Science.gov

Sample records for acid reverses valproic

  1. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  2. Hyperammonemia Associated with Valproic Acid Concentrations

    PubMed Central

    Alvariza, Silvana; Magallanes, Laura

    2014-01-01

    Valproic acid, a branched short-chain fatty acid, has numerous action mechanisms which turn it into a broad spectrum anticonvulsant drug and make its use possible in some other pathologies such as bipolar disorder. It is extensively metabolized in liver, representing β-oxidation in the mitochondria one of its main metabolic route (40%). Carnitine is responsible for its entry into the mitochondria as any other fatty acid. Long-term high-dose VPA therapy or acute VPA overdose induces carnitine depletion, resulting in high levels of ammonia in blood. As a high correlation between salivary valproic acid levels and plasma ultrafiltrate levels was found in humans, saliva becomes a promising monitoring fluid in order to study valproic acid pharmacokinetics and its toxic effect. Extended-release (twice daily) formulations of valproic acid or carnitine supplementation are the proposed two therapeutic strategies in order to reverse hyperammonemia. PMID:24868521

  3. Use of hexadeuterated valproic acid and gas chromatography-mass spectrometry to determine the pharmacokinetics of valproic acid

    SciTech Connect

    Acheampong, A.A.; Abbott, F.S.; Orr, J.M.; Ferguson, S.M.; Burton, R.W.

    1984-04-01

    Di-(( 3,3,3-/sup 2/H3)propyl)acetic acid, a hexadeuterated analogue of valproic acid, was synthesized and its pharmacokinetic properties compared with valproic acid. Concentrations of valproic acid and (/sup 2/H)valproic acid in serum and saliva were determined by GC-MS using selected-ion monitoring. Saliva drug levels were measured with good precision down to 0.1 microgram/mL. Kinetic equivalence of valproic acid and (/sup 2/H)valproic acid was demonstrated in a single-dose study in a human volunteer. An isotope effect was observed for omega-oxidation, but the difference in metabolism was not sufficient to make (/sup 2/H)valproic acid biologically nonequivalent. The application of (/sup 2/H)valproic acid to determine the kinetics of valproic acid under steady-state concentrations was evaluated in the same volunteer. The kinetic data obtained with (/sup 2/H)valproic acid was consistent with previously reported values for valproic acid including kinetic differences observed between single-dose and steady-state experiments. Saliva levels of valproic acid were found to give a good correlation with total serum valproic acid under multiple-dose conditions. A concentration dependence was found for the ratio of saliva valproic acid to free valproic acid in serum, low ratios being observed at high serum concentrations of valproic acid.

  4. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy.

  5. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study

    PubMed Central

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  6. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    PubMed

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  7. Valproic Acid Inhibits the Release of Soluble CD40L Induced by Non-Nucleoside Reverse Transcriptase Inhibitors in Human Immunodeficiency Virus Infected Individuals

    PubMed Central

    Davidson, Donna C.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2013-01-01

    Despite the use of highly active antiretroviral therapies (HAART), a majority of Human Immunodeficiency Virus Type 1 (HIV) infected individuals continually develop HIV – Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistent with this notion, we have previously shown that levels of the inflammatory mediator soluble CD40 ligand (sCD40L) are elevated in the plasma and cerebrospinal fluid (CSF) of HIV infected, cognitively impaired individuals, and that excess sCD40L can contribute to blood brain barrier (BBB) permeability in vivo, thereby signifying the importance of this inflammatory mediator in the pathogenesis of HAND. Here we demonstrate that the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) induces the release of circulating sCD40L in both HIV infected individuals and in an in vitro suspension of washed human platelets, which are the main source of circulating sCD40L. Additionally, EFV was found to activate glycogen synthase kinase 3 beta (GSK3β) in platelets, and we now show that valproic acid (VPA), a known GSK3β inhibitor, was able to attenuate the release of sCD40L in HIV infected individuals receiving EFV, and in isolated human platelets. Collectively these results have important implications in determining the pro-inflammatory role that some antiretroviral regimens may have. The use of antiretrovirals remains the best strategy to prevent HIV-associated illnesses, including HAND, however these drugs have clear limitations to this end, and thus, these results underscore the need to develop adjunctive therapies for HAND that can also minimize the undesired negative effects of the antiretrovirals. PMID:23555843

  8. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  9. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  10. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  11. Valproic Acid Teratogenicity: A Toxicogenomics Approach

    PubMed Central

    Kultima, Kim; Nyström, Anna-Maja; Scholz, Birger; Gustafson, Anne-Lee; Dencker, Lennart; Stigson, Michael

    2004-01-01

    Embryonic development is a highly coordinated set of processes that depend on hierarchies of signaling and gene regulatory networks, and the disruption of such networks may underlie many cases of chemically induced birth defects. The antiepileptic drug valproic acid (VPA) is a potent inducer of neural tube defects (NTDs) in human and mouse embryos. As with many other developmental toxicants however, the mechanism of VPA teratogenicity is unknown. Using microarray analysis, we compared the global gene expression responses to VPA in mouse embryos during the critical stages of teratogen action in vivo with those in cultured P19 embryocarcinoma cells in vitro. Among the identified VPA-responsive genes, some have been associated previously with NTDs or VPA effects [vinculin, metallothioneins 1 and 2 (Mt1, Mt2), keratin 1-18 (Krt1-18)], whereas others provide novel putative VPA targets, some of which are associated with processes relevant to neural tube formation and closure [transgelin 2 (Tagln2), thyroid hormone receptor interacting protein 6, galectin-1 (Lgals1), inhibitor of DNA binding 1 (Idb1), fatty acid synthase (Fasn), annexins A5 and A11 (Anxa5, Anxa11)], or with VPA effects or known molecular actions of VPA (Lgals1, Mt1, Mt2, Id1, Fasn, Anxa5, Anxa11, Krt1-18). A subset of genes with a transcriptional response to VPA that is similar in embryos and the cell model can be evaluated as potential biomarkers for VPA-induced teratogenicity that could be exploited directly in P19 cell–based in vitro assays. As several of the identified genes may be activated or repressed through a pathway of histone deacetylase (HDAC) inhibition and specificity protein 1 activation, our data support a role of HDAC as an important molecular target of VPA action in vivo. PMID:15345369

  12. Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Capparelli, Edmund V.; Adamson, Peter C.

    2010-01-01

    BACKGROUND Childhood absence epilepsy, the most common pediatric epilepsy syndrome, is usually treated with ethosuximide, valproic acid, or lamotrigine. The most efficacious and tolerable initial empirical treatment has not been defined. METHODS In a double-blind, randomized, controlled clinical trial, we compared the efficacy, tolerability, and neuropsychological effects of ethosuximide, valproic acid, and lamotrigine in children with newly diagnosed childhood absence epilepsy. Drug doses were incrementally increased until the child was free of seizures, the maximal allowable or highest tolerable dose was reached, or a criterion indicating treatment failure was met. The primary outcome was freedom from treatment failure after 16 weeks of therapy; the secondary outcome was attentional dysfunction. Differential drug effects were determined by means of pairwise comparisons. RESULTS The 453 children who were randomly assigned to treatment with ethosuximide (156), lamotrigine (149), or valproic acid (148) were similar with respect to their demographic characteristics. After 16 weeks of therapy, the freedom-from-failure rates for ethosuximide and valproic acid were similar (53% and 58%, respectively; odds ratio with valproic acid vs. ethosuximide, 1.26; 95% confidence interval [CI], 0.80 to 1.98; P = 0.35) and were higher than the rate for lamotrigine (29%; odds ratio with ethosuximide vs. lamotrigine, 2.66; 95% CI, 1.65 to 4.28; odds ratio with valproic acid vs. lamotrigine, 3.34; 95% CI, 2.06 to 5.42; P<0.001 for both comparisons). There were no significant differences among the three drugs with regard to discontinuation because of adverse events. Attentional dysfunction was more common with valproic acid than with ethosuximide (in 49% of the children vs. 33%; odds ratio, 1.95; 95% CI, 1.12 to 3.41; P = 0.03). CONCLUSIONS Ethosuximide and valproic acid are more effective than lamotrigine in the treatment of childhood absence epilepsy. Ethosuximide is associated with

  13. Hemicrania continua evolving from cluster headache responsive to valproic acid.

    PubMed

    Lambru, Giorgio; Castellini, Paola; Bini, Annamaria; Evangelista, Andrea; Manzoni, Gian Camillo; Torelli, Paola

    2008-10-01

    Hemicrania continua (HC) is a rare type of primary headache characterized by a prompt and enduring response to indomethacin. We describe a patient who suffered from cluster headache evolving into ipsilateral HC, who does not tolerate a long-term indomethacin therapy. The case was complex in terms of diagnosis, associated comorbidity, and choice of treatment; after several trials with different therapeutic regimens, we started the patient on a therapy with valproic acid and obtained an improvement of her HC.

  14. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport

  15. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells.

    PubMed

    Göttlicher, M; Minucci, S; Zhu, P; Krämer, O H; Schimpf, A; Giavara, S; Sleeman, J P; Lo Coco, F; Nervi, C; Pelicci, P G; Heinzel, T

    2001-12-17

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  16. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells

    PubMed Central

    Göttlicher, Martin; Minucci, Saverio; Zhu, Ping; Krämer, Oliver H.; Schimpf, Annemarie; Giavara, Sabrina; Sleeman, Jonathan P.; Lo Coco, Francesco; Nervi, Clara; Pelicci, Pier Giuseppe; Heinzel, Thorsten

    2001-01-01

    Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. More over, tumor growth and metastasis formation are significantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. PMID:11742974

  17. Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy.

    PubMed

    Chang, Cheng-Yi; Li, Jian-Ri; Wu, Chih-Cheng; Ou, Yen-Chuan; Chen, Wen-Ying; Kuan, Yu-Hsiang; Wang, Wen-Yi; Chen, Chun-Jung

    2015-11-01

    Autophagy and apoptosis represent important cellular processes involved in cancer cell killing mechanisms. Epidermal growth factor receptor inhibitor gefitinib and valproic acid have been implicated in the treatment of malignancies including glioma involving autophagic and apoptotic mechanisms. Therefore, it is interesting to investigate whether a combination of gefitinib and valproic acid shows better cancer cell killing effect on human glioma cells. We found that a nontoxic concentration of valproic acid sensitized U87 and T98G glioma cells to gefitinib cytotoxicity by inhibiting cell growth and long-term clonogenic survival. The augmented consequences were accompanied by the formation of autophagic vacuoles, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), and degradation of p62. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 but not broad-spectrum caspase inhibitor attenuated gefitinib/valproic acid-induced growth inhibition. Gefitinib/valproic acid-induced autophagy was accompanied by the activation of liver kinase-B1 (LKB1)/AMP-activated protein kinase (AMPK)/ULK1. Silencing of AMPK and ULK1 suppressed gefitinib/valproic acid-induced autophagy and growth inhibition. Mechanistic studies showed that gefitinib/valproic acid increased intracellular reactive oxygen species generation and N-acetyl cysteine attenuated gefitinib/valproic acid-caused autophagy and growth inhibition. In addition to demonstrating the autophagic mechanisms of gefitinib/valproic acid, the results of this study further suggest that intracellular oxidative stress and the LKB1/AMPK signaling might be a potential target for the development of therapeutic strategy against glioma. PMID:26488897

  18. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  19. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  20. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  1. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  2. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells.

    PubMed

    Petrakova, O S; Ashapkin, V V; Shtratnikova, V Y; Kutueva, L I; Vorotelyak, E A; Borisov, M A; Terskikh, V V; Gvazava, I G; Vasiliev, A V

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells.

  3. Study of Valproic Acid-Enhanced Hepatocyte Steatosis.

    PubMed

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  4. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    SciTech Connect

    Van Beneden, Katrien; Geers, Caroline; Pauwels, Marina; Mannaerts, Inge; Wissing, Karl M.; Van den Branden, Christiane; Grunsven, Leo A. van

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  5. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores.

    PubMed

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called "cryptic," often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these "cryptic" metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of "cryptic" antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic

  6. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  7. Valproic acid protects neurons and promotes neuronal regeneration after brachial plexus avulsion

    PubMed Central

    Li, Qiang; Wu, Dianxiu; Li, Rui; Zhu, Xiaojuan; Cui, Shusen

    2013-01-01

    Valproic acid has been shown to exert neuroprotective effects and promote neurite outgrowth in several peripheral nerve injury models. However, whether valproic acid can exert its beneficial effect on neurons after brachial plexus avulsion injury is currently unknown. In this study, brachial plexus root avulsion models, established in Wistar rats, were administered daily with valproic acid dissolved in drinking water (300 mg/kg) or normal water. On days 1, 2, 3, 7, 14 and 28 after avulsion injury, tissues of the C5–T1 spinal cord segments of the avulsion injured side were harvested to investigate the expression of Bcl-2, c-Jun and growth associated protein 43 by real-time PCR and western blot assay. Results showed that valproic acid significantly increased the expression of Bcl-2 and growth associated protein 43, and reduced the c-Jun expression after brachial plexus avulsion. Our findings indicate that valproic acid can protect neurons in the spinal cord and enhance neuronal regeneration following brachial plexus root avulsion. PMID:25206605

  8. Choleretic effect of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1981-01-01

    Valproic acid (VPA) is an anticonvulsant agent which produced marked choleresis in the rat. Bile flow rate increased from 50 to 60 microliter per min per kg to 120 to 145 microliter per min per kg immediately after i.v. injection of VPA (37.5 to 150 mg per kg; 2 ml per kg) in male Sprague-Dawley rats. The duration of maximal bile flow was dose-dependent and increased from 30 min (37.5 mg VPA per kg) to approximately 2 hr (150 mg VPA per kg). Choleresis diluted the biliary concentrations of bile acids, Cl-, cholesterol, and phospholipids. VPA did not change the bile/plasma ratio for erythritol suggesting that the increased bile flow is of canalicular origin. VPA did not influence the excretion of bile acids or their osmotic activity, whereas bile salt-independent flow doubled in rats treated with 150 mg VPA per kg. The bile/plasma, bile/liver, and liver/plasma concentration ratios for VPA were 11.7, 1.6, and 7.3, respectively. Approximately 90% of VPA appearing in bile was biotransformed, primarily as a glucuronide. Bile flow correlated with VPA excretion; 16 microliter of bile was produced per micromole VPA which suggests that choleresis is primarily due to the osmotic activity of VPA metabolites in bile. VPA enhanced the excretion of inorganic ions which may also contribute to choleresis. Biliary excretion of phenol-3,6-dibromophthalein disulfonate and ouabain was unaffected. Thus, VPA is an effective choleretic which stimulates bile salt-independent flow of canalicular origin largely as a consequence of the osmotic properties of VPA conjugates in bile.

  9. Topiramate increases the risk of valproic acid-induced encephalopathy.

    PubMed

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment.

  10. Epigenetic modifications in valproic acid-induced teratogenesis

    SciTech Connect

    Tung, Emily W.Y.; Winn, Louise M.

    2010-11-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  11. Valproic Acid and Hepatic Steatosis: A Possible Link? About a Case Report

    PubMed Central

    Mnif, Leila; Sellami, Rim; Masmoudi, Jawaher

    2016-01-01

    Background Valproic acid is a mood-stabilizing anticonvulsant. Hepatic injuries are among the occasionally observed adverse effects of this medication. Case presentation We present the case of a 47-year-old man who had bipolar disorder for ten years and treated with valproic acid. He demonstrated elevated serum aminotransferases and ultrasonography revealed that hepatomegaly was suggestive of hepatic steatosis. Conclusion This case report stresses the importance of a complete drug history and the need for clinicians to be aware of the delayed onset of hepatic injuries.

  12. Effect of supplemental folic acid on valproic acid-induced embryotoxicity and tissue zinc levels in vivo.

    PubMed

    Hansen, D K; Grafton, T F; Dial, S L; Gehring, T A; Siitonen, P H

    1995-11-01

    Valproic acid (VPA) is an anti-convulsant drug known to cause spina bifida in humans. Administration of the vitamin, folic acid, has been shown to decrease the recurrence and possibly also the occurrence of neural tube defects, primarily spina bifida, in humans. Additionally, treatment with a derivative (folinic acid) of folic acid has been reported to decrease the frequency of VPA-induced exencephaly in mice treated with the drug in vivo. A protective effect by folinic acid has not been observed in vitro. The purpose of this investigation was to reexamine the ability of folinic acid to decrease the incidence of VPA-induced neural tube defects in vivo. We also examined the effect of increased intake of folic acid on zinc levels in various maternal and embryonic tissues. Folinic acid, whether administered by intraperitoneal injection or in osmotic mini-pumps, did not decrease the number of mouse fetuses with VPA-induced exencephaly. Dietary supplementation with 10-20 times the daily required intake of folic acid in rodents also failed to decrease the embryotoxicity of VPA. Such dietary supplementation had no effect on zinc levels in maternal liver, brain, or kidney, nor in embryonic tissues. These results indicate that folic acid is not able to reverse the embryotoxicity induced by the anticonvulsant, that there is no apparent effect of high dietary folate intake on maternal or embryonic zinc levels and suggest that folate is probably not involved in the mechanism of VPA-induced embryotoxicity. PMID:8838251

  13. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  14. Effectiveness and Cost of Generic versus Brand-Name Valproic Acid.

    ERIC Educational Resources Information Center

    Coulter, David L.

    1997-01-01

    This commentary on a study comparing use of the brand-name drug Depakene with generic valproic acid to control seizures in people with mental retardation notes the importance of distinguishing between Depakene and Depakote, which is an enteric-coated formulation for which there is no generic form currently available. (DB)

  15. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity.

  16. Ethosuximide, Valproic Acid and Lamotrigine in Childhood Absence Epilepsy: Initial Monotherapy Outcomes at 12 months

    PubMed Central

    Glauser, Tracy A.; Cnaan, Avital; Shinnar, Shlomo; Hirtz, Deborah G.; Dlugos, Dennis; Masur, David; Clark, Peggy O.; Adamson, Peter C.

    2012-01-01

    Purpose Determine the optimal initial monotherapy for children with newly diagnosed childhood absence epilepsy based on 12 months of double blind therapy. Methods A double-blind, randomized controlled clinical trial compared the efficacy, tolerability and neuropsychological effects of ethosuximide, valproic acid and lamotrigine in children with newly diagnosed childhood absence epilepsy. Study medications were titrated to clinical response and subjects remained in the trial unless they reached a treatment failure criterion. Maximal target doses were ethosuximide 60 mg/kg/day or 2000 mg/day, valproic acid 60 mg/kg/day or 3000 mg/day and lamotrigine 12 mg/kg/day or 600 mg/day. Original primary outcome was at 16–20 weeks and included a video EEG assessment. For this report, the main effectiveness outcome was the freedom from failure rate 12 months after randomization and included a video EEG assessment; differential drug effects were determined by pairwise comparisons. The main cognitive outcome was the percentage of subjects experiencing attentional dysfunction at the Month 12 visit. Key Findings A total of 453 children were enrolled and randomized; seven were deemed ineligible and 446 subjects comprised the overall efficacy cohort. There were no demographic differences between the three cohorts. By 12 months after starting therapy, only 37% of all enrolled subjects were free from treatment failure on their first medication. At the Month 12 visit, the freedom-from-failure rates for ethosuximide and valproic acid were similar (45% and 44%, respectively; odds ratio with valproic acid vs. ethosuximide, 0.94; 95% confidence interval [CI], 0.60 to 1.48; P = 0.82) and were higher than the rate for lamotrigine (21%; odds ratio with ethosuximide vs. lamotrigine, 3.09; 95% CI, 1.86 to 5.13; odds ratio with valproic acid vs. lamotrigine, 2.90; 95% CI, 1.74 to 4.83; P<0.001 for both comparisons). The frequency of treatment failures due to lack of seizure control (p < 0

  17. Choleretic effect of structural analogs of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1983-03-01

    A comparison of structure-choleretic activity relationship has been made for several branched- and straight-chain carboxylic acids including valproic acid. Cumulative bile flow was 13.8, 23.8, 29.4 and 14.9 ml/4hr/kg body weight for dimethyl-, diethyl-, dipropyl- (valproic acid), and dibutyl-acetic acid, respectively, after iv administration of approximately equimolar doses (1100 mumoles/kg). Except for dibutylacetic acid, maximal bile flow increased from control rates of 50-60 to 120-140 microliters/min/kg. Administration of higher doses of 2,2-dimethylbutanoic acid and 2-ethylbutanoic acid did not increase maximal bile flow above 125-140 microliters/min/kg but did prolong the duration of choleresis. Maximal and cumulative bile flows increased with length of carboxylic acid chain for 2,2-dimethyl substituted acids (2,2-dimethylacetic acid to 2,2-dimethylbutanoic acid). If the two methyl groups were on C-3 (3-methylbutanoic acid), no change in bile flow was observed. Straight-chain acids from C-5 to C-11 and pent-4-enoic acid did not alter bile flow. Thus, the effectiveness of several branched-chain carboxylic acids as choleretics parallel their ability as anticonvulsants. In contrast, the straight-chain acids which cause central nervous system depression have no choleretic activity.

  18. Withdrawal syndrome and hypomagnesaemia and in a newborn exposed to valproic acid and carbamazepine during pregnancy.

    PubMed

    Satar, Mehmet; Ortaköylü, Kadir; Batun, İnci; Yıldızdaş, Hacer Y; Özlü, Ferda; Demir, Hüsnü; Topaloğlu, Ali Kemal

    2016-06-01

    The usage of drugs during pregnancy affect the fetus and the newborn. In this report, we present findings from a newborn baby, whose mother was epileptic, and was under the treatment of valproic acid and carbamazepine during pregnancy. We have found symptoms of withdrawal syndrome, hyponatremia and feeding problem, which was most probably related to exposure to the mentioned drugs. We have also diagnosed hypomagnesaemia and atrial septal defect 4 milimeters in diameter. There are already many reports about the side effects of valproic acid and carbamazepine usage during pregnancy. To the best of our knowledge, hypomagnesaemia has not yet been reported as a side effect. We think that hypomagnesaemia is also related to the usage of antiepileptics. PMID:27489470

  19. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models

    PubMed Central

    Hubaux, Roland; Vandermeers, Fabian; Cosse, Jean-Philippe; Crisanti, Cecilia; Kapoor, Veena; Albelda, Steven M.; Mascaux, Céline; Delvenne, Philippe; Hubert, Pascale

    2015-01-01

    With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. PMID:27730151

  20. Vitamin U, a novel free radical scavenger, prevents lens injury in rats administered with valproic acid.

    PubMed

    Tunali, S; Kahraman, S; Yanardag, R

    2015-09-01

    Valproic acid (2-propyl-pentanoic acid, VPA) is the most widely prescribed antiepileptic drug due to its ability to treat a broad spectrum of seizure types. VPA exhibits various side effects such as organ toxicity, teratogenicity, and visual disturbances. S-Methylmethioninesulfonium is a derivative of the amino acid methionine and it is widely referred to as vitamin U (Vit U). This study was aimed to investigate the effects of Vit U on lens damage parameters of rats exposed to VPA. Female Sprague Dawley rats were divided into four groups. Group I comprised control animals. Group II included control rats supplemented with Vit U (50 mg/kg/day) for 15 days. Group III was given only VPA (500 mg/kg/day) for 15 days. Group IV was given VPA + Vit U (in same dose and time). Vit U was given to rats by gavage and VPA was given intraperitoneally. On the 16th day of experiment, all the animals which were fasted overnight were killed. Lens was taken from animals, homogenized in 0.9% saline to make up to 10% (w/v) homogenate. The homogenates were used for protein, glutathione, lipid peroxidation levels, and antioxidant enzymes activities. Lens lipid peroxidation levels and aldose reductase and sorbitol dehydrogenase activities were increased in VPA group. On the other hand, glutathione levels, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and paraoxonase activities were decreased in VPA groups. Treatment with Vit U reversed these effects. This study showed that Vit U exerted antioxidant properties and may prevent lens damage caused by VPA.

  1. Tactile stimulation improves neuroanatomical pathology but not behavior in rats prenatally exposed to valproic acid.

    PubMed

    Raza, S; Harker, A; Richards, S; Kolb, B; Gibb, R

    2015-04-01

    Autism is a severe neurodevelopmental disorder with a population prevalence of 1 in 68, and dramatically increasing. While no single pharmacologic intervention has successfully targeted the core symptoms of autism, emerging evidence suggests that postnatal environmental manipulations may offer greater therapeutic efficacy. Massage therapy, or tactile stimulation (TS), early in life has repeatedly been shown to be an effective, low-cost, therapeutic approach in ameliorating the cognitive, social, and emotional symptoms of autism. While early TS treatment attenuates many of the behavioral aberrations among children with autism, the neuroanatomical correlates driving such changes are unknown. The present study assessed the therapeutic effects of early TS treatment on behavior and neuroanatomy using the valproic acid (VPA) rodent model of autism. Rats were prenatally exposed to VPA on gestational day 12.5 and received TS shortly following birth. Whereas TS reversed almost all the VPA-induced alterations in neuroanatomy, it failed to do so behaviorally. The TS VPA animals, when compared to VPA animals, did not exhibit altered or improved behavior in the delayed non-match-to-sample T-maze, Whishaw tray reaching, activity box, or elevated plus maze tasks. Anatomically, however, there were significant increases in dendritic branching and spine density in the medial prefrontal cortex, orbital frontal cortex, and amygdala in VPA animals following early TS treatment, suggesting a complete reversal or remediation of the VPA-induced effects in these regions. The results suggest that postnatal TS, during a critical period in development, acts as a powerful reorganization tool that can ameliorate the neuroanatomical consequences of prenatal VPA exposure.

  2. Hyperactivity and alopecia associated with ingestion of valproic acid in a cat.

    PubMed

    Zoran, D L; Boeckh, A; Boothe, D M

    2001-05-15

    A 1-year-old castrated male cat was evaluated because of alopecia of approximately 4 to 5 months' duration as well as hyperactive behavior. It was later determined that the cat was ingesting valproic acid by eating food to which it had been added for daily administration to a child in the household who had cerebral palsy. The clinical signs slowly resolved after the source of valproic acid was removed. This emphasizes the sensitivity of cats to drugs that are commonly used in humans. It was not determined whether the clinical signs that developed in this cat were caused by an adverse reaction or from toxicosis as a result of prolonged hepatic elimination of valproic acid, which requires glucuronide metabolism for disposition. However, the cat recovered completely following removal of the drug and prevention of further exposure. This report emphasizes the importance of obtaining a careful and complete history from the owner regarding an animal and its environment. In the cat of this report, the owner had not considered the impact of the presence of the drug in the child's food.

  3. Valproic acid poisoning: an evidence-based consensus guideline for out-of-hospital management.

    PubMed

    Manoguerra, Anthony S; Erdman, Andrew R; Woolf, Alan D; Chyka, Peter A; Caravati, E Martin; Scharman, Elizabeth J; Booze, Lisa L; Christianson, Gwenn; Nelson, Lewis S; Cobaugh, Daniel J; Troutman, William G

    2008-08-01

    A review of US poison center data for 2004 showed over 9000 ingestions of valproic acid. A guideline that determines the conditions for emergency department referral and prehospital care could potentially optimize patient outcome, avoid unnecessary emergency department visits, reduce health care costs, and reduce life disruption for patients and caregivers. An evidence-based expert consensus process was used to create the guideline. Relevant articles were abstracted by a trained physician researcher. The first draft of the guideline was created by the lead author. The entire panel discussed and refined the guideline before distribution to secondary reviewers for comment. The panel then made changes based on the secondary review comments. The objective of this guideline is to assist poison center personnel in the appropriate out-of-hospital triage and initial out-of-hospital management of patients with a suspected ingestion of valproic acid by 1) describing the process by which an ingestion of valproic acid might be managed, 2) identifying the key decision elements in managing cases of valproic acid ingestion, 3) providing clear and practical recommendations that reflect the current state of knowledge, and 4) identifying needs for research. This guideline applies to the acute ingestion and acute-on-chronic ingestion of immediate-release and extended-release dosage forms of valproic acid, divalproex, and valproate sodium alone. Co-ingestion of additional substances could require different referral and management recommendations depending on the combined toxicities of the substances. This review focuses on the ingestion of more than a single therapeutic dose and the effects of an overdose. Although therapeutic doses of valproic acid can cause adverse effects in adults and children, some idiosyncratic and some dose-dependent, these cases are not considered. This guideline is based on an assessment of current scientific and clinical information. The expert consensus

  4. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes

    SciTech Connect

    Surendradoss, Jayakumar; Chang, Thomas K.H.; Abbott, Frank S.

    2012-11-01

    Valproic acid (VPA) undergoes cytochrome P450-mediated desaturation to form 4-ene-VPA, which subsequently yields (E)-2,4-diene-VPA by β-oxidation. Another biotransformation pathway involves β-oxidation of VPA to form (E)-2-ene-VPA, which also generates (E)-2,4-diene-VPA by cytochrome P450-mediated desaturation. Although the synthetic form of (E)-2,4-diene-VPA is more hepatotoxic than VPA as shown in various experimental models, there is no conclusive evidence to implicate the in situ generated (E)-2,4-diene-VPA in VPA hepatotoxicity. The present study investigated the effects of modulating the in situ formation of (E)-2,4-diene-VPA on markers of oxidative stress (formation of 2′,7′-dichlorofluorescein; DCF), steatosis (accumulation of BODIPY 558/568 C{sub 12}), necrosis (release of lactate dehydrogenase; LDH), and on cellular total glutathione (GSH) levels in sandwich-cultured rat hepatocytes treated with VPA or (E)-2-ene-VPA. Treatment with either of these chemicals alone increased each of the toxicity endpoints. In VPA-treated hepatocytes, (E)-2,4-diene-VPA was detected only at trace levels, even after phenobarbital (PB) pretreatment and there was no effect on the toxicity of VPA. Furthermore, pretreatment with a cytochrome P450 enzyme inhibitor, 1-aminobenzotriazole (1-ABT), did not influence the extent of VPA toxicity in both PB-pretreated and vehicle-pretreated hepatocytes. However, in (E)-2-ene-VPA-treated hepatocytes, PB pretreatment greatly enhanced the levels of (E)-2,4-diene-VPA and this was accompanied by a further enhancement of the effects of (E)-2-ene-VPA on DCF formation, BODIPY accumulation, LDH release, and GSH depletion. Pretreatment with 1-ABT reduced the concentrations of (E)-2,4-diene-VPA and the extent of (E)-2-ene-VPA toxicity; however, this occurred in PB-pretreated hepatocytes, but not in control hepatocytes. In conclusion, in situ generated (E)-2,4-diene-VPA is not responsible for the hepatocyte toxicity of VPA, whereas it

  5. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  6. Efficacy of valproic acid for retinitis pigmentosa patients: a pilot study

    PubMed Central

    Iraha, Satoshi; Hirami, Yasuhiko; Ota, Sachiko; Sunagawa, Genshiro A; Mandai, Michiko; Tanihara, Hidenobu; Takahashi, Masayo; Kurimoto, Yasuo

    2016-01-01

    Purpose The purpose of this study was to examine the efficacy and safety of valproic acid (VPA) use in patients with retinitis pigmentosa (RP). Patients and methods This was a prospective, interventional, noncomparative case study. In total, 29 eyes from 29 patients with RP whose best-corrected visual acuities (BCVAs) in logarithm of the minimum angle of resolution (logMAR) ranged from 1.0 to 0.16 with visual fields (VFs) of ≤10° (measured using Goldmann perimeter with I4) were recruited. The patients received oral supplementation with 400 mg of VPA daily for 6 months and were followed for an additional 6 months. BCVAs, VFs (measured with the Humphrey field analyzer central 10-2 program), and subjective questionnaires were examined before, during, and after the cessation of VPA supplementation. Results The changes in BCVA and VF showed statistically significant differences during the internal use of VPA, compared with after cessation (P=0.001). With VPA intake, BCVA in logMAR significantly improved from baseline to 6 months (P=0.006). The mean deviation value of the VF significantly improved from baseline to 1 month (P=0.001), 3 months (P=0.004), and 6 months (P=0.004). These efficacies, however, were reversed to the baseline levels after the cessation of VPA intake. There were no significant relations between the mean blood VPA concentrations of each patient and the changes in BCVA and VF. During the internal use of VPA, 15 of 29 patients answered “easier to see”, whereas blurred vision was registered in 21 of 29 patients on cessation. No systemic drug-related adverse events were observed. Conclusion While in use, oral intake of VPA indicated a short-term benefit to patients with RP. It is necessary to examine the effect of a longer VPA supplementation in a controlled study design. PMID:27536054

  7. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  8. Quantitative determination of valproic acid in postmortem blood samples--evidence of strong matrix dependency and instability.

    PubMed

    Kiencke, Verena; Andresen-Streichert, Hilke; Müller, Alexander; Iwersen-Bergmann, Stefanie

    2013-11-01

    Most of the daily work of forensic toxicologists deals with fatal cases resulting from overdoses of licit and illicit drugs. However, another reason for fatalities in patients suffering from epilepsy can be undetectable or subtherapeutic levels of antiepileptic drugs. Some studies have shown a correlation between "sudden unexpected death in epilepsy" (SUDEP) and the ineffective treatment of epilepsy. Low levels of antiepileptic drugs may be a risk factor for SUDEP. The death of a psychiatric patient also suffering from epilepsy inspired the investigation. Subsequent to the death of the patient, the doctor was accused of providing inadequate therapy for epilepsy. The patient was to be treated with valproic acid. We developed and validated a simple method of determining valproic acid levels by gas chromatography-mass spectrometry for serum, but a transfer of the method from serum to postmortem whole blood failed. The method had to be modified and revalidated for postmortem whole blood specimens. A stability study of valproic acid in postmortem blood was conducted, showing a decline of valproic acid levels by 85 % after storage at room temperature for 28 days. During the storage time, the blood samples showed changes in consistency. Depending on the stage of decomposition, it is necessary to perform a determination by standard addition with an equilibration time of 4 h before extraction to achieve reliable results. For a proper interpretation of quantitative results, it is necessary to keep the postmortem decline of valproic acid concentrations in mind.

  9. Histone Deacetylase Inhibitor Valproic Acid Promotes the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells

    PubMed Central

    Kondo, Yuki; Iwao, Takahiro; Yoshihashi, Sachimi; Mimori, Kayo; Ogihara, Ruri; Nagata, Kiyoshi; Kurose, Kouichi; Saito, Masayoshi; Niwa, Takuro; Suzuki, Takayoshi; Miyata, Naoki; Ohmori, Shigeru; Nakamura, Katsunori; Matsunaga, Tamihide

    2014-01-01

    In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. PMID:25084468

  10. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid

    PubMed Central

    Vázquez-Calvo, Ángela; Martín-Acebes, Miguel A.; Sáiz, Juan-Carlos; Ngo, Nhi; Sobrino, F.; de la Torre, Juan Carlos

    2013-01-01

    Valproic acid (VPA), a short chain fatty acid commonly used for treatment of neurological disorders, has been shown to inhibit production of infectious progeny of different enveloped viruses including the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In this study we have investigated the mechanisms by which VPA inhibits LCMV multiplication in cultured cells. VPA reduced production of infectious LCMV progeny and virus propagation without exerting a major blockage on either viral RNA or protein synthesis, but rather affecting the cell release and specific infectivity of LCMV progeny from infected cells. Our results would support the repurposing of VPA as a candidate antiviral drug to combat arenavirus infections. PMID:23735299

  11. What We Have Learned about Autism Spectrum Disorder from Valproic Acid

    PubMed Central

    Hu, Bin

    2013-01-01

    Two recent epidemiological investigations in children exposed to valproic acid (VPA) treatment in utero have reported a significant risk associated with neurodevelopmental disorders and autism spectrum disorder (ASD) in particular. Parallel to this work, there is a growing body of animal research literature using VPA as an animal model of ASD. In this focused review we first summarize the epidemiological evidence linking VPA to ASD and then comment on two important neurobiological findings linking VPA to ASD clinicopathology, namely, accelerated or early brain overgrowth and hyperexcitable networks. Improving our understanding of how the drug VPA can alter early development of neurological systems will ultimately improve our understanding of ASD. PMID:24381784

  12. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid.

    PubMed

    Lee, Soo-Yun; Huh, Wooseong; Jung, Jin Ah; Yoo, Hye Min; Ko, Jae-Wook; Kim, Jung-Ryul

    2015-01-01

    Valproic acid (VPA) is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC) administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; C max, 52.1 mg/L vs 53.0 mg/L). There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI]) of AUClast and C max (95.7 [85.9-106.5] and 98.3 [91.6-105.6], respectively). Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary.

  13. Valproic acid-induced acute pancreatitis in pediatric age: case series and review of literature

    PubMed Central

    COFINI, M.; QUADROZZI, F.; FAVORITI, P.; FAVORITI, M.; COFINI, G.

    2015-01-01

    Valproic acid (VPA) is commonly prescribed medication for epilepsy, migraine and bipolar disorder. Although the common adverse effect associated with VPA are typically benign, less common adverse effect can occur; these include hepatotixicity, teratogenicity and acute pancreatitis (AP). VPA-induced pancreatitis does not depend on valproic acid serum level and may occur anytime after onset of therapy. Re-challenge with VPA is dangerous and should be avoided. The diagnosis of VPA-induced pancreatitis seems to be underestimated because of difficulties in determining the causative agent and the need for a retrospective re-evaluation of the causative factor. More of idiopathic pancreatitis should be a drug-induced pancreatitis. We report four cases of VPA-induced AP found in a group of 52 cases of AP in children come to our attention from January 2008 to December 2012. The aim of these reports is to point out our experience about clinical presentation, diagnosis, management, outcome in children with VPA-induced AP and review of literature. PMID:26712070

  14. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    SciTech Connect

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  15. Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats.

    PubMed

    Miyagi, Junko; Oshibuchi, Hidehiro; Kasai, Akiko; Inada, Ken; Ishigooka, Jun

    2014-05-01

    Valproic acid, an established antiepileptic and antimanic drug, has recently emerged as a promising emotion-stabilizing agent for patients with psychosis. Although dopamine transmission in the amygdala plays a key role in emotional processing, there has been no direct evidence about how valproic acid acts on the dopaminergic system in the brain during emotional processing. In the present study, we tested the effect of valproic acid on a trait marker of vulnerability to emotional stress in psychosis, which is excess dopamine release in response to a fear-conditioned stimulus (CS) in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Extracellular dopamine was collected from the amygdala of freely moving methamphetamine-sensitized rats by in vivo microdialysis and was measured using high-performance liquid chromatography. During microdialysis, valproic acid was intraperitoneally injected followed by CS exposure. Valproic acid treatment decreased baseline levels of dopamine and also attenuated the excess dopamine release in response to the CS in the amygdala of methamphetamine-sensitized rats. The results prove that valproic acid inhibits spontaneous dopamine release and also attenuates excess dopaminergic signaling in response to emotional stress in the amygdala. These findings suggest that the mechanisms of the emotion-stabilizing effect of valproic acid in psychosis involve modulation of dopaminergic transmission in emotional processing.

  16. VAC chemotherapy with valproic acid for refractory/relapsing small cell lung cancer: a phase II study

    PubMed Central

    Lafitte, Jean-Jacques; Scherpereel, Arnaud; Ameye, Lieveke; Paesmans, Marianne; Meert, Anne-Pascale; Colinet, Benoit; Tulippe, Christian; Willems, Luc; Leclercq, Nathalie; Sculier, Jean-Paul

    2015-01-01

    Salvage chemotherapy (CT) for relapsing or refractory small cell lung cancer (SCLC) remains disappointing. In vitro experiments showed that valproic acid increases apoptosis of SCLC cell lines exposed to doxorubicin, vindesine and bis(2-chloroethyl)amine. The primary objective of this phase II study was to determine whether epigenetic modulation with valproic acid in addition to a doxorubicin, vindesine and cyclophosphamide (VAC) regimen improves 6-month progression-free survival (PFS). Patients with pathologically proven SCLC refractory to prior platinum derivatives and etoposide were eligible. After central registration, patients received VAC plus daily oral valproic acid. 64 patients were registered, of whom six were ineligible. Seven patients did not receive any CT, leaving 51 patients assessable for the primary end-point. The objective response rate was 19.6%. Median PFS was 2.8 months (95% CI 2.5–3.6 months) and 6-month PFS was 6%. Median survival time was 5.9 months (95% CI 4.7–7.5 months). Toxicity was mainly haematological, with 88% and 26% grade 3–4 neutropenia and thrombopenia, respectively. Despite an interesting response rate, the addition of valproic acid to VAC did not translate into adequate PFS in relapsing SCLC or SCLC refractory to platinum–etoposide. PMID:27730152

  17. Direct Determination of a Small-Molecule Drug, Valproic Acid, by an Electrically-Detected Microcantilever Biosensor for Personalized Diagnostics

    PubMed Central

    Huang, Long-Sun; Gunawan, Christian; Yen, Yi-Kuang; Chang, Kai-Fung

    2015-01-01

    Direct, small-molecule determination of the antiepileptic drug, valproic acid, was investigated by a label-free, nanomechanical biosensor. Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg·mL−1 in blood or serum. Unlike labeled and clinically-used measurement techniques, the label-free, electrical detection microcantilever biosensor can be miniaturized and simplified for use in portable or hand-held point-of-care platforms or personal diagnostic tools. A micromachined microcantilever sensor was packaged into the micro-channel of a fluidic system. The measurement of the antiepileptic drug, valproic acid, in phosphate-buffered saline and serum used a single free-standing, piezoresistive microcantilever biosensor in a thermally-controlled system. The measured surface stresses showed a profile over a concentration range of 50–500 μg·mL−1, which covered the clinically therapeutic range of 50–100 μg·mL−1. The estimated limit of detection (LOD) was calculated to be 45 μg·mL−1, and the binding affinity between the drug and the antibody was measured at around 90 ± 21 μg·mL−1. Lastly, the results of the proposed device showed a similar profile in valproic acid drug detection with those of the clinically-used fluorescence polarization immunoassay. PMID:25632826

  18. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.

  19. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. PMID:25732953

  20. Valproic Acid

    MedlinePlus

    ... tablet, a sprinkle capsule (capsule that contains small beads of medication that can be sprinkled on food), ... you can open the capsules and sprinkle the beads they contain on a teaspoonful of soft food, ...

  1. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    SciTech Connect

    Dawson, Jennifer E.; Raymond, Angela M.; Winn, Louise M. . E-mail: winnl@biology.queensu.ca

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  2. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways. PMID:27602061

  3. Increased expression of fatty acid synthase and acetyl-CoA carboxylase in the prefrontal cortex and cerebellum in the valproic acid model of autism

    PubMed Central

    Chen, Jianling; Wu, Wei; Fu, Yingmei; Yu, Shunying; Cui, Donghong; Zhao, Min; Du, Yasong; Li, Jijun; Li, Xiaohong

    2016-01-01

    The primary aim of the present study was to investigate alterations in enzymes associated with fatty acid synthesis, namely fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), in the prefrontal cortex and cerebellum of the valproic acid (VPA)-induced animal model of autism. In this model, pregnant rats were given a single intraperitoneal injection of VPA, and prefrontal cortex and cerebellum samples from their pups were analyzed. The results of western blotting and reverse transcription-quantitative polymerase chain reaction analyses demonstrated that the protein and mRNA expression levels of FASN, ACC and phospho-ACC (pACC) were increased in the prefrontal cortex and cerebellum of the VPA model of autism. Furthermore, in the prefrontal cortex and cerebellum of the VPA model of autism, AMPK expression is increased, whereas PI3K and Akt expression are unchanged. This suggests that disorder of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/FASN and/or adenosine 5′-monophosphate-activated protein kinase (AMPK)/ACC pathway may be involved in the pathogenesis of autism. It is hypothesized that fatty acid synthesis participates in autism through PI3K/Akt/FASN and AMPK/ACC pathways.

  4. Standard dose valproic acid does not cause additional cognitive impact in a rodent model of intractable epilepsy.

    PubMed

    Jellett, Adam P; Jenks, Kyle; Lucas, Marcella; Scott, Rod C

    2015-02-01

    Children with epilepsy face significant cognitive and behavioral impairments. These impairments are due to a poorly characterized interaction between the underlying etiology, the effect of seizures and the effect of medication. The large variation in these factors make understanding the main drivers of cognitive impairment in humans extremely difficult. Therefore, we investigated the cognitive effect of seizures and the antiepileptic drug valproic acid in a rodent model of cortical dysplasia. Rats were divided into seizure-receiving and non-receiving groups. Rats experienced frequent early life seizures using the flurothyl inhalation method: 50 seizures between postnatal day 5 and 15 and then one seizure a day following that. Rats were further divided into drug-treated and vehicle treated groups. Valproic acid treated animals were treated from 5 days preceding behavioral testing in the Morris water maze at a clinically relevant concentration. We show here that the main driver of cognitive impairments are the brain malformations, and that persistent seizures in animals with brain malformations and valproic acid caused no additional impact. These findings suggest that neither an appropriate dose of a standard antiepileptic drug or intractable seizures worsen cognition associated with a malformation of cortical development and that alternative treatment strategies to improve cognition are required.

  5. Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1.

    PubMed

    Oikawa, Hirotaka; Goh, Wilson W B; Lim, Vania K J; Wong, Limsoon; Sng, Judy C G

    2015-12-01

    Valproic acid (VPA) is an anti-convulsant drug that is recently shown to have neuroregenerative therapeutic actions. In this study, we investigate the underlying molecular mechanism of VPA and its effects on Bdnf transcription through microRNAs (miRNAs) and their corresponding target proteins. Using in silico algorithms, we predicted from our miRNA microarray and iTRAQ data that miR-124 is likely to target at guanine nucleotide binding protein alpha inhibitor 1 (GNAI1), an adenylate cyclase inhibitor. With the reduction of GNAI1 mediated by VPA, the cAMP is enhanced to increase Bdnf expression. The levels of GNAI1 protein and Bdnf mRNA can be manipulated with either miR-124 mimic or inhibitor. In summary, we have identified a novel molecular mechanism of VPA that induces miR-124 to repress GNAI1. The implication of miR-124→GNAI1→BDNF pathway with valproic acid treatment suggests that we could repurpose an old drug, valproic acid, as a clinical application to elevate neurotrophin levels in treating neurodegenerative diseases.

  6. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  7. Efficacy of omega-3 fatty acids in the treatment of borderline personality disorder: a study of the association with valproic acid.

    PubMed

    Bellino, Silvio; Bozzatello, Paola; Rocca, Giuseppe; Bogetto, Filippo

    2014-02-01

    Omega-3 fatty acids have received increasing interest due to their effects in stabilizing plasmatic membranes and regulating cell signaling. The efficacy of omega-3 fatty acids in psychiatric disorders, in particular mood disorders, has been studied. There have been two trials on eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) in the treatment of borderline personality disorder (BPD). The present 12-week controlled trial aimed to assess the efficacy of the association of EPA and DHA with valproic acid, compared to single valproic acid, in 43 consecutive BPD outpatients. Participants were evaluated at baseline and after 12 weeks with: Clinical Global Impression - Severity (CGI-S), Hamilton Scales for depression and anxiety (HAM-D, HAM-A), Social and Occupational Functioning Assessment Scale (SOFAS), borderline personality disorder severity index (BPDSI), Barratt Impulsiveness Scale - version 11 (BIS-11), Modified Overt Aggression Scale (MOAS), Self-Harm Inventory (SHI) and Dosage Record Treatment Emergent Symptom Scale (DOTES). PMID:24196948

  8. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures.

  9. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic –Clonic Seizures in Adults – A Randomized Controlled Trial

    PubMed Central

    Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-01-01

    Introduction Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. Aim To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. Materials and Methods The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. Results After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Conclusion Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures. PMID:27630862

  10. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  11. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats.

    PubMed

    Wu, Dianxiu; Li, Qiang; Zhu, Xiaojuan; Wu, Guangzhi; Cui, Shusen

    2013-10-01

    In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction. PMID:23843283

  12. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  13. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  14. Withdrawal of valproic acid treatment during pregnancy and seizure outcome: Observations from EURAP.

    PubMed

    Tomson, Torbjörn; Battino, Dina; Bonizzoni, Erminio; Craig, John; Lindhout, Dick; Perucca, Emilio; Sabers, Anne; Thomas, Sanjeev V; Vajda, Frank

    2016-08-01

    Based on data from the EURAP observational International registry of antiepileptic drugs (AEDs) and pregnancy, we assessed changes in seizure control and subsequent AED changes in women who underwent attempts to withdraw valproic acid (VPA) during the first trimester of pregnancy. Applying Bayesian statistics, we compared seizure control in pregnancies where VPA was withdrawn (withdrawal group, n = 93), switched to another AED (switch group, n = 38), or maintained (maintained-therapy group, n = 1,588) during the first trimester. The probability of primarily or secondarily generalized tonic-clonic seizures (GTCS) was lower in the maintained-therapy group compared with the other two groups, both in the first trimester and for the entire duration of pregnancy. GTCS were twice as common during pregnancy in the withdrawal (33%) and switch groups (29%) compared with the maintained-treatment group (16%). Limitations in the data and study design do not allow to establish a cause-effect relationship between treatment changes and seizure outcome, but these observations provide a signal that withdrawal of, or switch from, VPA during the first trimester could lead to loss of seizure control, and highlight the need for a specifically designed prospective observational study. PMID:27319360

  15. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease

    PubMed Central

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  16. Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats

    PubMed Central

    Mony, Tamanna Jahan; Lee, Jae Won; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel; Lee, Hee Jae

    2016-01-01

    Objective We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. Methods After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. Results VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). Conclusion Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder. PMID:27776385

  17. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    PubMed

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. PMID:26276507

  18. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    PubMed

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA.

  19. M-current preservation contributes to anticonvulsant effects of valproic acid

    PubMed Central

    Kay, Hee Yeon; Greene, Derek L.; Kang, Seungwoo; Kosenko, Anastasia; Hoshi, Naoto

    2015-01-01

    Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy. PMID:26348896

  20. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid.

    PubMed

    Masuch, Annette; Shieh, Chu-Hsin; van Rooijen, Nico; van Calker, Dietrich; Biber, Knut

    2016-01-01

    Recently, we have demonstrated that ramified microglia are neuroprotective in N-methyl-D-aspartate (NMDA)-induced excitotoxicity in organotypic hippocampal slice cultures (OHSCs). The present study aimed to elucidate the underlying neuron-glia communication mechanism. It is shown here that pretreatment of OHSC with high concentrations of adenosine 5'-triphosphate (ATP) reduced NMDA-induced neuronal death only in presence of microglia. Specific agonists and antagonists identified the P2X7 receptor as neuroprotective receptor which was confirmed by absence of ATP-dependent neuroprotection in P2X7-deficient OHSC. Microglia replenished chimeric OHSC consisting of wild-type tissue replenished with P2X7-deficient microglia confirmed the involvement of microglial P2X7 receptor in neuroprotection. Stimulation of P2X7 in primary microglia induced tumor necrosis factor α (TNFα) release and blocking TNFα by a neutralizing antibody in OHSC abolished neuroprotection by ATP. OHSC from TNFα-deficient mice show increased exicitoxicity and activation of P2X7 did not rescue neuronal survival in the absence of TNFα. The neuroprotective effect of valproic acid (VPA) was strictly dependent on the presence of microglia and was mediated by upregulation of P2X7 in the cells. The present study demonstrates that microglia-mediated neuroprotection depends on ATP-activated purine receptor P2X7 and induction of TNFα release. This neuroprotective pathway was strengthened by VPA elucidating a novel mechanism for the neuroprotective function of VPA.

  1. Nonstationary disposition of valproic acid during prolonged intravenous infusion: contributions of unbound clearance and protein binding.

    PubMed

    Arens, T L; Pollack, G M

    2001-09-01

    Circadian variations in disposition have been observed for a variety of agents, including anticonvulsants. Valproic acid (VPA), an anticonvulsant used to control generalized and partial seizures, has exhibited diurnal oscillations in steady-state concentrations during long-term administration to humans and non-human primates. The present study was conducted to assess potential diurnal changes in the disposition of VPA during prolonged i.v. infusion in rats. Animals, maintained on a strict 12-h per day light cycle, were equipped with venous cannulae and an arterial microdialysis probe. VPA was administered as a 50-mg/kg loading dose followed by a 42 mg/kg/h infusion for 70 h. Blood and microdialysate samples were obtained at timed intervals after establishment of steady-state throughout two complete light/dark cycles; and total (serum) and unbound (microdialysate) VPA was determined by gas chromatography. Modest oscillations (6-7 h period) in total and unbound VPA were observed; clearance and binding parameters were not different between light and dark periods. However, unbound clearance increased, and unbound fraction decreased, with time over the course of the infusion. These results suggest that time-dependent changes in VPA disposition occur in rats, although oscillations in steady-state concentrations do not appear to be diurnal in nature. PMID:11754040

  2. Effect of valproic acid and environmental enrichment on behavioral functions in rats.

    PubMed

    Kus, Krzysztof; Burda, Kinga; Nowakowska, Elzbieta; Czubak, Anna; Metelska, Jana; Łancucki, Michał; Brodowska, Karolina; Nowakowska, Anna

    2010-01-01

    Deficits of cognitive functions are perceived as an important pathogenic factor of many neurological and psychiatric diseases. Such symptoms can be a result of a disease process or appear due to applied medication. Epilepsy is a disease in which cognitive deficits can occur before first seizures, during seizures and remissions. Valproic acid (VAL, CAS 77372-61-3) is a medicine applied in order to control epileptic seizures and mood stabilizing in bipolar disorders and mania. Its activity is related to the effect on neurotransmission of many systems. The present study was conducted to investigate whether enriched environment (EE) conditions affect learning and memory, and influence the antidepressant effect in rats. VAL improves spatial memory upon repeated administration both in the rats housed in standard conditions (SC) (after 21 days of treatment) and those housed in enriched environment (as early as after 14 days of treatment). VAL has an antidepressant effect on the forced swimming test both in the rats housed in standard conditions and those housed in EE. In rats housed in EE, the antidepressant effect occurred much earlier (as early as after 7 days ofVAL administration). It is worth noting that VAL has a low profile of adverse effects (Activity Meter, chimney test). The correlations observed may be translated into clinical effects, leading to new, more effective VAL therapies in depression or memory disorders in patients with underlying epilepsy.

  3. Valproic Acid Synergistically Enhances The Cytotoxicity of Clofarabine in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; LoGrasso, Salvatore B.; Buck, Steven A.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2012-01-01

    SUMMARY Background Acute myeloid leukemia (AML) remains a major therapeutic challenge in pediatric oncology even with intensified cytarabine (ara-C)-based chemotherapy. Therefore, new therapies are urgently needed to improve treatment outcome of this deadly disease. In this study, we evaluated antileukemic interactions between clofarabine (a second-generation purine nucleoside analog) and valproic acid (VPA, a FDA-approved agent for treating epilepsy in both children and adult and a histone deacetylase inhibitor), in pediatric AML. Methodology In vitro clofarabine and VPA cytotoxicities of the pediatric AML cell lines and diagnostic blasts were measured by using MTT assays. The effects of clofarabine and VPA on apoptosis and DNA double strand breaks (DSBs) were determined by flow cytometry analysis and Western blotting, respectively. Active form of Bax was measured by Western blotting post immunoprecipitation. Results We demonstrated synergistic antileukemic activities between clofarabine and VPA in both pediatric AML cell lines and diagnostic blasts sensitive to VPA. In contrast, antagonism between the two agents could be detected in AML cells resistant to VPA. Clofarabine and VPA cooperate in inducing DNA DSBs, accompanied by Bax activation and apoptosis in pediatric AML cells. Conclusion Our results document synergistic antileukemic activities of combined VPA and clofarabine in pediatric AML and suggest that this combination could be an alternative treatment option for the disease. PMID:22488775

  4. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  5. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    PubMed

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA. PMID:27424124

  6. Valproic acid: in vitro plasma protein binding and interaction with phenytoin.

    PubMed

    Cramer, J A; Mattson, R H

    1979-01-01

    Because valproic acid (VPA) is highly bound to plasma protein, several variables affecting binding will significantly alter the quantity of free drug which is pharmacologically active. Therefore, total VPA plasma concentrations do not reflect the therapeutic strength of the drug in tissue. We have performed equilibrium dialysis and ultrafiltration studies of VPA binding to plasma protein. The converging data in these in vitro studies indicate a clinically significant alteration in the percent of free VPA when total drug concentration exceeds 80 micrograms/ml. Saturation of drug binding sites probably occurs in this range. At 20--60 micrograms/ml VPA there is 5% free drug, with a significant increase to 8% free at 80 micrograms/ml; free drug increases to over 20% at 145 micrograms/ml total VPA. Human plasma, which is low in albumin, has twice the quantity of free VPA as normal plasma (10 versus 5% free). The clinical evidence of interaction between VPA and phenytoin is confirmed in vitro by the increase in the free fraction of both drugs. VPA binding decreases by 3--6%, while phenytoin binding decreases 5--6% as both drugs reach high plasma concentrations. When appropriate, laboratory reports should be available defining concentration of free drug in plasma for optimal interpretation of drug concetrations relative to clinical effects.

  7. Resveratrol prevents social deficits in animal model of autism induced by valproic acid.

    PubMed

    Bambini-Junior, Victorio; Zanatta, Geancarlo; Della Flora Nunes, Gustavo; Mueller de Melo, Gabriela; Michels, Marcus; Fontes-Dutra, Mellanie; Nogueira Freire, Valder; Riesgo, Rudimar; Gottfried, Carmem

    2014-11-01

    Autism spectrum disorders (ASD) involve a complex interplay of both genetic and environmental risk factors, such as prenatal exposure to valproic acid (VPA). Considering the neuroprotective, antioxidant and anti-inflammatory effects of resveratrol (RSV), we investigated the influence of prenatal RSV treatment on social behaviors of a rodent model of autism induced by prenatal exposure to VPA. In the three-chambered apparatus test, the VPA group showed a reduced place preference conditioned by conspecific and no preference between exploring a wire-cage or a rat enclosed inside a wire cage, revealing sociability impairments. Prenatal administration of RSV prevented the VPA-induced social impairments evaluated in this study. A bioinformatics analysis was used to discard possible molecular interactions between VPA and RSV during administration. The interaction energy between RSV and VPA is weak and highly unstable, suggesting cellular effects instead of a single chemical process. In summary, the present study highlights a promising experimental strategy to evaluate new molecular targets possibly involved in the etiology of autism and developmental alterations implicated in neural and behavioral impairments in ASD.

  8. Three Patients Needing High Doses of Valproic Acid to Get Therapeutic Concentrations

    PubMed Central

    Jackson, James; McCollum, Betsy; Ognibene, Judy; Diaz, Francisco J.; de Leon, Jose

    2015-01-01

    Valproic acid (VPA) can autoinduce its own metabolism. Cases requiring VPA doses >4000 mg/day to obtain therapeutic plasma concentrations, such as these 3 cases, have never been published. Case 1 received VPA for seizures and schizophrenia and had >50 VPA concentrations in 4 years. A high dose of 5,250 mg/day of VPA concentrate was prescribed for years but this dose led to an intoxication when switched to the enterocoated divalproex sodium formulation, requiring a normal dose of 2000 mg/day. VPA metabolic capacity was significantly higher (t = −9.6; df = 6.3, p < 0.001) during the VPA concentrate therapy, possibly due to autoinduction in that formulation. Case 2 had VPA for schizoaffective psychosis with 10 VPA concentrations during an 8-week admission. To maintain a VPA level ≥50 μg/mL, VPA doses increased from 1500 to 4000 mg/day. Case 3 had tuberous sclerosis and epilepsy and was followed up for >4 years with 137 VPA concentrations. To maintain VPA concentrations ≥50 μg/mL, VPA doses increased from 3,375 to 10,500 mg/day. In Cases 2 and 3, the duration of admission and the VPA dose were strongly correlated (r around 0.90; p < 0.001) with almost no change after controlling for VPA concentrations, indicating progressive autoinduction that increased with time. PMID:26000191

  9. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism.

    PubMed

    Martin, Henry G S; Manzoni, Olivier J

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  10. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism

    PubMed Central

    Martin, Henry G. S.; Manzoni, Olivier J.

    2014-01-01

    Valproic acid (VPA) is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC) physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP) due to an up-regulation of NMDA receptor (NMDAR) expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDARs during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general. PMID:24550781

  11. Valproic Acid and Topiramate Induced Hyperammonemic Encephalopathy in a Patient With Normal Serum Carnitine

    PubMed Central

    Blackford, Martha G.; Do, Stephanie T.; Enlow, Thomas C.; Reed, Michael D.

    2013-01-01

    A 17-year-old female developed hyperammonemic encephalopathy 2 weeks after valproic acid (VPA), 500 mg twice a day, was added to her regimen of topiramate (TPM), 200 mg twice a day. She presented to the emergency department (ED) with altered mental status, hypotension, bradycardia, and lethargy. Laboratory analysis showed mild non-anion gap hyperchloremic acidosis, serum VPA concentration of 86 mg/L, and urine drug screen result that was positive for marijuana. She was admitted to the pediatric intensive care unit for persistent symptoms, prolonged QTc, and medical history. Blood ammonia concentrations were obtained because of her persistent altered mental status, initially 94 μmol/L and a peak of 252 μmol/L. A serum carnitine profile was obtained at the time of hyperammonemia and was found to be normal (results were available postdischarge). VPA and TPM were discontinued on day 1 and day 2, respectively, as the patient's blood ammonia concentration remained elevated. On day 3, her mental status had returned to baseline, and blood ammonia concentrations trended downward; by day 4 her blood ammonia concentration was 23 μmol/L. VPA has been associated with numerous side effects including hyperammonemia and encephalopathy. Recently, drug interactions with TPM and VPA have been reported; however, serum carnitine concentrations have not been available. We discuss the possible mechanisms that VPA and TPM may affect serum ammonia and carnitine concentrations and the use of levocarnitine for patients or treating toxicity. PMID:23798907

  12. Valproic Acid and topiramate induced hyperammonemic encephalopathy in a patient with normal serum carnitine.

    PubMed

    Blackford, Martha G; Do, Stephanie T; Enlow, Thomas C; Reed, Michael D

    2013-04-01

    A 17-year-old female developed hyperammonemic encephalopathy 2 weeks after valproic acid (VPA), 500 mg twice a day, was added to her regimen of topiramate (TPM), 200 mg twice a day. She presented to the emergency department (ED) with altered mental status, hypotension, bradycardia, and lethargy. Laboratory analysis showed mild non-anion gap hyperchloremic acidosis, serum VPA concentration of 86 mg/L, and urine drug screen result that was positive for marijuana. She was admitted to the pediatric intensive care unit for persistent symptoms, prolonged QTc, and medical history. Blood ammonia concentrations were obtained because of her persistent altered mental status, initially 94 μmol/L and a peak of 252 μmol/L. A serum carnitine profile was obtained at the time of hyperammonemia and was found to be normal (results were available postdischarge). VPA and TPM were discontinued on day 1 and day 2, respectively, as the patient's blood ammonia concentration remained elevated. On day 3, her mental status had returned to baseline, and blood ammonia concentrations trended downward; by day 4 her blood ammonia concentration was 23 μmol/L. VPA has been associated with numerous side effects including hyperammonemia and encephalopathy. Recently, drug interactions with TPM and VPA have been reported; however, serum carnitine concentrations have not been available. We discuss the possible mechanisms that VPA and TPM may affect serum ammonia and carnitine concentrations and the use of levocarnitine for patients or treating toxicity.

  13. Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease.

    PubMed

    Esteves, Sofia; Duarte-Silva, Sara; Naia, Luana; Neves-Carvalho, Andreia; Teixeira-Castro, Andreia; Rego, Ana Cristina; Silva-Fernandes, Anabela; Maciel, Patrícia

    2015-01-01

    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics. PMID:26505994

  14. Postnatal behavioral and inflammatory alterations in female pups prenatally exposed to valproic acid.

    PubMed

    Kazlauskas, Nadia; Campolongo, Marcos; Lucchina, Luciana; Zappala, Cecilia; Depino, Amaicha Mara

    2016-10-01

    In Autism Spectrum Disorders (ASD), a bias to a higher incidence in boys than in girls has been reported. With the aim to identify biological mechanisms acting in female animals that could underlie this bias, we used an extensively validated mouse model of ASD: the prenatal exposure to valproic acid (VPA). We found postnatal behavioral alterations in female VPA pups: a longer latency in righting reflex at postnatal day (P) 3, and a delay in the acquisition of the acoustic startle response. We also analyzed the density of glial cells in the prefrontal cortex, hippocampus and cerebellum, in VPA and control animals. Female VPA pups showed alterations in the density of astrocytes and microglial cells between P21 and P42, with specific dynamics in each brain region. We also found a decrease in histone 3 acetylation in the cerebellum of female VPA pups at P14, suggesting that the changes in glial cell density could be due to alterations in the epigenetic developmental program. Finally, no differences in maternal behavior were found. Our results show that female VPA pups exhibit behavioral and inflammatory alterations postnatally, although they have been reported to have normal levels of sociability in adulthood. With our work, we contribute to the understanding of biological mechanisms underlying different effects of VPA on male and female rodents, and we hope to help elucidate whether there are factors increasing susceptibility to ASD in boys and/or resilience in girls.

  15. Effects of chronic administration of valproic acid to epileptic patients on coagulation tests and primary hemostasis.

    PubMed

    Zighetti, Maddalena L; Fontana, Gessica; Lussana, Federico; Chiesa, Valentina; Vignoli, Aglaia; Canevini, Maria Paola; Cattaneo, Marco

    2015-05-01

    Valproic acid (VPA) is an antiepileptic drug that has been associated with impaired hemostasis and increased risk for postsurgical bleeding. However, the published reports provide controversial results. We measured parameters of primary hemostasis in VPA-treated patients with epilepsy, focusing on adenosine nucleotide-dependent platelet responses, which play a central role in primary hemostasis. We enrolled 20 cases (epileptic patients receiving treatment with VPA) and 20 controls (12 epileptic patients receiving treatment with drugs different from VPA and 8 healthy subjects). Measurements included prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count, platelet function analyzer (PFA)-100 closure times, plasma von Willebrand factor levels, platelet content of ADP, ATP, and serotonin (all stored in platelet dense granules), and platelet shape change and aggregation induced by ADP and other platelet agonists, including the ATP analog α,β-methylene-ATP. The plasma concentration of VPA was in the therapeutic range in 17 patients and slightly above the upper limit in 3 patients. There were no statistically significant differences in any of the studied parameters in cases versus controls. Our thorough controlled study failed to show that chronic treatment with VPA induces significant abnormalities of coagulation and primary hemostasis. Therefore, VPA, when present in the circulation in the therapeutic range, does not impair hemostasis.

  16. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation.

    PubMed

    Zhao, Yan; Xing, Bo; Dang, Yong-hui; Qu, Chao-ling; Zhu, Feng; Yan, Chun-xia

    2013-01-01

    There is collecting evidence suggesting that the process of chromatin remodeling such as changes in histone acetylation contribute to the formation of stress-related memory. Recently, the ventrolateral orbital cortex (VLO), a major subdivision of orbitofrontal cortex (OFC), was shown to be involved in antidepressant-like actions through epigenetic mechanisms. Here, we further investigated the effects of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) on stress-related memory formation and the underlying molecular mechanisms by using the traditional two-day forced swimming test (FST). The results showed that VPA significantly increased the immobility time on day 2 when infused into the VLO before the initial forced swim stress on day 1. The learned immobility response to the stress was associated with increased phosphorylation of extracellular signal-regulated kinase (ERK) in VLO and hippocampus on the first day. The levels of phosphorylated ERK (phospho-ERK) in VLO and hippocampus were significantly decreased when retested 24 h later. The pretreatment with intra-VLO VPA infusion further reduced the activation of ERK on day 2 and day 7 compared with the saline controls. Moreover, the VPA infusion pretreatment also induced a significantly decreased BDNF level in the VLO on day 2, whereas no change was detected in the hippocampus. These findings suggest that VPA enhance the memories of emotionally stressful events and the ERK activity is implicated in stimulating adaptive and mnemonic processes in case the event would recur.

  17. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid

    PubMed Central

    Shi, Xiumin; Li, Min; Cui, Meizi; Niu, Chao; Xu, Jianting; Zhou, Lei; Li, Wei; Gao, Yushun; Kong, Weisheng; Cui, Jiuwei; Hu, Jifan; Jin, Haofan

    2016-01-01

    Natural killer (NK) cells play an essential role in the fight against tumor development. The therapeutic use of autologous NK cells has been exploited to treat human malignancies, yet only limited antitumor activity is observed in cancer patients. In this study, we sought to augment the antitumor activity of NK cells using epigenetic approaches. Four small molecules that have been known to promote epigenetic reprogramming were tested for their ability to enhance the activity of NK cells. Using a tumor cell lysis assay, we found that the DNA demethylating agent 5-azacytidine and vitamin C did not significantly affect the tumor killing ability of NK cells. The thyroid hormone triiodothyronine (T3) slightly increased the activity of NK cells. The histone deacetylase inhibitor valproic acid (VPA), however, inhibited NK cell lytic activity against leukemic cells in a dose-dependent manner. Pretreatment using VPA reduced IFNγ secretion, impaired CD107a degranulation, and induced apoptosis by activating the PD-1/PD-L1 pathway. VPA downregulated the expression of the activating receptor NKG2D (natural-killer group 2, member D) by inducing histone K9 hypermethylation and DNA methylation in the gene promoter. Histone deacetylase inhibitors have been developed as anticancer agents for use as monotherapies or in combination with other anticancer therapies. Our data suggest that the activity of histone deacetylase inhibitors on NK cell activity should be considered in drug development. PMID:27152238

  18. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  19. The Anti-Epileptic Drug Valproic Acid (VPA) Inhibits Steroidogenesis in Bovine Theca and Granulosa Cells In Vitro

    PubMed Central

    Glister, Claire; Satchell, Leanne; Michael, Anthony E.; Bicknell, Andrew B.; Knight, Philip G.

    2012-01-01

    Valproic acid (VPA) is used widely to treat epilepsy and bipolar disorder. Women undergoing VPA treatment reportedly have an increased incidence of polycystic ovarian syndrome (PCOS)-like symptoms including hyperandrogenism and oligo- or amenorrhoea. To investigate potential direct effects of VPA on ovarian steroidogenesis we used primary bovine theca (TC) and granulosa (GC) cells maintained under conditions that preserve their ‘follicular’ phenotype. Effects of VPA (7.8–500 µg/ml) on TC were tested with/without LH. Effects of VPA on GC were tested with/without FSH or IGF analogue. VPA reduced (P<0.0001) both basal (70% suppression; IC50 67±10 µg/ml) and LH-induced (93% suppression; IC50 58±10 µg/ml) androstenedione secretion by TC. VPA reduced CYP17A1 mRNA abundance (>99% decrease; P<0.0001) with lesser effects on LHR, STAR, CYP11A1 and HSD3B1 mRNA (<90% decrease; P<0.05). VPA only reduced TC progesterone secretion induced by the highest (luteinizing) LH dose tested; TC number was unaffected by VPA. At higher concentrations (125–500 µg/ml) VPA inhibited basal, FSH- and IGF-stimulated estradiol secretion (P<0.0001) by GC without affecting progesterone secretion or cell number. VPA reversed FSH-induced upregulation of CYP19A1 and HSD17B1 mRNA abundance (P<0.001). The potent histone deacetylase (HDAC) inhibitors trichostatin A and scriptaid also suppressed TC androstenedione secretion and granulosal cell oestrogen secretion suggesting that the action of VPA reflects its HDAC inhibitory properties. In conclusion, these findings refute the hypothesis that VPA has a direct stimulatory action on TC androgen output. On the contrary, VPA inhibits both LH-dependent androgen production and FSH/IGF-dependent estradiol production in this in vitro bovine model, likely by inhibition of HDAC. PMID:23152920

  20. TrkB/BDNF-Dependent Striatal Plasticity and Behavior in a Genetic Model of Epilepsy: Modulation by Valproic Acid

    PubMed Central

    Ghiglieri, Veronica; Sgobio, Carmelo; Patassini, Stefano; Bagetta, Vincenza; Fejtova, Anna; Giampà, Carmela; Marinucci, Silvia; Heyden, Alexandra; Gundelfinger, Eckart D; Fusco, Francesca R; Calabresi, Paolo; Picconi, Barbara

    2010-01-01

    In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon. PMID:20200504

  1. TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid.

    PubMed

    Ghiglieri, Veronica; Sgobio, Carmelo; Patassini, Stefano; Bagetta, Vincenza; Fejtova, Anna; Giampà, Carmela; Marinucci, Silvia; Heyden, Alexandra; Gundelfinger, Eckart D; Fusco, Francesca R; Calabresi, Paolo; Picconi, Barbara

    2010-06-01

    In mice lacking the central domain of the presynaptic scaffold Bassoon the occurrence of repeated cortical seizures induces cell-type-specific plasticity changes resulting in a general enhancement of the feedforward inhibition within the striatal microcircuit. Early antiepileptic treatment with valproic acid (VPA) reduces epileptic attacks, inhibits the emergence of pathological form of plasticity in fast-spiking (FS) interneurons and restores physiological striatal synaptic plasticity in medium spiny (MS) neurons. Brain-derived neurotrophic factor (BDNF) is a key factor for the induction and maintenance of synaptic plasticity and it is also implicated in the mechanisms underlying epilepsy-induced adaptive changes. In this study, we explore the possibility that the TrkB/BDNF system is involved in the striatal modifications associated with the Bassoon gene (Bsn) mutation. In epileptic mice abnormal striatum-dependent learning was paralleled by higher TrkB levels and an altered distribution of BDNF. Accordingly, subchronic intrastriatal administration of k252a, an inhibitor of TrkB receptor tyrosine kinase activity, reversed behavioral alterations in Bsn mutant mice. In addition, in vitro manipulations of the TrkB/BDNF complex by k252a, prevented the emergence of pathological plasticity in FS interneurons. Chronic treatment with VPA, by reducing seizures, was able to rebalance TrkB to control levels favoring a physiological redistribution of BDNF between MS neurons and FS interneurons with a concomitant recovery of striatal plasticity. Our results provide the first indication that BDNF is involved in determining the striatal alterations occurring in the early-onset epileptic syndrome associated with the absence of presynaptic protein Bassoon.

  2. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    PubMed Central

    Pugliese, Mariateresa; Gallo, Marco; Brignardello, Enrico; Milla, Paola; Orlandi, Fabio; Limone, Paolo Piero; Arvat, Emanuela; Boccuzzi, Giuseppe; Piovesan, Alessandro

    2016-01-01

    Anaplastic thyroid cancer (ATC) has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly) and valproic acid (1,000 mg/day); the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11. PMID:27766105

  3. Valproic acid in pregnancy: how much are we endangering the embryo and fetus?

    PubMed

    Ornoy, Asher

    2009-07-01

    Valproic acid (VPA) is a known human teratogen. Exposure in pregnancy is associated with approximately three-fold increase in the rate of major anomalies, mainly spina bifida and only rarely anencephaly (NTD), cardiac, craniofacial, skeletal and limb defects and a possible set of dysmorphic features, the "valproate syndrome" with decreased intrauterine growth. This was demonstrated by prospective and retrospective studies. There is also, mainly in the children with the "valproate syndrome", a significant increase in the rate of developmental problems, manifested by decreased verbal intelligence often with communication problems of the autistic spectrum disorder (ASD). VPA is teratogenic in most animal species tested, but the human embryo seems to be the most susceptible. A daily dose of 1000 mg or more and/or polytherapy are associated with a higher teratogenic risk. It seems that several other AEDs potentiate the teratogenic effects of VPA. Thus, when valproate cannot be avoided in pregnancy, the lowest possible effective dose should be prescribed in 2-3 divided doses, preferably as monotherapy. Women exposed to valproate in pregnancy should be given periconceptional folic acid and followed up in a high risk pregnancy clinic. Appropriate ultrasonographic and other examinations, focusing on the possible different anomalies described with this agent, should be carried out. The specific inhibition by VPA of histone deacetylase and changes in gene expression may explain the teratogenicity of this drug. Other possible explanations are: increased fetal oxidative stress induced by VPA, with the brain being more susceptible to oxidative stress in comparison to other fetal organs, or the folic acid inhibitory action of this drug. PMID:19490988

  4. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  5. Valproic acid in pregnancy: how much are we endangering the embryo and fetus?

    PubMed

    Ornoy, Asher

    2009-07-01

    Valproic acid (VPA) is a known human teratogen. Exposure in pregnancy is associated with approximately three-fold increase in the rate of major anomalies, mainly spina bifida and only rarely anencephaly (NTD), cardiac, craniofacial, skeletal and limb defects and a possible set of dysmorphic features, the "valproate syndrome" with decreased intrauterine growth. This was demonstrated by prospective and retrospective studies. There is also, mainly in the children with the "valproate syndrome", a significant increase in the rate of developmental problems, manifested by decreased verbal intelligence often with communication problems of the autistic spectrum disorder (ASD). VPA is teratogenic in most animal species tested, but the human embryo seems to be the most susceptible. A daily dose of 1000 mg or more and/or polytherapy are associated with a higher teratogenic risk. It seems that several other AEDs potentiate the teratogenic effects of VPA. Thus, when valproate cannot be avoided in pregnancy, the lowest possible effective dose should be prescribed in 2-3 divided doses, preferably as monotherapy. Women exposed to valproate in pregnancy should be given periconceptional folic acid and followed up in a high risk pregnancy clinic. Appropriate ultrasonographic and other examinations, focusing on the possible different anomalies described with this agent, should be carried out. The specific inhibition by VPA of histone deacetylase and changes in gene expression may explain the teratogenicity of this drug. Other possible explanations are: increased fetal oxidative stress induced by VPA, with the brain being more susceptible to oxidative stress in comparison to other fetal organs, or the folic acid inhibitory action of this drug.

  6. A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons

    PubMed Central

    Fujiki, R; Sato, A; Fujitani, M; Yamashita, T

    2013-01-01

    Valproic acid (VPA) is a branched-chain saturated fatty acid with a long history of clinical use as an antiepileptic drug (AED). VPA is also known to inhibit histone deacetylases (HDACs) and to cause diverse effects on neural progenitor cells (NPCs) and neurons. Although the neuroprotective or neurodestructive effects of VPA have been investigated in heterogeneous cell populations, in this study, we used homogeneous populations of NPCs and glutamatergic cortical pyramidal neurons, which were differentiated from embryonic stem (ES) cells. At therapeutic concentrations, VPA had a proapoptotic effect on ES cell-derived NPCs of glutamatergic neurons, but not on their progeny. This effect of VPA most likely occurred through the inhibition of HDACs, because similar phenotypes were observed following treatment with other HDAC inhibitors (HDACis) such as trichostatin A and sodium butyrate. The proapoptotic phenotype was not observed when cells were exposed to a structural analog of VPA, valpromide (VPM), which has the same antiepileptic effect as VPA, but does not inhibit HDACs. Western blotting confirmed that treatment with HDACis, but not VPM, significantly increased the levels of histone H3 acetylation in NPCs. HDACi treatments did not affect the survival of neurons, although the acetylation levels were increased to a limited extent. These results, which are based on a homogeneous culture system, suggest that VPA inhibits HDAC activity and induces the apoptosis of NPCs that are fated to differentiate into glutamatergic neurons. The dose-dependent effects of VPA both on apoptosis and hyperacetylation of histone H3 in NPCs supported this notion. These cell type- and differentiation stage-specific effects of VPA imply that dysfunction of HDACs during pregnancy significantly increase the risk of congenital malformations associated with VPA administration. PMID:23788034

  7. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy.

  8. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy. PMID:26585010

  9. Placebo-Controlled Trial of Valproic Acid Versus Risperidone in Children 3–7 Years of Age with Bipolar I Disorder

    PubMed Central

    Scheffer, Russell E.; Monroe, Erin; Delgado, Sergio; Altaye, Mekibib; Lagory, Denise

    2015-01-01

    Abstract Objective: The objective of this study was to determine the efficacy and safety of valproic acid versus risperidone in children, 3–7 years of age, with bipolar I disorder (BPD), during a mixed or manic episode. Methods: Forty-six children with Diagnostic and Statistical Manual of Mental Disorders. 4th ed., Text Revision (DSM-IV-TR) diagnosis of bipolar disorder, manic, hypomanic, or mixed episode, were recruited over a 6 year period from two academic outpatient programs for a double-blinded, placebo-controlled trial in which subjects were randomized in a 2:2:1 ratio to risperidone solution, valproic acid, or placebo. Results: After 6 weeks of treatment, the least-mean Young Mania Rating Scale (YMRS) total scores change, adjusted for baseline YMRS scores, from baseline by treatment group was: Valproic acid 10.0±2.46 (p=0.50); risperidone 18.82±1.55 (p=0.008); and placebo 4.29±3.56 (F=3.93, p=0.02). The mixed models for repeated measure (MMRM) analysis found a significant difference for risperidone-treated subjects versus placebo treated subjects (p=0.008) but not for valproic acid-treated subjects versus placebo-treated subjects (p=0.50). Treatment with risperidone over 6 weeks led to increased prolactin levels, liver functions, metabolic measures, and weight/body mass index (BMI). Treatment with valproic acid led to increases in weight/BMI and decreases in total red blood cells (RBC), hemoglobin, and hematocrit. Conclusions: In this small sample of preschool children with BPD, risperidone demonstrated clear efficacy versus placebo, whereas valproic acid did not. The laboratory and weight findings suggest that younger children with BPD are more sensitive to the effects of both of these psychotropics, and that, therefore, frequent laboratory and weight monitoring are warranted. PMID:25978742

  10. Early physical and motor development of mouse offspring exposed to valproic acid throughout intrauterine development.

    PubMed

    Podgorac, Jelena; Pešić, Vesna; Pavković, Željko; Martać, Ljiljana; Kanazir, Selma; Filipović, Ljupka; Sekulić, Slobodan

    2016-09-15

    Clinical research has identified developmental delay and physical malformations in children prenatally exposed to the antiepileptic drug (AED) valproic acid (VPA). However, the early signs of neurodevelopmental deficits, their evolution during postnatal development and growth, and the dose effects of VPA are not well understood. The present study aimed to examine the influence of maternal exposure to a wide dose range (50, 100, 200 and 400mg/kg/day) of VPA during breeding and gestation on early physical and neuromotor development in mice offspring. Body weight gain, eye opening, the surface righting reflex (SRR) and tail suspension test (TST) were examined in the offspring at postnatal days 5, 10 and 15. We observed that: (1) all tested doses of VPA reduced the body weight of the offspring and the timing of eye opening; (2) offspring exposed to VPA displayed immature forms of righting and required more time to complete the SRR; (3) latency for the first immobilization in the TST is shorter in offspring exposed to higher doses of VPA; however, mice in all groups exposed to VPA exhibited atypical changes in this parameter during the examined period of maturation; (4) irregularities in swinging and curling activities were observed in animals exposed to higher doses of VPA. This study points to delayed somatic development and postponed maturation of the motor system in all of the offspring prenatally exposed to VPA, with stronger effects observed at higher doses. The results implicate that the strategy of continuous monitoring of general health and achievements in motor milestones during the early postnatal development in prenatally VPA-exposed offspring, irrespectively of the dose applied, could help to recognize early developmental irregularities.

  11. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets.

    PubMed

    Krahe, Thomas E; Filgueiras, Claudio C; Medina, Alexandre E

    2016-08-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5g/kg, i.p.), VPA (200mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  12. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  13. MECHANISMS OF SYNERGISTIC ANTILEUKEMIC INTERACTIONS BETWEEN VALPROIC ACID AND CYTARABINE IN PEDIATRIC ACUTE MYELOID LEUKEMIA

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; Xu, Xuelian; Zhou, Hui; Buck, Steven A.; Stout, Mark L.; Yu, Qun; Rubnitz, Jeffrey E.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2010-01-01

    Purpose To determine the possibility of synergistic anti-leukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA) [a histone deacetylase inhibitor (HDACI) and an FDA-licensed drug for treating both children and adults with epilepsy] in pediatric acute myeloid leukemia (AML). Experimental Design The type and extent of anti-leukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting. Results We demonstrated synergistic antileukemic activities between cytarabine and VPA in 4 pediatric AML cell lines and 9 diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspases 9 and 3. Further, VPA induced Bim expression and shRNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine, and by cytarabine plus VPA. Conclusions Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease. PMID:20889917

  14. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid.

    PubMed

    Kataoka, Shunsuke; Takuma, Kazuhiro; Hara, Yuta; Maeda, Yuko; Ago, Yukio; Matsuda, Toshio

    2013-02-01

    Maternal use of valproic acid (VPA) during pregnancy has been implicated in the aetiology of autism spectrum disorders in children, and rodents prenatally exposed to VPA showed behavioural alterations similar to those observed in humans with autism. However, the exact mechanism for VPA-induced behavioural alterations is not known. To study this point, we examined the effects of prenatal exposure to VPA and valpromide, a VPA analog lacking histone deacetylase inhibition activity, on behaviours, cortical pathology and histone acetylation levels in mice. Mice exposed to VPA at embryonic day 12.5 (E12.5), but not at E9 and E14.5, displayed social interaction deficits, anxiety-like behaviour and memory deficits at age 4-8 wk. In contrast to male mice, the social interaction deficits (a decrease in sniffing behaviour) were not observed in female mice at age 8 wk. The exposure to VPA at E12.5 decreased the number of Nissl-positive cells in the middle and lower layers of the prefrontal cortex and in the lower layers of the somatosensory cortex at age 8 wk. Furthermore, VPA exposure caused a transient increase in acetylated histone levels in the embryonic brain, followed by an increase in apoptotic cell death in the neocortex and a decrease in cell proliferation in the ganglionic eminence. In contrast, prenatal exposure to valpromide at E12.5 did not affect the behavioural, biochemical and histological parameters. Furthermore, these findings suggest that VPA-induced histone hyperacetylation plays a key role in cortical pathology and abnormal autism-like behaviours in mice.

  15. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero

    PubMed Central

    Banerjee, Anwesha; Engineer, Crystal T.; Sauls, Bethany L.; Morales, Anna A.; Kilgard, Michael P.; Ploski, Jonathan E.

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA) during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg) or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg) exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning. PMID:25429264

  16. Age-related differences in susceptibility to toxic effects of valproic acid in rats.

    PubMed

    Espandiari, Parvaneh; Zhang, Jun; Schnackenberg, Laura K; Miller, Terry J; Knapton, Alan; Herman, Eugene H; Beger, Richard D; Hanig, Joseph P

    2008-07-01

    A multi-age rat model was evaluated as a means to identify a potential age-related difference in liver injury following exposure to valproic acid (VPA), a known pediatric hepatotoxic agent. Different age groups of Sprague-Dawley (SD) rats (10-, 25-, 40-, 80-day-old) were administered VPA at doses of 160, 320, 500 or 650 mg kg(-1) (i.p.) for 4 days. Animals from all age groups developed toxicity after treatment with VPA; however, the patterns of toxicity were dissimilar within each age group. The high dose of VPA caused significant lethality in 10- and 25-day-old rats. All doses of VPA caused decrease in the platelet counts (10-, 25-day-old rats) and the rate of growth (40-day-old rats) and increases in the urine creatine concentration (high dose, 80-day-old rats). VPA induced hepatic and splenic alterations in all age groups. The most severe lesions were found mostly in 10- and 80-day-old rats. Significant changes in blood urea nitrogen, alanine aminotransferase and alkaline phosphatase were observed in 10-day-old pups after treatment with low doses of VPA. The highest VPA dose caused significant decreases in the levels of serum total protein (40- and 80-day-old rats). Principal component analysis of spectra derived from terminal urine samples of all age groups showed that each age group clusters separately. In conclusion, this study showed that the vulnerability profile of each age group was different indicating that a multi-age pediatric animal model is appropriate to assess more completely age-dependent changes in drug toxicity.

  17. Hypoglycemic, antilipidemic and antioxidant effects of valproic acid in alloxan-induced diabetic rats.

    PubMed

    Akindele, Abidemi J; Otuguor, Edafe; Singh, Dhirendra; Ota, Duncan; Benebo, Adokiye S

    2015-09-01

    This study was designed to investigate the hypoglycemic, antilipidemic and antioxidant effects of valproic acid (VA) in alloxan-induced diabetic rats. VA (100, 300 and 600mg/kg p.o.) and insulin (17IU/kg s.c.) were administered once daily for 21 days. Fasting blood glucose level was determined at 7 days interval. On day 21, blood samples were collected for assay of serum biochemical parameters (total protein, creatinine, urea, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), and low density lipoprotein (LDL)). Kidneys and livers were harvested for antioxidant indices and histopathological examination. In diabetic rats, VA produced a dose and day-dependent reduction in glucose level. Peak effect (52.79% reduction; P<0.001) was produced at the dose of 600mg/kg on day 21. In normoglycemic rats, VA (600mg/kg) caused significant reduction (P<0.05) in blood glucose level on days 1 and 21 with 16.38% and 15.63% reductions respectively. In diabetic rats, VA significantly reduced the level of catalase (CAT) and malondialdehyde (MDA) in the kidney, and increased the level of superoxide dismutase, CAT and glutathione peroxidase with reduction in MDA in the liver compared to diabetic control, especially at the dose of 600mg/kg. VA (600mg/kg) generally increased the level of HDL and reduced the levels of TG, LDL, TC, AST, ALT, ALP, bilirubin, creatinine and urea compared with diabetic control. The findings in this study suggest that VA possess beneficial antidiabetic effects. PMID:26015307

  18. HYPOTHERMIA AND VALPROIC ACID ACTIVATE PRO-SURVIVAL PATHWAYS AFTER HEMORRHAGE

    PubMed Central

    Bambakidis, Ted; Dekker, Simone E.; Liu, Baoling; Maxwell, Jake; Chatraklin, Kiril; Linzel, Durk; Li, Yongqing; Alam, Hasan B.

    2015-01-01

    Background Therapeutic hypothermia (Hypo) and valproic acid (VPA, a histone deacetylase inhibitor) have independently been shown to be protective in models of trauma and hemorrhagic shock (HS), but require logistically challenging doses to be effective. Theoretically, combined treatment may further enhance effectiveness, allowing us to use lower doses of each modality. The aim of this study was to determine whether a combination of mild hypothermia and VPA treatments would offer better cytoprotection compared to individual treatments in a hemorrhage model. Materials and methods Male Sprague-Dawley rats were subjected to 40% volume-controlled hemorrhage, kept in shock for 30 minutes, and assigned to one of the following treatment groups: normothermia (36–37°C), Hypo (30±2°C), normothermia+VPA (300mg/kg), and Hypo+VPA (n=5/group). After three hours of observation, the animals were sacrificed, liver tissue was harvested and subjected to whole cell lysis, and levels of key proteins in the pro-survival Akt pathway were measured using Western Blot. Results Activation of the pro-apoptotic protein cleaved-caspase-3 was significantly lower in the combined treatment group relative to normothermia (P<0.05). Levels of the pro-survival Bcl-2 was significantly higher in the combined treatment group relative to sham, normothermia, and normothermia+VPA groups (P<0.005). The downstream pro-survival protein phospho-GSK-3β was significantly higher in the sham, Hypo, and combined treatment groups compared to normothermia groups with or without VPA (P<0.05). Levels of the pro-survival β-catenin were significantly higher in the combined treatment group relative to normothermia (P<0.01). Conclusions This is the first in-vivo study to demonstrate that combined treatment with VPA and hypothermia offers better cytoprotection than these treatments given independently. PMID:25777823

  19. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder.

  20. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    PubMed Central

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  1. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival.

    PubMed

    Umka Welbat, Jariya; Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Pakdeechote, Poungrat; Sripanidkulchai, Bungorn; Wigmore, Peter

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA. PMID:27213437

  2. Valproic Acid Prevents Penile Fibrosis and Erectile Dysfunction in Cavernous Nerve Injured Rats

    PubMed Central

    Hannan, Johanna L.; Kutlu, Omer; Stopak, Bernard L.; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Burnett, Arthur L.; Bivalacqua, Trinity J.

    2014-01-01

    Introduction Bilateral cavernous nerve injury (BCNI) causes profound penile changes such as apoptosis and fibrosis leading to erectile dysfunction (ED). Histone deacetylase (HDAC) has been implicated in chronic fibrotic diseases. Aims This study will characterize the molecular changes in penile HDAC after BCNI and determine if HDAC inhibition can prevent BCNI-induced ED and penile fibrosis. Methods Five groups of rats (8–10 wks, n=10/group) were utilized: 1) sham, 2&3) BCNI 14 and 30 days following injury, and 4&5) BCNI treated with HDAC inhibitor valproic acid (VPA 250mg/kg; 14 and 30 days). All groups underwent cavernous nerve stimulation (CNS) to determine intracavernosal pressure (ICP). Penile HDAC3, HDAC4, fibronectin, and transforming growth factor-β1 (TGF-β1) protein expression (Western blot) were assessed. Trichrome staining and the fractional area of fibrosis were determined in penes from each group. Cavernous smooth muscle content was assessed by immunofluorescence to alpha smooth muscle actin (α-SMA) antibodies. Main Outcome Measures ICP; HDAC3, HDAC4, fibronectin and TGF-β1 protein expression; penile fibrosis; penile α-SMA content. Results There was a voltage-dependent decline (p<0.05) in ICP to CNS 14 and 30 days after BCNI. Penile HDAC3, HDAC4, and fibronectin were significantly increased (P<0.05) 14 days after BCNI. There was a slight increase in TGF-β1 protein expression after BCNI. Histological analysis showed increased (P<0.05) corporal fibrosis after BCNI at both time points. VPA treatment decreased (P<0.05) penile HDAC3, HDAC4, and fibronectin protein expression as well as corporal fibrosis. There was no change in penile α-SMA between all groups. Furthermore, VPA-treated BCNI rats had improved erectile responses to CNS (P<0.05). Conclusion HDAC-induced pathological signaling in response to BCNI contributes to penile vascular dysfunction after BCNI. Pharmacological inhibition of HDAC prevents penile fibrosis, normalizes fibronectin

  3. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  4. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  5. Milk Transfer and Toxicokinetics of Valproic Acid in Lactating Cynomolgus Monkeys

    PubMed Central

    Lee, Jong-Hwa; Yu, Wook-Joon; Jeong, Eun Ju

    2013-01-01

    Studies on milk transfer of drugs in non-human primates (NHPs) are among the crucial components in the assessment of peri- and postnatal toxicity because of the similarity between NHPs and humans. To evaluate the milk transfer of valproic acid (VPA) in NHPs, the toxicokinetics of VPA, an antiepileptic drug, were studied in pregnant cynomolgus monkeys. VPA was administered once daily to pregnant cynomolgus monkeys at doses of 0, 30, 90, and 270 mg/kg by oral gavage from Day 100 of gestation (GD 100) to Day 31 of lactation (LD 31). Concentrations of VPA and its metabolite, 4-ene-VPA, in the maternal plasma on GD 100, GD 140, and LD 30, and concentrations of VPA and 4-ene-VPA in the offspring plasma and milk on LDs 30 and 31, respectively, were quantified using liquid chromatography tandem mass spectrometry (LC/MS/MS). After administration of a single oral dose of VPA to pregnant monkeys on GD 100, the concentrations of VPA and 4-ene-VPA were generally quantifiable in the plasma of all treatment groups up to 24 hr after administration, which showed that VPA was absorbed and that the monkeys were systemically exposed to VPA and 4-ene-VPA. After administration of multiple doses of VPA to the monkeys, VPA was detected in the pup’s plasma and in milk taken on LD 30 and LD 31, respectively, which showed that VPA was transferred via milk, and the pup was exposed to VPA. Further, the concentration of VPA in the milk increased with an increase in the dose. Extremely low concentrations of 4-ene VPA were detected in the milk and in the pup plasma. In conclusion, pregnant monkeys were exposed to VPA and 4-ene-VPA after oral administration of VPA at doses of 30, 90, and 270 mg/kg/day from GD 100 to LD 31. VPA was transferred via milk, and the VPA exposure to the pup increased with an increase in the dose of VPA. The metabolite, 4-ene VPA, was present in extremely low concentrations (< 0.5 μg/ml) in the milk and in the pup plasma. In this study, we established methods to

  6. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  7. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    PubMed

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased. PMID:17331341

  8. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  9. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models.

    PubMed

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.

  10. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder. PMID:26498253

  11. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors

    PubMed Central

    Kang, Jaeseung; Kim, Eunjoon

    2015-01-01

    Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits. PMID:26074764

  12. The combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing treatment in acute myeloid leukemia

    PubMed Central

    2013-01-01

    Background A large proportion of patients with acute myeloid leukemia (AML) are not fit for intensive and potentially curative therapy due to advanced age or comorbidity. Previous studies have demonstrated that a subset of these patients can benefit from disease-stabilizing therapy based on all-trans retinoic acid (ATRA) and valproic acid. Even though complete hematological remission is only achieved for exceptional patients, a relatively large subset of patients respond to this treatment with stabilization of normal peripheral blood cell counts. Methods In this clinical study we investigated the efficiency and safety of combining (i) continuous administration of valproic acid with (ii) intermittent oral ATRA treatment (21.5 mg/m2 twice daily) for 14 days and low-dose cytarabine (10 mg/m2 daily) for 10 days administered subcutaneously. If cytarabine could not control hyperleukocytosis it was replaced by hydroxyurea or 6-mercaptopurin to keep the peripheral blood blast count below 50 × 109/L. Results The study included 36 AML patients (median age 77 years, range 48 to 90 years) unfit for conventional intensive chemotherapy; 11 patients responded to the treatment according to the myelodysplastic syndrome (MDS) response criteria and two of these responders achieved complete hematological remission. The most common response to treatment was increased and stabilized platelet counts. The responder patients had a median survival of 171 days (range 102 to > 574 days) and they could spend most of this time outside hospital, whereas the nonresponders had a median survival of 33 days (range 8 to 149 days). The valproic acid serum levels did not differ between responder and nonresponder patients and the treatment was associated with a decrease in the level of circulating regulatory T cells. Conclusion Treatment with continuous valproic acid and intermittent ATRA plus low-dose cytarabine has a low frequency of side effects and complete hematological remission is seen for a

  13. Valproic acid, a histone deacetylase inhibitor, decreases proliferation of and induces specific neurogenic differentiation of canine adipose tissue-derived stem cells.

    PubMed

    Kurihara, Yasuhiro; Suzuki, Takehito; Sakaue, Motoharu; Murayama, Ohoshi; Miyazaki, Yoko; Onuki, Atsushi; Aoki, Takuma; Saito, Miyoko; Fujii, Yoko; Hisasue, Masaharu; Tanaka, Kazuaki; Takizawa, Tatsuya

    2014-01-01

    Adipose tissue-derived stem cells (ADSCs) isolated from adult tissue have pluripotent differentiation and self-renewal capability. The tissue source of ADSCs can be obtained in large quantities and with low risks, thus highlighting the advantages of ADSCs in clinical applications. Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to affect ADSC differentiation in mice and rats; however, few studies have been performed on dogs. We aimed to examine the in vitro effect of VPA on canine ADSCs. Three days of pretreatment with VPA decreased the proliferation of ADSCs in a dose-dependent manner; VPA concentrations of 4 mM and above inhibited the proliferation of ADSCs. In parallel, VPA increased p16 and p21 mRNA expression, suggesting that VPA attenuated the proliferative activity of ADSCs by activating p16 and p21. Furthermore, the effects of VPA on adipogenic, osteogenic or neurogenic differentiation were investigated morphologically. VPA pretreatment markedly promoted neurogenic differentiation, but suppressed the accumulation of lipid droplets and calcium depositions. These modifications of ADSCs by VPA were associated with a particular gene expression profile, viz., an increase in neuronal markers, that is, NSE, TUBB3 and MAP2, a decrease in the adipogenic marker, LPL, but no changes in osteogenic markers, as estimated by reverse transcription-PCR analysis. These results suggested that VPA is a specific inducer of neurogenic differentiation of canine ADSCs and is a useful tool for studying the interaction between chromatin structure and cell fate determination.

  14. A simple validated RP-HPLC bioanalytical method for the quantitative determination of a novel valproic acid arylamide derivative in rat hepatic microsomes.

    PubMed

    Silva-Trujillo, Arianna; Correa-Basurto, José; Romero-Castro, Aurelio; Albores, Arnulfo; Mendieta-Wejebe, Jessica Elena

    2015-04-01

    A simple and specific bioanalytical method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with ultraviolet detection was developed and validated for the determination of a novel valproic acid arylamide, N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) in rat hepatic microsomes (a subcellular fraction containing phase I enzymes, especially cytochrome P450). The chromatographic separation was achieved using a reversed-phase Zorbax SB-C18 column and a mobile phase of acetic acid in water (0.2% v/v) and acetonitrile (40:60 v/v) with a flow rate of 0.5 mL/min. The calibration curve was linear over the range of 882-7060 ng/mL (r(2)  = 0.9987), and the lower limit of quantification and the lower limit of determination were found to be 882 and 127.99 ng/mL, respectively. The method was validated with excellent sensitivity, and intra-day accuracy and precision varied from 93.79 to 93.12%, and from 2.12 to 4.36%, respectively. The inter-day accuracy and precision ranged from 93.29 to 97.30% and from 0.68 to 3.60%, respectively. The recovery of HO-AAVPA was measured between 91.36 and 97.98%. The assay was successfully applied to the analysis of kinetic metabolism and pharmacokinetic parameters in vitro by a substrate depletion approach.

  15. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat.

    PubMed

    Watkins, J B; Klaassen, C D

    1982-02-01

    Valproic acid (VPA) induces an immediate choleresis in the rat which may be attributable to the osmotic properties of VPA-glucuronic acid conjugates in bile. The influence of inducers and inhibitors of glucuronidation of VPA on the biliary excretion and choleretic effect of VPA was studied. Hepatic UDP-glucuronyltransferase activity toward VPA was determined in vitro. Pretreatment with phenobarbital (75 mg/kg/day for 4 days) enhanced VPA glucuronidation; borneol (750 mg/kg) decreased VPA conjugation; 3-methylcholanthrene (20 mg/kg/day for 4 days) and galactosamine (600 mg/kg) had no effect on glucuronidation of VPA in vitro. Hepatic UDP-glucuronic acid content was decreased by borneol and galactosamine administration and was enhanced by phenobarbital and 3-methylcholanthrene pretreatment. The enzyme inducers increased the plasma disappearance of VPA in vivo but did not augment its biliary excretion or choleretic effect. Borneol and galactosamine, which inhibited the conjugation and plasma disappearance of VPA, decreased its biliary excretion and inhibited the VPA-induced increase in bile flow. Thus, the bile flow rate after VPA administration is closely related to the excretion of VPA-glucuronic acid. These data support the conclusion that the choleretic effect of VPA is due to the osmotic activity of VPA conjugates in bile.

  16. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    PubMed

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR.

  17. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma

    PubMed Central

    Kanamoto, Ayako; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo

    2016-01-01

    Esophageal carcinoma is one of the most aggressive malignancies, and is characterized by poor response to current therapy and a dismal survival rate. In this study we investigated whether irradiation induces epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma (ESCC) TE9 cells and whether the classic histone deacetylase (HDAC) inhibitor valproic acid (VPA) suppresses these changes. First, we showed that 2 Gy irradiation induced spindle cell-like morphologic changes, decreased expression of membranous E-cadherin, upregulated vimentin expression, and altered the localization of β-catenin from its usual membrane-bound location to cytoplasm in TE9 cells. Irradiation induced upregulation of transcription factors including Slug, Snail, and Twist, which regulate EMT. Stimulation by irradiation resulted in increased TGF-β1 and HIF-1α expression and induced Smad2 and Smad3 phosphorylation. Furthermore, irradiation enhanced CD44 expression, indicating acquisition of cancer stem-like cell properties. In addition, irradiation enhanced invasion and migration ability with upregulation of matrix metalloproteinases. These findings indicate that single-dose irradiation can induce EMT in ESCC cells. Second, we found that treatment with 1 mM VPA induced reversal of EMT caused by irradiation in TE9 cells, resulting in attenuated cell invasion and migration abilities. These results suggest that VPA might have clinical value to suppress irradiation-induced EMT. The reversal of EMT by HDAC inhibitors may be a new therapeutic strategy to improve the effectiveness of radiotherapy in ESCC by inhibiting the enhancement of invasion and metastasis.

  18. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET

    PubMed Central

    Kim, Sung Won; Hooker, Jacob M.; Otto, Nicola; Win, Khaing; Muench, Lisa; Shea, Colleen; Carter, Pauline; King, Payton; Reid, Alicia E.; Volkow, Nora D.; Fowler, Joanna S.

    2013-01-01

    The fatty acids, n-butyric acid (BA), 4-phenylbutyric acid (PBA) and valproic acid (VPA, 2-propylpentanoic acid) have been used for many years in the treatment of a variety of CNS and peripheral organ diseases including cancer. New information that these drugs alter epigenetic processes through their inhibition of histone deacetylases (HDACs) has renewed interest in their biodistribution and pharmacokinetics and the relationship of these properties to their therapeutic and side effect profile. In order to determine the pharmacokinetics and biodistribution of these drugs in primates, we synthesized their carbon-11 labeled analogues and performed dynamic positron emission tomography (PET) in six female baboons over 90 min. The carbon-11 labeled carboxylic acids were prepared by using 11CO2 and the appropriate Grignard reagents. [11C]BA was metabolized rapidly (only 20% of the total carbon-11 in plasma was parent compound at 5 min post injection) whereas for VPA and PBA 98% and 85% of the radioactivity was the unmetabolized compound at 30 min after their administration respectively. The brain uptake of all three carboxylic acids was very low (<0.006%ID/cc, BA>VPA>PBA), which is consistent with the need for very high doses for therapeutic efficacy. Most of the radioactivity was excreted through the kidneys and accumulated in the bladder. However, the organ biodistribution between the drugs differed. [11C]BA showed relatively high uptake in spleen and pancreas whereas [11C]PBA showed high uptake in liver and heart. Notably, [11C]VPA showed exceptionally high heart uptake possibly due to its involvement in lipid metabolism. The unique biodistribution of each of these drugs may be of relevance in understanding their therapeutic and side effect profile including their teratogenic effects. PMID:23906667

  19. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.

  20. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  1. Effect of valproic acid on body weight, food intake, physical activity and hormones: results of a randomized controlled trial

    PubMed Central

    Martin, CK; Han, H; Anton, SD; Greenway, FL; Smith, SR

    2009-01-01

    The objective of this study was to identify mechanisms through which valproic acid (VPA) causes weight gain. Healthy participants (N = 52) were randomized to VPA or placebo in a double-blind study. Energy intake (EI) was measured in the laboratory at lunch and dinner, and physical activity (PA) was measured with accelerometry. Glucose levels and hormones [Peptide YY3–36, glucagon-like peptide-1 (GLP-1), leptin, ghrelin, insulin] that regulate EI were measured. Assessments occurred at baseline and week 3. Change from baseline was evaluated with mixed models (α = 0.05). Weight significantly increased in the VPA group (+0.49 kg), but not the placebo group. The VPA group increased fast food fats cravings and decreased glucose levels compared with placebo. Change in weight, EI and PA did not differ by group. Within group analyses indicated that the VPA group increased PA, hunger, binge eating, depression and GLP-1. VPA-associated weight gain is not likely due to changes in PA or the gut hormones studied. Although EI did not increase when measured after 3 weeks of treatment, VPA decreased glucose levels and increased motivation to eat; hence, EI might have increased in the short-term. Research testing VPA on short-term (1 week) EI, metabolism, and substrate partitioning is warranted. PMID:18583434

  2. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    PubMed

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  3. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods.

  4. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  5. Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation.

    PubMed

    Ji, Meng-Meng; Wang, Li; Zhan, Qin; Xue, Wen; Zhao, Yan; Zhao, Xia; Xu, Peng-Peng; Shen, Yang; Liu, Han; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2015-01-01

    Autophagy is closely related to tumor cell sensitivity to anticancer drugs. The HDAC (histone deacetylase) inhibitor valproic acid (VPA) interacted synergistically with chemotherapeutic agents to trigger lymphoma cell autophagy, which resulted from activation of AMPK (AMP-activated protein kinase) and inhibition of downstream MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling. In an HDAC-independent manner, VPA potentiated the effect of doxorubicin on lymphoma cell autophagy via reduction of cellular inositol 1,4,5 trisphosphate (IP3), blockade of calcium into mitochondria and modulation of PRKAA1/2-MTOR cascade. In murine xenograft models established with subcutaneous injection of lymphoma cells, dual treatment of VPA and doxorubicin initiated IP3-mediated calcium depletion and PRKAA1/2 activation, induced in situ autophagy and efficiently retarded tumor growth. Aberrant genes involving mitochondrial calcium transfer were frequently observed in primary tumors of lymphoma patients. Collectively, these findings suggested an HDAC-independent chemosensitizing activity of VPA and provided an insight into the clinical application of targeting autophagy in the treatment of lymphoma.

  6. Laser Acupuncture Improves Behavioral Disorders and Brain Oxidative Stress Status in the Valproic Acid Rat Model of Autism.

    PubMed

    Khongrum, Jurairat; Wattanathorn, Jintanaporn

    2015-08-01

    The therapeutic strategy against autism, a severe neurological development disorder, is one of the challenges of this decade. Recent findings show that oxidative stress plays a crucial role on the pathophysiology of autism, and laser acupuncture at Shenmen (HT7) can improve oxidative status in many neurological disorders. Therefore, we aimed to assess the effect of laser acupuncture at HT7 on behavior disorders and oxidative stress status in the cortex, striatum, and hippocampus of the valproic acid rat model of autism. Laser acupuncture was performed once daily during postnatal day (PND) 14-PND 40. Behavioral tests including rotarod, open-field, learning and memory, and social behavior tests were performed during PND 14-PND 40. At the end of study, brain oxidative status including malondialdehyde levels and the activities of superoxide dismutase, catalase, and glutathione peroxidase were determined in the cortex, striatum, and hippocampus. Laser acupuncture at HT7 significantly improved autistic-like behaviors. Decreased malondialdehyde levels were observed in all areas mentioned above, however, increased glutathione peroxidase activity was observed only in the striatum and hippocampus. No changes in superoxide dismutase and catalase activities were observed in any investigated area of the brain. Therefore, our study suggests that laser acupuncture at HT7 partly mitigates autistic-like symptoms via improved oxidative status.

  7. The measurement of ammonia blood levels in patients taking valproic acid: looking for problems where they do not exist?

    PubMed

    Chicharro, Ada V; de Marinis, Alejandro J; Kanner, Andres M

    2007-11-01

    Hyperammonemia (HA) commonly occurs with the use of valproic acid (VPA); while it has no clinical significance in most cases, the Physician Desk Reference recommends its discontinuation in the presence of HA. The purpose of this study is to review the literature in order to estimate the prevalence and magnitude of HA in VPA treated patients, to establish any association with hepatotoxicity and encephalopathy and to identify any factors associated with its occurrence. A search of MEDLINE and Cochrane Database of Systematic Reviews, between 1980 and 2005 was performed. Out of 183 studies, 24 met our inclusion criteria. The prevalence of HA in the prospective studies ranged between 70% and 100%, while in cross-sectional studies it varied between 16% and 100%. Ammonia (NH(3)) blood levels increased by a two-fold average relative to the baseline levels. There was no association between HA and clinical symptoms. Concomitant administration of other antiepileptic drugs (AEDs) was the factor most frequently associated with HA.

  8. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    PubMed

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  9. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas.

    PubMed

    Li, Junwei; Bonifati, Serena; Hristov, Georgi; Marttila, Tiina; Valmary-Degano, Séverine; Stanzel, Sven; Schnölzer, Martina; Mougin, Christiane; Aprahamian, Marc; Grekova, Svitlana P; Raykov, Zahari; Rommelaere, Jean; Marchini, Antonio

    2013-10-01

    The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas.

  10. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid

    PubMed Central

    Servadio, M; Melancia, F; Manduca, A; di Masi, A; Schiavi, S; Cartocci, V; Pallottini, V; Campolongo, P; Ascenzi, P; Trezza, V

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basis, we tested the hypothesis that changes in the endocannabinoid tone contribute to the altered phenotype induced by prenatal VPA exposure in rats, with focus on behavioral features that resemble the core and associated symptoms of ASD. In the course of development, VPA-exposed rats showed early deficits in social communication and discrimination, compromised sociability and social play behavior, stereotypies and increased anxiety, thus providing preclinical proof of the long-lasting deleterious effects induced by prenatal VPA exposure. At the neurochemical level, VPA-exposed rats displayed altered phosphorylation of CB1 cannabinoid receptors in different brain areas, associated with changes in anandamide metabolism from infancy to adulthood. Interestingly, enhancing anandamide signaling through inhibition of its degradation rescued the behavioral deficits displayed by VPA-exposed rats at infancy, adolescence and adulthood. This study therefore shows that abnormalities in anandamide activity may underlie the deleterious impact of environmental risk factors on ASD-relevant behaviors and that the endocannabinoid system may represent a therapeutic target for the core and associated symptoms displayed by autistic patients. PMID:27676443

  11. Valproic acid affects the engraftment of TPO-expanded cord blood cells in NOD/SCID mice.

    PubMed

    Vulcano, Francesca; Milazzo, Luisa; Ciccarelli, Carmela; Barca, Alessandra; Agostini, Francesca; Altieri, Ilaria; Macioce, Giampiero; Di Virgilio, Antonio; Screnci, Maria; De Felice, Lidia; Giampaolo, Adele; Hassan, Hamisa Jane

    2012-02-15

    Hematopoietic stem and progenitor cells (HSPC) can improve the long-term outcome of transplanted individuals and reduce the relapse rate. Valproic acid (VPA), an inhibitor of histone deacetylase, when combined with different cytokine cocktails, induces the expansion of CD34+ cell populations derived from cord blood (CB) and other sources. We evaluated the effect of VPA, in combination with thrombopoietin (TPO), on the viability and expansion of CB-HSPCs and on short- and long-term engraftability in the NOD/SCID mouse model. In vitro, VPA+TPO inhibited HSPC differentiation and preserved the CD34+ cell fraction; the self-renewal of the CD34+ TPO+VPA-treated cells was suggested by the increased replating efficiency. In vivo, short- and long-term engraftment was determined after 6 and 20 weeks. After 6 weeks, the median chimerism percentage was 13.0% in mice transplanted with TPO-treated cells and only 1.4% in those transplanted with TPO+VPA-treated cells. By contrast, after 20 weeks, the engraftment induced by the TPO+VPA-treated cells was three times more effective than that induced by TPO alone, and over ten times more effective compared to the short-term engraftment induced by the TPO+VPA-treated cells. The in vivo results are consistent with the higher secondary plating efficiency of the TPO+VPA-treated cells in vitro. PMID:22166516

  12. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use.

  13. Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn).

    PubMed

    Theunissen, Peter T; Robinson, Joshua F; Pennings, Jeroen L A; de Jong, Esther; Claessen, Sandra M H; Kleinjans, Jos C S; Piersma, Aldert H

    2012-02-01

    Alternative developmental toxicity assays are urgently needed to reduce animal use in regulatory developmental toxicology. We previously designed an in vitro murine neural embryonic stem cell test (ESTn) as a model for neurodevelopmental toxicity testing (Theunissen et al., 2010). Toxicogenomic approaches have been suggested for incorporation into the ESTn to further increase predictivity and to provide mechanistic insights. Therefore, in this study, using a transcriptomic approach, we investigated the concentration-dependent effects of three known (neuro) developmental toxicants, two triazoles, cyproconazole (CYP) and hexaconazole (HEX), and the anticonvulsant valproic acid (VPA). Compound effects on gene expression during neural differentiation and corresponding regulated gene ontology (GO) terms were identified after 24 h of exposure in relation to morphological changes on day 11 of culture. Concentration-dependent responses on individual gene expression and on biological processes were determined for each compound, providing information on mechanism and concentration-response characteristics. All compounds caused enrichment of the embryonic development process. CYP and VPA but not HEX significantly enriched the neuron development process. Furthermore, specific responses for triazole compounds and VPA were observed within the GO-term sterol metabolic process. The incorporation of transcriptomics in the ESTn was shown to enable detection of effects, which precede morphological changes and provide a more sensitive measure of concentration-dependent effects as compared with classical morphological assessments. Furthermore, mechanistic insight can be instrumental in the extrapolation of effects in the ESTn to human hazard assessment.

  14. Preclinical evaluation of 2,2,3,3-tetramethylcyclopropanecarbonyl-urea, a novel, second generation to valproic acid, antiepileptic drug.

    PubMed

    Sobol, Eyal; Yagen, Boris; Steve White, H; Wilcox, Karen S; Lamb, John G; Pappo, Orit; Wlodarczyk, Bogdan J; Finnell, Richard H; Bialer, Meir

    2006-09-01

    2,2,3,3-Tetramethylcyclopropanecarbonylurea (TMCU) is an amide derivative of a tetramethylcyclopropyl analogue of valproic acid (VPA), one of the leading antiepileptic drugs. Structural considerations used in the design of TMCU aimed to enhance the anticonvulsant potency of VPA and to prevent its two life-threatening side effects; i.e., teratogenicity and hepatotoxicity. The anticonvulsant activity of TMCU was evaluated in the MES, scMet, 6-Hz, scBic and scPic tests, and also in the hippocampal kindling model of partial seizures and lamotrigine-resistant amygdala kindling model of therapy-resistant seizures. Minimal motor impairment was determined using the rotorod test in mice and the positional sense test, muscle tone test, and gait and stance test in rats. The antinociceptive effect of TMCU was evaluated in the mouse formalin model of acute-tonic pain. The molecular mechanisms of action of TMCU were investigated in electrophysiological studies using the whole-cell patch-clamp technique. Teratogenicity studies were performed in a SWV/Fnn-mouse model of VPA-induced teratogenicity. TMCU hepatotoxicity was evaluated following 1-week intraperitoneal and oral administration of 50, 250 and 500 mg/kg doses to rats. In the hepatotoxicity study the blood levels of TMCU were evaluated at day 1 and day 7 of the treatment. TMCU mutagenicity was evaluated in the Ames test.

  15. Effects of prenatal exposure to valproic acid on the development of juvenile-typical social play in rats.

    PubMed

    Raza, Sarah; Himmler, Brett T; Himmler, Stephanie M; Harker, Allonna; Kolb, Bryan; Pellis, Sergio M; Gibb, Robbin

    2015-12-01

    Autism is a severe neurodevelopmental disorder characterized by qualitative impairments in social behavior, communication, and aberrant repetitive behaviors. A major focus of animal models of autism has been to mimic the social deficits of the disorder. The present study assessed whether rats exposed prenatally to valproic acid (VPA) show deficits in social play as juveniles that are consistent with the social deficits observed in autism. Dams were exposed to an acute dose of VPA on gestational day 12.5. Later, the playful interactions and associated ultrasonic vocalizations of the juveniles were examined. It was predicted that VPA-treated rats should play less than the controls. Characteristic of neurobehavioral insult at this early age, the VPA-treated juveniles showed significant increases in the frequency of body shakes and sexual mounting, but played at the same frequency as the controls. However, when playing, they were less likely to use tactics that facilitated bodily contact and vocalized less. These data suggest that prenatal VPA exposure disrupts some aspects of being able to communicate effectively and engage partners in dynamic interactions - deficits that are consistent with those observed in autism. PMID:26230723

  16. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    PubMed

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  17. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice

    PubMed Central

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life. PMID:27071011

  18. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    PubMed Central

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  19. Effects of valproic acid on the placental barrier in the pregnant mouse: Optical imaging and transporter expression studies.

    PubMed

    Meir, Michal; Bishara, Ameer; Mann, Aniv; Udi, Shiran; Portnoy, Emma; Shmuel, Miri; Eyal, Sara

    2016-06-01

    Our aim was to evaluate the effects of valproic acid (VPA) on the function of the placental barrier in vivo, in pregnant mice. Studies were conducted on gestational days 12.5 (mid-gestation) or 17.5 (late gestation), following intraperitoneal treatment with 200 mg/kg VPA or the vehicle. Indocyanine green (ICG; 0.167 mg, i.v.) was used as a marker for the placental barrier permeability. Transporter expression was evaluated by quantitative -PCR. VPA treatment was associated with a 40% increase (p < 0.05) in accumulation of ICG in maternal liver in mid-pregnancy and a decrease by one fifth (p < 0.05) in late pregnancy. Ex vivo, VPA treatment led to a 20% increase (p < 0.05) in fetal ICG emission in mid-pregnancy. Also in mid-pregnancy, the placental expression of the L-type amino acid transporter, the organic anion-transporting polypeptide (Oatp)4a1 (thyroid hormone transporter), and the reduced folate carrier was lower in VPA-treated mice (p < 0.05). In late pregnancy, hepatic Oatp4a1 levels were 40% less than in controls (p > 0.05). The observed changes in placental transporter expression and function support further research into the potential role of the placenta in the adverse pregnancy outcomes of VPA. Near-infrared imaging provides a noninvasive, nonradioactive tool for future studies on the effects of epilepsy and antiepileptic drugs on tissue transport functions. PMID:27142887

  20. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    PubMed

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. PMID:27469996

  1. Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3

    PubMed Central

    Wang, Junyu; Wang, Zhifei; Liao, Hsiao-Mei; Wei, Monica; Leeds, Peter

    2016-01-01

    Background: Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology. Methods: C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length. Results: Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively. Conclusions: In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth

  2. Prophylactic efficacy of lithium, valproic acid, and carbamazepine in the maintenance phase of bipolar disorder: a naturalistic study.

    PubMed

    Peselow, Eric D; Clevenger, Steven; IsHak, Waguih W

    2016-07-01

    Mood stabilizers are used clinically for the management of bipolar disorder. Prophylactic therapy with mood stabilizers is the primary treatment for preventing depressive and manic relapses in bipolar patients once they are stabilized. In this study, we examined the relative efficacy of the three most commonly used mood-stabilizing agents: lithium (Li), valproic acid (VPA), and carbamazepine (CBZ), in preventing relapse episodes. A total of 225 patients with bipolar disorder were included in the present analysis. Patients taking Li, VPA, or CBZ were followed up for up to 124 months, until suffering a manic, mixed, or depressive episode (relapse), or until the end of the study/study termination (no relapse), whichever came first. The median unadjusted survival time was 36 months for patients taking VPA, 42 months for patients taking CBZ, and 81 months for patients taking Li. These results indicate that patients stayed longer on Li, suggesting that it might have been better tolerated than either CBZ or VPA. χ-Analysis showed that patients taking Li were significantly less likely to experience relapse during the observational period than patients taking either VPA or CBZ (P<0.05). A Cox regression model showed that the hazard of experiencing relapse was significantly predicted by the total number of depressive (P=0.007) and manic symptoms (P=0.02) assessed before the observation period. In addition, after controlling for symptom covariates, the hazard of experiencing relapse was 1.66 times (95% confidence interval 1.03-2.67) or 66% higher for patients taking VPA compared with patients taking Li (P=0.037). Although the hazard of experiencing relapse was higher for patients taking CBZ compared with those taking Li, the risk was not elevated by a significant amount. Notwithstanding the limitations of the naturalistic design of this study, the differences in relapse prevention and survival time observed in these medications show Li fairing relatively better in

  3. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells

    PubMed Central

    Thotala, Dinesh; Karvas, Rowan M.; Engelbach, John A.; Garbow, Joel R.; Hallahan, Andrew N.; DeWees, Todd A.; Laszlo, Andrei; Hallahan, Dennis E.

    2015-01-01

    Neurocognitive deficits are serious sequelae that follow cranial irradiation used to treat patients with medulloblastoma and other brain neoplasms. Cranial irradiation causes apoptosis in the subgranular zone of the hippocampus leading to cognitive deficits. Valproic acid (VPA) treatment protected hippocampal neurons from radiation-induced damage in both cell culture and animal models. Radioprotection was observed in VPA-treated neuronal cells compared to cells treated with radiation alone. This protection is specific to normal neuronal cells and did not extend to cancer cells. In fact, VPA acted as a radiosensitizer in brain cancer cells. VPA treatment induced cell cycle arrest in cancer cells but not in normal neuronal cells. The level of anti-apoptotic protein Bcl-2 was increased and the pro-apoptotic protein Bax was reduced in VPA treated normal cells. VPA inhibited the activities of histone deacetylase (HDAC) and glycogen synthase kinase-3β (GSK3β), the latter of which is only inhibited in normal cells. The combination of VPA and radiation was most effective in inhibiting tumor growth in heterotopic brain tumor models. An intracranial orthotopic glioma tumor model was used to evaluate tumor growth by using dynamic contrast-enhanced magnetic resonance (DCE MRI) and mouse survival following treatment with VPA and radiation. VPA, in combination with radiation, significantly delayed tumor growth and improved mouse survival. Overall, VPA protects normal hippocampal neurons and not cancer cells from radiation-induced cytotoxicity both in vitro and in vivo. VPA treatment has the potential for attenuating neurocognitive deficits associated with cranial irradiation while enhancing the efficiency of glioma radiotherapy. PMID:26413814

  4. Association of LEPR and ANKK1 Gene Polymorphisms with Weight Gain in Epilepsy Patients Receiving Valproic Acid

    PubMed Central

    Li, Hongliang; Wang, Xueding; Zhou, Yafang; Ni, Guanzhong; Su, Qibiao; Chen, Ziyi; Chen, Zhuojia; Li, Jiali; Chen, Xinmeng; Hou, Xiangyu; Xie, Wen; Xin, Shuang; Zhou, Liemin

    2015-01-01

    Background: Weight gain is the most frequent adverse effect of valproic acid (VPA) treatment, resulting in poor compliance and many endocrine disturbances. Similarities in the weight change of monozygotic twins receiving VPA strongly suggests that genetic factors are involved in this effect. However, few studies have been conducted to identify the relevant genetic polymorphisms. Additionally, the causal relationship between the VPA concentration and weight gain has been controversial. Thus, we investigated the effects of single nucleotide polymorphisms (SNPs) in several appetite stimulation and energy homeostasis genes and the steady state plasma concentrations (Css) of VPA on the occurrence of weight gain in patients. Methods: A total of 212 epilepsy patients receiving VPA were enrolled. Nineteen SNPs in 11 genes were detected using the Sequenom MassArray iPlex platform, and VPA Css was determined by high-performance liquid chromatography (HPLC). Results: After 6 months of treatment, 20.28% of patients were found to gain a significant amount of weight (weight gained ≥7%). Three SNPs in the leptin receptor (LEPR), ankyrin repeat kinase domain containing 1 (ANKK1), and α catalytic subunit of adenosine monophosphate-activated protein kinase (AMPK) showed significant associations with VPA-induced weight gain (p < 0.001, p = 0.017 and p = 0.020, respectively). After Bonferroni correction for multiple tests, the genotypic association of LEPR rs1137101, the allelic association of LEPR rs1137101, and ANKK1 rs1800497 with weight gain remained significant. However, the VPA Css in patents who gained weight were not significantly different from those who did not gain weight (p = 0.121). Conclusions: LEPR and ANKK1 genetic polymorphisms may have value in predicting VPA-induced weight gain. PMID:25740917

  5. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  6. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts.

    PubMed

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21(Cip1) and p27(Kip1) expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  7. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A.

    PubMed

    Felisbino, Marina Barreto; Gatti, Maria Silvia Viccari; Mello, Maria Luiza S

    2014-11-01

    Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.

  8. The Proteomic and Genomic Teratogenicity Elicited by Valproic Acid Is Preventable with Resveratrol and α-Tocopherol

    PubMed Central

    Chen, Yeh; Lin, Ping-Xiao; Hsieh, Chiu-Lan; Peng, Chiung-Chi; Peng, Robert Y.

    2014-01-01

    Background Previously, we reported that valproic acid (VPA), a common antiepileptic drug and a potent teratogenic, dowregulates RBP4 in chicken embryo model (CEM) when induced by VPA. Whether such teratogenicity is associated with more advanced proteomic and genomic alterations, we further performed this present study. Methodology/Principal Findings VPA (60 µM) was applied to 36 chicken embryos at HH stage 10 (day-1.5). Resveratrol (RV) and vitamin E (vit E) (each at 0.2 and 2.0 µM) were applied simultaneously to explore the alleviation effect. The proteins in the cervical muscles of the day-1 chicks were analyzed using 2D-electrophoresis and LC/MS/MS. While the genomics associated with each specific protein alteration was examined with RT-PCR and qPCR. At earlier embryonic stage, VPA downregulated PEBP1 and BHMT genes and at the same time upregulated MYL1, ALB and FLNC genes significantly (p<0.05) without affecting PKM2 gene. Alternatively, VPA directly inhibited the folate-independent (or the betaine-dependent) remethylation pathway. These features were effectively alleviated by RV and vit E. Conclusions VPA alters the expression of PEBP1, BHMT, MYL1, ALB and FLNC that are closely related with metabolic myopathies, myogenesis, albumin gene expression, and haemolytic anemia. On the other hand, VPA directly inhibits the betaine-dependent remethylation pathway. Taken together, VPA elicits hemorrhagic myoliposis via these action mechanisms, and RV and vit E are effective for alleviation of such adverse effects. PMID:25551574

  9. Auditory-cued sensorimotor task reveals disengagement deficits in rats exposed to the autism-associated teratogen valproic acid.

    PubMed

    Chomiak, T; Hung, J; Cihal, A; Dhaliwal, J; Baghdadwala, M I; Dzwonek, A; Podgorny, P; Hu, B

    2014-05-30

    Autism Spectrum Disorder (ASD) is often found to co-exist with non-core behavioral manifestations that include difficulties in disengagement of attention to sensory cues. Here we examined whether this behavioral abnormality can be induced in rats prenatally exposed to valproic acid (VPA), a well-established teratogen associated with ASD animal models. We tested rats using an auditory-cued sensorimotor task (ACST) based on the premise that ACST will be more sensitive to developmental changes in temporal association cortex (TeA) of the posterior attention system. We show that VPA rats learned the ACST markedly faster than control animals, but they exhibited a profound preoccupation with cues associated with the expectancy at the reward location such that disengagement was disrupted. Control rats on the other hand were able to disengage and utilize auditory cues for re-engagement. However, both control and VPA-treated rats performed similarly when tested on novel object recognition (NOR) and novel context mismatch (NOCM) behavioral tasks that are known to be sensitive to normal perirhinal and prefrontal network functioning respectively. Consistent with disrupted posterior rather than frontal networks, we also report that VPA can selectively act on deep-layer TeA cortical neurons by showing that VPA increased dendritic density in isolated deep-layer TeA but not frontal neurons. These results describe a useful approach to examine the role of cue-dependent control of attention systems in rodent models of autism and suggest that disengagement impairments may arise from an inability to modify behavior through the appropriate use of sensory cue associations. PMID:24631679

  10. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

    PubMed Central

    Faghihloo, Ebrahim; Akbari, Abolfazl; Adjaminezhad-Fard, Fatemeh; Mokhtari-Azad, Talat

    2016-01-01

    Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties. In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines. This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by 2 mmol/l VPA and expression of E-cadherin and E7 was analyzed by quantitative real-time PCR. Student’s t test and ANOVA were used to determine changes in expression levels. Results: The results revealed that mean of E-cadherin expression is increased by VPA 1.8 times in HCT116 and MKN45 cell lines, also the mean of E-cadherin mRNA levels is up-regulated 2.9 times in HeLa and TC1 cell lines. So, E-cadherin augmentation induced by VPA in HeLa and TC-1, HPV positive cell lines, is higher than HPV negative cell lines MKN45 and HCT116. The mean of HPV E7 expression is decreased by VPA, 4.6 times in in HeLa and TC-1 cell lines. Conclusion: This study demonstrates that re-expression of E-cadherin by VPA in HPV positive cell lines is more than HPV negative cell lines. Whereas, HPV E7 reduces the expression of E-cadherin, reduction of HPV E7 expression by VPA is related to more augmentation of E-cadherin in HPV positive cell lines. So, this study demonstrates that VPA has more anticancer properties in HPV positive cell lines, and could potentially be a promising candidate for cervical cancer treatment. PMID:27482340

  11. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    PubMed

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD.

  12. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid.

    PubMed

    Baronio, Diego; Castro, Kamila; Gonchoroski, Taylor; de Melo, Gabriela Mueller; Nunes, Gustavo Della Flora; Bambini-Junior, Victorio; Gottfried, Carmem; Riesgo, Rudimar

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.

  13. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock.

    PubMed

    Bambakidis, Ted; Dekker, Simone E; Sillesen, Martin; Liu, Baoling; Johnson, Craig N; Jin, Guang; de Vries, Helga E; Li, Yongqing; Alam, Hasan B

    2016-08-15

    Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS. PMID:26905959

  14. Phase I Pharmacokinetic and Pharmacodynamic Evaluation of Combined Valproic Acid/Doxorubicin Treatment in Dogs with Spontaneous Cancer

    PubMed Central

    Wittenburg, Luke A.; Gustafson, Daniel L.; Thamm, Douglas H.

    2010-01-01

    Purpose Histone deacetylase inhibitors (HDACi) are targeted anti-cancer agents with a well-documented ability to act synergistically with cytotoxic agents. We recently demonstrated that the HDACi valproic acid (VPA) sensitizes osteosarcoma cells to doxorubicin (DOX) in vitro and in vivo. As there are no published reports on the clinical utility of HDACi in dogs with spontaneous cancers, we sought to determine a safe and biologically effective dose of VPA administered prior to a standard dose of DOX. Methods 21 dogs were enrolled into eight cohorts in an accelerated dose-escalation trial consisting of pre-treatment with oral VPA followed by DOX on a three-week cycle. Blood and tumor tissue were collected for determination of serum VPA concentration and evaluation of pharmcodynamic effects by immunofluorescence cytochemistry and immunohistochemistry. Serum and complete blood counts were obtained for determination of changes in DOX pharmacokinetics or hematologic effects. Results All doses of VPA were well tolerated. Serum VPA concentrations increased linearly with dose. DOX pharmacokinetics were comparable to those in dogs receiving DOX alone. A positive correlation was detected between VPA dose and histone hyperacetylation in PBMC. No potentiation of DOX-induced myelosuppression was observed. Histone hyperacetylation was documented in tumor and PBMC. Responses included 2/21 complete, 3/21 partial, 5/21 stable disease, and 11/21 progressive disease. Conclusions VPA can be administered to dogs at doses up to 240 mg/kg/day prior to a standard dose of DOX. In addition, we have developed the PK/PD tools necessary for future studies of novel HDACi in the clinical setting of canine cancer. PMID:20705615

  15. Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid

    PubMed Central

    Baronio, Diego; Castro, Kamila; Gonchoroski, Taylor; de Melo, Gabriela Mueller; Nunes, Gustavo Della Flora; Bambini-Junior, Victorio; Gottfried, Carmem; Riesgo, Rudimar

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data. PMID:25560049

  16. Antitumor activities of valproic acid on Epstein-Barr virus-associated T and natural killer lymphoma cells.

    PubMed

    Iwata, Seiko; Saito, Takashi; Ito, Yoshinori; Kamakura, Maki; Gotoh, Kensei; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kimura, Hiroshi

    2012-02-01

    Epstein-Barr virus (EBV), which infects B cells, T cells, and natural killer (NK) cells, is associated with multiple lymphoid malignancies. Recently, histone deacetylase (HDAC) inhibitors have been reported to have anticancer effects against various tumor cells. In the present study, we evaluated the killing effect of valproic acid (VPA), which acts as an HDAC inhibitor, on EBV-positive and -negative T and NK lymphoma cells. Treatment of multiple T and NK cell lines (SNT13, SNT16, Jurkat, SNK6, KAI3 and KHYG1) with 0.1-5 mM of VPA inhibited HDAC, increased acetylated histone levels and reduced cell viability. No significant differences were seen between EBV-positive and -negative cell lines. Although VPA induced apoptosis in some T and NK cell lines (SNT16, Jurkat and KHYG1) and cell cycle arrest, it did not induce lytic infection in EBV-positive T or NK cell lines. Because the killing effect of VPA was modest (1 mM VPA reduced cell viability by between 22% and 56%), we tested the effects of the combination of 1 mM of VPA and 0.01 μM of the proteasome inhibitor bortezomib. The combined treated of cells with VPA and bortezomib had an additive killing effect. Finally, we administered VPA to peripheral blood mononuclear cells from three patients with EBV-associated T or NK lymphoproliferative diseases. In these studies, VPA had a greater killing effect against EBV-infected cells than uninfected cells, and the effect was increased when VPA was combined with bortezomib. These results indicate that VPA has antitumor effects on T and NK lymphoma cells and that VPA and bortezomib may have synergistic effects, irrespective of the presence of EBV. PMID:22017376

  17. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia.

    PubMed

    Lu, Wen-Hsin; Wang, Chih-Yen; Chen, Po-See; Wang, Jing-Wen; Chuang, De-Maw; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-05-01

    Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.

  18. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure.

    PubMed

    Schulpen, Sjors H W; Theunissen, Peter T; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-15

    Embryonic stem cell tests (EST) are considered promising alternative assays for developmental toxicity testing. Classical mouse derived assays (mEST) are being replaced by human derived assays (hEST), in view of their relevance for human hazard assessment. We have compared mouse and human neural ESTn assays for neurodevelopmental toxicity as to regulation of gene expression during cell differentiation in both assays. Commonalities were observed in a range of neurodevelopmental genes and gene ontology (GO) terms. The mESTn showed a higher specificity in neurodevelopment than the hESTn, which may in part be caused by necessary differences in test protocols. Moreover, gene expression responses to the anticonvulsant and human teratogen valproic acid were compared. Both assays detected pharmacological and neurodevelopmental gene sets regulated by valproic acid. Common significant expression changes were observed in a subset of homologous neurodevelopmental genes. We suggest that these genes and related GO terms may provide good candidates for robust biomarkers of neurodevelopmental toxicity in hESTn.

  19. Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01.

    PubMed

    Schweinfurth, N; Hohmann, S; Deuschle, M; Lederbogen, F; Schloss, P

    2010-01-01

    Both, the activity of transcription factors as well as epigenetic alterations in defined DNA regions regulate cellular differentiation processes. Hence, neuronal differentiation from neural progenitor cells is promoted by the transcription factor all trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid (VPA). VPA has also been shown to be involved in differentiation of tumor cells and to greatly improve the reprogramming of human somatic cells to induced pluripotent stem cells. Here we have investigated the impact of ATRA and VPA on the differentiation of megakaryoctes and platelets from the megakaryocyte progenitor cell line MEG-01. Our results show that treatment with ATRA (10⁻¹¹ M) and VPA (2 × 10⁻³ M) induces megakaryopoiesis of MEG-01 cells as estimated by polyploidy, formation of characteristic proplatelets and elevated expression of the megakaryocytic markers CD41 and CD61. The resulting megakaryocytes stayed viable for more than 3 weeks and shed platelet-like particles positive for CD41, CD61 and CD42b into the supernatant. Platelet-like particles responded to thrombin receptor activating peptide (TRAP-6) with increased externalization of P-selectin. Thus, ATRA and VPA proved to be efficient agents for the gentle induction of megakaryopoiesis and thrombopoiesis of MEG-01 cells providing the possibility to study molecular events underlying megakaryopoiesis and human platelet production over longer time periods. PMID:20942599

  20. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  1. Valproic acid improved in vitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood.

    PubMed

    Kang, Jin-Dan; Li, Suo; Lu, Yue; Wang, Wei; Liang, Shuang; Liu, Xi; Jin, Jun-Xue; Hong, Yu; Yan, Chang-Guo; Yin, Xi-Jun

    2013-01-15

    The objective was to examine the effects of valproic acid (VPA), a histone deacetylase inhibitor, on in vitro and in vivo development of Wuzhishan miniature pig somatic cell nuclear transfer (SCNT) embryos. Experiment 1 compared in vitro developmental competence of nuclear transfer embryos treated with various concentrations of VPA for 24 h. Embryos treated with 2 mM VPA for 24 h had a greater rate of blastocyst formation compared with control or embryos treated with 4 or 8 mM VPA (21.5% vs. 10.5%, 12.6%, and 17.2%, P < 0.05). Experiment 2 examined the in vitro developmental competence of nuclear transfer embryos treated with 2 mM VPA for various intervals after chemical activation. Embryos treated for 24 h had higher rates of blastocyst formation than the control or those treated for 4 or 48 h (20.7% vs. 9.2%, 12.1%, and 9.1%, P < 0.05). In Experiment 3, an average of 207 (range, 192-216) nuclear transfer embryos from the VPA-treated group were transferred to surrogate mothers, resulting in three pregnancies. Two of the surrogates delivered a total of 11 live piglets. However, for unknown reasons, nine of 11 piglets in the VPA-treated group died within 1 to 5 d after birth. Untreated control embryos (average, 205; range, 179-225) transferred to four surrogate mothers resulted in three pregnancies, two of which delivered a total of 12 live offspring, although four of 12 piglets in the VPA-untreated group died (cause unknown) within 1 to 3 d, whereas eight of the 12 piglets in the VPA-untreated group survived more than 3 or 4 mo. The average birth weight of the two litters from the VPA-treated group tended (P < 0.05) to be lower than that from the control groups (551.6 g vs. 675.2 g). In conclusion, VPA treatment increased the blastocyst formation rate of SCNT porcine embryos; both VPA-treated and the untreated clones developed to term, but offspring from VPA-treated embryos had a lower survival to adulthood than those from control embryos (18.2% vs. 67.0%; P < 0.05).

  2. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid For Patients With Glioblastoma

    PubMed Central

    Krauze, Andra V.; Myrehaug, Sten D.; Chang, Michael G.; Holdford, Diane J.; Smith, Sharon; Shih, Joanna; Tofilon, Philip J.; Fine, Howard A.; Camphausen, Kevin

    2015-01-01

    Purpose Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in pre-clinical models. We evaluated the addition of VPA to standard radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21–63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8–51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis results were significant for both OS and PFS. VPA levels were not correlated with grade 3/4 toxicity levels. Conclusions Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study. PMID:26194676

  3. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  4. Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma

    PubMed Central

    Happold, Caroline; Gorlia, Thierry; Chinot, Olivier; Gilbert, Mark R.; Nabors, L. Burt; Wick, Wolfgang; Pugh, Stephanie L.; Hegi, Monika; Cloughesy, Timothy; Roth, Patrick; Reardon, David A.; Perry, James R.; Mehta, Minesh P.; Stupp, Roger

    2016-01-01

    Purpose Symptomatic epilepsy is a common complication of glioblastoma and requires pharmacotherapy. Several uncontrolled retrospective case series and a post hoc analysis of the registration trial for temozolomide indicated an association between valproic acid (VPA) use and improved survival outcomes in patients with newly diagnosed glioblastoma. Patients and Methods To confirm the hypothesis suggested above, a combined analysis of survival association of antiepileptic drug use at the start of chemoradiotherapy with temozolomide was performed in the pooled patient cohort (n = 1,869) of four contemporary randomized clinical trials in newly diagnosed glioblastoma: AVAGlio (Avastin in Glioblastoma; NCT00943826), CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status; NCT00689221), CORE (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated Gene Promoter Status; NCT00813943), and Radiation Therapy Oncology Group 0825 (NCT00884741). Progression-free survival (PFS) and overall survival (OS) were compared between: (1) any VPA use and no VPA use at baseline or (2) VPA use both at start of and still after chemoradiotherapy. Results of Cox regression models stratified by trial and adjusted for baseline prognostic factors were analyzed. The same analyses were performed with levetiracetam (LEV). Results VPA use at start of chemoradiotherapy was not associated with improved PFS or OS compared with all other patients pooled (PFS: hazard ratio [HR], 0.91; 95% CI, 0.77 to 1.07; P = .241; OS: HR, 0.96; 95% CI, 0.80 to 1.15; P = .633). Furthermore, PFS and OS of patients taking VPA both at start of and still after chemoradiotherapy were not different from those without antiepileptic drug use at both time points (PFS: HR, 0.92; 95% CI, 0.74 to 1.15; P = .467; OS: HR, 1.10; 95% CI, 0.86 to 1.40; P = .440). Similarly, no

  5. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    SciTech Connect

    Krauze, Andra V.; Chang, Michael G.; Holdford, Diane J.; Smith, Sharon; Shih, Joanna; Tofilon, Philip J.; Camphausen, Kevin

    2015-08-01

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.

  6. Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid

    PubMed Central

    Mora-García, María de Lourdes; Duenas-González, Alfonso; Hernández-Montes, Jorge; De la Cruz-Hernández, Erick; Pérez-Cárdenas, Enrique; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro; Ortíz-Navarrete, Vianney Francisco; Rosales, Víctor Hugo; Cantú, David; Lizano-Soberón, Marcela; Rojo-Aguilar, Martha Patricia; Monroy-García, Alberto

    2006-01-01

    Background DNA hypermethylation and histone deacetylation are epigenetic events that contribute to the absence or downregulated expression of different components of the tumor recognition complex. These events affect the processing and presentation of antigenic peptides to CTLs by HLA class-I molecules. In this work evaluated the effect of the DNA hypomethylating agent hydralazine and the histone deacetylase inhibitor valproic acid, on the expression of HLA class-I molecules and on the antigen-specific immune recognition of cervical cancer cells. Methods Cell lines C33A (HPV-), CaSki (HPV-16+) and MS751 (HPV-18+) were treated with hydralazine and valproic acid to assess the expression of HLA class-I molecules by flow cytometry and RT-PCR. Promoter methylation of HLA class-I -A, -B and C, was also evaluated by Methylation-Specific PCR. Primary cervical tumors of four HLA-A*0201 allele patients were typed for HPV and their CTL's stimulated in vitro with the T2 cell line previously loaded with 50 μM of the HPV peptides. Cytotoxicity of stimulated CTL's was assayed against Caski and MS751 cells pre-treated with hydralazine and valproic acid. Results Valproic acid and hydralazine/valproic acid up-regulated the constitutive HLA class-I expression as evaluated by flow cytometry and RT-PCR despite constitutive promoter demethylation at these loci. Hydralazine and valproic acid in combination but no IFN-gamma hyperacetylated histone H4 as evaluated by ChiP assay. The antigenic immune recognition of CaSki and MS751 cells by CTLs specific to HPV-16/18 E6 and E7-derived epitopes, was increased by VA and H/VA and the combination of H/VA/IFN-gamma. Conclusion These results support the potential use of hydralazine and valproic acid as an adjuvant for immune intervention in cervical cancer patients whenever clinical protocols based on tumor antigen recognition is desirable, like in those cases where the application of E6 and E7 based therapeutic vaccines is used. PMID:17192185

  7. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  8. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    PubMed Central

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2′-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  9. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  10. AXIAL SKELETAL AND HOX EXPRESSION DOMAIN ALTERATIONS INDUCED BY RETINOIC ACID, VALPROIC ACID AND BROMOXYNIL DURING MURINE DEVELOPMENT

    EPA Science Inventory

    ABSTRACT

    Retinoic acid (RA) alters the developmental fate of the axial skeletal anlage. "Anteriorizations" or "posteriorizations", the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered emb...

  11. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling.

    PubMed

    Williams, Robin S B; Bate, Clive

    2016-02-01

    Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases. PMID:26116815

  12. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration.

    PubMed

    Croce, Nicoletta; Mathé, Aleksander A; Gelfo, Francesca; Caltagirone, Carlo; Bernardini, Sergio; Angelucci, Francesco

    2014-10-01

    One of the common effects of lithium (Li) and valproic acid (VPA) is their ability to protect against excitotoxic insults. Neurodegenerative and neuropsychiatric diseases may be also associated with altered trophic support of brain-derived neurotrophic factor (BDNF), the most widely distributed neurotrophin in the central nervous system. However, despite these evidences, the effect of Li-VPA combination on BDNF after excitoxic insult has been inadequately investigated. We address this issue by exposing a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate and exploring whether the neuroprotective action of Li-VPA on these cells is associated with changes in BDNF protein and mRNA levels. The results showed that pre-incubation of Li-VPA abolished the toxic effect of glutamate on SH-SY5Y cell survival and this neuroprotective effect was associated with increased synthesis and mRNA expression of BDNF after 24 and 48 h of incubation. In conclusion, this study demonstrates that the neuroprotective effects of Li-VPA against glutamate-induced neurotoxicity in SH-SY5Y neuroblastoma cells is associated with increased synthesis and mRNA expression of BDNF. These data further support the idea that these two drugs can be used for prevention and/or treatment of glutamate-related neurodegenerative disorders.

  13. Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model

    PubMed Central

    Golla, Upendarrao; Joseph, Deepthi; Tomar, Raghuvir Singh

    2016-01-01

    Valproic acid (VA) is a pharmacologically important histone deacetylase inhibitor that recently garnered attention as an anticancer agent. Since the molecular mechanisms behind the multiple effects of VA are unclear, this study was aimed to unravel the comprehensive cellular processes affected by VA and its molecular targets in vivo using budding yeast as a model organism. Interestingly, genome-wide transcriptome analysis of cells treated with VA showed differential regulation of 30% of the genome. Functional enrichment analysis of VA transcriptome evidenced alteration of various cellular processes including cell cycle, cell wall biogenesis, DNA repair, ion homeostasis, metabolism, stress response, transport and ribosomal biogenesis, etc. Moreover, our genetic screening analysis revealed VA molecular targets belonging to oxidative and osmotic stress, DNA repair, cell wall integrity, and iron homeostasis. Further, our results demonstrated the activation of mitogen-activated protein kinases (MAPKs) Hog1 (p38) and Slt2 (p44/42) upon VA treatment. Our results also exhibited that VA acts through alteration of mitochondrial, ER architecture and functions. Especially, VA effects were neutralized in cells lacking lipid particles. Altogether, our results deciphered the novel molecular insights and mechanistic links to strengthen our knowledge on diverse cellular effects of VA along with its probable therapeutic targets and detoxification approaches. PMID:27734932

  14. Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Kidd, S K; Schneider, J S

    2011-10-27

    The use of animal models (including the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] mouse model) to mimic dopaminergic (DAergic) cell loss and striatal dopamine (DA) depletion, as seen in Parkinson's disease (PD), has implicated a multitude of factors that might be associated with DAergic cell death in PD including excitotoxicity, inflammation, and oxidative stress. All of these factors have been shown to be reduced by administration of histone deacetylase (HDAC) inhibitors (HDACis) resulting in some degree of neuroprotection in various models of neurodegenerative disease including in Huntington's disease and amyotrophic lateral sclerosis. However, there is limited information of effects of HDACis in PD models. We have previously shown HDACis to be partially protective against 1-methyl-4-phenylpyridinium (MPP(+))-mediated cell loss in vitro. The present study was conducted to extend these findings to an in vivo PD model. The HDACi valproic acid (VPA) was co-administered with MPTP for 5 days to male FVBn mice and continued for an additional 2 weeks, throughout the period of active neurodegeneration associated with MPTP-mediated DAergic cell loss. VPA was able to partially prevent striatal dopamine depletion and almost completely protect against substantia nigra DAergic cell loss. These results suggest that VPA may be a potential disease-modifying therapy for PD. PMID:21846494

  15. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling

    PubMed Central

    Pan, Hao; Lin, Qiu-Ru; Huang, Mei-Yun; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2015-01-01

    Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway. PMID:26517515

  16. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed.

  17. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.

    PubMed

    Tsolmongyn, Bilegtsaikhan; Koide, Naoki; Odkhuu, Erdenezaya; Haque, Abedul; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2013-04-01

    The effect of lipopolysaccharide (LPS) on valproic acid (VPA)-induced cell death was examined by using mouse RAW 264.7 macrophage cells. LPS inhibited the activation of caspase 3 and poly (ADP-ribose) polymerase and prevented VPA-induced apoptosis. LPS inhibited VPA-induced p53 activation and pifithrin-α as a p53 inhibitor as well as LPS prevented VPA-induced apoptosis. LPS abolished the increase of Bax/Bcl-2 ratio, which is a critical indicator of p53-mediated mitochondrial damage, in response to VPA. The nuclear factor (NF)-κB inhibitors, Bay 11-7082 and parthenolide, abolished the preventive action of LPS on VPA-induced apoptosis. A series of toll-like receptor ligands, Pam3CSK4, poly I:C, and CpG DNA as well as LPS prevented VPA-induced apoptosis. Taken together, LPS was suggested to prevent VPA-induced apoptosis via activation of anti-apoptotic NF-κB and inhibition of pro-apoptotic p53 activation. The detailed inhibitory mechanism of VPA-induced apoptosis by LPS is discussed. PMID:23770718

  18. Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats.

    PubMed

    Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Finamor, Isabela A; Glanzner, Werner G; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Valproic acid (VPA) is a drug widely use for the treatment of epilepsy in both children and adults. Evidence suggests that long-term use of VPA may lead to an impairment in the male reproductive function. Oxidative stress is considered to play a major role in VPA associated toxicity. In the present work, we demonstrated that the natural antioxidant compound resveratrol (RSV) can be use to prevent VPA oxidative damage. Wistar rats treated with VPA (400mgkg(-1)) by gavage for 28days showed decrease in sperm motility accompanied by increase in oxidative damage to lipids and proteins. Additionally, VPA administration leaded to depletion of reduced glutathione and decrease in total antioxidant potential in testes and epididymides of Wistar rats. The co-administration of RSV (10mgkg(-1)) efficiently prevented VPA pro-oxidant effects. In summary, RSV was shown to protect the reproductive system from the damage induced by VPA. Altogether, our data strongly suggests that RSV administration might be a valuable strategy to minimize reproductive impairment in patients requiring long-term VPA treatment.

  19. Effect of intracerebroventricular continuous infusion of valproic acid versus single i.p. and i.c.v. injections in the amygdala kindling epilepsy model.

    PubMed

    Serralta, Alfonso; Barcia, Juan A; Ortiz, Pedro; Durán, Carmen; Hernández, M Eugenia; Alós, Manuel

    2006-07-01

    Two protocols were tested to assess anticonvulsant efficacy and drug concentrations after intracerebroventricular (i.c.v.) continuous valproic acid (VPA) infusion, as compared with acute injections in the kindling epilepsy model. Protocol 1: amygdala-kindled rats were injected via intraperitoneal (i.p.) and i.c.v. routes with varying doses of VPA and tested for seizure intensity, afterdischarge and seizure duration, ataxia and sedation. Concentrations of VPA were determined by immunofluorescence in the brain, plasma, cerebrospinal fluid (CSF) and liver in matching rats. Protocol 2: amygdala-kindled rats were implanted with osmotic minipumps containing a VPA solution in saline and connected to intraventricular catheters for 7 days. Seizure threshold, latency and duration, afterdischarge duration, ataxia and sedation were recorded daily before, during, and until 5 days after VPA infusion. In matching animals, CSF, brain, plasma and liver VPA concentration was determined. Acute i.c.v. VPA injection suppressed seizures with a remarkable ataxia and sedation. However, continuous i.c.v. infusion controlled generalised and even focal seizures without producing important side effects, high plasma levels or hepatic drug concentrations. In conclusion, continuous i.c.v. VPA infusion may protect against kindled seizures by minimising ataxia and sedation, and achieving suitable intracerebral, yet low plasma or hepatic drug concentrations, thus avoiding potential systemic toxicity.

  20. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression

    PubMed Central

    Terranova-Barberio, Manuela; Roca, Maria Serena; Zotti, Andrea Ilaria; Leone, Alessandra; Bruzzese, Francesca; Vitagliano, Carlo; Scogliamiglio, Giosuè; Russo, Domenico; D'Angelo, Giovanni; Franco, Renato; Budillon, Alfredo; Di Gennaro, Elena

    2016-01-01

    The prognosis of patients with metastatic breast cancer remains poor, and thus novel therapeutic approaches are needed. Capecitabine, which is commonly used for metastatic breast cancer in different settings, is an inactive prodrug that takes advantage of elevated levels of thymidine phosphorylase (TP), a key enzyme that is required for its conversion to 5-fluororacil, in tumors. We demonstrated that histone deacetylase inhibitors (HDACi), including low anticonvulsant dosage of VPA, induced the dose- and time-dependent up-regulation of TP transcript and protein expression in breast cancer cells, but not in the non-tumorigenic breast MCF-10A cell line. Through the use of siRNA or isoform-specific HDACi, we demonstrated that HDAC3 is the main isoform whose inhibition is involved in the modulation of TP. The combined treatment with capecitabine and HDACi, including valproic acid (VPA), resulted in synergistic/additive antiproliferative and pro-apoptotic effects in breast cancer cells but not in TP-knockout cells, both in vitro and in vivo, highlighting the crucial role of TP in the synergism observed. Overall, this study suggests that the combination of HDACi (e.g., VPA) and capecitabine is an innovative antitumor strategy that warrants further clinical evaluation for the treatment of metastatic breast cancer. PMID:26735339

  1. Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO 2 solids for the treatment of temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.

    2006-10-01

    Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.

  2. Resveratrol prevents oxidative damage and loss of sperm motility induced by long-term treatment with valproic acid in Wistar rats.

    PubMed

    Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Finamor, Isabela A; Glanzner, Werner G; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Valproic acid (VPA) is a drug widely use for the treatment of epilepsy in both children and adults. Evidence suggests that long-term use of VPA may lead to an impairment in the male reproductive function. Oxidative stress is considered to play a major role in VPA associated toxicity. In the present work, we demonstrated that the natural antioxidant compound resveratrol (RSV) can be use to prevent VPA oxidative damage. Wistar rats treated with VPA (400mgkg(-1)) by gavage for 28days showed decrease in sperm motility accompanied by increase in oxidative damage to lipids and proteins. Additionally, VPA administration leaded to depletion of reduced glutathione and decrease in total antioxidant potential in testes and epididymides of Wistar rats. The co-administration of RSV (10mgkg(-1)) efficiently prevented VPA pro-oxidant effects. In summary, RSV was shown to protect the reproductive system from the damage induced by VPA. Altogether, our data strongly suggests that RSV administration might be a valuable strategy to minimize reproductive impairment in patients requiring long-term VPA treatment. PMID:27432062

  3. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  4. Dependence of Proximal GC Boxes and Binding Transcription Factors in the Regulation of Basal and Valproic Acid-Induced Expression of t-PA.

    PubMed

    Ulfhammer, Erik; Larsson, Pia; Magnusson, Mia; Karlsson, Lena; Bergh, Niklas; Jern, Sverker

    2016-01-01

    Objective. Endothelial tissue-type plasminogen activator (t-PA) release is a pivotal response to protect the circulation from occluding thrombosis. We have shown that the t-PA gene is epigenetically regulated and greatly induced by the histone deacetylase (HDAC) inhibitor valproic acid (VPA). We now investigated involvement of known t-PA promoter regulatory elements and evaluated dependence of potential interacting transcription factors/cofactors. Methods. A reporter vector with an insert, separately mutated at either the t-PA promoter CRE or GC box II or GC box III elements, was transfected into HT-1080 and HUVECs and challenged with VPA. HUVECs were targeted with siRNA against histone acetyl transferases (HAT) and selected transcription factors from the Sp/KLF family. Results. An intact VPA-response was observed with CRE mutated constructs, whereas mutation of GC boxes II and III reduced the magnitude of the induction by 54 and 79% in HT-1080 and 49 and 50% in HUVECs, respectively. An attenuated induction of t-PA mRNA was observed after Sp2, Sp4, and KLF5 depletion. KLF2 and p300 (HAT) were identified as positive regulators of basal t-PA expression and Sp4 and KLF9 as repressors. Conclusion. VPA-induced t-PA expression is dependent on the proximal GC boxes in the t-PA promoter and may involve interactions with Sp2, Sp4, and KLF5.

  5. Differentiation of rat adipose tissue-derived stem cells into neuron-like cells by valproic acid, a histone deacetylase inhibitor.

    PubMed

    Okubo, Takumi; Hayashi, Daiki; Yaguchi, Takayuki; Fujita, Yudai; Sakaue, Motoharu; Suzuki, Takehito; Tsukamoto, Atsushi; Murayama, Ohoshi; Lynch, Jonathan; Miyazaki, Yoko; Tanaka, Kazuaki; Takizawa, Tatsuya

    2016-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to modulate the neuronal differentiation of adipose tissue-derived stem cells (ASCs) in humans and dogs. However, controversy exists as to whether VPA really acts as an inducer of neuronal differentiation of ASCs. The present study aimed to elucidate the effect of VPA in neuronal differentiation of rat ASCs. One or three days of pretreatment with VPA (2 mM) followed by neuronal induction enhanced the ratio of immature neuron marker βIII-tubulin-positive cells in a time-dependent manner, where the majority of cells also had a positive signal for neurofilament medium polypeptide (NEFM), a mature neuron marker. RT-PCR analysis revealed increases in the mRNA expression of microtubule-associated protein 2 (MAP2) and NEFM mature neuron markers, even without neuronal induction. Three-days pretreatment of VPA increased acetylation of histone H3 of ASCs as revealed by immunofluorescence staining. Chromatin immunoprecipitation assay also showed that the status of histone acetylation at H3K9 correlated with the gene expression of TUBB3 in ASCs by VPA. These results indicate that VPA significantly promotes the differentiation of rat ASCs into neuron-like cells through acetylation of histone H3, which suggests that VPA may serve as a useful tool for producing transplantable cells for future applications in clinical treatments. PMID:26411320

  6. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation.

    PubMed

    Kawano, Takeshi; Akiyama, Masaharu; Agawa-Ohta, Miyuki; Mikami-Terao, Yoko; Iwase, Satsuki; Yanagisawa, Takaaki; Ida, Hiroyuki; Agata, Naoki; Yamada, Hisashi

    2010-10-01

    Although p53 is intact in most cases of retinoblastoma, it is largely inactivated by the ubiqutin-proteasome system through interaction with murine double minute 2 (MDM2) and murine double minute X (MDMX). The present study showed that the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and depsipeptide (FK228) synergistically enhanced ionizing radiation (IR)-induced apoptosis, associated with activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase in Y79 and WER1-Rb1 human retinoblastoma cells. Both VPA and FK228 enhanced IR-induced phosphorylation of histone H2AX on Ser139 preceding apoptosis. Exposure of cells to IR in the presence of VPA or FK228 induced the accumulation of p53 acetylated at Lys382 and phosphorylated at Ser46 through the reduction of binding affinity with MDM2 and MDMX. These results suggest that acetylation of p53 by HDAC inhibitors is a promising new therapeutic target in refractory retinoblastoma. PMID:20811699

  7. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism.

    PubMed

    Olde Loohuis, N F M; Kole, K; Glennon, J C; Karel, P; Van der Borg, G; Van Gemert, Y; Van den Bosch, D; Meinhardt, J; Kos, A; Shahabipour, F; Tiesinga, P; van Bokhoven, H; Martens, G J M; Kaplan, B B; Homberg, J R; Aschrafi, A

    2015-08-01

    Autism spectrum disorders are severe neurodevelopmental disorders, marked by impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. Accumulating evidence suggests that dysfunction of the amygdala may be partially responsible for the impairment of social behavior that is a hallmark feature of ASD. Our studies suggest that a valproic acid (VPA) rat model of ASD exhibits an enlargement of the amygdala as compared to controls rats, similar to that observed in adolescent ASD individuals. Since recent research suggests that altered neuronal development and morphology, as seen in ASD, may result from a common post-transcriptional process that is under tight regulation by microRNAs (miRs), we examined genome-wide transcriptomics expression in the amygdala of rats prenatally exposed to VPA, and detected elevated miR-181c and miR-30d expression levels as well as dysregulated expression of their cognate mRNA targets encoding proteins involved in neuronal system development. Furthermore, selective suppression of miR-181c function attenuates neurite outgrowth and branching, and results in reduced synaptic density in primary amygdalar neurons in vitro. Collectively, these results implicate the small non-coding miR-181c in neuronal morphology, and provide a framework of understanding how dysregulation of a neurodevelopmentally relevant miR in the amygdala may contribute to the pathophysiology of ASD.

  8. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    PubMed

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism.

  9. Pharmacodynamic and pharmacokinetic analysis of CNS-active constitutional isomers of valnoctamide and sec-butylpropylacetamide--Amide derivatives of valproic acid.

    PubMed

    Mawasi, Hafiz; Shekh-Ahmad, Tawfeeq; Finnell, Richard H; Wlodarczyk, Bogdan J; Bialer, Meir

    2015-05-01

    Valnoctamide (VCD) and sec-butylpropylacetamide (SPD) are CNS-active closely related amide derivatives of valproic acid with unique anticonvulsant activity. This study evaluated how small chemical changes affect the pharmacodynamics (PD; anticonvulsant activity and teratogenicity) and pharmacokinetics (PK) of three constitutional isomers of SPD [sec-butylisopropylacetamide (SID) and tert-butylisopropylacetamide (TID)] and of VCD [tert-butylethylacetamide (TED)]. The anticonvulsant activity of SID, TID, and TED was comparatively evaluated in several rodent anticonvulsant models. The PK-PD relationship of SID, TID, and TED was evaluated in rats, and their teratogenicity was evaluated in a mouse strain highly susceptible to teratogen-induced neural tube defects (NTDs). sec-Butylisopropylacetamide and TID have a similar PK profile to SPD which may contribute to their similar anticonvulsant activity. tert-Butylethylacetamide had a better PK profile than VCD (and SPD); however, this did not lead to a superior anticonvulsant activity. sec-Butylisopropylacetamide and TED did not cause NTDs at doses 4-7 times higher than their anticonvulsant ED50 values. In rats, SID, TID (ip), and TED exhibited a broad spectrum of anticonvulsant activity. However, combined anticonvulsant analysis in mice and rats shows SID as the most potent compound with similar activity to that of SPD, demonstrating that substitution of the isobutyl moiety in the SPD or VCD molecule by tert-butyl as well as a propyl-to-isopropyl replacement in the SPD molecule did not majorly affect the anticonvulsant activity.

  10. Modular glass chip system measuring the electric activity and adhesion of neuronal cells--application and drug testing with sodium valproic acid.

    PubMed

    Koester, Philipp Julian; Buehler, Sebastian Moritz; Stubbe, Marco; Tautorat, Carsten; Niendorf, Mathias; Baumann, Werner; Gimsa, Jan

    2010-06-21

    We developed a modular neurochip system by combining a small (16x16 mm2) glass neurochip (GNC) with a homemade head stage and commercial data acquisition hardware and software. The system is designed for the detection of the electric activity of cultivated nerve or muscle cells by a 52-microelectrode array (MEA). In parallel, cell adhesion can be registered from the electric impedance of an interdigitated electrode structure (IDES). The GNC was tested with various cell lines and primary cells. It is fully autoclavable and re-useable. Murine embryonic primary cells were used as a model system to correlate the electric activity and adhesion of neuronal networks in a drug test with sodium valproic acid. The test showed the advantage of the parallel IDES and MEA measurements, i.e. the parallel detection of cytotoxic and neurotoxic effects. Toxic exposure of the cells during neuronal network formation allows for the characterization of developmental neurotoxic effects even at drug concentrations below the EC50-value for acute neurotoxic effects. At high drug concentrations, the degree of cytotoxic damage can still be assessed from the IDES data in the event that no electric activity develops. The GNC provides optimal cell culture conditions for up to months in combination with full microscopic observability. The 4'' glass wafer technology allows for a high precision of the GNC structures and an economic production of our new system that can be applied in general and developmental toxicity tests as well as in the search for neuro-active compounds.

  11. Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death.

    PubMed

    Yamanegi, Koji; Yamane, Junko; Kobayashi, Kenta; Kato-Kogoe, Nahoko; Ohyama, Hideki; Nakasho, Keiji; Yamada, Naoko; Hata, Masaki; Fukunaga, Satoru; Futani, Hiroyuki; Okamura, Haruki; Terada, Nobuyuki

    2012-07-01

    We investigated the effects of valproic acid (VPA), a histone deacetylase inhibitor, in combination with hydralazine, a DNA methylation inhibitor, on the expression of cell-surface Fas and MHC-class I-related chain molecules A and B (MICA and B), the ligands of NKG2D which is an activating receptor of NK cells, and on production of their soluble forms in HOS, U-2 OS and SaOS-2 human osteosarcoma cell lines. We also examined the susceptibility of these cells to Fas- and NK cell-mediated cell death. VPA did not increase the expression of Fas on the surface of osteosarcoma cells, while hydralazine did, and the combination of VPA with hydralazine increased the expression of cell-surface Fas. In contrast, the combination of VPA with hydralazine did not increase the production of soluble Fas by osteosarcoma cells. Both VPA and hydralazine increased the expression of cell-surface MICA and B in osteosarcoma cells, and their combination induced a greater increase in their expression. VPA inhibited the production of both soluble MICA and MICB by osteosarcoma cells while hydralazine produced no effect. Both VPA and hydralazine enhanced the susceptibility of osteosarcoma cells to Fas- and NK cell-mediated cell death and the combination of VPA with hydralazine further enhanced the effects. The present results suggest that combined administration of VPA and hydrazine is valuable for enhancing the therapeutic effects of immunotherapy for osteosarcomas.

  12. Structural and energetic analysis to provide insight residues of CYP2C9, 2C11 and 2E1 involved in valproic acid dehydrogenation selectivity.

    PubMed

    Bello, Martiniano; Mendieta-Wejebe, Jessica E; Correa-Basurto, José

    2014-07-15

    Docking and molecular dynamics (MD) simulation have been two computational techniques used to gain insight about the substrate orientation within protein active sites, allowing to identify potential residues involved in the binding and catalytic mechanisms. In this study, both methods were combined to predict the regioselectivity in the binding mode of valproic acid (VPA) on three cytochrome P-450 (CYP) isoforms CYP2C9, CYP2C11, and CYP2E1, which are involved in the biotransformation of VPA yielding reactive hepatotoxic intermediate 2-n-propyl-4-pentenoic acid (4nVPA). There are experimental data about hydrogen atom abstraction of the C4-position of VPA to yield 4nVPA, however, there are not structural evidence about the binding mode of VPA and 4nVPA on CYPs. Therefore, the complexes between these CYP isoforms and VPA or 4nVPA were studied to explore their differences in binding and energetic stabilization. Docking results showed that VPA and 4nVPA are coupled into CYPs binding site in a similar conformation, but it does not explain the VPA hydrogen atom abstraction. On the other hand, MD simulations showed a set of energetic states that reorient VPA at the first ns, then making it susceptible to a dehydrogenation reaction. For 4nVPA, multiple binding modes were observed in which the different states could favor either undergo other reaction mechanism or ligand expulsion from the binding site. Otherwise, the energetic and entropic contribution point out a similar behavior for the three CYP complexes, showing as expected a more energetically favorable binding free energy for the complexes between CYPs and VPA than with 4nVPA.

  13. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    SciTech Connect

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar; Karagiozov, Stoyan; Abbott, Frank S.; Chang, Thomas K.H.

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.

  14. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  15. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition.

    PubMed

    Leng, Yan; Liang, Min-Huei; Ren, Ming; Marinova, Zoya; Leeds, Peter; Chuang, De-Maw

    2008-03-01

    Lithium and valproic acid (VPA) are two primary drugs used to treat bipolar mood disorder and have frequently been used in combination to treat bipolar patients resistant to monotherapy with either drug. Lithium, a glycogen synthase kinase-3 (GSK-3) inhibitor, and VPA, a histone deacetylase (HDAC) inhibitor, have neuroprotective effects. The present study was undertaken to demonstrate synergistic neuroprotective effects when both drugs were coadministered. Pretreatment of aging cerebellar granule cells with lithium or VPA alone provided little or no neuroprotection against glutamate-induced cell death. However, copresence of both drugs resulted in complete blockade of glutamate excitotoxicity. Combined treatment with lithium and VPA potentiated serine phosphorylation of GSK-3 alpha and beta isoforms and inhibition of GSK-3 enzyme activity. Transfection with GSK-3alpha small interfering RNA (siRNA) and/or GSK-3beta siRNA mimicked the ability of lithium to induce synergistic protection with VPA. HDAC1 siRNA or other HDAC inhibitors (phenylbutyrate, sodium butyrate or trichostatin A) also caused synergistic neuroprotection together with lithium. Moreover, combination of lithium and HDAC inhibitors potentiated beta-catenin-dependent, Lef/Tcf-mediated transcriptional activity. An additive increase in GSK-3 serine phosphorylation was also observed in mice chronically treated with lithium and VPA. Together, for the first time, our results demonstrate synergistic neuroprotective effects of lithium and HDAC inhibitors and suggest that GSK-3 inhibition is a likely molecular target for the synergistic neuroprotection. Our results may have implications for the combined use of lithium and VPA in treating bipolar disorder. Additionally, combined use of both drugs may be warranted for clinical trials to treat glutamate-related neurodegenerative diseases.

  16. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

    PubMed Central

    2011-01-01

    Background Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor. Methods Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index. Results After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period. Conclusion Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease. Trial Registration ClinicalTrials.gov: NCT01033331 PMID:21435220

  17. SMA CARNI-VAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy

    PubMed Central

    Kissel, John T.; Scott, Charles B.; Reyna, Sandra P.; Crawford, Thomas O.; Simard, Louise R.; Krosschell, Kristin J.; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K.; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W.; Sorenson, Susan; Maczulski, Jo Anne; Bromberg, Mark B.; Chan, Gary M.; Swoboda, Kathryn J.

    2011-01-01

    Background Multiple lines of evidence have suggested that valproic acid (VPA) might benefit patients with spinal muscular atrophy (SMA). The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and l-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2–8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. Methods This study involved 33 genetically proven type 3 SMA subjects ages 3–17 years. Subjects underwent two baseline assessments over 4–6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend), timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP), handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. Results Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. Conclusions This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. Trial Regsitration Clinicaltrials.gov NCT00227266 PMID:21754985

  18. Effects of Lithium and Valproic Acid on Gene Expression and Phenotypic Markers in an NT2 Neurosphere Model of Neural Development

    PubMed Central

    Hill, Eric J.; Nagel, David A.; O’Neil, John D.; Torr, Elizabeth; Woehrling, Elizabeth K.; Devitt, Andrew; Coleman, Michael D.

    2013-01-01

    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals. PMID:23527032

  19. Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs.

    PubMed

    Paradis, France-Hélène; Hales, Barbara F

    2015-10-01

    In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity.

  20. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  1. Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection

    PubMed Central

    Fazeli-Bakhtiyari, Rana; Panahi-Azar, Vahid; Sorouraddin, Mohammad Hossein; Jouyban, Abolghasem

    2015-01-01

    Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0; concentration of NaCl, 4% (w/v)), resulting in a cloudy solution. After centrifugation (6000 rpm for 6 min), an aliquot (1 µl) of the sedimented organic phase was removed using a 1-µl GC microsyringe and injected into the GC system for analysis. One variable at a time optimization method was used to study various parameters affecting the extraction efficiency of target analyte. Then, the developed method was fully validated for its accuracy, precision, recovery, stability, and robustness. Results: Under the optimum extraction conditions, good linearity range was obtained for the calibration graph, with correlation coefficient higher than 0.998. Limit of detection and lower limit of quantitation were 3.2 and 6 μg/ml, respectively. The relative standard deviations of intra and inter-day analysis of examined compound were less than 11.5%. The relative recoveries were found in the range of 97 to 107.5%. Finally, the validated method was successfully applied to the analysis of VPA in patient sample. Conclusion: The presented method has acceptable levels of precision, accuracy and relative recovery and could be used for therapeutic drug monitoring of VPA in human plasma. PMID:26730332

  2. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene

    PubMed Central

    Lee, R S; Pirooznia, M; Guintivano, J; Ly, M; Ewald, E R; Tamashiro, K L; Gould, T D; Moran, T H; Potash, J B

    2015-01-01

    Epigenetics may have an important role in mood stabilizer action. Valproic acid (VPA) is a histone deacetylase inhibitor, and lithium (Li) may have downstream epigenetic actions. To identify genes commonly affected by both mood stabilizers and to assess potential epigenetic mechanisms that may be involved in their mechanism of action, we administered Li (N=12), VPA (N=12), and normal chow (N=12) to Brown Norway rats for 30 days. Genomic DNA and mRNA were extracted from the hippocampus. We used the mRNA to perform gene expression analysis on Affymetrix microarray chips, and for genes commonly regulated by both Li and VPA, we validated expression levels using quantitative real-time PCR. To identify potential mechanisms underlying expression changes, genomic DNA was bisulfite treated for pyrosequencing of key CpG island ‘shores' and promoter regions, and chromatin was prepared from both hippocampal tissue and a hippocampal-derived cell line to assess modifications of histones. For most genes, we found little evidence of DNA methylation changes in response to the medications. However, we detected histone H3 methylation and acetylation in the leptin receptor gene, Lepr, following treatment with both drugs. VPA-mediated effects on histones are well established, whereas the Li effects constitute a novel mechanism of transcriptional derepression for this drug. These data support several shared transcriptional targets of Li and VPA, and provide evidence suggesting leptin signaling as an epigenetic target of two mood stabilizers. Additional work could help clarify whether leptin signaling in the brain has a role in the therapeutic action of Li and VPA in bipolar disorder. PMID:26171981

  3. Haematological toxicity of Valproic acid compared to Levetiracetam in patients with glioblastoma multiforme undergoing concomitant radio-chemotherapy: a retrospective cohort study.

    PubMed

    Tinchon, Alexander; Oberndorfer, Stefan; Marosi, Christine; Gleiss, Andreas; Geroldinger, Angelika; Sax, Cornelia; Sherif, Camillo; Moser, Walter; Grisold, Wolfgang

    2015-01-01

    Patients with glioblastoma multiforme (GBM) and symptomatic seizures are in need of a sufficient antiepileptic treatment. Haematological toxicity is a limiting side effect of both, first line radio-chemotherapy with temozolomide (TMZ) and co-medication with antiepileptic drugs. Valproic acid (VPA) and levetiracetam (LEV) are considered favourable agents in brain tumor patients with seizures, but are commonly reported to induce haematological side effects on their own. We hypothesized, that antiepileptic treatment with these agents has no increased impact on haematological side effects during radio-chemotherapy in the first line setting. We included 104 patients from two neuro-oncologic centres with GBM and standard radio-chemotherapy in a retrospective cohort study. Patients were divided according to their antiepileptic treatment with either VPA, LEV or without antiepileptic drug therapy (control group). Declines in haemoglobin levels and absolute blood cell counts for neutrophil granulocytes, lymphocytes and thrombocytes were analyzed twice during concomitant and once during adjuvant phase. A comparison between the examined groups was performed, using a linear mixed model. Neutrophil granulocytes, lymphocytes and thrombocytes significantly decreased over time in all three groups (all p < 0.012), but there was no significant difference between the compared groups. A significant decline in haemoglobin was observed in the LEV treated group (p = 0.044), but did not differ between the compared groups. As a novel finding, this study demonstrates that co-medication either with VPA or LEV in GBM patients undergoing first line radio-chemotherapy with TMZ has no additional impact on medium-term haematological toxicity.

  4. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

    PubMed

    Linares, Gabriel R; Chiu, Chi-Tso; Scheuing, Lisa; Leng, Yan; Liao, Hsiao-Mei; Maric, Dragan; Chuang, De-Maw

    2016-07-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by CAG repeat expansions in the huntingtin gene. Although, stem cell-based therapy has emerged as a potential treatment for neurodegenerative diseases, limitations remain, including optimizing delivery to the brain and donor cell loss after transplantation. One strategy to boost cell survival and efficacy is to precondition cells before transplantation. Because the neuroprotective actions of the mood stabilizers lithium and valproic acid (VPA) induce multiple pro-survival signaling pathways, we hypothesized that preconditioning bone marrow-derived mesenchymal stem cells (MSCs) with lithium and VPA prior to intranasal delivery to the brain would enhance their therapeutic efficacy, and thereby facilitate functional recovery in N171-82Q HD transgenic mice. MSCs were treated in the presence or absence of combined lithium and VPA, and were then delivered by brain-targeted single intranasal administration to eight-week old HD mice. Histological analysis confirmed the presence of MSCs in the brain. Open-field test revealed that ambulatory distance and mean velocity were significantly improved in HD mice that received preconditioned MSCs, compared to HD vehicle-control and HD mice transplanted with non-preconditioned MSCs. Greater benefits on motor function were observed in HD mice given preconditioned MSCs, while HD mice treated with non-preconditioned MSCs showed no functional benefits. Moreover, preconditioned MSCs reduced striatal neuronal loss and huntingtin aggregates in HD mice. Gene expression profiling of preconditioned MSCs revealed a robust increase in expression of genes involved in trophic effects, antioxidant, anti-apoptosis, cytokine/chemokine receptor, migration, mitochondrial energy metabolism, and stress response signaling pathways. Consistent with this finding, preconditioned MSCs demonstrated increased survival after transplantation into the brain compared to non-preconditioned cells

  5. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies. PMID:27635203

  6. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism.

    PubMed

    Codagnone, Martín Gabriel; Podestá, María Fernanda; Uccelli, Nonthué Alejandra; Reinés, Analía

    2015-01-01

    Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive

  7. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism.

    PubMed

    Codagnone, Martín Gabriel; Podestá, María Fernanda; Uccelli, Nonthué Alejandra; Reinés, Analía

    2015-01-01

    Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive

  8. SMA CARNI-VAL Trial Part I: Double-Blind, Randomized, Placebo-Controlled Trial of L-Carnitine and Valproic Acid in Spinal Muscular Atrophy

    PubMed Central

    Swoboda, Kathryn J.; Scott, Charles B.; Crawford, Thomas O.; Simard, Louise R.; Reyna, Sandra P.; Krosschell, Kristin J.; Acsadi, Gyula; Elsheik, Bakri; Schroth, Mary K.; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W.; Sorenson, Susan L.; Maczulski, Jo Anne; Bromberg, Mark B.; Chan, Gary M.; Kissel, John T.

    2010-01-01

    Background Valproic acid (VPA) has demonstrated potential as a therapeutic candidate for spinal muscular atrophy (SMA) in vitro and in vivo. Methods Two cohorts of subjects were enrolled in the SMA CARNIVAL TRIAL, a non-ambulatory group of “sitters” (cohort 1) and an ambulatory group of “walkers” (cohort 2). Here, we present results for cohort 1: a multicenter phase II randomized double-blind intention-to-treat protocol in non-ambulatory SMA subjects 2–8 years of age. Sixty-one subjects were randomized 1∶1 to placebo or treatment for the first six months; all received active treatment the subsequent six months. The primary outcome was change in the modified Hammersmith Functional Motor Scale (MHFMS) score following six months of treatment. Secondary outcomes included safety and adverse event data, and change in MHFMS score for twelve versus six months of active treatment, body composition, quantitative SMN mRNA levels, maximum ulnar CMAP amplitudes, myometry and PFT measures. Results At 6 months, there was no difference in change from the baseline MHFMS score between treatment and placebo groups (difference = 0.643, 95% CI = −1.22–2.51). Adverse events occurred in >80% of subjects and were more common in the treatment group. Excessive weight gain was the most frequent drug-related adverse event, and increased fat mass was negatively related to change in MHFMS values (p = 0.0409). Post-hoc analysis found that children ages two to three years that received 12 months treatment, when adjusted for baseline weight, had significantly improved MHFMS scores (p = 0.03) compared to those who received placebo the first six months. A linear regression analysis limited to the influence of age demonstrates young age as a significant factor in improved MHFMS scores (p = 0.007). Conclusions This study demonstrated no benefit from six months treatment with VPA and L-carnitine in a young non-ambulatory cohort of subjects with SMA. Weight gain, age

  9. Effects of Valproic Acid and Dexamethasone Administration on Early Bio-Markers and Gene Expression Profile in Acute Kidney Ischemia-Reperfusion Injury in the Rat

    PubMed Central

    Speir, Ryan W.; Stallings, Jonathan D.; Andrews, Jared M.; Gelnett, Mary S.; Brand, Timothy C.; Salgar, Shashikumar K.

    2015-01-01

    Renal ischemia-reperfusion (IR) causes acute kidney injury (AKI) with high mortality and morbidity. The objective of this investigation was to ameliorate kidney IR injury and identify novel biomarkers for kidney injury and repair. Under general anesthesia, left renal ischemia was induced in Wister rats by occluding renal artery for 45 minutes, followed by reperfusion and right nephrectomy. Thirty minutes prior to ischemia, rats (n = 8/group) received Valproic Acid (150 mg/kg; VPA), Dexamethasone (3 mg/kg; Dex) or Vehicle (saline) intraperitoneally. Animals were sacrificed at 3, 24 or 120 h post-IR. Plasma creatinine (mg/dL) at 24 h was reduced (P<0.05) in VPA (2.7±1.8) and Dex (2.3±1.2) compared to Vehicle (3.8±0.5) group. At 3 h, urine albumin (mg/mL) was higher in Vehicle (1.47±0.10), VPA (0.84±0.62) and Dex (1.04±0.73) compared to naïve (uninjured/untreated control) (0.14±0.26) group. At 24 h post-IR urine lipocalin-2 (μg/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (9.61–11.36) compared to naïve group (0.67±0.29); also, kidney injury molecule-1 (KIM-1; ng/mL) was higher (P<0.05) in VPA, Dex and Vehicle groups (13.7–18.7) compared to naïve group (1.7±1.9). Histopathology demonstrated reduced (P<0.05) ischemic injury in the renal cortex in VPA (Grade 1.6±1.5) compared to Vehicle (Grade 2.9±1.1). Inflammatory cytokines IL1β and IL6 were downregulated and anti-apoptotic molecule BCL2 was upregulated in VPA group. Furthermore, kidney DNA microarray demonstrated reduced injury, stress, and apoptosis related gene expression in the VPA administered rats. VPA appears to ameliorate kidney IR injury via reduced inflammatory cytokine, apoptosis/stress related gene expression, and improved regeneration. KIM-1, lipocalin-2 and albumin appear to be promising early urine biomarkers for the diagnosis of AKI. PMID:25970334

  10. Paclitaxel plus valproic acid versus paclitaxel alone as second- or third-line therapy for advanced gastric cancer: a randomized Phase II trial

    PubMed Central

    Fushida, Sachio; Kinoshita, Jun; Kaji, Masahide; Oyama, Katsunobu; Hirono, Yasuo; Tsukada, Tomoya; Fujimura, Takashi; Ohta, Tetsuo

    2016-01-01

    Background Weekly paclitaxel (wPTX) is the preferred second-line chemotherapy for gastric cancer in Japan. Histone deacetylase inhibitors have been shown to decrease proliferation through cell-cycle arrest, differentiation, and apoptosis in gastric cancer cells. One histone deacetylase inhibitor, valproic acid (VPA), also inhibits tumor growth by inducing apoptosis and enhances the efficacy of paclitaxel (PTX), shown in a murine gastric cancer model. This Phase II trial was designed to evaluate the benefits of adding VPA to wPTX in patients with gastric cancer refractory to first-line treatment with fluoropyrimidine. Patients and methods The patients were randomly assigned in a 1:1 ratio to receive PTX 80 mg/m2 intravenously on days 1, 8, and 15, every 4 weeks, or a dose of PTX plus VPA taken everyday at 7.5 mg/kg twice daily. Random assignment was carried out at the data center with a minimization method adjusted by the Eastern Cooperative Oncology Group performance status (0–1 vs 2), prior chemotherapy (first-line vs second-line), and measurable lesions (presence vs absence). The primary end point was the overall survival (OS) rate, and the secondary end points were the progression-free survival rate and safety analysis. Results Sixty-six patients were randomly assigned to receive wPTX (n=33) or wPTX plus VPA (n=33). The median OS was 9.8 months in the wPTX group and 8.7 months in the wPTX plus VPA group (hazard ratio 1.19; 95% CI 0.702–2.026; P=0.51). The median progression-free survival was 4.5 months in the wPTX group and 3.0 months in the wPTX plus VPA group (hazard ratio 1.29; 95% CI 0.753–2.211; P=0.35). Grade 3–4 adverse events were neutropenia (3.1%), pneumonia (1.6%), liver injury (1.6%), brain infarction (1.6%), and rupture of aorta (1.6%). Conclusion No statistically significant difference was observed between wPTX and wPTX plus VPA for OS. PMID:27524882

  11. Anti-inflammatory and Anti-apoptotic Effect of Valproic Acid and Doxycycline Independent from MMP Inhibition in Early Radiation Damage

    PubMed Central

    Hoşgörler, Ferda; Keleş, Didem; Tanrıverdi-Akhisaroğlu, Serpil; İnanç, Şeniz; Akhisaroğlu, Mustafa; Cankurt, Ülker; Aydoğdu, Zekiye; Uçar, Ahmet Deniz; Çetinayak, Oğuz; Oktay, Gülgün; Arda, Sevil Gönenç

    2016-01-01

    Background: Matrix metalloproteinase (MMP) inhibitors decrease inflammation in normal tissues and suppress cancer progress in normal tissues. Valproic acid (VA) and doxycycline (DX) are MMP inhibitors that have radio-protective effects. Their ability to inhibit MMPs in irradiated tissue is unknown and the role of MMPs in radio-protective effects has not been tested to date. Aims: The purpose of this study was to examine whether administration of VA and DX to rats before irradiation affects tissue inflammation and apoptosis in the early phase of radiation, and whether the effect of these drugs is mediated by MMP inhibition. Study Design: Animal experimentation. Methods: Twenty-six Wistar rats were randomized into four groups: control (CTRL), radiation (RT), VA plus radiation (VA+RT), and DX plus radiation (DX+RT). Three study groups were exposed to a single dose of abdominal 10 Gy gamma radiation; the CTRL group received no radiation. Single doses of VA 300 mg/kg and DX 100 mg/kg were administered to each rat before radiation and all rats were sacrificed 8 hours after irradiation, at which point small intestine tissue samples were taken for analyses. Levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and matrix metal-loproteinases (MMP-2 and MMP 9) were measured by ELISA, MMP activities were measured by gelatin and casein zymography and apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: VA decreased the levels of TNF-α and IL-1β proteins insignificantly and decreased apoptosis significantly in the irradiated tissue, but did not inhibit MMPs. In contrast, VA protected the basal MMP activities, which decreased in response to irradiation. No effect of DX was observed on the levels of inflammatory cytokines or activities of MMPs in the early phases of radiation apoptosis. Conclusion: Our findings indicated that VA protects against inflammation and apoptosis, and DX exhibits anti-apoptotic effects in early

  12. A New Derivative of Valproic Acid Amide Possesses a Broad-spectrum Antiseizure Profile and Unique Activity Against Status Epilepticus and Organophosphate Neuronal Damage

    PubMed Central

    White, H. Steve; Alex, Anitha B.; Pollock, Amanda; Hen, Naama; Shekh-Ahmad, Tawfeeq; Wilcox, Karen S.; McDonough, John H.; Stables, James P.; Kaufmann, Dan; Yagen, Boris; Bialer, Meir

    2011-01-01

    Summary Purpose sec-Butyl-propylacetamide (SPD) is a one-carbon homologue of valnoctamide (VCD), a CNS-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The current study evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. Methods SPD’s anticonvulsant activity was evaluated in several rodent seizure and epilepsy models including: maximal electroshock (MES), 6Hz psychomotor, subcutaneous (s.c.) metrazol-, s.c., picrotoxin, s.c. bicuculline, audiogenic and corneal and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-Aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. Key Findings SPD was highly effective and displayed a wide protective index (PI=TD50/ED50) in the standardized seizure and epilepsy models employed. SPD’s wide PI values demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also

  13. Autistic-Like Behaviors, Oxidative Stress Status, and Histopathological Changes in Cerebellum of Valproic Acid Rat Model of Autism Are Improved by the Combined Extract of Purple Rice and Silkworm Pupae.

    PubMed

    Morakotsriwan, Nartnutda; Wattanathorn, Jintanaporn; Kirisattayakul, Woranan; Chaisiwamongkol, Kowit

    2016-01-01

    Due to the crucial role of oxidative stress on the pathophysiology of autism and the concept of synergistic effect, the benefit of the combined extract of purple rice and silkworm pupae (AP1) for autism disorder was the focus. Therefore, we aimed to determine the effect of AP1 on autistic-like behaviors, oxidative stress status, and histopathological change of cerebellum in valproic acid (VPA) rat model of autism. VPA was injected on postnatal day (PND) 14 and the animals were orally given AP1 at doses of 50, 100, and 200 mg·kg(-1) BW between PND 14 and PND 40. The autism-like behaviors were analyzed via hot-plate, rotarod, elevated plus-maze, learning, memory, and social behavior tests. Oxidative stress and the histological change in the cerebellum were assessed at the end of study. AP1 treated rats improved behaviors in all tests except that in hot-plate test. The improvement of oxidative stress and Purkinje cell loss was also observed in the cerebellum of VPA-treated rats. Our data suggest that AP1 partially reduced autism-like behaviors by improving oxidative stress and Purkinje cell loss. Further research is required to identify the active ingredients in AP1 and gender difference effect.

  14. Autistic-Like Behaviors, Oxidative Stress Status, and Histopathological Changes in Cerebellum of Valproic Acid Rat Model of Autism Are Improved by the Combined Extract of Purple Rice and Silkworm Pupae

    PubMed Central

    Chaisiwamongkol, Kowit

    2016-01-01

    Due to the crucial role of oxidative stress on the pathophysiology of autism and the concept of synergistic effect, the benefit of the combined extract of purple rice and silkworm pupae (AP1) for autism disorder was the focus. Therefore, we aimed to determine the effect of AP1 on autistic-like behaviors, oxidative stress status, and histopathological change of cerebellum in valproic acid (VPA) rat model of autism. VPA was injected on postnatal day (PND) 14 and the animals were orally given AP1 at doses of 50, 100, and 200 mg·kg−1 BW between PND 14 and PND 40. The autism-like behaviors were analyzed via hot-plate, rotarod, elevated plus-maze, learning, memory, and social behavior tests. Oxidative stress and the histological change in the cerebellum were assessed at the end of study. AP1 treated rats improved behaviors in all tests except that in hot-plate test. The improvement of oxidative stress and Purkinje cell loss was also observed in the cerebellum of VPA-treated rats. Our data suggest that AP1 partially reduced autism-like behaviors by improving oxidative stress and Purkinje cell loss. Further research is required to identify the active ingredients in AP1 and gender difference effect. PMID:27034733

  15. Reversed-polarity capillary zone electrophoretic analysis of usnic acid.

    PubMed

    Kreft, S; Strukelj, B

    2001-08-01

    A capillary zone electrophoretic (CZE) method for the determination of usnic acid is described for the first time. Usnic acid is an antibiotic substance from lichens. Due to its low solubility in water, a high content of methanol in CZE buffer is required. Because of the methanol in the buffer, the electroosmotic flow velocity was lower than the electrophoretic mobility of usnic acid. Accordingly, the use of reversed-polarity (with the anode on the detector side of the capillary) was necessary. The optimal buffer composition was 50 mM NaOH, 20 mM acetic acid and 5% water in methanol. The detection limit of UV detector at 290 nm for usnic acid in the injected extract was 3.5 mg/L and the relative standard deviation of the normalized peak area was 3.3% at 250 mg/L.

  16. Simultaneous acetic acid separation and monosaccharide concentration by reverse osmosis.

    PubMed

    Zhou, Fanglei; Wang, Cunwen; Wei, Jiang

    2013-03-01

    This study aimed to investigate the feasibility and efficiency of simultaneous acetic acid separation and sugar concentration in model lignocellulosic hydrolyzates by reverse osmosis. The effects of operation parameters such as pH, temperature, pressure and feed concentration on the solute retentions were examined with a synthetic xylose–glucose–acetic acid model solution. Results showed that the monosaccharides were almost completely rejected at above 20 bar, while the acetic acid retention increased with the increase in pH and pressure, and decreased with the temperature increase. The maximum separation factors of acetic acid over xylose and glucose reached as high as 211.5 and 228.4 at pH 2.93 (the initial pH of model lignocellulosic hydrolyzates), 40 °C and 20 bar. Furthermore, the concentration and diafiltration process were employed at optimal operation conditions. Consequently, a high sugar concentration and a beneficially lower acetic acid concentration were simultaneously achieved by reverse osmosis.

  17. Evaluating an etiologically relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler's murine encephalomyelitis virus mouse model.

    PubMed

    Barker-Haliski, Melissa L; Dahle, E Jill; Heck, Taylor D; Pruess, Timothy H; Vanegas, Fabiola; Wilcox, Karen S; White, H Steve

    2015-05-01

    Central nervous system infections can underlie the development of epilepsy, and Theiler's murine encephalomyelitis virus (TMEV) infection in C57BL/6J mice provides a novel model of infection-induced epilepsy. Approximately 50-65% of infected mice develop acute, handling-induced seizures during the infection. Brains display acute neuropathology, and a high number of mice develop spontaneous, recurrent seizures and behavioral comorbidities weeks later. This study characterized the utility of this model for drug testing by assessing whether antiseizure drug treatment during the acute infection period attenuates handling-induced seizures, and whether such treatment modifies associated comorbidities. Male C57BL/6J mice infected with TMEV received twice-daily valproic acid (VPA; 200 mg/kg), carbamazepine (CBZ; 20 mg/kg), or vehicle during the infection (days 0-7). Mice were assessed twice daily during the infection period for handling-induced seizures. Relative to vehicle-treated mice, more CBZ-treated mice presented with acute seizures; VPA conferred no change. In mice displaying seizures, VPA, but not CBZ, reduced seizure burden. Animals were then randomly assigned to acute and long-term follow-up. VPA was associated with significant elevations in acute (day 8) glial fibrillary acidic protein (astrocytes) immunoreactivity, but did not affect NeuN (neurons) immunoreactivity. Additionally, VPA-treated mice showed improved motor performance 15 days postinfection (DPI). At 36 DPI, CBZ-treated mice traveled significantly less distance through the center of an open field, indicative of anxiety-like behavior. CBZ-treated mice also presented with significant astrogliosis 36 DPI. Neither CBZ nor VPA prevented long-term reductions in NeuN immunoreactivity. The TMEV model thus provides an etiologically relevant platform to evaluate potential treatments for acute seizures and disease modification.

  18. Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-C(6)]-d-glucose tracer in mice.

    PubMed

    Beger, Richard D; Hansen, Deborah K; Schnackenberg, Laura K; Cross, Brandie M; Fatollahi, Javad J; Lagunero, F Tracy; Sarnyai, Zoltan; Boros, Laszlo G

    2009-09-01

    Previous genetic and proteomic studies identified altered activity of various enzymes such as those of fatty acid metabolism and glycogen synthesis after a single toxic dose of valproic acid (VPA) in rats. In this study, we demonstrate the effect of VPA on metabolite synthesis flux rates and the possible use of abnormal (13)C labeled glucose-derived metabolites in plasma or urine as early markers of toxicity. Female CD-1 mice were injected subcutaneously with saline or 600 mg/kg) VPA. Twelve hours later, the mice were injected with an intraperitoneal load of 1 g/kg [U-(13)C]-d-glucose. (13)C isotopomers of glycogen glucose and RNA ribose in liver, kidney and brain tissue, as well as glucose disposal via cholesterol and glucose in the plasma and urine were determined. The levels of all of the positional (13)C isotopomers of glucose were similar in plasma, suggesting that a single VPA dose does not disturb glucose absorption, uptake or hepatic glucose metabolism. Three-hour urine samples showed an increase in the injected tracer indicating a decreased glucose re-absorption via kidney tubules. (13)C labeled glucose deposited as liver glycogen or as ribose of RNA were decreased by VPA treatment; incorporation of (13)C via acetyl-CoA into plasma cholesterol was significantly lower at 60 min. The severe decreases in glucose-derived carbon flux into plasma and kidney-bound cholesterol, liver glycogen and RNA ribose synthesis, as well as decreased glucose re-absorption and an increased disposal via urine all serve as early flux markers of VPA-induced adverse metabolic effects in the host.

  19. Reversible Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect

    Heldebrant, David J.; Koech, Phillip K.; Yonker, Clement R.; Rainbolt, James E.; Zheng, Feng

    2010-08-31

    Acid gas scrubbing technology is predominantly aqueous alkanolamine based. Of the acid gases, CO2, H2S and SO2 have been shown to be reversible, however there are serious disadvantages with corrosion and high regeneration costs. The primary scrubbing system composed of monoethanolamine is limited to 30% by weight because of the highly corrosive solution. This gravimetric limitation limits the CO2 volumetric (≤108 g/L) and gravimetric capacity (≤7 wt%) of the system. Furthermore the scrubbing system has a large energy penalty from pumping and heating the excess water required to dissolve the MEA bicarbonate salt. Considering the high specific heat of water (4 j/g-1K-1), low capacities and the high corrosion we set out to design a fully organic solvent that can chemically bind all acid gases i.e. CO2 as reversible alkylcarbonate ionic liquids or analogues thereof. Having a liquid acid gas carrier improves process economics because there is no need for excess solvent to pump and to heat. We have demonstrated illustrated in Figure 1, that CO2-binding organic liquids (CO2BOLs) have a high CO2 solubility paired with a much lower specific heat (<1.5 J/g-1K-1) than aqueous systems. CO2BOLs are a subsection of a larger class of materials known as Binding Organic Liquids (BOLs). Our BOLs have been shown to reversibly bind and release COS, CS2, and SO2, which we denote COSBOLS, CS2BOLs and SO2BOLs. Our BOLs are highly tunable and can be designed for post or pre-combustion gas capture. The design and testing of the next generation zwitterionic CO2BOLs and SO2BOLs are presented.

  20. Lithium/Valproic acid combination and L-glutamate induce similar pattern of changes in the expression of miR-30a-5p in SH-SY5Y neuroblastoma cells.

    PubMed

    Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Angelucci, Francesco

    2014-12-01

    It has been proposed that Lithium (Li) and valproic acid (VPA) may be useful to treat neurodegenerative disorders because they protect neurons against excitotoxic insults both in vitro and in vivo models. Moreover, these two drugs may exert their effects by regulating microRNAs (miRNAs), single-stranded and non-coding RNAs able to control gene expression. A subset of the miR-30a family (miR-30a-5p) is involved in the fine-tuning of neuroprotective molecules such as the neurotrophin brain-derived neurotrophic factor (BDNF). Thus, there is the possibility that Li and VPA may alter miR-30a-5p and in turn affect BDNF production. However, data on miR-30a-5p levels in presence of Li and VPA and/or a neurotoxic insult are not yet available. Thus, the aim of this study was to investigate whether exposure to Li and VPA may influence miR-30a-5p expression in an in vitro model of neurodegeneration generated by the exposure of a human neuroblastoma cell line (SH-SY5Y) to neurotoxic concentration of L-glutamate. The results showed that both L-glutamate and Li-VPA caused an increase in miR-30a-5p expression at 24 h of incubation and a decrease at 48 h. Moreover, Li-VPA alone caused a decrease in miR-30a-5p expression also in cells not exposed to the toxic effect of glutamate. These data indicate that changes in miR-30a-5p expression induced by Li-VPA are not related to the cytoprotective action of BDNF and suggest alternative function for this miR. These findings also indicate that miRNA changes are present in in vitro models of neurodegeneration, although the significance of these changes warrants further investigation.

  1. Down-modulation of SEL1L, an unfolded protein response and endoplasmic reticulum-associated degradation protein, sensitizes glioma stem cells to the cytotoxic effect of valproic acid.

    PubMed

    Cattaneo, Monica; Baronchelli, Simona; Schiffer, Davide; Mellai, Marta; Caldera, Valentina; Saccani, Gloria Jotti; Dalpra, Leda; Daga, Antonio; Orlandi, Rosaria; DeBlasio, Pasquale; Biunno, Ida

    2014-01-31

    Valproic acid (VPA), an histone deacetylase inhibitor, is emerging as a promising therapeutic agent for the treatments of gliomas by virtue of its ability to reactivate the expression of epigenetically silenced genes. VPA induces the unfolded protein response (UPR), an adaptive pathway displaying a dichotomic yin yang characteristic; it initially contributes in safeguarding the malignant cell survival, whereas long-lasting activation favors a proapoptotic response. By triggering UPR, VPA might tip the balance between cellular adaptation and programmed cell death via the deregulation of protein homeostasis and induction of proteotoxicity. Here we aimed to investigate the impact of proteostasis on glioma stem cells (GSC) using VPA treatment combined with subversion of SEL1L, a crucial protein involved in homeostatic pathways, cancer aggressiveness, and stem cell state maintenance. We investigated the global expression of GSC lines untreated and treated with VPA, SEL1L interference, and GSC line response to VPA treatment by analyzing cell viability via MTT assay, neurosphere formation, and endoplasmic reticulum stress/UPR-responsive proteins. Moreover, SEL1L immunohistochemistry was performed on primary glial tumors. The results show that (i) VPA affects GSC lines viability and anchorage-dependent growth by inducing differentiative programs and cell cycle progression, (ii) SEL1L down-modulation synergy enhances VPA cytotoxic effects by influencing GSCs proliferation and self-renewal properties, and (iii) SEL1L expression is indicative of glioma proliferation rate, malignancy, and endoplasmic reticulum stress statuses. Targeting the proteostasis network in association to VPA treatment may provide an alternative approach to deplete GSC and improve glioma treatments.

  2. Isolation of a fission yeast mutant that is sensitive to valproic acid and defective in the gene encoding Ric1, a putative component of Ypt/Rab-specific GEF for Ryh1 GTPase.

    PubMed

    Ma, Yan; Sugiura, Reiko; Zhang, Lili; Zhou, Xin; Takeuchi, Mai; He, Yi; Kuno, Takayoshi

    2010-09-01

    Valproic acid (VPA) causes various therapeutic and biological effects, but the exact mechanisms underlying these effects, however, remain elusive. To gain insights into the molecular mechanisms of VPA action, we performed in fission yeast a genetic screen for mutants that show VPA hypersensitivity and have identified several membrane-trafficking mutants including vas1-1/vps45 and vas2-1/aps1. Here, we describe the isolation and characterization of vas3-1/ric1-v3, a mutant allele of the ric1 (+) gene encoding a fission yeast homolog of the budding yeast Ric1p, a component of Ypt/Rab-specific guanyl-nucleotide exchange factor (GEF). The Rab GTPase Ryh1 knockout (Deltaryh1) cells and Deltaric1 cells exhibited similar phenotypes. The double knockout Deltaric1Deltaryh1 cells did not display synthetic growth defects. These results are consistent with the notion that Ric1 may be a component of the GEF complex for Ryh1. Overexpression of wild-type Ryh1 and the constitutively active Ryh1Q70L only partially suppressed the phenotypes of ric1-v3 and Deltaric1 cells, and they failed to localize to the Golgi/endosomes in ric1-v3 and Deltaric1 cells. Furthermore, we isolated vps15 (+) gene, encoding a serine/threonine protein kinase, as a dosage-dependent suppressor of the temperature-sensitive phenotype of ric1-v3 mutant, but not that of Deltaric1 cells. Our results showed that the ric1-v3 mutant allele has some residual functional activity and suggest that Vps15 plays a role in the regulation of Ric1 function. In conclusion, Ric1 is a putative component of GEF for Ryh1 and might be regulated by Vps15. Further studies are needed to reveal the mechanism underlying the regulation.

  3. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance.

    PubMed

    Thurston, J H; Hauhart, R E

    1992-04-01

    Very young children with organic brain damage, intractable seizures, and developmental retardation are at particular risk of developing fatal hepatic dysfunction coincident with valproate therapy, especially if the children are also receiving other anticonvulsant drugs. The mechanism of valproate-associated hepatic failure in these children is unclear. There are two major theories of etiology. The first concerns the manyfold consequences of depletion of CoA due to sequestration into poorly metabolized valproyl CoA and valproyl CoA metabolites. The other theory proposes that the unsaturated valproate derivative 2-n-propyl-4-pentenoic acid and/or metabolically activated intermediates are toxic and directly cause irreversible inhibition of enzymes of beta-oxidation. The present study shows for the first time that in developing mice, when panthothenic acid and carnitine are administered with valproate, at least some of the effects of valproate are mitigated. Perhaps most importantly, the beta-hydroxybutyrate concentration in plasma and the free CoA and acetyl CoA levels in liver do not fall so low. Cotreatment with carnitine alone was without effect. Findings support the CoA depletion mechanism of valproate inhibition of beta-oxidation and other CoA- and acetyl CoA-requiring enzymic reactions and stress the role of carnitine in the regulation of CoA synthesis at the site of action of pantothenate kinase. PMID:1570210

  4. Study on polyepoxysuccinic acid reverse osmosis scale inhibitor.

    PubMed

    Sun, Yonghong; Xiang, Wenhua; Wang, Ying

    2009-01-01

    The effectiveness and applicability of polyepoxysuccinic acid (PESA) as a reverse osmosis (RO) scale inhibitor were studied using static and dynamic methods. In the static study, PESA performed very well in the treatment of water samples with various types of scale that commonly exist in RO water (i.e., CaCO3, CaSO4, BaSO4, SrSO4), showing an average scale inhibition ratio of above 90% at a dosage of 10 mg/L. SEM analysis showed a disordered CaCO3 crystal in the presence of PESA, suggesting the scale-inhibiting mechanism. In the dynamic experiment, PESA also showed great performance in the treatment of 10 samples of synthetic tap water or sea water with different ion composition (i.e., Ca(2+), HCO3(-), Fe(3+), Al(3+)). After one cycle (7 d) of RO treatment of each sample at full recycle operation mode under a constant pressure of 1×10(6) Pa, the differences in water permeability and desalination ratio among samples are within 5%, suggesting that PESA is capable of treating waters of different quality, and has a strong resistance to ions that are harmful to scale inhibiting (i.e., Fe(3+) and Al(3+)). All these results suggest that PESA should be an effective scale inhibitor that is applicable to RO treatment of waters with a wide range of ion compositions.

  5. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Reverses Trans-10, Cis-12 Conjugated Linoleic Acid Induced Insulin Resistance in Mice1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: t10, c12-Conjugated linoleic acid (CLA) induces insulin resistance and fatty liver in mice which can be reversed by fish oils. We determined if it is eicospentaenoic acid (20:5n-3, EPA) or docoshexaenoic acid (22:6n-3, DHA) that reverses these adverse effects of CLA. Research Design and M...

  6. Reversals.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers nine materials for remediating reversals in handicapped students at the early childhood and elementary levels. Entries are presented in order of NIMIS accession…

  7. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds.

    PubMed

    Cline, J C; Nelson, J D; Gerzon, K; Williams, R H; Delong, D C

    1969-07-01

    With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.

  8. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  9. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  10. Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Williams, Karen; Wan, Caixia

    The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100-400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97±1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

  11. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  12. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  13. [Determination of arsanilic acid and sulfanilic acid as adulterant in feed additives by reversed-phase high performance liquid chromatography].

    PubMed

    Xu, Jinping; He, Heng; Xu, Mengyi; Qu, Yanhua

    2010-02-01

    A reversed-phase high performance liquid chromatographic (RP-HPLC) method was established for the determination of arsanilic acid and sulfanilic acid as adulterant in the feed additives. The separation was carried out on a Waters Bondapak C18 column, and methanol-water (pH 2.9 adjusted by 0.01 mol/L phosphoric acid) (1 : 4, v/v) was used as the mobile phase with a flow rate of 1.0 mL/min. A diode array detector was used at 244 nm as the detection wavelength. Arsanilic acid and sulfanilic acid were separated within 3 min. The linear ranges all were 5 - 200 mg/L and the detection limits (S/N = 3) were 0.20 and 0.15 mg/L for arsanilic acid and sulfanilic acid, respectively. This method is simple and rapid, and suitable for the simultaneous determination of arsanilic acid and sulfanilic acid in feed additives.

  14. The Effect of varying ratios of docosahexaenoic Acid and arachidonic acid in the prevention and reversal of biochemical essential fatty acid deficiency in a murine model

    PubMed Central

    Le, Hau D.; Fallon, Erica M.; Kalish, Brian T.; de Meijer, Vincent E.; Meisel, Jonathan A.; Gura, Kathleen M.; Nose, Vania; Pan, Amy H.; Bistrian, Bruce R.; Puder, Mark

    2012-01-01

    Objective Essential fatty acids (EFA) are necessary for growth, development, and biological function, and must be acquired through the diet. While linoleic acid (LA) and alpha-linolenic acid (ALA) have been considered the true EFAs, we previously demonstrated that docosahexaenoic acid (DHA) and arachidonic acid (AA) taken together as the sole source of dietary fatty acids can prevent biochemical essential fatty acid deficiency (EFAD). This study evaluates the effect of varying dietary ratios of DHA:AA in the prevention and reversal of biochemical EFAD in a murine model. Methods Using a murine model of EFAD, we provided mice with 2.1% of daily caloric intake in varying DHA:AA ratios (1:1, 5:1, 10:1, 20:1, 200:1, 100:0) for 19 days in association with a liquid high-carbohydrate fat-free diet to evaluate the effect on fatty acid profiles. In a second experiment, we evaluated the provision of varying DHA:AA ratios (20:1, 200:1, 100:0) on the reversal of biochemical EFAD. Results Mice provided with DHA and AA had no evidence of biochemical EFAD, regardless of the ratio (1:1, 5:1, 10:1, 20:1, 200:1, 100:0) administered. Biochemical EFAD was reversed with DHA:AA ratios of 20:1, 200:1, and 100:0 following 3 and 5 weeks of dietary provision, although the 20:1 ratio was most effective in the reversal and stabilization of the triene:tetraene ratio. Conclusion Provision of DHA and AA, at 2.1% of daily caloric intake in varying ratios can prevent biochemical evidence of EFAD and hepatic steatosis over the short-term, with a ratio of 20:1 DHA:AA most effectively reversing EFAD. PMID:23151438

  15. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    2016-01-01

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water. PMID:27438241

  16. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry Yu; Rappoport, Dmitrij; Aspuru-Guzik, Alán

    2015-01-01

    We consider the hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach to quantify the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for investigations of the origin of the common metabolic core should be significantly extended.

  17. Reversal learning enhanced by lysergic acid diethylamide (LSD): concomitant rise in brain 5-hydroxytryptamine levels.

    PubMed

    King, A R; Martin, I L; Melville, K A

    1974-11-01

    1 Small doses of lysergic acid diethylamide (LSD) (12.5-50 mug/kg) consistently facilitated learning of a brightness discrimination reversal.2 2-Bromo-lysergic acid diethylamide (BOL-148), a structural analogue of LSD, with similar peripheral anti-5-hydroxytrypamine activity but no psychotomimetic properties, had no effect in this learning situation at a similar dose (25 mug/kg).3 LSD, but not BOL-148, caused a small but significant increase in brain 5-hydroxytryptamine levels, but had no effect on the levels of catecholamines in the brain at 25 mug/kg.

  18. [Determination of corosolic acid in Eriobotrya japonica leaves by reversed-phase high performance liquid chromatography].

    PubMed

    Hu, Changping; Chen, Longsheng; Xin, Yang; Cai, Qunxing

    2006-09-01

    Corosolic acid is clinically proven to activate cell glucose-transporter "shuttles" and thus helps balance blood glucose levels. A method was developed for the determination of corosolic acid in Eriobotrya japonica leaves by reversed-phase high performance liquid chromatography (RP-HPLC). The peak of corosolic acid in Eriobotrya japonica leaves was qualitatively analyzed by comparing the retention times and mass spectra of corosolic acid standard and the extract on HPLC-mass spectrometry (MS). Eriobotrya japonica leaves were extracted thrice for 3.0 h at 90 degrees C with 90% ethanol. The extract was concentrated and deposited by water to remove the impurity which interfered the determination. The deposit was dissolved by methanol and separated on an ODS column (250 mm x 4.6 mm i.d., 5 microm). Methanol-1.0% acetic acid (88:12, v/v) was used as the mobile phase with a flow rate of 0.8 mL/min. The detection wavelength was 215 nm. The linearity was good within the range of 1.0-6.0 microg (r = 0.9999). The corosolic acid content of Eriobotrya japonica leaves from Huangshan was 0.36%. The average recovery of corosolic acid was 99%. The method is simple, rapid, accurate and reliable for the determination of corosolic acid in Eriobotrya japonica leaves.

  19. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  20. Reversal of the surface charge asymmetry in purple membrane due to single amino acid substitutions.

    PubMed Central

    Hsu, K C; Rayfield, G W; Needleman, R

    1996-01-01

    Twenty-seven mutant bacteriorhodopsin's were screened to determine the PKa for reversal of the permanent electric dipole moment. The photoelectric response of an aqueous purple-membrane suspension was used to determine the direction of the purple-membrane dipole moment as a function of pH. The pK(a) for the dipole reversal of wild-type bacteriorhodopsin is 4.5. Six of the 27 mutant bacteriorhodopsin's were found to have a pK(a) for dipole reversal larger than that of wild-type bacteriorhodopsin. Two of these mutants, L93T and L93W, involve a neutral amino acid substitution in the interior of the protein. The direction of the purple-membrane permanent electric dipole moment is determined by the purple-membrane surface charge asymmetry. We conclude that these two substitutions, which do not involve charge replacement, alter the pK(a) for the reversal of the purple-membrane surface charge asymmetry. We suggest that these changes to the pK(a) are due to altered protein folding at the surface of the purple-membrane induced by single-site substitutions in the protein interior. PMID:9172760

  1. Critical factors for the reversal of methotrexate cytotoxicity by folinic acid.

    PubMed Central

    Bernard, S.; Etienne, M. C.; Fischel, J. L.; Formento, P.; Milano, G.

    1991-01-01

    The cytotoxicity of methotrexate (MTX) on representative human tumour cell lines (two cell lines from head and neck carcinomas, two from breast carcinomas, two from osteosarcomas and one lymphoblastoid cell line) was evaluated to: (1) examine the optimal time interval between MTX and folinic acid (FA) administration; (2) determine the critical FA/MTX concentration ratios; and (3) compare the relative effects of the equimolar mixture d,I-FA and I-FA. The cytotoxic effects of MTX were assessed by the MTT semi-automated test. For all of the cell lines tested, a significant inverse relationship was noted between the degree of MTX cytotoxicity reversal and the duration of the time interval between MTX and FA administration. Overall an 18-24 h interval between MTX and FA represented a time-threshold after which MTX effects could not efficiently be reversed by FA in most cell lines. With shorter time intervals between MTX and FA, MTX cytotoxicity could be partially on even totally reversed by FA; the intensity of reversal varied among the cell lines tested, and depended on the FA/MTX ratio. Regardless of the interval between MTX and FA, analysis of the various FA/MTX ratios revealed a significant direct relationship between this ratio and the percentage of recovery. Presence of the d-form had no influence on the MTX rescue capacity of the I-form; this suggests that the presence of the d-FA is unlikely to have any significant clinical consequences. PMID:1997110

  2. Reversible ring-opening reactions of nimetazepam and nitrazepam in acidic media at body temperature.

    PubMed

    Inotsume, N; Nakano, M

    1980-11-01

    Hydrolytic reactions of nimetazepam and nitrazepam in acidic solutions at body temperature were studied spectrophotometrically. The open-ring compounds produced by hydrolysis were in equilibrium with the corresponding closed-ring compounds (protonated nimetazepam and nitrazepam). Forward-reaction rate constants of both drugs were greater than the rate constant of diazepam. In nimetazepam, the forward-reaction rate constant was smaller than the reverse-reaction rate constant; in nitrazepam, the reverse-reaction rate constant was much smaller than the forward-reaction rate constant, and possible amide bond cleavage was indicated. The activation energies of the forward and reverse reactions of nimetazepam and the forward reaction of nitrazepam were calculated from Arrhenius-type plots, whereas no clear temperature dependency was observed in the reverse-reaction rate constant of nitrazepam. The effect of pH on these reactions also was examined. In addition, the pKa values of nimetazepam and nitrazepam were calculated to be 2.53 and 2.77, respectively.

  3. Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Zhang, Yingze; Reddy, Raju C.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disease, thought to be largely transforming growth factor β (TGFβ) driven, for which there is no effective therapy. We assessed the potential benefits in IPF of nitrated fatty acids (NFAs), which are unique endogenous agonists of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor that exhibits wound-healing and antifibrotic properties potentially useful for IPF therapy. We found that pulmonary PPARγ is down-regulated in patients with IPF. In vitro, knockdown or knockout of PPARγ expression in isolated human and mouse lung fibroblasts induced a profibrotic phenotype, whereas treating human fibroblasts with NFAs up-regulated PPARγ and blocked TGFβ signaling and actions. NFAs also converted TGFβ to inactive monomers in cell-free solution, suggesting an additional mechanism through which they may inhibit TGFβ. In vivo, treating mice bearing experimental pulmonary fibrosis with NFAs reduced disease severity. Also, NFAs up-regulated the collagen-targeting factor milk fat globule-EGF factor 8 (MFG-E8), stimulated collagen uptake and degradation by alveolar macrophages, and promoted myofibroblast dedifferentiation. Moreover, treating mice with established pulmonary fibrosis using NFAs reversed their existing myofibroblast differentiation and collagen deposition. These findings raise the prospect of treating IPF with NFAs to halt and perhaps even reverse the progress of IPF.—Reddy, A. T., Lakshmi, S. P., Zhang, Y., Reddy, R. C. Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages. PMID:25252739

  4. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice

    PubMed Central

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-01-01

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  5. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  6. Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid▿ †

    PubMed Central

    Vázquez-Calvo, Ángela; Saiz, Juan-Carlos; Sobrino, Francisco; Martín-Acebes, Miguel A.

    2011-01-01

    Valproic acid (VPA) is a short-chain fatty acid commonly used for treatment of neurological disorders. As VPA can interfere with cellular lipid metabolism, its effect on the infection of cultured cells by viruses of seven viral families relevant to human and animal health, including eight enveloped and four nonenveloped viruses, was analyzed. VPA drastically inhibited multiplication of all the enveloped viruses tested, including the zoonotic lymphocytic choriomeningitis virus and West Nile virus (WNV), while it did not affect infection by the nonenveloped viruses assayed. VPA reduced vesicular stomatitis virus infection yield without causing a major blockage of either viral RNA or protein synthesis. In contrast, VPA drastically abolished WNV RNA and protein synthesis, indicating that this drug can interfere the viral cycle at different steps of enveloped virus infection. Thus, VPA can contribute to an understanding of the crucial steps of viral maturation and to the development of future strategies against infections associated with enveloped viruses. PMID:21106740

  7. Uncertainty of Prebiotic Scenarios: The Case of the Non-Enzymatic Reverse Tricarboxylic Acid Cycle

    NASA Astrophysics Data System (ADS)

    Zubarev, Dmitry; Rappoport, Dmitrij; Aspuru-Guzik, Alan

    2015-03-01

    We consider the much discussed hypothesis of the primordial nature of the non-enzymatic reverse tricarboxylic acid (rTCA) cycle and describe a modeling approach that quantifies the uncertainty of this hypothesis due to the combinatorial aspect of the constituent chemical transformations. Our results suggest that a) rTCA cycle belongs to a degenerate optimum of auto-catalytic cycles, and b) the set of targets for the investigations of the origin of the common metabolic core should be significantly extended. This work was supported by a grant from the Simons Foundation (SCOL 291937, Dmitry Zubarev).

  8. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers.

  9. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes.

    PubMed

    Cheng, Xiang; Huang, Yan; Li, Hui; Yue, Fan; Wen, Hongmei; Wang, Jide

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  10. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  11. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand.

  12. Omega 3 fatty acids promote macrophage reverse cholesterol transport in hamster fed high fat diet.

    PubMed

    Kasbi Chadli, Fatima; Nazih, Hassane; Krempf, Michel; Nguyen, Patrick; Ouguerram, Khadija

    2013-01-01

    The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of (3)H-cholesterol-labelled hamster primary macrophages. Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001). Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using (3)H- cholesterol labeled Fu5AH cells. In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT. PMID:23613796

  13. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J.

    2006-02-15

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

  14. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.

    PubMed

    Zhang, Gaosen; Sun, Henry J

    2014-01-01

    D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.

  15. [Reverse osmosis membrane fouling by humic acid using XDLVO approach: effect of calcium ions].

    PubMed

    Yao, Shu-Di; Gao, Xin-Yu; Guo, Ben-Hua; Bao, Nan; Xie, Hui-Jun; Liang, Shuang

    2012-06-01

    Interfacial interactions involved in reverse osmosis (RO) membrane fouling by humic acid were quantitatively evaluated using the XDLVO (extended Derjaguin-Landau-Verwey-Overbeek) approach. The role of each individual interfacial interaction during membrane fouling was elucidated with special emphasis devoted into the influence of Ca2+ under different solution pHs. The results showed that, regardless of the presence of Ca2+, van der Waals interaction favoring fouling contributed the most to the interfacial interactions at pH 3, whereas the polar interaction inhibiting fouling played a dominant role at pH 7 and pH 10. Electrostatic double layer interaction appeared to be the weakest in all cases, thus contributing the least to membrane fouling. It was the changing of polar interaction that gave rise to the influence of Ca2+ on membrane fouling, which turned out to be more significant at lower pH. Ca2+ would accelerate humic acid RO membrane fouling at most cases. Correlation analysis between interfacial free energy and fouling extent revealed that XDLVO approach could reasonably predict humic acid RO membrane fouling behaviors under different solution conditions.

  16. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC.

    PubMed

    Gheshlaghi, R; Scharer, J M; Moo-Young, M; Douglas, P L

    2008-12-01

    Modified resolution and overall separation factors used to quantify the separation of complex chromatography systems are described. These factors were proven to be applicable to the optimization of amino acid resolution in reverse-phase (RP) HPLC chromatograms. To optimize precolumn derivatization with phenylisothiocyanate, a 2(5-1) fractional factorial design in triplicate was employed. The five independent variables for optimizing the overall separation factor were triethylamine content of the aqueous buffer, pH of the aqueous buffer, separation temperature, methanol/acetonitrile concentration ratio in the organic eluant, and mobile phase flow rate. Of these, triethylamine concentration and methanol/acetonitrile concentration ratio were the most important. The methodology captured the interaction between variables. Temperature appeared in the interaction terms; consequently, it was included in the hierarchic model. The preliminary model based on the factorial experiments was not able to explain the response curvature in the design space; therefore, a central composite design was used to provide a quadratic model. Constrained nonlinear programming was used for optimization purposes. The quadratic model predicted the optimal levels of the variables. In this study, the best levels of the five independent variables that provide the maximum modified resolution for each pair of consecutive amino acids appearing in the chromatograph were determined. These results are of utmost importance for accurate analysis of a subset of amino acids.

  17. The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate.

    PubMed

    Sír, M; Podhola, M; Patočka, T; Honzajková, Z; Kocurek, P; Kubal, M; Kuraš, M

    2012-03-15

    This study deals with the treatment of hazardous waste landfill leachate with the help of reverse osmosis. The landfill is located in an abandoned brown coal pit in northern Bohemia. The leachate contained 7.2 g/L of dissolved inorganic salts. Among other contaminants were heavy metals, arsenic, ammonia nitrogen and associated organic pollutants, especially chlorinated compounds. A mobile membrane unit (LAB M30) equipped with a spiral wound element (FILMTEC SW30-4040), with a membrane area equaling 7.4 m2 was used for the pilot plant experiments. All experiments were carried out in batch mode. 94% conversion of the input stream into the permeate was achieved by use of a two-stage arrangement. Removal efficiencies of the monitored contaminants in the feed ranged from 94% for ammonia nitrogen to 99% for the two-valent ions. Removal efficiency for total dissolved solids was 99.3% on average. Due to varying levels of humic acids in the leachate throughout the year, fouling experiments were performed to investigate the separation process under different conditions than those used in the pilot plant. Leachates containing different concentrations of added humic acids were separated using a thin film composite on a propylene membrane. The added humic acids were obtained from samples of contaminated oxihumolite. PMID:21959187

  18. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid

    PubMed Central

    Zhu, He; Long, Min-Hui; Wu, Jie; Wang, Meng-Meng; Li, Xiu-Yang; Shen, Hong; Xu, Jin-Di; Zhou, Li; Fang, Zhi-Jun; Luo, Yi; Li, Song-Lin

    2015-01-01

    Cyclophosphamide (CP), a chemotherapeutic agent, is restricted due to its side effects, especially hepatotoxicity. Ginseng has often been clinically used with CP in China, but whether and how ginseng reduces the hepatotoxicity is unknown. In this study, the hepatoprotective effects and mechanisms under the combined usage were investigated. It was found that ginseng could ameliorate CP-induced elevations of ALP, ALT, ALS, MDA and hepatic deterioration, enhance antioxidant enzymes’ activities and GSH’s level. Metabolomics study revealed that 33 endogenous metabolites were changed by CP, 19 of which were reversed when ginseng was co-administrated via two main pathways, i.e., GSH metabolism and primary bile acids synthesis. Furthermore, ginseng could induce expression of GCLC, GCLM, GS and GST, which associate with the disposition of GSH, and expression of FXR, CYP7A1, NTCP and MRP 3, which play important roles in the synthesis and transport of bile acids. In addition, NRF 2, one of regulatory elements on the expression of GCLC, GCLM, GS, GST, NTCP and MRP3, was up-regulated when ginseng was co-administrated. In conclusion, ginseng could alleviate CP-induced hepatotoxicity via modulating the disordered homeostasis of GSH and bile acid, which might be mediated by inducing the expression of NRF 2 in liver. PMID:26625948

  19. Verapamil reverses PTH- or CRF-induced abnormal fatty acid oxidation in muscle

    SciTech Connect

    Perna, A.F.; Smogorzewski, M.; Massry, S.G.

    1988-12-01

    Chronic renal failure (CRF) is associated with impaired long chain fatty acids (LCFA) oxidation by skeletal muscle mitochondria. This is due to reduced activity of carnitine palmitoyl transferase (CPT). These derangements were attributed to the secondary hyperparathyroidism of CRF, since prior parathyroidectomy in CRF rats reversed these abnormalities and PTH administration to normal rats reproduced them. It was proposed that these effects of PTH are mediated by its ionophoric property leading to increased entry of calcium into skeletal muscle. A calcium channel blocker may, therefore, correct these derangements. The present study examined the effects of verapamil on LCFA oxidation, CPT activity by skeletal muscle mitochondria, and /sup 45/Ca uptake by skeletal muscle obtained from CRF rats and normal animals treated with PTH with and without verapamil. Both four days of PTH administration and 21 days of CRF produced significant (P less than 0.01) reduction in LCFA oxidation and CPT activity of skeletal muscle mitochondria, and significant (P less than 0.01) increment in /sup 45/Ca uptake by skeletal muscle. Simultaneous treatment with verapamil corrected all these derangements. Administration of verapamil alone to normal rats did not cause a significant change in any of these parameters. The data are consistent with the proposition that the alterations in LCFA in CRF or after PTH treatment are related to the ionophoric action of the hormone and could be reversed by a calcium channel blocker.

  20. Embryonic striatal grafts reverse the disinhibitory effects of ibotenic acid lesions of the ventral striatum.

    PubMed

    Reading, P J; Dunnett, S B

    1995-01-01

    Bilateral damage to the ventral striatum induced by the excitotoxin ibotenic acid was found to have profound disinhibitory effects on rats' behaviour. Lesioned animals were unable to acquire efficient levels of performance on an operant schedule (differential reinforcement of low rates of responding, DRL) that required them to inhibit a previously rewarded response. In addition, lesioned subjects were relatively resistant to the disruptive effects of amphetamine on performance of the DRL schedule and were slower to cease responding under conditions of non-reward. A measure of unconditioned behaviour, overnight locomotor activity, was also disinhibited by the presence of the lesion. Grafts of embryonic striatal tissue transplanted to the lesioned ventral striatum were found to survive well. Moreover, the presence of the grafts reversed the effects of the lesion on measures of conditioned and unconditioned behaviour. The nature of the lesion-induced behavioural deficit and the ability of the embryonic transplants to reverse it are discussed in terms of the possible restoration of limbi-subcortical circuitry.

  1. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.

    PubMed

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K B; Snow, Christopher D; Brustad, Eric M; McIntosh, John A; Meinhold, Peter; Zhang, Liang; Arnold, Frances H

    2013-07-01

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.

  2. Tranexamic acid-induced ligneous conjunctivitis with renal failure showed reversible hypoplasminogenaemia.

    PubMed

    Song, Youngseok; Izumi, Naohiro; Potts, Luke Benjamin; Yoshida, Akitoshi

    2014-05-19

    Ligneous conjunctivitis is a rare severe conjunctivitis characterised by fibrin-rich, 'woody', pseudomembranes on the tarsal conjunctiva complicated by congenital hypoplasminogenaemia. A previous report suggested that ligneous conjunctivitis may result from tranexamic acid (TA)-induced 'secondary' hypoplasminogenaemia. However, the serum plasminogen level has not been confirmed in that scenario. We report for the first time a case of TA-induced ligneous conjunctivitis with reversible hypoplasminogenaemia. A 70-year-old woman developed a gastric ulcer that was treated with oral TA. After 5 weeks of treatment, the patient presented with bilateral pale yellow pseudomembranes on the palpebral conjunctivae. Haematological analysis showed hypoplasminogenaemia. We diagnosed ligneous conjunctivitis. TA was discontinued after 14 weeks after the gastric ulcer symptoms resolved. Six weeks after discontinuation of therapy, the pseudomembranes regressed and the serum plasminogen level returned to the normal range. TA should be considered a possible aetiology in the setting of unresolving ligneous conjunctivitis.

  3. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    DOE PAGES

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; Snow, Christopher D.; Brustad, Eric M.; McIntosh, John A.; Meinhold, Peter; Zhang, Liang; Arnold, Frances H.

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymesmore » having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.« less

  4. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    SciTech Connect

    Brinkmann-Chen, Sabine; Flock, Tilman; Cahn, Jackson K. B.; Snow, Christopher D.; Brustad, Eric M.; McIntosh, John A.; Meinhold, Peter; Zhang, Liang; Arnold, Frances H.

    2013-06-17

    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. As a result, high-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch.

  5. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.

    PubMed

    Lv, Jing; Qiao, Weihong; Li, Zongshi

    2016-10-01

    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level. PMID:27419647

  6. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.

    PubMed

    Lv, Jing; Qiao, Weihong; Li, Zongshi

    2016-10-01

    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level.

  7. Analysis of histidine and urocanic acid isomers by reversed-phase high-performance liquid chromatography.

    PubMed

    Hermann, K; Abeck, D

    2001-01-01

    The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58 +/- 0.07, 7.03 +/- 0.15, 7.92 +/- 0.18, 18.77 +/- 0.24 and 20.79 +/- 0.21 min (mean +/- SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5 x 10(-8) mol l(-1) (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at -25 degrees C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69 +/- 0.33 x 10(-5) mol l(-1), 1.17 +/- 0.43 x 10(-5) mol l(-1) and 1.67 +/- 0.33 x 10(-5) mol l(-1), respectively

  8. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  9. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization.

    PubMed

    Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang

    2013-03-26

    It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.

  10. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes.

    PubMed

    Calcinotto, Arianna; Filipazzi, Paola; Grioni, Matteo; Iero, Manuela; De Milito, Angelo; Ricupito, Alessia; Cova, Agata; Canese, Rossella; Jachetti, Elena; Rossetti, Monica; Huber, Veronica; Parmiani, Giorgio; Generoso, Luca; Santinami, Mario; Borghi, Martina; Fais, Stefano; Bellone, Matteo; Rivoltini, Licia

    2012-06-01

    Stimulating the effector functions of tumor-infiltrating T lymphocytes (TIL) in primary and metastatic tumors could improve active and adoptive T-cell therapies for cancer. Abnormal glycolysis, high lactic acid production, proton accumulation, and a reversed intra-extracellular pH gradient are thought to help render tumor microenvironments hostile to roving immune cells. However, there is little knowledge about how acidic microenvironments affect T-cell immunity. Here, we report that lowering the environmental pH to values that characterize tumor masses (pH 6-6.5) was sufficient to establish an anergic state in human and mouse tumor-specific CD8(+) T lymphocytes. This state was characterized by impairment of cytolytic activity and cytokine secretion, reduced expression of IL-2Rα (CD25) and T-cell receptors (TCR), and diminished activation of STAT5 and extracellular signal-regulated kinase (ERK) after TCR activation. In contrast, buffering pH at physiologic values completely restored all these metrics of T-cell function. Systemic treatment of B16-OVA-bearing mice with proton pump inhibitors (PPI) significantly increased the therapeutic efficacy of both active and adoptive immunotherapy. Our findings show that acidification of the tumor microenvironment acts as mechanism of immune escape. Furthermore, they illustrate the potential of PPIs to safely correct T-cell dysfunction and improve the efficacy of T-cell-based cancer treatments.

  11. Thiol containing compounds and amino acid hydroxamates as reversible synthetic inhibitors of Astacus protease.

    PubMed

    Wolz, R L; Zeggaf, C; Stöcker, W; Zwilling, R

    1990-09-01

    Reversible synthetic inhibitors are characterized for Astacus protease, a 22,614-Da zinc containing neutral endopeptidase from the digestive tract of crayfish. Effective inhibition was demonstrated for several simple thiol containing compounds and a series of amino acid hydroxamates. Both classes of inhibitors had ID50 values ranging from 10(-2) to 10(-4) M for inhibition of hydrolysis of succinyl-Ala-Ala-Ala-p-nitroanilide. Tyrosine hydroxamate was found to be the most effective inhibitor with an ID50 of 175 microM and the mode of inhibition by this compound was determined to be of the simple noncompetitive type. In contrast to the other inhibitors tested, cysteine was seen to partially inactivate the enzyme in a time-dependent manner. The kinetics of this process was studied in detail using progress curve analysis. It was determined that cysteine was acting as a weak chelator and slowly establishing an equilibrium between metallo- and apoenzyme. In the presence of the strong zinc scavenger EDTA, cysteine can, in effect, function as a catalyst in transferring the metal from the protein to the secondary chelator at a rate 10,000 times faster than the rate of unassisted zinc dissociation. The series of amino acid hydroxamates served as probes into the microenvironment of the active site. Possible binding modes of the inhibitors are discussed on the basis of the relationship between the chemical nature of the inhibitor side chains and the strength of inhibition.

  12. Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography.

    PubMed

    Bloch, C A; Watkins, J B

    1978-05-01

    A simple mehtod using reverse-phase liquid chromatography is presented for resolution and quantitation of the major conjugated bile acids of man, including the glycine and taurine conjugates of the dihydroxy bile acids, chenodeoxycholic and deoxycholic acid. Using modern, high-performance chromatographic equipment, analysis time is less than 30 minutes. The quantitative range of the method, with detection by refractive index, is 0.05 to 0.1 mumol of bile acid and the limit of detection for an injection sample is 0.01 mumol. This provides a sensitivity sufficient for analysis of dilute duodenal and gallbladder bile with minimal sample preparation.

  13. Gamma-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs.

    PubMed

    Chung, S; Kong, S; Seong, K; Cho, Y

    2002-10-01

    As dietary sources of gamma-linolenic acid [GLA; 18:3(n-6)], borage oil (BO; 24-25 g/100 g GLA) and evening primrose oil (PO; 8-10 g/100 g GLA) are efficacious in treating skin disorders. The triglycerol stereospecificity of these oils is distinct, with GLA being concentrated in the sn-2 position of BO and in the sn-3 position of PO. To determine whether the absolute level and/or the triglycerol stereospecificity of GLA in oils affect biological efficacy, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil (HCO) diet for 8 wk. Subsequently, guinea pigs were fed diets of PO, BO or a mixture of BO and safflower oil (SO) for 2 wk. The mixture of BO and SO (BS) diet had a similar level of GLA as PO but with sn-2 stereospecificity. As controls, two groups were fed SO and HCO for 10 wk. Epidermal hyperproliferation was reversed by all three oils in the order of BO > BS > PO. However, proliferation scores of group PO were higher than of the normal control group, SO. The accumulations of dihomo-gamma-linolenic acid [DGLA; 20:3(n-6)], an elongase product of GLA, into phospholipids and ceramides, of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent antiproliferative metabolite of DGLA, and of ceramides, the major lipid maintaining epidermal barrier, in the epidermis of group BO were greater than of groups BS and PO. Group BS had higher levels of DGLA, 15-HETrE and ceramides than group PO. With primary dependence on absolute levels, our data demonstrate that the antiproliferative efficacy of GLA in the epidermis is preferably exerted from sn-2 stereospecificity of GLA in BO. PMID:12368400

  14. Gamma-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs.

    PubMed

    Chung, S; Kong, S; Seong, K; Cho, Y

    2002-10-01

    As dietary sources of gamma-linolenic acid [GLA; 18:3(n-6)], borage oil (BO; 24-25 g/100 g GLA) and evening primrose oil (PO; 8-10 g/100 g GLA) are efficacious in treating skin disorders. The triglycerol stereospecificity of these oils is distinct, with GLA being concentrated in the sn-2 position of BO and in the sn-3 position of PO. To determine whether the absolute level and/or the triglycerol stereospecificity of GLA in oils affect biological efficacy, epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut oil (HCO) diet for 8 wk. Subsequently, guinea pigs were fed diets of PO, BO or a mixture of BO and safflower oil (SO) for 2 wk. The mixture of BO and SO (BS) diet had a similar level of GLA as PO but with sn-2 stereospecificity. As controls, two groups were fed SO and HCO for 10 wk. Epidermal hyperproliferation was reversed by all three oils in the order of BO > BS > PO. However, proliferation scores of group PO were higher than of the normal control group, SO. The accumulations of dihomo-gamma-linolenic acid [DGLA; 20:3(n-6)], an elongase product of GLA, into phospholipids and ceramides, of 15-hydroxyeicosatrienoic acid (15-HETrE), the potent antiproliferative metabolite of DGLA, and of ceramides, the major lipid maintaining epidermal barrier, in the epidermis of group BO were greater than of groups BS and PO. Group BS had higher levels of DGLA, 15-HETrE and ceramides than group PO. With primary dependence on absolute levels, our data demonstrate that the antiproliferative efficacy of GLA in the epidermis is preferably exerted from sn-2 stereospecificity of GLA in BO.

  15. [Use of valproic acid in long stay units of psychiatry].

    PubMed

    Martínez-Lazcano, M Teresa; Esplá-González, Sara; Herraiz-Robles, Paola; Hernández-Pérez, Pilar; Chillerón-Cuenca, Raquel; Pol-Yanguas, Emilio

    2015-03-01

    Objetivo: El ácido valproico es utilizado frecuentemente en psiquiatría para tratar la esquizofrenia y otras afecciones fuera de indicación de ficha técnica (“off-label”). A pesar de ello, su efectividad no ha sido suficientemente demostrada y su uso no está exento de efectos adversos. El presente estudio tiene como objetivo principal conocer la frecuencia de uso de ácido valproico tanto en las indicaciones recogidas en ficha técnica, como su utilización “off-label” en pacientes psiquiátricos. Método: Se diseñó un estudio transversal el 7 de julio de 2014 con una muestra de 167 pacientes residentes en un centro psiquiátrico. Se analizaron las siguientes variables: datos demográficos, tratamiento con ácido valproico y pauta posológica, tratamiento farmacológico asociado, monitorización de los parámetros de seguridad, interacciones y concentraciones de ácido valproico. Resultados: El ácido valproico se prescribió en 1 de cada 3 pacientes del centro. Se utilizó según las indicaciones aprobadas en ficha técnica en 8 (15%) de los 53 pacientes analizados: 5 (9%) de ellos con trastorno bipolar y 3 (6%) diagnosticados de epilepsia. Otros 5 pacientes (9%) se incluyeron en la indicación extendida de trastorno esquizoafectivo. El 76% (40) de los pacientes evaluados tenían prescrito ácido valproico fuera de indicación. La media de dosis de ácido valproico fue de 1,26 Dosis Diarias Definidas/paciente/día. Se encontró una media de 6 fármacos asociados al ácido valproico. El 18% de los pacientes presentó trombocitopenia. Conclusiones: El ácido valproico se utiliza frecuentemente en pacientes psiquiátricos fuera de indicación. Debería valorarse el beneficio-riesgo en esta población.

  16. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN

    PubMed Central

    Winter, Klaus

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3–CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  17. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.

    PubMed

    Brilhaus, Dominik; Bräutigam, Andrea; Mettler-Altmann, Tabea; Winter, Klaus; Weber, Andreas P M

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM.

  18. Reversal of Multidrug Resistance and Computational Studies of Pistagremic Acid Isolated from Pistacia integerrima.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Raza, Muslim; Ahmad, Aftab; Jehan, Noor; Ahmad, Bashir; Nisar, Muhammad; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Khan, Ajmal; Farooq, Umar; Noor, Mah

    2016-01-01

    Pistagremic acid (PA) is a bioactive triterpenoid isolated from various parts of Pistacia integerrima plants. The aim of this research was to investigate PA for reversion of multidrug resistant (MDR) mediated by P-glycoprotein using rhodamine-123 exclusion study on a multidrug resistant human ABCB1 (ATP-binding cassette, sub-family B, member 1) gene-transfected mouse T-lymphoma cell line in vitro. Results were similar to those with verapamil as a positive control. Docking studies of PA and standard Rhodamine123 were carried out against a P-gp crystal structure which showed satisfactory results. Actually, PA cannot bind exactly where co-crystallized ligand of P-gp is already present. However, the docking study predicted that if a compound gives a lesser score then it may have some potency. The docking scores of PA and Rhodamine were similar. Therefore, we can conclude that there are certain important chemical features of PA which are responsible for the inhibiting potency of P-gp. PMID:27221936

  19. Succinate reverses in-vitro platelet inhibition by acetylsalicylic acid and P2Y receptor antagonists.

    PubMed

    Spath, Brigitte; Hansen, Arne; Bokemeyer, Carsten; Langer, Florian

    2012-01-01

    High on-treatment platelet reactivity has been associated with adverse cardiovascular events in patients receiving anti-platelet agents, but the molecular mechanisms underlying this phenomenon remain incompletely understood. Succinate, a citric acid cycle intermediate, is released into the circulation under conditions of mitochondrial dysfunction due to hypoxic organ damage, including sepsis, stroke, and myocardial infarction. Because the G protein-coupled receptor (GPCR) for succinate, SUCNR1 (GPR91), is present on human platelets, we hypothesized that succinate-mediated platelet stimulation may counteract the pharmacological effects of cyclooxygenase-1 and ADP receptor antagonists. To test this hypothesis in a controlled in-vitro study, washed platelets from healthy donors were treated with acetylsalicylic acid (ASA) or small-molecule P2Y(1) or P2Y(12) inhibitors and subsequently analyzed by light transmittance aggregometry using arachidonic acid (AA), ADP and succinate as platelet agonists. Aggregation in response to succinate alone was highly variable with only 29% of donors showing a (mostly delayed) platelet response. In contrast, succinate reproducibly and concentration-dependently (10-1000 µM) enhanced platelet aggregation in response to low concentrations of exogenous ADP. Furthermore, while succinate alone had no effect in the presence of platelet inhibitors, responsiveness of platelets to ADP after pretreatment with P2Y(1) or P2Y(12) antagonists was fully restored, when platelets were co-stimulated with 100 µM succinate. Similarly, succinate completely (at 1000 µM) or partially (at 100 µM) reversed the inhibitory effect of ASA on AA-induced platelet aggregation. In contrast, succinate failed to restore platelet responsiveness in the presence of both ASA and the P2Y(12) antagonist, suggesting that concomitant signaling via different GPCRs was required. Essentially identical results were obtained, when flow cytometric analysis of surface CD62P

  20. Synthesis of the (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids as Novel HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Moreira, Lizabeth Giménez; Orellano, Elsie A.; Rosado, Karolyna; Guido, Rafael V. C.; Andricopulo, Adriano D.; Soto, Gabriela O.; Rodríguez, José W.; Sanabria-Ríos, David J.; Carballeira, Néstor M.

    2016-01-01

    The natural fatty acids (5Z)-5-pentacosenoic and (9Z)-9-pentacosenoic acids were synthesized for the first time in eight steps starting from either 4-bromo-1-butanol or 8-bromo-1-butanol and in 20-58% overall yields, while the novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids were also synthesized in six steps and in 34-43% overall yields. The Δ5 acids displayed the best IC50’s (24-38 µM) against the HIV-1 reverse transcriptase (RT) enzyme, comparable to nervonic acid (IC50 = 12 µM). The Δ9 acids were not as effective towards HIV-RT with the (9Z)-9-pentacosenoic acid displaying an IC50 = 54 µM. Fatty acid chain length and position of the unsaturation was critical for the observed inhibition. Molecular modeling studies indicated the structural determinants underlying the biological activity of the most potent compounds. These results provide new insights into the structural requirements that must be present in fatty acids so as to enhance their inhibitory potential towards HIV-RT. PMID:26345647

  1. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    SciTech Connect

    Pyda, Marek {nmn}; Wunderlich, Bernhard {nmn}

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observed at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).

  2. Reversible transformation between α-oxo acids and α-amino acids on ZnS particles: a photochemical model for tuning the prebiotic redox homoeostasis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2013-01-01

    How prebiotic metabolic pathways could have formed is an essential question for the origins of life on early Earth. From the abiogenetic point of view, the emergence of primordial metabolism may be postulated as a continuum from Earth's geochemical processes to chemoautotrophic biochemical procedures on mineral surfaces. In the present study, we examined in detail the reversible amination of α-ketoglutarate on UV-irradiated ZnS particles under variable reaction conditions such as pH, temperature, hole scavenger species and concentrations, and different amino acids. It was observed that the reductive amination of α-ketoglutarate and the oxidative amination of glutamate were both effectively performed on ZnS surfaces in the presence and absence of a hole scavenger, respectively. Accordingly, a photocatalytic mechanism was proposed. The reversible photochemical reaction was more efficient under basic conditions but independent of temperature in the range of 30-60 °C. SO3 2- was more effective than S2- as the hole scavenger. Finally, we extended the glutamate dehydrogenase-like chemistry to a set of other α-amino acids and their corresponding α-oxo acids and found that hydrophobic amino acid side chains were more conducive to the reversible redox reactions. Since the experimental conditions are believed to have been prevalent in shallow water hydrothermal vent systems of early Earth, the results of this work not only suggest that the ZnS-assisted photochemical reaction can regulate the redox equilibrium between α-amino acids and α-oxo acids, but also provide a model of how prebiotic metabolic homoeostasis could have been developed and regulated. These findings can advance our understanding of the establishment of archaic non-enzymatic metabolic systems and the origins of autotrophy.

  3. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes

    PubMed Central

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-01-01

    Recovery of intracellular pH from cytosolic alkalosis has been attributed primarily to Cl– coupled acid loaders/base extruders such as Cl–/HCO3– or Cl–/OH– exchangers. We have studied this process in cortical astrocytes from wild-type and transgenic mouse models with gene deletion for the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2/HCO3– or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H+ or Na+ using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na+ and HCO3–. After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2/HCO3–. Increasing the extracellular K+ concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3–] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. PMID:25990710

  4. Enhanced Photocatalytic Performance of ZnS for Reversible Amination of α-oxo Acids by Hydrothermal Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Qiliang; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2012-08-01

    To understand how life could have originated on early Earth, it is essential to know what biomolecules and metabolic pathways are shared by extant organisms and what organic compounds and their chemical reaction channels were likely to have been primordially available during the initial phase of the formation of prebiotic metabolism. In a previous study, we demonstrated for the first time the reversible amination of α-oxo acids on the surface of photo-illuminated ZnS. The sulfide mineral is a typical component at the periphery of submarine hydrothermal vents which has been frequently argued as a very attractive venue for the origin of life. In this work, in order to simulate more closely the precipitation environments of ZnS in the vent systems, we treated newly-precipitated ZnS with hydrothermal conditions and found that its photocatalytic power was significantly enhanced because the relative crystallinity of the treated sample was markedly increased with increasing temperature. Since the reported experimental conditions are believed to have been prevalent in shallow-water hydrothermal vents of early Earth and the reversible amination of α-oxo acids is a key metabolic pathway in all extant life forms, the results of this work provide a prototypical model of the prebiotic amino acid redox metabolism. The amino acid dehydrogenase-like chemistry on photo-irradiated ZnS surfaces may advance our understanding of the establishment of archaic non-enzymatic metabolic systems.

  5. Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2015-02-01

    Reversed-phase high-performance liquid chromatography (RP-HPLC) has been used for the hydrophobicity analysis of soil humic acids and their stable electrophoretic fractions A, B, and C + D preliminarily prepared by the combination of gel permeation chromatography on Sephadex with polyacrylamide gel electrophoresis. In two humic acid preparations of different genesis, the electrophoretic fraction A of the larger molecular size was the most hydrophobic (60-73% of the fraction was irreversibly adsorbed on a hydrophobic reversed-phase (RF) column C18), and the fraction C + D of the smallest molecular size was the most hydrophilic. The fraction B of medium size occupied an intermediate position (33-47% of the fraction was irreversibly adsorbed on the column). The use of RP-HPLC allowed for the first time detecting the hydrophobic electrophoretic fraction A of the largest molecular size mainly composed of aliphatic long-chained hydrocarbon, protein, and carbohydrate fragments in soil humic acids. Data on the degree of hydrophobicity and the earlier obtained physicochemical characteristics of stable electrophoretic fractions are discussed in terms of the supramolecular and macromolecular structure of soil humic acids.

  6. Enhanced photocatalytic performance of ZnS for reversible amination of α-oxo acids by hydrothermal treatment.

    PubMed

    Wang, Wei; Li, Qiliang; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2012-08-01

    To understand how life could have originated on early Earth, it is essential to know what biomolecules and metabolic pathways are shared by extant organisms and what organic compounds and their chemical reaction channels were likely to have been primordially available during the initial phase of the formation of prebiotic metabolism. In a previous study, we demonstrated for the first time the reversible amination of α-oxo acids on the surface of photo-illuminated ZnS. The sulfide mineral is a typical component at the periphery of submarine hydrothermal vents which has been frequently argued as a very attractive venue for the origin of life. In this work, in order to simulate more closely the precipitation environments of ZnS in the vent systems, we treated newly-precipitated ZnS with hydrothermal conditions and found that its photocatalytic power was significantly enhanced because the relative crystallinity of the treated sample was markedly increased with increasing temperature. Since the reported experimental conditions are believed to have been prevalent in shallow-water hydrothermal vents of early Earth and the reversible amination of α-oxo acids is a key metabolic pathway in all extant life forms, the results of this work provide a prototypical model of the prebiotic amino acid redox metabolism. The amino acid dehydrogenase-like chemistry on photo-irradiated ZnS surfaces may advance our understanding of the establishment of archaic non-enzymatic metabolic systems.

  7. Reversible click reactions with boronic acids to build supramolecular architectures in water.

    PubMed

    Arzt, Matthias; Seidler, Christiane; Ng, David Y W; Weil, Tanja

    2014-08-01

    The interaction of boronic acids with various bifunctional reagents offers great potential for the preparation of responsive supramolecular architectures. Boronic acids react with 1,2-diols yielding cyclic boronate esters that are stable at pH>7.4 but can be hydrolyzed at pH<5.0. The phenylboronic acid (PBA)-salicylhydroxamic acid (SHA) system offers ultra-fast reaction kinetics and high binding affinities. This Focus Review summarizes the current advances in exploiting the bioorthogonal interaction of boronic acids to build pH-responsive supramolecular architectures in water.

  8. Structure of polyglycerol oleic acid ester nonionic surfactant reverse micelles in decane: growth control by headgroup size.

    PubMed

    Shrestha, Lok Kumar; Dulle, Martin; Glatter, Otto; Aramaki, Kenji

    2010-05-18

    The structure of polyglycerol oleic acid ester nonionic surfactant micelles in n-decane has been investigated at room temperature by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and densiometry techniques. The scattering data were evaluated by indirect Fourier transformation (IFT) or generalized indirect Fourier transformation (GIFT) methods depending on the volume fractions of the surfactants and also by model fit. A simple route to the growth control of reverse micelles by headgroup size of the surfactant was investigated. Additionally, the dependence of reverse micellar structure (shape and size) on temperature, composition, and added water was also investigated. The indirect Fourier transformation gives the real space pair-distance distribution function, p(r): a facile way for the quantitative estimation of structure parameters of the aggregates. It was found that the size of the reverse micelles increases with increasing the headgroup size of the surfactant. Globular type of micelles with maximum diameter ca. 6 nm observed in the monoglycerol oleic acid ester/decane system at 25 degrees C transferred into elongated prolate type micelles with maximum diameter ca. 19.5 nm in the hexaglycerol oleic acid ester/decane system. In a particular surfactant and oil system, increasing temperature decreased the micellar size. The size of the micelle was decreased by approximately 25% upon increasing temperature from 25 to 75 degrees C in the 5 wt % diglycerol oleic acid ester/decane system. Concentration could not modulate the structure of micelles despite a wide variation in the surfactant concentration (5-25 wt %). Nevertheless, increasing surfactant concentration reduces the intermicellar distance, and a strong repulsive interaction peak was observed in the scattering curves at higher surfactant concentrations. Besides, the results obtained from the dynamic light scattering have shown the signature of diffusion hindrance relative to hard sphere

  9. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. PMID:25520305

  10. Mechano-Responsive, Thermo-Reversible, Luminescent Organogels Derived from a Long-Chained, Naturally Occurring Fatty Acid.

    PubMed

    Zhang, Mohan; Weiss, Richard G

    2016-06-01

    The gelating ability of an α-diketo derivative of oleic acid, 9,10-dioxooctadecanoic acid (DODA), is investigated. DODA can gelate aromatic liquids and many other organic liquids. By contrast, none of the liquids examined can be gelated by the methyl ester of DODA. DODA is a more efficient gelator than stearic acid and the monoketo derivative due to its more extensive intermolecular dipole-dipole interactions. Formation of organogels of DODA can be induced by both thermal and mechanical stimuli, during which the luminescent and mechanical properties can be modulated significantly. The emission from DODA in 1-octanol exhibits a large, reversible, hypsochromic shift (≈25 nm) between its thermally cycled gel and sol states. The emission changes have been exploited to probe the kinetics of the aggregation and deaggregation processes. DODA is the simplest gelator of which we are aware that exhibits a reversible shift in the emission. Although the self-assembled fibrillar networks of the DODA gels in 1-octanol, benzonitrile, or silicone oil are crystalline, isothermal mechanical cycling between the gel and the sol states is rapid and can be repeated several times (i.e., they are thixotropic). The single-crystal structure of DODA indicates that extended intermolecular dipole-dipole interactions are crucial to the thermal and mechanical formation of DODA gels and the consequential changes in emissive and mechanical properties. From analyses of structural information, gelator packing, and morphology differences, we hypothesize that the mechanical destruction and reformation of the gel networks involves interconversion between the 3D networks and 1D fiber bundles. The thermal processes allow the fibrillar 3D networks and their 0D components (i.e., isolated molecules or small aggregates of DODA) to be interconverted. These results describe a facile approach to the design of mechano-responsive, thermo-reversible gels with control over their emission wavelengths. PMID

  11. Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds.

    PubMed

    Ruiz, Francisco-Javier; Rubio, Soledad; Pérez-Bendito, Dolores

    2007-10-01

    Coacervates made up of alkanoic (C8-C16) and alkenoic (C18) acid reverse micelles were described for the first time, and their potential for the extraction of organic compounds prior to liquid chromatography was examined. The coacervation process occurred in miscible binary mixtures of water and a variety of protic and aprotic solvents. The phase behavior of alkyl carboxylic acids was found to be a function of both the Hildebrand solubility parameter, delta, and the hydrogen-bonding capability of the solvent. The best solvents for analytical extractions were those featuring the lowest delta values. The phase behavior of alkyl carboxylic acid/water/tetrahydrofuran (THF) ternary systems as a function of component concentration, pH, ionic strength, and temperature was investigated. The efficiency and the time required for phase separation depended on the experimental procedure used (i.e., standing, centrifugation, stirring, and sonication). The formation of alkyl carboxylic acid reverse micelles in THF was proven using both hydrophilic fluorescent probes and scattered light measurements. The structure of the coacervates consisted of spherical droplets dispersed in a continuous phase. Phase volume ratios were a function of both alkyl carboxylic acid and THF concentration. The low volume obtained (e.g., 1.5 microL per mg of decanoic) compared to that obtained by other coacervates (e.g., 5.1 microL per mg of dodecane sulfonic acid and 11.3 microL per mg of Triton X-114) greatly improved the concentration factors reached by coacervation-based extractions. Parameters affecting the extraction efficiency were assessed. Analytes in a wide range of polarity were efficiently extracted on the basis of the hydrophobic (e.g., PAHs) and hydrogen bond (e.g., chlorophenols, bisphenols, pesticides, phthalates, nonionic surfactants, dyes, and photographic developers) interactions that reverse micelles can establish. The coacervates were compatible with the chromatographic determination

  12. Anti-AIDS agents, 1. Isolation and characterization of four new tetragalloylquinic acids as a new class of HIV reverse transcriptase inhibitors from tannic acid.

    PubMed

    Nishizawa, M; Yamagishi, T; Dutschman, G E; Parker, W B; Bodner, A J; Kilkuskie, R E; Cheng, Y C; Lee, K H

    1989-01-01

    Four new tetragalloylquinic acids, 3,5-di-O-galloyl-4-O-digalloylquinic acid, 3,4-di-O-galloyl-5-O-digalloylquinic acid, 3-O-digalloyl-4,5-di-O-galloylquinic acid, and 1,3,4,5-tetra-O-galloylquinic acid, were isolated and characterized from a commercial tannic acid as a new class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitor. Compounds 2, 3, and 4 inhibit HIV RT activity 90, 89, and 84% at 100 microM and 73, 70, and 63% at 30 microM, respectively. Compounds 2-5 also inhibit the HIV growth in cells in the range of 61-70% with low cytotoxicity at 25 microM. The HIV cell growth inhibitory effects of these compounds at 25 microM and 6.25 microM (44-57%) are comparable to their effects against the HIV RT at 30 microM and 10 microM, respectively. The inhibitory effect of 3 against DNA polymerases indicates that the selective antiviral action of 3 is determined by more than its action with HIV RT.

  13. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S. and eastern Canada

    USGS Publications Warehouse

    Lawrence, Gregory B.; Hazlett, Paul W.; Fernandez, Ivan J.; Ouimet, Rock; Bailey, Scott W.; Shortle, Walter C.; Smith, Kevin T.; Antidormi, Michael

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42– deposition of 5.7–76%, over intervals of 8–24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42– deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  14. Declining Acidic Deposition Begins Reversal of Forest-Soil Acidification in the Northeastern U.S. and Eastern Canada.

    PubMed

    Lawrence, Gregory B; Hazlett, Paul W; Fernandez, Ivan J; Ouimet, Rock; Bailey, Scott W; Shortle, Walter C; Smith, Kevin T; Antidormi, Michael R

    2015-11-17

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO4(2-) deposition of 5.7-76%, over intervals of 8-24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO4(2-) deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

  15. Reversed-phase liquid chromatographic profile of free amino acids in strawberry-tree (Arbutus unedo L.) honey.

    PubMed

    Spano, Nadia; Piras, Irene; Ciulu, Marco; Floris, Ignazio; Panzanelli, Angelo; Pilo, Maria I; Piu, Paola C; Sanna, Gavino

    2009-01-01

    The typical profile of the free amino acids contained in strawberry-tree (Arbutus unedo L.) honey is reported for the first time. An optimized reversed-phase liquid chromatographic (RP-LC) method with phenyl isothiocyanate precolumn derivatization was used. Fourteen free amino acids were identified and quantified in 16 analytical samples. Proline (65.63%) was found to be the most abundant free amino acid, followed by glutamic acid (6.49%), arginine (5.21%), alanine (5.17%), and phenylalanine (4.97%). The total free amino acid content of strawberry-tree honey (average value, 436 mg/kg) was found to be low in comparison to amounts cited in the literature concerning unifloral honeys. The analytical method was optimized and fully validated in terms of detection and quantitation limits, precision (by testing repeatability and reproducibility), linearity, and bias (by means of recovery tests). The acceptability of the validation protocol results was verified using Horwitz's mathematical model and AOAC guidelines. PMID:19714983

  16. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    PubMed

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  17. Reverse-phase liquid chromatographic determination of benzoic and sorbic acids in foods.

    PubMed

    Bui, L V; Cooper, C

    1987-01-01

    An isocratic liquid chromatographic (LC) technique is described for the determination of benzoic acid and sorbic acid in foods such as beverages, fruits, seafood, vegetables, sauces, and dairy, bakery, and confectionery products. A C18 column is used with methanol-phosphate buffer (5 + 95) as mobile phase and 4-hydroxyacetanilide or 3,5-dinitrobenzoic acid as internal standard. Sample preparation is simple, rapid, and produces a sample extract that has a minimum effect on the column performance and life. Specificity of the method was checked against common food additives such as L-ascorbic acid, caffeine, artificial sweeteners (saccharin, cyclamate, aspartame), antioxidants (BHT, BHA) and artificial colors. Also described are 2 procedures for confirmation of the preservatives, using either redox reaction of sorbic acid with potassium permanganate or gas chromatography/mass spectrometry. Mean recoveries of 90-105% were obtained with a precision of 1-6% and a detection limit of 20 mg/kg for the 2 preservatives.

  18. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed

    Chien, K R; Bellary, A; Nicar, M; Mukherjee, A; Buja, L M

    1983-07-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration.

  19. Sulfonic acid polymers: Highly potent inhibition of HIV-1 and HIV-2 reverse transcriptase and antiviral activity

    SciTech Connect

    Mohan, P.; Verma, S.; Tan, G.T.; Wickramasinghe, A.; Pezzuto, J.M.; Huges, S.H.; Baba, M.

    1993-12-31

    In an extension of the authors` work in the sulfonic acid polymer area they have evaluated the reverse transcriptase (RT) inhibitory activity of several varying molecular weight aromatic and aliphatic derivatives. All the polymers possess anti-HIV activity at doses that are non-toxic to the host cells and act by inhibiting viral adsorption. In the RT assay, poly(4-styrenesulfonic acid) exhibited highly potent inhibition with IC{sub 50} values of 0.0008 {mu}M and 0.0007 {mu}M for HIV-1 and HIV-2 RT respectively. The discovery of the anti-RT potential of these derivatives provides the impetus to investigate additional intervention strategies that are coupled with the facilitated cellular penetration of these agents.

  20. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    SciTech Connect

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  1. N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids

    PubMed Central

    Jansen, Robert S.; Addie, Ruben; Merkx, Remco; Fish, Alexander; Mahakena, Sunny; Bleijerveld, Onno B.; Altelaar, Maarten; IJlst, Lodewijk; Wanders, Ronald J.; Borst, P.; van de Wetering, Koen

    2015-01-01

    Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe–forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome. PMID:25964343

  2. Induction of reversible changes in cell-surface glycoconjugates and lung colonization potential by 13-cis retinoic acid.

    PubMed

    Couch, M J; Pauli, B U; Weinstein, R S; Coon, J S

    1988-06-01

    Murine squamous carcinoma cells (KLN205) grown in a medium supplemented with the retinoid, 13-cis retinoic acid (RA), had dose-dependent, selective increases in the expression of certain lectin receptors, which correlated with a dramatic decrease in the ability to form pulmonary colonies (P = .0003) (Couch MJ, Pauli BU, Weinstein RS, Coon JS: JNCI, 78:971-977, 1987). These findings suggest a possible relationship between the RA-induced glycoconjugate alterations and the decreased experimental metastatic behavior. We further define the mechanism of RA's action. The finding that RA treatment (5 X 10(-6) M, 5 X 10(-7) M) did not perturb the cell cycle of KLN205 cells provides further proof that the decreased metastatic behavior is not attributable to any inhibition in the rate of growth or to alterations in the cell cycle. Furthermore, since stable subpopulations with variable lectin binding could not be detected, the mechanism of RA's action does not appear to be due to selection of variant tumor-cell subpopulations. Finally, in a series of experiments designed to determine the reversibility of the RA treatment, the RA-induced decrease in metastatic behavior reverted back to a more metastatic state in the same time frame (3 days) as the reversion of the RA-induced changes in cell-surface glycoconjugate expression. This reversion provides further evidence for a close relationship between the RA-induced modulation of tumor cell-surface glycoconjugate expression and the decreased metastatic behavior; it suggests that transient, reversible modulation of the tumor cell surface may play a role in determining metastatic behavior.

  3. Diet-related reference values for plasma amino acids in newborns measured by reversed-phase HPLC.

    PubMed

    Scott, P H; Sandham, S; Balmer, S E; Wharton, B A

    1990-11-01

    We have measured by reversed-phase HPLC concentrations of amino acids in plasma in groups of 80 normal appropriate-weight term babies fed from birth either a casein formula (WhiteCap SMA, n = 26), a whey formula (Gold Cap SMA, n = 26), or breast milk (n = 28). They were studied from day 11 to week 15 postpartum. The trend was towards an increase in amino acid concentrations in plasma with age, more marked in formula-fed than in breast-fed infants. Reference values were derived for each group. Both formula-fed groups showed several differences from the breast-fed group. Detailed examination indicated that tyrosine, phenylalanine, and methionine concentrations were increased in the casein-fed group greater than 20% of the time, but only threonine was similarly increased in the whey-fed group. Other amino acids, different ones for each formula group, were increased less frequently. There were no consistent correlations with any aspect of infant growth. Appropriate reference values are important for interpreting amino acid concentrations in plasma from newborns and for evaluating the effects of any future dietary modifications to infant formulas. HPLC analysis provides a suitable highly sensitive method for undertaking such studies.

  4. Thyroid Hormone Reverses Aging-Induced Myocardial Fatty Acid Oxidation Defects and Improves the Response to Acutely Increased Afterload

    PubMed Central

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy; Olson, Aaron K.

    2013-01-01

    Background Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. Methods Studies were performed on young (Young, 4–6 months) and aged (Old, 22–24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate) Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. Conclusion The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation. PMID:23762386

  5. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    PubMed

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L.

  6. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process.

    PubMed

    Ahsan, Laboni; Jahan, M Sarwar; Ni, Yonghao

    2014-03-01

    This work investigated the feasibility of recovering and concentrating sugars and acetic acid (HAc) from prehydrolysis liquor (PHL) of the kraft-based dissolving pulp process prior to fermentation of hemicellulosic sugars, by the combination of activated carbon adsorption, nanofiltration (NF) and reverse osmosis (RO) processes. To reduce the fouling PHL was subjected to adsorption on activated carbon, then the treated PHL (TPHL) passed through a nanofiltration (NF DK) membrane to retain the sugars, and the permeate of acetic acid rich solution was passed through a reverse osmosis membrane (RO SG). It was found that for NF process sugars were concentrated from 48 to 227g/L at a volume reduction factor (VRF) of 5 while 80 to 90% of acetic acid was permeated. For the reverse osmosis process, 68% of acetic acid retention was achieved at pH 4.3 and 500 psi pressure and the HAc concentration increased from 10 to 50g/L. PMID:24434701

  7. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.

    PubMed

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.

  8. Modeling of fermentation with continuous lactic acid removal by extraction utilizing reversible chemical complexation

    SciTech Connect

    Dai, Y.; King, C.J.

    1995-07-01

    Extractive fermentation is a technique that can be used to reduce end-product inhibition by removing fermentation products in situ or in an external recycle loop. A model is presented for fermentation with continuous lactic acid removal by extraction utilizing chemical complexation. The model is formulated considering the kinetics of cell growth and the equilibrium distribution of lactic acid between aqueous and organic phases. Simulations have been carried out for different sets of operating conditions. The choice of pH balances faster kinetics at higher pH against lower product concentrations in the solvent and more difficult regeneration. A key need is for liquid extractants or solid sorbents combining stronger uptake ability with economical regeneration and satisfactory biocompatibility.

  9. Improvement of the reverse tetracycline transactivator by single amino acid substitutions that reduce leaky target gene expression to undetectable levels

    PubMed Central

    Roney, Ian J.; Rudner, Adam D.; Couture, Jean-François; Kærn, Mads

    2016-01-01

    Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino-acid substitutions that greatly enhance the dynamic range of the system in yeast by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. While the mutations increase the inducer concentration required for full induction, additional sensitivity-enhancing mutations can compensate for this effect and confer a high degree of robustness to the system. The novel transactivator variants will be useful in applications where tight and tunable regulation of gene expression is paramount. PMID:27323850

  10. Targeted metabolomic study indicating glycyrrhizin’s protection against acetaminophen-induced liver damage through reversing fatty acid metabolism.

    PubMed

    Yu, Jian; Jiang, Yang-Shen; Jiang, Yuan; Peng, Yan-Fang; Sun, Zhuang; Dai, Xiao-Nan; Cao, Qiu-Ting; Sun, Ying-Ming; Han, Jing-Chun; Gao, Ya-Jie

    2014-06-01

    The present study aimed to give a short report on a possible mechanism of glycyrrhizin to acetaminophen-induced liver toxicity. Seven-day intraperitoneal administration of glycyrrhizin (400 mg/kg/day) to 2- to 3-month-old male C57BL/6N mice (mean weight 27 g) significantly prevents acetaminophen-induced liver damage, as indicated by the activity of alanine transaminase and aspartate aminotransferase. Metabolomics analysis and principal component analysis (PCA) using ultra-fast liquid chromatography coupled to triple time-of-flight mass spectrometer were performed. PCA separated well the control, glycyrrhizin-treated, acetaminophen-treated, and glycyrrhizin+acetaminophen-treated groups. Long-chain acylcarnitines were listed as the top ions that contribute to this good separation, which include oleoylcarnitine, palmitoylcarnitine, palmitoleoylcarnitine, and myristoylcarnitine. The treatment of glycyrrhizin significantly reversed the increased levels of long-chain acylcarnitines induced by acetaminophen administration. In conclusion, this metabolomic study indicates a significant glycyrrhizin protection effect against acetaminophen-induced liver damage through reversing fatty acid metabolism.

  11. Reverse Transcription Cross-Priming Amplification–Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus

    PubMed Central

    Wang, Feng-Xue; Yuan, Dan-Yi; Jin, Ya-Nan; Hu, Lin; Sun, Zhi-Yong; He, Qian; Zhao, Shi-Hua; Zhan, Shu-Bai; Wen, Yong-Jun

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease particularly in neonatal piglets. In this study, a rapid method for detecting PEDV was developed based on cross-priming amplification and nucleic acid test strip(CPA-NATS). Five primers specific for the N gene sequence of PEDV were used for the cross-priming amplification. Detection of amplification products based on labeled probe primers was conducted with strip binding antibody of labeled markers. The CPA method was evaluated and compared with a PCR method. The reverse transcription CPA system was further optimized for detecting PEDV RNA in clinical specimens. Results showed that the method was highly specific for the detection of PEDV, and had the same sensitivity as PCR, with detection limit of 10−6 diluted plasmid containing the target gene of PEDV. It was also successfully applied to detecting PEDV in clinical specimens. The reverse transcription CPA-NATS detection system established in this study offers a specific, sensitive, rapid, and simple detection tool for screening PEDV, which can contribute to strategies in the effective control of PEDV in swine. PMID:27090105

  12. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  13. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  14. Sans study of reverse micelles formed upon extraction of inorganic acids by TBP in n-octane.

    SciTech Connect

    Chiarizia, R.; Briand, A.; Jensen, M. P.; Thiyagarajan, P.

    2008-01-01

    Small-angle neutron scattering (SANS) data for n-octane solutions of TBP loaded with progressively larger amounts of HNO{sub 3}, HClO{sub 4}, H{sub 2}SO{sub 4}, and H{sub 3}PO{sub 4} up to and beyond the LOC (limiting organic concentration of acid) condition, were interpreted using the Baxter model for hard spheres with surface adhesion. The coherent picture of the behavior of the TBP solutions derived from the SANS investigation discussed in this paper confirmed our recently developed model for third phase formation. This model analyses the features of the scattering data in the low Q region as arising from van der Waals interactions between the polar cores of reverse micelles. Our SANS data indicated that the TBP micelles swell when acid and water are extracted into their polar core. The swollen micelles have critical diameters ranging from 15 to 22 {angstrom}, and polar core diameters between 10 and 15 {angstrom}, depending on the specific system. At the respective LOC conditions, the TBP weight-average aggregation numbers are -4 for HClO{sub 4}, -6 for H2SO{sub 4}, -7 for HCl, and -10 for H{sub 3}PO{sub 4}. The comparison between the behavior of HNO{sub 3}, a non-third phase forming acid, and the other acids provided an explanation of the effect of the water molecules present in the polar core of the micelles on third phase formation. The thickness of the lipophilic shell of the micelles indicated that the butyl groups of TBP lie at an angle of -25 degrees relative to a plane tangent to the micellar core. The critical energy of intermicellar attraction, U(r), was about -2 k{sub B}T for all the acids investigated. This value is the same as that reported in our previous publications on the extraction of metal nitrates by TBP, confirming that the same mechanism and energetics are operative in the formation of a third phase, independent of whether the chemical species extracted are metal nitrate salts or inorganic acids.

  15. L-2-Oxothiazolidine-4-carboxylic acid reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed Central

    Vita, J A; Frei, B; Holbrook, M; Gokce, N; Leaf, C; Keaney, J F

    1998-01-01

    The effective action of endothelium-derived nitric oxide (EDNO) is impaired in patients with atherosclerosis. This impairment has been attributed in part to increased vascular oxidative stress. EDNO action is improved by administration of ascorbic acid, a water-soluble antioxidant. Ascorbic acid is a potent free-radical scavenger in plasma, and also regulates intracellular redox state in part by sparing cellular glutathione. We specifically investigated the role of intracellular redox state in EDNO action by examining the effect of L-2-oxo-4-thiazolidine carboxylate (OTC) on EDNO-dependent, flow-mediated dilation in a randomized double-blind placebo-controlled study of patients with angiographically proven coronary artery disease. OTC augments intracellular glutathione by providing substrate cysteine for glutathione synthesis. Brachial artery flow-mediated dilation was examined with high-resolution ultrasound before and after oral administration of 4.5 g of OTC or placebo in 48 subjects with angiographically documented coronary artery disease. Placebo treatment produced no change in flow-mediated dilation (7.0+/-3.9% vs. 7.2+/-3.7%), whereas OTC treatment was associated with a significant improvement in flow-mediated dilation (6.6+/-4.4% vs. 11.0+/-6.3%; P = 0.005). OTC had no effect on arterial dilation to nitroglycerin, systemic blood pressure, heart rate, or reactive hyperemia. These data suggest that augmenting cellular glutathione levels improves EDNO action in human atherosclerosis. Cellular redox state may be an important regulator of EDNO action, and is a potential target for therapy in patients with coronary artery disease. PMID:9502783

  16. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid.

    PubMed

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-07-14

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14(-/-) mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16(INK4a) and p21(CIP1/WAF) (1), increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14(-/-) mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions.

  17. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid

    PubMed Central

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-01-01

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14−/− mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16INK4a and p21CIP1/WAF1, increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14−/− mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions. PMID:25991604

  18. Retinoic acid reverses the PTU related decrease in neurogranin level in mice brain.

    PubMed

    Enderlin, V; Vallortigara, J; Alfos, S; Féart, C; Pallet, V; Higueret, P

    2004-09-01

    Recent data have shown that fine regulation of retinoid mediated gene expression is fundamentally important for optimal brain functioning in aged mice. Nevertheless, alteration of the thyroid hormone signalling pathway may be a limiting factor, which impedes retinoic acid (RA) from exerting its modulating effect. Mild hypothyroidism is often described in the elderly. Thus, in the present study, it was of interest to determine if RA exerts its neurological modulating effect in mild hypothyroidism. To obtain further insight into this question, mice were submitted to a low propylthiouracyl (PTU) drink (0.05%) in order to slightly reduce the serum level of triiodothyronine (T3). A quantitative evaluation of RA nuclear receptors (RAR, RXR), T3 nuclear receptor (TR) and of neurogranin (RC3, a RA target gene which codes for a protein considered as a good marker of synaptic plasticity) in PTU treated mice injected with vehicle or RA or T3 was carried out. The PTU-related decrease in expression of RAR, RXR and RC3 was restored following RA or T3 administration, as observed in aged mice. The amount of TR mRNA, which was not affected in PTU treated mice, was increased only after T3 treatment as observed in overt hypothyroidism. These results suggest that neurobiological alterations observed in aged mice are probably related to RA and T3 signalling pathway modifications associated, in part, with mild changes in thyroid function.

  19. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  20. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.; Perry, G.J.

    2006-07-01

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  1. Discovery of alpha,gamma-diketo acids as potent selective and reversible inhibitors of hepatitis C virus NS5b RNA-dependent RNA polymerase.

    PubMed

    Summa, Vincenzo; Petrocchi, Alessia; Pace, Paola; Matassa, Victor G; De Francesco, Raffaele; Altamura, Sergio; Tomei, Licia; Koch, Uwe; Neuner, Philippe

    2004-01-01

    alpha,gamma-Diketo acids (DKA) were discovered from screening as selective and reversible inhibitors of hepatitis C virus NS5b RNA-dependent RNA polymerase. The diketo acid moiety proved essential for activity, while substitution on the gamma position was necessary for selectivity and potency. Optimization led to the identification of a DKA inhibitor of NS5b polymerase with IC(50) = 45 nM, one of the most potent HCV NS5b polymerase inhibitors reported.

  2. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  3. Growth hormone reverses excitotoxic damage induced by kainic acid in the green iguana neuroretina.

    PubMed

    Ávila-Mendoza, José; Mora, Janeth; Carranza, Martha; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) is expressed in extrapituitary tissues, including the nervous system and ocular tissues, where it is involved in autocrine/paracrine actions related to cell survival and anti-apoptosis in several vertebrates. Little is known, however, in reptiles, so we analyzed the expression and distribution of GH in the eye of green iguana and its potential neuroprotective role in retinas that were damaged by the intraocular administration of kainic acid (KA). It was found, by Western blotting, that GH-immunoreactivity (GH-IR) was expressed as two isoforms (15 and 26kDa, under reducing conditions) in cornea, vitreous, retina, crystalline, iris and sclera, in varying proportions. Also, two bands for the growth hormone receptor (GHR)-IR were observed (70 and 44kDa, respectively) in the same tissues. By immunofluorescence, GH-IR was found in neurons present in several layers of the neuroretina (inner nuclear [INL], outer nuclear [ONL] and ganglion cell [GCL] layers) as determined by its co-existence with NeuN, but not in glial cells. In addition, GH and GHR co-expression was found in the same cells, suggesting paracrine/autocrine interactions. KA administration induced retinal excitotoxic damage, as determined by a significant reduction of the cell density and an increase in the appearance of apoptotic cells in the INL and GCL. In response to KA injury, both endogenous GH and Insulin-like Growth Factor I (IGF-I) expression were increased by 70±1.8% and 33.3±16%, respectively. The addition of exogenous GH significantly prevented the retinal damage produced by the loss of cytoarchitecture and cell density in the GCL (from 4.9±0.79 in the control, to 1.45±0.2 with KA, to 6.35±0.49cell/mm(2) with KA+GH) and in the INL (19.12±1.6, 10.05±1.9, 21.0±0.8cell/mm(2), respectively) generated by the long-term effect of 1mM KA intraocular administration. The co-incubation with a specific anti-GH antibody, however, blocked the protective effect of GH

  4. 5-Methyl Salicylic Acid-Induced Thermo Responsive Reversible Transition in Surface Active Ionic Liquid Assemblies: A Spectroscopic Approach.

    PubMed

    Roy, Arpita; Dutta, Rupam; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2016-07-19

    This article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition. The rotational motion of C153 becomes slower, whereas faster motion is observed for R6G during micelle to vesicle transition. Moreover, the fluorescence correlation spectroscopy (FCS) measurements suggest that the translational diffusion of hydrophobic probe becomes slower in C16mimCl-5mS aggregates in comparison to C16mimCl micelle. However, a reverse trend in translational diffusion motion of hydrophilic molecule has been observed in C16mimCl-5mS aggregates. Moreover, we have also found that the C16mimCl-5mS containing vesicles are transformed into micelles upon enhanced temperature, and it is further confirmed by turbidity, DLS measurements that this transition is a reversible one. Finally, temperature-induced rotational motion of C153 and R6G has been monitored in C16mimCl-5mS aggregates to get a complete scenario regarding the temperature-induced vesicle to micelle transition. PMID:27345738

  5. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  6. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  7. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  8. Dissociation of a strong acid in neat solvents: diffusion is observed after reversible proton ejection inside the solvent shell.

    PubMed

    Veiga-Gutiérrez, Manoel; Brenlla, Alfonso; Carreira Blanco, Carlos; Fernández, Berta; Kovalenko, Sergey A; Rodríguez-Prieto, Flor; Mosquera, Manuel; Lustres, J Luis Pérez

    2013-11-14

    Strong-acid dissociation was studied in alcohols. Optical excitation of the cationic photoacid N-methyl-6-hydroxyquinolinium triggers proton transfer to the solvent, which was probed by spectral reconstruction of picosecond fluorescence traces. The process fulfills the classical Eigen-Weller mechanism in two stages: (a) solvent-controlled reversible dissociation inside the solvent shell and (b) barrierless splitting of the encounter complex. This can be appreciated only when fluorescence band integrals are used to monitor the time evolution of the reactant and product concentrations. Band integrals are insensitive to solvent dynamics and report relative concentrations directly. This was demonstrated by first measuring the fluorescence decay of the conjugate base across the full emission band, independently of the proton-transfer reaction. Multiexponential decay curves at single wavelengths result from a dynamic red shift of fluorescence in the course of solvent relaxation, whereas clean single exponential decays are obtained if the band integral is monitored instead. The extent of the shift is consistent with previously reported femtosecond transient absorption measurements, continuum theory of solvatochromism, and molecular properties derived from quantum chemical calculations. In turn, band integrals show clean biexponential decay of the photoacid and triexponential evolution of the conjugate base in the course of the proton transfer to solvent reaction. The dissociation step follows the slowest stage of solvation, which was measured here independently by picosecond fluorescence spectroscopy in five aliphatic alcohols. Also, the rate constant of the encounter-complex splitting stage is compatible with proton diffusion. Thus, for this photoacid, both stages reach the highest possible rates: solvation and diffusion control. Under these conditions, the concentration of the encounter complex is substantial during the earliest nanosecond.

  9. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids.

    PubMed

    Sarafianos, S G; Das, K; Clark, A D; Ding, J; Boyer, P L; Hughes, S H; Arnold, E

    1999-08-31

    An important component of triple-drug anti-AIDS therapy is 2', 3'-dideoxy-3'-thiacytidine (3TC, lamivudine). Single mutations at residue 184 of the reverse transcriptase (RT) in HIV cause high-level resistance to 3TC and contribute to the failure of anti-AIDS combination therapy. We have determined crystal structures of the 3TC-resistant mutant HIV-1 RT (M184I) in both the presence and absence of a DNA/DNA template-primer. In the absence of a DNA substrate, the wild-type and mutant structures are very similar. However, comparison of crystal structures of M184I mutant and wild-type HIV-1 RT with and without DNA reveals repositioning of the template-primer in the M184I/DNA binary complex and other smaller changes in residues in the dNTP-binding site. On the basis of these structural results, we developed a model that explains the ability of the 3TC-resistant mutant M184I to incorporate dNTPs but not the nucleotide analog 3TCTP. In this model, steric hindrance is expected for NRTIs with beta- or L- ring configurations, as with the enantiomer of 3TC that is used in therapy. Steric conflict between the oxathiolane ring of 3TCTP and the side chain of beta-branched amino acids (Val, Ile, Thr) at position 184 perturbs inhibitor binding, leading to a reduction in incorporation of the analog. The model can also explain the 3TC resistance of analogous hepatitis B polymerase mutants. Repositioning of the template-primer as observed in the binary complex (M184I/DNA) may also occur in the catalytic ternary complex (M184I/DNA/3TCTP) and contribute to 3TC resistance by interfering with the formation of a catalytically competent closed complex.

  10. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein.

    PubMed

    Zhang, Qiaoyin; Wang, Junzhi; He, Haibo; Liu, Hongbing; Yan, Ximing; Zou, Kun

    2014-07-01

    Trametenolic acid B (TAB) is the main active composition of Trametes lactinea (Berk.) Pat which possesses antitumor activities. There was no report its antitumor effect through regulating P-glycoprotein (P-gp) so far, due toP-gp over expression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. The present aim was to investigate the effects of TAB on P-gp in multidrug-resistant cells;Paclitaxel-resistant cell line MDA-MB-231/Taxol was established by stepwise exposure for 10 months.MDA-MB-231 cells and MDA-MB-231/Taxol cells were treated with TAB, and their growth was evaluated using MTT assays. Paclitaxel accumulation in the cells was analyzed by high performance liquid chromatogram(HPLC). The activity of P-gp was detected by intracellular accumulation of rhodamine 123 (Rho123), and the protein expression of P-gp was evaluated using western blot. Results indicated that the IC50 of MDA-MB-231/Taxol to paclitaxel (Taxol) was 33 times higher than that of nature MDA-MB-231. TAB increased the intracellular concentration of Taxol and inhibited the activity of P-gp and suppressed the expression of P-gp in MDA-MB-231/Taxol cells. Our present results showed that TAB could reverse Taxol resistance in MDA-MB-231/Taxol cells,mainly inhibiting the activity of P-gp and down-regulating the expression level of P-gp, and then enhancing the accumulation of chemotherapy agents.

  11. Reversible two-photon fluorescent probe for imaging of hypochlorous acid in live cells and in vivo.

    PubMed

    Zhang, Wei; Liu, Wei; Li, Ping; kang, Junqing; Wang, Jiaoyang; Wang, Hui; Tang, Bo

    2015-06-25

    Herein, we have developed a novel reversible two-photon fluorescent probe that is well suited for monitoring HOCl levels selectively and instantaneously. Results showed the reversible and instantaneous responses of the probe towards intracellular HOCl. Moreover, the probe was successfully applied to the imaging of the HOCl levels in zebrafish and mice via two-photon imaging.

  12. Algal toxins and reverse osmosis desalination operations: laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid.

    PubMed

    Seubert, Erica L; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton H; Caron, David A

    2012-12-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  13. A new chiral derivatizing agent for the HPLC separation of α-amino acids on a standard reverse-phase column.

    PubMed

    Kotthaus, A F; Altenbach, H-J

    2011-02-01

    A new chiral derivatizing agent for α-amino acids is described which leads to diastereomers that can be separated by reverse-phase HPLC with direct detection by a diode array detector. The main advantage of the presented procedure is the fact that an excess of the derivatizing reagent can be employed as the product exhibits an absorption maximum at 360 nm, while the reagent has its absorption maximum at 260 nm. Therefore, it is possible to suppress the reagent signal by a detection wavelength of 400 nm leading to an easy and general method for the enantioseparation of a mixture of DL-amino acids and the determination of the enantiomeric purity of α-amino acid as exemplified by 16 different α-amino acids.

  14. Influence of perfluorinated carboxylic acids on ion-pair reversed-phase high-performance liquid chromatographic separation of betacyanins and 17-decarboxy-betacyanins.

    PubMed

    Wybraniec, Sławomir; Mizrahi, Yosef

    2004-03-12

    The ability of trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutyric acid to act as ion-pairing agents for betacyanins and 17-decarboxy-betacyanins during HPLC analysis on a Luna C18(2) reversed-phase column is reported. While the perfluorinated carboxylic acids affect the retention of both groups of compounds by changing the pH of the mobile phase, the possibility of ion-pair chromatography for 17-decarboxy-betacyanins was noticed. In order to explain the accessibility of the positive charge for the counter-anion in decarboxy-betacyanins, the mesomeric structures of the polymethine system at low pH (around a value of 1.5), when the carboxylic group in the 2 position is protonated, should be taken into consideration.

  15. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking.

    PubMed

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A

    2015-06-23

    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  16. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines.

  17. A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC.

    PubMed

    Akhlaghi, Yousef; Ghaffari, Solmaz; Attar, Hossein; Alamir Hoor, Amir

    2015-11-01

    Octreotide as a synthetic cyclic octapeptide is a somatostatin analog with longer half-life and more selectivity for inhibition of the growth hormone. The acetate salt of octreotide is currently used for medical treatment of somatostatin-related disorders such as endocrine and carcinoid tumors, acromegaly, and gigantism. Octreotide contains both cysteine and tryptophan residues which make the hydrolysis part of its amino acid analysis procedure very challenging. The current paper introduces a fast and additive-free method which preserves tryptophan and cysteine residues during the hydrolysis. Using only 6 M HCl, this hydrolysis process is completed in 30 min at 150 °C. This fast hydrolysis method followed by pre-column derivatization of the released amino acids with 4-N,N-dimethylaminoazobenzene-4'-sulfonyl chloride (DABS-Cl) which takes only 20 min, makes it possible to do the complete amino acid analysis of an octreotide sample in a few hours. The highly stable-colored DABS-Cl derivatives can be detected in 436 nm in a reversed phase chromatographic system, which eliminates spectral interferences to a great extent. The amino acid analysis of octreotide acetate including hydrolysis, derivatization, and reversed phase HPLC determination was validated according to International Conference of Harmonization (ICH) guidelines. PMID:26002809

  18. Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms.

    PubMed

    Vasconcelos, Germana Silva; Ximenes, Naiara Coelho; de Sousa, Caren Nádia Soares; Oliveira, Tatiana de Queiroz; Lima, Laio Ladislau Lopes; de Lucena, David Freitas; Gama, Clarissa Severino; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2015-07-01

    Oxidative stress has important implications in schizophrenia. Alpha-lipoic acid (ALA) is a natural antioxidant synthesized in human tissues with clinical uses. We studied the effect of ALA or clozapine (CLZ) alone or in combination in the reversal of schizophrenia-like alterations induced by ketamine (KET). Adult male mice received saline or KET for 14 days. From 8th to 14th days mice were additionally administered saline, ALA (100 mg/kg), CLZ 2.5 or 5 mg/kg or the combinations ALA+CLZ2.5 or ALA+CLZ5. Schizophrenia-like symptoms were evaluated by prepulse inhibition of the startle (PPI) and locomotor activity (positive-like), social preference (negative-like) and Y maze (cognitive-like). Oxidative alterations (reduced glutathione - GSH and lipid peroxidation - LP) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) and BDNF in the PFC were also determined. KET caused deficits in PPI, working memory, social interaction and hyperlocomotion. Decreased levels of GSH, nitrite (HC) and BDNF and increased LP were also observed in KET-treated mice. ALA and CLZ alone reversed KET-induced behavioral alterations. These drugs also reversed the decreases in GSH (HC) and BDNF and increase in LP (PFC, HC and ST). The combination ALA+CLZ2.5 reversed behavioral and some neurochemical parameters. However, ALA+CLZ5 caused motor impairment. Therefore, ALA presented an antipsychotic-like profile reversing KET-induced positive- and negative-like symptoms. The mechanism partially involves antioxidant, neurotrophic and nitrergic pathways. The combination of ALA+CLZ2.5 improved most of the parameters evaluated in this study without causing motor impairment demonstrating, thus, that possibly when combined with ALA a lower dose of CLZ is required. PMID:25937462

  19. Amino Acid Deletion at Codon 67 and Thr-to-Gly Change at Codon 69 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confer Novel Drug Resistance Profiles

    PubMed Central

    Imamichi, Tomozumi; Murphy, Michael A.; Imamichi, Hiromi; Lane, H. Clifford

    2001-01-01

    The potential roles of an amino acid deletion at codon 67 (Δ67) and a Thr-to-Gly change at codon 69 (T69G) in the reverse transcriptase of human immunodeficiency virus (HIV) type 1 in drug sensitivity and relative replication fitness were studied. Our results suggest that the Δ67 and T69G changes can be categorized as mutations associated with multidrug resistance. The combination of both mutations with an L74I change (Δ67+T69G/L74I) leads to a novel 3′-azido-3′-deoxythymidine resistance motif and compensates for impaired HIV replication. PMID:11264389

  20. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    SciTech Connect

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; Shaw, Wendy J.

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.

  1. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-01

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively.

  2. Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: trends of chemical reversal.

    PubMed

    Ulrich, Kai-Uwe; Paul, Lothar; Meybohm, Andreas

    2006-05-01

    This study evaluates chemical trends of seven acidified reservoirs and 22 tributaries in the Erzgebirge from 1993 to 2003. About 85% of these waters showed significantly (p < 0.05) declining concentrations of protons (-69%), nitrate (-41%), sulfate (-27%), and reactive aluminum (-50% on average). This reversal is attributed to the intense reduction of industrial SO2 and NOx emissions from formerly high levels, which declined by 99% and 82% in the German-Czech border region between 1993 and 1999. The deposition rates of protons and sulfur decreased by 70-90%. Since 1993, the dry deposition of total inorganic nitrogen diminished to a minor degree, but the wet deposition remained unchanged. The surface waters reflect a substantial decrease in Al exchange processes, a release of sulfur previously stored in soils, and an uptake of nitrate by forest vegetation. The latter effect may be supported by soil protection liming which contributed to the chemical reversal in almost 20% of the study waters.

  3. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Meyer, D. J.; Shibata, M.; Roskwitalski, R.; Ornstein, R. L.; Rein, R.

    1994-01-01

    We present a full-coordinate model of residues 1-319 of the polymerase domain of HIV-I reverse transcriptase. This model was constructed from the x-ray crystallographic structure of Jacobo-Molina et al. (Jacobo-Molina et al., P.N.A.S. USA 90, 6320-6324 (1993)) which is currently available to the degree of C-coordinates. The backbone and side-chain atoms were constructed using the MAXSPROUT suite of programs (L. Holm and C. Sander, J. Mol. Biol. 218, 183-194 (1991)) and refined through molecular modeling. A seven base pair A-form dsDNA was positioned in the nucleic acid binding cleft to represent the template-primer complex. The orientation of the template-primer complex in the nucleic acid binding cleft was guided by the positions of phosphorus atoms in the crystal structure.

  4. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route.

    PubMed

    Kandambeth, Sharath; Mallick, Arijit; Lukose, Binit; Mane, Manoj V; Heine, Thomas; Banerjee, Rahul

    2012-12-01

    Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol-imine (OH) form underwent irreversible proton tautomerism, and only the keto-enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well.

  5. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    PubMed

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  6. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression.

    PubMed

    de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; Vasconcelos, Germana Silva; Silva, Márcia Calheiros Chaves; da Silva, Jéssica Calheiros; Macêdo, Danielle; de Lucena, David Freitas; Vasconcelos, Silvânia Maria Mendes

    2015-12-15

    Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression.

  7. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.

    PubMed Central

    Boucher, F; Taneva, S G; Elouatik, S; Déry, M; Messaoudi, S; Harvey-Girard, E; Beaudoin, N

    1996-01-01

    In purple membrane added with general anesthetics, there exists an acid-base equilibrium between two spectral forms of the pigment: bR570 and bR480 (apparent pKa = 7.3). As the purple 570 nm bacteriorhodopsin is reversibly transformed into its red 480 nm form, the proton pumping capability of the pigment reversibly decreases, as indicated by transient proton release measurements and proton translocation action spectra of mixture of both spectral forms. It happens in spite of a complete photochemical activity in bR480 that is mostly characterized by fast deprotonation and slow reprotonation steps and which, under continuous illumination, bleaches with a yield comparable to that of bR570. This modified photochemical activity has a correlated specific photoelectrical counterpart: a faster proton extrusion current and a slower reprotonation current. The relative areas of all photocurrent phases are reduced in bR480, most likely because its photochemistry is accompanied by charge movements for shorter distances than in the native pigment, reflecting a reversible inhibition of the pumping activity. PMID:8789112

  8. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids

    PubMed Central

    Paletz, Elliott M.; Day, Jeremy J.; Craig-Schmidt, Margaret C.; Newland, M. Christopher

    2007-01-01

    Fish contain essential long chain polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), an omega-3 (or n-3) PUFA, but are also the main source of exposure to methylmercury (MeHg), a potent developmental neurotoxicant. Since n-3 PUFAs support neural development and function, benefits deriving from a diet rich in n-3s have been hypothesized to protect against deleterious effects of gestational MeHg exposure. To determine whether protection occurs at the behavioral level, female Long-Evans rats were exposed, in utero, to 0, 0.5, or 5 ppm of Hg as MeHg via drinking water, approximating exposures of 0, 40, and 400 μg Hg/kg/day and producing 0, 0.29, and 5.50 ppm of total Hg in the brains of siblings at birth. They also received pre- and postnatal exposure to one of two diets, both based on the AIN-93 semipurified formulation. A “fish-oil” diet was high in, and a “coconut-oil” diet was devoid of, DHA. Diets were approximately equal in α-linolenic acid and n-6 PUFAs. As adults, the rats were first assessed with a spatial discrimination reversal (SDR) procedure and later with a visual (nonspatial) discrimination reversal (VDR) procedure. MeHg increased the number of errors to criterion for both SDR and VDR during the first reversal, but effects were smaller or nonexistent on the original discrimination and on later reversals. No such MeHg-related deficits were seen when the rats were retested on SDR after two years of age. These results are consistent with previous reports and hypotheses that gestational MeHg exposure produces perseverative responding. No interactions between Diet and MeHg were found, suggesting that n-3 PUFAs do not guard against these behavioral effects. Brain Hg concentrations did not differ between the diets, either. In geriatric rats, failures to respond were less common and response latencies were shorter for rats fed the fish oil diet, suggesting that exposure to a diet rich in n-3s may lessen the impact of age

  9. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli.

    PubMed

    Zhuang, Qianqian; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2014-07-01

    Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10wt% of cell dry weight scl-mcl PHA copolymers, of which 21.18mol% was 3-hydroxybutyrate and 78.82mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.

  10. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    EPA Science Inventory

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  11. The lathyrogenic effect of isonicotinic acid hydrazide (INAH) on the chick embryo and its reversal by pyridoxal.

    PubMed

    LEVENE, C I

    1961-04-01

    When applied to the chorio-allantoic membrane of the chick embryo, isoniazid was shown to produce an increase in the fragility of the embryo and in the amount of collagen which was extractable from the bones with cold 1 M sodium chloride. The administration of pyridoxal reversed these phenomena almost completely. The effect of isoniazid differed from that of beta-aminopropionitrile in that the latter was of greater magnitude, and was not affected by pyridoxal; whereas beta-aminopropionitrile caused skeletal deformities, isoniazid even at 12 times the concentration produced no deformities. The aldehyde group of pyridoxal was shown to be necessary for its interaction with isoniazid.

  12. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography.

    PubMed

    Bobály, Balázs; Tóth, Eszter; Drahos, László; Zsila, Ferenc; Visy, Júlia; Fekete, Jenő; Vékey, Károly

    2014-01-17

    Influence of acid concentration in the mobile phase on protein separation was studied in a wide concentration range using trifluoroacetic acid (TFA) and formic acid (FA). At low, 0.001-0.01 (v/v%) TFA concentration and appropriate solvent strength proteins elute before the column's dead time. This is explained by the proteins having a structured, but relatively extended conformation in the eluent; and are excluded from the pores of the stationary phase. Above ca. 0.01-0.05 (v/v%) TFA concentration proteins undergo further conformational change, leading to a compact, molten globule-like structure, likely stabilized by ion pairing. Proteins in this conformation enter the pores and are retained on the column. The results suggest a pore exclusion induced separation related to protein conformation. This effect is influenced by the pH and type of acid used, and is likely to involve ion-pair formation. The TFA concentration needed to result in protein folding (and therefore to observe retention on the column) depends on the protein; and therefore can be utilized to improve chromatographic performance. Conformation change was monitored by circular dichroism spectroscopy and mass spectrometry; and it was shown that not only TFA but FA can also induce molten globule formation. PMID:24373532

  13. Determination of pantothenic acid in multivitamin pharmaceutical preparations by reverse-phase high-performance liquid chromatography.

    PubMed

    Hudson, T J; Allen, R J

    1984-01-01

    A high-performance liquid chromatographic procedure was developed for the analysis of calcium pantothenate in nutritional supplements. The method involves a simple extraction using phosphate buffer and sonication. Chromatographic separation is obtained using an aminopropyl-loaded silica gel column in the reverse-phase mode. A UV detector set at 210 nm was used to monitor the effluent. Quantitative recoveries were obtained, and precision of the method is discussed. The method is applicable to multivitamin tablets, calcium pantothenate raw material, and yeast grown in the presence of high levels of calcium pantothenate. The results of the method are compared with results obtained from the USP microbiological method of analysis. It was concluded that the procedure is rapid, accurate, easily automated, and practical for routine quality control use. PMID:6694064

  14. Extending food deprivation reverses the short-term lipolytic response to fasting: role of the triacylglycerol/fatty acid cycle.

    PubMed

    Weber, Jean-Michel; Reidy, Shannon P

    2012-05-01

    The effects of short-term food deprivation on lipid metabolism are well documented, but little is known about prolonged fasting. This study monitored the kinetics of glycerol (rate of appearance, R(a) glycerol) and non-esterified fatty acids (R(a) NEFA) in fasting rabbits. Our goals were to determine whether lipolysis is stimulated beyond values seen for short-term fasting, and to characterize the roles of primary (intracellular) and secondary (with transit through the circulation) triacylglycerol/fatty acid cycling (TAG/FA cycling) in regulating fatty acid allocation to oxidation or re-esterification. R(a) glycerol (9.62±0.72 to 15.29±0.96 μmol kg(-1) min(-1)) and R(a) NEFA (18.05±2.55 to 31.25±1.93 μmol kg(-1) min(-1)) were stimulated during the first 2 days of fasting, but returned to baseline after 4 days. An initial increase in TAG/FA cycling was followed by a reduction below baseline after 6 days without food, with primary and secondary cycling contributing to these responses. We conclude that the classic activation of lipolysis caused by short-term fasting is abolished when food deprivation is prolonged. High rates of re-esterification may become impossible to sustain, and TAG/FA cycling could decrease to reduce its cost to 3% of total energy expenditure. Throughout prolonged fasting, fatty acid metabolism gradually shifts towards increased oxidation and reduced re-esterification. Survival is achieved by pressing fuel selection towards the fatty acid dominance of energy metabolism and by slowing substrate cycles to assist metabolic suppression. However, TAG/FA cycling remains active even after prolonged fasting, suggesting that re-esterification is a crucial mechanism that cannot be stopped without harmful consequences.

  15. Impact of Drug Resistance-Associated Amino Acid Changes in HIV-1 Subtype C on Susceptibility to Newer Nonnucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Basson, Adriaan E.; Rhee, Soo-Yon; Parry, Chris M.; El-Khatib, Ziad; Charalambous, Salome; De Oliveira, Tulio; Pillay, Deenan; Hoffmann, Christopher; Katzenstein, David; Shafer, Robert W.

    2014-01-01

    The objective of this study was to assess the phenotypic susceptibility of HIV-1 subtype C isolates, with nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance-associated amino acid changes, to newer NNRTIs. A panel of 52 site-directed mutants and 38 clinically derived HIV-1 subtype C clones was created, and the isolates were assessed for phenotypic susceptibility to etravirine (ETR), rilpivirine (RPV), efavirenz (EFV), and nevirapine (NVP) in an in vitro single-cycle phenotypic assay. The amino acid substitutions E138Q/R, Y181I/V, and M230L conferred high-level resistance to ETR, while K101P and Y181I/V conferred high-level resistance to RPV. Y181C, a major NNRTI resistance-associated amino acid substitution, caused decreased susceptibility to ETR and, to a lesser extent, RPV when combined with other mutations. These included N348I and T369I, amino acid changes in the connection domain that are not generally assessed during resistance testing. However, the prevalence of these genotypes among subtype C sequences was, in most cases, <1%. The more common EFV/NVP resistance-associated substitutions, such as K103N, V106M, and G190A, had no major impact on ETR or RPV susceptibility. The low-level resistance to RPV and ETR conferred by E138K was not significantly enhanced in the presence of M184V/I, unlike for EFV and NVP. Among patient samples, 97% were resistant to EFV and/or NVP, while only 24% and 16% were resistant to ETR and RPV, respectively. Overall, only a few, relatively rare NNRTI resistance-associated amino acid substitutions caused resistance to ETR and/or RPV in an HIV-1 subtype C background, suggesting that these newer NNRTIs would be effective in NVP/EFV-experienced HIV-1 subtype C-infected patients. PMID:25421485

  16. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  17. Optimized Reverse Micelle Surfactant System for High-Resolution NMR Spectroscopy of Encapsulated Proteins and Nucleic Acids Dissolved in Low Viscosity Fluids

    PubMed Central

    2015-01-01

    An optimized reverse micelle surfactant system has been developed for solution nuclear magnetic resonance studies of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. Comprising the nonionic 1-decanoyl-rac-glycerol and the zwitterionic lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture is shown to efficiently encapsulate a diverse set of proteins and nucleic acids. Chemical shift analyses of these systems show that high structural fidelity is achieved upon encapsulation. The 10MAG/LDAO surfactant system reduces the molecular reorientation time for encapsulated macromolecules larger than ∼20 kDa leading to improved overall NMR performance. The 10MAG/LDAO system can also be used for solution NMR studies of lipid-modified proteins. New and efficient strategies for optimization of encapsulation conditions are described. 10MAG/LDAO performs well in both the low viscosity pentane and ultralow viscosity liquid ethane and therefore will serve as a general surfactant system for initiating solution NMR studies of proteins and nucleic acids. PMID:24495164

  18. Effect of Mg(2+) and Na(+) on the nucleic acid chaperone activity of HIV-1 nucleocapsid protein: implications for reverse transcription.

    PubMed

    Vo, My-Nuong; Barany, George; Rouzina, Ioulia; Musier-Forsyth, Karin

    2009-02-27

    The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is an essential protein for retroviral replication. Among its numerous functions, NC is a nucleic acid (NA) chaperone protein that catalyzes NA rearrangements leading to the formation of thermodynamically more stable conformations. In vitro, NC chaperone activity is typically assayed under conditions of low or no Mg(2+), even though reverse transcription requires the presence of divalent cations. Here, the chaperone activity of HIV-1 NC was studied as a function of varying Na(+) and Mg(2+) concentrations by investigating the annealing of complementary DNA and RNA hairpins derived from the trans-activation response domain of the HIV genome. This reaction mimics the annealing step of the minus-strand transfer process in reverse transcription. Gel-shift annealing and sedimentation assays were used to monitor the annealing kinetics and aggregation activity of NC, respectively. In the absence of protein, a limited ability of Na(+) and Mg(2+) cations to facilitate hairpin annealing was observed, whereas NC stimulated the annealing 10(3)- to 10(5)-fold. The major effect of either NC or the cations is on the rate of bimolecular association of the hairpins. This effect is especially strong under conditions wherein NC induces NA aggregation. Titration with NC and NC/Mg(2+) competition studies showed that the annealing kinetics depends only on the level of NA saturation with NC. NC competes with Mg(2+) or Na(+) for sequence-nonspecific NA binding similar to a simple trivalent cation. Upon saturation, NC induces attraction between NA molecules corresponding to approximately 0.3 kcal/mol/nucleotide, in agreement with an electrostatic mechanism of NC-induced NA aggregation. These data provide insights into the variable effects of NC's chaperone activity observed during in vitro studies of divalent metal-dependent reverse transcription reactions and suggest the feasibility of NC-facilitated proviral DNA

  19. [Determination of oleanic acid and paeoniflorin in Paeonia lactiflora by ultrasound-assisted ionic liquid-reversed phase liquid chromatography].

    PubMed

    Liu, Wei; Li, Dong-dong; Yang, Hong-shuai; Chen, Yuan-yuan; Wei, Jin-feng; Kang, Wen-yi; Guo, Xiu-chun

    2015-02-01

    Four kinds of ionic liquids [BMIM] Br, [BMIM] BF4, [BMIM] PF6, [HMIM] PF6 were used to analyze the content of oleanic acid and paeoniflorin in Paeonia lactiflora with ultrasonic-assisted extraction coupled with HPLC. The chromatographic column, Purospher star RP-C18 (4.6 mm x 250 mm, 5 μm), was used. Acetonitrile and water (90:10) as mobile phase was used to determine the content of oleanic acid with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 210 nm, chromatographic column temperature at room temperature. Paeoniflorin content was determined using acetonitrile and water (18:82) as mobile phase with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 250 nm, the chromatographic column temperature at room temperature. The result show that oleanic acid has the highest extraction yield when the conditions are solid-liquid ratio of 1:80 (g · mL(-1)), and the [BMIM] Br methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, the content of oleanic acid from 0.24 to 3.76 μg showed a good linearity (r = 0.9999), the average recovery was 97.20%. Paeoniflorin has the highest extraction yield when the conditions are solid-liquid ratio of 1:130 (g · mL(-1)), and the [C4 MIM] PF6 methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, paeoniflorin content from 0.42 to 4.20 μg showed a good lin- earity (r = 1.000), the average recovery was 98.84%. This method is simple and reliable, its repeatability is also very good. It has important significance in the study P. lactiflora of ionic liquid microextraction. PMID:26084167

  20. Reversal of Lead-Induced Acute Toxicity by Lipoic Acid with Nutritional Supplements in Male Wistar Rats.

    PubMed

    Shukla, Sangeeta; Sharma, Yamini; Shrivastava, Sadhana

    2016-01-01

    Lead (Pb) is a pleiotropic toxicant. The potential role of oxidative stress injury that is associated with Pb poisoning suggests that antioxidants may enhance the efficacy of treatment designed to mitigate Pb-induced toxicity. The aim of this study is to investigate the comparative ameliorative potential of lipoic acid (LA) alone or in combination with calcium (Ca) and zinc (Zn). Pb acetate (50 mg/kg, intraperitoneally) was administered for 3 d. After 24 h of the last toxicant dose, LA (100 mg/kg, orally [po]) alone or in conjuction with Ca (50 mg/kg, po) and Zn (10 mg/kg, po) was administered for 3 d. Significant alterations in the concentration of urea, uric acid, triglycerides, cholesterol, aspartate amino transferase, alanine amino transferase, lipid peroxidation, and reduced glutathione as well as alterations in enzyme activity of δ-aminolevulinic acid (ALA) dehydratase were observed following acute Pb exposure. These findings were also supported by elevated mean DNA damage and Pb body burden in blood and soft tissues compared to controls (p ≤ 0.05). Three d posttreatment with LA along with Zn and Ca could significantly restore the biochemical parameters and Pb body burden to near-normal status through antioxidant activity or by preventing bioaccumulation of Pb within the blood and tissues of experimental rats. PMID:27481494

  1. Hypoxia-induced resistance to cisplatin-mediated apoptosis in osteosarcoma cells is reversed by gambogic acid independently of HIF-1α.

    PubMed

    Zhao, Wei; Xia, Shi-Qi; Zhuang, Jin-Peng; Zhang, Zhi-Peng; You, Chang-Cheng; Yan, Jing-Long; Xu, Gong-Ping

    2016-09-01

    In vitro evidence of hypoxia-induced resistance to cisplatin (CDDP)-mediated apoptosis exists in human osteosarcoma (OS). Gambogic acid (GA) is a promising chemotherapeutic compound that could increase the chemotherapeutic effectiveness of CDDP in human OS cells by inducing cell cycle arrest and promoting apoptosis. This study examined whether GA could overcome OS cell resistance to CDDP. Hypoxia significantly reduced levels of CDDP-induced apoptosis in the OS cell lines MG63 and HOS. However, combined treatment with GA and CDDP revealed a strong synergistic action between these drugs, and higher protein levels of the apoptosis-related factor Fas, cleaved caspase-8 and cleaved caspase-3 and lower expression of hypoxia-inducible factor (HIF)-1α are detected in both cell lines. Meanwhile, drug resistance was not reversed by exposure to the HIF-1α inhibitor 2-methoxyestradiol. These findings strongly suggest that hypoxia-induced resistance to CDDP is reversed by GA in OS cells independently of HIF-1α. Furthermore, in vivo studies using xenograft mouse models revealed that combination therapy with CDDP and GA exerted increased antitumor effects by inducing apoptosis. Taken together, our results demonstrate that GA may be a new potent therapeutic agent useful for targeting human OS cells. PMID:27473145

  2. Ionic derivatives of betulinic acid exhibit antiviral activity against herpes simplex virus type-2 (HSV-2), but not HIV-1 reverse transcriptase.

    PubMed

    Visalli, Robert J; Ziobrowski, Hannah; Badri, Kameswara R; He, Johnny J; Zhang, Xiugen; Arumugam, Sri Ranjini; Zhao, Hua

    2015-08-15

    Betulinic acid (1) has been modified to ionic derivatives (2-5) to improve its water solubility and biological activities. The binding properties of these derivatives with respect to human serum albumin (HSA) was examined and found to be similar to current anti-HIV drugs. These compounds did not inhibit HIV reverse transcriptase, however, 1, 2 and 5 inhibited herpes simplex type 2 (HSV-2) replication at concentrations similar to those reported for acyclovir (IC50 ∼ 0.1-10 μM) and with minimal cellular cytotoxicity. IC50 values for antiviral activity against HSV-2 186 were 1.6, 0.6, 0.9, 7.2, and 0.9 μM for compounds 1-5, respectively.

  3. Retention data from reverse-phase high-performance thin-layer chromatography in characterization of some bis-salicylic acid derivatives.

    PubMed

    Djaković-Sekulić, Tatjana; Perisić-Janjić, Nada; Djurendi, Evgenija

    2009-08-01

    The chromatographic behaviour of salicylic acid derivatives was investigated using reversed-phase high performance thin-layer chromatography (RP HPTLC) with methanol-water and dioxane-water binary mixtures as mobile phase in order to establish relationships between chromatographic data and selected physico-chemical parameters that are related to ADME (absorption, distribution, metabolism and elimination). Some of the investigated compounds were screened for antioxidant activity. Examination of chromatographic behaviour revealed a linear correlation between R(M) values and the volume fraction of mobile phase modifier. Obtained R(M)(0) values were correlated with lipophilicity, solubility, human intestinal absorption, plasma-protein binding, and blood-brain barrier data. The comparison among chromatographic data obtained by two mobile phase was performed with a statistical technique, principle component analysis.

  4. A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids.

    PubMed

    Liu, Tao; Zhao, Yuandi; Wang, Xiaofeng; Li, Xiang; Yan, Yunjun

    2013-03-01

    A novel oriented immobilized lipase was derived from Yarrowia lipolytica lipase LIP2 covalently immobilized on functionalized Fe3O4 magnetic nanoparticles (MNPs) in reverse micelles system (RMS). The activity recovery reached 382% compared with 29% in aqueous phase, and further ran up to 1425% under optimum conditions. (3-Aminopropyl) triethoxysilane (APTES) coated Fe3O4 nanoparticles were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). A significant alteration in the secondary structure of the lipase in RMS with a 15.5% increase of α-helix content and a 12.5% decrease of β-sheet content was detected by circular dichroism (CD). The immobilized lipase was employed to enrich polyunsaturated fatty acids in fish oil, a 90% increase of DHA content was obtained after 12h, and after 20 cycles of successive usage, it still remained over 80% of relative hydrolysis degree, which shows a good recyclability. PMID:23395761

  5. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  6. Combined administration of oxalic acid, succimer and its analogue for the reversal of gallium arsenide-induced oxidative stress in rats.

    PubMed

    Flora, Swaran J S; Kannan, Gurusamy M; Pant, Bhagwat P; Jaiswal, Devendra K

    2002-06-01

    Gallium arsenide (GaAs), a group III-VA intermetallic semiconductor, possesses superior electronic and optical properties and has a wide application in the electronics industry. Exposure to GaAs in the semiconductor industry is a potential occupational hazard because cleaning and slicing GaAs ingots to yield the desired wafer could generate GaAs particles. The ability of GaAs to induce oxidative stress has not yet been reported. The present study reports the role of oxidative stress in GaAs-induced haematological and liver disorders and its possible reversal overturn by administration of meso-2,3-dimercaptosuccinic acid (DMSA) and one of its analogue, monoisoamyl DMSA (MiADMSA), either individually or in combination with oxalic acid. While DMSA and MiADMSA are potential arsenic chelators, oxalic acid is reported to be an effective gallium chelator. Male rats were exposed to 10 mg/kg GaAs orally, 5 days a week for 8 weeks. GaAs exposure was then stopped and rats were given a 0.5 mmol/kg dose of succimers (DMSA or MiADMSA), oxalic acid or a combination of the two, intraperitoneally once daily for 5 consecutive days. We found a significant fall in blood delta-aminolevulinic acid dehydratase (ALAD) activity and blood glutathione (GSH) level, and an increased urinary excretion of delta-aminolevulinic acid (ALA) and an increased malondialdehyde (MDA) level in erythrocytes of rats exposed to GaAs. Hepatic GSH levels decreased, whereas there was an increase in GSSG and MDA levels. The results suggest a role of oxidative stress in GaAs-induced haematological and hepatic damage. Administration of DMSA and MiADMSA produced effective recovery in most of the above variables. However, a greater effectiveness of the chelation treatment (i.e. removal of both gallium and arsenic from body organs) could be achieved by combined administration of succimer (DMSA) with oxalic acid since, after MiADMSA administration, a marked loss of essential metals (copper and zinc) is of concern.

  7. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency.

    PubMed

    Roy, Marc; Leclerc, Daniel; Wu, Qing; Gupta, Sapna; Kruger, Warren D; Rozen, Rima

    2008-10-01

    Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr(+/+) and Mthfr(+/-) mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr(+/+) and Mthfr(+/-) pregnant mice were injected with VPA on gestational day 8.5; resorption rates and occurrence of neural tube defects (NTDs) were examined on gestational day 14.5. We also examined the effects of VPA on MTHFR expression in HepG2 cells and on MTHFR activity and homocysteine levels in mice. Mthfr(+/+) mice had increased resorption rates (36%) after VPA treatment, compared to saline treatment (10%), whereas resorption rates were similar in Mthfr(+/-) mice with the two treatments (25-27%). NTDs were only observed in one group (VPA-treated Mthfr(+/+)). In HepG2 cells, VPA increased MTHFR promoter activity and MTHFR mRNA and protein (2.5- and 3.7-fold, respectively). Consistent with cellular MTHFR upregulation by VPA, brain MTHFR enzyme activity was increased and plasma homocysteine was decreased in VPA-treated pregnant mice compared to saline-treated animals. These results underscore the importance of folate interconversion in VPA-induced teratogenicity, since VPA increases MTHFR expression and has lower teratogenic potential in MTHFR deficiency. PMID:18615588

  8. VALPROIC ACID-INDUCED BRAIN DAMAGE IN RATS AS A MODEL FOR AUTISM. (R824758)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Adjuvant Sunitinib or Valproic Acid in High-Risk Patients With Uveal Melanoma

    ClinicalTrials.gov

    2016-07-25

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Iris Melanoma; Stage I Intraocular Melanoma; Stage IIA Intraocular Melanoma; Stage IIB Intraocular Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIC Intraocular Melanoma

  10. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    PubMed

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  11. Effects of the protonation state in the interaction of an HIV-1 reverse transcriptase (RT) amino acid, Lys101, and a non nucleoside RT inhibitor, GW420867X.

    PubMed

    Galembeck, Sérgio E; Bickelhaupt, F Matthias; Fonseca Guerra, Célia; Galembeck, Eduardo

    2014-07-01

    Interactions between an inhibitor and amino acids from a binding pocket could help not only to understand the nature of these interactions, but also to support the design of new inhibitors. In this paper, we explore the key interaction between a second generation non-nucleoside reverse transcriptase inhibitor (NNRTI), GW420867X, and HIV-1 RT amino acid Lys101 (K101), by quantum mechanical methods. The neutral, protonated, and zwitterionic complexes of GW420867X-K101 were studied. The interaction energies were determined by SCS-MP2/def2-cc-pVQZ, and the electron density was analyzed by natural bond orbital (NBO), atoms in molecules (AIM) and reduced gradient analysis. A large increase in the interaction was observed with the tautomerization of neutral or neutral protonated species. The monomers interact by two medium-strength hydrogen bonds, one partially covalent and another noncovalent. There are some van der Waals intramolecular interactions that are topologically unstable. The nature of the intermolecular interactions was also analyzed using quantitative molecular orbital (MO) theory in combination with an energy decomposition analysis (EDA) based on dispersion-corrected density functional theory (DFT) at BLYP-D/TZ2P. PMID:24965933

  12. Effects of pH mismatch between the two dimensions of reversed-phase×reversed-phase two-dimensional separations on second dimension separation quality for ionogenic compounds-I. Carboxylic acids.

    PubMed

    Stoll, Dwight R; O'Neill, Kelly; Harmes, David C

    2015-02-27

    Two persistent impediments to wider adoption of two-dimensional liquid chromatography (2D-LC) are the perceptions that 2D methods are generally less sensitive than 1D ones, and that coupling of certain separation modes in a 2D system is difficult because of the negative impact of the effluent of the first separation on the second separation. In this work we address these problems in the specific case where reversed-phase separations are used in both dimensions of a 2D-LC system, but the pH is varied such that the ionization state of carboxylic acid analytes is different (i.e., neutral or negatively charged, in eluents buffered at pH 2 or 7) in the two columns. We first demonstrate that the effect of first dimension ((1)D) effluent on the performance of second dimension ((2)D) separation of ionogenic solutes is much more serious than it is for neutral compounds where the pH of the eluent does not play a role in retention. We have systematically varied the properties of the sample solution injected into the (2)D column (i.e., the (1)D effluent), as well as the (2)D eluent, with the goal of establishing guidelines for conditions that yield acceptable (2)D performance. We find that the organic solvent content of the (1)D effluent and (2)D eluent is not as important as the buffer concentrations in these two solutions, and that the greater the ratio of buffer concentration in the (1)D effluent relative to the (2)D eluent, the smaller the volume one can inject into the (2)D column before dramatic peak splitting occurs. We have then used the information from these simple experiments to guide both 1D experiments that mimic the (2)D separation, and actual 2D separations, to demonstrate that online adjustment of the properties of the (1)D effluent by dilution with a buffered solvent prior to injection into the (2)D column is a very effective solution to the pH mismatch problem. We find that when the buffer capacity of the diluent is high enough to effectively titrate the (1)D

  13. Inhibition of HIV-1 and M-MLV reverse transcriptases by a major polyphenol (3,4,5 tri-O-galloylquinic acid) present in the leaves of the South African resurrection plant, Myrothamnus flabellifolia.

    PubMed

    Kamng'ona, Arox; Moore, John P; Lindsey, George; Brandt, Wolf

    2011-12-01

    A polyphenol-rich extract of the medicinal resurrection plant Myrothamnus flabellifolia was shown to inhibit viral (M-MLV and HIV-1) reverse transcriptases. Fractionation and purification of this extract yielded the major polyphenol, 3,4,5 tri-O-galloylquinic acid, as the main active compound. A sensitive, ethidium bromide based fluorescent assay, was developed and used to monitor the kinetics of M-MLV and HIV-1 reverse transcriptases in the presence and absence of 3,4,5 tri-O-galloylquinic acid. Kinetic monitoring of these enzymes in the presence of 3,4,5 tri-O-galloylquinic acid revealed non-competitive inhibition with IC(50) values of 5 μM and 34 μM for the M-MLV and HIV-1 enzymes, respectively. We propose that 3,4,5 tri-O-galloylquinic acid and related polymers have potential as indigenous drugs for anti-viral therapy.

  14. Increased adenosine levels in mice expressing mutant glial fibrillary acidic protein in astrocytes result in failure of induction of LTP reversal (depotentiation) in hippocampal CA1 neurons.

    PubMed

    Fujii, Satoshi; Tanaka, Kenji F; Ikenaka, Kazuhiro; Yamazaki, Yoshihiko

    2014-08-26

    Astrocytes regulate the activity of neighboring neurons by releasing chemical transmitters, including ATP. Adenosine levels in the cerebrospinal fluid of mice that express a mutant human glial fibrillary acidic protein in astrocytes are slightly elevated compared to those in wild type mice and this might result from the observed increased release by mutant astrocytes of ATP, which can be used to produce adenosine. Using hippocampal slices from these mutant mice, we examined whether the increased endogenous adenosine levels in the hippocampus modulate the reversal of long-term potentiation (LTP), i.e. depotentiation (DP), in CA1 neurons. In hippocampal slices from wild type mice, a stable LTP was induced by tetanic stimulation consisting of 100 pulses at 100 Hz, and this was reversed by a train of low frequency stimulation (LFS) of 500 pulses at 1 Hz applied 30 min later. This induction of DP was inhibited by application of either 100 nM adenosine or 0.5 nM N(6)-cyclopentyladenosine, an adenosine A1 receptor agonist, during LFS, indicating that the increase in extracellular adenosine levels attenuated DP induction by acting on adenosine A1 receptors. In contrast, although a stable LTP was also induced in hippocampal slices from mutant mice, induction of DP was inhibited, but DP could be induced by application, during LFS, of 50 nM 8-cyclopentyltheophylline, an adenosine A1 receptor antagonist. These results suggest that a small increase in extracellular adenosine levels resulting from increased ATP release by astrocytes results in attenuation of DP in hippocampal CA1 neurons in the mutant mice.

  15. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection.

    PubMed

    Wang, Zhongshan; Wu, Guangsheng; Wei, Mengying; Liu, Qian; Zhou, Jian; Qin, Tian; Feng, Xiaoke; Liu, Huan; Feng, Zhihong; Zhao, Yimin

    2016-01-01

    Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC) sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS)/hyaluronic acid (HA) nanoparticles (NPs) to deliver microRNA-21 (miR-21), which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel reverse transfection approach, and miR-21 delivery significantly enhanced the in vitro osteogenic differentiation of hBMMSC sheets in terms of upregulating calcification-related gene expression and enhancing alkaline phosphatase production, collagen secretion, and mineralized nodule formation. The enhanced osteogenic activity of hBMMSC sheets might promisingly lead to more rapid and more robust bone regeneration for clinical use. PMID:27274237

  16. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    PubMed Central

    Wang, Zhongshan; Wu, Guangsheng; Wei, Mengying; Liu, Qian; Zhou, Jian; Qin, Tian; Feng, Xiaoke; Liu, Huan; Feng, Zhihong; Zhao, Yimin

    2016-01-01

    Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC) sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS)/hyaluronic acid (HA) nanoparticles (NPs) to deliver microRNA-21 (miR-21), which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel reverse transfection approach, and miR-21 delivery significantly enhanced the in vitro osteogenic differentiation of hBMMSC sheets in terms of upregulating calcification-related gene expression and enhancing alkaline phosphatase production, collagen secretion, and mineralized nodule formation. The enhanced osteogenic activity of hBMMSC sheets might promisingly lead to more rapid and more robust bone regeneration for clinical use. PMID:27274237

  17. Increased adenosine levels in mice expressing mutant glial fibrillary acidic protein in astrocytes result in failure of induction of LTP reversal (depotentiation) in hippocampal CA1 neurons.

    PubMed

    Fujii, Satoshi; Tanaka, Kenji F; Ikenaka, Kazuhiro; Yamazaki, Yoshihiko

    2014-08-26

    Astrocytes regulate the activity of neighboring neurons by releasing chemical transmitters, including ATP. Adenosine levels in the cerebrospinal fluid of mice that express a mutant human glial fibrillary acidic protein in astrocytes are slightly elevated compared to those in wild type mice and this might result from the observed increased release by mutant astrocytes of ATP, which can be used to produce adenosine. Using hippocampal slices from these mutant mice, we examined whether the increased endogenous adenosine levels in the hippocampus modulate the reversal of long-term potentiation (LTP), i.e. depotentiation (DP), in CA1 neurons. In hippocampal slices from wild type mice, a stable LTP was induced by tetanic stimulation consisting of 100 pulses at 100 Hz, and this was reversed by a train of low frequency stimulation (LFS) of 500 pulses at 1 Hz applied 30 min later. This induction of DP was inhibited by application of either 100 nM adenosine or 0.5 nM N(6)-cyclopentyladenosine, an adenosine A1 receptor agonist, during LFS, indicating that the increase in extracellular adenosine levels attenuated DP induction by acting on adenosine A1 receptors. In contrast, although a stable LTP was also induced in hippocampal slices from mutant mice, induction of DP was inhibited, but DP could be induced by application, during LFS, of 50 nM 8-cyclopentyltheophylline, an adenosine A1 receptor antagonist. These results suggest that a small increase in extracellular adenosine levels resulting from increased ATP release by astrocytes results in attenuation of DP in hippocampal CA1 neurons in the mutant mice. PMID:25017946

  18. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.

    PubMed

    Wu, Yang; Zhang, Yu; Zhang, Wei; Sun, Chunlong; Wu, Jianzhong; Tang, Jinhai

    2016-02-01

    Multidrug resistance (MDR) remains one of major limitation for the successful treatment of many cancers including breast cancer. Co-delivery of chemotherapeutic drugs and small interfering RNA (siRNA) has been developed because of its ability to generate synergistic anticancer effects via different mechanisms of action, to reverse MDR and increase the efficacy of chemotherapeutic drugs in cancer therapy. Herein, we employed a kind of efficient multifunctional tumor targeted nanomicelles (PECL3) for the co-delivery of hydrophobic anti-cancer drugs and siRNA. This kind of nanomicelles were constructed by folic acid (FA)-decorated PEG-b-(PCL-g-PEI)-b-PCL triblock copolymers, which were synthesized through "click chemistry" and "ring opening" polymerization. Driven by the "core-shell" structure and the electrostatic interaction, this triblock copolymer could efficiently encapsulate P-glycoprotein (P-gp) siRNA and doxorubicin (DOX). The obtained nanomicelles can prevent renal clearance, RNase degradation and aggregation in circulation. Compared to the non-specific delivery, these FA functionalized nanomicelles could efficiently deliver P-gp siRNA to reducing both P-gp expression levels and IC50 value of the DOX in DOX-resistant breast cancer cells (MCF-7/ADR). Additionally, in vivo results showed that DOX loaded PECL3 (D-PECL3) micelles could reduce toxicity of DOX on nontarget tissues and significantly inhibited MCF-7/ADR tumor growth through encapsulating DOX in the micelles and deliver them to target tumor region. Taken together, these results proof that PECL3 micelles could co-deliver siRNA and drug to inhibit MDR tumor growth. These results suggested that the co-delivery of DOX and siRNA in tumor-targeting nanomicelles could excite synergistic effect of gene therapy and chemotherapy, thus can efficiently reverse MDR cancer and kill the cancer cells. PMID:26655793

  19. Upregulation of retinoic acid receptor-β reverses drug resistance in cholangiocarcinoma cells by enhancing susceptibility to apoptosis

    PubMed Central

    Ren, Hong-Yue; Chen, Bo; Huang, Gui-Li; Liu, Yu; Shen, Dong-Yan

    2016-01-01

    Retinoic acid receptor β (RARβ), a known tumor suppressor gene, is frequently silenced in numerous malignant types of tumor. Recent reports have demonstrated that loss of RARβ expression may be responsible, in part, for the drug resistance observed in clinical trials. However, little is known about the role of RARβ in regulating drug sensitivity in patients with cholangiocarcinoma (CCA) with a high risk of mortality and poor outcomes. In the present study, low RARβ expression was observed in the majority of CCA tissues investigated (28/33, 84.8%). In addition, the CCA cell line QBC939, which exhibits low RARβ expression, was found to be significantly resistant to chemotherapeutic agents compared with SK-ChA-1, MZ-ChA-1 and Hccc9810 CCA cell lines, which exhibit high RARβ expression. Furthermore, upregulation of RARβ significantly enhanced the sensitivity of QBC939 cells to common chemotherapeutic agents both in vitro and in vivo. Upregulation of RARβ was shown to increase the expression of proapoptotic genes bax, bak and bim, in addition to caspase-3 activity, and decrease the expression of antiapoptotic genes bcl-2, bcl-xL and mcl-1. As a result, CCA cells were more susceptible to caspase-dependent apoptosis. Taken together, these data suggest that RARβ upregulation rendered CCA cells more sensitive to chemotherapeutic agents by increasing the susceptibility of cells to caspase-dependent apoptosis. These results support the hypothesis that RARβ may be an ideal chemosensitization target for the treatment of patients with drug-resistant CCA. PMID:27599527

  20. Upregulation of retinoic acid receptor-β reverses drug resistance in cholangiocarcinoma cells by enhancing susceptibility to apoptosis.

    PubMed

    Ren, Hong-Yue; Chen, Bo; Huang, Gui-Li; Liu, Yu; Shen, Dong-Yan

    2016-10-01

    Retinoic acid receptor β (RARβ), a known tumor suppressor gene, is frequently silenced in numerous malignant types of tumor. Recent reports have demonstrated that loss of RARβ expression may be responsible, in part, for the drug resistance observed in clinical trials. However, little is known about the role of RARβ in regulating drug sensitivity in patients with cholangiocarcinoma (CCA) with a high risk of mortality and poor outcomes. In the present study, low RARβ expression was observed in the majority of CCA tissues investigated (28/33, 84.8%). In addition, the CCA cell line QBC939, which exhibits low RARβ expression, was found to be significantly resistant to chemotherapeutic agents compared with SK‑ChA‑1, MZ‑ChA‑1 and Hccc9810 CCA cell lines, which exhibit high RARβ expression. Furthermore, upregulation of RARβ significantly enhanced the sensitivity of QBC939 cells to common chemotherapeutic agents both in vitro and in vivo. Upregulation of RARβ was shown to increase the expression of proapoptotic genes bax, bak and bim, in addition to caspase‑3 activity, and decrease the expression of antiapoptotic genes bcl‑2, bcl‑xL and mcl‑1. As a result, CCA cells were more susceptible to caspase‑dependent apoptosis. Taken together, these data suggest that RARβ upregulation rendered CCA cells more sensitive to chemotherapeutic agents by increasing the susceptibility of cells to caspase-dependent apoptosis. These results support the hypothesis that RARβ may be an ideal chemosensitization target for the treatment of patients with drug-resistant CCA. PMID:27599527

  1. Reversible dementias

    PubMed Central

    Tripathi, Manjari; Vibha, Deepti

    2009-01-01

    In recent years, more attention has been given to the early diagnostic evaluation of patients with dementia which is essential to identify patients with cognitive symptoms who may have treatable conditions. Guidelines suggest that all patients presenting with dementia or cognitive symptoms should be evaluated with a range of laboratory tests, and with structural brain imaging with computed tomography (CT) or magnetic resonance imaging (MRI). While many of the disorders reported as ‘reversible dementias’ are conditions that may well be associated with cognitive or behavioral symptoms, these symptoms are not always sufficiently severe to fulfill the clinical criteria for dementia. Thus, while the etiology of a condition may be treatable it should not be assumed that the associated dementia is fully reversible. Potentially reversible dementias should be identified and treatment considered, even if the symptoms are not sufficiently severe to meet the clinical criteria for dementia, and even if partial or full reversal of the cognitive symptoms cannot be guaranteed. In the literature, the most frequently observed potentially reversible conditions identified in patients with cognitive impairment or dementia are depression, adverse effects of drugs, drug or alcohol abuse, space-occupying lesions, normal pressure hydrocephalus, and metabolic conditions land endocrinal conditions like hypothyroidism and nutritional conditions like vitamin B-12 deficiency. Depression is by far the most common of the potentially reversible conditions. The review, hence addresses the common causes of reversible dementia and the studies published so far. PMID:21416018

  2. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues.

  3. Novel ultra stable silica-based stationary phases for reversed phase liquid chromatography--study of a hydrophobically assisted weak acid cation exchange phase.

    PubMed

    Zhang, Yu; Carr, Peter W

    2011-02-11

    A mixed-mode reversed-phase/weak cation exchange (RP/WCX) phase has been developed by introducing a small amount of carboxylate functionality into a hydrophobic hyper-crosslinked (HC) platform. This silica-based HC platform was designed to form an extensive polystyrene network completely confined to the particle's surface. The fully connected polymer network prevents the loss of bonded phase, which leads to superior hydrolytic stability of the new phase when compared to conventional silica-based phases. Compared to previously introduced HC phases the added carboxylic groups impart a new weak cation exchange selectivity to the base hydrophobic HC platform. The phase thus prepared shows a mixed-mode retention mechanism, allowing for both neutral organic compounds and bases of a wide polarity range to be simultaneously separated on the same phase under the same conditions. In addition, the new phase offers the flexibility that gradients in organic modifier, pH or ionic competitors can be used to affect the separation of a wide range of solutes. Moreover, the inherent weak acid cation exchange groups allow formic and acetic acid buffers to be used as eluents thereby avoiding the mass spectrometric ionization suppression problems concomitant to the use of non-volatile additives such as strong amine modifiers (e.g. triethylamine) or salts (e.g. NaCl) to elute basic solutes from the strong cation exchange phase which was previously developed in this lab. The use of the new phase for achieving strong retention of rather hydrophilic neurotransmitters and drugs of abuse without the need for ion pairing agents is demonstrated.

  4. Reversed-phase high-performance liquid chromatography determination of selected phenolic acids in propolis concentrates in terms of standardization for drug manufacturing purposes.

    PubMed

    Krzek, Jan; Kaleta, Jolanta; Hubicka, Urszula; Niedzwiedz, Aneta

    2006-01-01

    A reversed-phase high-performance liquid chromatography method with gradient elution was developed for the determination of the caffeic, p-coumaric, and ferulic acids in propolis concentrates. Solid-phase extraction on an RP18 column was applied for preliminary purification, and chromatographic separation was performed on 100 RP18e Lichrospher column of particle size 5 microm. The mobile phase was obtained by mixing in appropriate ratios 0.03 mM NaH2PO4, acidified with H3PO4 up to pH = 3.0, with acetonitrile to obtain a gradient in the elution process. Spectrophotometric detection was conducted at 320 nm. Under the established conditions, the method featured high sensitivity, good precision, and comparability of results, as proven by method validation and statistical analysis of the obtained results. The limits of detection were 0.315, 0.325, and 0.695 microg/mL for caffeic, p-coumaric, and ferulic acids, respectively. The corresponding recovery values were 98.14, 101.05, and 99.42% and the linearity ranges from 1.31 to 99.18 microg/mL, 1.52 to 119.16 microg/mL, and 2.42 to 184.14 microg/mL. The precision of the method was expresed by relative standard deviation values that did not exceed 3%. It was also shown that the propolis concentrates under examination had similar antibacterial activity against Staphylococcus aureus ranging from 119.8 to 124.3 microg/mL, contrary to model mixtures that showed no antibacterial activity.

  5. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-06-08

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  6. Reversible inhibition by 4,4'-diisotheiocyanatostilbene-2,2'-disulfonic acid of the plasma membrane (Ca sup 2+ + Mg sup 2+ )ATPase from kidney proximal tubules

    SciTech Connect

    Guilherme, A.; Vieyra, A. ); Meyer-Fernandes, J.R. )

    1991-06-11

    Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca{sup 2+} uptake cannot be attributed solely to the inhibition of anion transport. The concentrations needed to attain half-maximal inhibition were 20 and 63 {mu}M for (Ca{sup 2+}+Mg{sup 2+})ATPase and ATP-dependent Ca{sup 2+} transport, respectively. The rate constant of EGTA-induced Ca{sup 2+} efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca{sup 2+}. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E{sub 2}{yields}E{sub 1} transition, and leading to a decrease in the proportion of E{sub 2} forms under steady-state conditions. Taken as a whole, these results indicate that DIDS interacts with the enzyme in the E{sub 2} conformation, probably slowing the rate of the E{sub 2}{yields}E{sub 1} transition in forward cycles.

  7. Comparison of nucleic acid extraction and reverse transcription-qPCR approaches for detection of GI and GII noroviruses in drinking water.

    PubMed

    Griffin, Shannon M; Brinkman, Nichole E; Hedrick, Elizabeth J; Rhodes, Eric R; Fout, G Shay

    2014-04-01

    The objective of this study was to compare three nucleic acid extraction and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approaches for norovirus (NoV) detection in drinking water with respect to performance, costs, and analysis time. The approaches evaluated were: (A) an approach that utilizes the QIAamp DNA Blood Mini Kit and multiplex primers and probes for detection; (B) a procedure which includes the NucliSENS Magnetic Extraction Kit and other components of a proposed European Union standard method for NoV detection in foods; and (C) a commercialized assay which uses NucliSENS extraction and Cepheid SmartCycler® technologies. Each approach was evaluated by most probable number (MPN) analysis for detection of GI.1 and GII.4 NoVs from human stool. Furthermore, recoveries of spiked primary effluent in tap water concentrates were compared for each approach. Few significant differences were observed between approaches with regard to performance. However, Approach C was the most time consuming and expensive to perform. This research presents a case study of how molecular-based approaches for detection of NoVs can be compared and how various factors may play a role in which approach laboratories choose to employ.

  8. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube.

    PubMed

    Liu, Yingzhe; Chipot, Christophe; Shao, Xueguang; Cai, Wensheng

    2010-05-01

    Carbon nanotubes coated with alginic acid (AA) through noncovalent functionalization have been shown to be soluble and dispersed in water. In the present contribution, all-atom molecular dynamics simulations have been performed to probe the self-assembly mechanism that underlies the formation of complexes by AA and a single-walled carbon nanotube (SWCNT), both in the gas phase and in an aqueous solution. Results of these simulations reveal that AA can wrap around SWCNT by virtue of van der Waals attractions and organize into a compact helical structure, a process induced in the gas phase by hydrogen-bonding interactions. In contrast, in an alginate aqueous solution, a loose helical wrapping mode is found to be favored by virtue of electrostatic repulsions in conjunction with the weakening of hydrogen-bonding interactions. Documented experimentally (Liu, Y.; et al. Small 2006, 2, 874-878) and coined "Great Wall of China" motif, the typical arrangement of AA residues around the tubular structure, conducive to dissolve nanotubes, is observed in the present simulations. Investigation of metal cations binding to AA suggests that calcium ions can mediate aggregation of AA chains by interacting strongly with the carboxylate groups, thereby leading to reverse unwrapping. The results reported in this work shed meaningful light on the potential of noncovalent functionalization for solubilizing carbon nanotubes, and open exciting perspectives for the design of new wrapping agents that are envisioned to form the basis of innovative nanomaterials targeted at chemical and biomedical applications.

  9. Reversible Sterilization

    ERIC Educational Resources Information Center

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  10. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  11. Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD).

    PubMed

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R; Kwon, Young Jik

    2013-12-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic and generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs' size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  12. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring.

    PubMed

    Pileggi, C A; Segovia, S A; Markworth, J F; Gray, C; Zhang, X D; Milan, A M; Mitchell, C J; Barnett, M P G; Roy, N C; Vickers, M H; Reynolds, C M; Cameron-Smith, D

    2016-03-01

    A high-saturated-fat diet (HFD) during pregnancy and lactation leads to metabolic disorders in offspring concomitant with increased adiposity and a proinflammatory phenotype in later life. During the fetal period, the impact of maternal diet on skeletal muscle development is poorly described, despite this tissue exerting a major influence on life-long metabolic health. This study investigated the effect of a maternal HFD on skeletal muscle anabolic, catabolic, and inflammatory signaling in adult rat offspring. Furthermore, the actions of maternal-supplemented conjugated linoleic acid (CLA) on these measures of muscle phenotype were investigated. A purified control diet (CD; 10% kcal fat), a CD supplemented with CLA (CLA; 10% kcal fat, 1% total fat as CLA), a high-fat (HFD; 45% kcal fat from lard), or a HFD supplemented with CLA (HFCLA; 45% kcal fat from lard, 1% total fat as CLA) was fed ad libitum to female Sprague-Dawley rats for 10 days before mating and throughout gestation and lactation. Male offspring received a standard chow diet from weaning, and the gastrocnemius was collected for analysis at day 150. Offspring from HF and HFCLA mothers displayed lower muscular protein content accompanied by elevated monocyte chemotactic protein-1, IL-6, and IL-1β concentrations. Phosphorylation of NF-κBp65 (Ser(536)) and expression of the catabolic E3 ligase muscle ring finger 1 (MuRF1) were increased in HF offspring, an effect reversed by maternal CLA supplementation. The present study demonstrates the importance of early life interventions to ameliorate the negative effects of poor maternal diet on offspring skeletal muscle development. PMID:26632603

  13. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    PubMed

    Higgs, Paul G

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  14. Reversible Major Histocompatibility Complex I-Peptide Multimers Containing Ni2+-Nitrilotriacetic Acid Peptides and Histidine Tags Improve Analysis and Sorting of CD8+ T Cells*

    PubMed Central

    Schmidt, Julien; Guillaume, Philippe; Irving, Melita; Baumgaertner, Petra; Speiser, Daniel; Luescher, Immanuel F.

    2011-01-01

    MHC-peptide multimers containing biotinylated MHC-peptide complexes bound to phycoerythrin (PE) streptavidin (SA) are widely used for analyzing and sorting antigen-specific T cells. Here we describe alternative T cell-staining reagents that are superior to conventional reagents. They are built on reversible chelate complexes of Ni2+-nitrilotriacetic acid (NTA) with oligohistidines. We synthesized biotinylated linear mono-, di-, and tetra-NTA compounds using conventional solid phase peptide chemistry and studied their interaction with HLA-A*0201-peptide complexes containing a His6, His12, or 2×His6 tag by surface plasmon resonance on SA-coated sensor chips and equilibrium dialysis. The binding avidity increased in the order His6 < His12 < 2×His6 and NTA1 < NTA2 < NTA4, respectively, depending on the configuration of the NTA moieties and increased to picomolar KD for the combination of a 2×His6 tag and a 2×Ni2+-NTA2. We demonstrate that HLA-A2–2×His6-peptide multimers containing either Ni2+-NTA4-biotin and PE-SA- or PE-NTA4-stained influenza and Melan A-specific CD8+ T cells equal or better than conventional multimers. Although these complexes were highly stable, they very rapidly dissociated in the presence of imidazole, which allowed sorting of bona fide antigen-specific CD8+ T cells without inducing T cell death as well as assessment of HLA-A2-peptide monomer dissociation kinetics on CD8+ T cells. PMID:21990358

  15. Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase.

    PubMed

    Yanagita, Hiroshi; Urano, Emiko; Matsumoto, Kishow; Ichikawa, Reiko; Takaesu, Yoshihisa; Ogata, Masakazu; Murakami, Tsutomu; Wu, Hongui; Chiba, Joe; Komano, Jun; Hoshino, Tyuji

    2011-01-15

    Rapid emergence of drug-resistant variants is one of the most serious problems in chemotherapy for HIV-1 infectious diseases. Inhibitors acting on a target not addressed by approved drugs are of great importance to suppress drug-resistant viruses. HIV-1 reverse transcriptase has two enzymatic functions, DNA polymerase and RNase H activities. The RNase H activity is an attractive target for a new class of antiviral drugs. On the basis of the hit chemicals found in our previous screening with 20,000 small molecular-weight compounds, we synthesized derivatives of 5-nitro-furan-2-carboxylic acid. Inhibition of RNase H enzymatic activity was measured in a biochemical assay with real-time monitoring of florescence emission from the digested RNA substrate. Several derivatives showed higher inhibitory activities that those of the hit chemicals. Modulation of the 5-nitro-furan-2-carboxylic moiety resulted in a drastic decrease in inhibitory potency. In contrast, many derivatives with modulation of other parts retained inhibitory activities to varying degrees. These findings suggest the binding mode of active derivatives, in which three oxygen atoms aligned in a straight form at the nitro-furan moiety are coordinated to two divalent metal ions located at RNase H reaction site. Hence, the nitro-furan-carboxylic moiety is one of the critical scaffolds for RNase H inhibition. Of note, the RNase H inhibitory potency of a derivative was improved by 18-fold compared with that of the original hit compound, and no significant cytotoxicity was observed for most of the derivatives showing inhibitory activity. Since there is still much room for modification of the compounds at the part opposite the nitro-furan moiety, further chemical conversion will lead to improvement of compound potency and specificity. PMID:21193314

  16. Acid-degradable Core-shell Nanoparticles for Reversed Tamoxifen-resistance in Breast Cancer by Silencing Manganese Superoxide Dismutase (MnSOD)

    PubMed Central

    Cho, Soo Kyung; Pedram, Ali; Levin, Ellis R.; Kwon, Young Jik

    2013-01-01

    Drug resistance acquired by cancer cells is a significant challenge in the clinic and requires impairing the responsible pathological pathway. Administering chemotherapeutics along with silencing resistance-basis activity using RNA interference (RNAi) is expected to restore the activity of the chemotherapeutic. generate synergistic cancer eradication. This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and facilitate cytosolic release of siRNA from endosomal compartments. This method of forming the PK shell around the siRNA/PAMAM core via surface-initiated photo-polymerization enables ease of tuning NPs’ size for readily controlled siRNA release kinetics. The resulting NPs were notably homogenous in size, resistant to aggregation in serum, and invulnerable to heparan sulfate-mediated disassembly, compared to siRNA/PAMAM dendriplexes. Gel electrophoresis and confocal microscopy confirmed efficient siRNA release from the (siRNA/PAMAM)-PK NPs upon stimuli-responsive hydrolysis of the PK shell. Sensitization of TAM-resistant MCF7-BK-TR breast cancer cells with (MnSOD siRNA/PAMAM)-PK NPs restored TAM-induced cellular apoptosis in vitro and significantly suppressed tumor growth in vivo, as confirmed by biochemical assays and histological observations. This study implies that combined gene silencing and chemotherapy is a promising strategy to overcoming a significant challenge in cancer therapy. PMID:24055523

  17. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    PubMed Central

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  18. Expression of claudins -2 and -4 and cingulin is coordinated with the start of stratification and differentiation in corneal epithelial cells: retinoic acid reversibly disrupts epithelial barrier

    PubMed Central

    Ortiz-Melo, María Teresa; Sánchez-Guzmán, Erika; González-Robles, Arturo; Valdés, Jesús; Gómez-Flores, Eber; Castro-Muñozledo, Federico

    2013-01-01

    Summary Although tight junctions (TJ) have been extensively studied in simple epithelial cells, it is still unknown whether their organization is coupled to cell differentiation in stratified epithelia. We studied the expression of TJ in RCE1(5T5) cells, an in vitro model which mimics the sequential steps of rabbit corneal epithelial differentiation. RCE1(5T5) cells expressed TJ components which were assembled once cells constituted differentiated epithelia, as suggested by the increase of transepithelial electrical resistance (TER) which followed a similar kinetic to the expression of the early differentiation marker Pax-6. TJ were functional as indicated by the establishment of an epithelial barrier nonpermeable to ruthenium red or a biotin tracer. In immunostaining experiments, TJ were located at the superficial cells from the suprabasal layers; Western blot and RT-PCR suggested that TJ were composed of claudins (cldn) -1, -2, -4, cingulin (cgn), occludin (ocln) and ZO-1. Semi-quantitative RT-PCR and TER measurements showed that TJ became organized when cells began to form a 3–5 layers stratified epithelium; TER increased once cells reached confluence, with a time course comparable to the raise in the expression of cgn, cldn-2 and -4. Nevertheless, cldn-1, -2, ZO-1 and ocln were present in the cells from the beginning of cultivation, suggesting that TER increases mainly depend on TJ assembly. While EGF increased epithelial barrier strength, retinoic acid disrupted it, increasing paracellular flux about 2-fold; this effect was concentration dependent and completely reversible. Our results suggest that TJ assembly is tightly linked to the expression of corneal epithelial terminal phenotype. PMID:23429425

  19. Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine.

    PubMed

    Li, Yun; Yang, Jiajia; Huang, Chaonan; Wang, Longxing; Wang, Jincheng; Chen, Jiping

    2015-05-01

    A new dendrimer-functionalized mesoporous silica material based on large-pore 3D cubic Korea Advanced Institute of Science and Technology-6 (KIT-6) was synthesized by the growing of dendritic branches inside the mesopores of aminopropyl functionalized KIT-6. Detailed physical characterizations using transmission electron microscopy, nitrogen adsorption-desorption measurements, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis reveal that the multifunctional dendrimers have been grown successfully within the confined spaces of mesopores. Although the 3D ordered mesoporous architecture of KIT-6 was well preserved, there was a significant and continuous decrease in pore size, specific surface area (SBET) and pore volume when increasing dendrimer generation up to six. In order to get a compromise between the SBET, pore size and density of functionalities, the dendrimer-functionalized KIT-6 (DF-KIT-6) for generation 2 (SBET, 314.2 m(2) g(-1); pore size, 7.9 nm; carbon and nitrogen contents, 19.80% and 1.92%) was selected for solid phase extraction (SPE) applications. The DF-KIT-6 was then evaluated as a reversed-phase/anion-exchange mixed-mode sorbent for extraction of the selected acidic drugs (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBU), since the dendrimers contained both hydrocarbonaceous and amine functionalities. The effective parameters on extraction efficiency such as sample pH and volume, type and volume of eluent and wash solvents were optimized. Under the optimized experimental conditions, the DF-KIT-6 based SPE coupled with HPLC-UV method demonstrated good sensitivity (0.4-4.6 ng mL(-1) detection of limits) and linearity (R(2)>0.990 for 10-2000 ng mL(-1) of KEP and IBU, and 1-200 ng mL(-1) of NAP). The potential use of DF-KIT-6 sorbent for preconcentration and cleanup of acid drugs in human urine samples was also demonstrated. Satisfactory recoveries at two spiking levels (30 and 300 ng mL(-1) for KEP and IBU, 3 and 30 ng mL(-1

  20. A Dietary Medium-Chain Fatty Acid, Decanoic Acid, Inhibits Recruitment of Nur77 to the HSD3B2 Promoter In Vitro and Reverses Endocrine and Metabolic Abnormalities in a Rat Model of Polycystic Ovary Syndrome.

    PubMed

    Lee, Bao Hui; Indran, Inthrani Raja; Tan, Huey Min; Li, Yu; Zhang, Zhiwei; Li, Jun; Yong, Eu-Leong

    2016-01-01

    Hyperandrogenism is the central feature of polycystic ovary syndrome (PCOS). Due to the intricate relationship between hyperandrogenism and insulin resistance in PCOS, 50%-70% of these patients also present with hyperinsulinemia. Metformin, an insulin sensitizer, has been used to reduce insulin resistance and improve fertility in women with PCOS. In previous work, we have noted that a dietary medium-chain fatty acid, decanoic acid (DA), improves glucose tolerance and lipid profile in a mouse model of diabetes. Here, we report for the first time that DA, like metformin, inhibits androgen biosynthesis in NCI-H295R steroidogenic cells by regulating the enzyme 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase type 2 (HSD3B2). The inhibitory effect on HSD3B2 and androgen production required cAMP stimulation, suggesting a mechanistic action via the cAMP-stimulated pathway. Specifically, both DA and metformin reduced cAMP-enhanced recruitment of the orphan nuclear receptor Nur77 to the HSD3B2 promoter, coupled with decreased transcription and protein expression of HSD3B2. In a letrozole-induced PCOS rat model, treatment with DA or metformin reduced serum-free testosterone, lowered fasting insulin, and restored estrous cyclicity. In addition, DA treatment lowered serum total testosterone and decreased HSD3B2 protein expression in the adrenals and ovaries. We conclude that DA inhibits androgen biosynthesis via mechanisms resulting in the suppression of HSD3B2 expression, an effect consistently observed both in vitro and in vivo. The efficacy of DA in reversing the endocrine and metabolic abnormalities of the letrozole-induced PCOS rat model are promising, raising the possibility that diets including DA could be beneficial for the management of both hyperandrogenism and insulin resistance in PCOS.

  1. Reversible sialylation: synthesis of cytidine 5'-monophospho-N-acetylneuraminic acid from cytidine 5'-monophosphate with alpha2,3-sialyl O-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Locke, Robert D; Matta, Khushi L; Neelamegham, Sriram

    2008-01-01

    Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is

  2. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures. PMID:3811050

  3. Vasectomy reversal.

    PubMed

    Belker, A M

    1987-02-01

    A vasovasostomy may be performed on an outpatient basis with local anesthesia, but also may be performed on an outpatient basis with epidural or general anesthesia. Local anesthesia is preferred by most of my patients, the majority of whom choose this technique. With proper preoperative and intraoperative sedation, patients sleep lightly through most of the procedure. Because of the length of time often required for bilateral microsurgical vasoepididymostomy, epidural or general anesthesia and overnight hospitalization are usually necessary. Factors influencing the preoperative choice for vasovasostomy or vasoepididymostomy in patients undergoing vasectomy reversal are considered. The preoperative planned choice of vasovasostomy or vasoepididymostomy for patients having vasectomy reversal described herein does not have the support of all urologists who regularly perform these procedures. My present approach has evolved as the data reported in Tables 1 and 2 have become available, but it may change as new information is evaluated. However, it offers a logical method for planning choices of anesthesia and inpatient or outpatient status for patients undergoing vasectomy reversal procedures.

  4. Glial fibrillary acidic protein promoters direct adenovirus early 1A gene and human telomerase reverse transcriptase promoters direct sodium iodide symporter expression for malignant glioma radioiodine therapy.

    PubMed

    Li, Wei; Tan, Jian; Wang, Peng; Li, Ning; Li, Chengxia

    2015-01-01

    Malignant glioma can be treated with radioiodine following transfection with human sodium iodide symporter (hNIS) gene. Ad-Tp-E1A-Gp-NIS is engineered with human telomerase reverse transcriptase (hTERT) and glial fibrillary acidic protein (GFAP) promoters to express early region 1A (E1A) and hNIS genes, which may be useful in targeted gene therapy. The Ad-Tp-E1A-Gp-NIS was constructed and purified using the E1A and hNIS genes regulated by the hTERT and GFAP promoters, respectively. Glioma cells were infected by Ad-Tp-E1A-Gp-NIS. Selective replication ability of Ad-Tp-E1A-Gp-NIS was then evaluated by plaque forming assay, transgene expression by Western blot, (125)I-iodide uptake and efflux, clonogenicity following (131)I-iodide treatment in the tumor cells, and radioiodine therapy using nude mouse model. The Ad-Tp-E1A-Gp-NIS could selectively replicate; the hNIS gene was successfully expressed under the GFAP promoter. Western blot analyses using E1A- and hNIS-specific antibodies revealed two bands of approximately 40 and 70 kDa. In addition, the cells showed about 93.4 and 107.1 times higher (125)I uptake in U251 and U87 cells than in the control cells, respectively. Clonogenic assay indicated that >90% of cells transfected with Ad-Tp-E1A-Gp-NIS were killed. The Ad-Tp-E1A-Gp-NIS-transfected and 2 mCi (131)I-injected U87 xenograft nude mice survived the longest among the three groups. Ad-Tp-E1A-Gp-NIS has a good ability of selective replication and strong antitumor selectivity. An effective therapy of (131)I was achieved activity in malignant glioma cells after induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo.

  5. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin

    2012-12-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  6. Determination of L-canavanine and other free amino acids in Vicia disperma (Fabaceae) seeds by precolumn derivatization using diethyl ethoxymethylenemalonate and reversed-phase high-performance liquid chromatography.

    PubMed

    Megías, Cristina; Cortés-Giraldo, Isabel; Girón-Calle, Julio; Vioque, Javier; Alaiz, Manuel

    2015-01-01

    A method for determination of the non-protein amino acid l-α-amino-γ-(guanidinooxy)-n-butyric acid (L-canavanine) and other free amino acids in Vicia disperma is presented. Seed extracts were derivatized by reaction with diethyl ethoxymethylenemalonate and analyzed by reverse-phase high-performance liquid chromatography. Calibration curves showed very good linearity of the response. The limit of detection and quantification were 0.15 and 0.50 μM, respectively. The method has a high intra- (RSD=0.35%) and inter-repeatability (RSD=2.86%), and a remarkable accuracy with a 99% recovery in spiked samples. The method is very easy to carry out and allows for ready analysis of large number of samples using very basic HPLC equipment because the derivatized samples are very stable and have very good chromatographic properties.

  7. Inhibition of tumor cell growth by low-boiling-point-saturated fatty acids isolated by molecular distillation and reversed phase liquid chromatography of hydrolysates of uncytotoxic wool grease secreted from sheep sebaceous gland.

    PubMed

    Nakamura, S; Nishimura, Y; Inagaki, K; Miwa, N

    1994-09-01

    We showed that massive growth of mouse Ehrlich ascites carcinoma (EAC) cells was not inhibited by wool grease secreted from the sheep sebaceous gland, whereas wool fatty acids separated by saponification of wool grease was growth-inhibitory. We then fractionated wool fatty acids into 9 fractions using molecular distillation (80-200 degrees C; 1 x 10(-2) mmHg) and found a marked antitumor activity in a low-boiling-point (< 80 degrees C) fraction (MW 200-300; C10-C20), which was further separated by reversed phase liquid chromatography on an octadecylisilica gel column, resulting in 5 fractions. The second most hydrophobic fraction (C8Si-4) obtained was the most growth-inhibitory to EAC cells cultured or implanted into mice, more marked than the antitumor glycopeptide bleomycin. C8Si-4 was suggested to be a mixture of a normal-chain C16-saturated fatty acid and two branched-chain kinds of saturated C16-iso- and C19-anteiso-fatty acids without hydroxyl groups according to gas chromatography-mass spectrographic analysis. Thus low-boiling-point saturated fatty acid moieties in some wool grease molecules were shown to become growth-inhibitory in vitro and in vivo only after released in the free acid form by esterolysis.

  8. Investigation of mediated oxidation of ascorbic acid by ferrocenemethanol using large-amplitude Fourier transformed ac voltammetry under quasi-reversible electron-transfer conditions at an indium tin oxide electrode.

    PubMed

    Lertanantawong, Benchaporn; O'Mullane, Anthony P; Zhang, Jie; Surareungchai, Werasak; Somasundrum, Mithran; Bond, Alan M

    2008-09-01

    The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.

  9. Analysis of Phenacylester Derivatives of Fatty Acids from Human Skin Surface Sebum by Reversed-Phase HPLC: Chromatographic Mobility as a Function of Physico-Chemical Properties

    PubMed Central

    Bodoprost, Juliana; Rosemeyer, Helmut

    2007-01-01

    A set of 13 fatty acids was transformed into their phenacyl esters by reaction with phenacyl bromide in acetonitrile using 18-crown-6 as phase-transfer catalyst. Conditions for the RP-18 HPL chromatographic separation of most of the esters has been worked out. Using this standard the fatty acid spectra from skin surface sebum lipids of 17 test persons was taken after microwave-assisted hydrolysis, neutralization and extraction with n-hexane. Quantitative evaluation of the chromatograms exhibits that oleic acid predominates in the sebum of all test persons. In the second part of the work the chromatographic mobility (RE values) of fatty acid phenacyl esters is correlated with calculated physico-chemical parameters of the corresponding acids. The best linear correlation was found between the RE and the logP values. This is helpful for the structural elucidation of un-identified fatty acids in a chromatogram.

  10. Reversible Valproate Induced Pisa Syndrome and Parkinsonism in a Neuro-Oncology Patient with Depression and Epilepsy

    PubMed Central

    Botturi, Andrea; Silvani, Antonio; Pravettoni, Gabriella; Paoli, Riccardo Augusto; Lucchiari, Claudio

    2016-01-01

    Neurological and psychiatric conditions frequently overlap in neuro-oncology. This overlapping negatively affects patients’ quality of life and decreases the ability of providers to manage specific symptoms by therapy modulation, especially when psychopharmacotherapy needs to be prescribed. We describe here a patient with recurrent brain tumor, symptomatic epilepsy and depression who developed Pisa syndrome and parkinsonism after several months of valproic acid use. An accurate recognition of symptoms and treatment side effect allowed an appropriate clinical approach so as to rapidly improve both movement disorder and depression without increasing the risk of developing seizure. This has improved the autonomy and quality of life in a patient with poor prognosis. PMID:27462241

  11. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  12. Analysis of nucleic acids by capillary ion-pair reversed-phase HPLC coupled to negative-ion electrospray ionization mass spectrometry.

    PubMed

    Huber, C G; Krajete, A

    1999-09-01

    Ion-pair reversed-phase high-performance liquid chromatography was successfully coupled to negative-ion electrospray ionization mass spectrometry by using 60 × 0.20 mm i.d. capillary columns packed with 2.3-μm micropellicular, octadecylated poly(styrene/divinylbenzene) particles as stationary phase and gradients of acetonitrile in 50 mM aqueous triethylammonium bicarbonate as mobile phase. Systematic variation of the eluent composition, such as concentration of ion-pair reagent, anion in the ion-pair reagent, solution pH, and acetonitrile concentration led to the conclusion that most parameters have opposite effects on chromatographic and mass spectrometric performances. The use of acetonitrile as sheath liquid enabled the rapid and highly efficient separation and detection of phosphorylated and nonphosphorylated oligonucleotides ranging in size from 8 to 40 nucleotides. High-quality full-scan mass spectra showing little cation adduction were acquired from which the molecular masses of the separated oligonucleotides were calculated with an accuracy of 0.011%. With calibration curves being linear over at least 2 orders of magnitude, the lower limits of detection for a oligodeoxythymidine 16-mer were 104 fmol with full scan and 710 amol with selected-ion-monitoring data acquisition. The potential of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry was demonstrated for mixed-sequence oligomers by the characterization of a reaction mixture from solid-phase synthesis of a 40-mer oligonucleotide.

  13. Cobalt concentration effect in Pt 1- xCo x on the reversible potential for forming OH ads from H 2O ads in acid solution

    NASA Astrophysics Data System (ADS)

    Roques, Jérôme; Anderson, Alfred B.

    2005-05-01

    We present results of a periodic spin-density-functional theory study of the effect of the cobalt concentration in Pt x-1 Co x surfaces on the reversible potential for forming OH(ads) from H 2O(ads). Adsorbed OH is recognized as a poison to oxygen cathodes that contributes to the high O 2 reduction overpotential. Five surface compositions with a cobalt concentration of 0%, 25%, 50%, 75% and 100% were studied, and these surfaces were covered with a monolayer Pt skin. The OH(ads) formation potential was found to depend significantly on the sub-surface composition. Alloying platinum with cobalt atoms led to an increasingly positive shift of the reversible potential for forming OH(ads), as the amount of cobalt is increased. Beyond 75% cobalt concentration the effect levels off. Experimentally, the Pt 3Co alloy has been well studied and is believed to be covered by a Pt skin and the potential for OH(ads) formation on it, from water oxidation, is shifted positive. The present theoretical results suggest that if Pt skins form on alloys more concentrated in Co than Pt 3Co, the positive shift in the potential for OH(ads) formation will be greater and, on an oxygen cathode in a fuel cell, the overpotential for O 2 reduction will be even less.

  14. Amino acid analysis by reverse-phase high-performance liquid chromatography: improved derivatization and detection conditions with 9-fluorenylmethyl chloroformate.

    PubMed

    Bank, R A; Jansen, E J; Beekman, B; te Koppele, J M

    1996-09-01

    An improved method for the quantitative derivatization of amino acids with fluorenylmethyl chloroformate (FMOC-Cl) is described. Amino acids are derivatized in borate buffer at pH 11.4 for 40 min at ambient temperature. All amino acids resulted in stable derivatives. In particular, improved derivatization was obtained with the troublesome amino acids His and Tyr: exclusively monosubstituted His and disubstituted Tyr were formed, eluting as free peaks in the chromatogram. These derivatives show a higher fluorescence response than their disubstituted and monosubstituted counterparts, respectively, resulting from other protocols. Under the new conditions, considerable less of the hydrolysis product of FMOC-Cl is seen in the chromatograms. Baseline noise was substantially reduced at a higher emission wavelength (630 nm instead of 313 or 340 nm). With simple precautions, extensive adsorption of the disubstituted derivatives (Lys, Hyl, and Tyr) on plastic or glass surfaces could be prevented. Calibration curves were linear over a 10 to 300 molar ratio of FMOC-Cl to total amino acid. The detection limits are in the femtomole range and the derivatives are stable for more than 48 h, thus permitting automated analysis of multiple samples. PMID:8811901

  15. Reversible and irreversible changes of the stria vascularis. An evaluation of the effects of ethacrynic acid separately and in combination with atoxyl.

    PubMed

    Anniko, M

    1978-01-01

    The morphological changes in the cochlea following administration of ethacrynic acid occur initially in the stria vascularis of the basal coils as an increased intracellular vesiculation of the marginal cells followed by inter- and intracellular oedema in the intermediate cell layer. The combined administration of ethacrynic acid and atoxyl (individual doses) can cause irreversible damage to the cochlear hair cells and the stria vascularis, while the administration of each of them separately in the same low dose did not cause hair cell degeneration or persistent morphological changes of the stria vascularis. An increased penetration of atoxyl into the cochlea is likely to occur due to the ethacrynic acid-induced changes in the permeability of the endolymphatic partition so that the earlier known penetration of atoxyl into the cochlea is increased.

  16. Transcriptomic and Reverse Genetic Analysesof Branched-Chain Fatty Acid and Acyl Sugar Production in Solanum pennellii and Nicotiana benthamiana1[W][OA

    PubMed Central

    Slocombe, Stephen P.; Schauvinhold, Ines; McQuinn, Ryan P.; Besser, Katrin; Welsby, Nicholas A.; Harper, Andrea; Aziz, Naveed; Li, Yi; Larson, Tony R.; Giovannoni, James; Dixon, Richard A.; Broun, Pierre

    2008-01-01

    Acyl sugars containing branched-chain fatty acids (BCFAs) are exuded by glandular trichomes of many species in Solanaceae, having an important defensive role against insects. From isotope-feeding studies, two modes of BCFA elongation have been proposed: (1) fatty acid synthase-mediated two-carbon elongation in the high acyl sugar-producing tomato species Solanum pennellii and Datura metel; and (2) α-keto acid elongation-mediated one-carbon increments in several tobacco (Nicotiana) species and a Petunia species. To investigate the molecular mechanisms underlying BCFAs and acyl sugar production in trichomes, we have taken a comparative genomic approach to identify critical enzymatic steps followed by gene silencing and metabolite analysis in S. pennellii and Nicotiana benthamiana. Our study verified the existence of distinct mechanisms of acyl sugar synthesis in Solanaceae. From microarray analyses, genes associated with α-keto acid elongation were found to be among the most strongly expressed in N. benthamiana trichomes only, supporting this model in tobacco species. Genes encoding components of the branched-chain keto-acid dehydrogenase complex were expressed at particularly high levels in trichomes of both species, and we show using virus-induced gene silencing that they are required for BCFA production in both cases and for acyl sugar synthesis in N. benthamiana. Functional analysis by down-regulation of specific KAS I genes and cerulenin inhibition indicated the involvement of the fatty acid synthase complex in BCFA production in S. pennellii. In summary, our study highlights both conserved and divergent mechanisms in the production of important defense compounds in Solanaceae and defines potential targets for engineering acyl sugar production in plants for improved pest tolerance. PMID:18931142

  17. Application of Multiple Linear Regression and Extended Principal-Component Analysis to Determination of the Acid Dissociation Constant of 7-Hydroxycoumarin in Water/AOT/Isooctane Reverse Micelles.

    PubMed

    Caselli; Daniele; Mangone; Paolillo

    2000-01-15

    The apparent pK(a) of dyes in water-in-oil microemulsions depends on the charge of the acid and base forms of the buffers present in the water pool. Extended principal-component analysis allows the precise determination of the apparent pK(a) and of the spectra of the acid and base forms of the dye. Combination with multiple linear regression increases the precision. The pK(a) of 7-hydroxycoumarin (umbelliferone) was spectrophotometrically measured in a water/AOT/isooctane microemulsion in the presence of a series of buffers carrying different charges at various different water/surfactant ratios. The spectra of the acid and base forms of the dye in the microemulsion are very similar to those in bulk water in the presence of Tris and ammonia. The presence of carbonate changes somewhat the spectrum of the acid form. Results are discussed taking into account the profile of the electrostatic potential drop in the water pool and the possible partition of umbelliferone between the aqueous core and the surfactant. The pK(a) values corrected for these effects are independent of w(0) and are close to the value of the pK(a) in bulk water. Copyright 2000 Academic Press.

  18. Forward and reverse (retro) iron(III) or gallium(III) desferrioxamine E and ring-expanded analogues prepared using metal-templated synthesis from endo-hydroxamic acid monomers.

    PubMed

    Lifa, Tulip; Tieu, William; Hocking, Rosalie K; Codd, Rachel

    2015-04-01

    A metal-templated synthesis (MTS) approach was used to preorganize the forward endo-hydroxamic acid monomer 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (for-PBH) about iron(III) in a 1:3 metal/ligand ratio to furnish the iron(III) siderophore for-[Fe(DFOE)] (ferrioxamine E) following peptide coupling. Substitution of for-PBH with the reverse (retro) hydroxamic acid analogue 3-(6-amino-N-hydroxyhexanamido)propanoic acid (ret-PBH) furnished ret-[Fe(DFOE)] (ret-ferrioxamine E). As isomers, for-[Fe(DFOE)] and ret-[Fe(DFOE)] gave identical mass spectrometry signals ([M + H(+)](+), m/zcalc 654.3, m/zobs 654.3), yet for-[Fe(DFOE)] eluted in a more polar window (tR = 23.44 min) than ret-[Fe(DFOE)] (tR = 28.13 min) on a C18 reverse-phase high-performance liquid chromatography (RP-HPLC) column. for-[Ga(DFOE)] (tR = 22.99 min) and ret-[Ga(DFOE)] (tR = 28.11 min) were prepared using gallium(III) as the metal-ion template and showed the same trend for the retention time. Ring-expanded analogues of for-[Fe(DFOE)] and ret-[Fe(DFOE)] were prepared from endo-hydroxamic acid monomers with one additional methylene unit in the amine-containing region, 4-[(6-aminohexyl)(hydroxy)amino]-4-oxobutanoic acid (for-HBH) or 3-(7-amino-N-hydroxyheptanamido)propanoic acid (ret-HBH), to give the corresponding tris(homoferrioxamine E) macrocycles, for-[Fe(HHDFOE)] or ret-[Fe(HHDFOE)] ([M + H(+)](+), m/zcalc 696.3, m/zobs 696.4). The MTS reaction using a constitutional isomer of for-HBH that transposed the methylene unit to the carboxylic acid containing region, 5-[(5-aminopentyl)(hydroxy)amino]-5-oxopentanoic acid (for-PPH), gave the macrocycle for-[Fe(HPDFOE)] in a yield significantly less than that for for-[Fe(HHDFOE)], with the gallium(III) analogue for-[Ga(HPDFOE)] unable to be detected. The work demonstrates the utility and limits of MTS for the assembly of macrocyclic siderophores from endo-hydroxamic acid monomers. Indirect measures (RP-HPLC order of elution, c log P values

  19. [The prevalence of obesity and metabolic syndrome in paediatric patients with epilepsy treated in monotherapy with valproic acid].

    PubMed

    Carmona-Vazquez, C R; Ruiz-Garcia, M; Pena-Landin, D M; Diaz-Garcia, L; Greenawalt, S R

    2015-09-01

    Introduccion. El acido valproico (VPA) es un antiepileptico util para controlar diferentes tipos de epilepsia. Tiene efectos colaterales y se asocia a incremento del peso corporal y a alteraciones metabolicas y endocrinas, entre ellas sindrome metabolico. Objetivo. Conocer la prevalencia de la obesidad y el sindrome metabolico en pacientes pediatricos con epilepsia tratados en monoterapia con VPA. Pacientes y metodos. Estudio transversal, observacional, analitico. Se estudiaron pacientes tratados con VPA entre 2010-2014, y se midio el indice de masa corporal (IMC), el perimetro abdominal, la presion arterial, la glucosa, los trigliceridos y las lipoproteinas de alta densidad (HDL), en busqueda de obesidad y sindrome metabolico. La obesidad se definio con un IMC mayor del percentil 95; el sindrome metabolico, con al menos tres de los siguientes criterios: perimetro abdominal mayor del percentil 90, presion arterial sistemica mayor del percentil 90, trigliceridos mayores de 110 mg/dL y HDL menor de 40 mg/dL. Resultados. Se estudiaron 47 pacientes con una edad media de 10,1 ± 4 años; el 51,06% eran varones. Ocho (17%) desarrollaron obesidad y, de ellos, dos (25%), sindrome metabolico. Tres pacientes desarrollaron sobrepeso (6%). Observamos diferencias estadisticamente significativas de media de edad comparados con los grupos de IMC, donde los pacientes obesos eran adolescentes (ANOVA; p = 0,0001), y aquellos que tomaban mas VPA al dia eran los obesos (ANOVA; p = 0,024). Conclusiones. Los pacientes tratados con VPA que se convierten en obesos pueden desarrollar sindrome metabolico. Requieren una monitorizacion cuidadosa y, ante la presencia de ganancia de peso, se debera valorar la retirada del farmaco.

  20. Clinical and biological changes under treatment with lithium carbonate and valproic acid in sporadic amyotrophic lateral sclerosis.

    PubMed

    Boll, Marie-Catherine; Bayliss, Leo; Vargas-Cañas, Steven; Burgos, Jorge; Montes, Sergio; Peñaloza-Solano, Guillermo; Rios, Camilo; Alcaraz-Zubeldia, Mireya

    2014-05-15

    The aim of this study was to evaluate the ability of lithium carbonate and valproate cotreatment to modify the survival rate and functional score of patients with definite sporadic amyotrophic lateral sclerosis (ALS). The clinical response of 18 enrolled patients was compared to the evolution of 31 ALS out-patients, carefully paired by age, gender, evolution rate and time of the disease, who never received treatment with lithium and/or valproate. The ALS functional rating scale, revised version (ALSFRS-R), was applied at baseline, 1 month, and every 4 months until the outcome (death or an adverse event). Biochemical markers, such as Cu/Zn superoxide dismutase and glutathione peroxidase activity, and reduced glutathione were assayed in plasma samples obtained at the baseline visit and after 5 and 9 months of treatment. Our results showed that lithium and valproate cotreatment significantly increased survival (p=0.016), and this treatment also exerted neuroprotection in our patients because all three markers reached levels that were not significantly different from the matched samples of healthy donors. The trial stopped after 21 months, when the sample was reduced to under two-thirds, due to the late adverse events of the treatment. The results call for large randomized clinical trials with the dual association, but at low doses to avoid adverse events. PMID:24667005

  1. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  2. New Lewis-Acidic Molybdenum(II) and Tungsten(II) Catalysts for Intramolecular Carbonyl Ene and Prins Reactions. Reversal of the Stereoselectivity of Cyclization of Citronellal.

    PubMed

    Kocovský, Pavel; Ahmed, Ghafoor; Srogl, Jirí; Malkov, Andrei V.; Steele, John

    1999-04-16

    New Mo(II) complexes BnEt(3)N(+)[Mo(CO)(4)ClBr(2)](-) (A) and Mo(CO)(5)(OTf)(2) (B) and their W(II) congeners D and E have been developed as catalysts for the title reactions. Unlike other Lewis acids, the latter catalysts exhibit cis-stereoselectivity in the cyclization of citronellal (1 --> 3 with A and 1 --> 5 with B). Isotopic labeling allowed formulation of the reaction mechanism, according to which these complexes act as bulky Lewis acids, eta(1)-coordinated to the carbonyl oxygen. The stereochemistry appears to be controlled by the protruding ligand L(p), which dictates the boatlike transition state III. The kinetically formed cis-alkenol 3 can be equilibrated by [Mo(CO)(4)Br(2)](2) (C) or ZnCl(2) to its trans-epimer 2 via a retro-ene reaction.

  3. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  4. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery.

    PubMed

    Zhang, Jing; Wu, Dan; Li, Meng-Fei; Feng, Jie

    2015-12-01

    A novel type of pH-responsive multifunctional mesoporous silica nanoparticle (MSN) was developed for cancerous cells drug delivery and synergistic therapy of tumor. MSNs were covered with a kind of cell-penetrating peptide, deca-lysine sequence (K10), to enhance their escape from the endosomes. After K10's primary amines were reacted with citraconic anhydride to form acid-labile β-carboxylic amides, zinc oxide (ZnO) quantum dots (QDs) were introduced to cap MSNs via electrostatic interaction. The obtained ZnO@MSN drug-delivery system (DDS) achieves "zero-premature" drug release under a physiological environment. However, once the DDS is transferred to the cancerous cells' acidic endosome, ZnO QDs would rapidly dissolve and the acid-labile amides on the side chain of K10 would hydrolyze to regenerate primary amines, resulting in the uncapping of MSNs and exposure of the cell-penetrating peptide K10. The regenerated K10 could help the DDS escape from the endosome and efficiently release the loaded drugs inside the cells. At the meantime, because of the cytotoxicity of ZnO QDs at their destination, the ZnO@MSN DDS may achieve a synergistic antitumor effect to improve the therapeutic index. PMID:26553405

  5. Reversed-phase-liquid chromatography method for separation and quantification of gallic acid from hydroalcoholic extracts of Qualea grandiflora and Qualea parviflora

    PubMed Central

    de Mesquita, Mariana L.; Leão, Waleska F.; Ferreira, Magda R. A.; de Paula, José E.; Espindola, Laila S.; Soares, Luiz A. L.

    2015-01-01

    Background: Qualea parviflora and Qualea grandiflora (Vochysiaceae), commonly known in Brazil as “pau-terra” and “pau-terrinha,” respectively, have been widely used in the treatment of ulcer and gastritis. These therapeutic effects are attributed to various compounds present in the plants, including phenolic compounds such as gallic acid, due to their important antioxidant activity. Objective: The aim of the present study was to validate a high performance liquid chromatography with diode array detection (HPLC-DAD) method for the quantitative determination of gallic acid in the stem bark of Q. parviflora and Q. grandiflora hydroalcoholic extracts. Materials and Methods: The chromatography analysis was successfully achieved on a Dionex column, Acclaim® 120 (250 mm × 4.60 mm, 5 µm) with a gradient elution of water and methanol at a flow rate of 0.8 mL/min and ultraviolet detection at 280 nm. Results: The validation data, including linearity, precision, specificity, accuracy and robustness of this method demonstrated good reliability and sensitivity. Conclusion: The method is able to quantify gallic acid in the stem bark of both species. What is more, the chromatographic peaks showed good resolution and there are also the advantages of easy sample preparation and a short time between each injection. PMID:26664021

  6. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery.

    PubMed

    Zhang, Jing; Wu, Dan; Li, Meng-Fei; Feng, Jie

    2015-12-01

    A novel type of pH-responsive multifunctional mesoporous silica nanoparticle (MSN) was developed for cancerous cells drug delivery and synergistic therapy of tumor. MSNs were covered with a kind of cell-penetrating peptide, deca-lysine sequence (K10), to enhance their escape from the endosomes. After K10's primary amines were reacted with citraconic anhydride to form acid-labile β-carboxylic amides, zinc oxide (ZnO) quantum dots (QDs) were introduced to cap MSNs via electrostatic interaction. The obtained ZnO@MSN drug-delivery system (DDS) achieves "zero-premature" drug release under a physiological environment. However, once the DDS is transferred to the cancerous cells' acidic endosome, ZnO QDs would rapidly dissolve and the acid-labile amides on the side chain of K10 would hydrolyze to regenerate primary amines, resulting in the uncapping of MSNs and exposure of the cell-penetrating peptide K10. The regenerated K10 could help the DDS escape from the endosome and efficiently release the loaded drugs inside the cells. At the meantime, because of the cytotoxicity of ZnO QDs at their destination, the ZnO@MSN DDS may achieve a synergistic antitumor effect to improve the therapeutic index.

  7. Biochemical Reversal of Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2006-03-01

    We cite our progress on biochemical reversal of aging. However, it may be circa 2 years before we have necessary substances at low cost. Meanwhile, without them, a number of measures can be adopted providing marked improvement for the problems of aging in modern societies. For example, enzymes are needed to excrete toxins that accelerate aging; Hg is the ultimate toxin that disables all enzymes (including those needed to excrete Hg itself). Low Hg level in the urine, due to loss of excretory ability, causes the diagnosis of Hg toxicity to almost always be missed. Hg sources must be removed from the body! Another example is excess sugar; hyperglycemia decreases intracellular ascorbic acid (AA) by competitively inhibiting the insulin- mediated active transport of AA into cells. Thus, immunity is impaired by low leucocyte AA. AA is needed for new proteins in aging tissues. Humans must supplement AA; their need same as in AA-synthesizing mammals.

  8. Properly apply reverse osmosis

    SciTech Connect

    Kucera, J.

    1997-02-01

    Reverse osmosis (RO) is a water purification technique used to reduce the loading of dissolved solids in solution. The popularity of RO for treating boiler feedwater is growing because of the rising cost of ion-exchange-based demineralization as well as safety concerns associated with handling acid and caustic. A properly designed and operated RO-based boiler-feedwater-treatment system can reduce the load to, and costs associated with, ion exchange demineralization. This article discusses RO feedwater quality recommendations, pretreatment techniques, and system monitoring necessary to achieve optimum RO system performance in the most cost-effective manner. Regardless of the application--whether it is the treatment of boiler feedwater, industrial wastewater, or process water--the approach to pretreatment and the other design and operating guidance offered here remains the same.

  9. Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors.

    PubMed

    Elgaher, Walid A M; Sharma, Kamal K; Haupenthal, Jörg; Saladini, Francesco; Pires, Manuel; Real, Eleonore; Mély, Yves; Hartmann, Rolf W

    2016-08-11

    We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity. PMID:27339173

  10. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet.

    PubMed

    Janczyk, P; Büsing, K; Dobenecker, B; Nöckler, K; Zeyner, A

    2015-04-01

    Zinc oxide (ZnO) used in high ('pharmacological') levels to prevent diarrhoea in pigs is assumed to reduce copper (Cu) in tissues and inhibits large intestinal microbial fermentation. To test it, German Landrace pigs were weaned on d28 of age and fed diets containing either 100 (LowZinc, LZn, n = 10) or 3100 mg ZnO/kg (HighZinc, HZn, n = 10). The mixed feed (13.0 MJ ME, 18.5% crude protein) was based o