acid application and herbivory reduced the number of eggs laid by H. armigera in all the groundnut genotypes tested. However, a greater reduction was recorded on plants pre-treated with JA. More egg laying was recorded in JL 24 in all the treatments as compared to the insect-resistant genotypes. These results suggested that pre-treatment with JA increased trichome density in groundnut plants, which conferred antixenosis for oviposition by H. armigera.

  19. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  20. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  1. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    PubMed

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-03-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimulated glucose uptake rate, a higher mean insulin response to oral glucose and a mixed meal, and a higher mean fat oxidation rate compared with Pimas who were homozygous for the alanine-encoding allele. Since the FABP2 threonine-encoding allele was found to be associated with insulin resistance and increased fat oxidation in vivo, we further analyzed the FABP2 gene products for potential functional differences. Titration microcalorimetry studies with purified recombinant protein showed that the threonine-containing protein had a twofold greater affinity for long-chain fatty acids than the alanine-containing protein. We conclude that the threonine-containing protein may increase absorption and/or processing of dietary fatty acids by the intestine and thereby increase fat oxidation, which has been shown to reduce insulin action. PMID:7883976

  2. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    PubMed

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  3. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    PubMed

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website.

  4. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    SciTech Connect

    Marinkovic, Bojan A.; Fredholm, Yann C.; Morgado, Edisson

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  5. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study

    PubMed Central

    Moghadam, Sajjad Khalili; Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2016-01-01

    In the current study, we investigated the longitudinal association between dietary acid load and the risk of insulin resistance (IR) in the Tehranian adult population. This longitudinal study was conducted on 925 participants, aged 22~80 years old, in the framework of the third (2006~2008) and fourth (2009~2011) phases of the Tehran Lipid and Glucose Study. At baseline, the dietary intake of subjects was assessed using a validated semi-quantitative food frequency questionnaire, and the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores were calculated at baseline. Fasting serum insulin and glucose were measured at baseline and again after a 3-year of follow-up; IR was defined according to optimal cut-off values. Multiple logistic regression models were used to estimate the risk of IR according to the PRAL and NEAP quartile categories. Mean age and body mass index of the participants were 40.3 years old of 26.4 kg/m2, respectively. Mean PRAL and NEAP scores were −11.2 and 35.6 mEq/d, respectively. After adjustment for potential confounders, compared to the lowest quartile of PRAL and NEAP, the highest quartile was accompanied with increased risk of IR [odds ratio (OR)=2.81, 95% confidence interval (CI)=1.32~5.97 and OR=2.18, 95% CI=1.03 ~4.61, respectively]. Our findings suggest that higher acidic dietary acid-base load, defined by higher PRAL and NEAP scores, may be a risk factor for the development of IR and related metabolic disorders. PMID:27390726

  6. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study.

    PubMed

    Moghadam, Sajjad Khalili; Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2016-06-01

    In the current study, we investigated the longitudinal association between dietary acid load and the risk of insulin resistance (IR) in the Tehranian adult population. This longitudinal study was conducted on 925 participants, aged 22~80 years old, in the framework of the third (2006~2008) and fourth (2009~2011) phases of the Tehran Lipid and Glucose Study. At baseline, the dietary intake of subjects was assessed using a validated semi-quantitative food frequency questionnaire, and the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores were calculated at baseline. Fasting serum insulin and glucose were measured at baseline and again after a 3-year of follow-up; IR was defined according to optimal cut-off values. Multiple logistic regression models were used to estimate the risk of IR according to the PRAL and NEAP quartile categories. Mean age and body mass index of the participants were 40.3 years old of 26.4 kg/m(2), respectively. Mean PRAL and NEAP scores were -11.2 and 35.6 mEq/d, respectively. After adjustment for potential confounders, compared to the lowest quartile of PRAL and NEAP, the highest quartile was accompanied with increased risk of IR [odds ratio (OR)=2.81, 95% confidence interval (CI)=1.32~5.97 and OR=2.18, 95% CI=1.03 ~4.61, respectively]. Our findings suggest that higher acidic dietary acid-base load, defined by higher PRAL and NEAP scores, may be a risk factor for the development of IR and related metabolic disorders. PMID:27390726

  7. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus

    PubMed Central

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay; Marappan, Nathiya; Gajendran, Sabari Srinivasan; Viswanathan, Vinodhini

    2016-01-01

    Aim/Background: Medicinal plants have ability to resist microorganisms by synthesizing secondary metabolites such as phenols. Rosmarinic acid (RA) is a phenylpropanoid widely distributed in plants and well known as therapeutic and cosmetic agent. Methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to all kinds of β-lactams, threatens even most potent antibiotics. To improve the efficiency of antibiotics against multi-drug resistant bacteria and to reduce the antibiotic dose, the antibacterial activity and the synergistic effect of RA with standard antibiotics against S. aureus and MRSA was investigated. Materials and Methods: Antibacterial activity of RA against S. aureus and a clinical isolate of MRSA was evaluated by agar well diffusion method. Minimum inhibitory concentration (MIC) of RA was determined by broth dilution method. Synergism of RA with various antibiotics against S. aureus and MRSA was studied by broth checkerboard method and time-kill kinetic assay. Effect of RA on microbial surface components recognizing adhesive matrix molecules (MSCRAMM’s) of S. aureus and MRSA was studied using sodium dodecyl sulfate - polyacrylamide gel electrophoresis. Results: MIC of RA was found to be 0.8 and 10 mg/ml against S. aureus and MRSA, respectively. RA was synergistic with vancomycin, ofloxacin, and amoxicillin against S. aureus and only with vancomycin against MRSA. The time-kill analysis revealed that synergistic combinations were a more effective than individual antibiotics. MSCRAMM’s protein expression of S. aureus and MRSA was markedly suppressed by RA + vancomycin combination rather than RA alone. Conclusion: The synergistic effects of RA with antibiotics were observed against S. aureus and MRSA. RA showed inhibitory effect on the surface proteins MSCRAMM’s. Even though RA was shown to exhibit a synergistic effect with antibiotics, the MIC was found to be higher. Thus, further studies on increasing the efficacy of RA can develop it

  8. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    PubMed Central

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimulated with different phospholipids and phospholipid precursors derived from soy and egg sources. The ratio of phosphorylated p70 (P-p70-389) to total p70 was then used as readout for mTOR signaling. In phase two, resistance trained subjects (n = 28, 21 ± 3 years, 77 ± 4 kg, 176 ± 9 cm) consumed either 750 mg PA daily or placebo and each took part in an 8 week periodized resistance training program. Results In phase one, soy-phosphatidylserine, soy-Lyso-PA, egg-PA, and soy-PA stimulated mTOR signaling, and the effects of soy-PA (+636%) were significantly greater than egg-PA (+221%). In phase two, PA significantly increased lean body mass (+2.4 kg), cross sectional area (+1.0 cm), and leg press strength (+51.9 kg) over placebo. Conclusion PA significantly activates mTOR and significantly improved responses in skeletal muscle hypertrophy, lean body mass, and maximal strength to resistance exercise. PMID:24959196

  9. Acid diffusion, standing waves, and information theory: a molecular-scale model of chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter, III; Allen, Mary T.

    1992-06-01

    Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains

  10. Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products.

    PubMed

    Scaramuzza, Nicoletta; Berni, Elettra

    2014-01-01

    Products containing sugar or fruit derivatives are usually subjected to a pasteurization process that can anyway be ineffective to kill ascospores from heat-resistant molds. Although the most occurring and economically relevant heat-resistant species belong to Byssochlamys, Neosartorya, Talaromyces, and Eupenicillium genera, an increasing number of uncommon heat-resistant isolates have been recently detected as spoiling microorganisms in such products. Since Hamigera spp. and Thermoascus spp. were those more frequently isolated at SSICA, heat resistance of Hamigera avellanea and Thermoascus crustaceus strains from pasteurized acid products was studied in apple juice, in blueberry and grape juice and in a buffered glucose solution. Data obtained from thermal death curves and statistical elaboration of raw data showed that D values of H. avellanea may vary between 11.11 and 66.67 min at 87°C, between 4.67 and 13.51 at 90°C, and between 0.43 and 1.52 min at 95°C. Similarly, D values of T. crustaceus may vary between 18.52 and 90.91 min at 90°C, between 2.79 and 19.23 at 93°C, and between 1.11 and 2.53 min at 95°C. For both strains studied, the z-values calculated from the decimal reduction time curves did not prove to be significantly influenced by the heating medium, that being 4.35°C, 5.39°C or 5.27°C for H. avellanea and 4.42°C, 3.69°C or 3.37°C for T. crustaceus, respectively in apple juice, in blueberry and grape juice or in the buffered glucose solution. Considering the pasteurization treatments industrially applied to fruit-based foods, the variation of thermal parameters does not seem to be a possible way to avoid product spoilage by these two species and only good practices applied to reduce the original load of heat-resistant fungi can help producers to prevent losses in contaminated finished products, as usually happens for other heat resistant molds.

  11. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance

    NASA Astrophysics Data System (ADS)

    Graziani, Gabriela; Sassoni, Enrico; Franzoni, Elisa; Scherer, George W.

    2016-04-01

    Hydroxyapatite (HAP) has a much lower dissolution rate and solubility than calcite, especially in an acidic environment, so it has been proposed for the protection of marble against acidic rain corrosion. Promising results were obtained, but further optimization is necessary as the treated layer is often incomplete, cracked and/or porous. In this paper, several parameters were investigated to obtain a coherent, uncracked layer, and to avoid the formation of metastable, soluble phases instead of HAP: the role of the pH of the starting solution; the effect of organic and inorganic additions, and in particular that of ethanol, as it is reported to adsorb on calcite, hence possibly favoring the growth of the HAP layer. Finally, a double application of the treatment was tested. Results were compared to those obtained with ammonium oxalate treatment, widely investigated for marble protection. Results indicate that adding small amounts of ethanol to the formulation remarkably increases the acid resistance of treated samples, and yields better coverage of the surface without crack formation. The effectiveness of the treatment is further enhanced when a second treatment is applied. The efficacy of ethanol-doped DAP mixtures was found to be remarkably higher than that of ammonium oxalate based treatments.

  12. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system.

    PubMed

    Lastra, Guido; Dhuper, Sonal; Johnson, Megan S; Sowers, James R

    2010-10-01

    Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.

  13. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  14. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  15. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery

    PubMed Central

    Feuille, Catherine M.; Starke, Carly Elizabeth C.; Bhagwat, Arvind A.; Stibitz, Scott; Kopecko, Dennis J.

    2016-01-01

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain. PMID:27673328

  16. Isolation of a high malic and low acetic acid-producing sake yeast Saccharomyces cerevisiae strain screened from respiratory inhibitor 2,4-dinitrophenol (DNP)-resistant strains.

    PubMed

    Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi

    2014-01-01

    We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+).

  17. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L3-mediated resistance in Capsicum plants.

    PubMed

    Hamada, Hiroyuki; Tomita, Reiko; Iwadate, Yasuya; Kobayashi, Kappei; Munemura, Ikuko; Takeuchi, Shigeharu; Hikichi, Yasufumi; Suzuki, Kazumi

    2007-04-01

    We found that an L3 resistance-breaking field isolate of Pepper mild mottle virus (PMMoV), designated PMMoV-Is, had two amino acid changes in its coat protein (CP), namely leucine to phenylalanine at position 13 (L13F) and glycine to valine at position 66 (G66V), as compared with PMMoV-J, which induces a resistance response in L3-harboring Capsicum plants. The mutations were located to a CP domain corresponding to the outer surface of PMMoV particles in computational molecular modeling. Analyses of PMMoV CP mutants containing either or both of these amino acid changes revealed that both changes were required to efficiently overcome L3-mediated resistance with systemic necrosis induction. Although CP mutants containing either L13F or G66V could not efficiently overcome L3-mediated resistance, these amino acid changes had different effects on the elicitor activity of PMMoV CP. L13F caused a slight reduction in the elicitor activity, resulting in virus restriction to necrotic local lesions that were apparently larger than those induced by wild-type PMMoV, while G66V rendered wild-type PMMoV the ability to overcome L3-mediated resistance, albeit with a lower efficiency than PMMoV with both changes. These results suggest that a cooperative effect of the L13F and G66V mutations on the elicitor activity of CP is responsible for overcoming the L3-mediated resistance.

  18. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  19. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage. PMID:26213007

  20. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  1. Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Elo, Hannu; Matikainen, Jorma; Pelttari, Eila

    2007-06-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci, most notably methicillin-resistant Staphylococcus aureus (MRSA), are serious clinical problems. The antibiotic arsenal available against them is limited, and new mutants worsen the situation. We studied the activity of (+)-usnic acid, an old lichen-derived drug, and its sodium salt against clinical isolates of VRE and MRSA using the agar diffusion and minimal inhibitory concentration (MIC) methods. The acid and, especially, the sodium salt had potent antimicrobial activity against all clinical isolates of VRE and MRSA studied. The MIC values of the sodium salt against VRE strains ranged between 4 and 16 μg/ml (1-day test) and between 4 and 31 μg/ml (2-day test), being below 8 μg/ml for most strains. The salt had potent activity even against those strains that were not inhibited by ampicillin (125 μg/ml), and it never lost its activity after 24 h, in contrast to ampicillin. Thus, in spite of the fact that usnic acid can in some cases cause serious toxicity, it and its salts may be worth considering in clinical practice in cases where other therapies have failed or the microbe is resistant toward other agents.

  2. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    PubMed

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4. PMID:26963213

  3. Phase II trial of weekly Docetaxel, Zoledronic acid, and Celecoxib for castration-resistant prostate cancer.

    PubMed

    Kattan, Joseph; Bachour, Marwan; Farhat, Fadi; El Rassy, Elie; Assi, Tarek; Ghosn, Marwan

    2016-08-01

    Background Treatment options for patients with metastatic castration-resistance prostate cancer are unsatisfactory. Docetaxel monotherapy offers promising results with a tolerable toxicity profile. However, enhancing the clinical index of Docetaxel-based therapy remains the ultimate goal. Methods We conducted a phase II, open label, multinational prospective trial to evaluate the efficacy of weekly Docetaxel combined with Zoledronic acid and Celecoxib. Eligible patients received 25 mg/m(2) Docetaxel weekly for 3 consecutive weeks every 4 weeks, 4 mg Zoledronic acid every 4 weeks, and 200 mg oral Celecoxib twice daily. Enrollment was terminated prematurely upon the publication of reports of cardiac toxicity associated with cyclooxygenase (COX) 2 inhibitors. Results Our study enrolled 22 patients with a median of 4.7 cycles per patient. The median overall survival (OS) was 9.8 months (range 0.7 to 24.1 months) with 36 % and 4.5 % survival rates at 1 and 2 years, respectively. Our patients had a biologic response in 40.1 % of cases and a palliative response in 72.7 %. Among the eight patients with measurable disease, three had partial responses, two had stable disease, and three had progressive disease, leading to a response rate (RR) of 62.5 %. The observed toxicities were mild and limited to grade 3 events. Nine patients had anemia (40.1 %), 5 had sensory neuropathy (22.7 %) and 2 had stomatitis (9.1 %). Conclusion The combination of Docetaxel, Celecoxib, and Zoledronic acid failed to improve OS or to offer an acceptable biologic response. We do not believe that there is compelling evidence to include either Celecoxib or Zoledronic acid in further phase II/III trials. PMID:27159981

  4. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  5. Absence of association of autoinducer-2-based quorum sensing with heat and acid resistance of Salmonella.

    PubMed

    Yoon, Yohan; Sofos, John N

    2010-09-01

    This study used various approaches to investigate the potential association of autoinducer-2 (AI-2) presence with thermal and acid resistance of Salmonella cultures. Salmonella Thompson strains RM1987N (luxS-positive; AI-2 positive) and RM1987NLUX (luxS-negative; AI-2 negative) were exposed to 55 °C (6 h) in Luria-Bertani (LB) broth, while the luxS-negative S. Thompson strain and a Salmonella Typhimurium luxS-positive strain were exposed to 55 °C in AI-2-positive or -negative preconditioned (PC) media derived from S. Thompson and Escherichia coli O157:H7 luxS-positive and -negative strains. In addition, the luxS-negative S. Thompson strain was subjected to pH 3.5 PC media (35 °C, 6 h) with or without AI-2 activity, and acid-adapted or nonadapted S. Thompson strains were exposed to pH 3.0 LB broth (35 °C, 6 h). Surviving bacterial populations during exposure to 55 °C LB were not different between luxS-negative and -positive S. Thompson strains. In addition, heating at 55 °C of the luxS-negative S. Thompson strain in AI-2-positive and -negative PC media resulted in similar (P ≥ 0.05) survivor counts. Furthermore, surviving cell counts of S. Typhimurium (luxS-positive) in 55 °C AI-2-positive PC media were not different (P ≥ 0.05) than those in AI-2 negative PC media. No differences in surviving cell counts of the luxS-negative S. Thompson strain was found when exposed to pH 3.5 AI-2-positive and -negative PC media. Also, survivors of acid-adapted or nonadapted cells of luxS-negative and -positive S. Thompson strains were not different following exposure to pH 3.0 LB. The results indicated that, under the conditions of this study, AI-2-based quorum sensing did not appear to be associated with heat and acid resistance of Salmonella.

  6. Amino acid auxotrophy as a system of immunological control nodes.

    PubMed

    Murray, Peter J

    2016-02-01

    Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

  7. System for agitating the acid in a lead-acid battery

    DOEpatents

    Weintraub, Alvin; MacCormack, Robert S.

    1987-01-01

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  8. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

  9. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  10. Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures.

    PubMed

    Uno, Naoki; Suzuki, Hiromichi; Yamakawa, Hiromi; Yamada, Maiko; Yaguchi, Yuji; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji; Misawa, Shigeki; Yanagihara, Katsunori

    2015-12-01

    The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy.

  11. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  12. Ellagic Acid and Resveratrol Prevent the Development of Cisplatin Resistance in the Epithelial Ovarian Cancer Cell Line A2780

    PubMed Central

    Engelke, Laura H.; Hamacher, Alexandra; Proksch, Peter; Kassack, Matthias U.

    2016-01-01

    Purpose. Several studies have shown that natural compounds like resveratrol or ellagic acid have anticancer and antioxidant properties and can stimulate apoptosis in many cancer cell lines. The aim of this study was to elucidate if resveratrol or ellagic acid, respectively, could improve the efficacy of cisplatin in ovarian cancer. Methods. As a cellular resistance model, the epithelial ovarian cancer cell line A2780 and its cisplatin-resistant subclone A2780CisR were used. A2780CisR was obtained by intermittent treatment of A2780 with cisplatin for 26 weekly cycles and showed a 4-6-fold increased resistance towards cisplatin compared to A2780. Results. Pretreatment with resveratrol or ellagic acid 48 h prior to treatment with cisplatin showed a moderate enhancement of cisplatin cytotoxicity in A2780CisR cells (shift factors were 1.6 for ellagic acid and 2.5 for resveratrol). However, intermittent treatment of A2780 with cisplatin for 26 weekly cycles in permanent presence of resveratrol or ellagic acid, respectively, completely prevented the development of cisplatin resistance. The generated cell lines named A2780Resv and A2780Ellag displayed functional characteristics (migration, proliferation, apoptosis, activation of ErbB3, ROS generation) similar to the parental cell line A2780. Conclusion. In conclusion, weekly intermittent treatment cycles of cisplatin-sensitive ovarian cancer cells with cisplatin retain cisplatin chemosensitivity in permanent presence of ellagic acid or resveratrol, respectively, whereas clinically relevant cisplatin chemoresistance develops in the absence of ellagic acid or resveratrol. Use of natural phenolic compounds may thus be a promising approach to prevent cisplatin resistance in ovarian cancer. PMID:26918049

  13. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins. PMID:26812586

  14. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  15. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    PubMed

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-01-01

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192

  16. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients.

    PubMed

    Perez-Ruiz, Fernando; Aniel-Quiroga, Maria Angeles; Herrero-Beites, Ana María; Chinchilla, Sandra Pamela; Erauskin, Gorka Garcia; Merriman, Toni

    2015-09-01

    Inefficient renal excretion of uric acid is the main pathophysiological mechanism for hyperuricemia in gout patients. Polymorphisms of renal tubular transporters linked with sodium and monosaccharide transport have yet to be demonstrated. We intended to evaluate the impact of insulin resistance, evaluated with the homeostasis model assessment (HOMA), through a transversal study of non-diabetic patients with gout, with normal renal function, not treated with any medication but colchicine as prophylaxis. One hundred and thirty-three patients were evaluated. Clearance of uric acid was inversely correlated with insulin resistance and directly correlated with fractional excretion of sodium. In multivariate analysis, hypertension and hyperlipidemia, in addition to insulin resistance and fractional excretion of sodium, were associated with renal clearance of uric acid. HOMA cutoff for efficient versus inefficient renal handling of uric acid was 2.72, close to that observed in studies of reference population. The impact of insulin resistance and renal handling of sodium on renal clearance of uric acid may help to explain why hyperuricemia is more commonly associated with diabetes and hypertension. PMID:25763991

  17. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway

    PubMed Central

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-01-01

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192

  18. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves

    SciTech Connect

    Poschenrieder, C.; Gunse, B.; Barcelo, J. )

    1989-08-01

    Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed.

  19. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM.

  20. Reversal of Multidrug Resistance and Computational Studies of Pistagremic Acid Isolated from Pistacia integerrima.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Raza, Muslim; Ahmad, Aftab; Jehan, Noor; Ahmad, Bashir; Nisar, Muhammad; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Khan, Ajmal; Farooq, Umar; Noor, Mah

    2016-01-01

    Pistagremic acid (PA) is a bioactive triterpenoid isolated from various parts of Pistacia integerrima plants. The aim of this research was to investigate PA for reversion of multidrug resistant (MDR) mediated by P-glycoprotein using rhodamine-123 exclusion study on a multidrug resistant human ABCB1 (ATP-binding cassette, sub-family B, member 1) gene-transfected mouse T-lymphoma cell line in vitro. Results were similar to those with verapamil as a positive control. Docking studies of PA and standard Rhodamine123 were carried out against a P-gp crystal structure which showed satisfactory results. Actually, PA cannot bind exactly where co-crystallized ligand of P-gp is already present. However, the docking study predicted that if a compound gives a lesser score then it may have some potency. The docking scores of PA and Rhodamine were similar. Therefore, we can conclude that there are certain important chemical features of PA which are responsible for the inhibiting potency of P-gp. PMID:27221936

  1. Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo.

    PubMed

    Kundu, Subrata; Chakraborty, Dipjyoti; Pal, Amita

    2011-03-01

    The role of salicylic acid (SA) in inducing resistance to MYMIV infection in Vigna mungo has been elucidated by proteomics. Twenty-nine proteins identified by MALDI-TOF/TOF, predicted to be involved in stress responses, metabolism, photosynthesis, transport and signal transduction, showed increased abundance upon SA treatment. Susceptible plants showed characteristic yellow mosaic symptoms upon MYMIV infection. A concentration dependent decrease in physiological symptoms associated with MYMIV was observed upon exogenous SA treatment prior to viral inoculation; and no visible symptom was observed at 100 μM SA. SA treatment stimulated SOD and GPX activity and inhibited CAT activity thus preventing ROS mediated damage. Significant increase in chlorophyll, protein, carbohydrate, phenolic content and H(2)O(2) were observed. Involvement of calmodulin for transmission of defense signal by SA is suggested. A metabolic reprogramming leading to enhanced synthesis of proteins involved in primary and secondary metabolisms is necessary for SA mediated resistance to MYMIV. Identification of proteins showing increased abundance, involved in photosynthetic process is a significant finding which restores virus-induced degradation of the photosynthetic apparatus and provides enhanced metabolites required for repartition of resources towards defense.

  2. 5-Aminolaevulinic acid-mediated photodynamic therapy in multidrug resistant leukemia cells.

    PubMed

    Li, W; Zhang, W J; Ohnishi, K; Yamada, I; Ohno, R; Hashimoto, K

    2001-07-01

    To verify if photodynamic therapy (PDT) could overcome multidrug resistance (MDR) when it it applied to eradicate minimal residual disease in patients with leukemia, we investigated the fluorescence kinetics of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) and the effect of subsequent photodynamic therapy on MDR leukemia cells, which express P-glycoprotein (P-gp), as well as on their parent cells. Evaluation of PpIX accumulation by flow cytometry showed that PpIX accumulated at higher levels in mdr-1 gene-transduced MDR cells (NB4/MDR) and at lower levels in doxorubicin-induced MDR cells (NOMO-1/ADR) than in their parent cells. A P-gp inhibitor could not increase PpIX accumulation. Measurement of extracellular PpIX concentration by fluorescence spectrometry showed that P-gp did not mediate the fluorescence kinetics of ALA-induced PpIX production. Assessment of ferrochelatase activity using high-performance liquid chromatography indicated that PpIX accumulation in drug-induced MDR cells was probably regulated by this enzyme. Assessment of phototoxicity of PDT using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that PDT was effective in NB4, NB4/MDR, NOMO-1 and NOMO-1/ADR cells, which accumulated high levels of PpIX, but not effective in K562 and K562/ADR cell lines, which accumulated relatively low levels of PpIX. These findings demonstrate that P-gp does not mediate the ALA-fluorescence kinetics, and multidrug resistant leukemia cells do not have cross-resistance to ALA-PDT. PMID:11470562

  3. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

    PubMed Central

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-Hui

    2015-01-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO− inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO− mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes. PMID:25381390

  4. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo.

    PubMed

    Pereira, Sandra; Park, Edward; Moore, Jessy; Faubert, Brandon; Breen, Danna M; Oprescu, Andrei I; Nahle, Ashraf; Kwan, Denise; Giacca, Adria; Tsiani, Evangelia

    2015-11-01

    Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IκBα kinase β (IKKβ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. To test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with a tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 h with saline, Intralipid plus 20 U·mL(-1) heparin (IH; triglyceride emulsion that elevates FFA levels in vivo; 5.5 μL·min(-1)) with or without resveratrol (3 mg·kg(-1)·h(-1)), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; P < 0.05) and peripheral glucose utilization (P < 0.05) and increased endogenous glucose production (EGP; P < 0.05) during the clamp compared with saline infusion. Resveratrol co-infusion, however, completely prevented the effects induced by IH infusion: it prevented the decreases in GIR (P < 0.05 vs. IH), peripheral glucose utilization (P < 0.05 vs. IH), and insulin-induced suppression of EGP (P < 0.05 vs. IH). Resveratrol alone had no effect. Furthermore, IH infusion increased serine (307) phosphorylation of IRS-1 in soleus muscle (∼30-fold, P < 0.001), decreased total IRS-1 levels, and decreased IκBα content, consistent with activation of IKKβ. Importantly, all of these effects were abolished by resveratrol (P < 0.05 vs. IH). These results suggest that resveratrol prevents FFA-induced hepatic and peripheral insulin resistance and, therefore, may help mitigate the health consequences of obesity.

  5. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    PubMed

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A. PMID:26873406

  6. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity.

  7. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS.

    SciTech Connect

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-30

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PR&PP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PR&PP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PR&PP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort.

  8. Implementing bacterial acid resistance into cell-free protein synthesis for buffer-free expression and screening of enzymes.

    PubMed

    Kim, Ho-Cheol; Kim, Kwang-Soo; Kang, Taek-Jin; Choi, Jong Hyun; Song, Jae Jun; Choi, Yun Hee; Kim, Byung-Gee; Kim, Dong-Myung

    2015-12-01

    Cell-free protein synthesis utilizes translational machinery isolated from the cells for in vitro expression of template genes. Because it produces proteins without gene cloning and cell cultivation steps, cell-free protein synthesis can be used as a versatile platform for high-throughput expression of enzyme libraries. Furthermore, the open nature of cell-free protein synthesis allows direct integration of enzyme synthesis with subsequent screening steps. However, the presence of high concentration of chemical buffers in the conventional reaction mixture makes it difficult to streamline cell-free protein synthesis with pH-based assay of the synthesized enzymes. In this study, we have implemented an enzyme-assisted bacterial acid resistance mechanism into an Escherichia coli (E.coli) extract-based cell-free protein synthesis system in place of chemical buffers. When deployed in the reaction mixture for cell-free synthesis of enzymes, through proton-consuming conversion of glutamate into γ-aminobutyric acid (GABA), an engineered glutamate decarboxylase (GADβ) was able to maintain the pH of reaction mixture during enzyme synthesis. Because the reaction mixture becomes free of buffering capacity upon the depletion of glutamate, synthesized enzyme could be directly assayed without purification steps. The designed method was successfully applied to the screening of mutant library of sialyltransferase genes to identify mutants with improved enzymatic activity.

  9. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis

    PubMed Central

    Song, Geun Cheol; Choi, Hye Kyung; Ryu, Choong-Min

    2013-01-01

    Background and Aims The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathogen in tobacco has been reported previously. Methods In the present study, para-aminobenzoic acid (PABA, also referred to as vitamin Bx) was selected owing to its effect on the induction of SAR against Xanthomonas axonopodis pv. vesicatoria in pepper plants through greenhouse screening. Key Results Dipping of pepper seedlings in a 1 mm PABA solution in field trials induced SAR against artificially infiltrated X. axonopodis pv. vesicatoria and naturally occurring cucumber mosaic virus. Expression of the Capsicum annuum pathogenesis-related 4 gene was primed in response to pathogen infection as assessed by quantitative real-time PCR. The accumulation of cucumber mosaic virus RNA was reduced in PABA-treated pepper plants at 40 and 105 d post-treatment. Unexpectedly, fruit yield was increased in PABA-treated plants, indicating that PABA-mediated SAR successfully protected pepper plants from infection by bacterial and viral pathogens without significant fitness allocation costs. Conclusions The present study is the first to demonstrate the effective elicitation of SAR by a folate precursor under field conditions. PMID:23471007

  10. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  11. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  12. 49 CFR 179.16 - Tank-head puncture-resistance systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank-head puncture-resistance systems. 179.16... CARS General Design Requirements § 179.16 Tank-head puncture-resistance systems. (a) Performance standard. When the regulations in this subchapter require a tank-head puncture-resistance system,...

  13. High Uric Acid (UA) Negatively Affects Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b) Immunoassay

    PubMed Central

    Wu, Zhi-Qi; Zhang, Yan; Xie, Erfu; Song, Wei-Juan; Yang, Rui-Xia; Yan, Cheng-Jing; Zhang, Bing-Feng; Xu, Hua-Guo

    2016-01-01

    Background Bone metastases often occur in the majority of patients with advanced cancer, such as prostate cancer, lung cancer and breast cancer. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b), a novel bone resorption marker, has been used gradually in the clinics as a specific and sensitive marker of bone resorption for the early diagnosis of cancer patients with bone metastasis. Here, we reported that high concentrations of uric acid (UA) lead to decrease of TRACP 5b levels and determined whether TRACP 5b level was associated with UA in interference experiment. Methods A total of 77 patients with high concentrations of UA and 77 healthy subjects were tested to evaluate the differences in their TRACP 5b levels. Serial dilutions of UA were respectively spiked with a known concentration of TRACP 5b standard sample, then Serum TRACP 5b was detected by using bone TRAP® Assay. A correction equation was set to eliminate UA-derived TRACP 5b false-decrease. The effect of this correction was evaluated in high-UA individuals. Results The average TRACP level of the high-UA individuals (1.47± 0.62 U/L) was significantly lower than that of the healthy subjects (2.62 ± 0.63 U/L) (t-test, p<0.0001). The UA correction equation derived: ΔTRACP 5b = -1.9751lgΔUA + 3.7365 with an R2 = 0.98899. Application of the UA correction equation resulted in a statistically non-significant difference in TRACP 5b values between the healthy subjects and high-UA individuals (p = 0.24). Conclusions High UA concentrations can falsely decrease TRACP 5b levels due to a method-related systematic error. To avoid misdiagnoses or inappropriate therapeutic decisions, increased attention should be paid to UA interference, when TRACP 5b is used for early diagnosis of cancer patients with bone metastasis, evaluation of the aggressiveness of osteosarcoma or prediction of survival in prostate cancer and breast cancer with bone metastases. PMID:26800211

  14. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients.

    PubMed

    Farahyar, Shirin; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sassan; Falahati, Mehraban; Safara, Mahin; Raoofian, Reza; Hatami, Kamran; Mohebbi, Masoumeh; Heidari, Mansour

    2016-07-01

    Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates. PMID:27424018

  15. L-Ascorbic acid can abrogate SVCT-2-dependent cetuximab resistance mediated by mutant KRAS in human colon cancer cells.

    PubMed

    Jung, Soo-A; Lee, Dae-Hee; Moon, Jai-Hee; Hong, Seung-Woo; Shin, Jae-Sik; Hwang, Ih Yeon; Shin, Yu Jin; Kim, Jeong Hee; Gong, Eun-Yeung; Kim, Seung-Mi; Lee, Eun Young; Lee, Seul; Kim, Jeong Eun; Kim, Kyu-Pyo; Hong, Yong Sang; Lee, Jung Shin; Jin, Dong-Hoon; Kim, TaeWon; Lee, Wang Jae

    2016-06-01

    Colon cancer patients with mutant KRAS are resistant to cetuximab, an antibody directed against the epidermal growth factor receptor, which is an effective clinical therapy for patients with wild-type KRAS. Numerous combinatorial therapies have been tested to overcome the resistance to cetuximab. However, no combinations have been found that can be used as effective therapeutic strategies. In this study, we demonstrate that L-ascorbic acid partners with cetuximab to induce killing effects, which are influenced by sodium-dependent vitamin C transporter 2 (SVCT-2) in human colon cancer cells with a mutant KRAS. L-Ascorbic acid treatment of human colon cancer cells that express a mutant KRAS differentially and synergistically induced cell death with cetuximab in a SVCT-2-dependent manner. The ectopic expression of SVCT-2 induced sensitivity to L-ascorbic acid treatment in human colon cancer cells that do not express SVCT-2, whereas the knockdown of endogenous SVCT-2 induced resistance to L-ascorbic acid treatment in SVCT-2-positive cells. Moreover, tumor regression via the administration of L-ascorbic acid and cetuximab in mice bearing tumor cell xenografts corresponded to SVCT-2 protein levels. Interestingly, cell death induced by the combination of L-ascorbic acid and cetuximab resulted in both apoptotic and necrotic cell death. These cell death mechanisms were related to a disruption of the ERK pathway and were represented by the impaired activation of RAFs and the activation of the ASK-1-p38 pathway. Taken together, these results suggest that resistance to cetuximab in human colon cancer patients with a mutant KRAS can be bypassed by L-ascorbic acid in an SVCT-2-dependent manner. Furthermore, SVCT-2 in mutant KRAS colon cancer may act as a potent marker for potentiating L-ascorbic acid co-treatment with cetuximab.

  16. Mitigating the threat of artemisinin resistance in Africa: improvement of drug-resistance surveillance and response systems

    PubMed Central

    Talisuna, Ambrose O; Karema, Corine; Ogutu, Bernhards; Juma, Elizabeth; Logedi, John; Nyandigisi, Andrew; Mulenga, Modest; Mbacham, Wilfred F; Roper, Cally; Guerin, Philippe J; D’Alessandro, Umberto; Snow, Robert W

    2012-01-01

    Artemisinin-resistant Plasmodium falciparum malaria has emerged in western Cambodia and has been detected in western Thailand. The situation is ominously reminiscent of the emergence of resistance to chloroquine and to sulfadoxine–pyrimethamine several decades ago. Artemisinin resistance is a major threat to global public health, with the most severe potential effects in sub-Saharan Africa, where the disease burden is highest and systems for monitoring and containment of resistance are inadequate. The mechanisms that underlie artemisinin resistance are not fully understood. The main phenotypic trait associated with resistance is a substantial delay in parasite clearance, so far reported in southeast Asia but not in Africa. One of the pillars of the WHO global plan for artemisinin resistance containment is to increase monitoring and surveillance. In this Personal View, we propose strategies that should be adopted by malaria-endemic countries in Africa: resource mobilisation to reactivate regional surveillance networks, establishment of baseline parasite clearance profiles to serve as benchmarks to track emerging artemisinin resistance, improved data sharing to allow pooled analyses to identify rare events, modelling of risk factors for drug resistance, and development and validation of new approaches to monitor resistance. PMID:23099083

  17. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  18. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  19. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  20. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

    PubMed

    Šeme, H; Gjuračić, K; Kos, B; Fujs, Š; Štempelj, M; Petković, H; Šušković, J; Bogovič Matijašić, B; Kosec, G

    2015-01-01

    Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application. PMID:25380802

  1. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

    PubMed

    Šeme, H; Gjuračić, K; Kos, B; Fujs, Š; Štempelj, M; Petković, H; Šušković, J; Bogovič Matijašić, B; Kosec, G

    2015-01-01

    Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application.

  2. Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina1[W

    PubMed Central

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-01-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  3. Crosstalk between exercise and galanin system alleviates insulin resistance.

    PubMed

    Fang, Penghua; He, Biao; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen

    2015-12-01

    Studies have demonstrated that aerobic exercise can enhance insulin sensitivity, however, the precise mechanism for this outcome is not entirely identified. Emerging evidences point out that exercise can upregulate galanin protein and mRNA expression, resulting in improvement of insulin sensitivity via an increase in translocation of glucose transporter 4 and subsequent glucose uptake in myocytes and adipocytes of healthy and type 2 diabetic rats, which may be blocked by galanin antagonist. In return, galanin can exert the exercise-protective roles to prevent excessive movement of skeletal muscle and to accelerate exercise trauma repair in exercise-relative tissues. Studies also implicated that combination of aerobic exercise and activation of galanin system may make more significant improvement in insulin sensitivity than that of either one did. These suggest that galanin system is essential for physical activity to alleviate insulin resistance, namely, the beneficial effect of physical activity on glucose uptake is at least partly mediated by galanin system. Besides, co-treatment with galanin and exercise is an effective therapeutic strategy for reducing insulin resistance.

  4. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  5. Large resistivity modulation in mixed-phase metallic systems.

    PubMed

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation. PMID:25564764

  6. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  7. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  8. Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid.

    PubMed

    Matsushita, Kazunobu; Inoue, Taketo; Adachi, Osao; Toyama, Hirohide

    2005-07-01

    Acetic acid bacteria are obligate aerobes able to oxidize ethanol, sugar alcohols, and sugars into their corresponding acids. Among them, Acetobacter and Gluconacetobacter species have very high ethanol oxidation capacity, leading to accumulation of vast amounts of acetic acid outside the cell. Since these bacteria are able to grow in media with high concentrations of acetic acid, they must possess a specific mechanism such as an efflux pump by which they can resist the toxic effects of acetic acid. In this study, the efflux pump of Acetobacter aceti IFO 3283 was examined using intact cells and membrane vesicles. The accumulation of acetic acid/acetate in intact cells was increased by the addition of a proton uncoupler and/or cyanide, suggesting the presence of an energy-dependent efflux system. To confirm this, right-side-out and inside-out membrane vesicles were prepared from A. aceti IFO 3283, and the accumulation of acetic acid/acetate in the vesicles was examined. Upon the addition of a respiratory substrate, the accumulation of acetic acid/acetate in the right-side-out vesicles was largely decreased, while its accumulation was very much increased in the inside-out vesicles. These respiration-dependent phenomena observed in both types of membrane vesicles were all sensitive to a proton uncoupler. Acetic acid/acetate uptake in the inside-out membrane vesicles was dependent not on ATP but on the proton motive force. Furthermore, uptake was shown to be rather specific for acetic acid and to be pH dependent, because higher uptake was observed at lower pH. Thus, A. aceti IFO 3283 possesses a proton motive force-dependent efflux pump for acetic acid.

  9. Interconnection between flowering time control and activation of systemic acquired resistance

    PubMed Central

    Banday, Zeeshan Z.; Nandi, Ashis K.

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants. PMID:25852723

  10. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  11. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs. PMID:23770357

  12. Recognition of Endogenous Nucleic Acids by the Innate Immune System.

    PubMed

    Roers, Axel; Hiller, Björn; Hornung, Veit

    2016-04-19

    Recognition of DNA and RNA by endosomal and cytosolic sensors constitutes a central element in the detection of microbial invaders by the innate immune system. However, the capacity of these sensors to discriminate between microbial and endogenous nucleic acids is limited. Over the past few years, evidence has accumulated to suggest that endogenous DNA or RNA species can engage nucleic-acid-sensing pattern-recognition receptors that can trigger or sustain detrimental pathology. Here, we review principles of how the activation of innate sensors by host nucleic acids is prevented in the steady state and discuss four important determinants of whether a nucleic-acid-driven innate response is mounted. These include structural features of the ligand being sensed, the subcellular location and quantity of pathogen-derived or endogenous nucleic acids, and the regulation of sensor-activation thresholds. Furthermore, we emphasize disease mechanisms initiated by failure to discriminate self from non-self in nucleic acid detection.

  13. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  14. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  15. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.).

    PubMed

    Pline, Wendy A; Wilcut, John W; Duke, Stephen O; Edmisten, Keith L; Wells, Randy

    2002-01-30

    Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.

  16. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  17. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. PMID:27247772

  18. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  19. Influence of soil substrate and ozone plus acid mist on the frost resistance of young Norway spruce.

    PubMed

    Senser, M

    1990-01-01

    The needles of clonal Norway spruce grown in environmental chambers on two different soils (an acidic soil 1 and a calcareous soil 2) and exposed to two levels of ozone fumigation (a low level combined with neutral mist = control, and an elevated one combined with acid mist = treatment) were analyzed for their frost hardiness. No effect of ozone was observed on either the development of frost resistance during the hardening phase or on the decrease in frost resistance during the dehardening phase. The preliminary results of Brown et al. (1987) and Barnes and Davidson (1988), which indicated that ozone treatment predisposes plants to winter injury, could thus not be confirmed. Frost resistance was, however, distinctly influenced by the content of the mineral nutrients of the soils. The pronounced K(+) deficiency of the needles of the trees growing on the neutral soil (Alps) had less effect on the development of frost resistance than did the Ca(++) and Mg(++) deficiency of the needles of the trees grown on the acidic soil 1 (Bavarian Forest). The variability of frost resistance between the different clones on soil 1 was partly attributed to fluctuations in the mineral nutrient content of the needles, rather than to a genetic predisposition. PMID:15092284

  20. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  1. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  2. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar resistant maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant defense responses against insect herbivores frequently depend on the biosynthesis and action of jasmonic acid (JA) and its conjugates. To better understand JA signaling pathways in maize (Zea mays L.), we have examined two maize genotypes, Mp708 and Tx601. Mp708 is resistant to feeding by le...

  3. Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens.

    PubMed

    Kröner, Alexander; Marnet, Nathalie; Andrivon, Didier; Val, Florence

    2012-08-01

    Physiological and molecular mechanisms underlying quantitative resistance of plants to pathogens are still poorly understood, but could depend upon differences in the intensity or timing of general defense responses. This may be the case for the biosynthesis of phenolics which are known to increase after elicitation by pathogens. We thus tested the hypothesis that differences in quantitative resistance were related to differential induction of phenolics by pathogen-derived elicitors. Five potato cultivars (Solanum tuberosum, L.) spanning a range of quantitative resistance were treated with a concentrated culture filtrate (CCF) of Phytophthora infestans or purified lipopolysaccharides (LPS) from Pectobacterium atrosepticum. The kinetic of phenolics accumulation was followed and a set of typical phenolics was identified: chlorogenic acid, phenolamides and flavonols including rutin (quercetin-3-O-rutinoside) and nicotiflorin (kaempferol-3-O-rutinoside). Our results showed that CCF but not LPS induced differential accumulation of major phenolics among cultivars. Total phenolics were related with resistance to P. atrosepticum but not to P. infestans. However, nicotiflorin was inversely related with resistance to both pathogens. Rutin, but not nicotiflorin, inhibited pathogen growth in vitro at physiological concentrations. These data therefore suggest that (i) several phenolics are candidate markers for quantitative resistance in potato, (ii) some of these are pathogen specific although they are produced by a general defense pathway, (iii) resistance marker molecules do not necessarily have antimicrobial activity, and (iv) the final content of these target molecules-either constitutive or induced-is a better predictor of resistance than their inducibility by pathogen elicitors.

  4. Acquired resistance of Nocardia brasiliensis to clavulanic acid related to a change in beta-lactamase following therapy with amoxicillin-clavulanic acid.

    PubMed Central

    Steingrube, V A; Wallace, R J; Brown, B A; Pang, Y; Zeluff, B; Steele, L C; Zhang, Y

    1991-01-01

    Previous studies have demonstrated that Nocardia brasiliensis is susceptible to amoxicillin-clavulanic acid and that its beta-lactamases are inhibited in vitro by clavulanic acid. A cardiac transplant patient with disseminated infection caused by N. brasiliensis was treated with this drug combination with good response, but relapsed while still on therapy. The relapse isolate was found to be identical to the initial isolate by using genomic DNA restriction fragment patterns obtained by pulsed field gel electrophoresis, but it was resistant to amoxicillin-clavulanic acid. On isoelectric focusing, the beta-lactamase from the relapse isolate exhibited a shift in the isoelectric point (pI) of its major band from 5.10 to 5.04 compared with the enzyme from the pretreatment isolate. As determined by using values of the amount of beta-lactamase inhibitor necessary to give 50 +/- 5% inhibition of beta-lactamase-mediated hydrolysis of 50 microM nitrocefin, the beta-lactamase of the relapse isolate was also 200-fold more resistant than the enzyme from the pretreatment isolate to clavulanic acid and was more resistant to sulbactam, tazobactam, cloxacillin, and imipenem. The beta-lactamase of the relapse isolate exhibited a 10-fold decrease in hydrolytic activity for cephaloridine and other hydrolyzable cephalosporins compared with that for nitrocefin. Acquired resistance to amoxicillin-clavulanic acid in this isolate of N. brasiliensis appears to have resulted from a mutational change affecting the inhibitor and active site(s) in the beta-lactamase. Images PMID:2039203

  5. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    PubMed Central

    Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV

    2006-01-01

    Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite

  6. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations

    PubMed Central

    Elmazar, Mohamed M.; El-Abhar, Hanan S.; Schaalan, Mona F.; Farag, Nahla A.

    2013-01-01

    Since activation of PPARγ is the main target for the antidiabetic effect of TZDs, especially when it heterodimerizes with RXR, we aimed to test the potential antidiabetic effect of phytol (250 mg/kg), the natural precursor of phytanic acid, a RXR ligand and/or pioglitazone (5 mg/kg) to diabetic insulin-resistant rats. Regarding the molecular docking simulation on PPARγ, phytanic acid, rather than phytol, showed a binding mode that mimics the crystal orientation of rosiglitazone and pioglitazone, forming H bonds with the same amino acids (S289, H 323, H 449 and Y 473), and the least energy level, which emphasizes their importance for PPARγ molecular recognition, activation, hence antidiabetic activity. In addition, docking on the RXRα/PPARγ heterodimer, revealed that phytanic acid has higher binding affinity and lesser energy score on RXRα, compared to the original ligand, retinoic acid. Phytanic acid binds by 3H bonds and shares retinoic acid in arginine (R 316). These results were further supported biochemically, where oral phytol and/or pioglitazone (5 mg/kg) improved significantly glucose homeostasis, lipid panel, raised serum adiponectin level and lowered TNF-α, reaching in most cases the effect of the 10 mg/kg pioglitazone. The study concluded that the insulin sensitizing/anti-diabetic effect of phytol is mediated by partly from activation of nuclear receptors and heterodimerization of RXR with PPARγ by phytanic acid. PMID:23300941

  7. Colistin and Fusidic Acid, a Novel Potent Synergistic Combination for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections

    PubMed Central

    Betts, Jonathan W.; Bharathan, Binutha

    2015-01-01

    The spread of multidrug-resistant Acinetobacter baumannii (MDRAB) has led to the renaissance of colistin (COL), often the only agent to which MDRAB remains susceptible. Effective therapy with COL is beset with problems due to unpredictable pharmacokinetics, toxicity, and the rapid selection of resistance. Here, we describe a potent synergistic interaction when COL was combined with fusidic acid (FD) against A. baumannii. Synergy in vitro was assessed against 11 MDRAB isolates using disc diffusion, checkerboard methodology (fractional inhibitory concentration index [FICI] of ≤ 0.5, susceptibility breakpoint index [SBPI] of >2), and time-kill methodology (≥2 log10 CFU/ml reduction). The ability of FD to limit the emergence of COL resistance was assessed in the presence and absence of each drug alone and in combination. Synergy was demonstrated against all strains, with an average FICI and SBPI of 0.064 and 78.85, respectively. In time-kill assays, COL-FD was synergistic and rapidly bactericidal, including against COL-resistant strains. Fusidic acid prevented the emergence of COL resistance, which was readily selected with COL alone. This is the first description of a novel COL-FD regimen for the treatment of MDRAB. The combination was effective at low concentrations, which should be therapeutically achievable while limiting toxicity. Further studies are warranted to determine the mechanism underlying the interaction and the suitability of COL-FD as an unorthodox therapy for the treatment of multidrug-resistant Gram-negative infections. PMID:25987639

  8. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  9. A single amino acid substitution in isozyme GST mu in Triclabendazole resistant Fasciola hepatica (Sligo strain) can substantially influence the manifestation of anthelmintic resistance.

    PubMed

    Fernández, V; Estein, S; Ortiz, P; Luchessi, P; Solana, V; Solana, H

    2015-12-01

    The helminth parasite Fasciola hepatica causes fascioliasis in human and domestic ruminants. Economic losses due to this infection are estimated in U$S 2000-3000 million yearly. The most common method of control is the use of anthelmintic drugs. However, there is an increased concern about the growing appearance of F. hepatica resistance to Triclabendazole (TCBZ), an anthelmintic with activity over adult and young flukes. F. hepatica has eight Glutathione S-Transferase (GST) isozymes, which are enzymes involved in the detoxification of a wide range of substrates through chemical conjugation with glutathione. In the present work we identified and characterized the GST mu gene isolated from the TCBZ-susceptible and TCBZ-resistant F. hepatica strains. Total RNA was transcribed into cDNA by reverse transcription and a 657 bp amplicon corresponding to the GST mu gene was obtained. The comparative genetic analysis of the GST mu gene of the TCBZ susceptible strain (Cullompton) and TCBZ resistant strain (Sligo) showed three nucleotide changes and one amino acid change at position 143 in the GST mu isozyme of the TCBZ-resistant strain. These results have potential relevance as they contribute better understand the mechanisms that generate resistance to anthelmintics. PMID:26542261

  10. A single amino acid substitution in isozyme GST mu in Triclabendazole resistant Fasciola hepatica (Sligo strain) can substantially influence the manifestation of anthelmintic resistance.

    PubMed

    Fernández, V; Estein, S; Ortiz, P; Luchessi, P; Solana, V; Solana, H

    2015-12-01

    The helminth parasite Fasciola hepatica causes fascioliasis in human and domestic ruminants. Economic losses due to this infection are estimated in U$S 2000-3000 million yearly. The most common method of control is the use of anthelmintic drugs. However, there is an increased concern about the growing appearance of F. hepatica resistance to Triclabendazole (TCBZ), an anthelmintic with activity over adult and young flukes. F. hepatica has eight Glutathione S-Transferase (GST) isozymes, which are enzymes involved in the detoxification of a wide range of substrates through chemical conjugation with glutathione. In the present work we identified and characterized the GST mu gene isolated from the TCBZ-susceptible and TCBZ-resistant F. hepatica strains. Total RNA was transcribed into cDNA by reverse transcription and a 657 bp amplicon corresponding to the GST mu gene was obtained. The comparative genetic analysis of the GST mu gene of the TCBZ susceptible strain (Cullompton) and TCBZ resistant strain (Sligo) showed three nucleotide changes and one amino acid change at position 143 in the GST mu isozyme of the TCBZ-resistant strain. These results have potential relevance as they contribute better understand the mechanisms that generate resistance to anthelmintics.

  11. Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice

    PubMed Central

    Ma, Yongjie; Gao, Mingming

    2015-01-01

    Purpose Chlorogenic acid (CGA), the most abundant component in coffee, has exhibited many biological activities. The objective of this study is to assess preventive and therapeutic effects of CGA on obesity and obesity-related liver steatosis and insulin resistance. Methods Two sets of experiments were conducted. In set 1, 6-week old C57BL/6 mice were fed a regular chow or high-fat diet (HFD) for 15 weeks with twice intra-peritoneal (IP) injection of CGA (100 mg/kg) or DMSO (carrier solution) per week. In set 2, obese mice (average 50 g) were treated by CGA (100 mg/kg, IP, twice weekly) or DMSO for 6 weeks. Body weight, body composition and food intake were monitored. Blood glucose, insulin and lipid levels were measured at end of the study. Hepatic lipid accumulation and glucose homeostasis were evaluated. Additionally, genes involved in lipid metabolism and inflammation were analyzed by real time PCR. Results CGA significantly blocked the development of diet-induced obesity but did not affect body weight in obese mice. CGA treatment curbed HFD-induced hepatic steatosis and insulin resistance. Quantitative PCR analysis shows that CGA treatment suppressed hepatic expression Pparγ, Cd36, Fabp4, and Mgat1 gene. CGA treatment also attenuated inflammation in the liver and white adipose tissue accompanied by a decrease in mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and Tnfa, Mcp-1 and Ccr2 encoding inflammatory proteins. Conclusion Our study provides direct evidence in support of CGA as a potent compound in preventing diet-induced obesity and obesity-related metabolic syndrome. Our results suggest that drinking coffee is beneficial in maintaining metabolic homeostasis when on a high fat diet. PMID:25248334

  12. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.

    PubMed

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J; Kenny, John G; McCarthy, Alan J; Allison, Heather E

    2015-12-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli. PMID:26386055

  13. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.

    PubMed

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J; Kenny, John G; McCarthy, Alan J; Allison, Heather E

    2015-12-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.

  14. Transcriptomic Analysis of Shiga-Toxigenic Bacteriophage Carriage Reveals a Profound Regulatory Effect on Acid Resistance in Escherichia coli

    PubMed Central

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J.; Kenny, John G.; McCarthy, Alan J.

    2015-01-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli. PMID:26386055

  15. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway

    PubMed Central

    Weech, Marie-Hélène; Chapleau, Mélanie; Pan, Li; Ide, Christine; Bede, Jacqueline C.

    2008-01-01

    Arabidopsis thaliana (L.) Heynh. genotypes limited in their ability to mount either octadecanoid-dependent induced resistance (IR–) or systemic acquired resistance (SAR–) were used to characterize the roles of these pathways in plant–herbivore interactions. Molecular and biochemical markers of IR were analysed in plants subject to herbivory by caterpillars of the beet armyworm, Spodoptera exigua Hübner, which had either intact or impaired salivary secretions since salivary enzymes, such as glucose oxidase, have been implicated in the ability of caterpillars to circumvent induced plant defences. Transcript expression of genes encoding laccase-like multicopper oxidase [AtLMCO4 (polyphenol oxidase)] and defensin (AtPDF1.2) showed salivary-specific patterns which were disrupted in the SAR– mutant plants. The activity of octadecanoid-associated anti-nutritive proteins, such as LMCO and trypsin inhibitor, showed similar patterns. Gene and protein changes parallel plant hormone levels where elevated jasmonic acid was observed in wild-type plants fed upon by caterpillars with impaired salivary secretions compared with plants subject to herbivory by normal caterpillars. This salivary-specific difference in jasmonic acid levels was alleviated in SAR– mutants. These results support the model that caterpillar saliva interferes with jasmonate-dependent plant defences by activating the SAR pathway. PMID:18487634

  16. Burkholderia pseudomallei Class A β-Lactamase Mutations That Confer Selective Resistance against Ceftazidime or Clavulanic Acid Inhibition

    PubMed Central

    Tribuddharat, Chanwit; Moore, Richard A.; Baker, Patricia; Woods, Donald E.

    2003-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, is inherently resistant to a variety of antibiotics including aminoglycosides, macrolides, polymyxins, and β-lactam antibiotics. Despite resistance to many β-lactams, ceftazidime and β-lactamase inhibitor-β-lactam combinations are commonly used for treatment of melioidosis. Here, we examine the enzyme kinetics of β-lactamase isolated from mutants resistant to ceftazidime and clavulanic acid inhibition and describe specific mutations within conserved motifs of the β-lactamase enzyme which account for these resistance patterns. Sequence analysis of regions flanking the B. pseudomallei penA gene revealed a putative regulator gene located downstream of penA. We have cloned and sequenced the penA gene from B. mallei and found it to be identical to penA from B. pseudomallei. PMID:12821450

  17. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  18. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.

    PubMed

    Padwal, Priyanka; Bandyopadhyaya, Rajdip; Mehra, Sarika

    2014-12-23

    The emergence of drug resistance is a major problem faced in current tuberculosis (TB) therapy, representing a global health concern. Mycobacterium is naturally resistant to most drugs due to export of the latter outside bacterial cells by active efflux pumps, resulting in a low intracellular drug concentration. Thus, development of agents that can enhance the effectiveness of drugs used in TB treatment and bypass the efflux mechanism is crucial. In this study, we present a new nanoparticle-based strategy for enhancing the efficacy of existing drugs. To that end, we have developed poly(acrylic acid) (PAA)-coated iron oxide (magnetite) nanoparticles (PAA-MNPs) as efflux inhibitors and used it together with rifampicin (a first line anti-TB drug) on Mycobacterium smegmatis. PAA-MNPs of mean diameter 9 nm interact with bacterial cells via surface attachment and are then internalized by cells. Although PAA-MNP alone does not inhibit cell growth, treatment of cells with a combination of PAA-MNP and rifampicin exhibits a synergistic 4-fold-higher growth inhibition compared to rifampicin alone. This is because the combination of PAA-MNP and rifampicin results in up to a 3-fold-increased accumulation of rifampicin inside the cells. This enhanced intracellular drug concentration has been explained by real-time transport studies on a common efflux pump substrate, ethidium bromide (EtBr). It is seen that PAA-MNP increases the accumulation of EtBr significantly and also minimizes the EtBr efflux in direct proportion to the PAA-MNP concentration. Our results thus illustrate that the addition of PAA-MNP with rifampicin may bypass the innate drug resistance mechanism of M. smegmatis. This generic strategy is also found to be successful for other anti-TB drugs, such as isoniazid and fluoroquinolones (e.g., norfloxacin), only when stabilized, coated nanoparticles (such as PAA-MNP) are used, not PAA or MNP alone. We hence establish coated nanoparticles as a new class of efflux

  19. Effect of acid stress, antibiotic resistance, and heat shock on the resistance of Listeria monocytogenes to UV light when suspended in distilled water and fresh brine.

    PubMed

    McKinney, Julie M; Williams, Robert C; Boardman, Gregory D; Eifert, Joseph D; Sumner, Susan S

    2009-08-01

    Exposure to sublethal processing treatments can stimulate bacterial stress responses. The purpose of this research was to determine whether adaptation to common food processing stresses encountered during the preparation of ready-to-eat foods affects the dose of UV light required to significantly reduce Listeria monocytogenes populations in sterile distilled water and a 9% NaCl solution, using uridine as a chemical actinometer. L. monocytogenes strains N1-227 (from hot dog batter), N3-031 (from turkey franks), and R2-499 (from ready-to-eat meat) were acid stressed for 3 h at 35 degrees C in Trypticase soy broth with yeast extract acidified to pH 5.0, heat shocked for 1 h at 48 degrees C in brain heart infusion broth (BHIB), and selected for sulfanilamide resistance (512 microg/ml). These strains were then mixed in equal proportions and suspended in water and 9% NaCl solution, each containing 10(-4) M uridine. Samples were exposed to UV light (253.7 nm) for 0, 5, 10, 15, 20, 25, or 30 min. Inactivation was evaluated by surface plating onto modified Oxford agar and Trypticase soy agar with yeast extract and by enrichment in BHIB followed by incubation at 37 degrees C for 24 h. The absorbance of each sample was measured before and after irradiation to calculate the dose of UV light. There were no significant differences between population estimates based on medium or suspension solution. There were no population differences between acid-stressed and antibiotic-resistant or unstressed and heat-shocked L. monocytogenes strains. However, acid-stressed and antibiotic-resistant strains were significantly more resistant to UV light than were unstressed and heat-shocked strains (P < or = 0.05).

  20. CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.).

    PubMed

    Ding, Z T; Shen, J Z; Pan, L L; Wang, Y U; Li, Y S; Wang, Y; Sun, H W

    2016-01-01

    Tea (Camellia sinensis L.) is a thermophilic evergreen woody plant that has poor cold tolerance. The SAD gene plays a key role in regulating fatty acid synthesis and membrane lipid fluidity in response to temperature change. In this study, full-length SAD cDNA was cloned from tea leaves using rapid amplification of cDNA ends and polymerase chain reaction (PCR)-based methods. Sequence analysis demonstrated that CsSAD had a high similarity to other corresponding cDNAs. At 25°C, the CsSAD transcriptional level was highest in the leaf and lowest in the stem, but there was no obvious difference between the root and stem organs. CsSAD expression was investigated by reverse transcription-PCR, which showed that CsSAD was upregulated at 4° and -5°C. At 25°C, CsSAD was induced by polyethylene glycol, abscisic acid, and wounding, and a similar trend was observed at 4°C, but the mean expression level at 4°C was lower than that at 25°C. Under natural cold acclimation, the 'CsCr05' variety's CsSAD expression level increased before decreasing. The CsSAD expression level in variety 'CsCr06' showed no obvious change at first, but rapidly increased to a maximum when the temperature was very low. Our study demonstrates that CsSAD is upregulated in response to different abiotic conditions, and that it is important to study the stress resistance of the tea plant, particularly in response to low temperature, drought, and wounding. PMID:26985937

  1. Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters.

    PubMed

    Babu, Ellappan; Kanai, Yoshikatsu; Chairoungdua, Arthit; Kim, Do Kyung; Iribe, Yuji; Tangtrongsup, Sahatchai; Jutabha, Promsuk; Li, Yuewei; Ahmed, Nesar; Sakamoto, Shinichi; Anzai, Naohiko; Nagamori, Seishi; Endou, Hitoshi

    2003-10-31

    A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters. PMID:12930836

  2. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa).

    PubMed

    Wise, Mitchell L

    2011-07-13

    Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown, in experimental systems, certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and reducing inflammation. Avenanthramides occur in both the leaves and grain of oat. In the leaves they are expressed as phytoalexins in response to crown rust (Puccina coronata) infection. The experiments reported here demonstrate that avenanthramide levels in vegetative tissue can be enhanced by treatment with benzothiadiazole (BTH), an agrochemical formulated to elicit systemic acquired resistance (SAR). The response to BTH was dramatically stronger than those produced with salicylic acid treatment. The roots of BTH treated plants also showed a smaller but distinct increase in avenanthramides. The dynamics of the root avenanthramide increase was substantially slower than that observed in the leaves, suggesting that avenanthramides might be transported from the leaves.

  3. Airway resistance and reactance are affected in systemic sclerosis

    PubMed Central

    Aronsson, David; Hesselstrand, Roger; Bozovic, Gracijela; Wuttge, Dirk M.; Tufvesson, Ellen

    2015-01-01

    Background Interstitial lung disease often occurs as an early complication of systemic sclerosis (SSc). The aim was to investigate whether impulse oscillometry (IOS) could be used to evaluate lung impairment in SSc. Methods Seventy-eight SSc patients, of which 65 had limited cutaneous SSc (lcSSc) and 13 had diffuse cutaneous SSc (dcSSc), were subjected to high-resolution computed tomography (HRCT) and pulmonary function tests (spirometry, IOS, and single breath CO diffusion capacity test). Twenty-six healthy individuals served as controls. Results Patients with lcSSc had higher levels of peripheral airway resistance, that is, R5–R20 (difference between resistance at 5 Hz and resistance at 20 Hz) showed a median (and interquartile range) of 0.05 (0.02–0.09) in lcSSc, 0.01 (0.00–0.04) in dcSSc and 0.04 (0.01–0.06) in healthy controls. They also had higher levels of reactance: reactance area was 0.26 (0.15–0.56) in lcSSc, 0.20 (0.11–0.29) in dcSSc and 0.18 (0.08–0.30) in healthy controls, and resonant frequency was 10.9 (8.8–14.8) in lcSSc, 9.0 (8.3–11.6) in dcSSc and 9.1 (8.0–13.1) in healthy controls. Airway reactance correlated to fibrotic findings on HRCT, such as ground glass opacities and reticulations. Discussion This implies that IOS parameters to some extent are related to fibrosis in patients with SSc. PMID:26672963

  4. Hyperinsulinemia Enhances Hepatic Expression of the Fatty Acid Transporter Cd36 and Provokes Hepatosteatosis and Hepatic Insulin Resistance*

    PubMed Central

    Steneberg, Pär; Sykaras, Alexandros G.; Backlund, Fredrik; Straseviciene, Jurate; Söderström, Ingegerd; Edlund, Helena

    2015-01-01

    Hepatosteatosis is associated with the development of both hepatic insulin resistance and Type 2 diabetes. Hepatic expression of Cd36, a fatty acid transporter, is enhanced in obese and diabetic murine models and human nonalcoholic fatty liver disease, and thus it correlates with hyperinsulinemia, steatosis, and insulin resistance. Here, we have explored the effect of hyperinsulinemia on hepatic Cd36 expression, development of hepatosteatosis, insulin resistance, and dysglycemia. A 3-week sucrose-enriched diet was sufficient to provoke hyperinsulinemia, hepatosteatosis, hepatic insulin resistance, and dysglycemia in CBA/J mice. The development of hepatic steatosis and insulin resistance in CBA/J mice on a sucrose-enriched diet was paralleled by increased hepatic expression of the transcription factor Pparγ and its target gene Cd36 whereas that of genes implicated in lipogenesis, fatty acid oxidation, and VLDL secretion was unaltered. Additionally, we demonstrate that insulin, in a Pparγ-dependent manner, is sufficient to directly increase Cd36 expression in perfused livers and isolated hepatocytes. Mouse strains that display low insulin levels, i.e. C57BL6/J, and/or lack hepatic Pparγ, i.e. C3H/HeN, do not develop hepatic steatosis, insulin resistance, or dysglycemia on a sucrose-enriched diet, suggesting that elevated insulin levels, via enhanced CD36 expression, provoke fatty liver development that in turn leads to hepatic insulin resistance and dysglycemia. Thus, our data provide evidence for a direct role for hyperinsulinemia in stimulating hepatic Cd36 expression and thus the development of hepatosteatosis, hepatic insulin resistance, and dysglycemia. PMID:26085100

  5. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    PubMed

    Gulati, Sunita; Schoenhofen, Ian C; Whitfield, Dennis M; Cox, Andrew D; Li, Jianjun; St Michael, Frank; Vinogradov, Evgeny V; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A; Taylor, Rachel E; Landig, Corinna S; Diaz, Sandra; Reed, George W; Varki, Ajit; Rice, Peter A; Ram, Sanjay

    2015-12-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP

  6. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    PubMed

    Gulati, Sunita; Schoenhofen, Ian C; Whitfield, Dennis M; Cox, Andrew D; Li, Jianjun; St Michael, Frank; Vinogradov, Evgeny V; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A; Taylor, Rachel E; Landig, Corinna S; Diaz, Sandra; Reed, George W; Varki, Ajit; Rice, Peter A; Ram, Sanjay

    2015-12-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP

  7. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    NASA Astrophysics Data System (ADS)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  8. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin.

    PubMed

    Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S

    2001-01-01

    Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.

  9. Polyurethane/polysiloxane ceramer coatings: Corrosion resistant unicoat system for aircraft application

    NASA Astrophysics Data System (ADS)

    Ni, Hai

    New organic/inorganic ceramer coating system was developed using polyurethane as an organic phase and polysiloxane as the inorganic phase. The objective of the study was to develop a unicoat corrosion resistant coating which strongly adheres to aluminum substrates. The pre-ceramic silicon-oxo clusters react with the metal substrate, protecting it from oxidation, whereas the organic composition functions as a binder providing mechanical properties, optical properties, and chemical, wear and fluid resistance. The new ceramer coatings were evaluated as a replacement for chromate based coatings. The alkoxysilane-functionalized coupling agent was prepared from hexamethylene diisocyanate (HDI) isocyanurate and 3-aminopropyltriethoxysilane. The functionalized isocyanurate was characterized by 1H, 13C and 29Si NMR and electrospray ionization-mass spectrometry. An organic/inorganic hybrid coating system was formulated using the alkoxysilane-functionalized isocyanurate and HDI isocyanurate. The coating properties indicated that alkoxysilane-functionalized isocyanurate enhanced adhesion up to 500%. Based on the hybrid polyurea/alkoxysilane system, the polyurea/polysiloxane ceramer coating system was formulated with tetraethyl orthosilicate (TEOS) oligomers. Evaluation of ceramer coatings showed that coating properties were affected by both the concentration of TEOS oligomers and alkoxysilane functionalized isocyanurate. In addition, the para-toluene sulfonic acid was used to catalyze the moisture curing process for the ceramer coating system. The addition of acid catalyst further increased the adhesion. A series of high solids cycloaliphatic polyesters were synthesized to improve the UV-resistance for the organic/inorganic unicoat system. The polyurethane/polysiloxane ceramer coatings were formulated with the addition of the cycloaliphatic polyesters into the polyurea/polysiloxane system. The investigation of the polyurethane ceramer coatings indicated that the film

  10. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis.

    PubMed

    Mathys, Vanessa; Wintjens, René; Lefevre, Philippe; Bertout, Julie; Singhal, Amit; Kiass, Mehdi; Kurepina, Natalia; Wang, Xiao-Ming; Mathema, Barun; Baulard, Alain; Kreiswirth, Barry N; Bifani, Pablo

    2009-05-01

    The emergence of Mycobacterium tuberculosis resistant to first-line antibiotics has renewed interest in second-line antitubercular agents. Here, we aimed to extend our understanding of the mechanisms underlying para-aminosalicylic acid (PAS) resistance by analysis of six genes of the folate metabolic pathway and biosynthesis of thymine nucleotides (thyA, dfrA, folC, folP1, folP2, and thyX) and three N-acetyltransferase genes [nhoA, aac(1), and aac(2)] among PAS-resistant clinical isolates and spontaneous mutants. Mutations in thyA were identified in only 37% of the clinical isolates and spontaneous mutants. Overall, 24 distinct mutations were identified in the thyA gene and 3 in the dfrA coding region. Based on structural bioinformatics techniques, the altered ThyA proteins were predicted to generate an unfolded or dysfunctional polypeptide. The MIC was determined by Bactec/Alert and dilution assay. Sixty-three percent of the PAS-resistant isolates had no mutations in the nine genes considered in this study, revealing that PAS resistance in M. tuberculosis involves mechanisms or targets other than those pertaining to the biosynthesis of thymine nucleotides. The alternative mechanism(s) or pathway(s) associated with PAS resistance appears to be PAS concentration dependent, in marked contrast to thyA-mutated PAS-resistant isolates.

  11. Dietary folic acid activates AMPK and improves insulin resistance and hepatic inflammation in dietary rodent models of the metabolic syndrome.

    PubMed

    Buettner, R; Bettermann, I; Hechtl, C; Gäbele, E; Hellerbrand, C; Schölmerich, J; Bollheimer, L C

    2010-10-01

    The AMP activated kinase plays an important role in metabolic control, and pharmacologic enhancement of AMPK activity is used to improve insulin resistance. We hypothesized that high dose of folic acid supplementation might improve insulin sensitivity and hepatic inflammation and examined this by a dietary intervention in (a) the high fat fed rat model of the metabolic syndrome, which shows sole hepatic steatosis as well as (b) in rats fed with a high cholesterol, high cholate diet inducing nonalcoholic steatohepatitis (NASH). Male Wistar rats were fed with folic acid supplemented (40 mg/kg) high fat diet [based on lard, fat content 25% (wt/wt)] or NASH inducing diet (containing 15% fat, 1.25% cholesterol, 0.5% sodium cholate). Metabolic profiling was performed by measuring the animals' visceral fat pads, fasting plasma glucose, insulin, and adipokines as well as in vivo insulin tolerance tests. Hepatic steatosis and inflammation were analyzed semiquantitatively by histological analysis. Folic acid supplementation reduced visceral obesity and improved plasma adiponectin levels. In vivo insulin sensitivity was improved, and in HF-FA rats folic acid increased activation of hepatic AMPK. Further, folic acid supplementation improved hepatic inflammation in animals fed with NASH-inducing diet. Dietary folic acid improved parameters of insulin resistance and hepatic inflammation in rodent models. This might be due to an increased AMK activation.

  12. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect

    Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

    2004-05-01

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

  13. Production of resistant starch by extrusion cooking of acid-modified normal-maize starch.

    PubMed

    Hasjim, Jovin; Jane, Jay-Lin

    2009-09-01

    The objective of this study was to utilize extrusion cooking and hydrothermal treatment to produce resistant starch (RS) as an economical alternative to a batch-cooking process. A hydrothermal treatment (110 degrees C, 3 d) of batch-cooked and extruded starch samples facilitated propagation of heat-stable starch crystallites and increased the RS contents from 2.1% to 7.7% up to 17.4% determined using AOAC Method 991.43 for total dietary fiber. When starch samples were batch cooked and hydrothermally treated at a moisture content below 70%, acid-modified normal-maize starch (AMMS) produced a greater RS content than did native normal-maize starch (NMS). This was attributed to the partially hydrolyzed, smaller molecules in the AMMS, which had greater mobility and freedom than the larger molecules in the NMS. The RS contents of the batch-cooked and extruded AMMS products after the hydrothermal treatment were similar. A freezing treatment of the AMMS samples at -20 degrees C prior to the hydrothermal treatment did not increase the RS content. The DSC thermograms and the X-ray diffractograms showed that retrograded amylose and crystalline starch-lipid complex, which had melting temperatures above 100 degrees C, accounted for the RS contents.

  14. Macrophage expression of tartrate-resistant acid phosphatase as a prognostic indicator in colon cancer

    PubMed Central

    How, Joan; Brown, Jason R.; Saylor, Sasha; Rimm, David L.

    2014-01-01

    Recent research has indicated that separate populations of macrophages are associated with differing outcomes in cancer survival. In our study, we examine macrophage expression of tartrate resistant acid phosphatase (TRAP) and its effect on survival in colon cancer. Immunohistochemical analysis on colorectal adenocarcinomas confirmed macrophage expression of TRAP. Co-localization of TRAP with CD68, a pan-macrophage marker, revealed that TRAP is present in some but not all subpopulations of macrophages. Further co-localization of TRAP with CD163, an M2 marker, revealed that TRAP is expressed by both M2 and non-M2 macrophages. TRAP expression was then measured using the AQUA method of quantitative immunofluorescence in a tissue microarray consisting of 233 colorectal cancer patients seen at Yale-New Haven Hospital. Survival analysis revealed that patients with high TRAP expression have a 22% increase in 5-year survival (uncorrected log rank p=0.025) and a 47% risk reduction for disease specific death (p=0.02). This finding was validated in a second cohort of older cases consisting of 505 colorectal cancer patients. Patients with high TRAP expression in the validation set had a 19% increase in 5-year survival (log rank p=0.0041) and a 52% risk reduction of death (p=0.0019). These results provide evidence that macrophage expression of TRAP is associated with improved outcome, and implicates TRAP as a potential biomarker in colon cancer. PMID:24429833

  15. Macrophage expression of tartrate-resistant acid phosphatase as a prognostic indicator in colon cancer.

    PubMed

    How, Joan; Brown, Jason R; Saylor, Sasha; Rimm, David L

    2014-08-01

    Recent research has indicated that separate populations of macrophages are associated with differing outcomes in cancer survival. In our study, we examine macrophage expression of tartrate-resistant acid phosphatase (TRAP) and its effect on survival in colon cancer. Immunohistochemical analysis on colorectal adenocarcinomas confirmed macrophage expression of TRAP. Co-localization of TRAP with CD68, a pan-macrophage marker, revealed that TRAP is present in some but not all sub-populations of macrophages. Further co-localization of TRAP with CD163, an M2 marker, revealed that TRAP is expressed by both M2 and non-M2 macrophages. TRAP expression was then measured using the AQUA method of quantitative immunofluorescence in a tissue microarray consisting of 233 colorectal cancer patients seen at Yale-New Haven Hospital. Survival analysis revealed that patients with high TRAP expression have a 22 % increase in 5-year survival (uncorrected log-rank p = 0.025) and a 47 % risk reduction in disease-specific death (p = 0.02). This finding was validated in a second cohort of older cases consisting of 505 colorectal cancer patients. Patients with high TRAP expression in the validation set had a 19 % increase in 5-year survival (log-rank p = 0.0041) and a 52 % risk reduction in death (p = 0.0019). These results provide evidence that macrophage expression of TRAP is associated with improved outcome and implicates TRAP as a potential biomarker in colon cancer.

  16. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  17. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development.

    PubMed

    Yin, Yuebang; Wang, Yijin; Dang, Wen; Xu, Lei; Su, Junhong; Zhou, Xinying; Wang, Wenshi; Felczak, Krzysztof; van der Laan, Luc J W; Pankiewicz, Krzysztof W; van der Eijk, Annemiek A; Bijvelds, Marcel; Sprengers, Dave; de Jonge, Hugo; Koopmans, Marion P G; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-09-01

    Rotavirus infection has emerged as an important cause of complications in organ transplantation recipients. Immunosuppressants used to prevent alloreactivity can also interfere with virus infection, but the direct effects of the specific type of immunosuppressants on rotavirus infection are still unclear. Here we profiled the effects of different immunosuppressants on rotavirus using a 2D culture model of Caco2 human intestinal cell line and a 3D model of human primary intestinal organoids inoculated with laboratory and patient-derived rotavirus strains. We found that the responsiveness of rotavirus to Cyclosporine A treatment was moderate and strictly regulated in an opposite direction by its cellular targets cyclophilin A and B. Treatment with mycophenolic acid (MPA) resulted in a 99% inhibition of viral RNA production at the clinically relevant concentration (10 μg/ml) in Caco2 cells. This effect was further confirmed in organoids. Importantly, continuous treatment with MPA for 30 passages did not attenuate its antiviral potency, indicating a high barrier to drug resistance development. Mechanistically, the antiviral effects of MPA act via inhibiting the IMPDH enzyme and resulting in guanosine nucleotide depletion. Thus for transplantation patients at risk for rotavirus infection, the choice of MPA as an immunosuppressive agent appears rational. PMID:27468950

  18. Lack of dentin acid resistance following 9.3 um CO2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Le, Charles Q.; Fried, Daniel; Featherstone, John D. B.

    2008-02-01

    Previous studies have shown that laser irradiation of dental enamel by specific carbon dioxide laser conditions can inhibit subsequent acid dissolution of the dental enamel surface. The purpose of this study was to determine whether similar carbon dioxide laser conditions would have a protective effect on dentin. Blocks of human dentin roots (3x3 mm2) were irradiated at 9.3 µm wavelength with a 15-18 µs pulse duration laser and fluences of 0.50-1.50 J/cm2. A motion controller system was used to ensure uniform irradiation of the entire dentin surface. Surface acid dissolution profiles following irradiation were acquired for the five study groups, control group (Non-irradiated) and four laser-treated groups. Dissolution profiles of low fluence groups (0.50 and 0.75 J/cm2) exhibited similar profiles to the control group. Dissolution profiles of higher fluence groups (1.0 and 1.5 J/cm2) showed an increased dissolution rate over the control group, but these differences were not statistically significant (p>0.05). This study demonstrated that the application of carbon dioxide laser irradiation significantly alters the surface of dentin but did not decrease the acid dissolution rate.

  19. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.

    PubMed

    Roetschi, A; Si-Ammour, A; Belbahri, L; Mauch, F; Mauch-Mani, B

    2001-11-01

    Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2.

  20. Proteomics of Genetically Engineered Mouse Mammary Tumors Identifies Fatty Acid Metabolism Members as Potential Predictive Markers for Cisplatin Resistance*

    PubMed Central

    Warmoes, Marc; Jaspers, Janneke E.; Xu, Guotai; Sampadi, Bharath K.; Pham, Thang V.; Knol, Jaco C.; Piersma, Sander R.; Boven, Epie; Jonkers, Jos; Rottenberg, Sven; Jimenez, Connie R.

    2013-01-01

    In contrast to various signatures that predict the prognosis of breast cancer patients, markers that predict chemotherapy response are still elusive. To detect such predictive biomarkers, we investigated early changes in protein expression using two mouse models for distinct breast cancer subtypes who have a differential knock-out status for the breast cancer 1, early onset (Brca1) gene. The proteome of cisplatin-sensitive BRCA1-deficient mammary tumors was compared with that of cisplatin-resistant mammary tumors resembling pleomorphic invasive lobular carcinoma. The analyses were performed 24 h after administration of the maximum tolerable dose of cisplatin. At this time point, drug-sensitive BRCA1-deficient tumors showed DNA damage, but cells were largely viable. By applying paired statistics and quantitative filtering, we identified highly discriminatory markers for the sensitive and resistant model. Proteins up-regulated in the sensitive model are involved in centrosome organization, chromosome condensation, homology-directed DNA repair, and nucleotide metabolism. Major discriminatory markers that were up-regulated in the resistant model were predominantly involved in fatty acid metabolism, such as fatty-acid synthase. Specific inhibition of fatty-acid synthase sensitized resistant cells to cisplatin. Our data suggest that exploring the functional link between the DNA damage response and cancer metabolism shortly after the initial treatment may be a useful strategy to predict the efficacy of cisplatin. PMID:23397111

  1. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize.

    PubMed

    Shivaji, Renuka; Camas, Alberto; Ankala, Arunkanth; Engelberth, Jurgen; Tumlinson, James H; Williams, W Paul; Wilkinson, Jeff R; Luthe, Dawn Sywassink

    2010-02-01

    This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.

  2. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis.

    PubMed

    Lemarié, Séverine; Robert-Seilaniantz, Alexandre; Lariagon, Christine; Lemoine, Jocelyne; Marnet, Nathalie; Jubault, Mélanie; Manzanares-Dauleux, Maria J; Gravot, Antoine

    2015-11-01

    The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.

  3. Microbial Nucleic Acid Sensing in Oral and Systemic Diseases.

    PubMed

    Crump, K E; Sahingur, S E

    2016-01-01

    One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis

  4. Fusaric acid modulates Type Three Secretion System of Salmonella enterica serovar Typhimurium.

    PubMed

    Li, Jianfang; Sun, Weiyang; Guo, Zhixing; Lu, Chunhua; Shen, Yuemao

    2014-07-11

    Natural small-molecule products are promising lead compounds for developing a generation of novel antimicrobials agents to meet the challenge of antibiotic-resistant pathogens. To facilitate the search for novel anti-virulence agents, we chose a virulence factor of Type Three Secretion System (T3SS) as a drug target to screen candidates from a small-molecule library in our laboratory. This study demonstrated fusaric acid had dramatically inhibitory effects on secretion of Salmonella island 1 (SPI-1) effector proteins and invasion of Salmonella into HeLa cells. Moreover, fusaric acid had no inhibitory effects on bacterial growth and viability of host cells. Protein HilA is a key regulator of SPI-1 in Salmonella, which affects transcription of SPI-1 effectors and SPI-1 apparatus genes. In this study, fusaric acid (FA) did not affect secretion of SPI-1 effectors in HilA over-expressed strain, suggesting it did not affect the transcription of SPI-1. In addition, fusaric acid did not affect the protein level of apparatus protein PrgH in SPI-1 needle complex. As a result, we proposed fusaric acid had an inhibitory effect on SPI-1 probably depending on its influence on SicA/InvF. In summary, fusaric acid is a novel inhibitor of T3SS with potential for further developing novel anti-virulence agents.

  5. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  6. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fatty acids test system. 862.1290 Section 862.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. 21 CFR 862.1095 - Ascorbic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ascorbic acid test system. 862.1095 Section 862.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  10. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. 21 CFR 862.1295 - Folic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Folic acid test system. 862.1295 Section 862.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...