Science.gov

Sample records for acid sa accumulation

  1. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  2. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis

    PubMed Central

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

  3. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels. PMID:25034826

  4. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  5. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation.

    PubMed

    Miura, Kenji; Ohta, Masaru

    2010-05-01

    Low temperature induces several genes to acquire plant cold tolerance. Here, we demonstrate that accumulation of salicylic acid (SA) is involved in the regulation of the DREB1A/CBF3 regulon and plant tolerance to cold stresses. The SA-accumulating mutant siz1 exhibits sensitivity to chilling and freezing conditions and decreased expression of DREB1A/CBF3 and its regulon genes. Reduction of SA levels in siz1 by nahG restored cold sensitivity and down-regulation of these genes. Database analyses and RT-PCR analysis revealed that the ice1 mutation also increased expression of SA-responsive genes. As well as siz1, another SA-accumulating mutant acd6 exhibited freezing sensitivity and the sensitivity was suppressed in acd6 nahG plants. Taken together, these data indicate that SA is involved in regulation of cold signaling. PMID:19959255

  6. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis

    PubMed Central

    Carella, Philip; Wilson, Daniel C.; Cameron, Robin K.

    2015-01-01

    In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for defense in young plants, however, ARR occurs independently of the defense regulators NPR1 and WHY1. Furthermore, intercellular SA accumulation is an important component of ARR, and intercellular washing fluids from ARR-competent plants exhibit antibacterial activity, suggesting that SA acts as an antimicrobial agent in the intercellular space. Young plants accumulate both intracellular and intercellular SA during PAMP- and effector-triggered immunity, however, virulent P. syringae promotes susceptibility by suppressing SA accumulation using the phytotoxin coronatine. Here we outline the hypothesis that mature, ARR-competent Arabidopsis alleviates coronatine-mediated suppression of SA accumulation. We also explore the role of SA in other mature-plant processes such as flowering and senescence, and discuss their potential impact on ARR. PMID:25620972

  7. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.).

    PubMed

    Cui, Jing; Zhang, Rui; Wu, Guo Lin; Zhu, Hong Mei; Yang, Hong

    2010-07-01

    Napropamide is a widely used herbicide for controlling weeds in crop production. However, extensive use of the herbicide has led to its accumulation in ecosystems, thus causing toxicity to crops and reducing crop production and quality. Salicylic acid (SA) plays multiple roles in regulating plant adaptive responses to biotic and environmental stresses. However, whether SA regulates plant response to herbicides (or pesticides) was unknown. In this study, we investigated the effect of SA on herbicide napropamide accumulation and biological processes in rapeseed (Brassica napus). Plants exposed to 8 mg kg(-1) napropamide showed growth stunt and oxidative damage. Treatment with 0.1 mM SA improved growth and reduced napropamide levels in plants. Treatment with SA also decreased the abundance of O (2) (-.) and H(2)O(2) as well as activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), and increased activities of guaiacol peroxidase (POD) and glutathione-S-transferase (GST) in napropamide-exposed plants. Analysis of SOD, CAT, and POD activities using nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. These results may help to understand how SA regulates plant response to organic contaminants and provide a basis to control herbicide/pesticide contamination in crop production. PMID:19967348

  8. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Cortizas, Antonio Martínez; Vázquez, Cruz Ferro; Kaal, Joeri; Biester, Harald; Casais, Manuela Costa; Rodríguez, Teresa Taboada; Lado, Luis Rodríguez

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  9. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Wang, Qiong; Luo, Sha; Chen, Bao; Khan, Kiran Yasmin; Yang, Xiaoe; Feng, Ying

    2016-07-01

    A hydroponic experiment was conducted to verify the effects of inoculation with endophytic bacteria Sphingomonas SaMR12 on root growth, cadmium (Cd) uptake, reactive oxygen species (ROS), antioxidases, glutathione (GSH) and the related gene expression of Sedum alfredii Hance under different levels of Cd such as 0, 10, 25, 100 and 400 μM. The results showed that inoculation of SaMR12 improved Cd accumulation and upregulated glutathione synthase (GS) expression, but slightly reduced malondialdehyde (MDA) concentration and alleviated Cd-induced damage in roots. However it didn't alter the activities of antioxidant enzymes. When Cd concentration exceeded 25 μM, SaMR12 increased the concentration of GSH and the expression level of GSH1. At high Cd treatment levels (100 and 400 μM), SaMR12 significantly reduced H2O2 concentration and enhanced expression level of 1-Cys peroxiredoxin PER1 and ATPS genes. These results indicate that although SaMR12 has no significant effects on antioxidases activities, it reduces H2O2 concentration by enhancing GSH concentration and relevant genes expression, and subsequently improves Cd tolerance and accumulation. PMID:27065458

  10. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA)

    PubMed Central

    Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  11. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  12. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  13. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis.

    PubMed

    Okuma, Eiji; Nozawa, Rieko; Murata, Yoshiyuki; Miura, Kenji

    2014-01-01

    We investigated stomatal phenotype and drought tolerance of Arabidopsis salicylic acid-accumulating mutants, acd6 and cpr5. In these mutants, the light-induced stomatal opening was impaired and the impairment of stomatal opening was restored by peroxidase inhibitors, salicylhydroxamic acid, and azide. The acd6 and cpr5 mutant plants were more tolerant to drought stress than wild-type plants. Introduction of nahG gene into the acd6 and cpr5 mutants removed the inhibition of stomatal opening and reduced the drought tolerance. Drought tolerance-related genes were more highly expressed in the cpr5 and acd6 mutant plants than in the wild-type plants. These results suggest that accumulation of salicylic acid improves drought tolerance through inhibition of light-induced stomatal opening in Arabidopsis. PMID:24603484

  14. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.

    PubMed

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-02-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  15. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina.

    PubMed

    Cingoz, Gunce Sahin; Gurel, Ekrem

    2016-08-01

    Long periods of high temperature or transitory increased temperature, a widespread agricultural problem, may lead to a drastic reduction in economic yield, affecting plant growth and development in many areas of the world. Heat stress causes many anatomical and physiological changes in plants. Its unfavorable effects can be alleviated by thermotolerance induced by exogenous application of plant growth regulators and osmoprotectants or by gradual application of temperature stress. Digitalis trojana Ivanina is an important medicinal plant species well known mainly for its cardenolides. The production of cardenolides via traditional agriculture is commercially inadequate. In this study, elicitation strategies were employed for improving crop thermotolerance and accumulation of cardenolides. For these purposes, the effects of salicylic acid (SA) and/or high temperature treatments in inducing cardenolide accumulation and thermotolerance were tested in callus cultures of D. trojana. Considerable increases in the production of cardenolides (up to 472.28 μg.g(-1) dry weight, dw) and induction of thermotolerance capacity were observed when callus cultures were exposed to high temperature for 2 h after pretreating with SA. High temperature treatments (2 h and 4 h) caused a marked reduction in superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities, while SA pretreatment increased their activities. High temperature and/or SA appeared to increase the levels of proline, total phenolic, and flavonoid content. Elevated phenolic accumulation could be associated with increased stress protection. These results indicated that SA treatments induced synthesis of antioxidants and cardenolides, which may play a significant role in resistance to high temperature stress. PMID:27105421

  16. Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones.

    PubMed

    Zhu, Feng; Chen, Jiajing; Xiao, Xue; Zhang, Mingfei; Yun, Ze; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2016-09-15

    To comprehensively analyze the effects of salicylic acid (SA) on the storability of Satsuma mandarin (Citrus unshiu), fruits were treated with 2mM SA. The disease incidence of control/SA-treated fruit at 50d and 120d after treatment was 23.3%/10% and 67.3%/23.3%, respectively, suggesting that SA treatment can significantly reduce the rot rate of postharvest citrus fruit. Fruit quality assays revealed that the treatment can maintain fruit firmness without affecting the inner quality. Furthermore, the contents of H2O2 and some defense-related metabolites, such as ornithine and threonine, in citrus pericarp, were significantly increased by SA treatment. Moreover, it was lipophilic polymethoxylated flavones, rather than flavanone glycosides, that accumulated in SA-treated fruits and these can directly inhibit pathogen development. These results suggest that the effects of SA on postharvest citrus fruit may be attributed to the accumulation of H2O2 and defense-related metabolites. PMID:27080881

  17. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  18. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors.

    PubMed

    Ali, Mohammad Babar; Yu, Kee-Won; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2006-06-01

    The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2-), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 microM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2- accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2- stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures. PMID:16463159

  19. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  20. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets

    PubMed Central

    2012-01-01

    Background Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production. Results Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa. Conclusions Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary

  1. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  2. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  3. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc.

    PubMed

    Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin

    2015-01-01

    A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. PMID:25158610

  4. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  5. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    PubMed

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean. PMID:26795155

  6. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  7. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  8. Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces.

    PubMed

    Manna, A; Banerjee, R; Paul, A K

    1999-09-01

    In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9-7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H(2)SO(4), and had a characteristic infrared spectrum. PMID:10441729

  9. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    PubMed

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses. PMID:25346281

  10. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    SciTech Connect

    Furlong, E.T.; Cessar, L.R.; Hites, R.A. )

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in {sup 210}Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S, and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States, and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion production deposition.

  11. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Cessar, Linda Roll; Hites, Ronald A.

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in 210Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion product deposition.

  12. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart.

    PubMed

    Klevstig, Martina; Ståhlman, Marcus; Lundqvist, Annika; Scharin Täng, Margareta; Fogelstrand, Per; Adiels, Martin; Andersson, Linda; Kolesnick, Richard; Jeppsson, Anders; Borén, Jan; Levin, Malin C

    2016-04-01

    Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy. PMID:26930027

  13. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  14. Concomitant extracellular accumulation of alpha-keto acids and higher alcohols by Zygosaccharomyces rouxii.

    PubMed

    Van Der Sluis, Catrinus; Rahardjo, Yovita S P; Smit, Bart A; Kroon, Pieter J; Hartmans, Sybe; Ter Schure, Eelko G; Tramper, Johannes; Wijffels, Renéh

    2002-01-01

    Alpha-keto acids are key intermediates in the formation of higher alcohols, important flavor components in soy sauce, and produced by the salt-tolerant yeast Zygosaccharomyces rouxii. Unlike most of the higher alcohols, the alpha-keto acids are usually not extracellularly accumulated by Z. rouxii when it is cultivated with ammonium as the sole nitrogen source. To facilitate extracellular accumulation of the alpha-keto acids from aspartate-derived amino acid metabolism, the amino acids valine, leucine, threonine and methionine were exogenously supplied during batch and A-star cultivations of (routants of) Z. rouxii. It was shown that all alpha-keto acids from the aspartate-derived amino acid metabolism, except alpha-ketobutyrate, could be extracellularly accumulated. In addition, it appeared from the concomitant extracellular accumulation of alpha-keto acids and higher alcohols that in Z. rouxii, valine, leucine and methionine were converted via Ehrlich pathways similar to those in Saccharomyces cerevisiae. Unlike these amino acids, threonine was converted via both the Ehrlich and amino acid biosynthetic pathways in Z. rouxii. PMID:16233175

  15. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids were identified in oat grain by gas chromatography - mass spectrometry. We hypothesized that most of these were the results of lipoxygenase activity. This hypothesis was tested by measuring concentrations of these compounds after hydrothermal treatments and storage of oat groa...

  16. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  17. Anaerobic Accumulation of γ-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.)

    PubMed Central

    Streeter, John G.; Thompson, John F.

    1972-01-01

    In leaves, the anaerobic accumulation of alanine was accompanied by a loss of aspartate, and these changes preceded γ-aminobutyrate accumulation and glutamate loss. Changes in keto acid content did not appear to be the cause of amino acid changes. Accumulation of γ-aminobutyrate was due to acceleration of glutamate decarboxylation and arrest of γ-aminobutyrate transamination. Changes in enzyme content did not explain the changes in reaction rates in vivo. Most of the aspartate may be converted anaerobically to alanine via oxalacetate and pyruvate. PMID:16658004

  18. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  19. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions.

    PubMed

    Nishikawa, S; Watanabe, K; Tanaka, T; Miyachi, N; Hotta, Y; Murooka, Y

    1999-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides accumulates 5-aminolevulinic acid (ALA), which is a precursor in tetrapyrrole biosynthesis, under light illumination and upon addition of levulinic acid as an inhibitor of ALA dehydratase. To generate an industrial strain which produces ALA in the absence of light, we sequentially mutated R. sphaeroides CR-286 using N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The mutant strains were screened by cultivating in the absence of light and assayed for ALA by the Ehrlich reaction in a 96-well microtiter plate. The mutant strain CR-386, derived from R. sphaeroides CR-286, was selected as a mutant that exhibited significant ALA accumulation. While CR-286 required light illumination for ALA production, CR-386 was able to accumulate 1.5 mM ALA in the presence of 50 mM glucose, 60 mM glycine, 15 mM levulinic acid and 1.0% (w/v) yeast extract under conditions of agitation in the absence of light. The mutant strain CR-450, derived from strain CR-386, was selected further as a mutant that exhibited significant ALA accumulation but no accumulation of aminoacetone, analogue of ALA. CR-450 accumulated 3.8 mM ALA under the same conditions. In the presence of 50 mM glucose, 60 mM glycine, 5 mM levulinic acid and 1.0% (w/v) yeast extract, the mutant strain CR-520, derived from strain CR-450, and strain CR-606, derived from strain CR-520, accumulated 8.1 mM and 11.2 mM ALA, respectively. In batch fermentation, the strain CR-606 accumulated 20 mM ALA over 18 h after the addition of glycine, levulinic acid, glucose and yeast extract. PMID:16232557

  20. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  1. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. PMID:26041210

  2. Investigation of fatty acid accumulation in the engineered Saccharomyces cerevisiae under nitrogen limited culture condition.

    PubMed

    Tang, Xiaoling; Chen, Wei Ning

    2014-06-01

    In this study, the Saccharomyces cerevisiae wild type strain and engineered strain with an overexpressed heterologous ATP-citrate lyase (acl) were cultured in medium with different carbon and nitrogen concentrations, and their fatty acid production levels were investigated. The results showed that when the S. cerevisiae engineered strain was cultivated under nitrogen limited culture condition, the yield of mono-unsaturated fatty acids showed higher than that under non-nitrogen limited condition; with the carbon concentration increased, the accumulation become more apparent, whereas in the wild type strain, no such correlation was found. Besides, the citrate level in the S. cerevisiae under nitrogen limited condition was found to be much higher than that under non-nitrogen limited condition, which indicated a relationship between the diminution of nitrogen and accumulation of citrate in the S. cerevisiae. The accumulated citrate could be further cleaved by acl to provide substrate for fatty acid synthesis. PMID:24755317

  3. [Accumulation of porphyrins in cells of system of blood induced by 5-aminolaevulinic acid].

    PubMed

    Lobanok, E S; Vasilevich, I B; Vorobeĭ, A V

    2011-01-01

    The levels and rates of accumulation of porphyrins in lymphoid cells and bone marrow cells treated with exogenous 5-aminolaevulinic acid (ALA) were studied. The dependence of the quantity of porphyrins accumulated in cell on ALA concentrations in the medium had maximum at 0.7-1.0 mM ALA for all the cell types studied (splenocytes, thymocytes, peripheral blood lymphocytes and bone marrow cells). The rate of accumulation of uro-, copro- and protoporphyrins depended on cell types. The lowest and the highest levels were found in splenocytes and highest in bone marrow cells respectively. It is suggested that photodynamic therapy employing ALA is potentially dangerous for blood cells. PMID:21870605

  4. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  5. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  6. Changes in Metabolite Levels in Kalanchoë daigremontiana and the Regulation of Malic Acid Accumulation in Crassulacean Acid Metabolism.

    PubMed

    Cockburn, W; McAulay, A

    1977-03-01

    Changes in glucose-6-P, fructose-6-P, fructose-1,6-diP, 6-phospho-gluconate, phosphoenolpyruvate, 3-phosphoglycerate, and pyruvate levels in the leaves of the Crassulacean plant Kalanchoë daigremontiana Hammet et Perrier were measured enzymically during transitions from CO(2)-free air to air, air to CO(2)-free air, and throughout the course of acid accumulation in darkness. The data are discussed in terms of the involvement of phosphoenolpyruvate carboxylase in malic acid synthesis and in terms of the regulation of the commencement of malic acid synthesis and accumulation through the effects of CO(2) on storage carbohydrate mobilization and its termination through the effects of malic acid on phosphoenolpyruvate carboxylase activity. PMID:16659872

  7. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  8. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  9. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Riscob, B.; Ganesh, V.; Vijayan, N.; Gupta, Rahul; Plaza, J. L.; Dieguez, E.; Bhagavannarayana, G.

    2013-10-01

    Sulfamic acid (SA) single crystals, both pure and doped with 1, 2.5 and 5 mol% Nd, were grown successfully in an aqueous solution by the slow cooling method. Powder X-ray diffraction patterns were recorded to check the variation in the lattice parameters and phase of the crystals. The optical transparency was found to be higProd. Type: FTPhest (∼80%) for the 1 mol% Nd3+ doped SA single crystal. The optical band gap was also calculated and found to be ∼4.31, 4.20 and 3.67 eV. The influence of Nd3+ doping on the crystalline perfection was assessed by a high resolution X-ray diffractometer (HRXRD) and shows that the grown crystals could accommodate Nd3+ at the interstitial positions in the crystalline matrix of SA up to some critical concentration without any deterioration in the crystalline perfection. The etching studies were carried out and the etch pits densities were calculated. The mechanical property of grown single crystals was also studied.

  10. Dynamics of Free Amino Acid Accumulations in Cotton Leaves Measured on Different Timelines After Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulations of 16 free amino acids (FAAs) in cotton, Gossypium hirsutum L., leaves in potted greenhouse plants were recorded across three time scales following irrigation. The time scales, 15-minute, 12-hours, and daily sampling intervals, revealed the dynamic response of each FAA, and showed dif...

  11. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  12. Epicuticular Wax Accumulation and Fatty Acid Elongation Activities Are Induced during Leaf Development of Leeks1

    PubMed Central

    Rhee, Yoon; Hlousek-Radojcic, Alenka; Ponsamuel, Jayakumar; Liu, Dehua; Post-Beittenmiller, Dusty

    1998-01-01

    Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies. PMID:9501123

  13. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  14. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30. PMID:16086245

  15. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato 1

    PubMed Central

    Bostock, Richard M.; Laine, Roger A.; Kuć, Joseph A.

    1982-01-01

    Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium. PMID:16662691

  16. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  17. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  18. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  19. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  20. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots. PMID:25482978

  1. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system.

    PubMed

    Müller, Claudia E; LeFevre, Gregory H; Timofte, Anca E; Hussain, Fatima A; Sattely, Elizabeth S; Luthy, Richard G

    2016-05-01

    Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short-chain and long-chain PFAAs, generating a U-shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least-sorptive (shortest-chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U-shaped trend with perfluoroalkyl chain length; however, when normalized to dead-tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the "sorption normalized concentration factor," to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long-chain PFAAs, whereas the shortest-chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter-chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138-1147. © 2015 SETAC. PMID:26383989

  2. [Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato].

    PubMed

    Li, Lin-lin; Li, Tian-lai; Jiang, Guo-bin; Jin, Hua; Zou, Ji-xiang

    2015-11-01

    In this study, we investigated the effect of exogenous calcium and salicylic acid (SA) on Botrytis cinerea resistance in tomato seedlings. We treated a tomato strain susceptible to Botrytis cinerea with foliar spraying of water, SA, SA+CaCl2 and SA+EGTA (Ca2+ chelating agent) for one to five days. During the treatment, leaves were collected to analyze the reactive oxygen species (ROS) content, phenylalanine ammonia lyase (PAL) activity, chintase and β-1,3-glucanase levels, and the expression of pathogenesis related protein 1, 2, 3 (PR1, PR2, PR3). Three days after infection, the disease index was 74.8 in control plants, and 46.9, 38.5 and 70.3 in SA, SA+Ca and SA+ EGTA treated plants, respectively. SA treatment significantly increased ROS leaf accumulation, and activities of PAL, chintase and β-1,3-glucanase. These values were further enhanced in SA+Ca treated plants, but decreased in SA+EGTA treated plants. Application of SA significantly increased the expression levels of PR1, PR2a and PR3b, which were further elevated by the combination treatment with Ca2+. These effects were counteracted by the combination treatment of SA and EGTA. The transcription levels of PR2b and PR3a were up-regulated by 1-2 folds, and PR1, 2a and 3b by 2-5 folds in SA- and SA+Ca-treated plants relative to control. These data suggested that application of Ca2+ could synergistically increase SA-induced resistance to B. cinerea. The resistance was associated with ROS accumulation, therefore the increase in resistance might be through ROS ability to increase the activity of defense-related enzymes and expression levels of PR1, PR2a and PR3b. PMID:26915208

  3. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta.

    PubMed

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L; Perdomo, Germán

    2013-07-15

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides. PMID:23673156

  4. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos

    SciTech Connect

    Bao, X.; Ohlrogge, J.

    1999-08-01

    The metabolic factors that determine oil yield in seeds are still not well understood. To begin to examine the limits on triacylglycerol (TAG) production, developing Cuphea lanceolata, Ulmus carpinifolia, and Ulmus parvifolia embryos were incubated with factors whose availability might limit oil accumulation. The addition of glycerol or sucrose did not significantly influence the rate of TAG synthesis. However, the rate of {sup 14}C-TAG synthesis upon addition of 2.1 mM {sup 14}C-decanoic acid (10:0) was approximately four times higher than the in vivo rate of TAG accumulation in C. lanceolata and two times higher than the in vivo rate in U. carpinifolia and U. parvifolia. In C. lanceolata embryos, the highest rate of {sup 14}C-TAG synthesis (14.3 nmol h{sup {minus}1} embryo {sup {minus}1}) was achieved with the addition of 3.6 mM decanoic acid. {sup 14}C-Decanoic acid was incorporated equally well in all three acyl positions of TAG. The results suggest that C. lancelata, U. Carpinifolia, and U. parvifolia embryos have sufficient acyltransferase activities and glycerol-3-phosphate levels to support rates of TAG synthesis in excess of those found in vivo. Consequently, the amount of TAG synthesized in these oilseeds may be in part determined by the amount of fatty acid produced in plastids.

  5. Methyl jasmonate, yeast extract and sucrose stimulate phenolic acids accumulation in Eryngium planum L. shoot cultures.

    PubMed

    Kikowska, Małgorzata; Kędziora, Izabela; Krawczyk, Aldona; Thiem, Barbara

    2015-01-01

    Eryngium planum L. has been reported as a medicinal plant used in traditional medicine in Europe. The tissue cultures may be an alternative source of the biomass rich in desired bioactive compounds. The purpose of this study was to investigate the influence of the biotechnological techniques on the selected phenolic acids accumulation in the agitated shoot cultures of E. planum. Qualitative and quantitative analyses of those compounds in 50% aqueous - methanolic extracts from the biomass were conducted by applying the HPLC method. Methyl jasmonate (MeJA), yeast extract (YE) and sucrose (Suc) stimulated accumulation of the phenolic acids: rosmarinic (RA), chlorogenic (CGA) and caffeic (CA) in in vitro shoot cultures. Cultivation of shoots in liquid MS media supplemented with 1.0 mg L(-1) 6-benzyladenine and 0.1 mg L(-1) indole-3-acetic acid in the presence of 100 µM MeJA for 48h was an optimum condition of elicitation and resulted in approximately 4.5-fold increased content of RA + CGA + CA in plant material compared to the control (19.795 mg g(-1) DW, 4.36 mg g(-1) DW, respectively). The results provide the first evidence that the selected phenolic acids can be synthesized in elicited shoot cultures of flat sea holly in higher amount than in untreated shoots. PMID:25856557

  6. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation.

    PubMed

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  7. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation

    PubMed Central

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P.; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  8. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  9. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  10. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. PMID:23199681

  11. Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells.

    PubMed

    Bergmann, M E Henry; Koparal, A Savas

    2011-11-30

    Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35°C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L(-1) and 2000 Wh L(-1). In other experiments on substances with antimony contents up to 3500 mg L(-1), the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results. PMID:21978586

  12. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance. PMID:27255930

  13. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2016-05-01

    The fatty acid composition of monocytes changes substantially during differentiation into macrophages, increasing the proportion of saturated fatty acids. These changes prompted us to investigate whether fatty acid accumulation in the extracellular milieu could affect the differentiation of bystander mononuclear phagocytes. An esterified fatty acid derivative, stearate, was the only fatty acid that significantly increased in macrophage supernatants, and there were higher levels when cells differentiated in the presence of Mycobacterium tuberculosis H37Rv or purified protein derivative (PPD). Exogenous stearic acid enhanced the expression of HLA-DR and CD64; there was also accumulation of IL-12, TNF-α, IL-6, MIP-1 α and β and a reduction in MCP-1 and the bacterial load. These results suggested that during differentiation, a derivative of stearic acid, which promotes the process as well as the effector mechanisms of phagocytes against the mycobacterium, accumulates in the cell supernatants. PMID:26932544

  14. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production. PMID:26450510

  15. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    PubMed

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells. PMID:27068057

  16. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils

    SciTech Connect

    Wu, L.; Guo, X.; Banuelos, G.S.

    1997-03-01

    Seleno-amino acid accumulation was studied for two legume and two grass species grown in Selenium (Se)-laden soils. An antagonistic relationship was found between the tissue Se-amino acid concentration and the corresponding sulfur-amino acid concentration. This relationship demonstrates a competitive interaction between Se and sulfate at the amino acid synthesis level. The nonsulfur-containing amino acids were not substantially affected by the increase of tissue Se concentration. Sour clover (Melilotus indica L.) was able to accumulate much greater tissue Se concentration than the other three species. Tissue methionine concentration of sour clover, rabbitfoot grass (Polypogon monspeliensis L.), and tall fescue (Festuca arundinacea Schreb.) was not significantly affected by the increase of tissue selenomethionine concentration, but a highly significant negative correlation was found in alfalfa (Medicago sativa L.). This discrepancy suggests that a less antagonistic effect on sulfur-amino acids under the increase of Se-amino acid analogues in the tissue might be able to minimize Se toxicity to the plant. Both Se-methylselenocysteine (nonprotein amino acid) and selenomethionine (protein amino acid) accumulated in the plants when grown in Se-laden soils. Possible effects of these Se-amino acids accumulated by plants on animal health should be tested before the plants are used for forage supplementation.

  17. Impaired oxidoreduction by 11β-hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid[S

    PubMed Central

    Penno, Carlos A.; Morgan, Stuart A.; Vuorinen, Anna; Schuster, Daniela; Lavery, Gareth G.; Odermatt, Alex

    2013-01-01

    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) mediates glucocorticoid activation and is currently considered as therapeutic target to treat metabolic diseases; however, biomarkers to assess its activity in vivo are still lacking. Recent in vitro experiments suggested that human 11β-HSD1 metabolizes the secondary bile acid 7-oxolithocholic acid (7-oxoLCA) to chenodeoxycholic acid (CDCA) and minor amounts of ursodeoxycholic acid (UDCA). Here, we provide evidence from in vitro and in vivo studies for a major role of 11β-HSD1 in the oxidoreduction of 7-oxoLCA and compare its level and metabolism in several species. Hepatic microsomes from liver-specific 11β-HSD1-deficient mice were devoid of 7-oxoLCA oxidoreductase activity. Importantly, circulating and intrahepatic levels of 7-oxoLCA and its taurine conjugate were significantly elevated in mouse models of 11β-HSD1 deficiency. Moreover, comparative enzymology of 11β-HSD1-dependent oxidoreduction of 7-oxoLCA revealed that the guinea-pig enzyme is devoid of 7-oxoLCA oxidoreductase activity. Unlike in other species, 7-oxoLCA and its glycine conjugate are major bile acids in guinea-pigs. In conclusion, the oxidoreduction of 7-oxoLCA and its conjugated metabolites are catalyzed by 11β-HSD1, and the lack of this activity leads to the accumulation of these bile acids in guinea-pigs and 11β-HSD1-deficient mice. Thus, 7-oxoLCA and its conjugates may serve as biomarkers of impaired 11β-HSD1 activity. PMID:23933573

  18. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  19. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  20. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  1. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes

    SciTech Connect

    Creelman, R.A.; Zeevaart, J.A.D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress rather than a chemical stress.

  2. Intraneuronal Amyloid β Accumulation and Oxidative Damage to Nucleic Acids in Alzheimer Disease

    PubMed Central

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A.; Perry, George

    2010-01-01

    An in situ approach was used to identify amyloid-β (Aβ) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal specific antibodies directed against Aβ40 and Aβ42 were used for immunocytochemical analyses, Aβ42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Aβ-oligomer. In comparison to the Aβ42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Aβ42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r = − 0.61, p < 0.02). Together with recent evidence that the Aβ peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Aβ may be a compensatory response in neurons to oxidative stress in Alzheimer disease. PMID:20034567

  3. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    PubMed Central

    2012-01-01

    Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production. PMID:22448811

  4. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  5. Atlas of Rice Grain Filling-Related Metabolism under High Temperature: Joint Analysis of Metabolome and Transcriptome Demonstrated Inhibition of Starch Accumulation and Induction of Amino Acid Accumulation

    PubMed Central

    Yamakawa, Hiromoto; Hakata, Makoto

    2010-01-01

    High temperature impairs grain filling by inhibiting the deposition of storage materials such as starch and protein. To comprehend its impact on grain filling metabolism in rice (Oryza sativa), levels of metabolites and transcripts related to central pathways of metabolism were simultaneously determined in developing caryopses exposed to high temperature (33°C/28°C) and a control temperature (25°C/20°C) during the milky stage. A capillary electrophoresis-based metabolomic analysis revealed that high temperature increased the accumulation of sucrose and pyruvate/ oxaloacetate-derived amino acids and decreased levels of sugar phosphates and organic acids involved in glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) cycle, respectively. A transcriptomic analysis using a whole genome-covering microarray unraveled the possible metabolic steps causing the shortage of storage materials under the elevated temperature. Starch deposition might be impaired by down-regulation of sucrose import/degradation and starch biosynthesis, and/or up-regulation of starch degradation as well as inefficient ATP production by an inhibited cytochrome respiration chain, as indicated by the response of gene expression to high temperature. Amino acid accumulation might be attributed to the heat-stable import of amino acids into the caryopsis and/or repression of protein synthesis especially the tRNA charging step under high temperature. An atlas showing the effect of high temperature on levels of metabolites and gene expression in the central metabolic pathways is presented. PMID:20304786

  6. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361

  7. Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus.

    PubMed

    Goldhaber-Pasillas, Guitele Dalia; Mustafa, Natali Rianika; Verpoorte, Robert

    2014-01-01

    The stress response after jasmonic acid (JA) treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA) and terpenoid indole alkaloids (TIA). According to multivariate data analyses (MVDA), three major time events were observed and characterized according to the variations of specific FA and TIA: after 0-30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90-360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system. PMID:25029072

  8. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Parejko, James A.; Bonsall, Robert F.; Kwak, Youn-Sig; Paulitz, Timothy C.; Weller, David M.

    2012-01-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz+) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km2. Phz+ Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g−1 (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz+ Pseudomonas spp. (r2 = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz+ pseudomonads (r2 = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  9. Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp.

    PubMed

    Manna, A; Pal, S; Paul, A K

    2000-01-01

    Forty-two Rhizobium strains obtained from different culture collections were evaluated quantitatively for poly(3-hydroxy-butyric acid) [PHB] production in shake flask culture. The majority of the strains produced the maximum amount of PHB during the late exponential or stationary phase of growth. Synthesis and accumulation of PHB in different species of Rhizobium were found to vary between 1-38% of their dry biomass. Growth and PHB production by the Rhizobium strain TAL-640 were greatly influenced by the C-source and D-mannitol was fundamental to both processes. The identity and purity of PHB isolated from TAL-640 have also been confirmed by UV-, IR- and 1H-NMR spectroscopic analyses. PMID:10866363

  10. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  11. The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of 'heart-healthy' omega-3 fatty acids.

    PubMed

    Ruiz-López, Noemí; Haslam, Richard P; Venegas-Calerón, Mónica; Larson, Tony R; Graham, Ian A; Napier, Johnathan A; Sayanova, Olga

    2009-09-01

    Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Delta6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae) reflecting the general absence of Delta6-desaturation from higher plants. Using a Delta6-desaturase from Primula vialii, we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialiiDelta6-desaturase specifically only utilises alpha-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 gamma-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source (Echium spp.) or transgenic soybean oil. However, both those latter oils contain gamma-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties. PMID:19702757

  12. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  13. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  14. Propolis induces chondroitin/dermatan sulphate and hyaluronic Acid accumulation in the skin of burned wound.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  15. Xanthurenic acid distribution, transport, accumulation and release in the rat brain.

    PubMed

    Gobaille, Serge; Kemmel, Véronique; Brumaru, Daniel; Dugave, Christophe; Aunis, Dominique; Maitre, Michel

    2008-05-01

    Tryptophan metabolism through the kynurenine pathway leads to several neuroactive compounds, including kynurenic and picolinic acids. Xanthurenic acid (Xa) has been generally considered as a substance with no physiological role but possessing toxic and apoptotic properties. In the present work, we present several findings which support a physiological role for endogenous Xa in synaptic signalling in brain. This substance is present in micromolar amounts in most regions of the rat brain with a heterogeneous distribution. An active vesicular synaptic process inhibited by bafilomycin and nigericin accumulates xanthurenate into pre-synaptic terminals. A neuronal transport, partially dependant on adenosine 5'-triphosphate (ATP), sodium and chloride ions exists in NCB-20 neurons which could participate in the clearance of extracellular xanthurenate. Both transports (neuronal and vesicular) are greatly enhanced by the presence of micromolar amounts of zinc ions. Finally, electrical in vivo stimulation of A10-induced Xa release in the extracellular spaces of the rat prefrontal cortex. This phenomenon is reproduced by veratrine, K+ ions and blocked by EGTA and tetrodotoxin. These results strongly argue for a role for Xa in neurotransmission/neuromodulation in the rat brain, thus providing the existence of specific Xa receptors. PMID:18182052

  16. Propolis Induces Chondroitin/Dermatan Sulphate and Hyaluronic Acid Accumulation in the Skin of Burned Wound

    PubMed Central

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M.

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  17. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase. PMID:27535992

  18. [Effect of cultivation conditions on the accumulation of poly-beta-hydroxy-butyric acid in Rhizobium lupini].

    PubMed

    Yushkova, L A; Fedulova, N G; Romanov, V I; Kretovich, W L

    1975-01-01

    The influence of the age of the culture and nitrogen source on the accumulation of poly-beta-hydroxybutyric acid by different strains of Rhizobium lupini was studied. The accumulation depended on the age of the culture and reached maximum at the end of the logarithmic and at the beginning of the stationary phase of the bacterial growth (about 50-60% dry weight). The accumulation varied in relation to the nitrogen source used: it was the highest in the glutamate medium and the lowest on nitrate nitrogen; the culture grown on ammonium phosphate was intermediate. PMID:1208373

  19. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  20. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Bargossi, Eleonora; Lanciotti, Rosalba; Gatto, Veronica; Felis, Giovanna; Torriani, Sandra; Gardini, Fausto

    2014-11-01

    The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains of Lactococcus lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus PRI60, inoculated at different initial concentrations (from 2 to 6 log cfu/ml). The results showed that the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth potential of this aminobiogenic strain, both in terms of growth rate and maximum cell concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also showed that different bacteriocins can have

  1. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.

    PubMed

    Nguyen, Huu Tam; Park, Hyunwoo; Koster, Karen L; Cahoon, Rebecca E; Nguyen, Hanh T M; Shanklin, John; Clemente, Thomas E; Cahoon, Edgar B

    2015-01-01

    Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications. PMID:25065607

  2. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.

    PubMed

    Barad, Shiri; Espeso, Eduardo A; Sherman, Amir; Prusky, Dov

    2016-06-01

    Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin. PMID:26420024

  3. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.

    PubMed

    Carro, M; Buschiazzo, J; Ríos, G L; Oresti, G M; Alberio, R H

    2013-03-01

    Linoleic acid (LA) is a polyunsaturated fatty acid present in high concentrations in bovine follicular fluid; when added to maturation culture media, it affects oocyte competence (depending on the type and concentration of LA used). To date, little is known about the effective level of incorporation of LA and there is apparently no information regarding its esterification into various lipid fractions of the oocyte and its effect on neutral lipid storage. Therefore, the objective was to assess the uptake and subcellular lipid distribution of LA by analyzing incorporation of radiolabeled LA into oocyte polar and neutral lipid classes. The effects of various concentrations of LA on the nuclear status and cytoplasmic lipid content of bovine oocytes matured in vitro was also analyzed, with particular emphasis on intermediate concentrations of LA. Neutral lipids stored in lipid droplets were quantified with a fluorescence approach. Linoleic acid at 9 and 43 μM did not affect the nuclear status of oocytes matured in vitro, and 100 μM LA inhibited germinal vesicle breakdown, resulting in a higher percentage of oocytes arrested at the germinal state (43.5 vs. 3.0 in controls; P < 0.05). Bovine oocytes actively incorporated LA from the maturation medium (83.4 pmol LA per 100 oocytes at 22 hours of incubation; P < 0.05) and metabolized it mainly into major lipid classes, e.g., triacylglycerols and phospholipids (61.1% and 29.3%, respectively). Supplementation of the maturation medium with LA increased triacylglycerol accumulation in cytoplasmic lipid droplets at all concentrations assayed (P < 0.05). In conclusion, LA added to a defined maturation medium at concentrations that did not alter the nuclear status of bovine oocytes matured in vitro (9 and 43 μM) improved their quality by increasing the content of neutral lipids stored in lipid droplets. By directing the free fatty acid (LA) to triacylglycerol synthesis pathways and increasing the degree of unsaturation of

  4. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. Conclusions In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs. PMID:24581179

  5. Accumulation of free amino acids in marine diatom resting cells during rejuvenation

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Li, Qingyu; Zhou, Qianqian; Sun, Lin; Zheng, Minhua; Gao, Yahui

    2014-01-01

    Many diatoms form resting stages under adverse growth conditions. These resting stages are known to rejuvenate once favorable conditions return, and resume vegetative growth after a certain lag period in which no divisions occurred, but what happens during this period remains unclear. Nitrogen uptake and the accumulation of free amino acids in Skeletonema marinoi resting cells during rejuvenation, but before cell division, were studied in laboratory cultures at different light intensities using the 15N-tracer technique. N uptake rate was higher for the rejuvenating cells at the higher light intensity. We hypothesized that the rapid and increasing N uptake at higher irradiance could enable S. marinoi to rebuild and reorganize its cell contents quickly and so dominate subsequent vegetative growth on the surficial sediment. Compared to the logarithmic growth phase and stationary phase, much higher concentrations of glycine (Gly) and histidine (His) were detected in resting cells, and His appeared to be a storage compound in S. marinoi resting cells. Compared to glutamine, glutamate had the higher 15N label enrichment under the light condition, showing a diel variation of N status during the lag period. The 15N labeled urea was detected at 36 h, compared to the urea cycle intermediates ornithine and citrulline at 30 h, indicating that urea was produced as an N reservoir due to the higher nitrogen uptake in the dark, and that the urea cycle was involved in S. marinoi resting cell rejuvenation.

  6. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  7. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  8. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.

    PubMed

    Arao, Tomohito; Kawasaki, Akira; Baba, Koji; Mori, Shinsuke; Matsumoto, Shingo

    2009-12-15

    Rice consumption is a major source of cadmium and arsenic for the population of Asia. We investigated the effects of water management in rice paddy on levels of cadmium and arsenic in Japanese rice grains. Flooding increased arsenic concentrations in rice grains, whereas aerobic treatment increased the concentration of cadmium. Flooding for 3 weeks before and after heading was most effective in reducing grain cadmium concentrations, but this treatment increased the arsenic concentration considerably, whereas aerobic treatment during the same period was effective in reducing arsenic concentrations but increased the cadmium concentration markedly. Flooding treatment after heading was found to be more effective than flooding treatment before heading in reducing rice grain cadmium without a concomitant increase in total arsenic levels, although it increased inorganic arsenic levels. Concentrations of dimethylarsinic acid (DMA) in grain were very low under aerobic conditions but increased under flooded conditions. DMA accounted for 3-52% of the total arsenic concentration in grain grown in soil with a lower arsenic concentration and 10-80% in soil with a higher arsenic concentration. A possible explanation for the accumulation of DMA in rice grains is that DMA translocates from shoots/roots to the grains more readily than does inorganic arsenic. PMID:20000530

  9. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer.

    PubMed

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  10. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose. PMID:26899030

  11. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  12. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  13. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation.

    PubMed

    Li, Yan-Ci; Tian, Ke; Sun, Li-Juan; Long, Hui; Li, Lu-Jun; Wu, Zheng-Zhi

    2016-03-01

    A new taraxerene-type hexacyclic triterpene acid named (12R,13S)-3-methoxy-12,13-cyclo-taraxerene-2,14-diene-1-one-28-oic acid (1), together with a known compound 3,7-dihydroxy-5-octanolide (2), was isolated from the roots of Euscaphis japonica. The structure of new compound 1 was elucidated on the basis of NMR, HR-ESIMS and X-ray diffraction analysis. It showed promising inhibitory activity on oleic acid induced triglyceride accumulation on HepG2 cells. PMID:26828452

  14. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  15. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats.

    PubMed

    de Castro Vasques, Vilson; de Boer, Melissa Avila; Diligenti, Felipe; Brinco, Fabrício; Mallmann, Fabrício; Mello, Carlos Fernando; Wajner, Moacir

    2004-01-01

    Learning disability is a common feature of patients affected by maple syrup urine disease (MSUD). However, the pathomechanisms underlying learning deficit in this disorder are poorly known. In the present study, we investigated the effect of acute administration of the alpha-keto acids accumulating in MSUD into the hippocampus on the behavior of rats in the open field and in the inhibitory avoidance tasks. Adult male Wistar rats received intrahippocampal injections of alpha-ketoisocaproic acid (KIC, 8 micromol), alpha-ketoisovaleric acid (KIV, 5 micromol), alpha-keto-beta-methylvaleric acid (KMV, 5 micromol), or NaCl (8 micromol) (controls) immediately after or 10 min before training. Testing session was performed 24 h later. Posttraining administration of the keto acids had no effect on learning in the open-field task. In contrast, pretraining administration of KIV and KMV impaired habituation in the open field. Similarly, pretraining administration of KIC, KIV, and KMV affected rat performance in the inhibitory avoidance task, suggesting disruption of acquisition. The results indicate that the alpha-keto acids accumulating in MSUD induce learning deficits in aversive and nonaversive tasks. We therefore suggest that these findings may be related to the psychomotor delay/mental retardation observed in MSUD, and may indicate the contribution of increased brain concentrations of these organic acids to the pathophysiology of the neurological dysfunction of MSUD patients. PMID:14724056

  16. Regulation of Primary Metabolic Pathways in Oyster Mushroom Mycelia Induced by Blue Light Stimulation: Accumulation of Shikimic Acid

    PubMed Central

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  17. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid.

    PubMed

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  18. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.

    PubMed

    Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele

    2016-01-01

    The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. PMID:26518537

  19. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  20. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses

    PubMed Central

    Campa, Claudine; Mondolot, Laurence; Rakotondravao, Arsene; Bidel, Luc P. R.; Gargadennec, Annick; Couturon, Emmanuel; La Fisca, Philippe; Rakotomalala, Jean-Jacques; Jay-Allemand, Christian; Davis, Aaron P.

    2012-01-01

    Background and Aims The phenolic composition of Coffea leaves has barely been studied, and therefore this study conducts the first detailed survey, focusing on mangiferin and hydroxycinnamic acid esters (HCEs). Methods Using HPLC, including a new technique allowing quantification of feruloylquinic acid together with mangiferin, and histochemical methods, mangiferin content and tissue localization were compared in leaves and fruits of C. pseudozanguebariae, C. arabica and C. canephora. The HCE and mangiferin content of leaves was evaluated for 23 species native to Africa or Madagascar. Using various statistical methods, data were assessed in relation to distribution, ecology, phylogeny and use. Key Results Seven of the 23 species accumulated mangiferin in their leaves. Mangiferin leaf-accumulating species also contain mangiferin in the fruits, but only in the outer (sporophytic) parts. In both leaves and fruit, mangiferin accumulation decreases with ageing. A relationship between mangiferin accumulation and UV levels is posited, owing to localization with photosynthetic tissues, and systematic distribution in high altitude clades and species with high altitude representatives. Analyses of mangiferin and HCE content showed that there are significant differences between species, and that samples can be grouped into species, with few exceptions. These data also provide independent support for various Coffea lineages, as proposed by molecular phylogenetic analyses. Sampling of the hybrids C. arabica and C. heterocalyx cf. indicates that mangiferin and HCE accumulation may be under independent parental influence. Conclusions This survey of the phenolic composition in Coffea leaves shows that mangiferin and HCE accumulation corresponds to lineage recognition and species delimitation, respectively. Knowledge of the spectrum of phenolic accumulation within species and populations could be of considerable significance for adaptation to specific environments. The potential

  1. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.

    PubMed

    Liang, Xiaofei; Liberti, Daniele; Li, Moyi; Kim, Young-Tae; Hutchens, Andrew; Wilson, Ron; Rollins, Jeffrey A

    2015-08-01

    The oxaloacetate acetylhydrolase (OAH, EC 3.7.1.1)-encoding gene Ss-oah1 was cloned and functionally characterized from Sclerotinia sclerotiorum. Ss-oah1 transcript accumulation mirrored oxalic acid (OA) accumulation with neutral pH induction dependent on the pH-responsive transcriptional regulator Ss-Pac1. Unlike previously characterized ultraviolet (UV)-induced oxalate-deficient mutants ('A' mutants) which retain the capacity to accumulate OA, gene deletion Δss-oah1 mutants did not accumulate OA in culture or during plant infection. This defect in OA accumulation was fully restored on reintroduction of the wild-type (WT) Ss-oah1 gene. The Δss-oah1 mutants were also deficient in compound appressorium and sclerotium development and exhibited a severe radial growth defect on medium buffered at neutral pH. On a variety of plant hosts, the Δss-oah1 mutants established very restricted lesions in which the infectious hyphae gradually lost viability. Cytological comparisons of WT and Δss-oah1 infections revealed low and no OA accumulation, respectively, in subcuticular hyphae. Both WT and mutant hyphae exhibited a transient association with viable host epidermal cells at the infection front. In summary, our experimental data establish a critical requirement for OAH activity in S. sclerotiorum OA biogenesis and pathogenesis, but also suggest that factors independent of OA contribute to the establishment of primary lesions. PMID:25285668

  2. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding. PMID:21140278

  3. Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis.

    PubMed

    Kim, Yeon Bok; Uddina, Md Romij; Kim, YeJi; Park, Chun Geon; Park, Sang Un

    2014-09-01

    Rosmarinic acid (a-O-caffeoyl-3,4-dihydroxyphenylacetic acid, RA) is a caffeoyl ester widely distributed in plants. cDNA clones encoding tyrosine aminotransferase (TAT1 and 2) and hydroxyphenylpyruvate reductase (HPPR) have been isolated from Scutellaria baicalensis. The open reading frames (ORFs) of SbTAT1 and 2 were 1230 and 1272 bp long and encoded 409 and 423 amino acid residues, respectively. HPPR corresponded to a 942-bp ORF and 313 amino acid residues of translated protein. To study the molecular mechanisms of TAT and HPPR and investigate RA accumulation in S. baicalensis, we examined the transcript levels of TAT isoforms and HPPR with quantitative real-time PCR and analyzed the RA content in different organs by using high-performance liquid chromatography. The transcript levels of SbTATI SbTAT2, and SbHPPR in the flowers were higher than those in other organs. RA was also highly accumulated in the flowers and with a trace amount in the roots. No RA was detected in the leaves and stems of S. baicalensis. The amount of accumulated RA in the flowers was 28.7 times higher than that in the roots. Our results will be helpful in elucidating the mechanisms of RA biosynthesis in S. baicalensis. PMID:25918800

  4. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  5. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae. PMID:25129521

  6. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  7. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  8. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.

    PubMed

    Wang, Hui; Gao, Lili; Zhou, Wenjun; Liu, Tianzhong

    2016-10-01

    Palmitoleic acid (C16:1Δ9), contributes greatly to human health, industrial chemicals and biodiesel. The filamentous oleaginous microalgae Tribonema sp. has been identified as a highly efficient producer of palmitoleic acid. Temperature and light regime were adapted to regulate the palmitoleic acid content in this study. Strain T. minus was able to grow well at all the tested temperatures, even at 5 °C. The optimum temperature for palmitoleic acid accumulation (54.25 % of total fatty acid) was 25 °C. Moreover, both light intensity and photoperiod affect the growth, lipid content and fatty acid files of T. minus. The culture exposed to 240 μmol photons m(-2) s(-1) with a photoperiod of 24:0 showed the highest biomass (6.87 g L(-1)) and biggest lipid content (61.27 % of dry weight), whereas the most amount of palmitoleic acid (50.47 % of total fatty acid) was detected at 120 μmol photons m(-2) s(-1). These findings make tangible contributions to culture T. minus for commercial production of lipid or palmitoleic acid. PMID:27250652

  9. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  10. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk

    PubMed Central

    Zhang, Peng-Jun; Huang, Fang; Zhang, Jin-Ming; Wei, Jia-Ning; Lu, Yao-Bin

    2015-01-01

    Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses. PMID:25790868

  11. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants.

    PubMed

    Hawrylak-Nowak, Barbara; Dresler, Sławomir; Matraszek, Renata

    2015-09-01

    There is increasing evidence showing that low molecular weight organic acids (LMWOA) are involved in heavy metal resistance mechanisms in plants. The aim of this study was to investigate the effects of exogenous malic (MA) or acetic (AA) acids on the toxicity and accumulation of cadmium (Cd) in sunflower (Helianthus annuus L.). For this purpose, plants were grown in hydroponics under controlled conditions. Single Cd stress (5 μM Cd for 14 days) induced strong phytotoxic effects, as indicated by a decrease in all growth parameters, concentration of photosynthetic pigments, and root activity, as well as a high level of hydrogen peroxide (H2O2) accumulation. Exogenous MA or AA (250 or 500 μM) applied to the Cd-containing medium enhanced the accumulation of Cd by the roots and limited Cd translocation to the shoots. Moreover, the MA or AA applied more or less reduced Cd phytotoxicity by increasing the growth parameters, photosynthetic pigment concentrations, decreasing accumulation of H2O2, and improving the root activity. Of the studied organic acids, MA was much more efficient in mitigation of Cd toxicity than AA, probably by its antioxidant effects, which were stronger than those of AA. Plant response to Cd involved decreased production of endogenous LMWOA, probably as a consequence of severe Cd toxicity. The addition of MA or AA to the medium increased endogenous accumulation of LMWOA, especially in the roots, which could be beneficial for plant metabolism. These results imply that especially MA may be involved in the processes of Cd uptake, translocation, and tolerance in plants. PMID:26115548

  12. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol.

    PubMed

    Afitlhile, Meshack; Workman, Samantha; Duffield, Kayla; Sprout, Danielle; Berhow, Mark

    2013-12-01

    Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured fatty acid composition and transcript levels of plastid-localized fatty acid desaturases in the wild type and ppi2 mutant. The objective was to evaluate whether the Toc159 receptor was critical in the import of lipid-synthesizing enzymes. The ppi2 mutant accumulated decreased levels of oleic acid (18:1) and α-linolenic acid (18:3). The mutant accumulated drastically reduced amounts of the chloroplast lipid monogalactosyldiacylglycerol (MGDG), which contains more than 80% of 18:3. The expression of genes that encode stearoyl-ACP desaturase and MGD1 synthase were down-regulated in the ppi2 mutant, and this corresponded to decreased levels of 18:1 and MGDG, respectively. We conclude that in the ppi2 mutant the impaired synthesis of MGDG resulted in decreased amounts of 18:3. The mutant however, had a 30-fold increase in fad5 transcript levels; this increase was mirrored by a 16- to 50-fold accumulation of hexadecatrienoic acid (16:3), a fatty acid found exclusively in MGDG. Taken together, these data suggest that the Toc159 receptor is required in the import of stearoyl-ACP desaturase and MGD1 synthase into the chloroplasts. Since the expression of fad5 gene was up-regulated in the ppi2 mutant, we propose that fad5 desaturase is imported into plastids through the atToc132/atToc120 protein import pathway. PMID:24184455

  13. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  14. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways. PMID:26343778

  15. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment. PMID:25510617

  16. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    PubMed

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential. PMID:25456221

  17. The effect of intravenous insulin on accumulation of excitotoxic and other amino acids in the ischemic rat cerebral cortex.

    PubMed

    Guyot, L L; Diaz, F G; O'Regan, M H; Ren, J; Phillis, J W

    2000-07-01

    Insulin has been reported to be neuroprotective during cerebral ischemia/reperfusion. However, it may also increase the sensitivity of cultured cortical neurons to glutamate toxicity. The experiments described here utilized a rat four-vessel occlusion model with cerebral cortical windows to determine the effects of intravenous insulin, alone (I) or combined with glucose (IG) to maintain physiologic blood glucose levels, on the extracellular accumulation of amino acids in superfusates of the cerebral cortex. Aspartate, phosphoethanolamine, taurine and gamma-aminobutyric acid were increased in the I and IG groups and glutamate was increased in the IG group compared to controls during ischemia/reperfusion. Insulin treatment attenuated the rebound in cortical superfusate glucose levels in both groups of animals during reperfusion. The increases in amino acid release during reperfusion may be due to a lack of glycolytically derived energy available for amino acid uptake systems and ionic pumps. PMID:10869816

  18. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    SciTech Connect

    Keenan, S.; Alikhan, M.A. )

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  19. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    PubMed Central

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  20. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes.

    PubMed

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  1. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins. PMID:26812586

  2. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS. PMID:19603670

  3. Influence of Volatile Fatty Acids on Nitrite Accumulation by a Pseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor

    PubMed Central

    van Rijn, J.; Tal, Y.; Barak, Y.

    1996-01-01

    Intermediate nitrite accumulation during denitrification by Pseudomonas stutzeri isolated from a denitrifying fluidized bed reactor was examined in the presence of different volatile fatty acids. Nitrite accumulated when acetate or propionate served as the carbon and electron source but did not accumulate in the presence of butyrate, valerate, or caproate. Nitrite accumulation in the presence of acetate was caused by differences in the rates of nitrate and nitrite reduction and, in addition, by competition between nitrate and nitrite reduction pathways for electrons. Incubation of the cells with butyrate resulted in a slower nitrate reduction rate and a faster nitrite reduction rate than incubation with acetate. Whereas nitrate inhibited the nitrite reduction rate in the presence of acetate, no such inhibition was found in butyrate-supplemented cells. Cytochromes b and c were found to mediate electron transport during nitrate reduction by the cells. Cytochrome c was reduced via a different pathway when nitrite-reducing cells were incubated with acetate than when they were incubated with butyrate. Furthermore, addition of antimycin A to nitrite-reducing cells resulted in partial inhibition of electron transport to cytochrome c in acetate-supplemented cells but not in butyrate-supplemented cells. On the basis of these findings, we propose that differences in intermediate nitrite accumulation are caused by differences in electron flow to nitrate and nitrite reductases during oxidation of either acetate or butyrate. PMID:16535368

  4. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  5. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  6. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis

    PubMed Central

    Nilsson, Anders K.; Fahlberg, Per; Johansson, Oskar N.; Hamberg, Mats; Andersson, Mats X.; Ellerström, Mats

    2016-01-01

    Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids. PMID:27422994

  7. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  8. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (acid lines and identify loci affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  9. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  10. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants.

    PubMed

    Galili, Gad; Amir, Rachel; Fernie, Alisdair R

    2016-04-29

    Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants. PMID:26735064

  11. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  12. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  13. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice

    PubMed Central

    Schweitzer, George G.; Chen, Zhouji; Gan, Connie; McCommis, Kyle S.; Soufi, Nisreen; Chrast, Roman; Mitra, Mayurranjan S.; Yang, Kui; Gross, Richard W.; Finck, Brian N.

    2015-01-01

    Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1−/− mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1−/− mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1−/− mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1−/− mice were not protected from intrahepatic accumulation of diacylglyerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload. PMID:25722343

  14. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    PubMed

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  15. In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary omega (omega)-3 polyunsaturated fatty acids (PUFA) and omega–6 PUFA are thought to have unique benefits with respect to cardiovascular disease. Macrophages (M phi) differentiated from human monocytic cell line THP-1 were used to assess the effect of omega-3 PUFA (eicosapentaenoic acid [EPA]...

  16. Efflux Pump Gene Expression in Erwinia Chrysanthemi is Induced by Exposure to Phenolic Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid (SA) is an important signaling molecule in local and systemic plant resistance. Following infection by microbial pathogens and the initial oxidative burst in plants, SA accumulation functions in the amplification of defense gene expression. Production of pathogenesisrelated proteins a...

  17. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae.

    PubMed

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  18. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae

    PubMed Central

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  19. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  20. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury.

    PubMed

    Begum, Gulnaz; Yan, Hong Q; Li, Liaoliao; Singh, Amneet; Dixon, C Edward; Sun, Dandan

    2014-03-01

    In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits. PMID:24599472

  1. Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; McIntosh, Avery L; Mackie, John T; Kier, Ann B; Schroeder, Friedhelm

    2006-01-01

    Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity. PMID:16123197

  2. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants. PMID:25528221

  3. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  4. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO. PMID:27376352

  5. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.

  6. [Long-term and short-term effects of propionic/acetic acid ratios on metabolism of glycogen-accumulating organisms].

    PubMed

    Yao, Ying; Chen, Yin-guang; Ma, Min; Gu, Guo-wei

    2007-09-01

    Three activated sludges enriched with glycogen accumulating organisms (GAO) were acclimatized respectively with different ratios of propionic to acetic acid (i.e. biomass SBR-A, C and E) . The effect of different ratios of propionic/acetic acid on the metabolism of long-term cultivated GAO was investigated. Cultivated with high propionic/acetic acid ratio, GAO consumed less glycogen and synthesized less poly-beta-hydroxyalkanoates (PHA) in the anaerobic phase, and in the aerobic phase accumulated less glycogen and degraded less PHA, and at the same time the microbial growth was lower. When the carbon mole of acetic acid equaled that of propionic acid in the influent, GAO utilized acetic acid faster than propionic acid. Batch tests were carried out with biomass SBR-A and SBR-E to study the transient response of long-term cultivated GAO to short-term change of propionic/acetic acid ratio. The GAO cultivated with a high propionic/acetic acid ratio was able to utilize acetic acid immediately when the concentration of acetic acid in the feed suddenly increased. But when the biomass cultivated with a low propionic/acetic acid ratio was feed with high ratio propionic/acetic acid wastewater, the propionic acid uptake rate was only 41.1% of the rate of the GAO long-term cultivated with high propionic/acetic acid. The sudden increase of propionic/acetic acid ratio could effectively inhibit the metabolism of GAO. PMID:17990541

  7. Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids).

    PubMed Central

    Van Bilsen, DGJL.; Hoekstra, F. A.

    1993-01-01

    Aging of cattail (Typha latifolia L.) pollen was studied at 24[deg]C under conditions of 40 and 75% relative humidity (RH). The decline of viability coincides with increased leakage at imbibition; both processes develop much faster at the higher humidity condition. During aging phospholipids are deesterified and free fatty acids (FFAs) and lysophospholipids (LPLs) accumulate, again, much more rapidly at 75% RH than at 40% RH. The fatty acid composition of the remaining phospholipids hardly changes during aging, which suggests limited involvement of lipid peroxidation in the degradation process. Tests with phospholipase A2 revealed that the saturated fatty acids occur at the sn-1 position of the glycerol backbone of the phospholipids. The fatty acid composition of the LPLs is similar to that of the phospholipids from which they were formed, indicating that the deesterification occurs at random. This favors involvement of free radicals instead of phospholipases in the deesterification process. Liposome studies were carried out to characterize components in the lipid fraction that might account for the leakage associated with aging. Entrapped carboxyfluorescein leaked much more from liposomes when they were partly made up from total lipids from aged pollen than from nonaged pollen. The components causing the leakage were found in both the polar and the neutral lipid fractions. Further purification and subsequent interchanging of the FFAs and LPLs between extracts from aged and nonaged pollen revealed that in neutral lipid extracts the FFAs are entirely responsible for the leakage, whereas in the phospholipid fraction the LPLs are largely responsible for the leakage. The leakage from the liposomes is not caused by fusion. We suggest that the observed loss of viability and increased leakage during aging are due to the nonenzymic accumulation of FFAs and LPLs in the pollen membranes. PMID:12231723

  8. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV. PMID:24450774

  9. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat

    PubMed Central

    Danyluk, J; Perron, A; Houde, M; Limin, A; Fowler, B; Benhamou, N; Sarhan, F

    1998-01-01

    Expression of the acidic dehydrin gene wcor410 was found to be associated with the development of freezing tolerance in several Gramineae species. This gene is part of a family of three homologous members, wcor410, wcor410b, and wcor410c, that have been mapped to the long arms of the homologous group 6 chromosomes of hexaploid wheat. To gain insight into the function of this gene family, antibodies were raised against the WCOR410 protein and affinity purified to eliminate cross-reactivity with the WCS120 dehydrin-like protein of wheat. Protein gel blot analyses showed that the accumulation of WCOR410 proteins correlates well with the capacity of each cultivar to cold acclimate and develop freezing tolerance. Immunoelectron microscope analyses revealed that these proteins accumulate in the vicinity of the plasma membrane of cells in the sensitive vascular transition area where freeze-induced dehydration is likely to be more severe. Biochemical fractionation experiments indicated that WCOR410 is a peripheral protein and not an integral membrane protein. These results provide direct evidence that a subtype of the dehydrin family accumulates near the plasma membrane. The properties, abundance, and localization of these proteins suggest that they are involved in the cryoprotection of the plasma membrane against freezing or dehydration stress. We propose that WCOR410 plays a role in preventing the destabilization of the plasma membrane that occurs during dehydrative conditions. PMID:9548987

  10. Hepatocytes maintain greater fluorescent bile acid accumulation and greater sensitivity to drug‐induced cell death in three‐dimensional matrix culture

    PubMed Central

    Murray, John W.; Han, Dennis; Wolkoff, Allan W.

    2014-01-01

    Abstract Primary hepatocytes undergo phenotypic dedifferentiation upon isolation from liver that typically includes down regulation of uptake transporters and up regulation of efflux transporters. Culturing cells between layers of collagen in a three‐dimensional (3D) “sandwich” is reported to restore hepatic phenotype. This report examines how 3D culturing affects accumulation of fluorophores, the cytotoxic response to bile acids and drugs, and whether cell to cell differences in fluorescent anion accumulation correlate with differences in cytotoxicity. Hepatocytes were found to accumulate fluorescent bile acid (FBA) at significantly higher levels than the related fluorophores, carboxyfluorescein diacetate, (4.4‐fold), carboxyfluorescein succinimidyl ester (4.8‐fold), and fluorescein (30‐fold). In 2D culture, FBA accumulation decreased to background levels by 32 h, Hoechst nuclear accumulation strongly decreased, and nuclear diameter increased, indicative of an efflux phenotype. In 3D culture, FBA accumulation was maintained through 168 h but at 1/3 the original intensity. Cell to cell differences in accumulated FBA did not correlate with levels of liver zonal markers L‐FBAP (zone 1) or glutamine synthetase (zone 3). Cytotoxic response to hydrophobic bile acids, acetaminophen, and phalloidin was maintained in 3D culture, and cells with higher FBA accumulation showed 12–18% higher toxicity than the total population toward hydrophobic bile acids (P < 0.05). Long‐term imaging showed oscillations in the accumulation of FBA over periods of hours. Overall, the studies suggest that high accumulation of FBA can indicate the sensitivity of cultured hepatocytes to hydrophobic bile acids and other toxins. PMID:25524275

  11. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  12. Accumulation of 3-hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic β-cell bioenergetics?

    PubMed Central

    Doliba, Nicolai M.; Liu, Qing; Li, Changhong; Chen, Jie; Chen, Pan; Liu, Chengyang; Frederick, David W.; Baur, Joseph A.; Bennett, Michael J.; Naji, Ali; Matschinsky, Franz M.

    2015-01-01

    Objectives Hyperglycemia and elevated blood lipids are the presumed precipitating causes of β-cell damage in T2DM as the result of a process termed “glucolipotoxicity”. Here, we tested whether glucolipotoxic pathophysiology is caused by defective bioenergetics using islets in culture. Methods Insulin secretion, respiration, ATP generation, fatty acid (FA) metabolite profiles and gene expression were determined in isolated islets treated under glucolipotoxic culture conditions. Results Over time, chronic exposure of mouse islets to FAs with glucose leads to bioenergetic failure and reduced insulin secretion upon stimulation with glucose or amino acids. Islets exposed to glucolipotoxic conditions displayed biphasic changes of the oxygen consumption rate (OCR): an initial increase in baseline and Vmax of OCR after 3 days, followed by decreased baseline and glucose stimulated OCR after 5 days. These changes were associated with lower islet ATP levels, impaired glucose-induced ATP generation, a trend for reduced mitochondrial DNA content and reduced expression of mitochondrial transcription factor A (Tfam). We discovered the accumulation of carnitine esters of hydroxylated long chain FAs, in particular 3-hydroxytetradecenoyl-carnitine. Conclusions As long chain 3-hydroxylated FA metabolites are known to uncouple heart and brain mitochondria [53], [54], [55], we propose that under glucolipotoxic condition, unsaturated hydroxylated long-chain FAs accumulate, uncouple and ultimately inhibit β-cell respiration. This leads to the slow deterioration of mitochondrial function progressing to bioenergetics β-cell failure. PMID:26909309

  13. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. PMID:25625522

  14. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    PubMed

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  15. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters.

    PubMed

    van den Heuvel, Michael R; Hogan, Natacha S; MacDonald, Gillian Z; Berrue, Fabrice; Young, Rozlyn F; Arens, Collin J; Kerr, Russell G; Fedorak, Phillip M

    2014-01-01

    Naphthenic acids are known to be the most prevalent group of organic compounds in oil sands tailings-associated waters. Yellow perch (Perca flavescens) were exposed for four months to oil sands-influenced waters in two experimental systems located on an oil sands lease 30 km north of Fort McMurray Alberta: the Demonstration Pond, containing oil sands tailings capped with natural surface water, and the South Bison Pond, integrating lean oil sands. Yellow perch were also sampled from three lakes: Mildred Lake that receives water from the Athabasca River, Sucker Lake, at the edge of oil sands extraction activity, and Kimowin Lake, a distant reference site. Naphthenic acids were measured in perch muscle tissue using gas chromatography-mass spectrometry (GC-MS). Bile metabolites were measured by GC-MS techniques and by high performance liquid chromatography (HPLC) with fluorescence detection at phenanthrene wavelengths. A method was developed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to evaluate naphthenic acids in bile. Tissue analysis did not show a pattern of naphthenic acids accumulation in muscle tissue consistent with known concentrations in exposed waters. Bile fluorescence and LC-HRMS methods were capable of statistically distinguishing samples originating from oil sands-influenced waters versus reference lakes. Although the GC-MS and HPLC fluorescence methods were correlated, there were no significant correlations of these methods and the LC-HRMS method. In yellow perch, naphthenic acids from oil sands sources do not concentrate in tissue at a measurable amount and are excreted through a biliary route. LC-HRMS was shown to be a highly sensitive, selective and promising technique as an indicator of exposure of biota to oil sands-derived naphthenic acids. PMID:24182406

  16. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss. PMID:26758875

  17. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. PMID:20545739

  18. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  19. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    PubMed

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  20. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor

    PubMed Central

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  1. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor.

    PubMed

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  2. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43.

    PubMed

    Kimura, Ikuo; Ozawa, Kentaro; Inoue, Daisuke; Imamura, Takeshi; Kimura, Kumi; Maeda, Takeshi; Terasawa, Kazuya; Kashihara, Daiji; Hirano, Kanako; Tani, Taeko; Takahashi, Tomoyuki; Miyauchi, Satoshi; Shioi, Go; Inoue, Hiroshi; Tsujimoto, Gozoh

    2013-01-01

    The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. PMID:23652017

  3. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules.

    PubMed

    Blee, Kristopher A; Anderson, Anne J

    2002-09-01

    Arbuscule formation by the arbuscular mycorrhizal fungus Glomus intraradices (Schenck & Smith) was limited to cortical cells immediately adjacent to the endodermis. Because these cortical cells are the first to intercept photosynthate exiting the vascular cylinder, transcript levels for sucrose metabolizing-enzymes were compared between mycorrhizal and non-mycorrhizal roots. The probes corresponded to genes encoding a soluble acid invertase with potential vacuolar targeting, which we generated from Phaseolus vulgaris roots, a Rhizobium-responsive sucrose synthase of soybean and a cell wall acid invertase of carrot. Transcripts in non-mycorrhizal roots were developmentally regulated and abundant in the root tips for all three probes but in differentiated roots of P. vulgaris they were predominantly located in phloem tissues for sucrose synthase or the endodermis and phloem for soluble acid invertase. In mycorrhizal roots increased accumulations of transcripts for sucrose synthase and vacuolar invertase were both observed in the same cortical cells bearing arbuscules that fluoresce. There was no effect on the expression of the cell wall invertase gene in fluorescent carrot cells containing arbuscules. Thus, it appears that presence of the fungal hyphae in the fluorescent arbusculated cell stimulates discrete alterations in expression of sucrose metabolizing enzymes to increase the sink potential of the cell. PMID:12175013

  4. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  5. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  6. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  7. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  8. Accumulation and Clearance of Perfluorooctanoic Acid (PFOA) in Current and Former Residents of an Exposed Community

    PubMed Central

    Seals, Ryan; Bartell, Scott M.; Steenland, Kyle

    2011-01-01

    Background Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid found in > 99% of Americans. Its health effects are unknown. Prior estimates of serum half-life range from 2.3 to 3.8 years. Objectives We assessed the impact of years of residence and years since residing in the study area on serum PFOA concentration in a sample of current and former residents who were exposed to PFOA emissions from an industrial facility in six water districts in West Virginia and Ohio. Methods Serum samples and questionnaires, including residential history, were collected in 2005–2006. We modeled log serum PFOA (nanograms per milliliter) for current residents as a function of years of residence in a water district, adjusted for a variety of factors. We modeled the half-life in former residents who lived in two water districts with high exposure levels using a two-segment log-linear spline. Results We modeled serum PFOA concentration in 17,516 current residents as a function of years of residence (R2 = 0.68). Years of residence was significantly associated with PFOA concentration (1% increase in serum PFOA/year of residence), with significant heterogeneity by water district. Half-life was estimated in two water districts comprising a total of 1,573 individuals. For the participants included in our analyses, we found that years since residing in a water district was significantly associated with serum PFOA, which yielded half-lives of 2.9 and 8.5 years for water districts with higher and lower exposure levels, respectively. Conclusion Years of residence in an exposed water district is positively associated with observed serum PFOA in 2005–2006. Differences in serum clearance rate between low- and high-exposure water districts suggest a possible concentration-dependent or time-dependent clearance process or inadequate adjustment for background exposures. PMID:20870569

  9. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress.

    PubMed

    An, Meiling; Mou, Shanli; Zhang, Xiaowen; Zheng, Zhou; Ye, Naihao; Wang, Dongsheng; Zhang, Wei; Miao, Jinlai

    2013-12-01

    The Antarctic ice microalgae Chlamydomonas sp. ICE-L which is highly resistant to salt stress holds promise in providing an alternative species for the production of microalgal oil. We studied the effects of the alga in confrontation with NaCl stress on the growth, oil yield and expression of fatty acid desaturase genes. The growth rate of Chlamydomonas sp. ICE-L decreased with the gradual increase in NaCl concentration. Interestingly, we found that the highest lipid content was achieved at 16‰ NaCl, reaching 23% (w/w). Meanwhile, the expression of Δ9ACPCiFAD increased rapidly while Δ12CiFAD, ω3CiFAD2 and Δ6CiFAD showed a delayed elevation in response to altered salt stress. C18:3 was the dominant PUFA, which account for about 75% TFA in Chlamydomonas sp. ICE-L. Under 96‰ and 128‰ NaCl stress, the content of C20:5 almost approached that of C18:3. In contrast, low salinity enhanced the dominance of C18:3 at the expense of C20:3 and C20:5. PMID:24084208

  10. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard

    PubMed Central

    2013-01-01

    Background Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. Methods LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection. Results Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Conclusion The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23634883

  11. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  12. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of Salmonella typhimurium from thermal injury.

    PubMed

    Tomlins, R I; Ordal, Z J

    1971-07-01

    When cells of S. typhimurium were heated at 48 C for 30 min in phosphate buffer (pH 6.0), they became sensitive to Levine Eosin Methylene Blue Agar containing 2% NaCl (EMB-NaCl). The inoculation of injured cells into fresh growth medium supported the return of their normal tolerance to EMB-NaCl within 6 hr. The fractionation of ribosomal ribonucleic acid (rRNA) from unheated and heat-injured cells by polyacrylamide gel electrophoresis demonstrated that after injury the 16S RNA species was totally degraded and the 23S RNA was partially degraded. Sucrose gradient analysis demonstrated that after injury the 30S ribosomal subunit was totally destroyed and the sedimentation coefficient of the 50S particle was decreased to 47S. During the recovery of cells from thermal injury, four species of rRNA accumulated which were demonstrated to have the following sedimentation coefficients: 16, 17, 23, and 24S. Under identical recovery conditions, 22, 26, and 28S precursors of the 30S ribosomal subunit and 31 and 48S precursors of the 50S ribosomal subunit accumulated along with both the 30 and 50S mature particles. The addition of chloramphenicol to the recovery medium inhibited both the maturation of 17S RNA and the production of mature 30S ribosomal subunits, but permitted the accumulation of a single 22S precursor particle. Chloramphenicol did not affect either the maturation of 24S RNA or the mechanism of formation of 50S ribosomal subunits during recovery. Very little old ribosomal protein was associated with the new rRNA synthesized during recovery. New ribosomal proteins were synthesized during recovery and they were found associated with the new rRNA in ribosomal particles. The rate-limiting step in the recovery of S. typhimurium from thermal injury was in the maturation of the newly synthesized rRNA. PMID:4935315

  13. Evolution of subgroup A respiratory syncytial virus: evidence for progressive accumulation of amino acid changes in the attachment protein.

    PubMed Central

    Cane, P A; Pringle, C R

    1995-01-01

    The variability of the attachment (G) proteins of 48 subgroup A isolates of respiratory syncytial virus (RSV) isolated over 38 years has been examined. Nucleotide sequences of two variable regions of the G protein genes were determined following amplification by PCR. The isolates showed temporal rather than geographical clustering, and there was evidence for progressive accumulation of amino acid changes at an average rate of approximately 0.25% per year estimated over the entire protein. The cocirculation of lineages of RSV at present appears to be the result of a process of evolution and survival of particular genotypes and the extinction of others. Analysis of reactivity of the isolates with monoclonal antibodies showed that their antigenic profiles closely paralleled their relatedness by nucleotide sequence, suggesting that antigenic drift due to immune selection may be occurring. PMID:7707517

  14. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  15. Lead accumulation and depression of delta-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil

    USGS Publications Warehouse

    Eastin, W.C., Jr.; Hoffman, D.J.; O'Leary, C.T.

    1983-01-01

    The effects of a 3-week dietary exposure to automotive waste crankcase oil (WCO) were examined in 1-week-old mallard (Anas platyrhynchos) ducklings and pheasant (Phasianus colchicus) chicks. Treatment groups consisted of birds exposed to 0.5, 1.5, or 4.5% WCO, to 4.5% clean crankcase oil (CCO), or untreated controls. In both species, red blood cell ALAD activity was significantly inhibited after one week by 50 to 60% in the 0.5% WCO group and by 85 to 90% in the 4.5% WCO group due to the presence of lead. Growth, hematocrit, and hemoglobin were not significantly affected at the end of three weeks. Plasma aspartate aminotransferase (AST) activity was higher in mallards after three weeks of ingesting either 4.5% WCO or 4.5% CCO, suggesting an oil-related effect due to components other than lead. Treatment had no effect on plasma concentration of uric acid, glucose, triglycerides, total protein, or cholesterol. Lead analysis showed the WCO to contain 4,200 ppm Pb and the CCO to contain 2 ppm. Tissues of mallards were examined for accumulation of lead and the order of accumulation at the end of three weeks was kidney > liver > blood ~ brain.

  16. TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis1[C][W

    PubMed Central

    Chen, Mingxun; Xuan, Lijie; Wang, Zhong; Zhou, Longhua; Li, Zhilan; Du, Xue; Ali, Essa; Zhang, Guoping; Jiang, Lixi

    2014-01-01

    Fatty acids (FAs) and FA-derived complex lipids play important roles in plant growth and vegetative development and are a class of prominent metabolites stored in mature seeds. The factors and regulatory networks that control FA accumulation in plant seeds remain largely unknown. The role of TRANSPARENT TESTA8 (TT8) in the regulation of flavonoid biosynthesis and the formation of seed coat color is extensively studied; however, its function in affecting seed FA biosynthesis is poorly understood. In this article, we show that Arabidopsis (Arabidopsis thaliana) TT8 acts maternally to affect seed FA biosynthesis and inhibits seed FA accumulation by down-regulating a group of genes either critical to embryonic development or important in the FA biosynthesis pathway. Moreover, the tt8 mutation resulted in reduced deposition of protein in seeds during maturation. Posttranslational activation of a TT8-GLUCOCORTICOID RECEPTOR fusion protein and chromatin immunoprecipitation assays demonstrated that TT8 represses the activities of LEAFY COTYLEDON1, LEAFY COTYLEDON2, and FUSCA3, the critical transcriptional factors important for seed development, as well as CYTIDINEDIPHOSPHATE DIACYLGLYCEROL SYNTHASE2, which mediates glycerolipid biosynthesis. These results help us to understand the entire function of TT8 and increase our knowledge of the complicated networks regulating the formation of FA-derived complex lipids in plant seeds. PMID:24722549

  17. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: role of glycine conjugates.

    PubMed

    Chatterjee, Sagnik; Bijsmans, Ingrid T G W; van Mil, Saskia W C; Augustijns, Patrick; Annaert, Pieter

    2014-03-01

    Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5-4h) to 5-100μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH. PMID:24211540

  18. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  19. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis. PMID:23021314

  20. Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy.

    PubMed

    Yang, Haoyue; Xing, Ronge; Hu, Linfeng; Liu, Song; Li, Pengcheng

    2016-07-01

    In this study, a new bacterial strain having a high ability to produce γ-aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as Enterococcus avium. To the best of our knowledge, this is the first study to prove that E. avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E. avium 9184. Scallop solution was used as the culture medium to produce GABA. A two-stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L(-1) . This produced a maximum dry cell mass of 2.10 g·L(-1) . In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L(-1) at 96 h pH 6.0, 37°C and initial l-monosodium glutamate concentration of 10 g·L(-1) . Thus, compared with traditional one-stage fermentation, the two-stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E. avium and also provide a new approach to process and utilize shellfish. PMID:26200650

  1. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  2. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  3. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores[OPEN

    PubMed Central

    2016-01-01

    Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth. PMID:26887919

  4. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat.

    PubMed

    Valluru, Ravi; Davies, William J; Reynolds, Matthew P; Dodd, Ian C

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  5. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  6. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  7. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  8. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  9. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  10. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a

  11. NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana

    PubMed Central

    Lisso, Janina; Schröder, Florian; Fisahn, Joachim; Müssig, Carsten

    2011-01-01

    The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions. PMID:22073231

  12. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    SciTech Connect

    DeFelipe, J.; Jones, E.G.

    1985-12-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of (/sup 3/H)-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of (/sup 3/H)GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes.

  13. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  14. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea.

    PubMed

    Ghnaya, Tahar; Zaier, Hanen; Baioui, Raoudha; Sghaier, Souhir; Lucchini, Giorgio; Sacchi, Gian Attilio; Lutts, Stanley; Abdelly, Chedly

    2013-01-01

    The implication of organic acids in Pb translocation was studied in two species varying in shoot lead accumulation, Sesuvium portulacastrum and Brassica juncea. Citric, fumaric, malic and α-cetoglutaric acids were separated and determined by HPLC technique in shoots, roots and xylem saps of the both species grown in nutrient solutions added with 200 and 400 μM of Pb(II). The lead content of the xylem saps was determined by ICP-MS. Results showed that S. portulacastrum is more tolerant to Pb than B. juncea. Lead concentration in xylem sap of the S. portulacastrum was significantly greater than in that of B. juncea. For both species, a positive correlation was established between lead and citrate concentrations in xylem sap. However minor relationship was observed for fumaric, malic and α-cetoglutaric acids. In the shoots lead treatment also induced a significant increase in citric acid concentration. Both observations suggest the implication of citric acid in lead translocation and shoot accumulation in S. portulacastrum and B. juncea. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could explain its high potential to translocate and accumulate this metal in shoot suggesting their possible use to remediate Pb polluted soils. PMID:23026160

  15. Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids.

    PubMed

    Gao, Lu; Peng, Kejian; Xia, Yan; Wang, Guiping; Niu, Liyuan; Lian, Chunlan; Shen, Zhenguo

    2013-01-01

    Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g(-1) dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn. PMID:23487997

  16. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  17. Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii.

    PubMed

    Li, Jinghan; Niu, Xiangfeng; Pei, Guangsheng; Sui, Xiao; Zhang, Xiaoqing; Chen, Lei; Zhang, Weiwen

    2015-09-01

    In the study, fourteen chemical modulators from five groups (i.e., auxin, gibberellin, cytokinin, signal transducer and amine) were evaluated for their effects on lipid accumulation in Crypthecodinium cohnii. The results showed that naphthoxyacetic acid (BNOA), 2-chlorodracylicacid, salicylic acid (SA), abscisic acid (ABA) and ethanolamine (ETA), increased lipid accumulation in C. cohnii by 10.00-18.78%. In addition, the combined uses of the above chemicals showed that two combinations, 1.0mg/L SA & 152.7 mg/L ETA and 4.0mg/L BNOA & 152.7 mg/L ETA, increased lipid accumulation by 22.45% and 20.54%, respectively. Moreover, a targeted metabolomic approach was employed to decipher the possible mechanisms responsible for the increased lipid accumulation, and the results showed that the enhanced metabolism in glycolysis and TCA cycle as well as the decreased metabolism in PPP pathway could be important for the stimulatory roles of BNOA & ETA and SA & ETA on lipid accumulation in C. cohnii. PMID:25818259

  18. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings

    PubMed Central

    Li, Zhong-Guang

    2015-01-01

    Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings.1 In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment.1 Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings. PMID:26337076

  19. Integrin-targeted zwitterionic polymeric nanoparticles with acid-induced disassembly property for enhanced drug accumulation and release in tumor.

    PubMed

    Huang, Pingsheng; Song, Huijuan; Wang, Weiwei; Sun, Yu; Zhou, Junhui; Wang, Xue; Liu, Jinjian; Liu, Jianfeng; Kong, Deling; Dong, Anjie

    2014-08-11

    Reasonably structural design of nanoparticles (NPs) to combine functions of prolonged systemic circulation, enhanced tumor targeting and specific intracellular drug release is crucial for antitumor drug delivery. Combining advantages of Arg-Gly-Asp (RGD) for active tumor targeting, zwitterionic polycarboxybetaine methacrylate (PCB) for prolonged systemic circulation, poly(2-(diisopropylamino) ethyl methacrylate) (PDPA) for acid-triggered intracellular release, novel RGD-PCB-b-PDPA (RGD-PCD) block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and followed by functionalization with RGD. Doxorubicine (DOX) was encapsulated within the RGD-PCD NPs as model medicine (RGD-PCD/DOX NPs). With ultra pH-sensitivity of PDPA, the drug release was restrained at pH 7.4 for only 24% within 36 h, which was increased to 60% at pH 6.0 within 24 h, and released more rapidly at pH 5.0 for 100% within 5 h, indicating that the RGD-PCD/DOX NPs were able to turn drug release "off" at neutral pH (e.g., systemic circulation) whereas "on" under acidic conditions (e.g., inside endo/lysosomes). Furthermore, the results of fluorescence microscopy and flow cytometry analysis demonstrated improved internalization of RGD-PCD/DOX NPs in HepG2 cells via integrin-mediated endocytosis with rapid DOX release intracellularly. Consequently, the RGD-PCD/DOX NPs showed considerable cytotoxicity against HepG2 and HeLa cells in comparison with free DOX. Importantly, the RGD-PCD/DOX NPs exhibited little protein adsorption property with excellent serum stability, which led to prolonged systemic circulation and enhanced tumor accumulation in tumor-bearing nude mice. Therefore, this multifunctional RGD-PCD NPs, which represented the flexible design approach, showed great potential for the development of novel nanocarriers in tumor-targeted drug delivery. PMID:25054812

  20. Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light

    SciTech Connect

    Talbott, L.D.; Zeiger, E. )

    1993-08-01

    Changes in neutral sugar and organic acid content of guard cells were quantitated by high-performance liquid chromatography during stomatal opening in different light qualities. Sonicated Vicia faba epidermal peels were irradiated with 10 [mu]mol m[sup [minus]2] s[sup [minus]1] of blue light, a fluence rate insufficient for the activation of guard cell photosynthesis, or 125 [mu]mol m[sup [minus]2] s[sup [minus]1] of red light, in the presence of 1mM KCl, 0.1 mM CaCl[sub 2]. The low-fluence-rate blue light stimulated an average net stomatal opening of 4.7 [mu]m in 2 h, whereas the saturating fluence rate of red light stimulated an average net opening of 3.8 [mu]m in 2 h. Under blue light, the malate content of guard cells increased to 173% of the initial level during the first 30 min of opening and declined as opening continued. Sucrose levels continuously rose throughout the blue light-stimulated opening, reaching 215% of the initial level after 2 h. The starch hydrolysis products maltose and maltotriose remained elevated at all times. Under red light, guard cells showed very little increase in organic acid or maltose levels, whereas sucrose levels increased to 208% of the initial level after 2 h. Total measured organic metabolite concentrations were correlated with stomatal apertures in all cases except where substantial malate increases occurred. These results support the hypothesis that light quality modulates alternative mechanisms of osmotic accumulation guard cells, including potassium uptake, photosynthetic sugar production, and starch breakdown. 29 refs., 5 figs., 2 tab.

  1. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    PubMed

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts. PMID:23031586

  2. Accumulated Metabolites of Hydroxybutyric Acid Serve as Diagnostic and Prognostic Biomarkers of Ovarian High-Grade Serous Carcinomas.

    PubMed

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2016-02-15

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but it is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  3. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas

    PubMed Central

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D.; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian

    2016-01-01

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition (EMT) gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  4. Influence of serum proteins on the accumulation of aminolaevulinic acid-induced protoporphyrin IX in cells in culture

    NASA Astrophysics Data System (ADS)

    Weir, M. M.; Vernon, David I.; Brown, Stanley B.

    1995-03-01

    Aminolaevulinic acid (ALA) induced porphyrin biosynthesis and the resulting in vitro phototoxicity have been determined in both SV40 transformed Swiss mouse 3T3 fibroblasts and PtK2 epithelial cells. Both cell lines respond to the addition of exogenous ALA, producing porphyrin linearly with ALA concentrations up to 0.3 mM. Notably the only accumulating porphyrin detected by HPLC was PpIX. Although the levels of PpIX are both dependent on the time and concentration used, the final intracellular porphyrin concentration is dictated by the presence of serum. When ALA is added in medium containing 10% new born calf serum, 90 - 95% of the induced porphyrin appears in the incubation medium. In the absence of serum, the intracellular PpIX levels are maintained and only under these conditions can successful in vitro PDT be performed. Gel permeation chromatography has indicated that the afflux of PpIX is promoted by the low density and high density lipoproteins, with an unknown protein (mw < 66000) contributing significantly to the effect seen. It appears that this protein is present at very low concentrations in both foetal and new born calf serum.

  5. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    PubMed

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats. PMID:24775093

  6. Pseudomonas aeruginosa Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of Phenylacetic Acid

    PubMed Central

    Wang, Jianhe; Dong, Yihu; Zhou, Tielin; Liu, Xiaoling; Deng, Yinyue; Wang, Chao; Lee, Jasmine; Zhang, Lian-Hui

    2013-01-01

    Background P. aeruginosa is known to cause acute cytotoxicity against various human and animal cells and tissues. Methodology/Findings Intriguingly, however, in this study we noticed that while a low cell density inoculum of P. aeruginosa caused severe cytotoxicity against human lung tissue cell line A549, increasing the cell density of bacterial inoculum led to decreased cytotoxicity. Addition of the supernatants from high density bacterial culture to low cell density inoculum protected the human cells from bacterial cytotoxic damage, suggesting that P. aeruginosa may produce and accumulate an inhibitory molecule(s) counteracting its pathogenic infection. The inhibitor was purified from the stationary-phase culture supernatants of P. aeruginosa strain PAO1 using bioassay-guided high performance liquid chromatography (HPLC), and characterized to be phenylacetic acid (PAA) by mass spectrometry and nuclear magnetic resonance spectroscopy. Microarray analysis revealed that treatment of P. aeruginosa with PAA down-regulated the transcriptional expression of Type III secretion system (T3SS) genes and related regulatory genes including rsmA and vfr, which were confirmed by transcriptional and translational analysis. Conclusions Identification of bacterial metabolite PAA as a T3SS-specific inhibitor explains this intriguing inverse cell-density-dependent-cytotoxicity phenomenon as T3SS is known to be a key virulence factor associated with cytotoxicity and acute infection. The findings may provide useful clues for design and development of new strategies to combat this formidable bacterial pathogen. PMID:23555919

  7. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  8. Bioavailability of Fullerene under Environmentally Relevant Conditions: Effects of Humic Acid and Fetal Bovine Serum on Accumulation in Lipid Bilayers and Cellular Uptake.

    PubMed

    Ha, Yeonjeong; Wang, Xianzhe; Liljestrand, Howard M; Maynard, Jennifer A; Katz, Lynn E

    2016-07-01

    Carbon fullerene (C60) has emerged at the forefront of nanoscale research and application due to its unique properties. As the production of this nanoparticle rapidly increases, it can be released into natural aquatic environments and can accumulate in biological systems. This research examined the effects of humic acid and fetal bovine serum (FBS), which are ubiquitous in aquatic environments and representative of blood plasma in living organisms, respectively, on bioavailability of fullerene. Bioavailability was investigated using in vitro methods for lipid membrane accumulation and cellular uptake studies. Humic acid and FBS significantly changed the characteristics of fullerene including its particle size and surface charge. The effects of humic acid on lipid accumulation of fullerene depended on the lipid head charge. FBS also significantly decreased the lipid accumulation when positively charged and zwitterionic head groups were present on the lipids, possibly due to the higher steric repulsion of the protein coated nanoparticles. In addition, both humic acid and FBS protein effectively lowered the amounts of fullerene taken up by Caco-2 cells, which are derived from a human colorectal adenocarcinoma and have similar functions to the small intestinal epithelium. Results of this study suggest that surface modification of fullerene by environmentally relevant matrices can significantly affect the biological transport, as well as the possible toxicity of this nanomaterial. PMID:26943027

  9. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  10. Amylose-like polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture.

    PubMed

    Kirimura, K; Yusa, S; Rugsaseel, S; Nakagawa, H; Osumi, M; Usami, S

    1999-09-01

    When 120 mg glucose/ml was used as a carbon source, in shake culture Aspergillus niger Yang no. 2 maximally produced only 15.4 mg citric acid/ml but accumulated 3.0 mg extracellular polysaccharide/ml. The polysaccharide secreted by mycelia of Yang no. 2 in shake culture was confirmed to be an amylose-like alpha-1,4-glucan by hydrolysis analysis with acid, amylase and glucoamylase. However, in static cultures, such as semisolid and surface cultures free from physical stresses caused by shaking damage, Yang no. 2 produced more citric acid but did not accumulate the polysaccharide. With cultivation time in shake culture, the amount of extracellular polysaccharide and the viscosity of the culture broth increased. The increase of shaking speed caused a remarkable increase in the accumulation of extracellular polysaccharide, e.g. 11.2 mg extracellular polysaccharide/ml was accumulated in the medium at a shaking speed of 200 rpm. The addition of 2.0 mg carboxymethylcellulose (CMC)/ml as a viscous additive to the medium reduced drastically the amount of extracellular polysaccharide accumulated to 1.5 mg/ml, but increased the citric acid produced to 52.0 mg/ml. However, intracellular polysaccharide accumulation kept up a steady rate of 0.26 microgram/mg dried mycelium through the entire period of cultivation. The addition of 3.0 mg polysaccharide/ml purified from the culture broth to the medium at the start of a culture resulted in a decrease of extracellular polysaccharide accumulation but an increase of citric acid accumulation. From electronmicroscopic observation, cell surfaces of hyphae cultivated with CMC were smooth, while hyphae cultivated without CMC had fibrous and granular polysaccharide on the cell surface. These results suggested that Yang no. 2 secreted the polysaccharide on the cell surface as a viscous substance and/or a shock absorber to protect itself from physical stresses caused by shaking damage in shake culture. PMID:10531655

  11. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes

    PubMed Central

    2011-01-01

    Background Studies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7) on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity. Methods KK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0) on a daily basis for 4 weeks. Results Palmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups). Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFα and resistin) in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1) in liver. Conclusions These results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice. PMID:21774832

  12. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. PMID:24308505

  13. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats

    PubMed Central

    Chen, Ya-Ling; Peng, Hsiang-Chi; Wang, Xiang-Dong

    2015-01-01

    Background In this study, we evaluated the influence of an ethanol-containing diet with high saturated fatty acids (SFAs) on alcoholic liver disease (ALD) in rats. Methods Male Wistar rats weighing about 160 g were divided into four groups: an ethanol (E) group fed an ethanol-containing liquid diet with 36% total calories as fat (corn oil, olive oil and safflower oil); a control (C) group pair-fed an isoenergetic diet without ethanol; an ethanol with saturated fat (EHS) group fed an ethanol-containing diet which contained 40% total calories as fat (90% lard); and a control with saturated fat (CHS) group fed an isoenergetic diet without ethanol, which contained 40% total calories as fat. Results After 8 weeks of treatment, the liver weight and plasma aspartate aminotransferase (AST) activities in E and EHS groups were significantly higher than those of C group. Significantly higher scores of inflammation, necrosis, and fatty changes were found in E group, whereas significantly higher scores of necrosis, bile duct hyperplasia, and fibrosis were found in EHS group. Although significantly lower plasma adiponectin concentrations were observed in both E and EHS groups, compared to C group, plasma adiponectin in EHS group was significantly higher than that in E group. There was no change in hepatic peroxisome proliferator activated receptor (PPAR)-α expression between E and C groups, and rats in EHS group showed a significantly elevated level compared to the other groups. A lower hepatic sirtuins (SIRT)-1 level was found in E group, but it did not reach statistical significance. Moreover, the highest plasma TGF-β1 level was found in EHS group. Compared to C group, the hepatic reduced glutathione/oxidized glutathione ratio and thiobarbituric acid (TBA)-reactive substance level were significantly increased in E and EHS groups; however, there was no significant difference between E and EHS groups. Significantly increased hepatic CYP2E1 expression was observed in both E and

  14. Aspartic Acid Racemization and Collagen Degradation Markers Reveal an Accumulation of Damage in Tendon Collagen That Is Enhanced with Aging*

    PubMed Central

    Thorpe, Chavaunne T.; Streeter, Ian; Pinchbeck, Gina L.; Goodship, Allen E.; Clegg, Peter D.; Birch, Helen L.

    2010-01-01

    Little is known about the rate at which protein turnover occurs in living tendon and whether the rate differs between tendons with different physiological roles. In this study, we have quantified the racemization of aspartic acid to calculate the age of the collagenous and non-collagenous components of the high strain injury-prone superficial digital flexor tendon (SDFT) and low strain rarely injured common digital extensor tendon (CDET) in a group of horses with a wide age range. In addition, the turnover of collagen was assessed indirectly by measuring the levels of collagen degradation markers (collagenase-generated neoepitope and cross-linked telopeptide of type I collagen). The fractional increase in d-Asp was similar (p = 0.7) in the SDFT (5.87 × 10−4/year) and CDET (5.82 × 10−4/year) tissue, and d/l-Asp ratios showed a good correlation with pentosidine levels. We calculated a mean (±S.E.) collagen half-life of 197.53 (±18.23) years for the SDFT, which increased significantly with horse age (p = 0.03) and was significantly (p < 0.001) higher than that for the CDET (34.03 (±3.39) years). Using similar calculations, the half-life of non-collagenous protein was 2.18 (±0.41) years in the SDFT and was significantly (p = 0.04) lower than the value of 3.51 (±0.51) years for the CDET. Collagen degradation markers were higher in the CDET and suggested an accumulation of partially degraded collagen within the matrix with aging in the SDFT. We propose that increased susceptibility to injury in older individuals results from an inability to remove partially degraded collagen from the matrix leading to reduced mechanical competence. PMID:20308077

  15. Intermediates of Salicylic Acid Biosynthesis in Tobacco1

    PubMed Central

    Ribnicky, David M.; Shulaev, Vladimir; Raskin, Ilya

    1998-01-01

    Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis. PMID:9765542

  16. The preliminary study of autophagy induction of SA and MeSA by confocal

    NASA Astrophysics Data System (ADS)

    Yun, Lijuan; Chen, Wenli

    2010-02-01

    Autophagy appears to be a highly conserved process from unicellular to multicellular eukaryotes which contributes to the equilibrium of intracelluar environment. While it would be harmful to the cells when it is excessive by inducing programmed cell death (PCD). It is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Previous studies have demonstrated autophagy can be induced during abiotic or biotic stresses. salicylic acid (SA) and methyl salicytic (MeSA) are endogenous signal molecules. We found SA and MeSA can induce autophagy in Arabidopsis thaliana respectively. While autophagy was not induced by SA or MeSA in tobacco suspension cells under the same concentration and period. The differences in stuctures or physiological states may contribute to the results.

  17. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana.

    PubMed

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere. PMID:26494731

  18. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana

    PubMed Central

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere. PMID:26494731

  19. Ascorbic Acid for the Safe Use of a Sunscreen Agent: Accumulation of Nano Zinc Oxide and Titanium Dioxide on the Skin

    PubMed Central

    Fathi-Azarbayjani, Anahita; Tan, Poh Leng; Chan, Yew Ying; Chan, Sui Yung

    2013-01-01

    Objective Physical UV absorbers such as titanium dioxide or zinc oxide have been found to be highly protective against ultraviolet radiation. Sun protection factor depends on the accumulation of the minerals on the skin. UV-absorbing agents must accumulate within the upper skin layers in order to provide a dense light-absorbing layer and guarantee water resistance. The aim of this work was to increase the skin deposition and efficacy of sunscreens without increasing their skin permeation. The application possibility of EDX to determine the quantitative elemental composition of zinc and titanium on the skin surface was studied. Method The changes induced in the skin deposition of physical UV absorbers in conjunction with ascorbic acid were studied. In vitro skin permeation and X-ray elemental analysis were carried out to determine the mineral skin deposition effect of ascorbic acid. Key findings Results indicate that ascorbic acid may significantly increase the skin deposition (p < 0.05) of these minerals on the skin without increasing their skin permeation (p > 0.05). Flow through diffusion cell and X-ray elemental analyses appear to be complementary and show that ascorbic acid is able to increase accumulation of sunscreen on the skin. PMID:24482778

  20. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa. PMID:27043507

  1. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids. PMID:25135243

  2. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum. PMID:26808096

  3. Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis.

    PubMed

    Kong, Qing; Sun, Tongjun; Qu, Na; Ma, Junling; Li, Meng; Cheng, Yu-Ti; Zhang, Qian; Wu, Di; Zhang, Zhibin; Zhang, Yuelin

    2016-06-01

    Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis. PMID:27208222

  4. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    PubMed Central

    2011-01-01

    Previous research indicates that animals fed a high fat (HF) diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP) exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C). To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA) in the presence and absence of unesterified phytosterols (PS), and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group). In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation. PMID:21711516

  5. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

    PubMed Central

    Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.

    2016-01-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  6. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    PubMed

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  7. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    PubMed

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis. PMID:20070566

  8. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells.

    PubMed

    Qin, Shumin; Yin, Jinjin; Huang, Keer

    2016-07-01

    Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα. PMID:27270405

  9. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages.

    PubMed

    Gong, Yangmin; Guo, Xiaojing; Wan, Xia; Liang, Zhuo; Jiang, Mulan

    2013-01-01

    Alteration of lipid biosynthesis is one of important biochemical changes when oleaginous microalgae grow under varied environmental conditions. The effects of culture age and nutrient limitation on triacylglycerol (TAG) accumulation and fatty acid content were investigated in four eicosapentaenoic acid (EPA)-rich marine microalgae. The amounts of TAGs in Chaetoceros sp., Phaeodactylum tricornutum and Nannochloropsis oculata increased sharply from day 4 to day 11, and then the former two remained nearly unchanged while the latter declined gradually during the batch culture. In contrast, no marked increase in TAG accumulation was observed in Pavlova viridis during the culture. Changes in total fatty acid (TFA) content mirrored those observed for TAG accumulation, while the EPA content reached a maximum generally at day 7 or 11 in the range of 11 - 32 mg g(-1) dry cell weight (DCW) and then declined. Nitrogen limitation led to a gradual increase in the amounts of TAGs from N. oculata pronouncedly but almost no change in other three species. The TFA content of the cultures after 5 days of nitrogen limitation was nearly twice that after 1 day in Chaetoceros sp., P. tricornutum and P. viridis, while the lowest increase (220 - 283 mg g(-1) DCW) was observed in N. oculata. TAGs increased gradually under phosphorus limitation in all four species but not sharply compared with that under nitrogen limitation in N. oculata. The TFA content increased gradually under phosphorus limitation and after 5 days of phosphorus limitation it was 1.5 - 2 times that after 1 day. The EPA content was generally not significantly affected by nitrogen or phosphorus limitation. Culture age and nutrient limitation could be useful variables for optimizing TAG accumulation and fatty acid content with potential for biodiesel production. PMID:22581481

  10. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation.

    PubMed

    Jakobsen, Anita N; Aasen, Inga M; Josefsen, Kjell D; Strøm, Arne R

    2008-08-01

    Aurantiochytrium sp. strain T66 was grown in batch bioreactor cultures in a defined glutamate- and glycerol-containing growth medium. Exponentially growing cells had a lipid content of 13% (w/w) of dry weight. A fattening of cells fed excess glycerol occurred in the post-exponential growth phase, after the medium was depleted of N or P. Lipid accumulation was also initiated by O2 limitation (below 1% of saturation). N starvation per se, or in combination with O2 limitation, gave the highest lipid content, i.e., 54% to 63% (w/w) of dry weight. The corresponding maximum culture density was 90 to 100 g/l dry biomass. The content of docosahexaenoic acid (22:6n-3) in N starved, well-oxygenated cells reached 29% (w/w) of total fatty acids but increased to 36% to 52% in O2-limited cells, depending on the time span of the limitation. O2-limited cells did not accumulate the monounsaturated fatty acids that were normally present. We inferred that the biological explanation is that O2 limitation hindered the O2-dependent desaturase(s) and favored the O2-independent polyunsaturated fatty acid synthase. The highest overall volumetric productivity of docosahexaenoic acid observed was 93 mg/l/h. Additionally, we present a protocol for quantitative lipid extraction, involving heat and protease treatment of freeze-dried thraustochytrids. PMID:18560831

  11. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?

    PubMed

    Gebbink, Wouter A; Bignert, Anders; Berger, Urs

    2016-06-21

    The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish. PMID:27192404

  12. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration

    SciTech Connect

    Fujibayashi, Y.; Yonekura, Y.; Takemura, Y.; Wada, K.; Matsumoto, K.; Tamaki, N.; Yamamoto, K.; Konishi, J.; Yokoyama, A. )

    1990-11-01

    To clarify the relationship between the myocardial accumulation of {sup 125}I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and intracellular adenosine-5'-triphosphate (ATP) content, the effect of 2,4-dinitrophenol (DNP, an electron transport uncoupler) on myocardial BMIPP accumulation was studied, in comparison with that of thallium-201-chloride ({sup 201}Tl-Cl). In the mouse myocardium, DNP decreased the intracellular ATP and ADP levels, without affecting either acyl-CoA synthetase activity or the level of CoA-SH. Following treatment with DNP, decreases in myocardial BMIPP accumulation correlated well with those of ATP, while {sup 201}Tl-Cl showed slightly increased accumulation in the myocardium. Thus, in some diseases, BMIPP may be useful in evaluating myocardial ATP levels.

  13. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  14. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades.

    PubMed Central

    Martínez, M A; Dopazo, J; Hernández, J; Mateu, M G; Sobrino, F; Domingo, E; Knowles, N J

    1992-01-01

    The genetic diversification of foot-and-mouth disease virus (FMDV) of serotype C over a 6-decade period was studied by comparing nucleotide sequences of the capsid protein-coding regions of viruses isolated in Europe, South America, and The Philippines. Phylogenetic trees were derived for VP1 and P1 (VP1, VP2, VP3, and VP4) RNAs by using the least-squares method. Confidence intervals of the derived phylogeny (significance levels of nodes and standard deviations of branch lengths) were placed by application of the bootstrap resampling method. These procedures defined six highly significant major evolutionary lineages and a complex network of sublines for the isolates from South America. In contrast, European isolates are considerably more homogeneous, probably because of the vaccine origin of several of them. The phylogenetic analysis suggests that FMDV CGC Ger/26 (one of the earliest FMDV isolates available) belonged to an evolutionary line which is now apparently extinct. Attempts to date the origin (ancestor) of the FMDVs analyzed met with considerable uncertainty, mainly owing to the stasis noted in European viruses. Remarkably, the evolution of the capsid genes of FMDV was essentially associated with linear accumulation of silent mutations but continuous accumulation of amino acid substitutions was not observed. Thus, the antigenic variation attained by FMDV type C over 6 decades was due to fluctuations among limited combinations of amino acid residues without net accumulation of amino acid replacements over time. PMID:1316467

  15. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis.

    PubMed

    Wang, Baogui; Fu, Jing; Li, Lumin; Gong, Deming; Wen, Xuefang; Yu, Ping; Zeng, Zheling

    2016-05-01

    Accumulation of lipids in the liver can lead to cell dysfunction and steatosis, an important factor in pathogenesis causing non-alcoholic fatty liver disease. The mechanisms related to lipid deposition in the liver, however, remain poorly understood. This study was aimed to investigate the effects of medium-chain fatty acid (MCFA) on the lipolysis and expression of lipid-sensing genes in human liver cells with steatosis. A cellular steatosis model, which is suitable to experimentally investigate the impact of fat accumulation in the liver, was established in human normal liver cells (LO2 cells) with a mixture of free fatty acids (oleate/palmitate, 2:1) at 200 μm for 24 h incubation. MCFA was found to down-regulate expression of liver X receptor-α, sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase, CD 36 and lipoprotein lipase in this cellular model, and have positive effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggest that MCFA may reduce lipid accumulation by regulating key lipid-sensing genes in human liver cells with steatosis. PMID:26932533

  16. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    PubMed Central

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  17. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  18. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  19. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    PubMed

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-01-01

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways. PMID:27120592

  20. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  1. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  2. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  3. The Endophytic Bacterium, Sphingomonas SaMR12, Improves the Potential for Zinc Phytoremediation by Its Host, Sedum alfredii

    PubMed Central

    Zhang, Xincheng; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-01-01

    The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin. PMID:25198772

  4. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate

    PubMed Central

    Zhang, Qiong; Xiao, Shunyuan

    2015-01-01

    Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA) is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA), and phosphatidylinositol 4-phosphate (PI4P), and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS) generation and SA accumulation during defense activation. PMID:26074946

  5. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Neela, Kishore Babu; Pasupulati, Anil Kumar; Pallu, Reddanna; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2016-06-01

    Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants. PMID:26988727

  6. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    PubMed

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  7. Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations1[w

    PubMed Central

    Mitsuhashi, Naoto; Ohnishi, Miwa; Sekiguchi, Yoko; Kwon, Yong-Uk; Chang, Young-Tae; Chung, Sung-Kee; Inoue, Yoshinori; Reid, Robert J.; Yagisawa, Hitoshi; Mimura, Tetsuro

    2005-01-01

    We have established a new system for studying phytic acid, myo-inositol hexakisphosphate (InsP6) synthesis in suspension-cultured cells of Catharanthus. InsP6 and other intermediates of myo-inositol (Ins) phosphate metabolism were measured using an ion chromatography method. The detection limit for InsP6 was less than 50 nm, which was sufficient to analyze Ins phosphates in living cells. Synthesis of Ins phosphates was induced by incubation in high inorganic phosphate medium. InsP6 was mainly accumulated in vacuoles and was enhanced when cells were grown in high concentration of inorganic phosphates with the cations K+, Ca2+, or Zn2+. However, there was a strong tendency for InsP6 to accumulate in the vacuole in the presence of Ca2+ and in nonvacuolar compartments when supplied with Zn2+, possibly due to precipitation of InsP6 with Zn2+ in the cytosol. A vesicle transport inhibitor, brefeldin A, stimulated InsP6 accumulation. The amounts of both Ins(3)P1 myo-inositol monophosphate synthase, a key enzyme for InsP6 synthesis, and Ins(1,4,5)P3 kinase were unrelated to the level of accumulation of InsP6. The mechanisms for InsP6 synthesis and localization into vacuoles in plant cells are discussed. PMID:15965017

  8. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress. PMID:25074245

  9. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance.

    PubMed

    Kovács, Viktória; Gondor, Orsolya K; Szalai, Gabriella; Darkó, Eva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-09-15

    Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress. PMID:25113613

  10. The production of succinic acid by yeast Yarrowia lipolytica through a two-step process.

    PubMed

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Shemshura, Olga N; Bekmakhanova, Nadiya E; Lunina, Julia N; Samoilenko, Vladimir A; Morgunov, Igor G

    2014-09-01

    The production of α-ketoglutaric acid by yeast Yarrowia lipolytica VKMY-2412 from ethanol and its subsequent chemical conversion to succinic acid (SA) were investigated. A highly effective and environmentally friendly process of α-ketoglutaric acid production was developed using a special pH-controlling strategy, in which the titration of the culture broth with KOH in the acid-formation phase was minimal, that allowed accumulation of only low amounts of inorganic wastes in the course of SA recovery. The culture broth filtrate containing α-ketoglutaric acid (88.7 g l(-1)) was directly employed for SA production; the amount of SA produced comprised 71.7 g l(-1) with the yield of 70% from ethanol consumed. SA was isolated from the culture broth filtrate in a crystalline form with the purity of 100%. The yield of isolated SA was as high as 72% of its amount in the culture broth filtrate. The antimicrobial and nematocidic effects of SA of microbial origin on pathogenic organisms that cause human and plant diseases were revealed for the first time. PMID:24972816

  11. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    PubMed Central

    Hao, Wenfang; Zhang, Jingyi; Hu, Gege; Yao, Yaqin; Dong, Juane

    2014-01-01

    Salicylic acid (SA) is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2) plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA) production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL) activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD) or scavenged by quencher (DMTU), RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation. PMID:24995364

  12. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study.

    PubMed

    Battah, Sinan; O'Neill, Sophie; Edwards, Christine; Balaratnam, Sherina; Dobbin, Paul; MacRobert, Alexander J

    2006-01-01

    Intracellular porphyrin generation following administration of 5-aminolaevulinic acid has been widely used in photodynamic therapy for a range of malignant and certain non-malignant lesions. However, cellular uptake of 5-aminolaevulinic acid is limited by its hydrophilic nature and improved means of delivery are therefore being sought. Highly branched polymeric drug carriers known as dendrimers are a promising new approach to drug delivery. The aim of this study was to investigate the efficacy of dendrimers conjugated with 5-aminolaevulinic acid for porphyrin production in the transformed PAM 212 keratinocyte cell line and skin explants. Each dendritic derivative incorporated three 5-aminolaevulinic acid residues which were conjugated as esters via methyl or propyl linkers to a central tertiary carbon whose remaining terminal bore an amino, aminobenzyloxycarbonyl or nitro group. In the cell line, all compounds were more efficient at low concentrations compared to equimolar 5-aminolaevulinic acid for porphyrin production, with the most efficient incorporating the longer propyl linker. This compound was also the most lipophilic according to partition coefficient measurements. The intracellular porphyrin fluorescence levels showed good correlation with cellular phototoxicity following light exposure for all the compounds, together with minimal dark toxicity. Our findings indicate that the key factors influencing the efficacy of the dendritic derivatives are lipophilicity and steric hindrance within the dendritic structure which could restrict access to intracellular esterases for liberation of 5-aminolaevulinic acid. These findings should be taken into account in the design of larger dendrimers of 5-aminolaevulinic acid. PMID:16546435

  13. Temperature modulation of thermal tolerance of a CAM-tank bromeliad and the relationship with acid accumulation in different leaf regions.

    PubMed

    Chaves, Cleber Juliano Neves; Leal, Bárbara Simões Santos; Lemos-Filho, José Pires de

    2015-08-01

    Physiological changes that increase plant performance during exposure to high temperatures may play an inverse role during exposure to low temperatures. The objective of this study was to test variations in photosystem II response to heat and cold stress in the leaves of a bromeliad with crassulacean acid metabolism submitted to high or low temperatures. Leaves were maintained under constant temperatures of 10 and 35°C and used to examine possible relationships among physiological responses to high and low temperatures and organic acid accumulation. We also tested if distinct parts of bromeliad leaves show differences in photosynthetic thermotolerance. The samples from leaves maintained at 35°C showed greater heat tolerance values, while those from leaves maintained at 10°C showed lower cold tolerance values. Our results identified a strong negative relationship between the organic acid accumulation and thermal tolerance of bromeliad leaves that largely explained the differences in thermal tolerance among groups. One of these differences occurred among regions of a single leaf, with the base showing critical heat values of up to 8°C higher than the top region, suggesting a possible partitioning of leaf response among its regions. Differences in thermal tolerance were also observed between sampling times, with higher values observed in the morning. PMID:25271368

  14. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  15. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5.

    PubMed

    Serrano, Mario; Wang, Bangjun; Aryal, Bibek; Garcion, Christophe; Abou-Mansour, Eliane; Heck, Silvia; Geisler, Markus; Mauch, Felix; Nawrath, Christiane; Métraux, Jean-Pierre

    2013-08-01

    Salicylic acid (SA) is central for the defense of plants to pathogens and abiotic stress. SA is synthesized in chloroplasts from chorismic acid by an isochorismate synthase (ICS1); SA biosynthesis is negatively regulated by autoinhibitory feedback at ICS1. Genetic studies indicated that the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) of Arabidopsis (Arabidopsis thaliana) is necessary for SA accumulation after biotic and abiotic stress, but so far it is not understood how EDS5 controls the biosynthesis of SA. Here, we show that EDS5 colocalizes with a marker of the chloroplast envelope and that EDS5 functions as a multidrug and toxin extrusion-like transporter in the export of SA from the chloroplast to the cytoplasm in Arabidopsis, where it controls the innate immune response. The location at the chloroplast envelope supports a model of the effect of EDS5 on SA biosynthesis: in the eds5 mutant, stress-induced SA is trapped in the chloroplast and inhibits its own accumulation by autoinhibitory feedback. PMID:23757404

  16. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression.

    PubMed

    Liu, Huan; Tian, Tian; Qin, Shanchun; Li, Wen; Zhang, Xumei; Wang, Xuan; Gao, Yuxia; Huang, Guowei

    2015-12-01

    Recent efforts have revealed the microRNA (miRNA) pathways in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have revealed an association between folic acid deficiency and AD risk. However, the effects of folic acid deficiency on miRNA expression in AD animals have not been observed. We aimed to find if folic acid deficiency may enhance amyloid-β (Aβ) peptide deposition and regulate amyloid-associated miRNAs and their target genes expression in APP/PS1 mice. APP/PS1 mice and N2a cells were treated with folic acid-deficient diet or medium. Cognitive function of mice was assessed using the Morris water maze. miRNA profile was tested by polymerase chain reaction (PCR) array. Different expressional miRNAs were validated by real-time PCR. The deposition of Aβ plaques was evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. APP and BACE1 proteins in mice brain and N2a cells were determined by Western blot. Folic acid deficiency aggravated amyloid pathology in AD mice. The AD+FD group showed shorter time spent in the target zone during the probe test. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that were differentially modulated by folic acid deficiency. In APP/PS1 mice brains and N2a cells with folic acid-deficient treatment, miR-106a-5p, miR-200b-3p and miR-339-5p were down-regulated, and their target genes APP and BACE1 were up-regulated. In conclusion, folic acid deficiency can enhance Aβ accumulation in APP/PS1 mice brain and decrease amyloid-associated miRNAs expression. PMID:26345540

  17. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid

    PubMed Central

    Zhang, Qing-Yu; Zhang, Li-Qing; Song, Li-Li; Duan, Ke; Li, Na; Wang, Yan-Xiu; Gao, Qing-Hua

    2016-01-01

    The disease symptoms recognized as ‘Anthracnose’ are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry–Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens. PMID:27004126

  18. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid.

    PubMed

    Zhang, Qing-Yu; Zhang, Li-Qing; Song, Li-Li; Duan, Ke; Li, Na; Wang, Yan-Xiu; Gao, Qing-Hua

    2016-01-01

    The disease symptoms recognized as 'Anthracnose' are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry-Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens. PMID:27004126

  19. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  20. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  1. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    PubMed

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver. PMID:26491104

  2. A high-throughput method for isolation of salicylic acid metabolic mutants

    PubMed Central

    2010-01-01

    Background Salicylic acid (SA) is a key defense signal molecule against biotrophic pathogens in plants. Quantification of SA levels in plants is critical for dissecting the SA-mediated immune response. Although HPLC and GC/MS are routinely used to determine SA concentrations, they are expensive and time-consuming. We recently described a rapid method for a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification, which enables high-throughput analysis. In this study we describe an improved method for fast sample preparation, and present a high-throughput strategy for isolation of SA metabolic mutants. Results On the basis of the previously described biosensor-based method, we simplified the tissue collection and the SA extraction procedure. Leaf discs were collected and boiled in Luria-Bertani (LB), and then the released SA was measured with the biosensor. The time-consuming steps of weighing samples, grinding tissues and centrifugation were avoided. The direct boiling protocol detected similar differences in SA levels among pathogen-infected wild-type, npr1 (nonexpressor of pathogenesis-related genes), and sid2 (SA induction-deficient) plants as did the previously described biosensor-based method and an HPLC-based approach, demonstrating the efficacy of the protocol presented here. We adapted this protocol to a high-throughput format and identified six npr1 suppressors that accumulated lower levels of SA than npr1 upon pathogen infection. Two of the suppressors were found to be allelic to the previously identified eds5 mutant. The other four are more susceptible than npr1 to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 and their identity merits further investigation. Conclusions The rapid SA extraction method by direct boiling of leaf discs further reduced the cost and time required for the biosensor Acinetobacter sp. ADPWH_lux-based SA estimation, and allowed the screening for npr1 suppressors that accumulated less SA than npr1

  3. Induced Protoporphyrin IX Accumulation by the δ-Aminolevulinic Acid in Bacteria and its Potential Use in the Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Brígido-Aparicio, Cyntiha; Ramón-Gallegos, Eva; Arenas-Huertero, Francisco Jesús; Uribe-Hernández, Raúl

    2008-08-01

    The increasing incident of resistant strains to antibiotic has encouraged the search of new antibacterial treatments, such as the photodynamic therapy. In recent years, photodynamic therapy has demonstrated being a good technology for the treatment of recurrent bacteria infection. PDT presents a hopeful approach to eliminate Gram positive and negative bacteria in immunological compromised patients. This therapy uses a laser in combination with a photosensibilizer in presence of intracellular molecular oxygen. The process generates an effect of phototoxicity in bacterial cells. The aim of this work was to determine the in vitro conditions to accumulate PpIX in effective concentrations in Staphylococcus aureus ATCC25923 and Streptococcus pyogenes, which are responsible of human cutaneous diseases. A cellular suspension of both strains was prepared in TSB to obtain growth in Log-phase, then, the suspensions were adjusted to a final concentration of 2.61×108 cells/mL. The strains were exposed to increasing concentrations from 0 to 160μg/mL of δ-ALA in order to determinate the concentration that induces the biggest accumulation of PpIX. PpIX was measured using the Piomelli method modified for bacteria. The concentration selected was 40 mg/mL of ALA. It was found that in basal concentration of δ-ALA (0 μg/mL) both strains accumulated similar amount of PpIX. In concentrations of 5 mg/mL of δ-ALA it was observed a significant (p<0.001) increment in PpIX concentration. Finally it was realized a kinetic to determinate the optimal accumulation over the time at 0, 5, 10, 15 and 30 min, and 1, 2, 4, 8, 16 and 32 h. It was found that the ideal time for PDT application, in both strains, was 24 h because in smaller times there was not statistically significant difference. The S. aureus ATCC25923 accumulated significantly the biggest concentration of PpIX with regard to S. pyogenes. In conclusion, it was found that the optimal conditions to apply PDT will be to expose both

  4. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    plasma triglyceride concentrations compared to the control (-53% and -65%, respectively) and ferulic acid (-47% and -60%, respectively) diets. Hamsters fed the control and ferulic acid diets had significantly higher plasma vitamin E concentrations compared to the RBO (201% and 161%, respectively) and oryzanol (548% and 462%, respectively) diets; the ferulic acid and oryzanol diets had significantly lower plasma lipid hydroperoxide levels than the control (-57% and -46%, respectively) diet. The oryzanol-fed hamsters excreted significantly more coprostenol and cholesterol in their feces than the ferulic acid (127% and 120%, respectively) diet. The control diet had significantly greater aortic TC and FC accumulation compared to the RBO (115% and 89%, respectively), ferulic acid (48% and 58%, respectively) and the oryzanol (74% and 70%, respectively) diets. However, only the RBO and oryzanol diets had significantly lower aortic cholesterol ester accumulation compared to the control (-73% and -46%, respectively) diet. The present study suggests that at equal dietary levels, oryzanol has a greater effect on lowering plasma non-HDL-C levels and raising plasma HDL-C than ferulic acid, possibly through a greater extent to increase fecal excretion of cholesterol and its metabolites. However, ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E levels compared to RBO and oryzanol. Thus, both oryzanol and ferulic acid may exert similar antiatherogenic properties, but through different mechanisms. PMID:16713234

  5. Early stage phytohormone and fatty acid profiles of plants associated with host and non-host resistance to hessian fly (Diptera: Cecidomyiidae) infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytohormones and fatty acids play important roles in plant resistance to insects and pathogens. In this study, we investigated the similarities and differences in the accumulations of phytohormones and fatty acids in the resistant wheat (Triticum aestivum L.) ‘Molly’ and the non-host rice (Oryza sa...

  6. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.

    PubMed

    Kodaman, P H; Aten, R F; Behrman, H R

    1998-02-01

    The corpus luteum is notable for very high levels of ascorbic acid. In luteal cells, ascorbic acid depletion occurs as a result of consumption during radical scavenging, inhibition of ascorbic acid uptake, and stimulation of its secretion. Oxidation of ascorbic acid generates dehydroascorbic acid (DHAA). Although levels of DHAA in blood are much lower than those of ascorbic acid, DHAA serves as the major transportable form of ascorbate for certain cell types. The aim of the present studies was to investigate whether DHAA transport is a potential mechanism for conserving ascorbic acid in the corpus luteum. DHAA uptake by rat luteal cells precultured for 24 h was linear for up to 30 min. Kinetics studies showed that uptake of DHAA was a concentration-dependent and saturable process with an estimated Michaelis constant (Km) of 830 microM and a maximum velocity (Vmax) of 700 pmol/min per 10(6) cells, a rate 50 times that of ascorbate transport. More than 90% of DHAA was reduced to ascorbic acid within 2 h of cellular uptake. DHAA uptake was energy- and microfilament-dependent, as transport was inhibited by 2,4-dinitrophenol (1 mM) and cytochalasin B (10 microM). Menadione (50 microM), an intracellular generator of reactive oxygen species, also markedly reduced DHAA uptake. In contrast to ascorbic acid transport, DHAA uptake was potently inhibited by glucose and phloretin, an inhibitor of glucose transporters, with IC50s of approximately 5 mM and 10 microM, respectively. DHAA uptake appears to occur via an insulin-insensitive transporter, as insulin (10 nM) had no effect on uptake. However, 24-h preincubation with insulin-like growth factor (IGF)-I dose-dependently (10-100 ng/ml) stimulated DHAA uptake; similar concentrations of IGF-II had no effect. The secretion of radioactivity by cells preloaded with radiolabeled DHAA was significantly increased by prostaglandin F2alpha (1 microM). The ability of luteal cells to transport DHAA in a regulated manner may serve to

  7. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  8. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  9. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana.

    PubMed

    Chen, Yicun; Cui, Qinqin; Xu, Yongjie; Yang, Susu; Gao, Ming; Wang, Yangdong

    2015-08-01

    Genetic engineering to produce valuable lipids containing unsaturated fatty acids (UFAs) holds great promise for food and industrial applications. Efforts to genetically modify plants to produce desirable UFAs with single enzymes, however, have had modest success. The key enzymes fatty acid desaturase (FAD) and diacylglycerol acyltransferase (DGAT) are responsible for UFA biosynthesis (a push process) and assembling fatty acids into lipids (a pull process) in plants, respectively. To examine their roles in UFA accumulation, VfFAD2 and VfDGAT2 genes cloned from Vernicia fordii (tung tree) oilseeds were conjugated and transformed into Rhodotorula glutinis and Arabidopsis thaliana via Agrobacterium tumefaciens. Real-time quantitative PCR revealed variable gene expression levels in the transformants, with a much higher level of VfDGAT2 than VfFAD2. The relationship between VfFAD2 expression and linoleic acid (C18:2) increases in R. glutinis (R (2) = 0.98) and A. thaliana (R (2) = 0.857) transformants was statistically linear. The VfDGAT2 expression level was statistically correlated with increased total fatty acid content in R. glutinis (R (2) = 0.962) and A. thaliana (R (2) = 0.8157) transformants. With a similar expression level between single- and two-gene transformants, VfFAD2-VfDGAT2 co-transformants showed a higher linolenic acid (C18:3) yield in R. glutinis (174.36 % increase) and A. thaliana (14.61 % increase), and eicosatrienoic acid (C20:3) was enriched (17.10 % increase) in A. thaliana. Our data suggest that VfFAD2-VfDGAT2 had a synergistic effect on UFA metabolism in R. glutinis, and to a lesser extent, A. thaliana. These results show promise for further genetic engineering of plant lipids to produce desirable UFAs. PMID:25754996

  10. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    SciTech Connect

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.

  11. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance. PMID:24636908

  12. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  13. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  14. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  15. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  16. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation*

    PubMed Central

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-01-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  17. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  18. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. PMID:24446756

  19. Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis1[OPEN

    PubMed Central

    Kong, Qing; Qu, Na; Ma, Junling; Li, Meng; Cheng, Yu-ti; Zhang, Qian; Wu, Di; Zhang, Zhibin; Zhang, Yuelin

    2016-01-01

    Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis. PMID:27208222

  20. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  1. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  2. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.

    PubMed

    Hintze, Paul E; Nicholson, Wayne L

    2010-06-01

    Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca-DPA). Spores excrete Ca-DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported. PMID:20396869

  3. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin.

    PubMed

    Levrat, M A; Rémésy, C; Demigné, C

    1991-11-01

    The digestive and metabolic effects of inulin (from chicory) were studied in rats adapted to semipurified diets containing 0, 5, 10 or 20% inulin (wt/wt). Moderate levels of inulin (5-10%) did not significantly affect food intake or body weight gain. Dietary inulin resulted in considerably greater cecal fermentation and a significantly greater intraluminal concentration of propionate (peaking at 58.4 mmol/L). A lower concentration of acetate (42.6 mmol/L) was observed in rats fed 20% inulin. Lactic fermentations were observed in rats fed the 10 or 20% inulin diets. The cecal pool of volatile fatty acids tended to reach a plateau in rats fed diets containing more than 10% inulin (up to 600-700 mumol), but volatile fatty acid absorption was a slightly hyperbolic function of the dietary inulin level. Butyrate absorption was proportionally lower than that of propionate. Inulin-containing diets induced an enlargement of the cecal pool of calcium, phosphate and (to a lesser extent) magnesium. There was also an enhanced absorption of these divalent cations. The cecal pool of bile acids was greater in rats fed inulin, and this oligosaccharide displayed a slight hypocholesterolemic effect, even in rats fed the 5% inulin diet. However, plasma triglycerides were depressed only in rats fed the 20% inulin diet. In conclusion, inulin seems very effective in promoting propionic fermentation and in enhancing the calcium content of the large intestine. However, high levels of inulin (greater than 10%) may affect growth in rats and lead to acidic (pH 5.65) cecal fermentation. PMID:1941180

  4. Accumulation and depuration of okadaic acid esters in the European green crab (Carcinus maenas) during a feeding study.

    PubMed

    Jørgensen, Kevin; Cold, Ulrik; Fischer, Knud

    2008-03-01

    Soft shell crab is a seafood delicacy in many parts of the world. In Denmark, it has been investigated whether a commercial production of soft shell European green crabs (Carcinus maenas) would be feasible. In relation to this, a feeding study was performed to examine if occurrence of DSP toxins in the product could be a food safety problem. The crabs were fed with mussels containing DSP toxins (2500 microg total okadaic acid equivalents/kg) for 17 days and then fasted for 19 days. The content of total okadaic acid equivalents in the digestive organs was on average 27 times higher than the corresponding content in the body meat. The highest level of total okadaic acid equivalents measured was 12 microg/kg in body meat and 503 microg/kg in digestive organs. The results show that the content of DSP toxins in a commercial product of soft shell European green crab (without digestive organs) could be regarded as negligible. PMID:17983637

  5. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. PMID:25899143

  6. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  7. Expression of Delta(12) fatty acid desaturase during the induced accumulation of the antifungal diene in avocado fruits.

    PubMed

    Wang, Xuejun; Beno-Moualem, Delila; Kobiler, Ilana; Leikin-Frenkel, Alicia; Lichter, Amnon; Prusky, Dov

    2004-11-01

    SUMMARY The preformed (Z,Z)-1-acetoxy-2-hydroxy-4-oxo-heneicosa-12,15-diene (AFD) is the most active antifungal compound in avocado; it affects the quiescence of Colletotrichum gloeosporioides in unripe fruit. One of the genes encoding Delta(12) fatty acid desaturase (avfad12) was hypothesized to take part in the biosynthesis of AFD, and its expression pattern and enzymatic activity were determined in relation to the content of AFD. Using avfad12-3 as a probe, high levels of expression were detected in young fruits and leaves, where the level of AFD was highest. In contrast, Northern analysis of RNA from mature leaves and fruits showed no transcripts from the avfad12 gene family and lower AFD content. The transcripts from the avfad12 gene family, the enzymatic activity of Delta(12) fatty acid desaturase, and the level of AFD in unripe-resistant fruits increased transiently when the fruits were inoculated with C. gloeosporioides or exposed to ethylene (40 microL/L), low temperature (4 degrees C) or 1 mm H(2)O(2), but ripe fruits were not affected. The effect of H(2)O(2) on the transcripts from the avfad12 gene family is of specific importance, because reactive oxygen species were produced by unripe-resistant host fruit soon after inoculation of C. gloeosporioides. In addition, the fungus itself produced H(2)O(2) in culture medium at pH 5.0, which is similar to the pH of unripe-resistant fruit, but not at pH 7.0. Treatments that enhanced Delta(12) fatty acid desaturase activity increased the concentration of the AFD precursor, linoleic acid, and its incorporation into AFD; these treatments also caused a delay in decay development. The present results demonstrate temporal relationships among the transcripts from the avfad12 gene family, the synthesis of the precursor of AFD (linoleic acid), the AFD content and quiescence of C. gloeosporioides in unripe fruits. PMID:20565631

  8. Nitric Oxide Triggers Phosphatidic Acid Accumulation via Phospholipase D during Auxin-Induced Adventitious Root Formation in Cucumber1[W][OA

    PubMed Central

    Lanteri, María Luciana; Laxalt, Ana María; Lamattina, Lorenzo

    2008-01-01

    Auxin and nitric oxide (NO) play fundamental roles throughout plant life. NO is a second messenger in auxin signal transduction leading to root developmental processes. The mechanisms triggered by auxin and NO that direct adventitious root (AR) formation are beginning to be unraveled. The goal of this work was to study phospholipid (PL) signaling during the auxin- and NO-induced AR formation in cucumber (Cucumis sativus) explants. Explants were labeled with 32P-inorganic phosphate and treated with the auxins indole-3-acetic acid or 1-naphthylacetic acid, or the NO donor S-nitroso N-acetyl penicillamine, in the presence or absence of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. PLs were separated by thin-layer chromatography and quantified. We report that the signaling PLs phosphatidic acid (PA), phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulated within 1 min after auxin or NO treatment. Both auxin and NO evoked similar and transient time course responses, since signaling PLs returned to control levels after 20 or 30 min of treatment. The results indicate that auxin relies on NO in inducing PA, phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulation. Furthermore, we demonstrate that auxin and NO trigger PA formation via phospholipase D (PLD) activity. Explants treated for 10 min with auxin or NO displayed a 200% increase in AR number compared with control explants. In addition, PLD activity was required for the auxin- and NO-induced AR formation. Finally, exogenously applied PA increased up to 300% the number of ARs. Altogether, our data support the idea that PLD-derived PA is an early signaling event during AR formation induced by auxin and NO in cucumber explants. PMID:18375601

  9. Balance between fatty acid degradation and lipid accumulation in cultured smooth muscle cells and IC-21 macrophages exposed to oleic acid.

    PubMed

    Moinat, M; Kossovsky, M; Chevey, J M; Giacobino, J P

    1991-01-01

    1. The effect of changes in fatty acid beta-oxidation activity on triglyceride and cholesteryl ester synthesis were studied in cultured smooth muscle cells (SMC) and in a macrophage cell line IC-21 in the presence of oleic acid (100 microM). 2. Etomoxir, an inhibitor of carnitine palmitoyltransferase I, stimulated the incorporation of [2-3H]glycerol into triglycerides in SMC and in macrophages 6.2- and 8.2-fold, respectively, and the incorporation of [4-14C]cholesterol into cholesteryl esters in macrophages 3.5-fold. 3. L-Carnitine, a cofactor of fatty acid beta-oxidation, decreased the incorporation of [2-3H]glycerol into triglycerides in smooth muscle cells by 69% and the incorporation of [4-14C]cholesterol into cholesteryl esters by 52%. L-Carnitine had no effect on the macrophages. PMID:2060277

  10. Penetration of salicylic acid and salicylate into the multilayer membrane system and into the human horny layer.

    PubMed

    Neubert, R; Partyka, D; Wohlrab, W; Dettlaff, B; Fürst, W; Taube, K M

    1990-01-01

    Using a multilayer membrane system and human horny layer the difference in the penetration of salicylic acid (SA) and its sodium (Na-S) and choline (Ch-S) salts from topical formulations was studied. It was found Na-S and Ch-S were markedly accumulated in the first membrane of the three layer membrane system used. In contrast, a rapid penetration into all three membranes was observed when SA was used. Similar penetration profiles were obtained in human horny layer. Hence, the use of the salts of SA appears to be more suitable for the application as keratolytic. PMID:2083613

  11. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  12. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    PubMed Central

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  13. Hatching, growth, ion accumulation, and skeletal ossification of brook trout (Salvelinus fontinalis) alevins in acidic soft waters

    USGS Publications Warehouse

    Steingraeber, M.T.; Gingerich, W.H.

    1991-01-01

    Brook trout eyed eggs and subsequent alevins were exposed to pH 5.0, 6.5, and 7.0 in soft reconstituted water and to pH 8.2 in hard well water for up to 72 d. Hatching was delayed and hatching success reduced (p K+ > Cl- during yolk absorption and early exogenous feeding. Whole-body monovalent ion concentrations were reduced for short periods during yolk absorption in alevins exposed to pH 6.5 and throughout most of the experiment for those exposed to pH 5.0. Whole-body Mg2+ concentrations were not affected by treatment pH and remained near their median hatch level throughout the exposure. The whole-body concentration of Ca2+ was reduced in fish exposed to pH 5.0, particularly near the end of the experiment. Calcium accumulation in fish was influenced by the interaction of pH and time at pH 5.0 but not at the other pH levels. Alevins exposed to pH 5.0 experienced delayed ossification of skeletal structures associated with feeding, respiration, and locomotion that usually persisted for up to 10 d. The detection of skeletal abnormalities early in life might aid in identifying fish populations at risk in acidified waters.

  14. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  15. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  16. Accumulation of PrLeg, a Perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids.

    PubMed

    Goo, Young-Min; Kim, Tae-Won; Lee, Min-Kyung; Lee, Shin-Woo

    2013-09-01

    Potato is the fourth staple food in the world, following rice, wheat, and maize, whereas tubers contain high quality of starch, relatively high amounts of vitamin C and many other important substances. It also contains relatively good quality of protein (about 3 to 6% of the dried weight) and patatin, and 11S globulin is a major storage protein with high level of lysine. However, tuber protein contains relatively low amounts of sulphur-containing amino acids, which may result in low nutritional value. Recently, we cloned a gene encoding PrLeg polypeptide, a seed storage protein from Perilla, which contains relatively higher levels of sulphur-containing amino acids. We transformed PrLeg cDNA into a potato plant to over-express under the direction of the tuber-specific promoter, patatin. Most of the transgenic lines identified through PCR and RT-PCR analyses were able to accumulate high amount of prLeg transcript in their tuber tissue, while very little or no transcript that were detected in their leaf tissues. The level of methionine content was elevated up to three-fold compared to non-transgenic parental line, without any significant changes in other amino acids, suggesting that further research is required to get a deeper insight into their nutritional value. PMID:24161240

  17. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    PubMed Central

    Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat. PMID:22859677

  18. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    PubMed

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations. PMID:26220483

  19. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster.

    PubMed

    Matthan, Nirupa R; Dillard, Alice; Lecker, Jaime L; Ip, Blanche; Lichtenstein, Alice H

    2009-02-01

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils. PMID:19106316

  20. Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves

    SciTech Connect

    Enyedi, A.J.; Raskin, I. )

    1993-04-01

    Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco masaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g[sup [minus]1] fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-GTase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7--27.0 [mu]g g[sup [minus]1] fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity. 21 refs., 5 figs.

  1. Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI2 that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5-5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor-acceptor pair and luminescence bands from the deep levels.

  2. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. PMID:27342224

  3. Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation.

    PubMed

    Verheijden, Simon; Bottelbergs, Astrid; Krysko, Olga; Krysko, Dmitri V; Beckers, Lien; De Munter, Stephanie; Van Veldhoven, Paul P; Wyns, Sabine; Kulik, Wim; Nave, Klaus-Armin; Ramer, Matt S; Carmeliet, Peter; Kassmann, Celia M; Baes, Myriam

    2013-10-01

    Although peroxisome biogenesis and β-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal β-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome β-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal β-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradation. PMID:23777740

  4. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  5. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  6. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  7. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  8. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies

    NASA Astrophysics Data System (ADS)

    Kosnik, Matthew A.; Hua, Quan; Kaufman, Darrell S.; Zawadzki, Atun

    2015-03-01

    Carbon-14 calibrated amino acid racemization (14C/AAR) data and lead-210 (210Pb) data are used to examine sediment accumulation rates, stratigraphic order, and the extent of time-averaging in sediments collected from the One Tree Reef lagoon (southern Great Barrier Reef, Australia). The top meter of lagoonal sediment preserves a stratigraphically ordered deposit spanning the last 600 yrs. Despite different assumptions, the 210Pb and 14C/AAR chronologies are remarkably similar indicating consistency in sedimentary processes across sediment grain sizes spanning more than three orders of magnitude (0.1-10 mm). Estimates of long-term sediment accumulation rates range from 2.2 to 1.2 mm yr-1. Molluscan time-averaging in the taphonomically active zone is 19 yrs, whereas below the depth of final burial (~15 cm), it is ~110 yrs/5 cm layer. While not a high-resolution paleontological record, this reef lagoon sediment is suitable for paleoecological studies spanning the period of Western colonization and development. This sedimentary deposit, and others like it, should be useful, albeit not ideal, for quantifying anthropogenic impacts on coral reef systems.

  9. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  10. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    PubMed Central

    JOËT, THIERRY; SALMONA, JORDI; LAFFARGUE, ANDRÉINA; DESCROIX, FRÉDÉRIC; DUSSERT, STÉPHANE

    2010-01-01

    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level. PMID:20199615

  11. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    PubMed

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. PMID:26924113

  12. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  13. Muscarinic stimulation of SK-N-BE(2) human neuroblastoma cells elicits phosphoinositide and phosphatidylcholine hydrolysis: relationship to diacylglycerol and phosphatidic acid accumulation.

    PubMed Central

    Pacini, L; Limatola, C; Frati, L; Luly, P; Spinedi, A

    1993-01-01

    Muscarinic stimulation of the human neuroblastoma cell line SK-N-BE(2) elicits hydrolysis of phosphoinositides and phosphatidylcholine (PtdCho) and produces a rapid and sustained elevation of diacylglycerol (DG) mass. PtdIns(4,5)P2 cleavage by phospholipase C (PLC) occurred immediately after carbachol (CCh) addition, and phosphoinositide hydrolysis was then sustained for at least 5 min. Cell stimulation, after extensive PtdCho labelling by long-term [3H]choline administration, resulted in an enhanced release of [3H]phosphocholine (PCho) into the external medium; enhanced [3H]PCho release, which occurred with a 15 s delay with respect to CCh addition, was particularly pronounced within the first minute of stimulation and proved to be caused by PtdCho-specific PLC activation. In fact, when cells were exposed to [3H]choline for a short period, to extensively label the intracellular PCho pool but not PtdCho, stimulation did not result in an enhanced release of [3H]PCho into the medium. PtdCho-specific phospholipase D (PLD) activation was documented by the accumulation of [3H]phosphatidylethanol in cells prelabelled with [3H]myristic acid and stimulated in the presence of 1% (v/v) ethanol; this metabolic pathway, however, proved to be a minor one leading to generation of phosphatidic acid (PtdOH) during cell stimulation, whereas DG production by the sequential action of PtdCho-specific PLD and PtdOH phosphohydrolase was not observed. Studies on cells which were double-labelled with [3H]myristic acid and [14C]arachidonic acid indicated that within 15 s of stimulation DG is uniquely derived from PtdIns(4,5)P2, whereas PtdCho is the major source at later times. Evidence is provided that rapid and selective conversion of phosphoinositide-derived DG into PtdOH may play an important role in determining the temporal accumulation profile of DG from the above-mentioned sources. PMID:8380986

  14. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  15. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  16. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. PMID:22391126

  17. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  18. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet

    PubMed Central

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-01-01

    Abstract Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  19. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves

    PubMed Central

    Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  20. Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses.

    PubMed

    Ghoshal, Angana; Gerwig, Gerrit J; Kamerling, Johannis P; Mandal, Chitra

    2010-05-01

    The presence of different derivatives of sialic acids (SA) on Leishmania donovani instigated us to investigate their status on different strains of Leishmania sp. causing different forms of the disease. Leishmania tropica (K27), Leishmania major (JISH118) and Leishmania mexicana (LV4) responsible for cutaneous, Leishmania braziliensis (L280) and Leishmania amazonensis (LV81) causing diffuse and Leishmania infantum (MON29) responsible for visceral leishmaniasis were included in this study. The strains showed a differential distribution of SA in spite of their close resemblance in pathogenesis. K27, JISH118, L280 and MON29 were categorized as high SA-containing strains having enhanced 9-O-acetyl sialic acid (9-O-AcSA(high)) whereas LV4 and LV81 evidenced considerably reduced SA. Interestingly, 9-O-AcSA(high) promastigotes showed significant viability as compared to their de-O-acetylated forms after exposure to NaNO(2) suggesting the involvement of 9-O-AcSA in conferring nitric oxide (NO) resistance. Enhanced intracellular survivability was demonstrated following infection of human macrophages with 9-O-AcSA(high) promastigotes in contrast to their de-O-acetylated forms indicating their contribution in bestowing a survival benefit. Additionally, reduced accumulation of NO, interleukin-12 and interferon-gamma in the supernatant of macrophages infected with 9-O-AcSA(high) promastigotes indicated suppression of leishmanicidal host responses. However, LV4 and LV81 with least 9-O-AcSA, before and after de-O-acetylation, showed unaltered NO resistance, multiplicity and host responses signifying the probable involvement of other determinants which may be a function of their inherent parasitic attribute. Hence, enhanced levels of 9-O-AcSA serve as one of the potential determinants responsible for increased NO resistance and survivability of parasites by inhibition of host responses. PMID:20085901

  1. Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves.

    PubMed

    Dong, Chun-Juan; Cao, Ning; Li, Liang; Shang, Qing-Mao

    2016-01-01

    Salicylic acid (SA) is an important phytohormone that plays vital regulatory roles in plant growth, development, and stress responses. However, studies on the molecular mechanism of SA, especially during the early SA responses, are lagging behind. In this study, we initiated a comprehensive isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to explore the early and late SA-responsive proteins in leaves of cucumber (Cucumis sativus L.) seedlings. Upon SA application through the roots, endogenous SA accumulated in cucumber leaves. By assaying the changes in marker gene expression and photosynthetic rate, we collected samples at 12 h and 72 h post treatment (hpt) to profile the early and late SA responsiveness, respectively. The iTRAQ assay followed by tandem mass spectrometry revealed 135 differentially expressed proteins (DEPs) at 12 hpt and 301 DEPs at 72 hpt. The functional categories for these SA-responsive proteins included in a variety of biochemical processes, including photosynthesis, redox homeostasis, carbohydrate and energy metabolism, lipid metabolism, transport, protein folding and modification, proteolysis, cell wall organization, and the secondary phenylpropanoid pathway. Conclusively, based on the abundant changes of these DEPs, together with their putative functions, we proposed a possible SA-responsive protein network. It appears that SA could elicit reactive oxygen species (ROS) production via enhancing the photosynthetic electron transferring, and then confer some growth-promoting and stress-priming effects on cells during the late phase, including enhanced photosynthesis and ROS scavenging, altered carbon metabolic flux for the biosynthesis of amino acids and nucleotides, and cell wall reorganization. Overall, the present iTRAQ assay provides higher proteome coverage and deepened our understanding of the molecular basis of SA-responses. PMID:27551830

  2. Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway.

    PubMed

    Muñoz-Sanchez, J Armando; Chan-May, Abril; Cab-Guillén, Yahaira; Hernández-Sotomayor, S M Teresa

    2013-11-01

    The protective effect of salicylic acid (SA) on aluminum (Al) toxicity was studied in suspension cells of Coffea arabica L. The results showed that SA does not produce any effect on cell growth and that the growth inhibition produced by aluminum is restored during simultaneous treatment of the cells with Al and SA. In addition, the cells exposed to both compounds, Al and SA, showed evident morphological signals of recovery from the toxic state produced in the presence of Al. The cells treated with SA showed a lower accumulation of Al, which was linked to restoration from Al toxicity because the concentration of Al(3+) outside the cells, measured as the Al(3+)-morin complex, was not modified by the presence of SA. Additionally, the inhibition of phospholipase C by Al treatment was restored during the exposure of the cells to SA and Al. The involvement of protein phosphorylation in the protective effect of SA on Al-toxicity was suggested because staurosporine, a protein kinase inhibitor, reverted the stimulatory effect of the combination of Al and SA on protein kinase activity. These results suggest that SA attenuates aluminum toxicity by affecting a signaling pathway linked to protein phosphorylation. PMID:23953991

  3. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella.

    PubMed

    Weng, Li-Chi; Pasaribu, Buntora; Lin, I-Ping; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  4. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-07-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations.

  5. Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China.

    PubMed

    Gao, Yan; Fu, Jianjie; Cao, Huiming; Wang, Yawei; Zhang, Aiqian; Liang, Yong; Wang, Thanh; Zhao, Chunyan; Jiang, Guibin

    2015-06-01

    In this study, serum and urine samples were collected from 36 occupational workers in a fluorochemical manufacturing plant in China from 2008 to 2012 to evaluate the body burden and possible elimination of linear and branched perfluoroalkyl acids (PFAAs). Indoor dust, total suspended particles (TSP), diet, and drinking water samples were also collected to trace the occupational exposure pathway to PFAA isomers. The geometric mean concentrations of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexanesulfonate (PFHxS) isomers in the serum were 1386, 371, and 863 ng mL(-1), respectively. The linear isomer of PFOS, PFOA, and PFHxS was the most predominant PFAA in the serum, with mean proportions of 63.3, 91.1, and 92.7% respectively, which were higher than the proportions in urine. The most important exposure routes to PFAA isomers in the occupational workers were considered to be the intake of indoor dust and TSP. A renal clearance estimation indicated that branched PFAA isomers had a higher renal clearance rate than did the corresponding linear isomers. Molecular docking modeling implied that linear PFOS (n-PFOS) had a stronger interaction with human serum albumin (HSA) than branched isomers did, which could decrease the proportion of n-PFOS in the blood of humans via the transport of HSA. PMID:25927957

  6. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    PubMed Central

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  7. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.

    PubMed

    Wyka, Tomasz P; Bohn, Andreas; Duarte, Heitor M; Kaiser, Friedemann; Lüttge, Ulrich E

    2004-08-01

    In continuous light, leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier exhibit a circadian rhythm of CO2 uptake, stomatal conductance and leaf-internal CO2 pressure. According to a current quantitative model of CAM, the pacemaking mechanism involves periodic turgor-related tension and relaxation of the tonoplast, which determines the direction of the net flux of malate between the vacuole and the cytoplasm. Cytoplasmic malate, in turn, through its inhibitory effect on phospho enolpyruvate carboxylase, controls the rate of CO2 uptake. According to this mechanism, when the accumulation of malate is disrupted by removing CO2 from the ambient air, the induction of a phase delay with respect to an unperturbed control plant is expected. First, using the mathematical model, such phase delays were observed in numerical simulations of three scenarios of CO2 removal: (i) starting at a trough of CO2 uptake, lasting for about half a cycle (ca. 12 h in vivo); (ii) with the identical starting phase, but lasting for 1.5 cycles (ca. 36 h); and (iii) starting while CO2 increases, lasting for half a cycle again. Applying the same protocols to leaves of K. daigremontiana in vivo did not induce the predicted phase shifts, i.e. after the end of the CO2 removal the perturbed rhythm adopted nearly the same phase as that of the control plant. Second, when leaves were exposed to a nitrogen atmosphere for three nights prior to onset of continuous light to prevent malate accumulation, a small, 4-h phase advance was observed instead of a delay, again contrary to the model-based expectations. Hence, vacuolar malic acid accumulation is ruled out as the central pacemaking process. This observation is in line with our earlier suggestion [T.P. Wyka, U. Lüttge (2003) J Exp Bot 54:1471-1479] that in extended continuous light, CO2 uptake switches gradually from a CAM-like to a C3-like mechanism, with oscillations of the two CO2 uptake systems being

  8. Associations of Erythrocyte Fatty Acids in the De Novo Lipogenesis Pathway with Proxies of Liver Fat Accumulation in the EPIC-Potsdam Study

    PubMed Central

    Jacobs, Simone; Jäger, Susanne; Jansen, Eugene; Peter, Andreas; Stefan, Norbert; Boeing, Heiner; Schulze, Matthias B.; Kröger, Janine

    2015-01-01

    Background Biomarker fatty acids (FAs) reflecting de novo lipogenesis (DNL) are strongly linked to the risk of cardiometabolic diseases. Liver fat accumulation could mediate this relation. There is very limited data from human population-based studies that have examined this relation. Objective The aim of this study was to investigate the relation between specific FAs in the DNL pathway and liver fat accumulation in a large population-based study. Methods We conducted a cross-sectional analysis of a subsample (n = 1,562) of the EPIC-Potsdam study, which involves 27,548 middle-aged men and women. Baseline blood samples have been analyzed for proportions of 32 FAs in erythrocyte membranes (determined by gas chromatography) and biomarker concentrations in plasma. As indicators for DNL, the DNL-index (16:0 / 18:2n-6) and proportions of individual blood FAs in the DNL pathway were used. Plasma parameters associated with liver fat content (fetuin-A, ALT, and GGT) and the algorithm-based fatty liver index (FLI) were used to reflect liver fat accumulation. Results The DNL-index tended to be positively associated with the FLI and was positively associated with GGT activity in men (p for trend: 0.12 and 0.003). Proportions of 14:0 and 16:0 in erythrocytes were positively associated with fetuin-A, whereas 16:1n-7 were positively associated with the FLI and GGT activity (all p for trends in both sexes at least 0.004). Furthermore, the proportion of 16:1n-7 was positively related to fetuin-A in women and ALT activity in men (all p for trend at least 0.03). The proportion of 16:1n-9 showed positive associations with the FLI and GGT activity in men and fetuin-A in both sexes, whereas 18:1n-7 was positively associated with GGT activity in men (all p for trend at least 0.048). Conclusion Findings from this large epidemiological study suggest that liver fat accumulation could link erythrocyte FAs in the DNL pathway to the risk of cardiometabolic diseases. PMID:25984792

  9. Effects of light quality and nutrient availability on accumulation of mycosporine-like amino acids in Gymnodinium catenatum (Dinophycea).

    PubMed

    Vale, Paulo

    2015-02-01

    A Portuguese Gymnodinium catenatum Graham strain was studied for its ultraviolet (UV) photoprotective pigments. This strain presented high absorption in the UVA region, in particular in the near UVA region around 370nm, followed by the far-UVA region around 340nm. Absorption in the near-UVA increased when grown under fluorescent when compared to halogen light. This was even more relevant when grown under nutrient-limiting conditions, which even surpassed absorption in the blue region, closely resembling absorption in natural plankton assemblages reported in the literature. HPLC analysis for mycosporine-like amino acids (MAAs), revealed several UV photoprotective pigments common in other marine microalgae from the northwest Atlantic. Amongst the compounds absorbing in the far-UVA region, three were identified by spectra and retention time characteristics: shinorine, porphyra-334, and mycosporine-glycine. In the near-UVA region, the unknown M-370 was usually the most abundant, followed by palythene. The proportional and absolute cellular concentrations of MAAs absorbing in the near-UVA region increased with fluorescent light when compared to halogen light. Additional experiments with light filtration suggest the set of MAAs absorbing in the near-UVA region seem to be regulated separately from the other set of MAAs absorbing in the far-UVA region, and those from the near-UVA region might be stimulated not only by UV but by blue light also. Nutrient availability affected profile: a shift towards MAAs with low nitrogen:carbon ratio (e.g.: mycosporine-glycine) was observed. As G. catenatum requires extensive UV-photoprotection over the entire UVA range, nitrogen availability might strongly restrict blooming, as MAAs are nitrogen-based. This UV sensitivity might help explaining its pronounced autumnal seasonality, tied to a reduced solar exposure. PMID:25589340

  10. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.

    PubMed

    Arisz, Steven A; van Wijk, Ringo; Roels, Wendy; Zhu, Jian-Kang; Haring, Michel A; Munnik, Teun

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented. PMID:23346092

  11. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH

  12. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  13. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase

    PubMed Central

    Arisz, Steven A.; van Wijk, Ringo; Roels, Wendy; Zhu, Jian-Kang; Haring, Michel A.; Munnik, Teun

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using 32P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid 32P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential 32P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid 32P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of 32P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in 32P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in 32P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented. PMID:23346092

  14. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance. PMID:25727780

  15. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)₂ adjustment.

    PubMed

    Li, XiaoLing; Peng, YongZhen; Ren, NanQi; Li, BaiKun; Chai, TongZhi; Zhang, Liang

    2014-09-15

    The effects of temperatures (15-55 °C) on the alkaline fermentation of sewage sludge were investigated in semi-continuous stirred tank reactors (semi - CSTR) at the pH of 10. The highest soluble chemical oxygen demand (SCOD) yield was obtained at 55 °C (764.2 mg/(gVS L d)), while the highest short chain fatty acids (SCFAs) yield was observed at 35 °C (319.8 mg/(gVS L d)), 1.5 times higher than SCFAs yield at 55 °C (209.5 mg/(gVS L d)). The proportion of the intercellular organic substances being transferred to the slime layer of sludge flocs increased from 29% at 15 °C to 54% at 55 °C. But only a small part of soluble organic substances in the slime layers was converted to SCFAs at 55 °C. The dewaterability of sludge was better at 35 °C than that at 55 °C. Microbiological community analysis showed the acid-producing microorganisms at the medium temperatures (25 °C and 35 °C) were more diverse and abundant than those at the low (15 °C) and high temperatures (55 °C). Clodtridium and Bacillus in Firmicutes and Gamma proteobacterium in Proteobacteria were the dominant functional bacterial species for high SCFA accumulation. PMID:24880243

  16. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects. PMID:27155918

  17. Silencing of WIPK and SIPK mitogen-activated protein kinases reduces tobacco mosaic virus accumulation but permits systemic viral movement in tobacco possessing the N resistance gene.

    PubMed

    Kobayashi, Michie; Seo, Shigemi; Hirai, Katsuyuki; Yamamoto-Katou, Ayako; Katou, Shinpei; Seto, Hideharu; Meshi, Tetsuo; Mitsuhara, Ichiro; Ohashi, Yuko

    2010-08-01

    Infection of tobacco cultivars possessing the N resistance gene with Tobacco mosaic virus (TMV) results in confinement of the virus by necrotic lesions at the infection site. Although the mitogen-activated protein kinases WIPK and SIPK have been implicated in TMV resistance, evidence linking them directly to disease resistance is, as yet, insufficient. Viral multiplication was reduced slightly in WIPK- or SIPK-silenced plants but substantially in WIPK/SIPK-silenced plants, and was correlated with an increase in salicylic acid (SA) and a decrease in jasmonic acid (JA). Silencing of WIPK and SIPK in a tobacco cultivar lacking the N gene did not inhibit viral accumulation. The reduction in viral accumulation was attenuated by expressing a gene for an SA-degrading enzyme or by exogenously applying JA. Inoculation of lower leaves resulted in the systemic spread of TMV and formation of necrotic lesions in uninoculated upper leaves. These results suggested that WIPK and SIPK function to negatively regulate local resistance to TMV accumulation, partially through modulating accumulation of SA and JA in an N-dependent manner, but positively regulate systemic resistance. PMID:20615114

  18. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).

    PubMed

    Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E

    2008-05-15

    This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: woodaccumulation in the studied acid soils. PMID:18295823

  19. Agaricus bisporus compost improves the potential of Salix purpurea × viminalis hybrid for copper accumulation.

    PubMed

    Magdziak, Z; Mleczek, M; Gąsecka, M; Drzewiecka, K; Kaczmarek, Z; Siwulski, M; Goliński, P

    2016-08-01

    The aim of the study was to determine the ability of spent mushroom compost (SMC) from the production of Agaricus bisporus (A. bisporus) to stimulate the growth and efficiency of copper (Cu) accumulation by Salix purpurea × viminalis hybrid. Roots, shoots and leaves were analysed in terms of total Cu content and selected biometric parameters. Due to the absence of information regarding the physiological response of the studied plant, low molecular weight organic acids (LMWOAs), phenolic compounds and salicylic acid (SA) contents were investigated. The obtained results clearly demonstrate the effectiveness (usefulness) of SMC in promoting the growth and stimulation of Cu accumulation by the studied Salix taxon. The highest Cu content in roots and shoots was found at the 10% SMC addition (507±22 and 380±11 mg kg(-1) DW, respectively), while there was a reduction of the content in leaves and young shoots (109±8 and 124±7 mg kg(-1) DW, respectively). In terms of physiological response, lowered secretion of LMWOAs, biosynthesis of phenolic compounds and SA, as well as accumulation of soluble sugars in Salix leaves was observed with SMC addition. Simultaneously, an elevation of the total phenolic content in leaves of plants cultivated with SMC was observed, considered as antioxidant biomolecules. PMID:26709965

  20. Functional interplay between protein kinase CK2 and salicylic acid sustains PIN transcriptional expression and root development.

    PubMed

    Armengot, Laia; Marquès-Bueno, María Mar; Soria-Garcia, Angel; Müller, Maren; Munné-Bosch, Sergi; Martínez, María Carmen

    2014-05-01

    We have previously reported that CK2-defective Arabidopsis thaliana plants (CK2mut plants) were impaired severely in root development and auxin polar transport, and exhibited transcriptional misregulation of auxin-efflux transporters (Plant J., 67, 2011a, 169). In this work we show that CK2mut roots accumulate high levels of salicylic acid (SA) and that the gene that encodes isochorismate synthase (SID2) is overexpressed, strongly suggesting that CK2 activity is required for SA biosynthesis via the shikimate pathway. Moreover, SA activates transcription of CK2-encoding genes and, thus, SA and CK2 appear to be part of an autoregulatory feed-back loop to fine-tune each other's activities. We also show that exogenous SA and constitutive high SA levels in cpr mutants reproduce the CK2mut root phenotypes (decrease of root length and of number of lateral roots), whereas inhibition of CK2 activity in SA-defective and SA-signalling mutants lead to less severe phenotypes, suggesting that the CK2mut root phenotypes are SA-mediated effects. Moreover, exogenous SA mediates transcriptional repression of most of PIN-FORMED (PIN) genes, which is the opposite effect observed in CK2mut roots. These results prompted us to propose a model in which CK2 acts as a link between SA homeostasis and transcriptional regulation of auxin-efflux transporters. We also show that CK2 overexpression in Arabidopsis has neither impact on SA biosynthesis nor on auxin transport, but it improves the Arabidopsis root system. Thus, unlike the outcome in mammals, an excess of CK2 in plant cells does not produce neoplasia, but it might be advantageous for plant fitness. PMID:24547808

  1. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.

    PubMed

    Arseneault, Tanya; Goyer, Claudia; Filion, Martin

    2016-09-01

    Pseudomonads are often used as biocontrol agents because they display a broad range of mechanisms to control diseases. Common scab of potato, caused by Streptomyces scabies, was previously reported to be controlled by Pseudomonas fluorescens LBUM223 through phenazine-1-carboxylic acid (PCA) production. In this study, we aimed at characterizing the population dynamics of LBUM223 and the expression of phzC, a key gene involved in the biosynthesis of PCA, in the rhizosphere and geocaulosphere of potato plants grown under controlled and field conditions. Results obtained from controlled experiments showed that soil populations of LBUM223 significantly declined over a 15-week period. However, at week 15, the presence of S. scabies in the geocaulosphere was associated with significantly higher populations of LBUM223 than when the pathogen was absent. It also led to the detection of significantly higher phzC gene transcript numbers. Under field conditions, soil populations of LBUM223 followed a similar decline in time when a single inoculation was applied in spring but remained stable when reinoculated biweekly, which also led to greater phzC gene transcripts accumulation. Taken together, our findings suggest that LBUM223 must colonize the potato geocaulosphere at high levels (10(7) bacteria/g of soil) in order to achieve biocontrol of common scab through increased PCA production. PMID:27088392

  2. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD. PMID:24370824

  3. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes

    NASA Astrophysics Data System (ADS)

    Millon, Stacy R.; Ostrander, Julie H.; Yazdanfar, Siavash; Brown, J. Quincy; Bender, Janelle E.; Rajeha, Anita; Ramanujam, Nirmala

    2010-01-01

    We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer cell lines of varying estrogen receptor expression were quantitatively imaged with confocal microscopy. Percentage change in fluorescence intensity integrated over 610-700 nm (attributed to PpIX) of posttreated compared to pretreated cells showed statistically significant differences between four breast cancer and two normal mammary epithelial cell lines. However, a direct comparison of post-treatment PpIX fluorescence intensities showed no differences between breast cancer and normal mammary epithelial cell lines due to confounding effects by endogenous fluorescence from flavin adenine dinucleotide (FAD). Clinically, it is impractical to obtain pre- and post-treatment images. Thus, spectral imaging was demonstrated as a means to remove the effects of endogenous FAD fluorescence allowing for discrimination between post-treatment PpIX fluorescence of four breast cancer and two normal mammary epithelial cell lines. Fluorescence spectral imaging of ALA-treated breast cancer cells showed preferential PpIX accumulation regardless of malignant phenotype and suggests a useful contrast mechanism for discrimination of residual cancer at the surface of breast tumor margins.

  4. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    PubMed

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  5. DELAYED URIC ACID ACCUMULATION IN PLASMA PROVIDES ADDITIONAL ANTI-OXIDANT PROTECTION AGAINST IRON-TRIGGERED OXIDATIVE STRESS AFTER A WINGATE TEST

    PubMed Central

    Souza-Junior, TP; Lorenço-Lima, L; Ganini, D; Vardaris, CV; Polotow, TG

    2014-01-01

    Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis. PMID:25435669

  6. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    SciTech Connect

    Rodriguez-Concepcion, M.; Gruissem, W.

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  7. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  8. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress.

    PubMed

    Wang, Xu; Shi, Yi; Chen, Xin; Huang, Bin

    2015-11-01

    A 65-day field experiment was conducted to select cadmium (Cd)-safe genotypes (CSGs) among 21 Chinese cabbage genotypes in a low Cd-contaminated soil (0.66 mg kg(-1)). Seven CSGs were identified based on their Cd tolerance, shoot Cd concentrations, Cd enrichment factors (EFs), and translocation factors (TFs). Then, Beijingxin3, a typical CSG, together with Qiuxiang, a typical non-CSG for comparison, was selected for a subsequent 80-day field micro-plot experiment under four levels of Cd stress to evaluate the reliability of CSG screening and the role of organic acids in Cd accumulation and tolerance. Beijingxin3 was confirmed to be safe to grow in soil with Cd level up to 3.39 mg kg(-1), with Cd accumulation in its shoots well below the permitted level, and Qiuxiang was still poor in tolerating low Cd stress (1.31 mg kg(-1)). With increasing the Cd stress, Cd accumulation and citrate concentrations increased in shoots and roots of both genotypes, and oxalate concentrations increased significantly in Beijingxin3 roots. Both oxalate and citrate concentrations were significantly positively related to Cd accumulation for Beijingxin3 roots. High accumulation in oxalate and citrate induced by Cd stress in Beijingxin3 roots could benefit its internal tolerance to long-term Cd stress with more Cd accumulation in its roots and less Cd accumulation in its shoots. PMID:26081776

  9. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  10. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans.

    PubMed

    Prithiviraj, B; Bais, H P; Weir, T; Suresh, B; Najarro, E H; Dayakar, B V; Schweizer, H P; Vivanco, J M

    2005-09-01

    Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping

  11. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  12. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. PMID:25797155

  13. Effect of Inhibition of Abscisic Acid Accumulation on the Spatial Distribution of Elongation in the Primary Root and Mesocotyl of Maize at Low Water Potentials 1

    PubMed Central

    Saab, Imad N.; Sharp, Robert E.; Pritchard, Jeremy

    1992-01-01

    Previous work showed that accumulation of endogenous abscisic acid (ABA) acts both to maintain primary root growth and inhibit shoot growth in maize seedlings at low water potentials (ψw) (IN Saab, RE Sharp, J Pritchard, GS Voetberg [1990] Plant Physiol 93: 1329-1336). In this study, we have characterized the growth responses of the primary root and mesocotyl of maize (Zea mays L. cv FR27 × FRMo 17) to manipulation of ABA levels at low ψw with a high degree of spatial resolution to provide the basis for studies of the mechanism(s) of ABA action. In seedlings growing at low ψw and treated with fluridone to inhibit carotenoid (and ABA) biosynthesis, ABA levels were decreased in all locations of the root and mesocotyl growing zones compared with untreated seedlings growing at the same ψw. In the root, low ψw (−1.6 megapascals) caused a shortening of the growing zone, as reported previously. The fluridone treatment was associated with severe inhibition of root elongation rate, which resulted from further shortening of the growing zone. In the mesocotyl, low ψw (−0.3 megapascal) also resulted in a shortened growing zone. In contrast with the primary root, however, fluridone treatment prevented most of the inhibition of elongation and the shortening of the growing zone. Final cell length measurements indicated that the responses of both root and mesocotyl elongation to ABA manipulation at low ψw involve large effects on cell expansion. Measurements of the relative changes in root and shoot water contents and dry weights after transplanting to a ψw of −0.3 megapascal showed that the maintenance of shoot elongation in fluridone-treated seedlings was not attributable to increased water or seed-reserve availability resulting from inhibition of root growth. The results suggest a developmental gradient in tissue responsiveness to endogenous ABA in both the root and mesocotyl growing zones. In the root, the capacity for ABA to protect cell expansion at low

  14. Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid.

    PubMed

    Narusaka, Y; Narusaka, M; Horio, T; Ishii, H

    1999-04-01

    The accumulation of chitinase and its involvement in systemic acquired disease resistance was analyzed using acibenzolar-S-methyl and salicylic acid (SA). Resistance against scab (pathogen: Cladosporium cucumerinum) and the accumulation of chitinase were rapidly induced in cucumber plants after treatment with acibenzolar-S-methyl. In contrast, SA protected the plants from C. cucumerinum and the accumulation of chitinase was induced only on the treated leaves. The accumulation of chitinase in response to inoculation with the pathogen was induced more rapidly in cucumber plants previously treated with acibenzolar-S-methyl than in plants pretreated with SA or water. Thus, it appears that a prospective signal(s), that induces systemic resistance, can be transferred from leaves treated with acibenzolar-S-methyl to the untreated upper and lower leaves where systemic resistance is elicited. In contrast, exogenously applied SA is not likely to function as a mobile, systemic resistance-inducing signal, because SA only induces localized acquired resistance. PMID:10394634

  15. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis.

    PubMed

    Shen, Chenjia; Yang, Yanjun; Liu, Kaidong; Zhang, Lei; Guo, Hong; Sun, Tao; Wang, Huizhong

    2016-07-01

    Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes. PMID:27208542

  16. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars.

    PubMed

    Atsumi, Go; Kagaya, Uiko; Kitazawa, Hiroaki; Nakahara, Kenji Suto; Uyeda, Ichiro

    2009-02-01

    The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination. PMID:19132869

  17. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

    PubMed

    Zhang, Zhongqin; Shrestha, Jay; Tateda, Chika; Greenberg, Jean T

    2014-08-01

    ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses. PMID:24923602

  18. Amino acid amides of piperic acid (PA) and 4-ethylpiperic acid (EPA) as NorA efflux pump inhibitors of Staphylococcus aureus.

    PubMed

    Wani, Naiem Ahmad; Singh, Samsher; Farooq, Saleem; Shankar, Sudha; Koul, Surrinder; Khan, Inshad Ali; Rai, Rajkishor

    2016-09-01

    A total of eighteen piperic acid (PA) and 4-ethylpiperic acid (EPA) amides (C1-C18) with α-, β- and γ-amino acids were synthesized, characterized and evaluated for their efflux pump inhibitory activity against ciprofloxacin resistant Staphylococcus aureus. The amides were screened against NorA overexpressing S. aureus SA-1199B and wild type S. aureus SA-1199 using ethidium bromide as NorA efflux pump substrate. EPI C6 was found to be most potent and reduced the MIC of ciprofloxacin by 16 fold followed by C18 which showed 4 fold reduction of MIC. Ethidium bromide efflux inhibition and accumulation assay proved these compounds as NorA inhibitors. PMID:27503686

  19. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  20. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome

    PubMed Central

    Beach, Adam; Richard, Vincent R; Bourque, Simon; Boukh-Viner, Tatiana; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Arlia-Ciommo, Anthony; Feldman, Rachel; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2015-01-01

    We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several “clusters”, each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan. PMID:25839782

  1. Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic acid accumulation in roots and leaflets of reciprocal grafts

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D. )

    1988-05-01

    Lycopersicon esculentum Mill. cv Rheinlands Ruhm (RR) and cv Moneymaker and the three wilty mutants flacca (flc), sitiens (sit), and sitiens{sup w} (sit{sup w}), together with the most reciprocal grafts, were grown in pots and in solution culture. Detached leaflets, and control and stem-girdled intact plants, were left turgid or were wilted in air. Detached leaflets and the leaflets and roots of the intact plants were analyzed for their abscisic acid (ABA) content. Turgid RR leaflets contained about 2.9 ng ABA per miligram dry weight. On average, the flc and sit leaflets contained 33 and 11% of this amount, respectively. The lack of ABA approximately correlated with the severity of the mutant phenotype. Mutant roots also contained less ABA than wild-type roots. Wild-type scions on mutant stocks (wild type/mutant) maintained the normal phenotype of ungrafted plants. Mutant scions grafted onto wild-type stocks reverted to a near wild-type phenotype. After the wild-type leaves were excised from solution culture-grown mutant/wild-type plants, the revertive morphology of the mutant scions was maintained, although endogenous ABA levels in the leaflets fell to typical mutant levels and the leaflets became wilty again. When stressed in air, both leaflets and roots of RR plants produced stress-induced ABA, but the mutant leaflets and roots did not. The roots and leaflets of the grafted plants behaved according to their own genotype, with the notable exception of mutant roots grown with wild-type scions. Roots of flc and sit{sup w} recovered the ability to accumulate stress-induced ABA when grafted with RR scions before the stress was imposed.

  2. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue.

    PubMed

    Mcilroy, George D; Tammireddy, Seshu R; Maskrey, Benjamin H; Grant, Louise; Doherty, Mary K; Watson, David G; Delibegović, Mirela; Whitfield, Phillip D; Mody, Nimesh

    2016-01-15

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  3. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake

    PubMed Central

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1–0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants. PMID:25566293

  4. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis.

    PubMed

    Vilchèze, C; Morbidoni, H R; Weisbrod, T R; Iwamoto, H; Kuo, M; Sacchettini, J C; Jacobs, W R

    2000-07-01

    The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086

  5. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97

    PubMed Central

    Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol

    2015-01-01

    A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428

  6. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L.

    PubMed

    Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar

    2013-12-01

    The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations. PMID:21954193

  7. CO-EXPRESSION OF THE BORAGE DELTA-6 DESATURASE AND THE ARABIDOPSIS DELTA-15 DESATURASE RESULTS IN HIGH ACCUMULATION OF STEARIDONIC ACID IN THE SEEDS OF TRANSGENIC SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA) have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion e...

  8. Induction of Benzoic Acid 2-Hydroxylase in Virus-Inoculated Tobacco.

    PubMed Central

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M. A.

    1993-01-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article (N. Yalpani, J. Leon, M.A. Lawton, I. Raskin [1993] Plant Physiol 103: 315-321) shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco (Nicotiana tabacum L. cv Xanthi-nc) catalyze the 2-hydroxylation of BA to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h-1 g-1 fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[deg]C. TMV induction of BA2H activity and SA accumulation were inhibited when inoculated tobacco plants were incubated at 32[deg]C. However, when inoculated plants were incubated for 4 d at 32[deg]C and then transferred to 24[deg]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[deg]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. PMID:12231939

  9. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    NASA Astrophysics Data System (ADS)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  10. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. PMID:23988562

  11. Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes.

    PubMed

    Cheong, Mi Sun; Park, Hyeong Cheol; Hong, Mi Ju; Lee, Jiyoung; Choi, Wonkyun; Jin, Jing Bo; Bohnert, Hans J; Lee, Sang Yeol; Bressan, Ray A; Yun, Dae-Jin

    2009-12-01

    SIZ1 (for yeast SAP and MIZ1) encodes the sole ortholog of mammalian PIAS (for protein inhibitor of activated STAT) and yeast SIZ SUMO (for small ubiquitin-related modifier) E3 ligases in Arabidopsis (Arabidopsis thaliana). Four conserved motifs in SIZ1 include SAP (for scaffold attachment factor A/B/acinus/PIAS domain), PINIT (for proline-isoleucine-asparagine-isoleucine-threonine), SP-RING (for SIZ/PIAS-RING), and SXS (for serine-X-serine, where X is any amino acid) motifs. SIZ1 contains, in addition, a PHD (for plant homeodomain) typical of plant PIAS proteins. We determined phenotypes of siz1-2 knockout mutants transformed with SIZ1 alleles carrying point mutations in the predicted domains. Domain SP-RING is required for SUMO conjugation activity and nuclear localization of SIZ1. Salicylic acid (SA) accumulation and SA-dependent phenotypes of siz1-2, such as diminished plant size, heightened innate immunity, and abscisic acid inhibition of cotyledon greening, as well as SA-independent basal thermotolerance were not complemented by the altered SP-RING allele of SIZ1. The SXS domain also controlled SA accumulation and was involved in greening and expansion of cotyledons of seedlings germinated in the presence of abscisic acid. Mutations of the PHD zinc finger domain and the PINIT motif affected in vivo SUMOylation. Expression of the PHD and/or PINIT domain mutant alleles of SIZ1 in siz1-2 promoted hypocotyl elongation in response to sugar and light. The various domains of SIZ1 make unique contributions to the plant's ability to cope with its environment. PMID:19837819

  12. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Zhang, Lin; Ma, Li; Wang, Huan; Yu, Wen; Lv, Yi; Lu, Jiang-Yang; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective Burn-induced gut dysfunction plays an important role in the development of sepsis and multiple organ dysfunction. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) is critical in paracelluar barrier functions via regulating vascular endothelial growth factor (VEGF) and myosin light chain kinase (MLCK) expression. Previous studies have also demonstrated that histone deacetylase inhibitors (HDACIs) can repress HIF-1α. This study aims to examine whether valproic acid (VPA), a HDACI, protects against burn-induced gut barrier dysfunction via repressing HIF-1α-dependent upregulation of VEGF and MLCK expression. Methods Rats were subjected to third degree 55% TBSA burns and treated with/ without VPA (300mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and histologic evaluation. Histone acetylation, tight junction protein zonula occludens 1 (ZO-1), VEGF, MLCK and HIF-1α were measured. In addition, CaCO2 cells were transfected with siRNA directed against HIF-1α and were stimulated with CoCl2 (1mM) for 24 hours with/without VPA (2mM) followed by analysis of HIF-1α, MLCK, VEGF and ZO-1. Results Burn insults resulted in a significant increase in intestinal permeability and mucosal damage, accompanied by a significant reduction in histone acetylation, ZO-1, upregulation of VEGF, MLCK expression, and an increase in HIF-1α accumulation. VPA significantly attenuated the increase in intestinal permeability, mucosa damage, histone deacetylation and changes in ZO-1 expression. VPA also attenuated the increased VEGF, MLCK and HIF-1α protein levels. VPA reduced HIF-1α, MLCK and VEGF production and prevented ZO-1 loss in CoCl2-stimulated Caco-2 cells. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of MLCK and VEGF production, accompanied by upregulation of ZO-1. Conclusions These results indicate that VPA can protect against burn

  13. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost

    SciTech Connect

    Wong, J.W.C.; Selvam, A.

    2009-10-15

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.

  14. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    PubMed

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato. PMID:26032615

  15. Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses.

    PubMed

    Micol-Ponce, Rosa; Sánchez-García, Ana Belén; Xu, Qian; Barrero, José María; Micol, José Luis; Ponce, María Rosa

    2015-11-01

    Epigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity. To better understand the global function of ICU2 in epigenetic regulation, here we performed a microarray analysis of icu2-1 mutant plants. We found that the genes up-regulated in the icu2-1 mutant included genes encoding transcription factors and targets of the Polycomb Repressive Complexes. The down-regulated genes included many known players in salicylic acid (SA) biosynthesis and accumulation, ABA signaling and ABA-mediated responses. In addition, we found that icu2-1 plants had reduced SA levels in normal conditions; infection by Fusarium oxysporum induced SA accumulation in the En-2 wild type but not in the icu2-1 mutant. The icu2-1 plants were also hypersensitive to salt stress and exogenous ABA in seedling establishment, post-germination growth and stomatal closure, and accumulated more ABA than the wild type in response to salt stress. The icu2-1 mutant also showed high tolerance to the oxidative stress produced by 3-amino-1,2,4-triazole (3-AT). Our results uncover a role for ICU2 in the regulation of genes involved in ABA signaling as well as in SA biosynthesis and accumulation. PMID:26423959

  16. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  17. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Cordonier, Elizabeth L; Jarecke, Sarah K; Hollinger, Frances E; Zempleni, Janos

    2016-06-01

    Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation. PMID:27041646

  18. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. PMID:23279078

  19. AHL-priming functions via oxylipin and salicylic acid

    PubMed Central

    Schenk, Sebastian T.; Schikora, Adam

    2015-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID

  20. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    PubMed

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  1. Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana.

    PubMed

    Nie, Shengjun; Yue, Haiyun; Zhou, Jun; Xing, Da

    2015-01-01

    Plant mitochondria constitute a major source of ROS and are proposed to act as signaling organelles in the orchestration of defense response. At present, the signals generated and then integrated by mitochondria are still limited. Here, fluorescence techniques were used to monitor the events of mitochondria in vivo, as well as the induction of mitochondrial signaling by a natural defensive signal chemical salicylic acid (SA). An inhibition of respiration was observed in isolated mitochondria subjected to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA might act directly on the complex III in the respiration chain by inhibiting the activity. With this alteration, a quick burst of mitochondrial ROS (mtROS) was stimulated. SA-induced mtROS caused mitochondrial morphology transition in leaf tissue or protoplasts expressing mitochondria-GFP (43C5) and depolarization of membrane potential. However, the application of AsA, an H2O2 scavenger, significantly prevented both events, indicating that both of them are attributable to ROS accumulation. In parallel, SA-induced mtROS up-regulated AOX1a transcript abundance and this induction was correlated with the disease resistance, whereas AsA-pretreatment interdicted this effect. It is concluded that mitochondria play an essential role in the signaling pathway of SA-induced ROS generation, which possibly provided new insight into the SA-mediated biological processes, including plant defense response. PMID:25811367

  2. Mitochondrial-Derived Reactive Oxygen Species Play a Vital Role in the Salicylic Acid Signaling Pathway in Arabidopsis thaliana

    PubMed Central

    Nie, Shengjun; Yue, Haiyun; Zhou, Jun; Xing, Da

    2015-01-01

    Plant mitochondria constitute a major source of ROS and are proposed to act as signaling organelles in the orchestration of defense response. At present, the signals generated and then integrated by mitochondria are still limited. Here, fluorescence techniques were used to monitor the events of mitochondria in vivo, as well as the induction of mitochondrial signaling by a natural defensive signal chemical salicylic acid (SA). An inhibition of respiration was observed in isolated mitochondria subjected to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA might act directly on the complex III in the respiration chain by inhibiting the activity. With this alteration, a quick burst of mitochondrial ROS (mtROS) was stimulated. SA-induced mtROS caused mitochondrial morphology transition in leaf tissue or protoplasts expressing mitochondria-GFP (43C5) and depolarization of membrane potential. However, the application of AsA, an H2O2 scavenger, significantly prevented both events, indicating that both of them are attributable to ROS accumulation. In parallel, SA-induced mtROS up-regulated AOX1a transcript abundance and this induction was correlated with the disease resistance, whereas AsA-pretreatment interdicted this effect. It is concluded that mitochondria play an essential role in the signaling pathway of SA-induced ROS generation, which possibly provided new insight into the SA-mediated biological processes, including plant defense response. PMID:25811367

  3. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

    PubMed

    Eckert, Helene; La Vallee, Brad; Schweiger, Bruce J; Kinney, Anthony J; Cahoon, Edgar B; Clemente, Tom

    2006-10-01

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, alpha-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Delta(6) desaturase and an Arabidopsis Delta(15) desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Delta(6) desaturase event with the Delta(15) desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean beta-conglycinin promoter. Soybean events that carried only the Delta(15 )desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids. PMID:16718484

  4. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  5. Plants as biofactories: glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue.

    PubMed

    Becerra-Moreno, Alejandro; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2012-11-14

    The use of plants to produce chemical compounds with pharmaceutical and nutraceutical applications has intensified in recent years. In this regard, genetic engineering is the most commonly used tool to generate crop lines with enhanced concentrations of desirable chemicals. However, growing genetically modified plants is still limited because they are perceived as potential biological hazards that can create an ecological imbalance. The application of postharvest abiotic stresses on plants induces the accumulation of secondary metabolites and thus can be used as an alternative to genetic modification. The present project evaluated the feasibility of producing shikimic acid (SA) and phenolic compounds (PC) in wounded carrots ( Daucus carota ) treated with glyphosate. The spray application of a concentrated glyphosate solution on wounded carrot tissue increased the concentrations of SA and chlorogenic acid by ∼1735 and ∼5700%, respectively. The results presented herein demonstrate the potential of stressed carrot tissue as a biofactory of SA and PC. PMID:23101679

  6. SA- AND NO- MEDIATED SIGNALLING IN PLANT DISEASE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid and nitric oxide mediated signalling are two key regulators of plant disease resistance mechanisms. Using multiple Arabidopsis mutants that are positive or negative regulators of the SA response we are dissecting the signal transduction chain. To elucidate the components associated w...

  7. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

  8. Whole structure-activity relationships of the fat-accumulation inhibitor (-)-ternatin: recognition of the importance of each amino acid residue.

    PubMed

    Shimokawa, Kenichiro; Iwase, Yoshiaki; Miwa, Ryoka; Yamada, Kaoru; Uemura, Daisuke

    2008-10-01

    A series of Ala and Aoc analogues of (-)-ternatin were prepared, and their bioactivities were assessed by a fat-accumulation inhibition assay using 3T3-L1 adipocytes, which led to the discovery of key structure-activity relationships (SAR). PMID:18798610

  9. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment.

    PubMed

    Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N

    2015-10-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. PMID:26163705

  10. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment

    PubMed Central

    Fister, Andrew S.; O’Neil, Shawn T.; Shi, Zi; Zhang, Yufan; Tyler, Brett M.; Guiltinan, Mark J.; Maximova, Siela N.

    2015-01-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. PMID:26163705

  11. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  12. Toxic accumulation of alpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium.

    PubMed

    LaRossa, R A; Van Dyk, T K; Smulski, D R

    1987-04-01

    Biochemical and genetic analyses of the bacterium Salmonella typhimurium suggest that accumulation of alpha-ketobutyrate partially mediates the herbicidal activity of acetolactate synthase inhibitors. Growth inhibition of wild-type bacteria by the herbicide sulfometuron methyl was prevented by supplementing the medium with isoleucine, an allosteric inhibitor of threonine deaminase-catalyzed synthesis of alpha-ketobutyrate. In contrast, isoleucine did not rescue the growth of a mutant containing a threonine deaminase unresponsive to isoleucine. Moreover, the hypersensitivity of seven Tn10 insertion mutants to growth inhibition by sulfometuron methyl and alpha-ketobutyrate correlated with their inability to convert alpha-ketobutyrate to less noxious metabolites. We propose that alpha-ketobutyrate accumulation is an important component of sulfonylurea and imidazolinone herbicide action. PMID:3031008

  13. Excessive reactive oxygen species induces apoptosis in fibroblasts: Role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR)

    SciTech Connect

    Chowdhury, Anindya Roy; Ghosh, Ilora Datta, Kasturi

    2008-02-01

    Constitutively expressed HABP1 in normal murine fibroblast cell line induces growth perturbation, morphological abnormalities alongwith initiation of apoptosis. Here, we demonstrate that though HABP1 accumulation started in mitochondria from 48 hr of growth, induction of apoptosis with the release of cytochrome c and apoptosome complex formation occurred only after 60 hr. This mitochondrial dysfunction was due to gradual increase in ROS generation in HABP1 overexpressing cells. Along with ROS generation, increased Ca{sup 2+} influx in mitochondria leading to drop in membrane potential was evident. Interestingly, upon expression of HABP1, the respiratory chain complex I was shown to be significantly inhibited. Electronmicrograph confirmed defective mitochondrial ultrastructure. The reduction in oxidant generation and drop in apoptotic cell population accomplished by disruption of HABP1 expression, corroborating the fact that excess ROS generation in HABP1 overexpressing cells leading to apoptosis was due to mitochondrial HABP1 accumulation.

  14. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.

    PubMed

    Buhrow, Leann M; Cram, Dustin; Tulpan, Dan; Foroud, Nora A; Loewen, Michele C

    2016-09-01

    Although the roles of salicylate (SA) and jasmonic acid (JA) have been well-characterized in Fusarium head blight (FHB)-infected cereals, the roles of other phytohormones remain more ambiguous. Here, the association between an array of phytohormones and FHB pathogenesis in wheat is investigated. Comprehensive profiling of endogenous hormones demonstrated altered cytokinin, gibberellic acid (GA), and JA metabolism in a FHB-resistant cultivar, whereas challenge by Fusarium graminearum increased abscisic acid (ABA), JA, and SA in both FHB-susceptible and -resistant cultivars. Subsequent investigation of ABA or GA coapplication with fungal challenge increased and decreased FHB spread, respectively. These phytohormones-induced effects may be attributed to alteration of the F. graminearum transcriptome because ABA promoted expression of early-infection genes, including hydrolases and cytoskeletal reorganization genes, while GA suppressed nitrogen metabolic gene expression. Neither ABA nor GA elicited significant effects on F. graminearum fungal growth or sporulation in axenic conditions, nor do these phytohormones affect trichothecene gene expression, deoxynivalenol mycotoxin accumulation, or SA/JA biosynthesis in F. graminearum-challenged wheat spikes. Finally, the combined application of GA and paclobutrazol, a Fusarium fungicide, provided additive effects on reducing FHB severity, highlighting the potential for combining fungicidal agents with select phytohormone-related treatments for management of FHB infection in wheat. PMID:27135677

  15. Age-related changes in amino acid pool sizes in the adult silkmoth, Bombyx mori, reared at low and high temperature; a biochemical examination of the rate-of-living theory and urea accumulation when reared at high temperature.

    PubMed

    Osanai, M; Yonezawa, Y

    1984-01-01

    To examine the rate-of-living theory, age-related changes in amino acid pool sizes were investigated in the adult silkmoth, Bombyx mori, reared at low and high temperature. At either temperature concentrations of free amino acids contained in silkmoths revealed a great sexual difference. Those in females were generally much higher than in males and the former changed much more dynamically than the latter. Major amino acids or ninhydrin-positive compounds inclusive of some essential amino acids such as Leu, Ile, Val, Thr, Arg, Phe, Met, Ala, Tyr, Gln, Aspn , Lan , Cysta , GABA and PEA accumulated in 4 degrees C-moths. However, the levels of these amino changed irregularly with advanced age. Inhibition of protein synthesis may occur generally at low temperature, while protein degradation may be promoted at high temperature. High concentrations of MSO and Tau in the moths reared at high temperature than in the normal moths suggested also catabolism of amino acids proceeding together with protein degradation at high temperature. Amino acid metabolism seems to be complicated under various temperature conditions. When reared at the optimal temperature of 25 degrees C, urea is not present in the body of the silkmoth except for a slight amount in the secreted meconium. In silkmoths reared at the higher temperature of 35 degrees C, however, an extraordinary accumulation of urea occurs accompanied by a reduction in lifespan by one half. Undoubtedly, urea is produced in this terrestrial insect, although the accumulation mechanism is not clear: in silkmoths reared at various temperatures, arginase is found, but urease is not detected. Arginase activity was found to be higher in male moths than in female moths regardless of the rearing temperature. High temperature rearing also did not induce activity and female activity never exceeded that in males at either 25 degrees C or 35 degrees C rearing. Protein degradation accelerated by rearing at high temperatures may result in

  16. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  17. Synovial distribution of “systemically” administered acetylsalicylic acid in the isolated perfused equine distal limb

    PubMed Central

    2013-01-01

    Background This study investigated synovial concentrations of acetylsalicylic acid (ASA) and its metabolite salicylic acid (SA) in the equine fetlock joint following systemic administration of ASA. Salicylates were chosen because SA is the only nonsteroidal anti-inflammatory drug for which threshold levels exist for plasma and urine in equine sports. To avoid animal experiments, the study was conducted using an ex vivo model of the isolated perfused equine distal limb in combination with plasma concentrations obtained from literature. Salicylate concentrations in the joint were determined using microdialysis and high performance liquid chromatography (HPLC). Any anti-inflammatory effect of synovial ASA concentrations was assessed using an ASA EC50 (half maximal effective concentration) determined in equine whole blood. Results The ASA concentration in the synovial fluid (n = 6) reached a maximum of 4 μg/mL, the mean concentration over the entire perfusion period was 2 μg/mL. Maximum SA concentration was 17 μg/mL, the average was 14 μg/mL. ASA and SA concentration in the synovial fluid exceeded systemic concentrations 2 h and 3.5 h after “systemic” administration, respectively. Conclusions ASA and SA accumulated in the in the synovial fluid of the ex vivo model despite decreasing systemic concentrations. This suggests a prolonged anti-inflammatory effect within the joint that remains to be further elucidated. PMID:23531229

  18. Ecology: accumulating threats to life

    SciTech Connect

    Peterson, R.W.

    1980-04-01

    The accumulating impacts of toxic materials like polychloridnated bephenyls (PCBs), acid rain, deforestation in the Amazon River Basin, and nuclear energy are examined as life-threatening actions that the public must recognize. Immediate action is needed to abandon destructive human activities and search out those life-supporting choices which will replace immediate gratification with long-range benefits. (DCK)

  19. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription.

    PubMed

    Armengot, Laia; Caldarella, Eleonora; Marquès-Bueno, Maria Mar; Martínez, M Carmen

    2016-01-01

    The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA) homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN) genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID), an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling. PMID:27275924

  20. The Protein Kinase CK2 Mediates Cross-Talk between Auxin- and Salicylic Acid-Signaling Pathways in the Regulation of PINOID Transcription

    PubMed Central

    Armengot, Laia; Caldarella, Eleonora; Marquès-Bueno, Maria Mar; Martínez, M. Carmen

    2016-01-01

    The protein kinase CK2 is a ubiquitous and highly conserved enzyme, the activity of which is vital for eukaryotic cells. We recently demonstrated that CK2 modulates salicylic acid (SA) homeostasis in Arabidopsis thaliana, and that functional interplay between CK2 and SA sustains transcriptional expression of PIN-FORMED (PIN) genes. In this work, we show that CK2 also plays a key role in the transcriptional regulation of PINOID (PID), an AGC protein kinase that modulates the apical/basal localization of auxin-efflux transporters. We show that PID transcription is up-regulated by auxin and by SA and that CK2 is involved in both pathways. On the one hand, CK2 activity is required for proteosome-dependent degradation of AXR3, a member of the AUX/IAA family of auxin transcriptional repressors that must be degraded to activate auxin-responsive gene expression. On the other hand, the role of CK2 in SA homeostasis and, indirectly, in SA-driven PID transcription, was confirmed by using Arabidopsis NahG transgenic plants, which cannot accumulate SA. In conclusion, our results evidence a role for CK2 as a functional link in the negative cross-talk between auxin- and SA-signaling. PMID:27275924

  1. Salicylic Acid, Yersiniabactin, and Pyoverdin Production by the Model Phytopathogen Pseudomonas syringae pv. tomato DC3000: Synthesis, Regulation, and Impact on Tomato and Arabidopsis Host Plants▿ †

    PubMed Central

    Jones, Alexander M.; Lindow, Steven E.; Wildermuth, Mary C.

    2007-01-01

    A genetically tractable model plant pathosystem, Pseudomonas syringae pv. tomato DC3000 on tomato and Arabidopsis thaliana hosts, was used to investigate the role of salicylic acid (SA) and iron acquisition via siderophores in bacterial virulence. Pathogen-induced SA accumulation mediates defense in these plants, and DC3000 contains the genes required for the synthesis of SA, the SA-incorporated siderophore yersiniabactin (Ybt), and the fluorescent siderophore pyoverdin (Pvd). We found that DC3000 synthesizes SA, Ybt, and Pvd under iron-limiting conditions in culture. Synthesis of SA and Ybt by DC3000 requires pchA, an isochorismate synthase gene in the Ybt genomic cluster, and exogenous SA can restore Ybt production by the pchA mutant. Ybt was also produced by DC3000 in planta, suggesting that Ybt plays a role in DC3000 pathogenesis. However, the pchA mutant did not exhibit any growth defect or altered virulence in plants. This lack of phenotype was not attributable to plant-produced SA restoring Ybt production, as the pchA mutant grew similarly to DC3000 in an Arabidopsis SA biosynthetic mutant, and in planta Ybt was not detected in pchA-infected wild-type plants. In culture, no growth defect was observed for the pchA mutant versus DC3000 for any condition tested. Instead, enhanced growth of the pchA mutant was observed under stringent iron limitation and additional stresses. This suggests that SA and Ybt production by DC3000 is costly and that Pvd is sufficient for iron acquisition. Further exploration of the comparative synthesis and utility of Ybt versus Pvd production by DC3000 found siderophore-dependent amplification of ybt gene expression to be absent, suggesting that Ybt may play a yet unknown role in DC3000 pathogenesis. PMID:17660289

  2. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    PubMed Central

    Usher, Sarah; Haslam, Richard P.; Ruiz-Lopez, Noemi; Sayanova, Olga; Napier, Johnathan A.

    2015-01-01

    The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation. PMID:27066395

  3. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells.

    PubMed

    Sun, Yuting; Luo, Jun; Zhu, Jiangjiang; Shi, Hengbo; Li, Jun; Qiu, Siyuan; Wang, Ping; Loor, Juan J

    2016-02-01

    Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism. PMID:26304676

  4. The qSD12 Underlying Gene Promotes Abscisic Acid Accumulation in Early Developing Seeds to Induce Primary Dormancy in Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is considered to play a role in inducing the dormancy. qSD12 is a major seed dormancy QTL identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidat...

  5. [Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress].

    PubMed

    Hao, Jing-Hong; Yi, Yang; Shang, Qing-Mao; Dong, Chun-Juan; Zhang, Zhi-Gang

    2012-03-01

    To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance. PMID:22720616

  6. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-01

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles. PMID:26061529

  7. Number of SA Astronomy Researchers

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-12-01

    The SA professional astronomical community has grown enormously in recent years with the advent of SALT, SKA/MeerKAT/KAT and HESS (Namibia). In this article I have made an attempt to list the people involved, namely those with doctorates working in fields of astronomy and related technologies, cosmic rays, cosmology and space science.

  8. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden syrian-hamster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to polyunsaturated fatty acids may confer functional advantages with respect to finding acceptable alternatives to hydrogenated fats but limited data are available on its effect on cardiovascular risk factors. This study inves...

  9. Dual Regulation Role of GH3.5 in Salicylic Acid and Auxin Signaling during Arabidopsis-Pseudomonas syringae Interaction1[W][OA

    PubMed Central

    Zhang, Zhongqin; Li, Qun; Li, Zhimiao; Staswick, Paul E.; Wang, Muyang; Zhu, Ying; He, Zuhua

    2007-01-01

    Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction. PMID:17704230

  10. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.)

    PubMed Central

    Singh, Amit P.; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K.; Chakrabarty, Debasis; Tripathi, Rudra D.

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (AsV) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by AsV and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (AsIII). SA also overcame AsV induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity. PMID:26042132

  11. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to

  12. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma

    PubMed Central

    Zhang, Weijian; Zhou, Lina; Yin, Peiyuan; Wang, Jinbing; Lu, Xin; Wang, Xiaomei; Chen, Jianguo; Lin, Xiaohui; Xu, Guowang

    2015-01-01

    Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease development and drug treatment and reveal the nature of biological processes at metabolic level. To extract important information in a systematic time dimension rather than at isolated time points, a weighted method based on the means and variations along the time points was proposed and first applied to previously published rat model data. The method was subsequently extended and applied to prospective metabolomics data analysis of hepatocellular carcinoma (HCC). Permutation was employed for noise filtering and false discovery rate (FDR) was used for parameter optimization during the feature selection. Long-term elevated serum bile acids were identified as risk factors for HCC development. PMID:25757957

  13. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. PMID:24118032

  14. Metal accumulating plants: Medium's role

    NASA Astrophysics Data System (ADS)

    Rabier, J.; Prudent, P.; Szymanska, B.; Mevy, J.-P.

    2003-05-01

    To evaluate phytoremediation potentialities by metal accumulation in tolerant plants, trials are carried out using in vitro cultures. Organie compounds influence on metal accumulation is studied with metals supplemented media. The tested compounds on zinc and lead absorption by Brassica juncea, are chelating agents (EDTA, citric acid) and soluble organic fractions of compost. EDTA seems to enhance the transfer of lead in plant but it is the opposite in the case of zinc. Citric acid stimulates root absorption for both zinc and lead. For the aqueous extracts of compost, variable effects are obtained according to the origin of compost (green wastes and food wastes). In'all tested conditions of cultures, zinc is mainly exported towards shoot while lead is stored in root.

  15. Cauliflower mosaic virus Protein P6 Inhibits Signaling Responses to Salicylic Acid and Regulates Innate Immunity

    PubMed Central

    Love, Andrew J.; Geri, Chiara; Laird, Janet; Carr, Craig; Yun, Byung-Wook; Loake, Gary J.; Tada, Yasuomi; Sadanandom, Ari; Milner, Joel J.

    2012-01-01

    Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results

  16. The Non-native Helical Intermediate State May Accumulate at Low pH in the Folding and Aggregation Landscape of the Intestinal Fatty Acid Binding Protein.

    PubMed

    Sarkar-Banerjee, Suparna; Chowdhury, Sourav; Paul, Simanta Sarani; Dutta, Debashis; Ghosh, Anisa; Chattopadhyay, Krishnananda

    2016-08-16

    There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly β-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely β-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein

  17. Uptake and Accumulation of Nephrotoxic and Carcinogenic Aristolochic Acids in Food Crops Grown in Aristolochia clematitis-Contaminated Soil and Water.

    PubMed

    Li, Weiwei; Hu, Qin; Chan, Wan

    2016-01-13

    Emerging evidence has suggested aristolochic acids (AAs) are linked to the development of Balkan endemic nephropathy (BEN), a chronic renal disease affecting numerous farmers living in the Balkan peninsula. However, the pathway by which AAs enter the human food chain and cause kidney disease remains poorly understood. Using our previously developed analytical method with high sensitivity and selectivity (Chan, W.; Lee, K. C.; Liu, N.; Cai, Z. J. Chromatogr. A 2007, 1164, 113-119), we quantified AAs in lettuce, tomato, and spring onion grown in AA-contaminated soil and culture medium. Our study revealed that AAs were being taken up from the soil and bioaccumulated in food crops in a time- and dose-dependent manner. To the best of our knowledge, this study is the first to identify one of the possible pathways by which AAs enter our food chain to cause chronic food poisoning. Results also demonstrated that AAs were resistant to the microbial activity of the soil/water. PMID:26654710

  18. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi.

    PubMed

    Li, Zhu-Hong; Alvarez, Vanina E; De Gaudenzi, Javier G; Sant'Anna, Celso; Frasch, Alberto C C; Cazzulo, Juan J; Docampo, Roberto

    2011-12-23

    The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance. PMID:22039054

  19. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  20. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    PubMed Central

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  1. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    PubMed

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα. PMID:27131602

  2. The induction of CP43' by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation.

    PubMed

    Ivanov, Alexander G; Krol, Marianna; Selstam, Eva; Sane, Prafullachandra Vishnu; Sveshnikov, Dmitry; Park, Youn-Il; Oquist, Gunnar; Huner, Norman P A

    2007-06-01

    Comparative lipid analysis demonstrated reduced amount of PG (50%) and lower ratio of MGDG/DGDG in iron-stressed Synechococcus sp. PCC 7942 cells compared to cells grown under iron sufficient conditions. In parallel, the monoenoic (C:1) fatty acids in MGDG, DGDG and PG increased from 46.8%, 43.7% and 45.6%, respectively in control cells to 51.6%, 48.8% and 48.7%, respectively in iron-stressed cells. This suggests increased membrane dynamics, which may facilitate the diffusion of PQ and keep the PQ pool in relatively more oxidized state in iron-stressed compared to control cells. This was confirmed by chlorophyll fluorescence and thermoluminescence measurements. Analysis of carotenoid composition demonstrated that the induction of isiA (CP43') protein in response to iron stress is accompanied by significant increase of the relative abundance of all carotenoids. The quantity of carotenoids calculated on a Chl basis increased differentially with nostoxanthin, cryptoxanthin, zeaxanthin and beta-carotene showing 2.6-, 3.1-, 1.9- and 1.9-fold increases, respectively, while the relative amount of caloxanthin was increased only by 30%. HPLC analyses of the pigment composition of Chl-protein complexes separated by non-denaturating SDS-PAGE demonstrated even higher relative carotenoids content, especially of cryptoxanthin, in trimer and monomer PSI Chl-protein complexes co-migrating with CP43' from iron-stressed cells than in PSI complexes from control cells where CP43' is not present. This implies a carotenoid-binding role for the CP43' protein which supports our previous suggestion for effective energy quenching and photoprotective role of CP43' protein in cyanobacteria under iron stress. PMID:17362874

  3. The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I N; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-12-01

    Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs. PMID:26431622

  4. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  5. Salicylic Acid sans Aspirin in Animals and Man: Persistence in Fasting and Biosynthesis from Benzoic Acid

    PubMed Central

    2008-01-01

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A 13C6 benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  6. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight's upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket

  7. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates